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mann, Maria Macke

Programs Bernward Tewes, René Michel, Daniel Hofmann
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Preface

The analysis of real data by means of statistical methods with the aid
of a software package common in industry and administration usually
is not an integral part of mathematics studies, but it will certainly be
part of a future professional work.
The practical need for an investigation of time series data is exempli-
fied by the following plot, which displays the yearly sunspot numbers
between 1749 and 1924. These data are also known as the Wolf or
Wölfer (a student of Wolf) Data. For a discussion of these data and
further literature we refer to Wei (1990), Example 5.2.5.

Plot 1: Sunspot data

The present book links up elements from time series analysis with a se-
lection of statistical procedures used in general practice including the
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statistical software package SAS (Statistical Analysis System). Conse-
quently this book addresses students of statistics as well as students of
other branches such as economics, demography and engineering, where
lectures on statistics belong to their academic training. But it is also
intended for the practician who, beyond the use of statistical tools, is
interested in their mathematical background. Numerous problems il-
lustrate the applicability of the presented statistical procedures, where
SAS gives the solutions. The programs used are explicitly listed and
explained. No previous experience is expected neither in SAS nor in a
special computer system so that a short training period is guaranteed.

This book is meant for a two semester course (lecture, seminar or
practical training) where the first two chapters can be dealt with in
the first semester. They provide the principal components of the
analysis of a time series in the time domain. Chapters 3, 4 and 5
deal with its analysis in the frequency domain and can be worked
through in the second term. In order to understand the mathematical
background some terms are useful such as convergence in distribution,
stochastic convergence, maximum likelihood estimator as well as a
basic knowledge of the test theory, so that work on the book can start
after an introductory lecture on stochastics. Each chapter includes
exercises. An exhaustive treatment is recommended.

Due to the vast field a selection of the subjects was necessary. Chap-
ter 1 contains elements of an exploratory time series analysis, in-
cluding the fit of models (logistic, Mitscherlich, Gompertz curve) to
a series of data, linear filters for seasonal and trend adjustments
(difference filters, Census X − 11 Program) and exponential filters
for monitoring a system. Autocovariances and autocorrelations as
well as variance stabilizing techniques (Box–Cox transformations) are
introduced. Chapter 2 provides an account of mathematical mod-
els of stationary sequences of random variables (white noise, mov-
ing averages, autoregressive processes, ARIMA models, cointegrated
sequences, ARCH- and GARCH-processes, state-space models) to-
gether with their mathematical background (existence of stationary
processes, covariance generating function, inverse and causal filters,
stationarity condition, Yule–Walker equations, partial autocorrela-
tion). The Box–Jenkins program for the specification of ARMA-
models is discussed in detail (AIC, BIC and HQC information cri-
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terion). Gaussian processes and maximum likelihod estimation in
Gaussian models are introduced as well as least squares estimators as
a nonparametric alternative. The diagnostic check includes the Box–
Ljung test. Many models of time series can be embedded in state-
space models, which are introduced at the end of Chapter 2. The
Kalman filter as a unified prediction technique closes the analysis of a
time series in the time domain. The analysis of a series of data in the
frequency domain starts in Chapter 3 (harmonic waves, Fourier fre-
quencies, periodogram, Fourier transform and its inverse). The proof
of the fact that the periodogram is the Fourier transform of the empiri-
cal autocovariance function is given. This links the analysis in the time
domain with the analysis in the frequency domain. Chapter 4 gives
an account of the analysis of the spectrum of the stationary process
(spectral distribution function, spectral density, Herglotz’s theorem).
The effects of a linear filter are studied (transfer and power transfer
function, low pass and high pass filters, filter design) and the spectral
densities of ARMA-processes are computed. Some basic elements of
a statistical analysis of a series of data in the frequency domain are
provided in Chapter 5. The problem of testing for a white noise is
dealt with (Fisher’s κ-statistic, Bartlett–Kolmogorov–Smirnov test)
together with the estimation of the spectral density (periodogram,
discrete spectral average estimator, kernel estimator, confidence in-
tervals).
This book is consecutively subdivided in a statistical part and a SAS-
specific part. For better clearness the SAS-specific part, including
the diagrams generated with SAS, is between two horizontal bars,
separating it from the rest of the text.

1 /* This is a sample comment. */

2 /* The first comment in each program will be its name. */

3

4 Program code will be set in typewriter -font.

5

6 Extra -long lines will be broken into smaller lines with

↪→continuation marked by an arrow and indentation.

7 (Also , the line -number is missing in this case.)

Program 2: Sample program



vi

In this area, you will find a step-by-step expla-
nation of the above program. The keywords will
be set in typewriter-font. Please note that

SAS cannot be explained as a whole this way.
Only the actually used commands will be men-
tioned.
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Chapter

1Elements of Exploratory
Time Series Analysis

A time series is a sequence of observations that are arranged according
to the time of their outcome. The annual crop yield of sugar-beets and
their price per ton for example is recorded in agriculture. The newspa-
pers’ business sections report daily stock prices, weekly interest rates,
monthly rates of unemployment and annual turnovers. Meteorology
records hourly wind speeds, daily maximum and minimum tempera-
tures and annual rainfall. Geophysics is continuously observing the
shaking or trembling of the earth in order to predict possibly impend-
ing earthquakes. An electroencephalogram traces brain waves made
by an electroencephalograph in order to detect a cerebral disease, an
electrocardiogram traces heart waves. The social sciences survey an-
nual death and birth rates, the number of accidents in the home and
various forms of criminal activities. Parameters in a manufacturing
process are permanently monitored in order to carry out an on-line
inspection in quality assurance.

There are, obviously, numerous reasons to record and to analyze the
data of a time series. Among these is the wish to gain a better under-
standing of the data generating mechanism, the prediction of future
values or the optimal control of a system. The characteristic property
of a time series is the fact that the data are not generated indepen-
dently, their dispersion varies in time, they are often governed by a
trend and they have cyclic components. Statistical procedures that
suppose independent and identically distributed data are, therefore,
excluded from the analysis of time series. This requires proper meth-
ods that are summarized under time series analysis.
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1.1 The Additive Model for a Time Series
The additive model for a given time series y1, . . . , yn is the assump-
tion that these data are realizations of random variables Yt that are
themselves sums of four components

Yt = Tt + Zt + St +Rt, t = 1, . . . , n. (1.1)

where Tt is a (monotone) function of t, called trend, and Zt reflects
some nonrandom long term cyclic influence. Think of the famous
business cycle usually consisting of recession, recovery, growth, and
decline. St describes some nonrandom short term cyclic influence like
a seasonal component whereas Rt is a random variable grasping all
the deviations from the ideal non-stochastic model yt = Tt + Zt + St.
The variables Tt and Zt are often summarized as

Gt = Tt + Zt, (1.2)

describing the long term behavior of the time series. We suppose in
the following that the expectation E(Rt) of the error variable exists
and equals zero, reflecting the assumption that the random deviations
above or below the nonrandom model balance each other on the av-
erage. Note that E(Rt) = 0 can always be achieved by appropriately
modifying one or more of the nonrandom components.

Example 1.1.1. (Unemployed1 Data). The following data yt, t =
1, . . . , 51, are the monthly numbers of unemployed workers in the
building trade in Germany from July 1975 to September 1979.

MONTH T UNEMPLYD

July 1 60572

August 2 52461

September 3 47357

October 4 48320

November 5 60219

December 6 84418

January 7 119916

February 8 124350

March 9 87309
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April 10 57035

May 11 39903

June 12 34053

July 13 29905

August 14 28068

September 15 26634

October 16 29259

November 17 38942

December 18 65036

January 19 110728

February 20 108931

March 21 71517

April 22 54428

May 23 42911

June 24 37123

July 25 33044

August 26 30755

September 27 28742

October 28 31968

November 29 41427

December 30 63685

January 31 99189

February 32 104240

March 33 75304

April 34 43622

May 35 33990

June 36 26819

July 37 25291

August 38 24538

September 39 22685

October 40 23945

November 41 28245

December 42 47017

January 43 90920

February 44 89340

March 45 47792

April 46 28448

May 47 19139

June 48 16728

July 49 16523

August 50 16622

September 51 15499

Listing 1.1.1a: Unemployed1 Data.

1 /* unemployed1_listing .sas */

2 TITLE1 ’Listing ’;

3 TITLE2 ’Unemployed1 Data ’;

4

5 /* Read in the data (Data -step) */

6 DATA data1;

7 INFILE ’c:\data\unemployed1.txt ’;

8 INPUT month $ t unemplyd;
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10 /* Print the data (Proc -step) */

11 PROC PRINT DATA = data1 NOOBS;

12 RUN;QUIT;

Program 1.1.1: Listing of Unemployed1 Data.

This program consists of two main parts, a DATA

and a PROC step.
The DATA step started with the DATA statement
creates a temporary dataset named data1. The
purpose of INFILE is to link the DATA step to
a raw dataset outside the program. The path-
name of this dataset depends on the operat-
ing system; we will use the syntax of MS-DOS,
which is most commonly known. INPUT tells
SAS how to read the data. Three variables are
defined here, where the first one contains char-
acter values. This is determined by the $ sign
behind the variable name. For each variable
one value per line is read from the source into
the computer’s memory.
The statement PROC procedurename

DATA=filename; invokes a procedure that is
linked to the data from filename. Without the
option DATA=filename the most recently cre-
ated file is used.
The PRINT procedure lists the data; it comes
with numerous options that allow control of the

variables to be printed out, ’dress up’ of the dis-
play etc. The SAS internal observation number
(OBS) is printed by default, NOOBS suppresses
the column of observation numbers on each
line of output. An optional VAR statement deter-
mines the order (from left to right) in which vari-
ables are displayed. If not specified (like here),
all variables in the data set will be printed in the
order they were defined to SAS. Entering RUN;

at any point of the program tells SAS that a unit
of work (DATA step or PROC) ended. SAS then
stops reading the program and begins to exe-
cute the unit. The QUIT; statement at the end
terminates the processing of SAS.
A line starting with an asterisk * and ending
with a semicolon ; is ignored. These comment
statements may occur at any point of the pro-
gram except within raw data or another state-
ment.
The TITLE statement generates a title. Its print-
ing is actually suppressed here and in the fol-
lowing.

The following plot of the Unemployed1 Data shows a seasonal compo-
nent and a downward trend. The period from July 1975 to September
1979 might be too short to indicate a possibly underlying long term
business cycle.
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Plot 1.1.2a: Unemployed1 Data.

1 /* unemployed1_plot .sas */

2 TITLE1 ’Plot ’;

3 TITLE2 ’Unemployed1 Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\unemployed1.txt ’;

8 INPUT month $ t unemplyd;

9

10 /* Graphical Options */

11 AXIS1 LABEL =( ANGLE =90 ’unemployed ’);

12 AXIS2 LABEL=(’t’);

13 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.4 W=1;

14

15 /* Plot the data */

16 PROC GPLOT DATA=data1;

17 PLOT unemplyd*t / VAXIS=AXIS1 HAXIS=AXIS2;

18 RUN; QUIT;

Program 1.1.2: Plot of Unemployed1 Data.

Variables can be plotted by using the GPLOT pro-
cedure, where the graphical output is controlled
by numerous options.

The AXIS statements with the LABEL options
control labelling of the vertical and horizontal
axes. ANGLE=90 causes a rotation of the label

of 90◦ so that it parallels the (vertical) axis in
this example.

The SYMBOL statement defines the manner in
which the data are displayed. V=DOT C=GREEN

I=JOIN H=0.4 W=1 tell SAS to plot green dots
of height 0.4 and to join them with a line of width
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1. The PLOT statement in the GPLOT procedure
is of the form PLOT y-variable*x-variable /

options;, where the options here define the
horizontal and the vertical axes.

Models with a Nonlinear Trend
In the additive model Yt = Tt+Rt, where the nonstochastic component
is only the trend Tt reflecting the growth of a system, and assuming
E(Rt) = 0, we have

E(Yt) = Tt =: f(t).

A common assumption is that the function f depends on several (un-
known) parameters β1, . . . , βp, i.e.,

f(t) = f(t; β1, . . . , βp). (1.3)

However, the type of the function f is known. The parameters β1, . . . , βp

are then to be estimated from the set of realizations yt of the random
variables Yt. A common approach is a least squares estimate β̂1, . . . , β̂p

satisfying

∑

t

(
yt − f(t; β̂1, . . . , β̂p)

)2

= min
β1,...,βp

∑

t

(
yt − f(t; β1, . . . , βp)

)2

, (1.4)

whose computation, if it exists at all, is a numerical problem. The
value ŷt := f(t; β̂1, . . . , β̂p) can serve as a prediction of a future yt.
The observed differences yt − ŷt are called residuals. They contain
information about the goodness of the fit of our model to the data.
In the following we list several popular examples of trend functions.

The Logistic Function
The function

flog(t) := flog(t; β1, β2, β3) :=
β3

1 + β2 exp(−β1t)
, t ∈ R, (1.5)

with β1, β2, β3 ∈ R \ {0} is the widely used logistic function.
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Plot 1.1.3a: The logistic function flog with different values of β1, β2, β3

1 /* logistic.sas */

2 TITLE1 ’Plots of the Logistic Function ’;

3

4 /* Generate the data for different logistic functions */

5 DATA data1;

6 beta3 =1;

7 DO beta1= 0.5, 1;

8 DO beta2 =0.1, 1;

9 DO t=-10 TO 10 BY 0.5;

10 s = COMPRESS(’(’ || beta1 || ’,’ || beta2 || ’,’ || beta3

↪→|| ’) ’);

11 f_log=beta3 /(1+ beta2*EXP(-beta1*t));

12 OUTPUT;

13 END;

14 END;

15 END;

16

17 /* Graphical Options */

18 SYMBOL1 C=GREEN V=NONE I=JOIN L=1;

19 SYMBOL2 C=GREEN V=NONE I=JOIN L=2;

20 SYMBOL3 C=GREEN V=NONE I=JOIN L=3;

21 SYMBOL4 C=GREEN V=NONE I=JOIN L=33;

22 AXIS1 LABEL =(H=2 ’f’ H=1 ’log ’ H=2 ’(t)’);
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23 AXIS2 LABEL=(’t’);

24 LEGEND1 LABEL =(F=CGREEK H=2 ’(b’ H=1 ’1’ H=2 ’, b’ H=1 ’2’ H=2 ’,b’

↪→ H=1 ’3’ H=2 ’)=’);

25

26 /*Plot the functions */

27 PROC GPLOT DATA=data1;

28 PLOT f_log*t=s / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

29 RUN; QUIT;

Program 1.1.3: Generating plots of the logistic function flog.

A function is plotted by computing its values at
numerous grid points and then joining them.
The computation is done in the DATA step,
where the data file data1 is generated. It con-
tains the values of f log, computed at the grid
t = −10,−9.5, . . . , 10 and indexed by the vector
s of the different choices of parameters. This
is done by nested DO loops. The operator ||

merges two strings and COMPRESS removes the
empty space in the string. OUTPUT then stores
the values of interest of f log, t and s (and the
other variables) in the data set data1.

The four functions are plotted by the GPLOT pro-
cedure by adding =s in the PLOT statement.
This also automatically generates a legend,
which is customized by the LEGEND1 statement.
Here the label is modified by using a greek
font (F=CGREEK) and generating smaller letters
of height 1 for the indices, while assuming a
normal height of 2 (H=1 and H=2). The last fea-
ture is also used in the axis statement. For each
value of s SAS takes a new SYMBOL statement.
They generate lines of different line types (L=1,
2, 3, 33).

We obviously have limt→∞ flog(t) = β3, if β1 > 0. The value β3 often
resembles the maximum impregnation or growth of a system. Note
that

1

flog(t)
=

1 + β2 exp(−β1t)

β3

=
1 − exp(−β1)

β3
+ exp(−β1)

1 + β2 exp(−β1(t− 1))

β3

=
1 − exp(−β1)

β3
+ exp(−β1)

1

flog(t− 1)

= a+
b

flog(t− 1)
. (1.6)

This means that there is a linear relationship among 1/flog(t). This
can serve as a basis for estimating the parameters β1, β2, β3 by an
appropriate linear least squares approach, see Exercises 1.2 and 1.3.
In the following example we fit the logistic trend model (1.5) to the
population growth of the area of North Rhine-Westphalia (NRW),
which is a federal state of Germany.
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Example 1.1.2. (Population1 Data). Table 1.1.1 shows the popu-
lation sizes yt in millions of the area of North-Rhine-Westphalia in
5 years steps from 1935 to 1980 as well as their predicted values ŷt,
obtained from a least squares estimation as described in (1.4) for a
logistic model.

Year t Population sizes yt Predicted values ŷt

(in millions) (in millions)
1935 1 11.772 10.930
1940 2 12.059 11.827
1945 3 11.200 12.709
1950 4 12.926 13.565
1955 5 14.442 14.384
1960 6 15.694 15.158
1965 7 16.661 15.881
1970 8 16.914 16.548
1975 9 17.176 17.158
1980 10 17.044 17.710

Table 1.1.1: Population1 Data

As a prediction of the population size at time t we obtain in the logistic
model

ŷt :=
β̂3

1 + β̂2 exp(−β̂1t)

=
21.5016

1 + 1.1436 exp(−0.1675 t)

with the estimated saturation size β̂3 = 21.5016. The following plot
shows the data and the fitted logistic curve.
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Plot 1.1.4a: NRW population sizes and fitted logistic function.

1 /* population1.sas */

2 TITLE1 ’Population sizes and logistic fit ’;

3 TITLE2 ’Population1 Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\population1.txt ’;

8 INPUT year t pop;

9

10 /* Compute parameters for fitted logistic function */

11 PROC NLIN DATA=data1 OUTEST=estimate;

12 MODEL pop=beta3 /(1+ beta2*EXP(-beta1*t));

13 PARAMETERS beta1=1 beta2 =1 beta3 =20;

14 RUN;

15

16 /* Generate fitted logistic function */

17 DATA data2;

18 SET estimate(WHERE =( _TYPE_=’FINAL ’));

19 DO t1=0 TO 11 BY 0.2;

20 f_log=beta3 /(1+ beta2*EXP(-beta1*t1));

21 OUTPUT;

22 END;

23

24 /* Merge data sets */

25 DATA data3;

26 MERGE data1 data2;

27
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28 /* Graphical options */

29 AXIS1 LABEL =( ANGLE =90 ’population in millions ’);

30 AXIS2 LABEL=(’t’);

31 SYMBOL1 V=DOT C=GREEN I=NONE;

32 SYMBOL2 V=NONE C=GREEN I=JOIN W=1;

33

34 /* Plot data with fitted function */

35 PROC GPLOT DATA=data3;

36 PLOT pop*t=1 f_log*t1=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;

37 RUN; QUIT;

Program 1.1.4: NRW population sizes and fitted logistic function.

The procedure NLIN fits nonlinear regression
models by least squares. The OUTEST option
names the data set to contain the parame-
ter estimates produced by NLIN. The MODEL

statement defines the prediction equation by
declaring the dependent variable and defining
an expression that evaluates predicted values.
A PARAMETERS statement must follow the PROC

NLIN statement. Each parameter=value ex-
pression specifies the starting values of the

parameter. Using the final estimates of PROC
NLIN by the SET statement in combination with
the WHERE data set option, the second data
step generates the fitted logistic function val-
ues. The options in the GPLOT statement cause
the data points and the predicted function to be
shown in one plot, after they were stored to-
gether in a new data set data3 merging data1

and data2 with the MERGE statement.

The Mitscherlich Function
The Mitscherlich function is typically used for modelling the long
term growth of a system:

fM(t) := fM(t; β1, β2, β3) := β1 + β2 exp(β3t), t ≥ 0, (1.7)

where β1, β2 ∈ R and β3 < 0. Since β3 is negative we have limt→∞ fM(t) =
β1 and thus the parameter β1 is the saturation value of the system.
The (initial) value of the system at the time t = 0 is fM(0) = β1 +β2.

The Gompertz Curve
A further quite common function for modelling the increase or de-
crease of a system is the Gompertz curve

fG(t) := fG(t; β1, β2, β3) := exp(β1 + β2β
t
3), t ≥ 0, (1.8)

where β1, β2 ∈ R and β3 ∈ (0, 1).
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Plot 1.1.5a: Gompertz curves with different parameters.

1 /* gompertz.sas */

2 TITLE1 ’Gompertz curves ’;

3

4 /* Generate the data for different Gompertz functions */

5 DATA data1;

6 DO beta1 =1;

7 DO beta2=-1, 1;

8 DO beta3 =0.05, 0.5;

9 DO t=0 TO 4 BY 0.05;

10 s = COMPRESS(’(’ || beta1 || ’,’ || beta2 || ’,’ || beta3

↪→|| ’) ’);

11 f_g=EXP(beta1+beta2*beta3 **t);

12 OUTPUT;

13 END;

14 END;

15 END;

16 END;

17

18 /* Graphical Options */

19 SYMBOL1 C=GREEN V=NONE I=JOIN L=1;

20 SYMBOL2 C=GREEN V=NONE I=JOIN L=2;

21 SYMBOL3 C=GREEN V=NONE I=JOIN L=3;

22 SYMBOL4 C=GREEN V=NONE I=JOIN L=33;
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23 AXIS1 LABEL =(H=2 ’f’ H=1 ’G’ H=2 ’(t)’);

24 AXIS2 LABEL=(’t’);

25 LEGEND1 LABEL=(F=CGREEK H=2 ’(b’ H=1 ’1’ H=2 ’,b’ H=1 ’2’ H=2 ’,b’

↪→H=1 ’3’ H=2 ’)=’);

26

27 /*Plot the functions */

28 PROC GPLOT DATA=data1;

29 PLOT f_g*t=s / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

30 RUN; QUIT;

Program 1.1.5: Plotting the Gompertz curves.

We obviously have

log(fG(t)) = β1 + β2β
t
3 = β1 + β2 exp(log(β3)t),

and thus log(fG) is a Mitscherlich function with parameters β1, β2, log(β3).
The saturation size obviously is exp(β1).

The Allometric Function
The allometric function

fa(t) := fa(t; β1, β2) = β2t
β1, t ≥ 0, (1.9)

with β1 ∈ R, β2 > 0, is a common trend function in biometry and
economics. It can be viewed as a particular Cobb–Douglas function,
which is a popular econometric model to describe the output produced
by a system depending on an input. Since

log(fa(t)) = log(β2) + β1 log(t), t > 0,

is a linear function of log(t), with slope β1 and intercept log(β2), we
can assume a linear regression model for the logarithmic data log(yt)

log(yt) = log(β2) + β1 log(t) + εt, t ≥ 1,

where εt are the error variables.

Example 1.1.3. (Income Data). Table 1.1.2 shows the (accumulated)
annual average increases of gross and net incomes in thousands DM
(deutsche mark) in Germany, starting in 1960.
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Year t Gross income xt Net income yt

1960 0 0 0
1961 1 0.627 0.486
1962 2 1.247 0.973
1963 3 1.702 1.323
1964 4 2.408 1.867
1965 5 3.188 2.568
1966 6 3.866 3.022
1967 7 4.201 3.259
1968 8 4.840 3.663
1969 9 5.855 4.321
1970 10 7.625 5.482

Table 1.1.2: Income Data.

We assume that the increase of the net income yt is an allometric
function of the time t and obtain

log(yt) = log(β2) + β1 log(t) + εt. (1.10)

The least squares estimates of β1 and log(β2) in the above linear re-
gression model are (see, for example, Theorem 3.2.2 in Falk et al.
(2002))

β̂1 =

∑10
t=1(log(t) − log(t))(log(yt) − log(y))

∑10
t=1(log(t) − log(t))2

= 1.019,

where log(t) := 10−1
∑10

t=1 log(t) = 1.5104, log(y) := 10−1
∑10

t=1 log(yt) =
0.7849, and hence

̂log(β2) = log(y) − β̂1log(t) = −0.7549

We estimate β2 therefore by

β̂2 = exp(−0.7549) = 0.4700.

The predicted value ŷt corresponds to the time t

ŷt = 0.47t1.019. (1.11)
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t yt − ŷt

1 0.0159
2 0.0201
3 -0.1176
4 -0.0646
5 0.1430
6 0.1017
7 -0.1583
8 -0.2526
9 -0.0942

10 0.5662

Table 1.1.3: Residuals of Income Data.

Table 1.1.3 lists the residuals yt − ŷt by which one can judge the
goodness of fit of the model (1.11).

A popular measure for assessing the fit is the squared multiple corre-
lation coefficient or R2-value

R2 := 1 −
∑n

t=1(yt − ŷt)
2

∑n
t=1(yt − ȳ)2

(1.12)

where ȳ := n−1
∑n

t=1 yt is the average of the observations yt (cf Sec-
tion 3.3 in Falk et al. (2002)). In the linear regression model with
ŷt based on the least squares estimates of the parameters, R2 is
necessarily between zero and one with the implications R2 = 1 iff1
∑n

t=1(yt − ŷt)
2 = 0 (see Exercise 1.4). A value of R2 close to 1 is in

favor of the fitted model. The model (1.10) has R2 equal to 0.9934,
whereas (1.11) has R2 = 0.9789. Note, however, that the initial model

(1.9) is not linear and β̂2 is not the least squares estimates, in which
case R2 is no longer necessarily between zero and one and has therefore
to be viewed with care as a crude measure of fit.

The annual average gross income in 1960 was 6148 DM and the cor-
responding net income was 5178 DM. The actual average gross and
net incomes were therefore x̃t := xt + 6.148 and ỹt := yt + 5.178 with

1if and only if
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the estimated model based on the above predicted values ŷt

ˆ̃yt = ŷt + 5.178 = 0.47t1.019 + 5.178.

Note that the residuals ỹt − ˆ̃yt = yt − ŷt are not influenced by adding
the constant 5.178 to yt. The above models might help judging the
average tax payer’s situation between 1960 and 1970 and to predict
his future one. It is apparent from the residuals in Table 1.1.3 that
the net income yt is an almost perfect multiple of t for t between 1
and 9, whereas the large increase y10 in 1970 seems to be an outlier.
Actually, in 1969 the German government had changed and in 1970 a
long strike in Germany caused an enormous increase in the income of
civil servants.

1.2 Linear Filtering of Time Series
In the following we consider the additive model (1.1) and assume that
there is no long term cyclic component. Nevertheless, we allow a
trend, in which case the smooth nonrandom component Gt equals the
trend function Tt. Our model is, therefore, the decomposition

Yt = Tt + St +Rt, t = 1, 2, . . . (1.13)

with E(Rt) = 0. Given realizations yt, t = 1, 2, . . . , n, of this time

series, the aim of this section is the derivation of estimators T̂t, Ŝt

of the nonrandom functions Tt and St and to remove them from the
time series by considering yt − T̂t or yt − Ŝt instead. These series are
referred to as the trend or seasonally adjusted time series. The data
yt are decomposed in smooth parts and irregular parts that fluctuate
around zero.

Linear Filters
Let a−r, a−r+1, . . . , as be arbitrary real numbers, where r, s ≥ 0, r +
s+ 1 ≤ n. The linear transformation

Y ∗
t :=

s∑

u=−r

auYt−u, t = s+ 1, . . . , n− r,
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is referred to as a linear filter with weights a−r, . . . , as. The Yt are
called input and the Y ∗

t are called output.
Obviously, there are less output data than input data, if (r, s) 6=
(0, 0). A positive value s > 0 or r > 0 causes a truncation at the
beginning or at the end of the time series; see Example 1.2.1 below.
For convenience, we call the vector of weights (au) = (a−r, . . . , as)

T a
(linear) filter.
A filter (au), whose weights sum up to one,

∑s
u=−r au = 1, is called

moving average. The particular cases au = 1/(2s+ 1), u = −s, . . . , s,
with an odd number of equal weights, or au = 1/(2s), u = −s +
1, . . . , s− 1, a−s = as = 1/(4s), aiming at an even number of weights,
are simple moving averages of order 2s+ 1 and 2s, respectively.
Filtering a time series aims at smoothing the irregular part of a time
series, thus detecting trends or seasonal components, which might
otherwise be covered by fluctuations. While for example a digital
speedometer in a car can provide its instantaneous velocity, thereby
showing considerably large fluctuations, an analog instrument that
comes with a hand and a built-in smoothing filter, reduces these fluc-
tuations but takes a while to adjust. The latter instrument is much
more comfortable to read and its information, reflecting a trend, is
sufficient in most cases.
To compute the output of a simple moving average of order 2s + 1,
the following obvious equation is useful:

Y ∗
t+1 = Y ∗

t +
1

2s+ 1
(Yt+s+1 − Yt−s).

This filter is a particular example of a low-pass filter, which preserves
the slowly varying trend component of a series but removes from it the
rapidly fluctuating or high frequency component. There is a trade-off
between the two requirements that the irregular fluctuation should be
reduced by a filter, thus leading, for example, to a large choice of s in
a simple moving average, and that the long term variation in the data
should not be distorted by oversmoothing, i.e., by a too large choice
of s. If we assume, for example, a time series Yt = Tt + Rt without
seasonal component, a simple moving average of order 2s+ 1 leads to

Y ∗
t =

1

2s+ 1

s∑

u=−s

Yt−u =
1

2s+ 1

s∑

u=−s

Tt−u+
1

2s+ 1

s∑

u=−s

Rt−u =: T ∗
t +R∗

t ,
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where by some law of large numbers argument

R∗
t ∼ E(Rt) = 0,

if s is large. But T ∗
t might then no longer reflect Tt. A small choice of

s, however, has the effect that R∗
t is not yet close to its expectation.

Seasonal Adjustment
A simple moving average of a time series Yt = Tt + St + Rt now
decomposes as

Y ∗
t = T ∗

t + S∗
t +R∗

t ,

where S∗
t is the pertaining moving average of the seasonal components.

Suppose, moreover, that St is a p-periodic function, i.e.,

St = St+p, t = 1, . . . , n− p.

Take for instance monthly average temperatures Yt measured at fixed
points, in which case it is reasonable to assume a periodic seasonal
component St with period p = 12 months. A simple moving average
of order p then yields a constant value S∗

t = S, t = p, p+ 1, . . . , n− p.
By adding this constant S to the trend function Tt and putting T ′

t :=
Tt + S, we can assume in the following that S = 0. Thus we obtain
for the differences

Dt := Yt − Y ∗
t ∼ St +Rt

and, hence, averaging these differences yields

D̄t :=
1

nt

nt−1∑

j=0

Dt+jp ∼ St, t = 1, . . . , p,

D̄t := D̄t−p for t > p,

where nt is the number of periods available for the computation of D̄t.
Thus,

Ŝt := D̄t −
1

p

p∑

j=1

D̄j ∼ St −
1

p

p∑

j=1

Sj = St (1.14)
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is an estimator of St = St+p = St+2p = . . . satisfying

1

p

p−1∑

j=0

Ŝt+j = 0 =
1

p

p−1∑

j=0

St+j.

The differences Yt − Ŝt with a seasonal component close to zero are
then the seasonally adjusted time series.

Example 1.2.1. For the 51 Unemployed1 Data in Example 1.1.1 it
is obviously reasonable to assume a periodic seasonal component with
p = 12 months. A simple moving average of order 12

Y ∗
t =

1

12

(1

2
Yt−6 +

5∑

u=−5

Yt−u +
1

2
Yt+6

)
, t = 7, . . . , 45,

then has a constant seasonal component, which we assume to be zero
by adding this constant to the trend function. Table 1.2.1 contains
the values of Dt, D̄t and the estimates Ŝt of St.

dt (rounded values)

Month 1976 1977 1978 1979 d̄t (rounded) ŝt(rounded)
January 53201 56974 48469 52611 52814 53136
February 59929 54934 54102 51727 55173 55495
March 24768 17320 25678 10808 19643 19966
April -3848 42 -5429 – -3079 -2756
May -19300 -11680 -14189 – -15056 -14734
June -23455 -17516 -20116 – -20362 -20040
July -26413 -21058 -20605 – -22692 -22370
August -27225 -22670 -20393 – -23429 -23107
September -27358 -24646 -20478 – -24161 -23839
October -23967 -21397 -17440 – -20935 -20612
November -14300 -10846 -11889 – -12345 -12023
December 11540 12213 7923 – 10559 10881

Table 1.2.1: Table of dt, d̄t and of estimates ŝt of the seasonal compo-
nent St in the Unemployed1 Data.

We obtain for these data

ŝt = d̄t −
1

12

12∑

j=1

d̄j = d̄t +
3867

12
= d̄t + 322.25.
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Example 1.2.2. (Temperatures Data). The monthly average tem-
peratures near Würzburg, Germany were recorded from the 1st of
January 1995 to the 31st of December 2004. The data together with
their seasonally adjusted counterparts can be seen in Figure 1.2.1a.

Plot 1.2.1a: Monthly average temperatures near Würzburg and sea-
sonally adjusted values.

1 /* temperatures.sas */

2 TITLE1 ’Original and seasonally adjusted data ’;

3 TITLE2 ’Temperature data ’;

4

5 /* Read in the data and generate SAS -formatted date */

6 DATA temperatures;

7 INFILE ’c:\data\temperatures.txt ’;

8 INPUT temperature;

9 date=INTNX(’month ’,’01jan95 ’d,_N_ -1);

10 FORMAT date yymon.;

11

12 /* Make seasonal adjustment */

13 PROC TIMESERIES DATA=temperatures OUT=series SEASONALITY =12

↪→OUTDECOMP=deseason;

14 VAR temperature;

15 DECOMP /MODE=ADD;

16
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17 /* Merge necessary data for plot */

18 DATA plotseries;

19 MERGE temperatures deseason(KEEP=SA);

20

21 /* Graphical options */

22 AXIS1 LABEL =( ANGLE =90 ’temperatures ’);

23 AXIS2 LABEL=(’Date ’);

24 SYMBOL1 V=DOT C=GREEN I=JOIN H=1 W=1;

25 SYMBOL2 V=STAR C=GREEN I=JOIN H=1 W=1;

26

27 /* Plot data and seasonally adjusted series */

28 PROC GPLOT data=plotseries;

29 PLOT temperature*date=1 SA*date=2 /OVERLAY VAXIS=AXIS1 HAXIS=

↪→AXIS2;

30

31 RUN; QUIT;

Program 1.2.1: Seasonal adjustment of Temperatures Data.

In the data step the values for the variable
temperature are read from an external file. By
means of the function INTNX, a new variable in
a date format is generated containing monthly
data starting from the 1st of January 1995. The
temporarily created variable N , which counts
the number of cases, is used to determine the
distance from the starting value. The FORMAT

statement attributes the format yymon to this
variable, consisting of four digits for the year
and three for the month.
The SAS procedure TIMESERIES together with
the statement DECOMP computes a seasonally

adjusted series, which is stored in the file after
the OUTDECOMP option. With MODE=ADD an addi-
tive model of the time series is assumed. The
default is a multiplicative model. The original
series together with an automated time variable
(just a counter) is stored in the file specified in
the OUT option. In the option SEASONALITY the
underlying period is specified. Depending on
the data it can be any natural number.

The seasonally adjusted values can be refer-
enced by SA and are plotted together with the
original series against the date in the final step.

The Census X-11 Program
In the fifties of the 20th century the U.S. Bureau of the Census has
developed a program for seasonal adjustment of economic time series,
called the Census X-11 Program. It is based on monthly observations
and assumes an additive model

Yt = Tt + St +Rt

as in (1.13) with a seasonal component St of period p = 12. We give a
brief summary of this program following Wallis (1974), which results
in a moving average with symmetric weights. The census procedure
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is discussed in Shiskin and Eisenpress (1957); a complete description
is given by Shiskin, Young and Musgrave (1967). A theoretical justifi-
cation based on stochastic models is provided by Cleveland and Tiao
(1976).
The X-11 Program essentially works as the seasonal adjustment de-
scribed above, but it adds iterations and various moving averages.
The different steps of this program are

(1) Compute a simple moving average Y ∗
t of order 12 to leave essen-

tially a trend Y ∗
t ∼ Tt.

(2) The difference

Dt := Yt − Y ∗
t ∼ St +Rt

then leaves approximately the seasonal plus irregular compo-
nent.

(3) Apply a moving average of order 5 to each month separately by
computing

D̄
(1)
t :=

1

9

(
D

(1)
t−24 + 2D

(1)
t−12 + 3D

(1)
t + 2D

(1)
t+12 +D

(1)
t+24

)
∼ St,

which gives an estimate of the seasonal component St. Note
that the moving average with weights (1, 2, 3, 2, 1)/9 is a simple
moving average of length 3 of simple moving averages of length
3.

(4) The D̄
(1)
t are adjusted to approximately sum up to 0 over any

12-months period by putting

Ŝ
(1)
t := D̄

(1)
t − 1

12

(1

2
D̄

(1)
t−6 + D̄

(1)
t−5 + · · · + D̄

(1)
t+5 +

1

2
D̄

(1)
t+6

)
.

(5) The differences

Y
(1)
t := Yt − Ŝ

(1)
t ∼ Tt +Rt

then are the preliminary seasonally adjusted series, quite in the
manner as before.
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(6) The adjusted data Y
(1)
t are further smoothed by a Henderson

moving average Y ∗∗
t of order 9, 13, or 23.

(7) The differences

D
(2)
t := Yt − Y ∗∗

t ∼ St +Rt

then leave a second estimate of the sum of the seasonal and
irregular components.

(8) A moving average of order 7 is applied to each month separately

D̄
(2)
t :=

3∑

u=−3

auD
(2)
t−12u,

where the weights au come from a simple moving average of
order 3 applied to a simple moving average of order 5 of the
original data, i.e., the vector of weights is (1, 2, 3, 3, 3, 2, 1)/15.
This gives a second estimate of the seasonal component St.

(9) Step (4) is repeated yielding approximately centered estimates

Ŝ
(2)
t of the seasonal components.

(10) The differences

Y
(2)
t := Yt − Ŝ

(2)
t

then finally give the seasonally adjusted series.

Depending on the length of the Henderson moving average used in

step (6), Y
(2)
t is a moving average of length 165, 169 or 179 of the

original data. Observe that this leads to averages at time t of the
past and future seven years, roughly, where seven years is a typical
length of business cycles observed in economics (Juglar cycle)2.
The U.S. Bureau of Census has recently released an extended version
of the X-11 Program called Census X-12-ARIMA. It is implemented
in SAS version 8.1 and higher as PROC X12; we refer to the SAS
online documentation for details.

2http://www.drfurfero.com/books/231book/ch05j.html
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We will see in Example 4.2.4 that linear filters may cause unexpected
effects and so, it is not clear a priori how the seasonal adjustment filter
described above behaves. Moreover, end-corrections are necessary,
which cover the important problem of adjusting current observations.
This can be done by some extrapolation.

Plot 1.2.2a: Plot of the Unemployed1 Data yt and of y
(2)
t , seasonally

adjusted by the X-11 procedure.

1 /* unemployed1_x11.sas */

2 TITLE1 ’Original and X11 seasonal adjusted data ’;

3 TITLE2 ’Unemployed1 Data ’;

4

5 /* Read in the data and generated SAS -formatted date */

6 DATA data1;

7 INFILE ’c:\data\unemployed1.txt ’;

8 INPUT month $ t upd;

9 date=INTNX(’month ’,’01jul75 ’d, _N_ -1);

10 FORMAT date yymon.;

11

12 /* Apply X-11- Program */

13 PROC X11 DATA=data1;

14 MONTHLY DATE=date ADDITIVE;
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15 VAR upd;

16 OUTPUT OUT=data2 B1=upd D11=updx11;

17

18 /* Graphical options */

19 AXIS1 LABEL =( ANGLE =90 ’unemployed ’);

20 AXIS2 LABEL=(’Date ’) ;

21 SYMBOL1 V=DOT C=GREEN I=JOIN H=1 W=1;

22 SYMBOL2 V=STAR C=GREEN I=JOIN H=1 W=1;

23 LEGEND1 LABEL=NONE VALUE=(’original ’ ’adjusted ’);

24

25 /* Plot data and adjusted data */

26 PROC GPLOT DATA=data2;

27 PLOT upd*date=1 updx11*date=2

28 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

29 RUN; QUIT;

Program 1.2.2: Application of the X-11 procedure to the Unemployed1

Data.

In the data step values for the variables month,
t and upd are read from an external file, where
month is defined as a character variable by
the succeeding $ in the INPUT statement. By
means of the function INTNX, a date variable
is generated, see Program 1.2.1 (tempera-
tures.sas).
The SAS procedure X11 applies the Census X-
11 Program to the data. The MONTHLY state-
ment selects an algorithm for monthly data,
DATE defines the date variable and ADDITIVE

selects an additive model (default: multiplica-

tive model). The results for this analysis for the
variable upd (unemployed) are stored in a data
set named data2, containing the original data
in the variable upd and the final results of the
X-11 Program in updx11.
The last part of this SAS program consists of
statements for generating the plot. Two AXIS

and two SYMBOL statements are used to cus-
tomize the graphic containing two plots, the
original data and the by X11 seasonally ad-
justed data. A LEGEND statement defines the
text that explains the symbols.

Best Local Polynomial Fit
A simple moving average works well for a locally almost linear time
series, but it may have problems to reflect a more twisted shape.
This suggests fitting higher order local polynomials. Consider 2k +
1 consecutive data yt−k, . . . , yt, . . . , yt+k from a time series. A local
polynomial estimator of order p < 2k + 1 is the minimizer β0, . . . , βp

satisfying

k∑

u=−k

(yt+u − β0 − β1 u− · · · − βp u
p)2 = min . (1.15)
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If we differentiate the left hand side with respect to each βj and set
the derivatives equal to zero, we see that the minimizers satisfy the
p+ 1 linear equations

β0

k∑

u=−k

uj + β1

k∑

u=−k

uj+1 + · · · + βp

k∑

u=−k

uj+p =
k∑

u=−k

ujyt+u

for j = 0, . . . , p. These p + 1 equations, which are called normal
equations, can be written in matrix form as

XTXβ = XTy (1.16)

where

X =




1 −k (−k)2 . . . (−k)p

1 −k + 1 (−k + 1)2 . . . (−k + 1)p

... . . . ...
1 k k2 . . . kp


 (1.17)

is the design matrix, β = (β0, . . . , βp)
T and y = (yt−k, . . . , yt+k)

T .
The rank of XTX equals that of X, since their null spaces coincide
(Exercise 1.11). Thus, the matrix XTX is invertible iff the columns
of X are linearly independent. But this is an immediate consequence
of the fact that a polynomial of degree p has at most p different roots
(Exercise 1.12). The normal equations (1.16) have, therefore, the
unique solution

β = (XTX)−1XTy. (1.18)

The linear prediction of yt+u, based on u, u2, . . . , up, is

ŷt+u = (1, u, . . . , up)β =

p∑

j=0

βju
j.

Choosing u = 0 we obtain in particular that β0 = ŷt is a predictor of
the central observation yt among yt−k, . . . , yt+k. The local polynomial
approach consists now in replacing yt by the intercept β0.
Though it seems as if this local polynomial fit requires a great deal
of computational effort by calculating β0 for each yt, it turns out that
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it is actually a moving average. First observe that we can write by
(1.18)

β0 =
k∑

u=−k

cuyt+u

with some cu ∈ R which do not depend on the values yu of the time
series and hence, (cu) is a linear filter. Next we show that the cu sum
up to 1. Choose to this end yt+u = 1 for u = −k, . . . , k. Then β0 = 1,
β1 = · · · = βp = 0 is an obvious solution of the minimization problem
(1.15). Since this solution is unique, we obtain

1 = β0 =
k∑

u=−k

cu

and thus, (cu) is a moving average. As can be seen in Exercise 1.13
it actually has symmetric weights. We summarize our considerations
in the following result.

Theorem 1.2.3. Fitting locally by least squares a polynomial of degree
p to 2k+1 > p consecutive data points yt−k, . . . , yt+k and predicting yt

by the resulting intercept β0, leads to a moving average (cu) of order
2k + 1, given by the first row of the matrix (XTX)−1XT .

Example 1.2.4. Fitting locally a polynomial of degree 2 to five con-
secutive data points leads to the moving average (Exercise 1.13)

(cu) =
1

35
(−3, 12, 17, 12,−3)T .

An extensive discussion of local polynomial fit is in Kendall and Ord
(1993), Sections 3.2-3.13. For a book-length treatment of local poly-
nomial estimation we refer to Fan and Gijbels (1996). An outline of
various aspects such as the choice of the degree of the polynomial and
further background material is given in Section 5.2 of Simonoff (1996).

Difference Filter
We have already seen that we can remove a periodic seasonal compo-
nent from a time series by utilizing an appropriate linear filter. We
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will next show that also a polynomial trend function can be removed
by a suitable linear filter.

Lemma 1.2.5. For a polynomial f(t) := c0 + c1t+ · · ·+ cpt
p of degree

p, the difference
∆f(t) := f(t) − f(t− 1)

is a polynomial of degree at most p− 1.

Proof. The assertion is an immediate consequence of the binomial
expansion

(t− 1)p =

p∑

k=0

(
p

k

)
tk(−1)p−k = tp − ptp−1 + · · · + (−1)p.

The preceding lemma shows that differencing reduces the degree of a
polynomial. Hence,

∆2f(t) := ∆f(t) − ∆f(t− 1) = ∆(∆f(t))

is a polynomial of degree not greater than p− 2, and

∆qf(t) := ∆(∆q−1f(t)), 1 ≤ q ≤ p,

is a polynomial of degree at most p − q. The function ∆pf(t) is
therefore a constant. The linear filter

∆Yt = Yt − Yt−1

with weights a0 = 1, a1 = −1 is the first order difference filter. The
recursively defined filter

∆pYt = ∆(∆p−1Yt), t = p, . . . , n,

is the difference filter of order p.
The difference filter of second order has, for example, weights a0 =
1, a1 = −2, a2 = 1

∆2Yt = ∆Yt − ∆Yt−1

= Yt − Yt−1 − Yt−1 + Yt−2 = Yt − 2Yt−1 + Yt−2.
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If a time series Yt has a polynomial trend Tt =
∑p

k=0 ckt
k for some

constants ck, then the difference filter ∆pYt of order p removes this
trend up to a constant. Time series in economics often have a trend
function that can be removed by a first or second order difference
filter.

Example 1.2.6. (Electricity Data). The following plots show the
total annual output of electricity production in Germany between 1955
and 1979 in millions of kilowatt-hours as well as their first and second
order differences. While the original data show an increasing trend,
the second order differences fluctuate around zero having no more
trend, but there is now an increasing variability visible in the data.
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Plot 1.2.3a: Annual electricity output, first and second order differ-
ences.

1 /* electricity_differences .sas */

2 TITLE1 ’First and second order differences ’;

3 TITLE2 ’Electricity Data ’;

4

5 /* Read in the data , compute moving average of length as 12

6 as well as first and second order differences */

7 DATA data1(KEEP=year sum delta1 delta2);

8 INFILE ’c:\data\electric.txt ’;

9 INPUT year t jan feb mar apr may jun jul aug sep oct nov dec;

10 sum=jan+feb+mar+apr+may+jun+jul+aug+sep+oct+nov+dec;

11 delta1=DIF(sum);

12 delta2=DIF(delta1);

13

14 /* Graphical options */

15 AXIS1 LABEL=NONE;

16 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;



1.2 Linear Filtering of Time Series 31

17

18 /* Generate three plots */

19 GOPTIONS NODISPLAY;

20 PROC GPLOT DATA=data1 GOUT=fig;

21 PLOT sum*year / VAXIS=AXIS1 HAXIS=AXIS2;

22 PLOT delta1*year / VAXIS=AXIS1 VREF =0;

23 PLOT delta2*year / VAXIS=AXIS1 VREF =0;

24 RUN;

25

26 /* Display them in one output */

27 GOPTIONS DISPLAY;

28 PROC GREPLAY NOFS IGOUT=fig TC=SASHELP.TEMPLT;

29 TEMPLATE=V3;

30 TREPLAY 1: GPLOT 2: GPLOT1 3: GPLOT2;

31 RUN; DELETE _ALL_; QUIT;

Program 1.2.3: Computation of first and second order differences for

the Electricity Data.

In the first data step, the raw data are read from
a file. Because the electric production is stored
in different variables for each month of a year,
the sum must be evaluated to get the annual
output. Using the DIF function, the resulting
variables delta1 and delta2 contain the first
and second order differences of the original an-
nual sums.
To display the three plots of sum, delta1 and
delta2 against the variable year within one
graphic, they are first plotted using the proce-
dure GPLOT. Here the option GOUT=fig stores
the plots in a graphics catalog named fig, while
GOPTIONS NODISPLAY causes no output of this
procedure. After changing the GOPTIONS back
to DISPLAY, the procedure GREPLAY is invoked.
The option NOFS (no full-screen) suppresses the
opening of a GREPLAY window. The subsequent

two line mode statements are read instead.
The option IGOUT determines the input graph-
ics catalog, while TC=SASHELP.TEMPLT causes
SAS to take the standard template catalog. The
TEMPLATE statement selects a template from
this catalog, which puts three graphics one be-
low the other. The TREPLAY statement connects
the defined areas and the plots of the the graph-
ics catalog. GPLOT, GPLOT1 and GPLOT2 are the
graphical outputs in the chronological order of
the GPLOT procedure. The DELETE statement af-
ter RUN deletes all entries in the input graphics
catalog.

Note that SAS by default prints borders, in or-
der to separate the different plots. Here these
border lines are suppressed by defining WHITE

as the border color.

For a time series Yt = Tt +St +Rt with a periodic seasonal component
St = St+p = St+2p = . . . the difference

Y ∗
t := Yt − Yt−p

obviously removes the seasonal component. An additional differencing
of proper length can moreover remove a polynomial trend, too. Note
that the order of seasonal and trend adjusting makes no difference.
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Exponential Smoother
Let Y0, . . . , Yn be a time series and let α ∈ [0, 1] be a constant. The
linear filter

Y ∗
t = αYt + (1 − α)Y ∗

t−1, t ≥ 1,

with Y ∗
0 = Y0 is called exponential smoother.

Lemma 1.2.7. For an exponential smoother with constant α ∈ [0, 1]
we have

Y ∗
t = α

t−1∑

j=0

(1 − α)jYt−j + (1 − α)tY0, t = 1, 2, . . . , n.

Proof. The assertion follows from induction. We have for t = 1 by
definition Y ∗

1 = αY1 +(1−α)Y0. If the assertion holds for t, we obtain
for t+ 1

Y ∗
t+1 = αYt+1 + (1 − α)Y ∗

t

= αYt+1 + (1 − α)
(
α

t−1∑

j=0

(1 − α)jYt−j + (1 − α)tY0

)

= α

t∑

j=0

(1 − α)jYt+1−j + (1 − α)t+1Y0.

The parameter α determines the smoothness of the filtered time se-
ries. A value of α close to 1 puts most of the weight on the actual
observation Yt, resulting in a highly fluctuating series Y ∗

t . On the
other hand, an α close to 0 reduces the influence of Yt and puts most
of the weight to the past observations, yielding a smooth series Y ∗

t .
An exponential smoother is typically used for monitoring a system.
Take, for example, a car having an analog speedometer with a hand.
It is more convenient for the driver if the movements of this hand are
smoothed, which can be achieved by α close to zero. But this, on the
other hand, has the effect that an essential alteration of the speed can
be read from the speedometer only with a certain delay.
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Corollary 1.2.8. (i) Suppose that the random variables Y0, . . . , Yn

have common expectation µ and common variance σ2 > 0. Then we
have for the exponentially smoothed variables with smoothing parame-
ter α ∈ (0, 1)

E(Y ∗
t ) = α

t−1∑

j=0

(1 − α)jµ+ µ(1 − α)t

= µ(1 − (1 − α)t) + µ(1 − α)t = µ. (1.19)

If the Yt are in addition uncorrelated, then

E((Y ∗
t − µ)2) = α2

t−1∑

j=0

(1 − α)2jσ2 + (1 − α)2tσ2

= σ2α21 − (1 − α)2t

1 − (1 − α)2
+ (1 − α)2tσ2

t→∞−→ σ2α

2 − α
< σ2. (1.20)

(ii) Suppose that the random variables Y0, Y1, . . . satisfy E(Yt) = µ for
0 ≤ t ≤ N − 1, and E(Yt) = λ for t ≥ N . Then we have for t ≥ N

E(Y ∗
t ) = α

t−N∑

j=0

(1 − α)jλ+ α
t−1∑

j=t−N+1

(1 − α)jµ+ (1 − α)tµ

= λ(1 − (1 − α)t−N+1) + µ
(
(1 − α)t−N+1(1 − (1 − α)N−1) + (1 − α)t

)

t→∞−→ λ. (1.21)

The preceding result quantifies the influence of the parameter α on
the expectation and on the variance i.e., the smoothness of the filtered
series Y ∗

t , where we assume for the sake of a simple computation of
the variance that the Yt are uncorrelated. If the variables Yt have
common expectation µ, then this expectation carries over to Y ∗

t . After
a change point N , where the expectation of Yt changes for t ≥ N from
µ to λ 6= µ, the filtered variables Y ∗

t are, however, biased. This bias,
which will vanish as t increases, is due to the still inherent influence
of past observations Yt, t < N . The influence of these variables on the
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current expectation can be reduced by switching to a larger value of
α. The price for the gain in correctness of the expectation is, however,
a higher variability of Y ∗

t (see Exercise 1.16).
An exponential smoother is often also used to make forecasts, explic-
itly by predicting Yt+1 through Y ∗

t . The forecast error Yt+1−Y ∗
t =: et+1

then satisfies the equation Y ∗
t+1 = αet+1 + Y ∗

t .

1.3 Autocovariances and Autocorrelations
Autocovariances and autocorrelations are measures of dependence be-
tween variables in a time series. Suppose that Y1, . . . , Yn are square
integrable random variables with the property that the covariance
Cov(Yt+k, Yt) = E((Yt+k − E(Yt+k))(Yt − E(Yt))) of observations with
lag k does not depend on t. Then

γ(k) := Cov(Yk+1, Y1) = Cov(Yk+2, Y2) = . . .

is called autocovariance function and

ρ(k) :=
γ(k)

γ(0)
, k = 0, 1, . . .

is called autocorrelation function.
Let y1, . . . , yn be realizations of a time series Y1, . . . , Yn. The empirical
counterpart of the autocovariance function is

c(k) :=
1

n

n−k∑

t=1

(yt+k − ȳ)(yt − ȳ) with ȳ =
1

n

n∑

t=1

yt

and the empirical autocorrelation is defined by

r(k) :=
c(k)

c(0)
=

∑n−k
t=1 (yt+k − ȳ)(yt − ȳ)∑n

t=1(yt − ȳ)2
.

See Exercise 2.8 (ii) for the particular role of the factor 1/n in place
of 1/(n − k) in the definition of c(k). The graph of the function
r(k), k = 0, 1, . . . , n − 1, is called correlogram. It is based on the
assumption of equal expectations and should, therefore, be used for a
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trend adjusted series. The following plot is the correlogram of the first
order differences of the Sunspot Data. The description can be found
on page 199. It shows high and decreasing correlations at regular
intervals.

Plot 1.3.1a: Correlogram of the first order differences of the Sunspot
Data.

1 /* sunspot_correlogram */

2 TITLE1 ’Correlogram of first order differences ’;

3 TITLE2 ’Sunspot Data ’;

4

5 /* Read in the data , generate year of observation and

6 compute first order differences */

7 DATA data1;

8 INFILE ’c:\data\sunspot.txt ’;

9 INPUT spot @@;

10 date =1748+ _N_;

11 diff1=DIF(spot);

12

13 /* Compute autocorrelation function */

14 PROC ARIMA DATA=data1;

15 IDENTIFY VAR=diff1 NLAG =49 OUTCOV=corr NOPRINT;

16

17 /* Graphical options */

18 AXIS1 LABEL=(’r(k)’);
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19 AXIS2 LABEL=(’k’) ORDER =(0 12 24 36 48) MINOR =(N=11);

20 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;

21

22 /* Plot autocorrelation function */

23 PROC GPLOT DATA=corr;

24 PLOT CORR*LAG / VAXIS=AXIS1 HAXIS=AXIS2 VREF =0;

25 RUN; QUIT;

Program 1.3.1: Generating the correlogram of first order differences

for the Sunspot Data.

In the data step, the raw data are read into the
variable spot. The specification @@ suppresses
the automatic line feed of the INPUT statement
after every entry in each row. The variable date

and the first order differences of the variable of
interest spot are calculated.
The following procedure ARIMA is a crucial one
in time series analysis. Here we just need
the autocorrelation of delta, which will be cal-
culated up to a lag of 49 (NLAG=49) by the
IDENTIFY statement. The option OUTCOV=corr

causes SAS to create a data set corr contain-
ing among others the variables LAG and CORR.
These two are used in the following GPLOT pro-
cedure to obtain a plot of the autocorrelation
function. The ORDER option in the AXIS2 state-
ment specifies the values to appear on the
horizontal axis as well as their order, and the
MINOR option determines the number of minor
tick marks between two major ticks. VREF=0

generates a horizontal reference line through
the value 0 on the vertical axis.

The autocovariance function γ obviously satisfies γ(0) ≥ 0 and, by
the Cauchy-Schwarz inequality

|γ(k)| = |E((Yt+k − E(Yt+k))(Yt − E(Yt)))|
≤ E(|Yt+k − E(Yt+k)||Yt − E(Yt)|)
≤ Var(Yt+k)

1/2 Var(Yt)
1/2

= γ(0) for k ≥ 0.

Thus we obtain for the autocovariance function the inequality

|ρ(k)| ≤ 1 = ρ(0).

Variance Stabilizing Transformation
The scatterplot of the points (t, yt) sometimes shows a variation of
the data yt depending on their height.

Example 1.3.1. (Airline Data). Plot 1.3.2a, which displays monthly
totals in thousands of international airline passengers from January
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1949 to December 1960, exemplifies the above mentioned dependence.
These Airline Data are taken from Box and Jenkins (1976); a discus-
sion can be found in Section 9.2 of Brockwell and Davis (1991).

Plot 1.3.2a: Monthly totals in thousands of international airline pas-
sengers from January 1949 to December 1960.

1 /* airline_plot.sas */

2 TITLE1 ’Monthly totals from January 49 to December 60’;

3 TITLE2 ’Airline Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\airline.txt ’;

8 INPUT y;

9 t=_N_;

10

11 /* Graphical options */

12 AXIS1 LABEL=NONE ORDER =(0 12 24 36 48 60 72 84 96 108 120 132 144)

↪→ MINOR =(N=5);

13 AXIS2 LABEL =( ANGLE =90 ’total in thousands ’);

14 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.2;

15
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16 /* Plot the data */

17 PROC GPLOT DATA=data1;

18 PLOT y*t / HAXIS=AXIS1 VAXIS=AXIS2;

19 RUN; QUIT;

Program 1.3.2: Plotting the airline passengers

In the first data step, the monthly passenger to-
tals are read into the variable y. To get a time
variable t, the temporarily created SAS variable
N is used; it counts the observations. The pas-

senger totals are plotted against t with a line
joining the data points, which are symbolized
by small dots. On the horizontal axis a label is
suppressed.

The variation of the data yt obviously increases with their height. The
logtransformed data xt = log(yt), displayed in the following figure,
however, show no dependence of variability from height.

Plot 1.3.3a: Logarithm of Airline Data xt = log(yt).

1 /* airline_log.sas */

2 TITLE1 ’Logarithmic transformation ’;

3 TITLE2 ’Airline Data ’;
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4

5 /* Read in the data and compute log -transformed data */

6 DATA data1;

7 INFILE ’c\data\airline.txt ’;

8 INPUT y;

9 t=_N_;

10 x=LOG(y);

11

12 /* Graphical options */

13 AXIS1 LABEL=NONE ORDER =(0 12 24 36 48 60 72 84 96 108 120 132 144)

↪→MINOR=(N=5);

14 AXIS2 LABEL=NONE;

15 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.2;

16

17 /* Plot log -transformed data */

18 PROC GPLOT DATA=data1;

19 PLOT x*t / HAXIS=AXIS1 VAXIS=AXIS2;

20 RUN; QUIT;

Program 1.3.3: Computing and plotting the logarithm of Airline Data.

The plot of the log-transformed data is done in
the same manner as for the original data in Pro-
gram 1.3.2 (airline plot.sas). The only differ-

ences are the log-transformation by means of
the LOG function and the suppressed label on
the vertical axis.

The fact that taking the logarithm of data often reduces their variabil-
ity, can be illustrated as follows. Suppose, for example, that the data
were generated by random variables, which are of the form Yt = σtZt,
where σt > 0 is a scale factor depending on t, and Zt, t ∈ Z, are
independent copies of a positive random variable Z with variance
1. The variance of Yt is in this case σ2

t , whereas the variance of
log(Yt) = log(σt)+log(Zt) is a constant, namely the variance of log(Z),
if it exists.
A transformation of the data, which reduces the dependence of the
variability on their height, is called variance stabilizing. The logarithm
is a particular case of the general Box–Cox (1964) transformation Tλ

of a time series (Yt), where the parameter λ ≥ 0 is chosen by the
statistician:

Tλ(Yt) :=

{
(Y λ

t − 1)/λ, Yt ≥ 0, λ > 0

log(Yt), Yt > 0, λ = 0.

Note that limλ↘0 Tλ(Yt) = T0(Yt) = log(Yt) if Yt > 0 (Exercise 1.19).
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Popular choices of the parameter λ are 0 and 1/2. A variance stabi-
lizing transformation of the data, if necessary, usually precedes any
further data manipulation such as trend or seasonal adjustment.

Exercises
1.1. Plot the Mitscherlich function for different values of β1, β2, β3

using PROC GPLOT.

1.2. Put in the logistic trend model (1.5) zt := 1/yt ∼ 1/E(Yt) =
1/flog(t), t = 1, . . . , n. Then we have the linear regression model
zt = a + bzt−1 + εt, where εt is the error variable. Compute the least
squares estimates â, b̂ of a, b and motivate the estimates β̂1 := − log(b̂),

β̂3 := (1 − exp(−β̂1))/â as well as

β̂2 := exp
(n+ 1

2
β̂1 +

1

n

n∑

t=1

log
( β̂3

yt
− 1
))
,

proposed by Tintner (1958); see also Exercise 1.3.

1.3. The estimate β̂2 defined above suffers from the drawback that all
observations yt have to be strictly less than the estimate β̂3. Motivate
the following substitute of β̂2

β̃2 =
( n∑

t=1

β̂3 − yt

yt
exp
(
−β̂1t

))/ n∑

t=1

exp
(
−2β̂1t

)

as an estimate of the parameter β2 in the logistic trend model (1.5).

1.4. Show that in a linear regression model yt = β1xt+β2, t = 1, . . . , n,
the squared multiple correlation coefficient R2 based on the least
squares estimates β̂1, β̂2 and ŷt := β̂1xt + β̂2 is necessarily between
zero and one with R2 = 1 if and only if ŷt = yt, t = 0, . . . , n (see
(1.12)).

1.5. (Population2 Data) Table 1.3.1 lists total population numbers of
North Rhine-Westphalia between 1961 and 1979. Suppose a logistic
trend for these data and compute the estimators β̂1, β̂3 using PROC

REG. Since some observations exceed β̂3, use β̃2 from Exercise 1.3 and
do an ex post-analysis. Use PROC NLIN and do an ex post-analysis.
Compare these two procedures by their residual sums of squares.
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Year t Total Population
in millions

1961 1 15.920
1963 2 16.280
1965 3 16.661
1967 4 16.835
1969 5 17.044
1971 6 17.091
1973 7 17.223
1975 8 17.176
1977 9 17.052
1979 10 17.002

Table 1.3.1: Population2 Data.

1.6. (Income Data) Suppose an allometric trend function for the in-
come data in Example 1.1.3 and do a regression analysis. Plot the

data yt versus β̂2t
β̂1. To this end compute the R2-coefficient. Estimate

the parameters also with PROC NLIN and compare the results.

1.7. (Unemployed2 Data) Table 1.3.2 lists total numbers of unem-
ployed (in thousands) in West Germany between 1950 and 1993. Com-
pare a logistic trend function with an allometric one. Which one gives
the better fit?

1.8. Give an update equation for a simple moving average of (even)
order 2s.

1.9. (Public Expenditures Data) Table 1.3.3 lists West Germany’s
public expenditures (in billion D-Marks) between 1961 and 1990.
Compute simple moving averages of order 3 and 5 to estimate a pos-
sible trend. Plot the original data as well as the filtered ones and
compare the curves.

1.10. (Unemployed Females Data) Use PROC X11 to analyze the
monthly unemployed females between ages 16 and 19 in the United
States from January 1961 to December 1985 (in thousands).

1.11. Show that the rank of a matrix A equals the rank of ATA.
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Year Unemployed
1950 1869
1960 271
1970 149
1975 1074
1980 889
1985 2304
1988 2242
1989 2038
1990 1883
1991 1689
1992 1808
1993 2270

Table 1.3.2: Unemployed2 Data.

Year Public Expenditures Year Public Expenditures
1961 113,4 1976 546,2
1962 129,6 1977 582,7
1963 140,4 1978 620,8
1964 153,2 1979 669,8
1965 170,2 1980 722,4
1966 181,6 1981 766,2
1967 193,6 1982 796,0
1968 211,1 1983 816,4
1969 233,3 1984 849,0
1970 264,1 1985 875,5
1971 304,3 1986 912,3
1972 341,0 1987 949,6
1973 386,5 1988 991,1
1974 444,8 1989 1018,9
1975 509,1 1990 1118,1

Table 1.3.3: Public Expenditures Data.
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1.12. The p + 1 columns of the design matrix X in (1.17) are linear
independent.

1.13. Let (cu) be the moving average derived by the best local poly-
nomial fit. Show that

(i) fitting locally a polynomial of degree 2 to five consecutive data
points leads to

(cu) =
1

35
(−3, 12, 17, 12,−3)T ,

(ii) the inverse matrix A−1 of an invertible m × m-matrix A =
(aij)1≤i,j≤m with the property that aij = 0, if i+j is odd, shares
this property,

(iii) (cu) is symmetric, i.e., c−u = cu.

1.14. (Unemployed1 Data) Compute a seasonal and trend adjusted
time series for the Unemployed1 Data in the building trade. To this
end compute seasonal differences and first order differences. Compare
the results with those of PROC X11.

1.15. Use the SAS function RANNOR to generate a time series Yt =
b0+b1t+εt, t = 1, . . . , 100, where b0, b1 6= 0 and the εt are independent
normal random variables with mean µ and variance σ2

1 if t ≤ 69 but
variance σ2

2 6= σ2
1 if t ≥ 70. Plot the exponentially filtered variables

Y ∗
t for different values of the smoothing parameter α ∈ (0, 1) and

compare the results.

1.16. Compute under the assumptions of Corollary 1.2.8 the variance
of an exponentially filtered variable Y ∗

t after a change point t = N
with σ2 := E(Yt−µ)2 for t < N and τ 2 := E(Yt−λ)2 for t ≥ N . What
is the limit for t→ ∞?

1.17. (Bankruptcy Data) Table 1.3.4 lists the percentages to annual
bancruptcies among all US companies between 1867 and 1932:
Compute and plot the empirical autocovariance function and the em-
pirical autocorrelation function using the SAS procedures PROC ARIMA

and PROC GPLOT.
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1.33 0.94 0.79 0.83 0.61 0.77 0.93 0.97 1.20 1.33
1.36 1.55 0.95 0.59 0.61 0.83 1.06 1.21 1.16 1.01
0.97 1.02 1.04 0.98 1.07 0.88 1.28 1.25 1.09 1.31
1.26 1.10 0.81 0.92 0.90 0.93 0.94 0.92 0.85 0.77
0.83 1.08 0.87 0.84 0.88 0.99 0.99 1.10 1.32 1.00
0.80 0.58 0.38 0.49 1.02 1.19 0.94 1.01 1.00 1.01
1.07 1.08 1.04 1.21 1.33 1.53

Table 1.3.4: Bankruptcy Data.

1.18. Verify that the empirical correlation r(k) at lag k for the trend
yt = t, t = 1, . . . , n is given by

r(k) = 1 − 3
k

n
+ 2

k(k2 − 1)

n(n2 − 1)
, k = 0, . . . , n.

Plot the correlogram for different values of n. This example shows,
that the correlogram has no interpretation for non-stationary processes
(see Exercise 1.17).

1.19. Show that

lim
λ↓0

Tλ(Yt) = T0(Yt) = log(Yt), Yt > 0

for the Box–Cox transformation Tλ.
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2Models of Time Series

Each time series Y1, . . . , Yn can be viewed as a clipping from a sequence
of random variables . . . , Y−2, Y−1, Y0, Y1, Y2, . . . In the following we will
introduce several models for such a stochastic process Yt with index
set Z.

2.1 Linear Filters and Stochastic Processes
For mathematical convenience we will consider complex valued ran-
dom variables Y , whose range is the set of complex numbers C =
{u + iv : u, v ∈ R}, where i =

√
−1. Therefore, we can decompose

Y as Y = Y(1) + iY(2), where Y(1) = Re(Y ) is the real part of Y and
Y(2) = Im(Y ) is its imaginary part. The random variable Y is called
integrable if the real valued random variables Y(1), Y(2) both have finite
expectations, and in this case we define the expectation of Y by

E(Y ) := E(Y(1)) + iE(Y(2)) ∈ C.

This expectation has, up to monotonicity, the usual properties such
as E(aY + bZ) = aE(Y ) + bE(Z) of its real counterpart. Here a
and b are complex numbers and Z is a further integrable complex
valued random variable. In addition we have E(Y ) = E(Ȳ ), where
ā = u− iv denotes the conjugate complex number of a = u+ iv. Since
|a|2 := u2 + v2 = aā = āa, we define the variance of Y by

Var(Y ) := E((Y − E(Y ))(Y − E(Y ))) ≥ 0.

The complex random variable Y is called square integrable if this
number is finite. To carry the equation Var(X) = Cov(X,X) for a
real random variable X over to complex ones, we define the covariance
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of complex square integrable random variables Y, Z by

Cov(Y, Z) := E((Y − E(Y ))(Z − E(Z))).

Note that the covariance Cov(Y, Z) is no longer symmetric with re-
spect to Y and Z, as it is for real valued random variables, but it
satisfies Cov(Y, Z) = Cov(Z, Y ).
The following lemma implies that the Cauchy–Schwarz inequality car-
ries over to complex valued random variables.

Lemma 2.1.1. For any integrable complex valued random variable
Y = Y(1) + iY(2) we have

|E(Y )| ≤ E(|Y |) ≤ E(|Y(1)|) + E(|Y(2)|).

Proof. We write E(Y ) in polar coordinates E(Y ) = reiϑ, where r =

|E(Y )| and ϑ ∈ [0, 2π). Observe that Re(e−iϑY ) = Re
(
(cos(ϑ) −

i sin(ϑ))(Y(1)+iY(2))
)

= cos(ϑ)Y(1)+sin(ϑ)Y(2) ≤ (cos2(ϑ)+sin2(ϑ))1/2(Y 2
(1)+

Y 2
(2))

1/2 = |Y | by the Cauchy–Schwarz inequality for real numbers.

Thus we obtain

|E(Y )| = r = E(e−iϑY )

= E
(

Re(e−iϑY )
)
≤ E(|Y |).

The second inequality of the lemma follows from |Y | = (Y 2
(1)+Y

2
(2))

1/2 ≤
|Y(1)| + |Y(2)|.

The next result is a consequence of the preceding lemma and the
Cauchy–Schwarz inequality for real valued random variables.

Corollary 2.1.2. For any square integrable complex valued random
variable we have

|E(Y Z)| ≤ E(|Y ||Z|) ≤ E(|Y |2)1/2 E(|Z|2)1/2

and thus,
|Cov(Y, Z)| ≤ Var(Y )1/2 Var(Z)1/2.
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Stationary Processes
A stochastic process (Yt)t∈Z of square integrable complex valued ran-
dom variables is said to be (weakly) stationary if for any t1, t2, k ∈ Z

E(Yt1) = E(Yt1+k) and E(Yt1Y t2) = E(Yt1+kY t2+k).

The random variables of a stationary process (Yt)t∈Z have identical
means and variances. The autocovariance function satisfies moreover
for s, t ∈ Z

γ(t, s) : = Cov(Yt, Ys) = Cov(Yt−s, Y0) =: γ(t− s)

= Cov(Y0, Yt−s) = Cov(Ys−t, Y0) = γ(s− t),

and thus, the autocovariance function of a stationary process can be
viewed as a function of a single argument satisfying γ(t) = γ(−t), t ∈
Z.
A stationary process (εt)t∈Z of square integrable and uncorrelated real
valued random variables is called white noise i.e., Cov(εt, εs) = 0 for
t 6= s and there exist µ ∈ R, σ ≥ 0 such that

E(εt) = µ, E((εt − µ)2) = σ2, t ∈ Z.

In Section 1.2 we defined linear filters of a time series, which were
based on a finite number of real valued weights. In the following
we consider linear filters with an infinite number of complex valued
weights.
Suppose that (εt)t∈Z is a white noise and let (at)t∈Z be a sequence of
complex numbers satisfying

∑∞
t=−∞ |at| :=

∑
t≥0 |at|+

∑
t≥1 |a−t| <∞.

Then (at)t∈Z is said to be an absolutely summable (linear) filter and

Yt :=
∞∑

u=−∞
auεt−u :=

∑

u≥0

auεt−u +
∑

u≥1

a−uεt+u, t ∈ Z,

is called a general linear process.

Existence of General Linear Processes
We will show that

∑∞
u=−∞ |auεt−u| < ∞ with probability one for

t ∈ Z and, thus, Yt =
∑∞

u=−∞ auεt−u is well defined. Denote by
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L2 := L2(Ω,A,P) the set of all complex valued square integrable ran-
dom variables, defined on some probability space (Ω,A,P), and put
||Y ||2 := E(|Y |2)1/2, which is the L2-pseudonorm on L2.

Lemma 2.1.3. Let Xn, n ∈ N, be a sequence in L2 such that ||Xn+1−
Xn||2 ≤ 2−n for each n ∈ N. Then there exists X ∈ L2 such that
limn→∞Xn = X with probability one.

Proof. Write Xn =
∑

k≤n(Xk − Xk−1), where X0 := 0. By the
monotone convergence theorem, the Cauchy–Schwarz inequality and
Corollary 2.1.2 we have

E
(∑

k≥1

|Xk −Xk−1|
)

=
∑

k≥1

E(|Xk −Xk−1|) ≤
∑

k≥1

||Xk −Xk−1||2

≤ ||X1||2 +
∑

k≥1

2−k <∞.

This implies that
∑

k≥1 |Xk − Xk−1| < ∞ with probability one and
hence, the limit limn→∞

∑
k≤n(Xk − Xk−1) = limn→∞Xn = X exists

in C almost surely. Finally, we check that X ∈ L2:

E(|X|2) = E( lim
n→∞

|Xn|2)

≤ E
(

lim
n→∞

(∑

k≤n

|Xk −Xk−1|
)2)

= lim
n→∞

E
((∑

k≤n

|Xk −Xk−1|
)2)

= lim
n→∞

∑

k,j≤n

E(|Xk −Xk−1| |Xj −Xj−1|)

≤ lim sup
n→∞

∑

k,j≤n

||Xk −Xk−1||2 ||Xj −Xj−1||2

= lim sup
n→∞

(∑

k≤n

||Xk −Xk−1||2
)2

=
(∑

k≥1

||Xk −Xk−1||2
)
<∞.
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Theorem 2.1.4. The space (L2, || · ||2) is complete i.e., suppose that
Xn ∈ L2, n ∈ N, has the property that for arbitrary ε > 0 one can find
an integer N(ε) ∈ N such that ||Xn−Xm||2 < ε if n, m ≥ N(ε). Then
there exists a random variable X ∈ L2 such that limn→∞ ||X−Xn||2 =
0.

Proof. We can obviously find integers n1 < n2 < . . . such that

||Xn −Xm||2 ≤ 2−k ifn,m ≥ nk.

By Lemma 2.1.3 there exists a random variable X ∈ L2 such that
limk→∞Xnk

= X with probability one. Fatou’s lemma implies

||Xn −X||22 = E(|Xn −X|2)
= E

(
lim inf

k→∞
|Xn −Xnk

|2
)
≤ lim inf

k→∞
||Xn −Xnk

||22.

The right-hand side of this inequality becomes arbitrarily small if we
choose n large enough, and thus we have limn→∞ ||Xn −X||22 = 0.

The following result implies in particular that a general linear process
is well defined.

Theorem 2.1.5. Suppose that (Zt)t∈Z is a complex valued stochastic
process such that supt E(|Zt|) < ∞ and let (at)t∈Z be an absolutely
summable filter. Then we have

∑
u∈Z |auZt−u| < ∞ with probability

one for t ∈ Z and, thus, Yt :=
∑

u∈Z auZt−u exists almost surely in C.
We have moreover E(|Yt|) <∞, t ∈ Z, and

(i) E(Yt) = limn→∞
∑n

u=−n au E(Zt−u), t ∈ Z,

(ii) E(|Yt −
∑n

u=−n auZt−u|) n→∞−→ 0.

If, in addition, supt E(|Zt|2) <∞, then we have E(|Yt|2) <∞, t ∈ Z,
and

(iii) ||Yt −
∑n

u=−n auZt−u||2 n→∞−→ 0.

Proof. The monotone convergence theorem implies

E
(∑

u∈Z

|au| |Zt−u|
)
≤ lim

n→∞

( n∑

u=−n

|au|
)

sup
t∈Z

E(|Zt−u|) <∞
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and, thus, we have
∑

u∈Z |au||Zt−u| < ∞ with probability one as
well as E(|Yt|) ≤ E(

∑
u∈Z |au||Zt−u|) < ∞, t ∈ Z. Put Xn(t) :=∑n

u=−n auZt−u. Then we have |Yt − Xn(t)| n→∞−→ 0 almost surely. By
the inequality |Yt−Xn(t)| ≤ 2

∑
u∈Z |au||Zt−u|, n ∈ N, the dominated

convergence theorem implies (ii) and therefore (i):

|E(Yt) −
n∑

u=−n

au E(Zt−u)| = |E(Yt) − E(Xn(t))|

≤ E(|Yt −Xn(t)|) n→∞−→ 0.

Put K := supt E(|Zt|2) <∞. The Cauchy–Schwarz inequality implies
for m,n ∈ N and ε > 0

E(|Xn+m(t) −Xn(t)|2) = E




∣∣∣∣∣∣

n+m∑

|u|=n+1

auZt−u

∣∣∣∣∣∣

2



=
n+m∑

|u|=n+1

n+m∑

|w|=n+1

auāw E(Zt−uZ̄t−w)

≤ K2




n+m∑

|u|=n+1

|au|




2

≤ K2


∑

|u|≥n

|au|




2

< ε

if n is chosen sufficiently large. Theorem 2.1.4 now implies the exis-
tence of a random variable X(t) ∈ L2 with limn→∞ ||Xn(t)−X(t)||2 =
0. For the proof of (iii) it remains to show that X(t) = Yt almost
surely. Markov’s inequality implies

P{|Yt −Xn(t)| ≥ ε} ≤ ε−1 E(|Yt −Xn(t)|) −→n→∞ 0

by (ii), and Chebyshev’s inequality yields

P{|X(t) −Xn(t)| ≥ ε} ≤ ε−2||X(t) −Xn(t)||2 −→n→∞ 0

for arbitrary ε > 0. This implies

P{|Yt −X(t)| ≥ ε}
≤ P{|Yt −Xn(t)| + |Xn(t) −X(t)| ≥ ε}
≤ P{|Yt −Xn(t)| ≥ ε/2} + P{|X(t) −Xn(t)| ≥ ε/2} −→n→∞ 0



2.1 Linear Filters and Stochastic Processes 51

and thus Yt = X(t) almost surely, which completes the proof of The-
orem 2.1.5.

Theorem 2.1.6. Suppose that (Zt)t∈Z is a stationary process with
mean µZ := E(Z0) and autocovariance function γZ and let (at) be
an absolutely summable filter. Then Yt =

∑
u auZt−u, t ∈ Z, is also

stationary with

µY = E(Y0) =
(∑

u

au

)
µZ

and autocovariance function

γY (t) =
∑

u

∑

w

auāwγZ(t+ w − u).

Proof. Note that

E(|Zt|2) = E
(
|Zt − µZ + µZ |2

)

= E
(
(Zt − µZ + µZ)(Zt − µz + µz)

)

= E
(
|Zt − µZ |2

)
+ |µZ |2

= γZ(0) + |µZ |2

and, thus,
sup
t∈Z

E(|Zt|2) <∞.

We can, therefore, now apply Theorem 2.1.5. Part (i) of Theorem
2.1.5 immediately implies E(Yt) = (

∑
u au)µZ and part (iii) implies

for t, s ∈ Z

E((Yt − µY )(Ys − µY )) = lim
n→∞

Cov
( n∑

u=−n

auZt−u,
n∑

w=−n

awZs−w

)

= lim
n→∞

n∑

u=−n

n∑

w=−n

auāw Cov(Zt−u, Zs−w)

= lim
n→∞

n∑

u=−n

n∑

w=−n

auāwγZ(t− s+ w − u)

=
∑

u

∑

w

auāwγZ(t− s+ w − u).
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The covariance of Yt and Ys depends, therefore, only on the difference
t−s. Note that |γZ(t)| ≤ γZ(0) <∞ and thus,

∑
u

∑
w |auāwγZ(t−s+

w − u)| ≤ γZ(0)(
∑

u |au|)2 <∞, i.e., (Yt) is a stationary process.

The Covariance Generating Function

The covariance generating function of a stationary process with au-
tocovariance function γ is defined as the double series

G(z) :=
∑

t∈Z

γ(t)zt =
∑

t≥0

γ(t)zt +
∑

t≥1

γ(−t)z−t,

known as a Laurent series in complex analysis. We assume that there
exists a real number r > 1 such that G(z) is defined for all z ∈ C in
the annulus 1/r < |z| < r. The covariance generating function will
help us to compute the autocovariances of filtered processes.

Since the coefficients of a Laurent series are uniquely determined (see
e.g. Chapter V, 1.11 in Conway (1975)), the covariance generating
function of a stationary process is a constant function if and only if
this process is a white noise i.e., γ(t) = 0 for t 6= 0.

Theorem 2.1.7. Suppose that Yt =
∑

u auεt−u, t ∈ Z, is a general
linear process with

∑
u |au||zu| < ∞, if r−1 < |z| < r for some r > 1.

Put σ2 := Var(ε0). The process (Yt) then has the covariance generat-
ing function

G(z) = σ2
(∑

u

auz
u
)(∑

u

āuz
−u
)
, r−1 < |z| < r.

Proof. Theorem 2.1.6 implies for t ∈ Z

Cov(Yt, Y0) =
∑

u

∑

w

auāwγε(t+ w − u)

= σ2
∑

u

auāu−t.
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This implies

G(z) = σ2
∑

t

∑

u

auāu−tz
t

= σ2
(∑

u

|au|2 +
∑

t≥1

∑

u

auāu−tz
t +

∑

t≤−1

∑

u

auāu−tz
t
)

= σ2
(∑

u

|au|2 +
∑

u

∑

t≤u−1

auātz
u−t +

∑

u

∑

t≥u+1

auātz
u−t
)

= σ2
∑

u

∑

t

auātz
u−t = σ2

(∑

u

auz
u
)(∑

t

ātz
−t
)
.

Example 2.1.8. Let (εt)t∈Z be a white noise with Var(ε0) =: σ2 >
0. The covariance generating function of the simple moving average
Yt =

∑
u auεt−u with a−1 = a0 = a1 = 1/3 and au = 0 elsewhere is

then given by

G(z) =
σ2

9
(z−1 + z0 + z1)(z1 + z0 + z−1)

=
σ2

9
(z−2 + 2z−1 + 3z0 + 2z1 + z2), z ∈ R.

Then the autocovariances are just the coefficients in the above series

γ(0) =
σ2

3
,

γ(1) = γ(−1) =
2σ2

9
,

γ(2) = γ(−2) =
σ2

9
,

γ(k) = 0 elsewhere.

This explains the name covariance generating function.

The Characteristic Polynomial
Let (au) be an absolutely summable filter. The Laurent series

A(z) :=
∑

u∈Z

auz
u
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is called characteristic polynomial of (au). We know from complex
analysis that A(z) exists either for all z in some annulus r < |z| < R
or almost nowhere. In the first case the coefficients au are uniquely
determined by the function A(z) (see e.g. Chapter V, 1.11 in Conway
(1975)).
If, for example, (au) is absolutely summable with au = 0 for u ≥ 1,
then A(z) exists for all complex z such that |z| ≥ 1. If au = 0 for all
large |u|, then A(z) exists for all z 6= 0.

Inverse Filters
Let now (au) and (bu) be absolutely summable filters and denote by
Yt :=

∑
u auZt−u, the filtered stationary sequence, where (Zu)u∈Z is a

stationary process. Filtering (Yt)t∈Z by means of (bu) leads to

∑

w

bwYt−w =
∑

w

∑

u

bwauZt−w−u =
∑

v

(
∑

u+w=v

bwau)Zt−v,

where cv :=
∑

u+w=v bwau, v ∈ Z, is an absolutely summable filter:

∑

v

|cv| ≤
∑

v

∑

u+w=v

|bwau| = (
∑

u

|au|)(
∑

w

|bw|) <∞.

We call (cv) the product filter of (au) and (bu).

Lemma 2.1.9. Let (au) and (bu) be absolutely summable filters with
characteristic polynomials A1(z) and A2(z), which both exist on some
annulus r < |z| < R. The product filter (cv) = (

∑
u+w=v bwau) then

has the characteristic polynomial

A(z) = A1(z)A2(z).

Proof. By repeating the above arguments we obtain

A(z) =
∑

v

( ∑

u+w=v

bwau

)
zv = A1(z)A2(z).
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Suppose now that (au) and (bu) are absolutely summable filters with
characteristic polynomials A1(z) and A2(z), which both exist on some
annulus r < z < R, where they satisfy A1(z)A2(z) = 1. Since 1 =∑

v cvz
v if c0 = 1 and cv = 0 elsewhere, the uniquely determined

coefficients of the characteristic polynomial of the product filter of
(au) and (bu) are given by

∑

u+w=v

bwau =

{
1 if v = 0

0 if v 6= 0.

In this case we obtain for a stationary process (Zt) that almost surely

Yt =
∑

u

auZt−u and
∑

w

bwYt−w = Zt, t ∈ Z. (2.1)

The filter (bu) is, therefore, called the inverse filter of (au).

Causal Filters
An absolutely summable filter (au)u∈Z is called causal if au = 0 for
u < 0.

Lemma 2.1.10. Let a ∈ C. The filter (au) with a0 = 1, a1 = −a and
au = 0 elsewhere has an absolutely summable and causal inverse filter
(bu)u≥0 if and only if |a| < 1. In this case we have bu = au, u ≥ 0.

Proof. The characteristic polynomial of (au) is A1(z) = 1−az, z ∈ C.
Since the characteristic polynomial A2(z) of an inverse filter satisfies
A1(z)A2(z) = 1 on some annulus, we haveA2(z) = 1/(1−az). Observe
now that

1

1 − az
=
∑

u≥0

auzu, if |z| < 1/|a|.

As a consequence, if |a| < 1, then A2(z) =
∑

u≥0 a
uzu exists for all

|z| < 1 and the inverse causal filter (au)u≥0 is absolutely summable,
i.e.,

∑
u≥0 |au| < ∞. If |a| ≥ 1, then A2(z) =

∑
u≥0 a

uzu exists for all
|z| < 1/|a|, but

∑
u≥0 |a|u = ∞, which completes the proof.
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Theorem 2.1.11. Let a1, a2, . . . , ap ∈ C, ap 6= 0. The filter (au) with
coefficients a0 = 1, a1, . . . , ap and au = 0 elsewhere has an absolutely
summable and causal inverse filter if the p roots z1, . . . , zp ∈ C of
A(z) = 1 + a1z + a2z

2 + · · · + apz
p = 0 are outside of the unit circle

i.e., |zi| > 1 for 1 ≤ i ≤ p.

Proof. We know from the Fundamental Theorem of Algebra that the
equation A(z) = 0 has exactly p roots z1, . . . , zp ∈ C (see e.g. Chap-
ter IV, 3.5 in Conway (1975)), which are all different from zero, since
A(0) = 1. Hence we can write (see e.g. Chapter IV, 3.6 in Conway
(1975))

A(z) = ap(z − z1) . . . (z − zp)

= c
(
1 − z

z1

)(
1 − z

z2

)
. . .
(
1 − z

zp

)
,

where c := ap(−1)pz1 . . . zp. In case of |zi| > 1 we can write for
|z| < |zi|

1

1 − z
zi

=
∑

u≥0

( 1

zi

)u

zu,

where the coefficients (1/zi)
u, u ≥ 0, are absolutely summable. In

case of |zi| < 1, we have for |z| > |zi|
1

1 − z
zi

= − 1
z
zi

1

1 − zi

z

= −zi

z

∑

u≥0

zu
i z

−u = −
∑

u≤−1

( 1

zi

)u

zu,

where the filter with coefficients −(1/zi)
u, u ≤ −1, is not a causal

one. In case of |zi| = 1, we have for |z| < 1

1

1 − z
zi

=
∑

u≥0

( 1

zi

)u

zu,

where the coefficients (1/zi)
u, u ≥ 0, are not absolutely summable.

Since the coefficients of a Laurent series are uniquely determined, the
factor 1 − z/zi has an inverse 1/(1 − z/zi) =

∑
u≥0 buz

u on some
annulus with

∑
u≥0 |bu| <∞ if |zi| > 1. A small analysis implies that

this argument carries over to the product

1

A(z)
=

1

c
(
1 − z

z1

)
. . .
(
1 − z

zp

)
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which has an expansion 1/A(z) =
∑

u≥0 buz
u on some annulus with∑

u≥0 |bu| < ∞ if each factor has such an expansion, and thus, the
proof is complete.

Remark 2.1.12. Note that the roots z1, . . . , zp of A(z) = 1 + a1z +
· · ·+apz

p are complex valued and thus, the coefficients bu of the inverse
causal filter will, in general, be complex valued as well. The preceding
proof shows, however, that if ap and each zi are real numbers, then
the coefficients bu, u ≥ 0, are real as well.
The preceding proof shows, moreover, that a filter (au) with complex
coefficients a0, a1, . . . , ap ∈ C and au = 0 elsewhere has an absolutely
summable inverse filter if no root z ∈ C of the equation A(z) =
a0 + a1z + · · · + apz

p = 0 has length 1 i.e., |z| 6= 1 for each root. The
additional condition |z| > 1 for each root then implies that the inverse
filter is a causal one.

Example 2.1.13. The filter with coefficients a0 = 1, a1 = −0.7 and
a2 = 0.1 has the characteristic polynomial A(z) = 1 − 0.7z + 0.1z2 =
0.1(z − 2)(z − 5), with z1 = 2, z2 = 5 being the roots of A(z) =
0. Theorem 2.1.11 implies the existence of an absolutely summable
inverse causal filter, whose coefficients can be obtained by expanding
1/A(z) as a power series of z:

1

A(z)
=

1(
1 − z

2

)(
1 − z

5

) =
∑

u≥0

(1

2

)u

zu
∑

w≥0

(1

5

)w

zw

=
∑

v≥0

∑

u+w=v

(1

2

)u(1

5

)w

zv

=
∑

v≥0

v∑

w=0

(1

2

)v−w(1

5

)w

zv

=
∑

v≥0

(1

2

)v 1 −
(

2
5

)v+1

1 − 2
5

zv =
∑

v≥0

10

3

((1

2

)v+1

−
(1

5

)v+1
)
zv.

The preceding expansion implies that bv := (10/3)(2−(v+1)−5−(v+1)), v ≥
0, are the coefficients of the inverse causal filter.
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2.2 Moving Averages and Autoregressive
Processes

Let a1, . . . , aq ∈ R with aq 6= 0 and let (εt)t∈Z be a white noise. The
process

Yt := εt + a1εt−1 + · · · + aqεt−q

is said to be a moving average of order q, denoted by MA(q). Put
a0 = 1. Theorem 2.1.6 and 2.1.7 imply that a moving average Yt =∑q

u=0 auεt−u is a stationary process with covariance generating func-
tion

G(z) = σ2
( q∑

u=0

auz
u
)( q∑

w=0

awz
−w
)

= σ2

q∑

u=0

q∑

w=0

auawz
u−w

= σ2

q∑

v=−q

∑

u−w=v

auawz
u−w

= σ2

q∑

v=−q

( q−v∑

w=0

av+waw

)
zv, z ∈ C,

where σ2 = Var(ε0). The coefficients of this expansion provide the
autocovariance function γ(v) = Cov(Y0, Yv), v ∈ Z, which cuts off
after lag q.

Lemma 2.2.1. Suppose that Yt =
∑q

u=0 auεt−u, t ∈ Z, is a MA(q)-
process. Put µ := E(ε0) and σ2 := V ar(ε0). Then we have

(i) E(Yt) = µ
∑q

u=0 au,

(ii) γ(v) = Cov(Yv, Y0) =





0, v > q,

σ2
q−v∑
w=0

av+waw, 0 ≤ v ≤ q,

γ(−v) = γ(v),

(iii) Var(Y0) = γ(0) = σ2
∑q

w=0 a
2
w,



2.2 Moving Averages and Autoregressive Processes 59

(iv) ρ(v) =
γ(v)

γ(0)
=





0, v > q,
( q−v∑

w=0
av+waw

)/(∑q
w=0 a

2
w

)
, 0 < v ≤ q,

1, v = 0,
ρ(−v) = ρ(v).

Example 2.2.2. The MA(1)-process Yt = εt + aεt−1 with a 6= 0 has
the autocorrelation function

ρ(v) =





1, v = 0

a/(1 + a2), v = ±1

0 elsewhere.

Since a/(1 + a2) = (1/a)/(1 + (1/a)2), the autocorrelation functions
of the two MA(1)-processes with parameters a and 1/a coincide. We
have, moreover, |ρ(1)| ≤ 1/2 for an arbitrary MA(1)-process and thus,
a large value of the empirical autocorrelation function r(1), which
exceeds 1/2 essentially, might indicate that an MA(1)-model for a
given data set is not a correct assumption.

Invertible Processes
The MA(q)-process Yt =

∑q
u=0 auεt−u, with a0 = 1 and aq 6= 0, is said

to be invertible if all q roots z1, . . . , zq ∈ C of A(z) =
∑q

u=0 auz
u = 0

are outside of the unit circle i.e., if |zi| > 1 for 1 ≤ i ≤ q.
Theorem 2.1.11 and representation (2.1) imply that the white noise
process (εt), pertaining to an invertible MA(q)-process Yt =

∑q
u=0 auεt−u,

can be obtained by means of an absolutely summable and causal filter
(bu)u≥0 via

εt =
∑

u≥0

buYt−u, t ∈ Z,

with probability one. In particular the MA(1)-process Yt = εt − aεt−1

is invertible iff |a| < 1, and in this case we have by Lemma 2.1.10 with
probability one

εt =
∑

u≥0

auYt−u, t ∈ Z.
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Autoregressive Processes
A real valued stochastic process (Yt) is said to be an autoregressive
process of order p, denoted by AR(p) if there exist a1, . . . , ap ∈ R with
ap 6= 0, and a white noise (εt) such that

Yt = a1Yt−1 + · · · + apYt−p + εt, t ∈ Z. (2.2)

The value of an AR(p)-process at time t is, therefore, regressed on its
own past p values plus a random shock.

The Stationarity Condition
While by Theorem 2.1.6 MA(q)-processes are automatically station-
ary, this is not true for AR(p)-processes (see Exercise 2.26). The fol-
lowing result provides a sufficient condition on the constants a1, . . . , ap

implying the existence of a uniquely determined stationary solution
(Yt) of (2.2).

Theorem 2.2.3. The AR(p)-equation (2.2) with the given constants
a1, . . . , ap and white noise (εt)t∈Z has a stationary solution (Yt)t∈Z if
all p roots of the equation 1 − a1z − a2z

2 − · · · − apz
p = 0 are outside

of the unit circle. In this case, the stationary solution is almost surely
uniquely determined by

Yt :=
∑

u≥0

buεt−u, t ∈ Z,

where (bu)u≥0 is the absolutely summable inverse causal filter of c0 =
1, cu = −au, u = 1, . . . , p and cu = 0 elsewhere.

Proof. The existence of an absolutely summable causal filter follows
from Theorem 2.1.11. The stationarity of Yt =

∑
u≥0 buεt−u is a con-

sequence of Theorem 2.1.6, and its uniqueness follows from

εt = Yt − a1Yt−1 − · · · − apYt−p, t ∈ Z,

and equation (2.1).

The condition that all roots of the characteristic equation of an AR(p)-
process Yt =

∑p
u=1 auYt−u + εt are outside of the unit circle i.e.,

1 − a1z − a2z
2 − · · · − apz

p 6= 0 for |z| ≤ 1, (2.3)



2.2 Moving Averages and Autoregressive Processes 61

will be referred to in the following as the stationarity condition for an
AR(p)-process.
Note that a stationary solution (Yt) of (2.1) exists in general if no root
zi of the characteristic equation lies on the unit sphere. If there are
solutions in the unit circle, then the stationary solution is noncausal,
i.e., Yt is correlated with future values of εs, s > t. This is frequently
regarded as unnatural.

Example 2.2.4. The AR(1)-process Yt = aYt−1 + εt, t ∈ Z, with
a 6= 0 has the characteristic equation 1 − az = 0 with the obvious
solution z1 = 1/a. The process (Yt), therefore, satisfies the stationar-
ity condition iff |z1| > 1 i.e., iff |a| < 1. In this case we obtain from
Lemma 2.1.10 that the absolutely summable inverse causal filter of
a0 = 1, a1 = −a and au = 0 elsewhere is given by bu = au, u ≥ 0,
and thus, with probability one

Yt =
∑

u≥0

buεt−u =
∑

u≥0

auεt−u.

Denote by σ2 the variance of ε0. From Theorem 2.1.6 we obtain the
autocovariance function of (Yt)

γ(s) =
∑

u

∑

w

bubw Cov(ε0, εs+w−u)

=
∑

u≥0

bubu−s Cov(ε0, ε0)

= σ2as
∑

u≥s

a2(u−s) = σ2 as

1 − a2
, s = 0, 1, 2, . . .

and γ(−s) = γ(s). In particular we obtain γ(0) = σ2/(1 − a2) and
thus, the autocorrelation function of (Yt) is given by

ρ(s) = a|s|, s ∈ Z.

The autocorrelation function of an AR(1)-process Yt = aYt−1 + εt

with |a| < 1 therefore decreases at an exponential rate. Its sign is
alternating if a ∈ (−1, 0).
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Plot 2.2.1a: Autocorrelation functions of AR(1)-processes Yt =
aYt−1 + εt with different values of a.

1 /* ar1_autocorrelation .sas */

2 TITLE1 ’Autocorrelation functions of AR(1)-processes ’;

3

4 /* Generate data for different autocorrelation functions */

5 DATA data1;

6 DO a=-0.7, 0.5, 0.9;

7 DO s=0 TO 20;

8 rho=a**s;

9 OUTPUT;

10 END;

11 END;

12

13 /* Graphical options */

14 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.3 L=1;

15 SYMBOL2 C=GREEN V=DOT I=JOIN H=0.3 L=2;

16 SYMBOL3 C=GREEN V=DOT I=JOIN H=0.3 L=33;

17 AXIS1 LABEL=(’s’);

18 AXIS2 LABEL =(F=CGREEK ’r’ F=COMPLEX H=1 ’a’ H=2 ’(s)’);

19 LEGEND1 LABEL=(’a=’) SHAPE=SYMBOL (10 ,0.6);

20

21 /* Plot autocorrelation functions */

22 PROC GPLOT DATA=data1;
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23 PLOT rho*s=a / HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGEND1 VREF =0;

24 RUN; QUIT;

Program 2.2.1: Computing autocorrelation functions of AR(1)-
processes.

The data step evaluates rho for three different
values of a and the range of s from 0 to 20 us-
ing two loops. The plot is generated by the pro-
cedure GPLOT. The LABEL option in the AXIS2

statement uses, in addition to the greek font

CGREEK, the font COMPLEX assuming this to be
the default text font (GOPTION FTEXT=COMPLEX).
The SHAPE option SHAPE=SYMBOL(10,0.6) in
the LEGEND statement defines width and height
of the symbols presented in the legend.

The following figure illustrates the significance of the stationarity con-
dition |a| < 1 of an AR(1)-process. Realizations Yt = aYt−1 + εt, t =
1, . . . , 10, are displayed for a = 0.5 and a = 1.5, where ε1, ε2, . . . , ε10

are independent standard normal in each case and Y0 is assumed to
be zero. While for a = 0.5 the sample path follows the constant
zero closely, which is the expectation of each Yt, the observations Yt

decrease rapidly in case of a = 1.5.
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Plot 2.2.2a: Realizations Yt = 0.5Yt−1 + εt and Yt = 1.5Yt−1 + εt, t =
1, . . . , 10, with εt independent standard normal and Y0 = 0.

1 /* ar1_plot.sas */

2 TITLE1 ’Realizations of AR(1)-processes ’;

3

4 /* Generated AR(1)-processes */

5 DATA data1;

6 DO a=0.5, 1.5;

7 t=0; y=0; OUTPUT;

8 DO t=1 TO 10;

9 y=a*y+RANNOR (1);

10 OUTPUT;

11 END;

12 END;

13

14 /* Graphical options */

15 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.4 L=1;

16 SYMBOL2 C=GREEN V=DOT I=JOIN H=0.4 L=2;

17 AXIS1 LABEL=(’t’) MINOR=NONE;

18 AXIS2 LABEL=(’Y’ H=1 ’t’);

19 LEGEND1 LABEL=(’a=’) SHAPE=SYMBOL (10 ,0.6);

20

21 /* Plot the AR(1)-processes */

22 PROC GPLOT DATA=data1(WHERE=(t>0));

23 PLOT y*t=a / HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGEND1;

24 RUN; QUIT;

Program 2.2.2: Simulating AR(1)-processes.
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The data are generated within two loops, the
first one over the two values for a. The vari-
able y is initialized with the value 0 correspond-
ing to t=0. The realizations for t=1, ..., 10

are created within the second loop over t and
with the help of the function RANNOR which re-
turns pseudo random numbers distributed as
standard normal. The argument 1 is the initial
seed to produce a stream of random numbers.
A positive value of this seed always produces
the same series of random numbers, a nega-
tive value generates a different series each time

the program is submitted. A value of y is calcu-
lated as the sum of a times the actual value of
y and the random number and stored in a new
observation. The resulting data set has 22 ob-
servations and 3 variables (a, t and y).
In the plot created by PROC GPLOT the initial ob-
servations are dropped using the WHERE data
set option. Only observations fulfilling the con-
dition t>0 are read into the data set used here.
To suppress minor tick marks between the inte-
gers 0,1, ...,10 the option MINOR in the AXIS1

statement is set to NONE.

The Yule–Walker Equations
The Yule–Walker equations entail the recursive computation of the
autocorrelation function ρ of an AR(p)-process satisfying the station-
arity condition (2.3).

Lemma 2.2.5. Let Yt =
∑p

u=1 auYt−u +εt be an AR(p)-process, which
satisfies the stationarity condition (2.3). Its autocorrelation function
ρ then satisfies for s = 1, 2, . . . the recursion

ρ(s) =

p∑

u=1

auρ(s− u), (2.4)

known as Yule–Walker equations.

Proof. With µ := E(Y0) we have for t ∈ Z

Yt − µ =

p∑

u=1

au(Yt−u − µ) + εt − µ
(
1 −

p∑

u=1

au

)
, (2.5)

and taking expectations of (2.5) gives µ(1 −
∑p

u=1 au) = E(ε0) =: ν
due to the stationarity of (Yt). By multiplying equation (2.5) with



66 Models of Time Series

Yt−s − µ for s > 0 and taking expectations again we obtain

γ(s) = E((Yt − µ)(Yt−s − µ))

=

p∑

u=1

au E((Yt−u − µ)(Yt−s − µ)) + E((εt − ν)(Yt−s − µ))

=

p∑

u=1

auγ(s− u).

for the autocovariance function γ of (Yt). The final equation fol-
lows from the fact that Yt−s and εt are uncorrelated for s > 0. This
is a consequence of Theorem 2.2.3, by which almost surely Yt−s =∑

u≥0 buεt−s−u with an absolutely summable causal filter (bu) and thus,
Cov(Yt−s, εt) =

∑
u≥0 bu Cov(εt−s−u, εt) = 0, see Theorem 2.1.5. Di-

viding the above equation by γ(0) now yields the assertion.

Since ρ(−s) = ρ(s), equations (2.4) can be represented as



ρ(1)
ρ(2)
ρ(3)

...
ρ(p)




=




1 ρ(1) ρ(2) . . . ρ(p− 1)
ρ(1) 1 ρ(1) ρ(p− 2)
ρ(2) ρ(1) 1 ρ(p− 3)

... . . . ...
ρ(p− 1) ρ(p− 2) ρ(p− 3) . . . 1







a1

a2

a3
...
ap




(2.6)
This matrix equation offers an estimator of the coefficients a1, . . . , ap

by replacing the autocorrelations ρ(j) by their empirical counterparts
r(j), 1 ≤ j ≤ p. Equation (2.6) then formally becomes r = Ra,
where r = (r(1), . . . , r(p))T , a = (a1, . . . , ap)

T and

R :=




1 r(1) r(2) . . . r(p− 1)
r(1) 1 r(1) . . . r(p− 2)

...
...

r(p− 1) r(p− 2) r(p− 3) . . . 1


 .

If the p×p-matrix R is invertible, we can rewrite the formal equation
r = Ra as R−1r = a, which motivates the estimator

â := R−1r (2.7)

of the vector a = (a1, . . . , ap)
T of the coefficients.
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The Partial Autocorrelation Coefficients
We have seen that the autocorrelation function ρ(k) of an MA(q)-
process vanishes for k > q, see Lemma 2.2.1. This is not true for an
AR(p)-process, whereas the partial autocorrelation coefficients will
share this property. Note that the correlation matrix

P k : =
(

Corr(Yi, Yj)
)

1≤i,j≤k

=




1 ρ(1) ρ(2) . . . ρ(k − 1)
ρ(1) 1 ρ(1) ρ(k − 2)
ρ(2) ρ(1) 1 ρ(k − 3)

... . . . ...
ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . 1




(2.8)

is positive semidefinite for any k ≥ 1. If we suppose that P k is positive
definite, then it is invertible, and the equation



ρ(1)

...
ρ(k)


 = P k



ak1
...
akk


 (2.9)

has the unique solution

ak :=



ak1
...
akk


 = P−1

k



ρ(1)

...
ρ(k)


 .

The number akk is called partial autocorrelation coefficient at lag
k, denoted by α(k), k ≥ 1. Observe that for k ≥ p the vector
(a1, . . . , ap, 0, . . . , 0) ∈ Rk, with k − p zeros added to the vector of
coefficients (a1, . . . , ap), is by the Yule–Walker equations (2.4) a so-
lution of the equation (2.9). Thus we have α(p) = ap, α(k) = 0 for
k > p. Note that the coefficient α(k) also occurs as the coefficient

of Yn−k in the best linear one-step forecast
∑k

u=0 cuYn−u of Yn+1, see
equation (2.18) in Section 2.3.
If the empirical counterpart Rk of P k is invertible as well, then

âk := R−1
k rk,
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with rk := (r(1), . . . , r(k))T being an obvious estimate of ak. The
k-th component

α̂(k) := âkk (2.10)

of âk = (âk1, . . . , âkk) is the empirical partial autocorrelation coef-
ficient at lag k. It can be utilized to estimate the order p of an
AR(p)-process, since α̂(p) ≈ α(p) = ap is different from zero, whereas
α̂(k) ≈ α(k) = 0 for k > p should be close to zero.

Example 2.2.6. The Yule–Walker equations (2.4) for an AR(2)-
process Yt = a1Yt−1 + a2Yt−2 + εt are for s = 1, 2

ρ(1) = a1 + a2ρ(1), ρ(2) = a1ρ(1) + a2

with the solutions

ρ(1) =
a1

1 − a2
, ρ(2) =

a2
1

1 − a2
+ a2.

and thus, the partial autocorrelation coefficients are

α(1) = ρ(1),

α(2) = a2,

α(j) = 0, j ≥ 3.

The recursion (2.4) entails the computation of ρ(s) for an arbitrary s
from the two values ρ(1) and ρ(2).

The following figure displays realizations of the AR(2)-process Yt =
0.6Yt−1 − 0.3Yt−2 + εt for 1 ≤ t ≤ 200, conditional on Y−1 = Y0 = 0.
The random shocks εt are iid standard normal. The corresponding
partial autocorrelation function is shown in Plot 2.2.4a
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Plot 2.2.3a: Realization of the AR(2)-process Yt = 0.6Yt−1−0.3Yt−2 +
εt, conditional on Y−1 = Y0 = 0. The εt, 1 ≤ t ≤ 200, are iid standard
normal.

1 /* ar2_plot.sas */

2 TITLE1 ’Realisation of an AR(2)-process ’;

3

4 /* Generated AR(2)-process */

5 DATA data1;

6 t=-1; y=0; OUTPUT;

7 t=0; y1=y; y=0; OUTPUT;

8 DO t=1 TO 200;

9 y2=y1;

10 y1=y;

11 y=0.6*y1 -0.3*y2+RANNOR (1);

12 OUTPUT;

13 END;

14

15 /* Graphical options */

16 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.3;

17 AXIS1 LABEL=(’t’);

18 AXIS2 LABEL=(’Y’ H=1 ’t’);

19

20 /* Plot the AR(2)-processes */

21 PROC GPLOT DATA=data1(WHERE =(t>0));

22 PLOT y*t / HAXIS=AXIS1 VAXIS=AXIS2;

23 RUN; QUIT;

Program 2.2.3: Simulating AR(2)-processes.
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The two initial values of y are defined and
stored in an observation by the OUTPUT state-
ment. The second observation contains an ad-
ditional value y1 for yt−1. Within the loop the

values y2 (for yt−2), y1 and y are updated one
after the other. The data set used by PROC

GPLOT again just contains the observations with
t > 0.

Plot 2.2.4a: Empirical partial autocorrelation function of the AR(2)-
data in Plot 2.2.3a

1 /* ar2_epa.sas */

2 TITLE1 ’Empirical partial autocorrelation function ’;

3 TITLE2 ’of simulated AR(2)-process data ’;

4 /* Note that this program requires data1 generated by the previous

↪→program (ar2_plot.sas) */

5

6 /* Compute partial autocorrelation function */

7 PROC ARIMA DATA=data1(WHERE=(t>0));

8 IDENTIFY VAR=y NLAG =50 OUTCOV=corr NOPRINT;

9

10 /* Graphical options */

11 SYMBOL1 C=GREEN V=DOT I=JOIN H=0.7;

12 AXIS1 LABEL=(’k’);
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13 AXIS2 LABEL=(’a(k)’);

14

15 /* Plot autocorrelation function */

16 PROC GPLOT DATA=corr;

17 PLOT PARTCORR*LAG / HAXIS=AXIS1 VAXIS=AXIS2 VREF =0;

18 RUN; QUIT;

Program 2.2.4: Computing the empirical partial autocorrelation

function of AR(2)-data.

This program requires to be submitted to SAS
for execution within a joint session with Pro-
gram 2.2.3 (ar2 plot.sas), because it uses the
temporary data step data1 generated there.
Otherwise you have to add the block of state-
ments to this program concerning the data step.
Like in Program 1.3.1 (sunspot correlogram.sas)

the procedure ARIMA with the IDENTIFY state-
ment is used to create a data set. Here we are
interested in the variable PARTCORR containing
the values of the empirical partial autocorrela-
tion function from the simulated AR(2)-process
data. This variable is plotted against the lag
stored in variable LAG.

ARMA-Processes
Moving averages MA(q) and autoregressive AR(p)-processes are spe-
cial cases of so called autoregressive moving averages. Let (εt)t∈Z be a
white noise, p, q ≥ 0 integers and a0, . . . , ap, b0, . . . , bq ∈ R. A real val-
ued stochastic process (Yt)t∈Z is said to be an autoregressive moving
average process of order p, q, denoted by ARMA(p, q), if it satisfies
the equation

Yt = a1Yt−1 + a2Yt−2 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bqεt−q. (2.11)

An ARMA(p, 0)-process with p ≥ 1 is obviously an AR(p)-process,
whereas an ARMA(0, q)-process with q ≥ 1 is a moving average
MA(q). The polynomials

A(z) := 1 − a1z − · · · − apz
p (2.12)

and
B(z) := 1 + b1z + · · · + bqz

q, (2.13)

are the characteristic polynomials of the autoregressive part and of
the moving average part of an ARMA(p, q)-process (Yt), which we
can represent in the form

Yt − a1Yt−1 − · · · − apYt−p = εt + b1εt−1 + · · · + bqεt−q.
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Denote by Zt the right-hand side of the above equation i.e., Zt :=
εt + b1εt−1 + · · · + bqεt−q. This is a MA(q)-process and, therefore,
stationary by Theorem 2.1.6. If all p roots of the equation A(z) =
1− a1z− · · · − apz

p = 0 are outside of the unit circle, then we deduce
from Theorem 2.1.11 that the filter c0 = 1, cu = −au, u = 1, . . . , p,
cu = 0 elsewhere, has an absolutely summable causal inverse filter
(du)u≥0. Consequently we obtain from the equation Zt = Yt−a1Yt−1−
· · · − apYt−p and (2.1) that with b0 = 1, bw = 0 if w > q

Yt =
∑

u≥0

duZt−u =
∑

u≥0

du(εt−u + b1εt−1−u + · · · + bqεt−q−u)

=
∑

u≥0

∑

w≥0

dubwεt−w−u =
∑

v≥0

( ∑

u+w=v

dubw

)
εt−v

=
∑

v≥0

(min(v,q)∑

w=0

bwdv−w

)
εt−v =:

∑

v≥0

αvεt−v

is the almost surely uniquely determined stationary solution of the
ARMA(p, q)-equation (2.11) for a given white noise (εt) .
The condition that all p roots of the characteristic equation A(z) =
1 − a1z − a2z

2 − · · · − apz
p = 0 of the ARMA(p, q)-process (Yt)

are outside of the unit circle will again be referred to in the fol-
lowing as the stationarity condition (2.3). In this case, the process
Yt =

∑
v≥0 αvεt−v, t ∈ Z, is the almost surely uniquely determined

stationary solution of the ARMA(p, q)-equation (2.11), which is called
causal.
The MA(q)-process Zt = εt + b1εt−1 + · · · + bqεt−q is by definition
invertible if all q roots of the polynomial B(z) = 1+b1z+· · ·+bqzq are
outside of the unit circle. Theorem 2.1.11 and equation (2.1) imply in
this case the existence of an absolutely summable causal filter (gu)u≥0

such that with a0 = −1

εt =
∑

u≥0

guZt−u =
∑

u≥0

gu(Yt−u − a1Yt−1−u − · · · − apYt−p−u)

= −
∑

v≥0

(min(v,p)∑

w=0

awgv−w

)
Yt−v.

In this case the ARMA(p, q)-process (Yt) is said to be invertible.
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The Autocovariance Function of an ARMA-Process
In order to deduce the autocovariance function of an ARMA(p, q)-
process (Yt), which satisfies the stationarity condition (2.3), we com-
pute at first the absolutely summable coefficients

αv =

min(q,v)∑

w=0

bwdv−w, v ≥ 0,

in the above representation Yt =
∑

v≥0 αvεt−v. The characteristic
polynomial D(z) of the absolutely summable causal filter (du)u≥0 co-
incides by Lemma 2.1.9 for 0 < |z| < 1 with 1/A(z), where A(z)
is given in (2.12). Thus we obtain with B(z) as given in (2.13) for
0 < |z| < 1

A(z)(B(z)D(z)) = B(z)

⇔
(
−

p∑

u=0

auz
u
)(∑

v≥0

αvz
v
)

=

q∑

w=0

bwz
w

⇔
∑

w≥0

(
−
∑

u+v=w

auαv

)
zw =

∑

w≥0

bwz
w

⇔
∑

w≥0

(
−

w∑

u=0

auαw−u

)
zw =

∑

w≥0

bwz
w

⇔





α0 = 1

αw −
w∑

u=1

auαw−u = bw for 1 ≤ w ≤ p

αw −
p∑

u=1

auαw−u = 0 for w > p.

(2.14)

Example 2.2.7. For the ARMA(1, 1)-process Yt − aYt−1 = εt + bεt−1

with |a| < 1 we obtain from (2.14)

α0 = 1, α1 − a = b, αw − aαw−1 = 0. w ≥ 2,

This implies α0 = 1, αw = aw−1(b+ a), w ≥ 1, and, hence,

Yt = εt + (b+ a)
∑

w≥1

aw−1εt−w.
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Theorem 2.2.8. Suppose that Yt =
∑p

u=1 auYt−u +
∑q

v=0 bvεt−v, b0 :=
1, is an ARMA(p, q)-process, which satisfies the stationarity condition
(2.3). Its autocovariance function γ then satisfies the recursion

γ(s) −
p∑

u=1

auγ(s− u) = σ2

q∑

v=s

bvαv−s, 0 ≤ s ≤ q,

γ(s) −
p∑

u=1

auγ(s− u) = 0, s ≥ q + 1, (2.15)

where αv, v ≥ 0, are the coefficients in the representation Yt =∑
v≥0 αvεt−v, which we computed in (2.14) and σ2 is the variance of

ε0.

By the preceding result the autocorrelation function ρ of the ARMA(p, q)-
process (Yt) satisfies

ρ(s) =

p∑

u=1

auρ(s− u), s ≥ q + 1,

which coincides with the autocorrelation function of the stationary
AR(p)-process Xt =

∑p
u=1 auXt−u + εt, c.f. Lemma 2.2.5.

Proof of Theorem 2.2.8. Put µ := E(Y0) and ν := E(ε0). Then we
have

Yt − µ =

p∑

u=1

au(Yt−u − µ) +

q∑

v=0

bv(εt−v − ν), t ∈ Z.

Recall that Yt =
∑p

u=1 auYt−u +
∑q

v=0 bvεt−v, t ∈ Z. Taking expec-
tations on both sides we obtain µ =

∑p
u=1 auµ +

∑q
v=0 bvν, which

yields now the equation displayed above. Multiplying both sides with
Yt−s − µ, s ≥ 0, and taking expectations, we obtain

Cov(Yt−s, Yt) =

p∑

u=1

au Cov(Yt−s, Yt−u) +

q∑

v=0

bv Cov(Yt−s, εt−v),

which implies

γ(s) −
p∑

u=1

auγ(s− u) =

q∑

v=0

bv Cov(Yt−s, εt−v).
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From the representation Yt−s =
∑

w≥0 αwεt−s−w and Theorem 2.1.5
we obtain

Cov(Yt−s, εt−v) =
∑

w≥0

αw Cov(εt−s−w, εt−v) =

{
0 if v < s

σ2αv−s if v ≥ s.

This implies

γ(s) −
p∑

u=1

auγ(s− u) =

q∑

v=s

bv Cov(Yt−s, εt−v)

=

{
σ2
∑q

v=s bvαv−s if s ≤ q

0 if s > q,

which is the assertion.

Example 2.2.9. For the ARMA(1, 1)-process Yt − aYt−1 = εt + bεt−1

with |a| < 1 we obtain from Example 2.2.7 and Theorem 2.2.8 with
σ2 = Var(ε0)

γ(0) − aγ(1) = σ2(1 + b(b+ a)), γ(1) − aγ(0) = σ2b,

and thus

γ(0) = σ21 + 2ab+ b2

1 − a2
, γ(1) = σ2 (1 + ab)(a+ b)

1 − a2
.

For s ≥ 2 we obtain from (2.15)

γ(s) = aγ(s− 1) = · · · = as−1γ(1).
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Plot 2.2.5a: Autocorrelation functions of ARMA(1, 1)-processes with
a = 0.8/− 0.8, b = 0.5/0/− 0.5 and σ2 = 1.

1 /* arma11_autocorrelation .sas */

2 TITLE1 ’Autocorrelation functions of ARMA (1,1)-processes ’;

3

4 /* Compute autocorrelations functions for different ARMA (1,1)-

↪→processes */

5 DATA data1;

6 DO a=-0.8, 0.8;

7 DO b=-0.5, 0, 0.5;

8 s=0; rho =1;

9 q=COMPRESS(’(’ || a || ’,’ || b || ’) ’);

10 OUTPUT;

11 s=1; rho =(1+a*b)*(a+b)/(1+2*a*b+b*b);

12 q=COMPRESS(’(’ || a || ’,’ || b || ’) ’);

13 OUTPUT;

14 DO s=2 TO 10;

15 rho=a*rho;

16 q=COMPRESS(’(’ || a || ’,’ || b || ’) ’);

17 OUTPUT;

18 END;

19 END;

20 END;

21

22 /* Graphical options */

23 SYMBOL1 C=RED V=DOT I=JOIN H=0.7 L=1;

24 SYMBOL2 C=YELLOW V=DOT I=JOIN H=0.7 L=2;

25 SYMBOL3 C=BLUE V=DOT I=JOIN H=0.7 L=33;

26 SYMBOL4 C=RED V=DOT I=JOIN H=0.7 L=3;

27 SYMBOL5 C=YELLOW V=DOT I=JOIN H=0.7 L=4;
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28 SYMBOL6 C=BLUE V=DOT I=JOIN H=0.7 L=5;

29 AXIS1 LABEL =(F=CGREEK ’r’ F=COMPLEX ’(k) ’);

30 AXIS2 LABEL=(’lag k’) MINOR=NONE;

31 LEGEND1 LABEL=(’(a,b)=’) SHAPE=SYMBOL (10 ,0.8);

32

33 /* Plot the autocorrelation functions */

34 PROC GPLOT DATA=data1;

35 PLOT rho*s=q / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

36 RUN; QUIT;

Program 2.2.5: Computing autocorrelation functions of ARMA(1, 1)-
processes.

In the data step the values of the autocor-
relation function belonging to an ARMA(1, 1)
process are calculated for two different val-
ues of a, the coefficient of the AR(1)-part, and
three different values of b, the coefficient of the
MA(1)-part. Pure AR(1)-processes result for
the value b=0. For the arguments (lags) s=0

and s=1 the computation is done directly, for

the rest up to s=10 a loop is used for a recur-
sive computation. For the COMPRESS statement
see Program 1.1.3 (logistic.sas).

The second part of the program uses PROC

GPLOT to plot the autocorrelation function, using
known statements and options to customize the
output.

ARIMA-Processes
Suppose that the time series (Yt) has a polynomial trend of degree d.
Then we can eliminate this trend by considering the process (∆dYt),
obtained by d times differencing as described in Section 1.2. If the
filtered process (∆dYd) is an ARMA(p, q)-process satisfying the sta-
tionarity condition (2.3), the original process (Yt) is said to be an
autoregressive integrated moving average of order p, d, q, denoted by
ARIMA(p, d, q). In this case constants a1, . . . , ap, b0 = 1, b1, . . . , bq ∈
R exist such that

∆dYt =

p∑

u=1

au∆
dYt−u +

q∑

w=0

bwεt−w, t ∈ Z,

where (εt) is a white noise.

Example 2.2.10. An ARIMA(1, 1, 1)-process (Yt) satisfies

∆Yt = a∆Yt−1 + εt + bεt−1, t ∈ Z,
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where |a| < 1, b 6= 0 and (εt) is a white noise, i.e.,

Yt − Yt−1 = a(Yt−1 − Yt−2) + εt + bεt−1, t ∈ Z.

This implies Yt = (a+ 1)Yt−1 − aYt−2 + εt + bεt−1.
A random walk Xt = Xt−1+εt is obviously an ARIMA(0, 1, 0)-process.

Consider Yt = St + Rt, t ∈ Z, where the random component (Rt)
is a stationary process and the seasonal component (St) is periodic
of length s, i.e., St = St+s = St+2s = . . . for t ∈ Z. Then the
process (Yt) is in general not stationary, but Y ∗

t := Yt − Yt−s is. If
this seasonally adjusted process (Y ∗

t ) is an ARMA(p, q)-process satis-
fying the stationarity condition (2.3), then the original process (Yt) is
called a seasonal ARMA(p, q)-process with period length s, denoted by
SARMAs(p, q). One frequently encounters a time series with a trend
as well as a periodic seasonal component. A stochastic process (Yt)
with the property that (∆d(Yt − Yt−s)) is an ARMA(p, q)-process is,
therefore, called a SARIMA(p, d, q)-process. This is a quite common
assumption in practice.

Cointegration
In the sequel we will frequently use the notation that a time series
(Yt) is I(d), d = 0, 1, if the sequence of differences (∆dYt) of order d
is a stationary process. By the difference ∆0Yt of order zero we denote
the undifferenced process Yt, t ∈ Z.
Suppose that the two time series (Yt) and (Zt) satisfy

Yt = aWt + εt, Zt = Wt + δt, t ∈ Z,

for some real number a 6= 0, where (Wt) is I(1), and (εt), (δt) are
uncorrelated white noise processes, i.e., Cov(εt, δs) = 0, t, s ∈ Z.
Then (Yt) and (Zt) are both I(1), but

Xt := Yt − aZt = εt − aδt, t ∈ Z,

is I(0).
The fact that the combination of two nonstationary series yields a
stationary process arises from a common component (Wt), which is
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I(1). More generally, two I(1) series (Yt), (Zt) are said to be cointe-
grated , if there exist constants µ, α1, α2 with α1, α2 different from 0,
such that the process

Xt = µ+ α1Yt + α2Zt, t ∈ Z

is I(0). Without loss of generality, we can choose α1 = 1 in this case.
Such cointegrated time series are often encountered in macroeconomics
(Granger (1981), Engle and Granger (1987)). Consider, for example,
prices for the same commodity in different parts of a country. Prin-
ciples of supply and demand, along with the possibility of arbitrage,
means that, while the process may fluctuate more-or-less randomly,
the distance between them will, in equilibrium, be relatively constant
(typically about zero).
The link between cointegration and error correction can vividly be de-
scribed by the humorous tale of the drunkard and his dog, c.f. Murray
(1994). In the same way a drunkard seems to follow a random walk
an unleashed dog wanders aimlessly. We can, therefore, model their
ways by random walks

Yt = Yt−1 + εt and

Zt = Zt−1 + δt,

where the individual single steps (εt), (δt) of man and dog are uncor-
related white noise processes. Random walks are not stationary, since
their variances increase, and so both processes (Yt) and (Zt) are not
stationary.
And if the dog belongs to the drunkard? We assume the dog to
be unleashed and thus, the distance Yt − Zt between the drunk and
his dog is a random variable. It seems reasonable to assume that
these distances form a stationary process, i.e., that (Yt) and (Zt) are
cointegrated with constants α1 = 1 and α2 = −1.
We model the cointegrated walks above more tritely by assuming the
existence of constants c, d ∈ R such that

Yt − Yt−1 = εt + c(Yt−1 − Zt−1) and

Zt − Zt−1 = δt + d(Yt−1 − Zt−1).

The additional terms on the right-hand side of these equations are the
error correction terms.
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Cointegration requires that both variables in question be I(1), but
that a linear combination of them be I(0). This means that the first
step is to figure out if the series themselves are I(1), typically by using
unit root tests. If one or both are not I(1), cointegration is not an
option.
Whether two processes (Yt) and (Zt) are cointegrated can be tested
by means of a linear regression approach. This is based on the coin-
tegration regression

Yt = β0 + β1Zt + εt,

where (εt) is a stationary process and β0, β1 ∈ R are the cointegration
constants.
One can use the ordinary least squares estimates β̂0, β̂1 of the target
parameters β0, β1, which satisfy

n∑

t=1

(
Yt − β̂0 − β̂1Zt

)2

= min
β0,β1∈R

n∑

t=1

(
Yt − β0 − β1Zt

)2

,

and one checks, whether the estimated residuals

ε̂t = Yt − β̂0 − β̂1Zt

are generated by a stationary process.
A general strategy for examining cointegrated series can now be sum-
marized as follows:

1. Determine that the two series are I(1).

2. Compute ε̂t = Yt − β̂0 − β̂1Zt using ordinary least squares.

3. Examine ε̂t for stationarity, using

• the Durbin–Watson test

• standard unit root tests such as Dickey–Fuller or augmented
Dickey–Fuller.

Example 2.2.11. (Hog Data) Quenouille’s (1957) Hog Data list the
annual hog supply and hog prices in the U.S. between 1867 and 1948.
Do they provide a typical example of cointegrated series? A discussion
can be found in Box and Tiao (1977).
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Plot 2.2.6a: Hog Data: hog supply and hog prices.

1 /* hog.sas */

2 TITLE1 ’Hog supply , hog prices and differences ’;

3 TITLE2 ’Hog Data (1867 -1948) ’;

4

5 /* Read in the two data sets */

6 DATA data1;

7 INFILE ’c:\data\hogsuppl.txt ’;

8 INPUT supply @@;

9

10 DATA data2;

11 INFILE ’c:\data\hogprice.txt ’;

12 INPUT price @@;

13

14 /* Merge data sets , generate year and compute differences */
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15 DATA data3;

16 MERGE data1 data2;

17 year=_N_ +1866;

18 diff=supply -price;

19

20 /* Graphical options */

21 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;

22 AXIS1 LABEL =( ANGLE =90 ’h o g s u p p l y’);

23 AXIS2 LABEL =( ANGLE =90 ’h o g p r i c e s’);

24 AXIS3 LABEL =( ANGLE =90 ’d i f f e r e n c e s’);

25

26 /* Generate three plots */

27 GOPTIONS NODISPLAY;

28 PROC GPLOT DATA=data3 GOUT=abb;

29 PLOT supply*year / VAXIS=AXIS1;

30 PLOT price*year / VAXIS=AXIS2;

31 PLOT diff*year / VAXIS=AXIS3 VREF =0;

32 RUN;

33

34 /* Display them in one output */

35 GOPTIONS DISPLAY;

36 PROC GREPLAY NOFS IGOUT=abb TC=SASHELP.TEMPLT;

37 TEMPLATE=V3;

38 TREPLAY 1: GPLOT 2: GPLOT1 3: GPLOT2;

39 RUN; DELETE _ALL_; QUIT;

Program 2.2.6: Plotting the Hog Data.

The supply data and the price data read
in from two external files are merged in
data3. Year is an additional variable with val-
ues 1867, 1868, . . . , 1932. By PROC GPLOT hog
supply, hog prices and their differences diff

are plotted in three different plots stored in the

graphics catalog abb. The horizontal line at the
zero level is plotted by the option VREF=0. The
plots are put into a common graphic using PROC

GREPLAY and the template V3. Note that the la-
bels of the vertical axes are spaced out as SAS
sets their characters too close otherwise.

Hog supply (=: yt) and hog price (=: zt) obviously increase in time t
and do, therefore, not seem to be realizations of stationary processes;
nevertheless, as they behave similarly, a linear combination of both
might be stationary. In this case, hog supply and hog price would be
cointegrated.
This phenomenon can easily be explained as follows. A high price zt

at time t is a good reason for farmers to breed more hogs, thus leading
to a large supply yt+1 in the next year t+1. This makes the price zt+1

fall with the effect that farmers will reduce their supply of hogs in the
following year t + 2. However, when hogs are in short supply, their
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price zt+2 will rise etc. There is obviously some error correction mech-
anism inherent in these two processes, and the observed cointegration
helps us to detect its existence.

The AUTOREG Procedure

Dependent Variable supply

Ordinary Least Squares Estimates

SSE 338324.258 DFE 80

MSE 4229 Root MSE 65.03117

SBC 924.172704 AIC 919.359266

Regress R-Square 0.3902 Total R-Square 0.3902

Durbin -Watson 0.5839

Phillips -Ouliaris

Cointegration Test

Lags Rho Tau

1 -28.9109 -4.0142

Standard Approx

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 515.7978 26.6398 19.36 <.0001

price 1 0.2059 0.0288 7.15 <.0001

Listing 2.2.7a: Phillips–Ouliaris test for cointegration of Hog Data.

1 /* hog_cointegration.sas */

2 TITLE1 ’Testing for cointegration ’;

3 TITLE2 ’Hog Data (1867 -1948) ’;

4 /* Note that this program needs data3 generated by the previous

↪→program (hog.sas) */

5

6 /* Compute Phillips -Ouliaris -test for conintegration */

7 PROC AUTOREG DATA=data3;

8 MODEL supply=price / STATIONARITY =( PHILLIPS);

9 RUN; QUIT;

Program 2.2.7: Phillips–Ouliaris test for cointegration of Hog Data.
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The procedure AUTOREG (for autoregressive
models) uses data3 from Program 2.2.6
(hog.sas). In the MODEL statement a regression
from supply on price is defined and the option

STATIONARITY=(PHILLIPS) makes SAS calcu-
late the statistics of the Phillips–Ouliaris test for
cointegration of order 1.

The output of the above program contains some characteristics of
the regression, the Phillips-Ouliaris test statistics and the regression
coefficients with their t-ratios. The Phillips-Ouliaris test statistics
need some further explanation.
The hypothesis of the Phillips–Ouliaris cointegration test is no coin-
tegration. Unfortunately SAS does not provide the p-value, but only
the values of the test statistics denoted by RHO and TAU. Tables of
critical values of these test statistics can be found in Phillips and Ou-
liaris (1990). Note that in the original paper the two test statistics

are denoted by Ẑα and Ẑt. The hypothesis is to be rejected if RHO or
TAU are below the critical value for the desired type I level error α.
For this one has to differentiate between the following cases.

(1) If the estimated cointegrating regression does not contain any
intercept, i.e. β0 = 0, and none of the explanatory variables
has a nonzero trend component, then use the following table
for critical values of RHO and TAU. This is the so-called standard
case.

α 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO -10.74 -11.57 -12.54 -13.81 -15.64 -18.88 -22.83
TAU -2.26 -2.35 -2.45 -2.58 -2.76 -3.05 -3.39

(2) If the estimated cointegrating regression contains an intercept,
i.e. β0 6= 0, and none of the explanatory variables has a nonzero
trend component, then use the following table for critical values
of RHO and TAU. This case is referred to as demeaned.

α 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO -14.91 -15.93 -17.04 -18.48 -20.49 -23.81 -28.32
TAU -2.86 -2.96 -3.07 -3.20 -3.37 -3.64 -3.96
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(3) If the estimated cointegrating regression contains an intercept,
i.e. β0 6= 0, and at least one of the explanatory variables has
a nonzero trend component, then use the following table for
critical values of RHO and TAU. This case is said to be demeaned
and detrended.

α 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO -20.79 -21.81 -23.19 -24.75 -27.09 -30.84 -35.42
TAU -3.33 -3.42 -3.52 -3.65 -3.80 -4.07 -4.36

In our example with an arbitrary β0 and a visible trend in the in-
vestigated time series, the RHO-value is −28.9109 and the TAU-value
−4.0142. Both are smaller than the critical values of −27.09 and
−3.80 in the above table of the demeaned and detrended case and
thus, lead to a rejection of the null hypothesis of no cointegration at
the 5%-level.
For further information on cointegration we refer to Chapter 19 of the
time series book by Hamilton (1994).

ARCH- and GARCH-Processes
In particular the monitoring of stock prices gave rise to the idea that
the volatility of a time series (Yt) might not be a constant but rather
a random variable, which depends on preceding realizations. The
following approach to model such a change in volatility is due to Engle
(1982).
We assume the multiplicative model

Yt = σtZt, t ∈ Z,

where the Zt are independent and identically distributed random vari-
ables with

E(Zt) = 0 and E(Z2
t ) = 1, t ∈ Z.

The scale σt is supposed to be a function of the past p values of the
series:

σ2
t = a0 +

p∑

j=1

ajY
2
t−j, t ∈ Z,
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where p ∈ {0, 1, . . . } and a0 > 0, aj ≥ 0, 1 ≤ j ≤ p − 1, ap > 0 are
constants.
The particular choice p = 0 yields obviously a white noise model for
(Yt). Common choices for the distribution of Zt are the standard
normal distribution or the (standardized) t-distribution, which in the
non-standardized form has the density

fm(x) :=
Γ((m+ 1)/2)

Γ(m/2)
√
πm

(
1 +

x2

m

)−(m+1)/2

, x ∈ R.

The number m ≥ 1 is the degree of freedom of the t-distribution. The
scale σt in the above model is determined by the past observations
Yt−1, . . . , Yt−p, and the innovation on this scale is then provided by
Zt. We assume moreover that the process (Yt) is a causal one in the
sense that Zt and Ys, s < t, are independent. Some autoregressive
structure is, therefore, inherent in the process (Yt). Conditional on
Yt−j = yt−j, 1 ≤ j ≤ p, the variance of Yt is a0 +

∑p
j=1 ajy

2
t−j and,

thus, the conditional variances of the process will generally be differ-
ent. The process Yt = σtZt is, therefore, called an autoregressive and
conditional heteroscedastic process of order p, ARCH(p)-process for
short.
If, in addition, the causal process (Yt) is stationary, then we obviously
have

E(Yt) = E(σt) E(Zt) = 0

and

σ2 := E(Y 2
t ) = E(σ2

t ) E(Z2
t )

= a0 +

p∑

j=1

aj E(Y 2
t−j)

= a0 + σ2

p∑

j=1

aj,

which yields

σ2 =
a0

1 −
∑p

j=1 aj
.

A necessary condition for the stationarity of the process (Yt) is, there-
fore, the inequality

∑p
j=1 aj < 1. Note, moreover, that the preceding
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arguments immediately imply that the Yt and Ys are uncorrelated for
different values of s and t, but they are not independent.
The following lemma is crucial. It embeds the ARCH(p)-processes to
a certain extent into the class of AR(p)-processes, so that our above
tools for the analysis of autoregressive processes can be applied here
as well.

Lemma 2.2.12. Let (Yt) be a stationary and causal ARCH(p)-process
with constants a0, a1, . . . , ap. If the process of squared random vari-
ables (Y 2

t ) is a stationary one, then it is an AR(p)-process:

Y 2
t = a1Y

2
t−1 + · · · + apY

2
t−p + εt,

where (εt) is a white noise with E(εt) = a0, t ∈ Z.

Proof. From the assumption that (Yt) is an ARCH(p)-process we ob-
tain

εt := Y 2
t −

p∑

j=1

ajY
2
t−j = σ2

tZ
2
t − σ2

t + a0 = a0 + σ2
t (Z

2
t − 1), t ∈ Z.

This implies E(εt) = a0 and

E((εt − a0)
2) = E(σ4

t ) E((Z2
t − 1)2)

= E
(
(a0 +

p∑

j=1

ajY
2
t−j)

2
)

E((Z2
t − 1)2) =: c,

independent of t by the stationarity of (Y 2
t ). For h ∈ N the causality

of (Yt) finally implies

E((εt − a0)(εt+h − a0)) = E(σ2
t σ

2
t+h(Z

2
t − 1)(Z2

t+h − 1))

= E(σ2
t σ

2
t+h(Z

2
t − 1)) E(Z2

t+h − 1) = 0,

i.e., (εt) is a white noise with E(εt) = a0.

The process (Y 2
t ) satisfies, therefore, the stationarity condition (2.3)

if all p roots of the equation 1 −
∑p

j=1 ajz
j = 0 are outside of the

unit circle. Hence, we can estimate the order p using an estimate as
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in (2.10) of the partial autocorrelation function of (Y 2
t ). The Yule–

Walker equations provide us, for example, with an estimate of the
coefficients a1, . . . , ap, which then can be utilized to estimate the ex-
pectation a0 of the error εt.
Note that conditional on Yt−1 = yt−1, . . . , Yt−p = yt−p, the distribution
of Yt = σtZt is a normal one if the Zt are normally distributed. In
this case it is possible to write down explicitly the joint density of
the vector (Yp+1, . . . , Yn), conditional on Y1 = y1, . . . , Yp = yp (Ex-
ercise 2.36). A numerical maximization of this density with respect
to a0, a1, . . . , ap then leads to a maximum likelihood estimate of the
vector of constants; see also Section 2.3.
A generalized ARCH-process, GARCH(p, q) for short (Bollerslev (1986)),
adds an autoregressive structure to the scale σt by assuming the rep-
resentation

σ2
t = a0 +

p∑

j=1

ajY
2
t−j +

q∑

k=1

bkσ
2
t−k,

where the constants bk are nonnegative. The set of parameters aj, bk
can again be estimated by conditional maximum likelihood as before
if a parametric model for the distribution of the innovations Zt is
assumed.

Example 2.2.13. (Hongkong Data). The daily Hang Seng closing
index was recorded between July 16th, 1981 and September 30th,
1983, leading to a total amount of 552 observations pt. The daily log
returns are defined as

yt := log(pt) − log(pt−1),

where we now have a total of n = 551 observations. The expansion
log(1 + ε) ≈ ε implies that

yt = log
(
1 +

pt − pt−1

pt−1

)
≈ pt − pt−1

pt−1
,

provided that pt−1 and pt are close to each other. In this case we can
interpret the return as the difference of indices on subsequent days,
relative to the initial one.



2.2 Moving Averages and Autoregressive Processes 89

We use an ARCH(3) model for the generation of yt, which seems to
be a plausible choice by the partial autocorrelations plot. If one as-
sumes t-distributed innovations Zt, SAS estimates the distribution’s
degrees of freedom and displays the reciprocal in the TDFI-line, here
m = 1/0.1780 = 5.61 degrees of freedom. Following we obtain
the estimates a0 = 0.000214, a1 = 0.147593, a2 = 0.278166 and
a3 = 0.157807. The SAS output also contains some general regres-
sion model information from an ordinary least squares estimation ap-
proach, some specific information for the (G)ARCH approach and as
mentioned above the estimates for the ARCH model parameters in
combination with t ratios and approximated p-values. The following
plots show the returns of the Hang Seng index, their squares, the per-
taining partial autocorrelation function and the parameter estimates.
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Plot 2.2.8a: Log returns of Hang Seng index and their squares.

1 /* hongkong_plot.sas */

2 TITLE1 ’Daily log returns and their squares ’;

3 TITLE2 ’Hongkong Data ’;

4

5 /* Read in the data , compute log return and their squares */

6 DATA data1;

7 INFILE ’c:\data\hongkong.txt ’;

8 INPUT p;

9 t=_N_;

10 y=DIF(LOG(p));

11 y2=y**2;

12

13 /* Graphical options */

14 SYMBOL1 C=RED V=DOT H=0.5 I=JOIN L=1;

15 AXIS1 LABEL=(’y’ H=1 ’t’) ORDER =(-.12 TO .10 BY .02);

16 AXIS2 LABEL=(’y2 ’ H=1 ’t’);

17

18 /* Generate two plots */
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19 GOPTIONS NODISPLAY;

20 PROC GPLOT DATA=data1 GOUT=abb;

21 PLOT y*t / VAXIS=AXIS1;

22 PLOT y2*t / VAXIS=AXIS2;

23 RUN;

24

25 /* Display them in one output */

26 GOPTIONS DISPLAY;

27 PROC GREPLAY NOFS IGOUT=abb TC=SASHELP.TEMPLT;

28 TEMPLATE=V2;

29 TREPLAY 1: GPLOT 2: GPLOT1;

30 RUN; DELETE _ALL_; QUIT;

Program 2.2.8: Plotting the log returns and their squares.

In the DATA step the observed values of the
Hang Seng closing index are read into the vari-
able p from an external file. The time index vari-
able t uses the SAS-variable N , and the log
transformed and differenced values of the in-
dex are stored in the variable y, their squared

values in y2.
After defining different axis labels, two plots
are generated by two PLOT statements in PROC

GPLOT, but they are not displayed. By means of
PROC GREPLAY the plots are merged vertically in
one graphic.
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Plot 2.2.9a: Partial autocorrelations of squares of log returns of Hang
Seng index.

The AUTOREG Procedure

Dependent Variable = Y

Ordinary Least Squares Estimates

SSE 0.265971 DFE 551

MSE 0.000483 Root MSE 0.021971

SBC -2643.82 AIC -2643.82

Reg Rsq 0.0000 Total Rsq 0.0000

Durbin -Watson 1.8540

NOTE: No intercept term is used. R-squares are redefined.

GARCH Estimates

SSE 0.265971 OBS 551

MSE 0.000483 UVAR 0.000515

Log L 1706.532 Total Rsq 0.0000

SBC -3381.5 AIC -3403.06

Normality Test 119.7698 Prob >Chi -Sq 0.0001

Variable DF B Value Std Error t Ratio Approx Prob
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ARCH0 1 0.000214 0.000039 5.444 0.0001

ARCH1 1 0.147593 0.0667 2.213 0.0269

ARCH2 1 0.278166 0.0846 3.287 0.0010

ARCH3 1 0.157807 0.0608 2.594 0.0095

TDFI 1 0.178074 0.0465 3.833 0.0001

Listing 2.2.9b: Parameter estimates in the ARCH(3)-model for stock

returns.

1 /* hongkong_pa.sas */

2 TITLE1 ’ARCH (3)-model ’;

3 TITLE2 ’Hongkong Data ’;

4 /* Note that this program needs data1 generated by the previous

↪→program (hongkong_plot.sas) */

5

6 /* Compute partial autocorrelation function */

7 PROC ARIMA DATA=data1;

8 IDENTIFY VAR=y2 NLAG =50 OUTCOV=data2;

9

10 /* Graphical options */

11 SYMBOL1 C=RED V=DOT H=0.5 I=JOIN;

12

13 /* Plot partial autocorrelation function */

14 PROC GPLOT DATA=data2;

15 PLOT partcorr*lag / VREF =0;

16 RUN;

17

18 /* Estimate ARCH (3)-model */

19 PROC AUTOREG DATA=data1;

20 MODEL y = / NOINT GARCH=(q=3) DIST=T;

21 RUN; QUIT;

Program 2.2.9: Analyzing the log returns.

To identify the order of a possibly underlying
ARCH process for the daily log returns of the
Hang Seng closing index, the empirical partial
autocorrelations of their squared values, which
are stored in the variable y2 of the data set
data1 in Program 2.2.8 (hongkong plot.sas),
are calculated by means of PROC ARIMA and the
IDENTIFY statement. The subsequent proce-
dure GPLOT displays these partial autocorrela-
tions. A horizontal reference line helps to de-
cide whether a value is substantially different

from 0.

PROC AUTOREG is used to analyze the ARCH(3)
model for the daily log returns. The MODEL state-
ment specifies the dependent variable y. The
option NOINT suppresses an intercept parame-
ter, GARCH=(q=3) selects the ARCH(3) model
and DIST=T determines a t distribution for the
innovations Zt in the model equation. Note that,
in contrast to our notation, SAS uses the letter
q for the ARCH model order.
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2.3 Specification of ARMA-Models: The Box–
Jenkins Program

The aim of this section is to fit a time series model (Yt)t∈Z to a given
set of data y1, . . . , yn collected in time t. We suppose that the data
y1, . . . , yn are (possibly) variance-stabilized as well as trend or sea-
sonally adjusted. We assume that they were generated by clipping
Y1, . . . , Yn from an ARMA(p, q)-process (Yt)t∈Z, which we will fit to
the data in the following. As noted in Section 2.2, we could also fit
the model Yt =

∑
v≥0 αvεt−v to the data, where (εt) is a white noise.

But then we would have to determine infinitely many parameters αv,
v ≥ 0. By the principle of parsimony it seems, however, reasonable
to fit only the finite number of parameters of an ARMA(p, q)-process.
The Box–Jenkins program consists of four steps:

1. Order selection: Choice of the parameters p and q.

2. Estimation of coefficients: The coefficients a1, . . . , ap and b1, . . . , bq
are estimated.

3. Diagnostic check: The fit of the ARMA(p, q)-model with the
estimated coefficients is checked.

4. Forecasting: The prediction of future values of the original process.

The four steps are discussed in the following.

Order Selection
The order q of a moving average MA(q)-process can be estimated by
means of the empirical autocorrelation function r(k) i.e., by the cor-
relogram. Lemma 2.2.1 (iv) shows that the autocorrelation function
ρ(k) vanishes for k ≥ q + 1. This suggests to choose the order q such
that r(q) is clearly different from zero, whereas r(k) for k ≥ q + 1 is
quite close to zero. This, however, is obviously a rather vague selection
rule.
The order p of an AR(p)-process can be estimated in an analogous way
using the empirical partial autocorrelation function α̂(k), k ≥ 1, as
defined in (2.10). Since α̂(p) should be close to the p-th coefficient ap
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of the AR(p)-process, which is different from zero, whereas α̂(k) ≈ 0
for k > p, the above rule can be applied again with r replaced by α̂.
The choice of the orders p and q of an ARMA(p, q)-process is a bit
more challenging. In this case one commonly takes the pair (p, q),
minimizing some function, which is based on an estimate σ̂2

p,q of the
variance of ε0. Popular functions are Akaike’s Information Criterion

AIC(p, q) := log(σ̂2
p,q) + 2

p+ q + 1

n+ 1
,

the Bayesian Information Criterion

BIC(p, q) := log(σ̂2
p,q) +

(p+ q) log(n+ 1)

n+ 1

and the Hannan-Quinn Criterion

HQ(p, q) := log(σ̂2
p,q) +

2(p+ q)c log(log(n+ 1))

n+ 1
with c > 1.

AIC and BIC are discussed in Section 9.3 of Brockwell and Davis
(1991) for Gaussian processes (Yt), where the joint distribution of
an arbitrary vector (Yt1, . . . , Ytk) with t1 < · · · < tk is multivariate
normal, see below. For the HQ-criterion we refer to Hannan and
Quinn (1979). Note that the variance estimate σ̂2

p,q will in general
become arbitrarily small as p + q increases. The additive terms in
the above criteria serve, therefore, as penalties for large values, thus
helping to prevent overfitting of the data by choosing p and q too
large.

Estimation of Coefficients
Suppose we fixed the order p and q of an ARMA(p, q)-process (Yt)t∈Z,
with Y1, . . . , Yn now modelling the data y1, . . . , yn. In the next step
we will derive estimators of the constants a1, . . . , ap, b1, . . . , bq in the
model

Yt = a1Yt−1 + · · · + apYt−p + εt + b1εt−1 + · · · + bqεt−q, t ∈ Z.
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The Gaussian Model: Maximum Likelihood Estima-
tor
We assume first that (Yt) is a Gaussian process and thus, the joint
distribution of (Y1, . . . , Yn) is a n-dimensional normal distribution

P{Yi ≤ si, i = 1, . . . , n} =

∫ s1

−∞
. . .

∫ sn

−∞
ϕµ,Σ(x1, . . . , xn) dxn . . . dx1

for arbitrary s1, . . . , sn ∈ R. Here

ϕµ,Σ(x1, . . . , xn)

=
1

(2π)n/2(detΣ)1/2
exp

(
− 1

2
((x1, . . . , xn) − µ)Σ−1((x1, . . . , xn) − µ)T

)

for arbitrary x1, . . . , xn ∈ R is the density of the n-dimensional normal
distribution with mean vector µ = (µ, . . . , µ)T ∈ Rn and covariance
matrix Σ = (γ(i − j))1≤i,j≤n denoted by N (µ,Σ), where µ = E(Y0)
and γ is the autocovariance function of the stationary process (Yt).
The number ϕµ,Σ(x1, . . . , xn) reflects the probability that the random
vector (Y1, . . . , Yn) realizes close to (x1, . . . , xn). Precisely, we have for
ε ↓ 0

P{Yi ∈ [xi − ε, xi + ε], i = 1, . . . , n}

=

∫ x1+ε

x1−ε

. . .

∫ xn+ε

xn−ε

ϕµ,Σ(z1, . . . , zn) dzn . . . dz1 ≈ 2nεnϕµ,Σ(x1, . . . , xn).

The likelihood principle is the fact that a random variable tends to
attain its most likely value and thus, if the vector (Y1, . . . , Yn) actually
attained the value (y1, . . . , yn), the unknown underlying mean vector
µ and covariance matrix Σ ought to be such that ϕµ,Σ(y1, . . . , yn)
is maximized. The computation of these parameters leads to the
maximum likelihood estimator of µ and Σ.
We assume that the process (Yt) satisfies the stationarity condition
(2.3), in which case Yt =

∑
v≥0 αvεt−v, t ∈ Z, is invertible, where (εt)

is a white noise and the coefficients αv depend only on a1, . . . , ap and
b1, . . . , bq. Consequently we have for s ≥ 0

γ(s) = Cov(Y0, Ys) =
∑

v≥0

∑

w≥0

αvαw Cov(ε−v, εs−w) = σ2
∑

v≥0

αvαs+v.



2.3 Specification of ARMA-Models: The Box–Jenkins Program 97

The matrix
Σ′ := σ−2Σ,

therefore, depends only on a1, . . . , ap and b1, . . . , bq. We can write now
the density ϕµ,Σ(x1, . . . , xn) as a function of ϑ := (σ2, µ, a1, . . . , ap, b1, . . . , bq) ∈
Rp+q+2 and (x1, . . . , xn) ∈ Rn

p(x1, . . . , xn|ϑ) := ϕµ,Σ(x1, . . . , xn)

= (2πσ2)−n/2(detΣ′)−1/2 exp
(
− 1

2σ2
Q(ϑ|x1, . . . , xn)

)
,

where

Q(ϑ|x1, . . . , xn) := ((x1, . . . , xn) − µ)Σ′−1((x1, . . . , xn) − µ)T

is a quadratic function. The likelihood function pertaining to the
outcome (y1, . . . , yn) is

L(ϑ|y1, . . . , yn) := p(y1, . . . , yn|ϑ).

A parameter ϑ̂ maximizing the likelihood function

L(ϑ̂|y1, . . . , yn) = sup
ϑ
L(ϑ|y1, . . . , yn),

is then a maximum likelihood estimator of ϑ.
Due to the strict monotonicity of the logarithm, maximizing the like-
lihood function is in general equivalent to the maximization of the
loglikelihood function

l(ϑ|y1, . . . , yn) = logL(ϑ|y1, . . . , yn).

The maximum likelihood estimator ϑ̂ therefore satisfies

l(ϑ̂|y1, . . . , yn)

= sup
ϑ
l(ϑ|y1, . . . , yn)

= sup
ϑ

(
− n

2
log(2πσ2) − 1

2
log(detΣ′) − 1

2σ2
Q(ϑ|y1, . . . , yn)

)
.

The computation of a maximizer is a numerical and usually computer
intensive problem.
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Example 2.3.1. The AR(1)-process Yt = aYt−1 + εt with |a| < 1 has
by Example 2.2.4 the autocovariance function

γ(s) = σ2 as

1 − a2
, s ≥ 0,

and thus,

Σ′ =
1

1 − a2




1 a a2 . . . an−1

a 1 a an−2

... . . . ...
an−1 an−2 an−3 . . . 1


 .

The inverse matrix is

Σ′−1 =




1 −a 0 0 . . . 0
−a 1 + a2 −a 0 0
0 −a 1 + a2 −a 0
... . . . ...
0 . . . −a 1 + a2 −a
0 0 . . . 0 −a 1



.

Check that the determinant of Σ′−1 is det(Σ′−1) = 1−a2 = 1/ det(Σ′),
see Exercise 2.40. If (Yt) is a Gaussian process, then the likelihood
function of ϑ = (σ2, µ, a) is given by

L(ϑ|y1, . . . , yn) = (2πσ2)−n/2(1 − a2)1/2 exp
(
− 1

2σ2
Q(ϑ|y1, . . . , yn)

)
,

where

Q(ϑ|y1, . . . , yn)

= ((y1, . . . , yn) − µ)Σ′−1((y1, . . . , yn) − µ)T

= (y1 − µ)2 + (yn − µ)2 + (1 + a2)
n−1∑

i=2

(yi − µ)2 − 2a
n−1∑

i=1

(yi − µ)(yi+1 − µ).

Nonparametric Approach: Least Squares
If E(εt) = 0, then

Ŷt = a1Yt−1 + · · · + apYt−p + b1εt−1 + · · · + bqεt−q
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would obviously be a reasonable one-step forecast of the ARMA(p, q)-
process

Yt = a1Yt−1 + · · · + apYt−p + εt + b1εt−1 + · · · + bqεt−q,

based on Yt−1, . . . , Yt−p and εt−1, . . . , εt−q. The prediction error is given
by the residual

Yt − Ŷt = εt.

Suppose that ε̂t is an estimator of εt, t ≤ n, which depends on the
choice of constants a1, . . . , ap, b1, . . . , bq and satisfies the recursion

ε̂t = yt − a1yt−1 − · · · − apyt−p − b1ε̂t−1 − · · · − bqε̂t−q.

The function

S2(a1, . . . , ap, b1, . . . , bq)

=
n∑

t=−∞
ε̂2
t

=
n∑

t=−∞
(yt − a1yt−1 − · · · − apyt−p − b1ε̂t−1 − · · · − bqε̂t−q)

2

is the residual sum of squares and the least squares approach suggests
to estimate the underlying set of constants by minimizers a1, . . . , ap, b1, . . . , bq
of S2. Note that the residuals ε̂t and the constants are nested.
We have no observation yt available for t ≤ 0. But from the assump-
tion E(εt) = 0 and thus E(Yt) = 0, it is reasonable to backforecast yt

by zero and to put ε̂t := 0 for t ≤ 0, leading to

S2(a1, . . . , ap, b1, . . . , bq) =
n∑

t=1

ε̂2
t .

The estimated residuals ε̂t can then be computed from the recursion

ε̂1 = y1

ε̂2 = y2 − a1y1 − b1ε̂1

ε̂3 = y3 − a1y2 − a2y1 − b1ε̂2 − b2ε̂1

...

ε̂j = yj − a1yj−1 − · · · − apyj−p − b1ε̂j−1 − · · · − bqε̂j−q,
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where j now runs from max{p, q} to n.
The coefficients a1, . . . , ap of a pure AR(p)-process can be estimated
directly, using the Yule-Walker equations as described in (2.7).

Diagnostic Check
Suppose that the orders p and q as well as the constants a1, . . . , ap, b1, . . . , bq
have been chosen in order to model an ARMA(p, q)-process underly-
ing the data. The Portmanteau-test of Box and Pierce (1970) checks,
whether the estimated residuals ε̂t, t = 1, . . . , n, behave approximately
like realizations from a white noise process. To this end one considers
the pertaining empirical autocorrelation function

r̂ε(k) :=

∑n−k
j=1 (ε̂j − ε̄)(ε̂j+k − ε̄)
∑n

j=1(ε̂j − ε̄)2
, k = 1, . . . , n− 1,

where ε̄ = n−1
∑n

j=1 ε̂j, and checks, whether the values r̂ε(k) are suf-
ficiently close to zero. This decision is based on

Q(K) := n

K∑

k=1

r̂2
ε(k),

which follows asymptotically for n → ∞ a χ2-distribution with K −
p − q degrees of freedom if (Yt) is actually an ARMA(p, q)-process
(see e.g. Section 9.4 in Brockwell and Davis (1991)). The parame-
ter K must be chosen such that the sample size n − k in r̂ε(k) is
large enough to give a stable estimate of the autocorrelation function.
The ARMA(p, q)-model is rejected if the p-value 1 − χ2

K−p−q(Q(K))
is too small, since in this case the value Q(K) is unexpectedly large.
By χ2

K−p−q we denote the distribution function of the χ2-distribution
with K − p− q degrees of freedom. To accelerate the convergence to
the χ2

K−p−q distribution under the null hypothesis of an ARMA(p, q)-
process, one often replaces the Box–Pierce statistic Q(K) by the Box–
Ljung statistic (Ljung and Box (1978))

Q∗(K) := n
K∑

k=1

((
n+ 2

n− k

)1/2

r̂ε(k)

)2

= n(n+ 2)
K∑

k=1

1

n− k
r̂2
ε(k)

with weighted empirical autocorrelations.
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Forecasting
We want to determine weights c∗0, . . . , c

∗
n−1 ∈ R such that for h ∈ N

E



(
Yn+h −

n−1∑

u=0

c∗uYn−u

)2

 = min

c0,...,cn−1∈R
E



(
Yn+h −

n−1∑

u=0

cuYn−u

)2

 .

Then Ŷn+h :=
∑n−1

u=0 c
∗
uYn−u with minimum mean squared error is said

to be a best (linear) h-step forecast of Yn+h, based on Y1, . . . , Yn. The
following result provides a sufficient condition for the optimality of
weights.

Lemma 2.3.2. Let (Yt) be an arbitrary stochastic process with finite
second moments. If the weights c∗0, . . . , c

∗
n−1 have the property that

E

(
Yi

(
Yn+h −

n−1∑

u=0

c∗uYn−u

))
= 0, i = 1, . . . , n, (2.16)

then Ŷn+h :=
∑n−1

u=0 c
∗
uYn−u is a best h-step forecast of Yn+h.

Proof. Let Ỹn+h :=
∑n−1

u=0 cuYn−u be an arbitrary forecast, based on
Y1, . . . , Yn. Then we have

E((Yn+h − Ỹn+h)
2)

= E((Yn+h − Ŷn+h + Ŷn+h − Ỹn+h)
2)

= E((Yn+h − Ŷn+h)
2) + 2

n−1∑

u=0

(c∗u − cu) E(Yn−u(Yn+h − Ŷn+h))

+ E((Ŷn+h − Ỹn+h)
2)

= E((Yn+h − Ŷn+h)
2) + E((Ŷn+h − Ỹn+h)

2)

≥ E((Yn+h − Ŷn+h)
2).

Suppose that (Yt) is a stationary process with mean zero and auto-
correlation function ρ. The equations (2.16) are then of Yule-Walker
type

ρ(h+ s) =
n−1∑

u=0

c∗uρ(s− u), s = 0, 1, . . . , n− 1,
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or, in matrix language



ρ(h)
ρ(h+ 1)

...
ρ(h+ n− 1)


 = P n




c∗0
c∗1
...

c∗n−1


 (2.17)

with the matrix P n as defined in (2.8). If this matrix is invertible,
then 


c∗0
...

c∗n−1


 := P−1

n




ρ(h)
...

ρ(h+ n− 1)


 (2.18)

is the uniquely determined solution of (2.17).
If we put h = 1, then equation (2.18) implies that c∗n−1 equals the
partial autocorrelation coefficient α(n). In this case, α(n) is the coef-

ficient of Y1 in the best linear one-step forecast Ŷn+1 =
∑n−1

u=0 c
∗
uYn−u

of Yn+1.

Example 2.3.3. Consider the MA(1)-process Yt = εt + aεt−1 with
E(ε0) = 0. Its autocorrelation function is by Example 2.2.2 given by
ρ(0) = 1, ρ(1) = a/(1 + a2), ρ(u) = 0 for u ≥ 2. The matrix P n

equals therefore

P n =




1 a
1+a2 0 0 . . . 0

a
1+a2 1 a

1+a2 0 0
0 a

1+a2 1 a
1+a2 0

... . . . ...
0 . . . 1 a

1+a2

0 0 . . . a
1+a2 1




.

Check that the matrix P n = (Corr(Yi, Yj))1≤i,j≤n is positive definite,
xTP nx > 0 for any x ∈ Rn unless x = 0 (Exercise 2.40), and thus,
P n is invertible. The best forecast of Yn+1 is by (2.18), therefore,∑n−1

u=0 c
∗
uYn−u with




c∗0
...

c∗n−1


 = P−1

n




a
1+a2

0
...
0
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which is a/(1 + a2) times the first column of P −1
n . The best forecast

of Yn+h for h ≥ 2 is by (2.18) the constant 0. Note that Yn+h is for
h ≥ 2 uncorrelated with Y1, . . . , Yn and thus not really predictable by
Y1, . . . , Yn.

Theorem 2.3.4. Suppose that Yt =
∑p

u=1 auYt−u + εt, t ∈ Z, is
a stationary AR(p)-process, which satisfies the stationarity condition
(2.3) and has zero mean E(Y0) = 0. Let n ≥ p. The best one-step
forecast is

Ŷn+1 = a1Yn + a2Yn−1 + · · · + apYn+1−p

and the best two-step forecast is

Ŷn+2 = a1Ŷn+1 + a2Yn + · · · + apYn+2−p.

The best h-step forecast for arbitrary h ≥ 2 is recursively given by

Ŷn+h = a1Ŷn+h−1 + · · · + ah−1Ŷn+1 + ahYn + · · · + apYn+h−p.

Proof. Since (Yt) satisfies the stationarity condition (2.3), it is in-
vertible by Theorem 2.2.3 i.e., there exists an absolutely summable
causal filter (bu)u≥0 such that Yt =

∑
u≥0 buεt−u, t ∈ Z, almost surely.

This implies in particular E(Ytεt+h) =
∑

u≥0 bu E(εt−uεt+h) = 0 for
any h ≥ 1, cf. Theorem 2.1.5. Hence we obtain for i = 1, . . . , n

E((Yn+1 − Ŷn+1)Yi) = E(εn+1Yi) = 0

from which the assertion for h = 1 follows by Lemma 2.3.2. The case
of an arbitrary h ≥ 2 is now a consequence of the recursion

E((Yn+h − Ŷn+h)Yi)

= E




εn+h +

min(h−1,p)∑

u=1

auYn+h−u −
min(h−1,p)∑

u=1

auŶn+h−u


Yi




=

min(h−1,p)∑

u=1

au E
((
Yn+h−u − Ŷn+h−u

)
Yi

)
= 0, i = 1, . . . , n,

and Lemma 2.3.2.
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A repetition of the arguments in the preceding proof implies the fol-
lowing result, which shows that for an ARMA(p, q)-process the fore-
cast of Yn+h for h > q is controlled only by the AR-part of the process.

Theorem 2.3.5. Suppose that Yt =
∑p

u=1 auYt−u + εt +
∑q

v=1 bvεt−v,
t ∈ Z, is an ARMA(p, q)-process, which satisfies the stationarity con-
dition (2.3) and has zero mean, precisely E(ε0) = 0. Suppose that
n+ q − p ≥ 0. The best h-step forecast of Yn+h for h > q satisfies the
recursion

Ŷn+h =

p∑

u=1

auŶn+h−u.

Example 2.3.6. We illustrate the best forecast of the ARMA(1, 1)-
process

Yt = 0.4Yt−1 + εt − 0.6εt−1, t ∈ Z,

with E(Yt) = E(εt) = 0. First we need the optimal 1-step forecast Ŷi

for i = 1, . . . , n. These are defined by putting unknown values of Yt

with an index t ≤ 0 equal to their expected value, which is zero. We,
thus, obtain

Ŷ1 := 0, ε̂1 := Y1 − Ŷ1 = Y1,

Ŷ2 := 0.4Y1 + 0 − 0.6ε̂1

= −0.2Y1, ε̂2 := Y2 − Ŷ2 = Y2 + 0.2Y1,

Ŷ3 := 0.4Y2 + 0 − 0.6ε̂2

= 0.4Y2 − 0.6(Y2 + 0.2Y1)

= −0.2Y2 − 0.12Y1, ε̂3 := Y3 − Ŷ3,
...

...

until Ŷi and ε̂i are defined for i = 1, . . . , n. The actual forecast is then
given by

Ŷn+1 = 0.4Yn + 0 − 0.6ε̂n = 0.4Yn − 0.6(Yn − Ŷn),

Ŷn+2 = 0.4Ŷn+1 + 0 + 0,
...

Ŷn+h = 0.4Ŷn+h−1 = · · · = 0.4h−1Ŷn+1
h→∞−→ 0,
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where εt with index t ≥ n+ 1 is replaced by zero, since it is uncorre-
lated with Yi, i ≤ n.

In practice one replaces the usually unknown coefficients au, bv in the
above forecasts by their estimated values.

2.4 State-Space Models
In state-space models we have, in general, a nonobservable target
process (Xt) and an observable process (Yt). They are linked by the
assumption that (Yt) is a linear function of (Xt) with an added noise,
where the linear function may vary in time. The aim is the derivation
of best linear estimates of Xt, based on (Ys)s≤t.
Many models of time series such as ARMA(p, q)-processes can be
embedded in state-space models if we allow in the following sequences
of random vectors Xt ∈ Rk and Yt ∈ Rm.
A multivariate state-space model is now defined by the state equation

Xt+1 = AtXt + Btεt+1 ∈ Rk, (2.19)

describing the time-dependent behavior of the state Xt ∈ Rk, and the
observation equation

Yt = CtXt + ηt ∈ Rm. (2.20)

We assume that (At), (Bt) and (Ct) are sequences of known matrices,
(εt) and (ηt) are uncorrelated sequences of white noises with mean
vectors 0 and known covariance matrices Cov(εt) = E(εtε

T
t ) =: Qt,

Cov(ηt) = E(ηtη
T
t ) =: Rt.

We suppose further that X0 and εt, ηt, t ≥ 1, are uncorrelated, where
two random vectors W ∈ Rp and V ∈ Rq are said to be uncorrelated
if their components are i.e., if the matrix of their covariances vanishes

E((W − E(W )(V − E(V ))T ) = 0.

By E(W ) we denote the vector of the componentwise expectations of
W . We say that a time series (Yt) has a state-space representation if
it satisfies the representations (2.19) and (2.20).
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Example 2.4.1. Let (ηt) be a white noise in R and put

Yt := µt + ηt

with linear trend µt = a + bt. This simple model can be represented
as a state-space model as follows. Define the state vector Xt as

Xt :=

(
µt

1

)
,

and put

A :=

(
1 b
0 1

)

From the recursion µt+1 = µt + b we then obtain the state equation

Xt+1 =

(
µt+1

1

)
=

(
1 b
0 1

)(
µt

1

)
= AXt,

and with
C := (1, 0)

the observation equation

Yt = (1, 0)

(
µt

1

)
+ ηt = CXt + ηt.

Note that the state Xt is nonstochastic i.e., Bt = 0. This model is
moreover time-invariant, since the matrices A, B := Bt and C do
not depend on t.

Example 2.4.2. An AR(p)-process

Yt = a1Yt−1 + · · · + apYt−p + εt

with a white noise (εt) has a state-space representation with state
vector

Xt = (Yt, Yt−1, . . . , Yt−p+1)
T .

If we define the p× p-matrix A by

A :=




a1 a2 . . . ap−1 ap

1 0 . . . 0 0
0 1 0 0
... . . . ...

...
0 0 . . . 1 0
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and the p× 1-matrices B, CT by

B := (1, 0, . . . , 0)T =: CT ,

then we have the state equation

Xt+1 = AXt + Bεt+1

and the observation equation

Yt = CXt.

Example 2.4.3. For the MA(q)-process

Yt = εt + b1εt−1 + · · · + bqεt−q

we define the non observable state

Xt := (εt, εt−1, . . . , εt−q)
T ∈ Rq+1.

With the (q + 1) × (q + 1)-matrix

A :=




0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 0 0
... . . . ...

...
0 0 0 . . . 1 0



,

the (q + 1) × 1-matrix

B := (1, 0, . . . , 0)T

and the 1 × (q + 1)-matrix

C := (1, b1, . . . , bq)

we obtain the state equation

Xt+1 = AXt + Bεt+1

and the observation equation

Yt = CXt.
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Example 2.4.4. Combining the above results for AR(p) and MA(q)-
processes, we obtain a state-space representation of ARMA(p, q)-processes

Yt = a1Yt−1 + · · · + apYt−p + εt + b1εt−1 + · · · + bqεt−q.

In this case the state vector can be chosen as

Xt := (Yt, Yt−1, . . . , Yt−p+1, εt, εt−1, . . . , εt−q+1)
T ∈ Rp+q.

We define the (p+ q) × (p+ q)-matrix

A :=




a1 a2 . . . ap−1 ap b1 b2 . . . bq−1 bq
1 0 . . . 0 0 0 . . . . . . . . . 0

0 1 0 . . . 0
...

...
... . . . ...

...
...

0 . . . 0 1 0 0 . . . . . . . . . 0
0 . . . . . . . . . 0 0 . . . . . . . . . 0
...

... 1 0 . . . . . . 0
...

... 0 1 0 . . . 0
...

...
... . . . ...

0 . . . . . . . . . 0 0 . . . 0 1 0




,

the (p+ q) × 1-matrix

B := (1, 0, . . . , 0, 1, 0, . . . , 0)T

with the entry 1 at the first and (p+1)-th position and the 1×(p+q)-
matrix

C := (1, 0, . . . , 0).

Then we have the state equation

Xt+1 = AXt + Bεt+1

and the observation equation

Yt = CXt.
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The Kalman-Filter
The key problem in the state-space model (2.19), (2.20) is the estima-
tion of the nonobservable state Xt. It is possible to derive an estimate
of Xt recursively from an estimate of Xt−1 together with the last ob-
servation Yt, known as the Kalman recursions (Kalman 1960). We
obtain in this way a unified prediction technique for each time series
model that has a state-space representation.
We want to compute the best linear prediction

X̂ t := D1Y1 + · · · + DtYt (2.21)

of Xt, based on Y1, . . . ,Yt i.e., the k × m-matrices D1, . . . ,Dt are
such that the mean squared error is minimized

E((Xt − X̂ t)
T (Xt − X̂ t))

= E((Xt −
t∑

j=1

DjYj)
T (Xt −

t∑

j=1

DjYj))

= min
k×m−matrices D′

1,...,D
′
t

E((Xt −
t∑

j=1

D′
jYj)

T (Xt −
t∑

j=1

D′
jYj)). (2.22)

By repeating the arguments in the proof of Lemma 2.3.2 we will prove
the following result. It states that X̂ t is a best linear prediction of
Xt based on Y1, . . . ,Yt if each component of the vector Xt − X̂ t is
orthogonal to each component of the vectors Ys, 1 ≤ s ≤ t, with
respect to the inner product E(XY ) of two random variable X and
Y .

Lemma 2.4.5. If the estimate X̂ t defined in (2.20) satisfies

E((Xt − X̂ t)Y
T

s ) = 0, 1 ≤ s ≤ t, (2.23)

then it minimizes the mean squared error (2.22).

Note that E((Xt − X̂ t)Y
T

s ) is a k×m-matrix, which is generated by

multiplying each component of Xt − X̂ t ∈ Rk with each component
of Ys ∈ Rm.
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Proof. Let X ′
t =

∑t
j=1 D′

jYj ∈ Rk be an arbitrary linear combination
of Y1, . . . ,Yt. Then we have

E((Xt − X ′
t)

T (Xt − X ′
t))

= E
((

Xt − X̂ t +
t∑

j=1

(Dj − D′
j)Yj

)T(
Xt − X̂ t +

t∑

j=1

(Dj − D′
j)Yj

))

= E((Xt − X̂ t)
T (Xt − X̂ t)) + 2

t∑

j=1

E((Xt − X̂ t)
T (Dj − D′

j)Yj)

+ E
(( t∑

j=1

(Dj − D′
j)Yj

)T
t∑

j=1

(Dj − D′
j)Yj

)

≥ E((Xt − X̂ t)
T (Xt − X̂ t)),

since in the second-to-last line the final term is nonnegative and the
second one vanishes by the property (2.23).

Let now X̂ t−1 be the best linear prediction of Xt−1 based on Y1, . . . ,Yt−1.
Then

X̃ t := At−1X̂ t−1 (2.24)

is the best linear prediction of Xt based on Y1, . . . ,Yt−1, which is
easy to see. We simply replaced εt in the state equation by its
expectation 0. Note that εt and Ys are uncorrelated if s < t i.e.,
E((Xt − X̃ t)Y

T
s ) = 0 for 1 ≤ s ≤ t− 1.

From this we obtain that

Ỹ t := CtX̃ t

is the best linear prediction of Yt based on Y1, . . . ,Yt−1, since E((Yt−
Ỹ t)Y

T
s ) = E((Ct(Xt − X̃ t) + ηt)Y

T
s ) = 0, 1 ≤ s ≤ t − 1; note that

ηt and Ys are uncorrelated if s < t.

Define now by

∆t := E((Xt−X̂ t)(Xt−X̂ t)
T ) and ∆̃t := E((Xt−X̃ t)(Xt−X̃ t)

T ).
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the covariance matrices of the approximation errors. Then we have

∆̃t = E((At−1(Xt−1 − X̂ t−1) + Bt−1εt)(At−1(Xt−1 − X̂ t−1) + Bt−1εt)
T )

= E(At−1(Xt−1 − X̂ t−1)(At−1(Xt−1 − X̂ t−1))
T )

+ E((Bt−1εt)(Bt−1εt)
T )

= At−1∆t−1A
T
t−1 + Bt−1QtB

T
t−1,

since εt and Xt−1 − X̂ t−1 are obviously uncorrelated. In complete
analogy one shows that

E((Yt − Ỹ t)(Yt − Ỹ t)
T ) = Ct∆̃tC

T
t + Rt.

Suppose that we have observed Y1, . . . ,Yt−1, and that we have pre-
dicted Xt by X̃ t = At−1X̂ t−1. Assume that we now also observe Yt.
How can we use this additional information to improve the prediction
X̃ t of Xt? To this end we add a matrix Kt such that we obtain the
best prediction X̂ t based on Y1, . . .Yt:

X̃ t + Kt(Yt − Ỹ t) = X̂ t (2.25)

i.e., we have to choose the matrix Kt according to Lemma 2.4.5 such
that Xt − X̂ t and Ys are uncorrelated for s = 1, . . . , t. In this case,
the matrix Kt is called the Kalman gain.

Lemma 2.4.6. The matrix Kt in (2.24) is a solution of the equation

Kt(Ct∆̃tC
T
t + Rt) = ∆̃tC

T
t . (2.26)

Proof. The matrix Kt has to be chosen such that Xt−X̂ t and Ys are
uncorrelated for s = 1, . . . , t, i.e.,

0 = E((Xt − X̂ t)Y
T

s ) = E((Xt − X̃ t − Kt(Yt − Ỹ t))Y
T

s ), s ≤ t.

Note that an arbitrary k ×m-matrix Kt satisfies

E
(
(Xt − X̃ t − Kt(Yt − Ỹ t))Y

T
s

)

= E((Xt − X̃ t)Y
T

s ) − Kt E((Yt − Ỹ t)Y
T

s ) = 0, s ≤ t− 1.
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In order to fulfill the above condition, the matrix Kt needs to satisfy
only

0 = E((Xt − X̃ t)Y
T

t ) − Kt E((Yt − Ỹ t)Y
T

t )

= E((Xt − X̃ t)(Yt − Ỹ t)
T ) − Kt E((Yt − Ỹ t)(Yt − Ỹ t)

T )

= E((Xt − X̃ t)(Ct(Xt − X̃ t) + ηt)
T ) − Kt E((Yt − Ỹ t)(Yt − Ỹ t)

T )

= E((Xt − X̃ t)(Xt − X̃ t)
T )CT

t − Kt E((Yt − Ỹ t)(Yt − Ỹ t)
T )

= ∆̃tC
T
t − Kt(Ct∆̃tC

T
t + Rt).

But this is the assertion of Lemma 2.4.6. Note that Ỹ t is a linear
combination of Y1, . . . ,Yt−1 and that ηt and Xt − X̃ t as well as ηt

and Ys are uncorrelated for s ≤ t− 1.

If the matrix Ct∆̃tC
T
t + Rt is invertible, then

Kt := ∆̃tC
T
t (Ct∆̃tC

T
t + Rt)

−1

is the uniquely determined Kalman gain. We have, moreover, for a
Kalman gain

∆t = E((Xt − X̂ t)(Xt − X̂ t)
T )

= E
(
(Xt − X̃ t − Kt(Yt − Ỹ t))(Xt − X̃ t − Kt(Yt − Ỹ t))

T
)

= ∆̃t + Kt E((Yt − Ỹ t)(Yt − Ỹ t)
T )KT

t

− E((Xt − X̃ t)(Yt − Ỹ t)
T )KT

t − Kt E((Yt − Ỹ t)(Xt − X̃ t)
T )

= ∆̃t + Kt(Ct∆̃tC
T
t + Rt)K

T
t

− ∆̃tC
T
t KT

t − KtCt∆̃t

= ∆̃t − KtCt∆̃t

by (2.26) and the arguments in the proof of Lemma 2.4.6.
The recursion in the discrete Kalman filter is done in two steps: From
X̂ t−1 and ∆t−1 one computes in the prediction step first

X̃ t = At−1X̂ t−1,

Ỹ t = CtX̃ t,

∆̃t = At−1∆t−1A
T
t−1 + Bt−1QtB

T
t−1. (2.27)
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In the updating step one then computes Kt and the updated values
X̂ t, ∆t

Kt = ∆̃tC
T
t (Ct∆̃tC

T
t + Rt)

−1,

X̂ t = X̃ t + Kt(Yt − Ỹ t),

∆t = ∆̃t − KtCt∆̃t. (2.28)

An obvious problem is the choice of the initial values X̃1 and ∆̃1. One
frequently puts X̃1 = 0 and ∆̃1 as the diagonal matrix with constant
entries σ2 > 0. The number σ2 reflects the degree of uncertainty about
the underlying model. Simulations as well as theoretical results show,
however, that the estimates X̂ t are often not affected by the initial
values X̃1 and ∆̃1 if t is large, see for instance Example 2.4.7 below.
If in addition we require that the state-space model (2.19), (2.20) is
completely determined by some parametrization ϑ of the distribution
of (Yt) and (Xt), then we can estimate the matrices of the Kalman
filter in (2.27) and (2.28) under suitable conditions by a maximum
likelihood estimate of ϑ; see e.g. Section 8.5 of Brockwell and Davis
(2002) or Section 4.5 in Janacek and Swift (1993).

By iterating the 1-step prediction X̃ t = At−1X̂ t−1 of X̂ t in (2.24) h
times, we obtain the h-step prediction of the Kalman filter

X̃ t+h := At+h−1X̃ t+h−1, h ≥ 1,

with the initial value X̃ t+0 := X̂ t. The pertaining h-step prediction
of Yt+h is then

Ỹ t+h := Ct+hX̃ t+h, h ≥ 1.

Example 2.4.7. Let (ηt) be a white noise in R with E(ηt) = 0,
E(η2

t ) = σ2 > 0 and put for some µ ∈ R

Yt := µ+ ηt, t ∈ Z.

This process can be represented as a state-space model by putting
Xt := µ, with state equation Xt+1 = Xt and observation equation
Yt = Xt + ηt i.e., At = 1 = Ct and Bt = 0. The prediction step (2.27)
of the Kalman filter is now given by

X̃t = X̂t−1, Ỹt = X̃t, ∆̃t = ∆t−1.
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Note that all these values are in R. The h-step predictions X̃t+h, Ỹt+h

are, therefore, given by X̃t. The update step (2.28) of the Kalman
filter is

Kt =
∆t−1

∆t−1 + σ2

X̂t = X̂t−1 +Kt(Yt − X̂t−1)

∆t = ∆t−1 −Kt∆t−1 = ∆t−1
σ2

∆t−1 + σ2
.

Note that ∆t = E((Xt − X̂t)
2) ≥ 0 and thus,

0 ≤ ∆t = ∆t−1
σ2

∆t−1 + σ2
≤ ∆t−1

is a decreasing and bounded sequence. Its limit ∆ := limt→∞ ∆t

consequently exists and satisfies

∆ = ∆
σ2

∆ + σ2

i.e., ∆ = 0. This means that the mean squared error E((Xt − X̂t)
2) =

E((µ−X̂t)
2) vanishes asymptotically, no matter how the initial values

X̃1 and ∆̃1 are chosen. Further we have limt→∞Kt = 0, which means
that additional observations Yt do not contribute to X̂t if t is large.
Finally, we obtain for the mean squared error of the h-step prediction
Ỹt+h of Yt+h

E((Yt+h − Ỹt+h)
2) = E((µ+ ηt+h − X̂t)

2)

= E((µ− X̂t)
2) + E(η2

t+h)
t→∞−→ σ2.

Example 2.4.8. The following figure displays the Airline Data from
Example 1.3.1 together with 12-step forecasts based on the Kalman
filter. The original data yt, t = 1, . . . , 144 were log-transformed xt =
log(yt) to stabilize the variance; first order differences ∆xt = xt−xt−1

were used to eliminate the trend and, finally, zt = ∆xt − ∆xt−12

were computed to remove the seasonal component of 12 months. The
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Kalman filter was applied to forecast zt, t = 145, . . . , 156, and the
results were transformed in the reverse order of the preceding steps
to predict the initial values yt, t = 145, . . . , 156.

Plot 2.4.1a: Airline Data and predicted values using the Kalman filter.

1 /* airline_kalman .sas */

2 TITLE1 ’Original and Forecasted Data ’;

3 TITLE2 ’Airline Data ’;

4

5 /* Read in the data and compute log -transformation */

6 DATA data1;

7 INFILE ’c:\data\airline.txt ’;

8 INPUT y;

9 yl=LOG(y);

10 t=_N_;

11

12 /* Compute trend and seasonally adjusted data set */

13 PROC STATESPACE DATA=data1 OUT=data2 LEAD =12;

14 VAR yl(1,12); ID t;

15

16 /* Compute forecasts by inverting the log -transformation */

17 DATA data3;

18 SET data2;

19 yhat=EXP(FOR1);

20
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21 /* Meger data sets */

22 DATA data4(KEEP=t y yhat);

23 MERGE data1 data3;

24 BY t;

25

26 /* Graphical options */

27 LEGEND1 LABEL=(’’) VALUE=(’original ’ ’forecast ’);

28 SYMBOL1 C=BLACK V=DOT H=0.7 I=JOIN L=1;

29 SYMBOL2 C=BLACK V=CIRCLE H=1.5 I=JOIN L=1;

30 AXIS1 LABEL =( ANGLE =90 ’Passengers ’);

31 AXIS2 LABEL=(’January 1949 to December 1961’);

32

33 /* Plot data and forecasts */

34 PROC GPLOT DATA=data4;

35 PLOT y*t=1 yhat*t=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=

↪→LEGEND1;

36 RUN; QUIT;

Program 2.4.1: Applying the Kalman filter.

In the first data step the Airline Data are read
into data1. Their logarithm is computed and
stored in the variable yl. The variable t con-
tains the observation number.
The statement VAR yl(1,12) of the PROC

STATESPACE procedure tells SAS to use first or-
der differences of the initial data to remove their
trend and to adjust them to a seasonal compo-
nent of 12 months. The data are identified by

the time index set to t. The results are stored in
the data set data2 with forecasts of 12 months
after the end of the input data. This is invoked
by LEAD=12.
data3 contains the exponentially trans-
formed forecasts, thereby inverting the log-
transformation in the first data step.
Finally, the two data sets are merged and dis-
played in one plot.

Exercises
2.1. Suppose that the complex random variables Y and Z are square
integrable. Show that

Cov(aY + b, Z) = aCov(Y, Z), a, b ∈ C.

2.2. Give an example of a stochastic process (Yt) such that for arbi-
trary t1, t2 ∈ Z and k 6= 0

E(Yt1) 6= E(Yt1+k) but Cov(Yt1, Yt2) = Cov(Yt1+k, Yt2+k).

2.3. (i) Let (Xt), (Yt) be stationary processes such that Cov(Xt, Ys) =
0 for t, s ∈ Z. Show that for arbitrary a, b ∈ C the linear combina-
tions (aXt + bYt) yield a stationary process.
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(ii) Suppose that the decomposition Zt = Xt + Yt, t ∈ Z holds. Show
that stationarity of (Zt) does not necessarily imply stationarity of
(Xt).

2.4. (i) Show that the process Yt = Xeiat, a ∈ R, is stationary, where
X is a complex valued random variable with mean zero and finite
variance.

(ii) Show that the random variable Y = beiU has mean zero, where U
is a uniformly distributed random variable on (0, 2π) and b ∈ C.

2.5. Let Z1, Z2 be independent and normal N(µi, σ
2
i ), i = 1, 2, distrib-

uted random variables and choose λ ∈ R. For which means µ1, µ2 ∈ R

and variances σ2
1, σ

2
2 > 0 is the cosinoid process

Yt = Z1 cos(2πλt) + Z2 sin(2πλt), t ∈ Z

stationary?

2.6. Show that the autocovariance function γ : Z → C of a complex-
valued stationary process (Yt)t∈Z, which is defined by

γ(h) = E(Yt+hȲt) − E(Yt+h) E(Ȳt), h ∈ Z,

has the following properties: γ(0) ≥ 0, |γ(h)| ≤ γ(0), γ(h) = γ(−h),
i.e., γ is a Hermitian function, and

∑
1≤r,s≤n zrγ(r − s)z̄s ≥ 0 for

z1, . . . , zn ∈ C, n ∈ N, i.e., γ is a positive semidefinite function.

2.7. Suppose that Yt, t = 1, . . . , n, is a stationary process with mean
µ. Then µ̂n := n−1

∑n
t=1 Yt is an unbiased estimator of µ. Express the

mean square error E(µ̂n −µ)2 in terms of the autocovariance function
γ and show that E(µ̂n − µ)2 → 0 if γ(n) → 0, n→ ∞.

2.8. Suppose that (Yt)t∈Z is a stationary process and denote by

c(k) :=

{
1
n

∑n−|k|
t=1 (Yt − Ȳ )(Yt+|k| − Ȳ ), |k| = 0, . . . , n− 1,

0, |k| ≥ n.

the empirical autocovariance function at lag k, k ∈ Z.
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(i) Show that c(k) is a biased estimator of γ(k) (even if the factor
n−1 is replaced by (n− k)−1) i.e., E(c(k)) 6= γ(k).

(ii) Show that the k-dimensional empirical covariance matrix

Ck :=




c(0) c(1) . . . c(k − 1)
c(1) c(0) c(k − 2)

... . . . ...
c(k − 1) c(k − 2) . . . c(0)




is positive semidefinite. (If the factor n−1 in the definition of c(j)
is replaced by (n − j)−1, j = 1, . . . , k, the resulting covariance
matrix may not be positive semidefinite.) Hint: Consider k ≥ n
and write Ck = n−1AAT with a suitable k × 2k-matrix A.
Show further that Cm is positive semidefinite if Ck is positive
semidefinite for k > m.

(iii) If c(0) > 0, then Ck is nonsingular, i.e., Ck is positive definite.

2.9. Suppose that (Yt) is a stationary process with autocovariance
function γY . Express the autocovariance function of the difference
filter of first order ∆Yt = Yt − Yt−1 in terms of γY . Find it when
γY (k) = λ|k|.

2.10. Let (Yt)t∈Z be a stationary process with mean zero. If its au-
tocovariance function satisfies γ(τ) = 0 for some τ > 0, then γ is
periodic with length τ , i.e., γ(t+ τ) = γ(t), t ∈ Z.

2.11. Let (Yt) be a stochastic process such that for t ∈ Z

P{Yt = 1} = pt = 1 − P{Yt = −1}, 0 < pt < 1.

Suppose in addition that (Yt) is a Markov process, i.e., for any t ∈ Z,
k ≥ 1

P (Yt = y0|Yt−1 = y1, . . . , Yt−k = yk) = P (Yt = y0|Yt−1 = y1).

(i) Is (Yt)t∈N a stationary process?

(ii) Compute the autocovariance function in case P (Yt = 1|Yt−1 =
1) = λ and pt = 1/2.
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2.12. Let (εt)t be a white noise process with independent εt ∼ N(0, 1)
and define

ε̃t =

{
εt, if t is even,

(ε2
t−1 − 1)/

√
2, if t is odd.

Show that (ε̃t)t is a white noise process with E(ε̃t) = 0 and Var(ε̃t) =
1, where the ε̃t are neither independent nor identically distributed.
Plot the path of (εt)t and (ε̃t)t for t = 1, . . . , 100 and compare!

2.13. Let (εt)t∈Z be a white noise. The process Yt =
∑t

s=1 εs is said
to be a random walk. Plot the path of a random walk with normal
N(µ, σ2) distributed εt for each of the cases µ < 0, µ = 0 and µ > 0.

2.14. Let (au) be absolutely summable filters and let (Zt) be a sto-
chastic process with supt∈Z E(Z2

t ) <∞. Put for t ∈ Z

Xt =
∑

u

auZt−u, Yt =
∑

v

bvZt−v.

Then we have

E(XtYt) =
∑

u

∑

v

aubv E(Zt−uZt−v).

Hint: Use the general inequality |xy| ≤ (x2 + y2)/2.

2.15. Let Yt = aYt−1 + εt, t ∈ Z be an AR(1)-process with |a| > 1.
Compute the autocorrelation function of this process.

2.16. Compute the orders p and the coefficients au of the process Yt =∑p
u=0 auεt−u with Var(ε0) = 1 and autocovariance function γ(1) =

2, γ(2) = 1, γ(3) = −1 and γ(t) = 0 for t ≥ 4. Is this process
invertible?

2.17. The autocorrelation function ρ of an arbitrary MA(q)-process
satisfies

−1

2
≤

q∑

v=1

ρ(v) ≤ 1

2
q.

Give examples of MA(q)-processes, where the lower bound and the
upper bound are attained, i.e., these bounds are sharp.



120 Chapter 2. Models of Time Series

2.18. Let (Yt)t∈Z be a stationary stochastic process with E(Yt) = 0,
t ∈ Z, and

ρ(t) =





1 if t = 0

ρ(1) if t = 1

0 if t > 1,

where |ρ(1)| < 1/2. Then there exists a ∈ (−1, 1) and a white noise
(εt)t∈Z such that

Yt = εt + aεt−1.

Hint: Example 2.2.2.

2.19. Find two MA(1)-processes with the same autocovariance func-
tions.

2.20. Suppose that Yt = εt + aεt−1 is a noninvertible MA(1)-process,
where |a| > 1. Define the new process

ε̃t =
∞∑

j=0

(−a)−jYt−j

and show that (ε̃t) is a white noise. Show that Var(ε̃t) = a2 Var(εt)
and (Yt) has the invertible representation

Yt = ε̃t + a−1ε̃t−1.

2.21. Plot the autocorrelation functions of MA(p)-processes for dif-
ferent values of p.

2.22. Generate and plot AR(3)-processes (Yt), t = 1, . . . , 500 where
the roots of the characteristic polynomial have the following proper-
ties:

(i) all roots are outside the unit disk,

(ii) all roots are inside the unit disk,

(iii) all roots are on the unit circle,

(iv) two roots are outside, one root inside the unit disk,
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(v) one root is outside, one root is inside the unit disk and one root
is on the unit circle,

(vi) all roots are outside the unit disk but close to the unit circle.

2.23. Show that the AR(2)-process Yt = a1Yt−1 + a2Yt−2 + εt for a1 =
1/3 and a2 = 2/9 has the autocorrelation function

ρ(k) =
16

21

(2

3

)|k|
+

5

21

(
− 1

3

)|k|
, k ∈ Z

and for a1 = a2 = 1/12 the autocorrelation function

ρ(k) =
45

77

(1

3

)|k|
+

32

77

(
− 1

4

)|k|
, k ∈ Z.

2.24. Let (εt) be a white noise with E(ε0) = µ,Var(ε0) = σ2 and put

Yt = εt − Yt−1, t ∈ N, Y0 = 0.

Show that

Corr(Ys, Yt) = (−1)s+t min{s, t}/
√
st.

2.25. An AR(2)-process Yt = a1Yt−1 +a2Yt−2 +εt satisfies the station-
arity condition (2.3), if the pair (a1, a2) is in the triangle

∆ :=
{

(α, β) ∈ R2 : −1 < β < 1, α + β < 1 and β − α < 1
}
.

Hint: Use the fact that necessarily ρ(1) ∈ (−1, 1).

2.26. (i) Let (Yt) denote the unique stationary solution of the autore-
gressive equations

Yt = aYt−1 + εt, t ∈ Z,

with |a| > 1. Then (Yt) is given by the expression Yt = −∑∞
j=1 a

−jεt+j

(see the proof of Lemma 2.1.10). Define the new process

ε̃t = Yt −
1

a
Yt−1,
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and show that (ε̃t) is a white noise with Var(ε̃t) = Var(εt)/a
2. These

calculations show that (Yt) is the (unique stationary) solution of the
causal AR-equations

Yt =
1

a
Yt−1 + ε̃t, t ∈ Z.

Thus, every AR(1)-process with |a| > 1 can be represented as an
AR(1)-process with |a| < 1 and a new white noise.

(ii) Show that for |a| = 1 the above autoregressive equations have no
stationary solutions. A stationary solution exists if the white noise
process is degenerated, i.e., E(ε2

t ) = 0.

2.27. (i) Consider the process

Ỹt :=

{
ε1 for t = 1

aYt−1 + εt for t > 1,

i.e., Ỹt, t ≥ 1, equals the AR(1)-process Yt = aYt−1 + εt, conditional
on Y0 = 0. Compute E(Ỹt),Var(Ỹt) and Cov(Yt, Yt+s). Is there some-
thing like asymptotic stationarity for t→ ∞?

(ii) Choose a ∈ (−1, 1), a 6= 0, and compute the correlation matrix
of Y1, . . . , Y10.

2.28. Use the IML function ARMASIM to simulate the stationary AR(2)-
process

Yt = −0.3Yt−1 + 0.3Yt−2 + εt.

Estimate the parameters a1 = −0.3 and a2 = 0.3 by means of the
Yule–Walker equations using the SAS procedure PROC ARIMA.

2.29. Show that the value at lag 2 of the partial autocorrelation func-
tion of the MA(1)-process

Yt = εt + aεt−1, t ∈ Z

is

α(2) = − a2

1 + a2 + a4
.
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2.30. (Unemployed1 Data) Plot the empirical autocorrelations and
partial autocorrelations of the trend and seasonally adjusted Unem-
ployed1 Data from the building trade, introduced in Example 1.1.1.
Apply the Box–Jenkins program. Is a fit of a pure MA(q)- or AR(p)-
process reasonable?

2.31. Plot the autocorrelation functions of ARMA(p, q)-processes for
different values of p, q using the IML function ARMACOV. Plot also their
empirical counterparts.

2.32. Compute the autocovariance function of an ARMA(1, 2)-process.

2.33. Derive the least squares normal equations for an AR(p)-process
and compare them with the Yule–Walker equations.

2.34. Show that the density of the t-distribution with m degrees of
freedom converges to the density of the standard normal distribution
as m tends to infinity. Hint: Apply the dominated convergence theo-
rem (Lebesgue).

2.35. Let (Yt)t be a stationary and causal ARCH(1)-process with
|a1| < 1.

(i) Show that Y 2
t = a0

∑∞
j=0 a

j
1Z

2
t Z

2
t−1 · · · · · Z2

t−j with probability
one.

(ii) Show that E(Y 2
t ) = a0/(1 − a1).

(iii) Evaluate E(Y 4
t ) and deduce that E(Z4

1)a
2
1 < 1 is a sufficient

condition for E(Y 4
t ) <∞.

Hint: Theorem 2.1.5.

2.36. Determine the joint density of Yp+1, . . . , Yn for an ARCH(p)-
process Yt with normal distributed Zt given that Y1 = y1, . . . , Yp =
yp. Hint: Recall that the joint density fX,Y of a random vector
(X, Y ) can be written in the form fX,Y (x, y) = fY |X(y|x)fX(x), where
fY |X(y|x) := fX,Y (x, y)/fX(x) if fX(x) > 0, and fY |X(y|x) := fY (y),
else, is the (conditional) density of Y given X = x and fX , fY is the
(marginal) density of X, Y .
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2.37. Generate an ARCH(1)-process (Yt)t with a0 = 1 and a1 = 0.5.
Plot (Yt)t as well as (Y 2

t )t and its partial autocorrelation function.
What is the value of the partial autocorrelation coefficient at lag 1
and lag 2? Use PROC ARIMA to estimate the parameter of the AR(1)-
process (Y 2

t )t and apply the Box–Ljung test.

2.38. (Hong Kong Data) Fit an GARCH(p, q)-model to the daily
Hang Seng closing index of Hong Kong stock prices from July 16, 1981,
to September 31, 1983. Consider in particular the cases p = q = 2
and p = 3, q = 2.

2.39. (Zurich Data) The daily value of the Zurich stock index was
recorded between January 1st, 1988 and December 31st, 1988. Use
a difference filter of first order to remove a possible trend. Plot the
(trend-adjusted) data, their squares, the pertaining partial autocor-
relation function and parameter estimates. Can the squared process
be considered as an AR(1)-process?

2.40. (i) Show that the matrix Σ′−1 in Example 2.3.1 has the deter-
minant 1 − a2.

(ii) Show that the matrix Pn in Example 2.3.3 has the determinant
(1 + a2 + a4 + · · · + a2n)/(1 + a2)n.

2.41. (Car Data) Apply the Box–Jenkins program to the Car Data.

2.42. Consider the two state-space models

Xt+1 = AtXt + Btεt+1

Yt = CtXt + ηt

and

X̃t+1 = ÃtX̃t + B̃tε̃t+1

Ỹt = C̃tX̃t + η̃t,

where (εT
t ,η

T
t , ε̃

T
t , η̃

T
t )T is a white noise. Derive a state-space repre-

sentation for (Y T
t , Ỹ

T
t )T .
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2.43. Find the state-space representation of an ARIMA(p, d, q)-process

(Yt)t. Hint: Yt = ∆dYt −
∑d

j=1(−1)j
(
d
d

)
Yt−j and consider the state

vector Zt := (Xt,Yt−1)
T , where Xt ∈ Rp+q is the state vector of the

ARMA(p, q)-process ∆dYt and Yt−1 := (Yt−d, . . . , Yt−1)
T .

2.44. Assume that the matrices A and B in the state-space model
(2.19) are independent of t and that all eigenvalues of A are in the
interior of the unit circle {z ∈ C : |z| ≤ 1}. Show that the unique
stationary solution of equation (2.19) is given by the infinite series
Xt =

∑∞
j=0 AjBεt−j+1. Hint: The condition on the eigenvalues is

equivalent to det(Ir − Az) 6= 0 for |z| ≤ 1. Show that there exists
some ε > 0 such that (Ir −Az)−1 has the power series representation∑∞

j=0 Ajzj in the region |z| < 1 + ε.

2.45. Apply PROC STATESPACE to the simulated data of the AR(2)-
process in Exercise 2.26.

2.46. (Gas Data) Apply PROC STATESPACE to the gas data. Can
they be stationary? Compute the one-step predictors and plot them
together with the actual data.
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Chapter

3The Frequency Domain
Approach of a Time
Series

The preceding sections focussed on the analysis of a time series in the
time domain, mainly by modelling and fitting an ARMA(p, q)-process
to stationary sequences of observations. Another approach towards
the modelling and analysis of time series is via the frequency domain:
A series is often the sum of a whole variety of cyclic components, from
which we had already added to our model (1.2) a long term cyclic one
or a short term seasonal one. In the following we show that a time
series can be completely decomposed into cyclic components. Such
cyclic components can be described by their periods and frequencies.
The period is the interval of time required for one cycle to complete.
The frequency of a cycle is its number of occurrences during a fixed
time unit; in electronic media, for example, frequencies are commonly
measured in hertz, which is the number of cycles per second, abbre-
viated by Hz. The analysis of a time series in the frequency domain
aims at the detection of such cycles and the computation of their
frequencies.

Note that in this chapter the results are formulated for any data
y1, . . . , yn, which need for mathematical reasons not to be generated
by a stationary process. Nevertheless it is reasonable to apply the
results only to realizations of stationary processes, since the empiri-
cal autocovariance function occurring below has no interpretation for
non-stationary processes, see Exercise 1.18.
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3.1 Least Squares Approach with Known
Frequencies

A function f : R −→ R is said to be periodic with period P > 0
if f(t + P ) = f(t) for any t ∈ R. A smallest period is called a
fundamental one. The reciprocal value λ = 1/P of a fundamental
period is the fundamental frequency. An arbitrary (time) interval of
length L consequently shows Lλ cycles of a periodic function f with
fundamental frequency λ. Popular examples of periodic functions
are sine and cosine, which both have the fundamental period P =
2π. Their fundamental frequency, therefore, is λ = 1/(2π). The
predominant family of periodic functions within time series analysis
are the harmonic components

m(t) := A cos(2πλt) +B sin(2πλt), A,B ∈ R, λ > 0,

which have period 1/λ and frequency λ. A linear combination of
harmonic components

g(t) := µ+
r∑

k=1

(
Ak cos(2πλkt) +Bk sin(2πλkt)

)
, µ ∈ R,

will be named a harmonic wave of length r.

Example 3.1.1. (Star Data). To analyze physical properties of a pul-
sating star, the intensity of light emitted by this pulsar was recorded
at midnight during 600 consecutive nights. The data are taken from
Newton (1988). It turns out that a harmonic wave of length two fits
the data quite well. The following figure displays the first 160 data
yt and the sum of two harmonic components with period 24 and 29,
respectively, plus a constant term µ = 17.07 fitted to these data, i.e.,

ỹt = 17.07 − 1.86 cos(2π(1/24)t) + 6.82 sin(2π(1/24)t)

+ 6.09 cos(2π(1/29)t) + 8.01 sin(2π(1/29)t).

The derivation of these particular frequencies and coefficients will be
the content of this section and the following ones. For easier access
we begin with the case of known frequencies but unknown constants.
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Plot 3.1.1a: Intensity of light emitted by a pulsating star and a fitted
harmonic wave.

Model: MODEL1

Dependent Variable: LUMEN

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob >F

Model 4 48400 12100 49297.2 <.0001

Error 595 146.04384 0.24545

C Total 599 48546

Root MSE 0.49543 R-square 0.9970

Dep Mean 17.09667 Adj R-sq 0.9970

C.V. 2.89782

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Prob > |T|
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Intercept 1 17.06903 0.02023 843.78 <.0001

sin24 1 6.81736 0.02867 237.81 <.0001

cos24 1 -1.85779 0.02865 -64.85 <.0001

sin29 1 8.01416 0.02868 279.47 <.0001

cos29 1 6.08905 0.02865 212.57 <.0001

Listing 3.1.1b: Regression results of fitting a harmonic wave.

1 /* star_harmonic.sas */

2 TITLE1 ’Harmonic wave ’;

3 TITLE2 ’Star Data ’;

4

5 /* Read in the data and compute harmonic waves to which data are to

↪→ be fitted */

6 DATA data1;

7 INFILE ’c:\data\star.txt ’;

8 INPUT lumen @@;

9 t=_N_;

10 pi=CONSTANT(’PI ’);

11 sin24=SIN (2*pi*t/24);

12 cos24=COS (2*pi*t/24);

13 sin29=SIN (2*pi*t/29);

14 cos29=COS (2*pi*t/29);

15

16 /* Compute a regression */

17 PROC REG DATA=data1;

18 MODEL lumen=sin24 cos24 sin29 cos29;

19 OUTPUT OUT=regdat P=predi;

20

21 /* Graphical options */

22 SYMBOL1 C=GREEN V=DOT I=NONE H=.4;

23 SYMBOL2 C=RED V=NONE I=JOIN;

24 AXIS1 LABEL =( ANGLE =90 ’lumen ’);

25 AXIS2 LABEL=(’t’);

26

27 /* Plot data and fitted harmonic wave */

28 PROC GPLOT DATA=regdat(OBS =160);

29 PLOT lumen*t=1 predi*t=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;

30 RUN; QUIT;

Program 3.1.1: Fitting a harmonic wave.

The number π is generated by the SAS func-
tion CONSTANT with the argument ’PI’. It is then
stored in the variable pi. This is used to define
the variables cos24, sin24, cos29 and sin29

for the harmonic components. The other vari-
ables here are lumen read from an external file
and t generated by N .
The PROC REG statement causes SAS to make
a regression from the independent variable
lumen defined on the left side of the MODEL

statement on the harmonic components which

are on the right side. A temporary data file
named regdat is generated by the OUTPUT

statement. It contains the original variables
of the source data step and the values pre-
dicted by the regression for lumen in the vari-
able predi.

The last part of the program creates a plot of
the observed lumen values and a curve of the
predicted values restricted on the first 160 ob-
servations.



3.1 Least Squares Approach with Known Frequencies 131

The output of Program 3.1.1 (star harmonic.sas) is the standard text
output of a regression with an ANOVA table and parameter esti-
mates. For further information on how to read the output, we refer
to Chapter 3 of Falk et al. (2002).

In a first step we will fit a harmonic component with fixed frequency
λ to mean value adjusted data yt − ȳ, t = 1, . . . , n. To this end, we
put with arbitrary A, B ∈ R

m(t) = Am1(t) +Bm2(t),

where

m1(t) := cos(2πλt), m2(t) = sin(2πλt).

In order to get a proper fit uniformly over all t, it is reasonable to
choose the constants A and B as minimizers of the residual sum of
squares

R(A,B) :=
n∑

t=1

(yt − ȳ −m(t))2.

Taking partial derivatives of the function R with respect to A and B
and equating them to zero, we obtain that the minimizing pair A,B
has to satisfy the normal equations

Ac11 +Bc12 =
n∑

t=1

(yt − ȳ) cos(2πλt)

Ac21 +Bc22 =
n∑

t=1

(yt − ȳ) sin(2πλt),

where

cij =
n∑

t=1

mi(t)mj(t).

If c11c22 − c12c21 6= 0, the uniquely determined pair of solutions A,B
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of these equations is

A = A(λ) = n
c22C(λ) − c12S(λ)

c11c22 − c12c21

B = B(λ) = n
c21C(λ) − c11S(λ)

c12c21 − c11c22
,

where

C(λ) :=
1

n

n∑

t=1

(yt − ȳ) cos(2πλt),

S(λ) :=
1

n

n∑

t=1

(yt − ȳ) sin(2πλt) (3.1)

are the empirical (cross-) covariances of (yt)1≤t≤n and (cos(2πλt))1≤t≤n

and of (yt)1≤t≤n and (sin(2πλt))1≤t≤n, respectively. As we will see,
these cross-covariances C(λ) and S(λ) are fundamental to the analy-
sis of a time series in the frequency domain.

The solutions A and B become particularly simple in the case of
Fourier frequencies λ = k/n, k = 0, 1, 2, . . . , [n/2], where [x] denotes
the greatest integer less than or equal to x ∈ R. If k 6= 0 and k 6= n/2
in the case of an even sample size n, then we obtain from (3.2) below
that c12 = c21 = 0 and c11 = c22 = n/2 and thus

A = 2C(λ), B = 2S(λ).

Harmonic Waves with Fourier Frequencies

Next we will fit harmonic waves to data y1, . . . , yn, where we restrict
ourselves to Fourier frequencies, which facilitates the computations.
The following lemma will be crucial.

Lemma 3.1.2. For arbitrary 0 ≤ k,m ≤ [n/2] we have
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n∑

t=1

cos
(
2π
k

n
t
)

cos
(
2π
m

n
t
)

=





n, k = m = 0 or n/2, if n is even

n/2, k = m 6= 0 and 6= n/2, if n is even

0, k 6= m

n∑

t=1

sin
(
2π
k

n
t
)

sin
(
2π
m

n
t
)

=





0, k = m = 0 or n/2, if n is even

n/2, k = m 6= 0 and 6= n/2, if n is even

0, k 6= m
n∑

t=1

cos
(
2π
k

n
t
)

sin
(
2π
m

n
t
)

= 0.

Proof. Exercise 3.3.

The above lemma implies that the 2[n/2] + 1 vectors in Rn

(sin(2π(k/n)t))1≤t≤n, k = 1, . . . , [n/2],

and

(cos(2π(k/n)t))1≤t≤n, k = 0, . . . , [n/2],

span the space Rn. Note that by Lemma 3.1.2 in the case of n odd
the above 2[n/2] + 1 = n vectors are linearly independent, whereas
in the case of an even sample size n the vector (sin(2π(k/n)t))1≤t≤n

with k = n/2 is the null vector (0, . . . , 0) and the remaining n vectors
are again linearly independent. As a consequence we obtain that for a
given set of data y1, . . . , yn, there exist in any case uniquely determined
coefficients Ak and Bk, k = 0, . . . , [n/2], with B0 := 0 such that

yt =

[n/2]∑

k=0

(
Ak cos

(
2π
k

n
t
)

+Bk sin
(
2π
k

n
t
))

, t = 1, . . . , n. (3.2)

Next we determine these coefficients Ak, Bk. They are obviously min-
imizers of the residual sum of squares

R :=
n∑

t=1

(
yt −

[n/2]∑

k=0

(
αk cos

(
2π
k

n
t
)

+ βk sin
(
2π
k

n
t
)))2
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with respect to αk, βk. Taking partial derivatives, equating them to
zero and taking into account the linear independence of the above
vectors, we obtain that these minimizers solve the normal equations

n∑

t=1

yt cos
(
2π
k

n
t
)

= αk

n∑

t=1

cos2
(
2π
k

n
t
)
, k = 0, . . . , [n/2]

n∑

t=1

yt sin
(
2π
k

n
t
)

= βk

n∑

t=1

sin2
(
2π
k

n
t
)
, k = 1, . . . , [(n− 1)/2].

The solutions of this system are by Lemma 3.1.2 given by

Ak =





2
n

∑n
t=1 yt cos

(
2π k

nt
)
, k = 1, . . . , [(n− 1)/2]

1
n

∑n
t=1 yt cos

(
2π k

nt
)
, k = 0 and k = n/2, if n is even

Bk =
2

n

n∑

t=1

yt sin
(
2π
k

n
t
)
, k = 1, . . . , [(n− 1)/2]. (3.3)

One can substitute Ak, Bk in R to obtain directly that R = 0 in this
case. A popular equivalent formulation of (3.3) is

yt =
Ã0

2
+

[n/2]∑

k=1

(
Ak cos

(
2π
k

n
t
)

+Bk sin
(
2π
k

n
t
))

, t = 1, . . . , n,

(3.4)
with Ak, Bk as in (3.3) for k = 1, . . . , [n/2], Bn/2 = 0 for an even n,
and

Ã0 = 2A0 =
2

n

n∑

t=1

yt = 2ȳ.

Up to the factor 2, the coefficients Ak, Bk coincide with the empirical
covariances C(k/n) and S(k/n), k = 1, . . . , [(n − 1)/2], defined in
(3.1). This follows from the equations (Exercise 3.2)

n∑

t=1

cos
(
2π
k

n
t
)

=
n∑

t=1

sin
(
2π
k

n
t
)

= 0, k = 1, . . . , [n/2]. (3.5)
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3.2 The Periodogram
In the preceding section we exactly fitted a harmonic wave with Fourier
frequencies λk = k/n, k = 0, . . . , [n/2], to a given series y1, . . . , yn. Ex-
ample 3.1.1 shows that a harmonic wave including only two frequen-
cies already fits the Star Data quite well. There is a general tendency
that a time series is governed by different frequencies λ1, . . . , λr with
r < [n/2], which on their part can be approximated by Fourier fre-
quencies k1/n, . . . , kr/n if n is sufficiently large. The question which
frequencies actually govern a time series leads to the intensity of a
frequency λ. This number reflects the influence of the harmonic com-
ponent with frequency λ on the series. The intensity of the Fourier
frequency λ = k/n, 1 ≤ k ≤ [n/2], is defined via its residual sum of
squares. We have by Lemma 3.1.2, (3.5) and the normal equations

n∑

t=1

(
yt − ȳ − Ak cos

(
2π
k

n
t
)
−Bk sin

(
2π
k

n
t
))2

=
n∑

t=1

(yt − ȳ)2 − n

2

(
A2

k +B2
k

)
, k = 1, . . . , [(n− 1)/2],

and
n∑

t=1

(yt − ȳ)2 =
n

2

[n/2]∑

k=1

(
A2

k +B2
k

)
.

The number (n/2)(A2
k +B2

k) = 2n(C2(k/n)+S2(k/n)) is therefore the
contribution of the harmonic component with Fourier frequency k/n,
k = 1, . . . , [(n−1)/2], to the total variation

∑n
t=1(yt− ȳ)2. It is called

the intensity of the frequency k/n. Further insight is gained from the
Fourier analysis in Theorem 3.2.4. For general frequencies λ ∈ R we
define its intensity now by

I(λ) = n
(
C(λ)2 + S(λ)2

)

=
1

n

(( n∑

t=1

(yt − ȳ) cos(2πλt)
)2

+
( n∑

t=1

(yt − ȳ) sin(2πλt)
)2
)
.

(3.6)

This function is called the periodogram. The following Theorem im-
plies in particular that it is sufficient to define the periodogram on the
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interval [0, 1]. For Fourier frequencies we obtain from (3.3) and (3.5)

I(k/n) =
n

4

(
A2

k +B2
k

)
, k = 1, . . . , [(n− 1)/2].

Theorem 3.2.1. We have

1. I(0) = 0,

2. I is an even function, i.e., I(λ) = I(−λ) for any λ ∈ R,

3. I has the period 1.

Proof. Part (i) follows from sin(0) = 0 and cos(0) = 1, while (ii) is a
consequence of cos(−x) = cos(x), sin(−x) = − sin(x), x ∈ R. Part
(iii) follows from the fact that 2π is the fundamental period of sin and
cos.

Theorem 3.2.1 implies that the function I(λ) is completely determined
by its values on [0, 0.5]. The periodogram is often defined on the scale
[0, 2π] instead of [0, 1] by putting I∗(ω) := 2I(ω/(2π)); this version is,
for example, used in SAS. In view of Theorem 3.2.4 below we prefer
I(λ), however.

The following figure displays the periodogram of the Star Data from
Example 3.1.1. It has two obvious peaks at the Fourier frequencies
21/600 = 0.035 ≈ 1/28.57 and 25/600 = 1/24 ≈ 0.04167. This
indicates that essentially two cycles with period 24 and 28 or 29 are
inherent in the data. A least squares approach for the determination of
the coefficients Ai, Bi, i = 1, 2 with frequencies 1/24 and 1/29 as done
in Program 3.1.1 (star harmonic.sas) then leads to the coefficients in
Example 3.1.1.
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Plot 3.2.1a: Periodogram of the Star Data.

--------------------------------------------------------------

COS_01

34.1933

--------------------------------------------------------------

PERIOD COS_01 SIN_01 P LAMBDA

28.5714 -0.91071 8.54977 11089.19 0.035000

24.0000 -0.06291 7.73396 8972.71 0.041667

30.0000 0.42338 -3.76062 2148.22 0.033333

27.2727 -0.16333 2.09324 661.25 0.036667

31.5789 0.20493 -1.52404 354.71 0.031667

26.0870 -0.05822 1.18946 212.73 0.038333

Listing 3.2.1b: The constant Ã0 = 2A0 = 2ȳ and the six Fourier

frequencies λ = k/n with largest I(k/n)-values, their inverses and the

Fourier coefficients pertaining to the Star Data.

1 /* star_periodogram .sas */

2 TITLE1 ’Periodogram ’;

3 TITLE2 ’Star Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\star.txt ’;

8 INPUT lumen @@;
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9

10 /* Compute the periodogram */

11 PROC SPECTRA DATA=data1 COEF P OUT=data2;

12 VAR lumen;

13

14 /* Adjusting different periodogram definitions */

15 DATA data3;

16 SET data2(FIRSTOBS =2);

17 p=P_01 /2;

18 lambda=FREQ /(2* CONSTANT(’PI ’));

19 DROP P_01 FREQ;

20

21 /* Graphical options */

22 SYMBOL1 V=NONE C=GREEN I=JOIN;

23 AXIS1 LABEL=(’I(’ F=CGREEK ’l)’);

24 AXIS2 LABEL =(F=CGREEK ’l’);

25

26 /* Plot the periodogram */

27 PROC GPLOT DATA=data3(OBS =50);

28 PLOT p*lambda =1 / VAXIS=AXIS1 HAXIS=AXIS2;

29

30 /* Sort by periodogram values */

31 PROC SORT DATA=data3 OUT=data4;

32 BY DESCENDING p;

33

34 /* Print largest periodogram values */

35 PROC PRINT DATA=data2(OBS =1) NOOBS;

36 VAR COS_01;

37 PROC PRINT DATA=data4(OBS =6) NOOBS;

38 RUN; QUIT;

Program 3.2.1: Computing and plotting the periodogram.

The first step is to read the star data from an ex-
ternal file into a data set. Using the SAS proce-
dure SPECTRA with the options P (periodogram),
COEF (Fourier coefficients), OUT=data2 and the
VAR statement specifying the variable of in-
terest, an output data set is generated. It
contains periodogram data P 01 evaluated at
the Fourier frequencies, a FREQ variable for
this frequencies, the pertaining period in the
variable PERIOD and the variables COS 01 and
SIN 01 with the coefficients for the harmonic
waves. Because SAS uses different definitions
for the frequencies and the periodogram, here
in data3 new variables lambda (dividing FREQ

by 2π to eliminate an additional factor 2π) and
p (dividing P 01 by 2) are created and the no

more needed ones are dropped. By means of
the data set option FIRSTOBS=2 the first obser-
vation of data2 is excluded from the resulting
data set.

The following PROC GPLOT just takes the first
50 observations of data3 into account. This
means a restriction of lambda up to 50/600 =
1/12, the part with the greatest peaks in the pe-
riodogram.

The procedure SORT generates a new data set
data4 containing the same observations as the
input data set data3, but they are sorted in de-
scending order of the periodogram values. The
two PROC PRINT statements at the end make
SAS print to datasets data2 and data4.
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The first part of the output is the coefficient Ã0 which is equal to
two times the mean of the lumen data. The results for the Fourier
frequencies with the six greatest periodogram values constitute the
second part of the output. Note that the meaning of COS 01 and
SIN 01 are slightly different from the definitions of Ak and Bk in
(3.3), because SAS lets the index run from 0 to n− 1 instead of 1 to
n.

The Fourier Transform
From Euler’s equation eiz = cos(z) + i sin(z), z ∈ R, we obtain for
λ ∈ R

D(λ) := C(λ) − iS(λ) =
1

n

n∑

t=1

(yt − ȳ)e−i2πλt.

The periodogram is a function of D(λ), since I(λ) = n|D(λ)|2. Unlike
the periodogram, the number D(λ) contains the complete information
about C(λ) and S(λ), since both values can be recovered from the
complex number D(λ), being its real and negative imaginary part. In
the following we view the data y1, . . . , yn again as a clipping from an
infinite series yt, t ∈ Z. Let a := (at)t∈Z be an absolutely summable
sequence of real numbers. For such a sequence a the complex valued
function

fa(λ) =
∑

t∈Z

ate
−i2πλt, λ ∈ R,

is said to be its Fourier transform. It links the empirical autoco-
variance function to the periodogram as it will turn out in Theorem
3.2.3 that the latter is the Fourier transform of the first. Note that∑

t∈Z |ate
−i2πλt| =

∑
t∈Z |at| < ∞, since |eix| = 1 for any x ∈ R. The

Fourier transform of at = (yt − ȳ)/n, t = 1, . . . , n, and at = 0 else-
where is then given by D(λ). The following elementary properties of
the Fourier transform are immediate consequences of the arguments
in the proof of Theorem 3.2.1. In particular we obtain that the Fourier
transform is already determined by its values on [0, 0.5].

Theorem 3.2.2. We have

1. fa(0) =
∑

t∈Z at,
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2. fa(−λ) and fa(λ) are conjugate complex numbers i.e., fa(−λ) =

fa(λ),

3. fa has the period 1.

Autocorrelation Function and Periodogram
Information about cycles that are inherent in given data, can also be
deduced from the empirical autocorrelation function. The following
figure displays the autocorrelation function of the Bankruptcy Data,
introduced in Exercise 1.17.

Plot 3.2.2a: Autocorrelation function of the Bankruptcy Data.

1 /* bankruptcy_correlogram .sas */

2 TITLE1 ’Correlogram ’;

3 TITLE2 ’Bankruptcy Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\bankrupt.txt ’;
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8 INPUT year bankrupt;

9

10 /* Compute autocorrelation function */

11 PROC ARIMA DATA=data1;

12 IDENTIFY VAR=bankrupt NLAG =64 OUTCOV=corr NOPRINT;

13

14 /* Graphical options */

15 AXIS1 LABEL=(’r(k)’);

16 AXIS2 LABEL=(’k’);

17 SYMBOL1 V=DOT C=GREEN I=JOIN H=0.4 W=1;

18

19 /* Plot auto correlation function */

20 PROC GPLOT DATA=corr;

21 PLOT CORR*LAG / VAXIS=AXIS1 HAXIS=AXIS2 VREF =0;

22 RUN; QUIT;

Program 3.2.2: Computing the autocorrelation function.

After reading the data from an external file into
a data step, the procedure ARIMA calculates the
empirical autocorrelation function and stores

them into a new data set. The correlogram is
generated using PROC GPLOT.

The next figure displays the periodogram of the Bankruptcy Data.
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Plot 3.2.3a: Periodogram of the Bankruptcy Data.

1 /* bankruptcy_periodogram .sas */

2 TITLE1 ’Periodogram ’;

3 TITLE2 ’Bankruptcy Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\bankrupt.txt ’;

8 INPUT year bankrupt;

9

10 /* Compute the periodogram */

11 PROC SPECTRA DATA=data1 P OUT=data2;

12 VAR bankrupt;

13

14 /* Adjusting different periodogram definitions */

15 DATA data3;

16 SET data2(FIRSTOBS =2);

17 p=P_01 /2;

18 lambda=FREQ /(2* CONSTANT(’PI ’));

19

20 /* Graphical options */

21 SYMBOL1 V=NONE C=GREEN I=JOIN;

22 AXIS1 LABEL=(’I’ F=CGREEK ’(l)’) ;

23 AXIS2 ORDER =(0 TO 0.5 BY 0.05) LABEL =(F=CGREEK ’l’);

24

25 /* Plot the periodogram */

26 PROC GPLOT DATA=data3;

27 PLOT p*lambda / VAXIS=AXIS1 HAXIS=AXIS2;
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28 RUN; QUIT;

Program 3.2.3: Computing the periodogram.

This program again first reads the data
and then starts a spectral analysis by
PROC SPECTRA. Due to the reasons men-
tioned in the comments to Program 3.2.1
(star periodogram.sas) there are some trans-

formations of the periodogram and the fre-
quency values generated by PROC SPECTRA

done in data3. The graph results from the
statements in PROC GPLOT.

The autocorrelation function of the Bankruptcy Data has extreme
values at about multiples of 9 years, which indicates a period of length
9. This is underlined by the periodogram in Plot 3.2.3a, which has
a peak at λ = 0.11, corresponding to a period of 1/0.11 ∼ 9 years
as well. As mentioned above, there is actually a close relationship
between the empirical autocovariance function and the periodogram.
The corresponding result for the theoretical autocovariances is given
in Chapter 4.

Theorem 3.2.3. Denote by c the empirical autocovariance function
of y1, . . . , yn, i.e., c(k) = n−1

∑n−k
j=1 (yj− ȳ)(yj+k− ȳ), k = 0, . . . , n−1,

where ȳ := n−1
∑n

j=1 yj. Then we have with c(−k) := c(k)

I(λ) = c(0) + 2
n−1∑

k=1

c(k) cos(2πλk)

=
n−1∑

k=−(n−1)

c(k)e−i2πλk.

Proof. From the equation cos(x1) cos(x2) + sin(x1) sin(x2) = cos(x1 −
x2) for x1, x2 ∈ R we obtain

I(λ) =
1

n

n∑

s=1

n∑

t=1

(ys − ȳ)(yt − ȳ)

×
(
cos(2πλs) cos(2πλt) + sin(2πλs) sin(2πλt)

)

=
1

n

n∑

s=1

n∑

t=1

ast,
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where ast := (ys − ȳ)(yt − ȳ) cos(2πλ(s − t)). Since ast = ats and
cos(0) = 1 we have moreover

I(λ) =
1

n

n∑

t=1

att +
2

n

n−1∑

k=1

n−k∑

j=1

ajj+k

=
1

n

n∑

t=1

(yt − ȳ)2 + 2
n−1∑

k=1

(1

n

n−k∑

j=1

(yj − ȳ)(yj+k − ȳ)
)

cos(2πλk)

= c(0) + 2
n−1∑

k=1

c(k) cos(2πλk).

The complex representation of the periodogram is then obvious:

n−1∑

k=−(n−1)

c(k)e−i2πλk = c(0) +
n−1∑

k=1

c(k)
(
ei2πλk + e−i2πλk

)

= c(0) +
n−1∑

k=1

c(k)2 cos(2πλk) = I(λ).

Inverse Fourier Transform
The empirical autocovariance function can be recovered from the pe-
riodogram, which is the content of our next result. Since the pe-
riodogram is the Fourier transform of the empirical autocovariance
function, this result is a special case of the inverse Fourier transform
in Theorem 3.2.5 below.

Theorem 3.2.4. The periodogram

I(λ) =
n−1∑

k=−(n−1)

c(k)e−i2πλk, λ ∈ R,

satisfies the inverse formula

c(k) =

∫ 1

0

I(λ)ei2πλk dλ, |k| ≤ n− 1.
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In particular for k = 0 we obtain

c(0) =

∫ 1

0

I(λ) dλ.

The sample variance c(0) = n−1
∑n

j=1(yj − ȳ)2 equals, therefore, the

area under the curve I(λ), 0 ≤ λ ≤ 1. The integral
∫ λ2

λ1
I(λ) dλ

can be interpreted as that portion of the total variance c(0), which
is contributed by the harmonic waves with frequencies λ ∈ [λ1, λ2],
where 0 ≤ λ1 < λ2 ≤ 1. The periodogram consequently shows the
distribution of the total variance among the frequencies λ ∈ [0, 1]. A
peak of the periodogram at a frequency λ0 implies, therefore, that a
large part of the total variation c(0) of the data can be explained by
the harmonic wave with that frequency λ0.
The following result is the inverse formula for general Fourier trans-
forms.

Theorem 3.2.5. For an absolutely summable sequence a := (at)t∈Z

with Fourier transform fa(λ) =
∑

t∈Z ate
−i2πλt, λ ∈ R, we have

at =

∫ 1

0

fa(λ)ei2πλt dλ, t ∈ Z.

Proof. The dominated convergence theorem implies

∫ 1

0

fa(λ)ei2πλt dλ =

∫ 1

0

(∑

s∈Z

ase
−i2πλs

)
ei2πλt dλ

=
∑

s∈Z

as

∫ 1

0

ei2πλ(t−s) dλ = at,

since ∫ 1

0

ei2πλ(t−s) dλ =

{
1, if s = t

0, if s 6= t.

The inverse Fourier transformation shows that the complete sequence
(at)t∈Z can be recovered from its Fourier transform. This implies
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in particular that the Fourier transforms of absolutely summable se-
quences are uniquely determined. The analysis of a time series in
the frequency domain is, therefore, equivalent to its analysis in the
time domain, which is based on an evaluation of its autocovariance
function.

Aliasing
Suppose that we observe a continuous time process (Zt)t∈R only through
its values at k∆, k ∈ Z, where ∆ > 0 is the sampling interval,
i.e., we actually observe (Yk)k∈Z = (Zk∆)k∈Z. Take, for example,
Zt := cos(2π(9/11)t), t ∈ R. The following figure shows that at
k ∈ Z, i.e., ∆ = 1, the observations Zk coincide with Xk, where
Xt := cos(2π(2/11)t), t ∈ R. With the sampling interval ∆ = 1,
the observations Zk with high frequency 9/11 can, therefore, not be
distinguished from the Xk, which have low frequency 2/11.

Plot 3.2.4a: Aliasing of cos(2π(9/11)k) and cos(2π(2/11)k).



3.2 The Periodogram 147

1 /* aliasing.sas */

2 TITLE1 ’Aliasing ’;

3

4 /* Generate harmonic waves */

5 DATA data1;

6 DO t=1 TO 14 BY .01;

7 y1=COS (2* CONSTANT(’PI ’) *2/11*t);

8 y2=COS (2* CONSTANT(’PI ’) *9/11*t);

9 OUTPUT;

10 END;

11

12 /* Generate points of intersection */

13 DATA data2;

14 DO t0=1 TO 14;

15 y0=COS (2* CONSTANT(’PI ’) *2/11* t0);

16 OUTPUT;

17 END;

18

19 /* Merge the data sets */

20 DATA data3;

21 MERGE data1 data2;

22

23 /* Graphical options */

24 SYMBOL1 V=DOT C=GREEN I=NONE H=.8;

25 SYMBOL2 V=NONE C=RED I=JOIN;

26 AXIS1 LABEL=NONE;

27 AXIS2 LABEL=(’t’);

28

29 /* Plot the curves with point of intersection */

30 PROC GPLOT DATA=data3;

31 PLOT y0*t0=1 y1*t=2 y2*t=2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 VREF

↪→=0;

32 RUN; QUIT;

Program 3.2.4: Aliasing.

In the first data step a tight grid for the cosine
waves with frequencies 2/11 and 9/11 is gen-
erated. In the second data step the values of
the cosine wave with frequency 2/11 are gen-
erated just for integer values of t symbolizing
the observation points.

After merging the two data sets the two waves
are plotted using the JOIN option in the SYMBOL

statement while the values at the observation
points are displayed in the same graph by dot
symbols.

This phenomenon that a high frequency component takes on the val-
ues of a lower one, is called aliasing. It is caused by the choice of the
sampling interval ∆, which is 1 in Plot 3.2.4a. If a series is not just a
constant, then the shortest observable period is 2∆. The highest ob-
servable frequency λ∗ with period 1/λ∗, therefore, satisfies 1/λ∗ ≥ 2∆,
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i.e., λ∗ ≤ 1/(2∆). This frequency 1/(2∆) is known as the Nyquist fre-
quency. The sampling interval ∆ should, therefore, be chosen small
enough, so that 1/(2∆) is above the frequencies under study. If, for
example, a process is a harmonic wave with frequencies λ1, . . . , λp,
then ∆ should be chosen such that λi ≤ 1/(2∆), 1 ≤ i ≤ p, in or-
der to visualize p different frequencies. For the periodic curves in
Plot 3.2.4a this means to choose 9/11 ≤ 1/(2∆) or ∆ ≤ 11/18.

Exercises
3.1. Let y(t) = A cos(2πλt) +B sin(2πλt) be a harmonic component.
Show that y can be written as y(t) = α cos(2πλt− ϕ), where α is the
amplitiude, i.e., the maximum departure of the wave from zero and ϕ
is the phase displacement.

3.2. Show that

n∑

t=1

cos(2πλt) =

{
n, λ ∈ Z

cos(πλ(n+ 1)) sin(πλn)
sin(πλ) , λ 6∈ Z

n∑

t=1

sin(2πλt) =

{
0, λ ∈ Z

sin(πλ(n+ 1)) sin(πλn)
sin(πλ) , λ 6∈ Z.

Hint: Compute
∑n

t=1 e
i2πλt, where eiϕ = cos(ϕ) + i sin(ϕ) is the com-

plex valued exponential function.

3.3. Verify Lemma 3.1.2. Hint: Exercise 3.2.

3.4. Suppose that the time series (yt)t satisfies the additive model
with seasonal component

s(t) =
s∑

k=1

Ak cos
(
2π
k

s
t
)

+
s∑

k=1

Bk sin
(
2π
k

s
t
)
.

Show that s(t) is eliminated by the seasonal differencing ∆syt = yt −
yt−s.

3.5. Fit a harmonic component with frequency λ to a time series
y1, . . . , yN , where λ ∈ Z and λ− 0.5 ∈ Z. Compute the least squares
estimator and the pertaining residual sum of squares.
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3.6. Put yt = t, t = 1, . . . , n. Show that

I(k/n) =
n

4 sin2(πk/n)
, k = 1, . . . , [(n− 1)/2].

Hint: Use the equations

n−1∑

t=1

t sin(θt) =
sin(nθ)

4 sin2(θ/2)
− n cos((n− 0.5)θ)

2 sin(θ/2)

n−1∑

t=1

t cos(θt) =
n sin((n− 0.5)θ)

2 sin(θ/2)
− 1 − cos(nθ)

4 sin2(θ/2)
.

3.7. (Unemployed1 Data) Plot the periodogram of the first order dif-
ferences of the numbers of unemployed in the building trade as intro-
duced in Example 1.1.1.

3.8. (Airline Data) Plot the periodogram of the variance stabilized
and trend adjusted Airline Data, introduced in Example 1.3.1. Add
a seasonal adjustment and compare the periodograms.

3.9. The contribution of the autocovariance c(k), k ≥ 1, to the pe-
riodogram can be illustrated by plotting the functions ± cos(2πλk),
λ ∈ [0.5].

(i) Which conclusion about the intensities of large or small frequen-
cies can be drawn from a positive value c(1) > 0 or a negative
one c(1) < 0?

(ii) Which effect has an increase of |c(2)| if all other parameters
remain unaltered?

(iii) What can you say about the effect of an increase of c(k) on the
periodogram at the values 40, 1/k, 2/k, 3/k, . . . and the inter-
mediate values 1/2k, 3/(2k), 5/(2k)? Illustrate the effect at a
time series with seasonal component k = 12.

3.10. Establish a version of the inverse Fourier transform in real
terms.

3.11. Let a = (at)t∈Z and b = (bt)t∈Z be absolute summable se-
quences.
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(i) Show that for αa + βb := (αat + βbt)t∈Z, α, β ∈ R,

fαa+βb(λ) = αfa(λ) + βfb(λ).

(ii) For ab := (atbt)t∈Z we have

fab(λ) = fa ∗ fb(λ) :=

∫ 1

0

fa(µ)fb(λ− µ) dµ.

(iii) Show that for a ∗ b := (
∑

s∈Z asbt−s)t∈Z (convolution)

fa∗b(λ) = fa(λ)fb(λ).

3.12. (Fast Fourier Transform (FFT)) The Fourier transform of a fi-
nite sequence a0, a1, . . . , aN−1 can be represented under suitable con-
ditions as the composition of Fourier transforms. Put

f(s/N) =
N−1∑

t=0

ate
−i2πst/N , s = 0, . . . , N − 1,

which is the Fourier transform of length N . Suppose that N = KM
with K,M ∈ N. Show that f can be represented as Fourier transform
of length K, computed for a Fourier transform of length M .
Hint: Each t, s ∈ {0, . . . , N − 1} can uniquely be written as

t = t0 + t1K, t0 ∈ {0, . . . , K − 1}, t1 ∈ {0, . . . ,M − 1}
s = s0 + s1M, s0 ∈ {0, . . . ,M − 1}, s1 ∈ {0, . . . , K − 1}.

Sum over t0 and t1.

3.13. (Star Data) Suppose that the Star Data are only observed
weekly (i.e., keep only every seventh observation). Is an aliasing effect
observable?



Chapter

4The Spectrum of a
Stationary Process

In this chapter we investigate the spectrum of a real valued station-
ary process, which is the Fourier transform of its (theoretical) auto-
covariance function. Its empirical counterpart, the periodogram, was
investigated in the preceding sections, cf. Theorem 3.2.3.

Let (Yt)t∈Z be a (real valued) stationary process with absolutely sum-
mable autocovariance function γ(t), t ∈ Z. Its Fourier transform

f(λ) :=
∑

t∈Z

γ(t)e−i2πλt = γ(0) + 2
∑

t∈N

γ(t) cos(2πλt), λ ∈ R,

is called spectral density or spectrum of the process (Yt)t∈Z. By the
inverse Fourier transform in Theorem 3.2.5 we have

γ(t) =

∫ 1

0

f(λ)ei2πλt dλ =

∫ 1

0

f(λ) cos(2πλt) dλ.

For t = 0 we obtain

γ(0) =

∫ 1

0

f(λ) dλ,

which shows that the spectrum is a decomposition of the variance
γ(0). In Section 4.3 we will in particular compute the spectrum of
an ARMA-process. As a preparatory step we investigate properties
of spectra for arbitrary absolutely summable filters.
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4.1 Characterizations of Autocovariance Func-
tions

Recall that the autocovariance function γ : Z → R of a stationary
process (Yt)t∈Z is given by

γ(h) = E(Yt+hYt) − E(Yt+h) E(Yt), h ∈ Z,

with the properties

γ(0) ≥ 0, |γ(h)| ≤ γ(0), γ(h) = γ(−h), h ∈ Z. (4.1)

The following result characterizes an autocovariance function in terms
of positive semidefiniteness.

Theorem 4.1.1. A symmetric function K : Z → R is the autoco-
variance function of a stationary process (Yt)t∈Z iff K is a positive
semidefinite function, i.e., K(−n) = K(n) and

∑

1≤r,s≤n

xrK(r − s)xs ≥ 0 (4.2)

for arbitrary n ∈ N and x1, . . . , xn ∈ R.

Proof. It is easy to see that (4.2) is a necessary condition for K to be
the autocovariance function of a stationary process, see Exercise 4.19.
It remains to show that (4.2) is sufficient, i.e., we will construct a
stationary process, whose autocovariance function is K.
We will define a family of finite-dimensional normal distributions,
which satisfies the consistency condition of Kolmogorov’s theorem, cf.
Theorem 1.2.1 in Brockwell and Davies (1991). This result implies the
existence of a process (Vt)t∈Z, whose finite dimensional distributions
coincide with the given family.
Define the n× n-matrix

K(n) :=
(
K(r − s)

)
1≤r,s≤n

,

which is positive semidefinite. Consequently there exists an n-dimen-
sional normal distributed random vector (V1, . . . , Vn) with mean vector
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zero and covariance matrix K (n). Define now for each n ∈ N and t ∈ Z

a distribution function on Rn by

Ft+1,...,t+n(v1, . . . , vn) := P{V1 ≤ v1, . . . , Vn ≤ vn}.

This defines a family of distribution functions indexed by consecutive
integers. Let now t1 < · · · < tm be arbitrary integers. Choose t ∈ Z

and n ∈ N such that ti = t + ni, where 1 ≤ n1 < · · · < nm ≤ n. We
define now

Ft1,...,tm((vi)1≤i≤m) := P{Vni
≤ vi, 1 ≤ i ≤ m}.

Note that Ft1,...,tm does not depend on the special choice of t and n
and thus, we have defined a family of distribution functions indexed
by t1 < · · · < tm on Rm for each m ∈ N, which obviously satisfies the
consistency condition of Kolmogorov’s theorem. This result implies
the existence of a process (Vt)t∈Z, whose finite dimensional distribution
at t1 < · · · < tm has distribution function Ft1,...,tm. This process
has, therefore, mean vector zero and covariances E(Vt+hVt) = K(h),
h ∈ Z.

Spectral Distribution Function and Spectral Density
The preceding result provides a characterization of an autocovariance
function in terms of positive semidefiniteness. The following char-
acterization of positive semidefinite functions is known as Herglotz’s
theorem. We use in the following the notation

∫ 1

0 g(λ) dF (λ) in place
of
∫

(0,1] g(λ) dF (λ).

Theorem 4.1.2. A symmetric function γ : Z → R is positive semi-
definite iff it can be represented as an integral

γ(h) =

∫ 1

0

ei2πλh dF (λ) =

∫ 1

0

cos(2πλh) dF (λ), h ∈ Z, (4.3)

where F is a real valued measure generating function on [0, 1] with
F (0) = 0. The function F is uniquely determined.

The uniquely determined function F , which is a right-continuous, in-
creasing and bounded function, is called the spectral distribution func-
tion of γ. If F has a derivative f and, thus, F (λ) = F (λ) − F (0) =
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∫ λ

0 f(x) dx for 0 ≤ λ ≤ 1, then f is called the spectral density of γ.
Note that the property

∑
h≥0 |γ(h)| <∞ already implies the existence

of a spectral density of γ, cf. Theorem 3.2.5.

Recall that γ(0) =
∫ 1

0 dF (λ) = F (1) and thus, the autocorrelation
function ρ(h) = γ(h)/γ(0) has the above integral representation, but
with F replaced by the distribution function F/γ(0).

Proof of Theorem 4.1.2. We establish first the uniqueness of F . Let
G be another measure generating function with G(λ) = 0 for λ ≤ 0
and constant for λ ≥ 1 such that

γ(h) =

∫ 1

0

ei2πλh dF (λ) =

∫ 1

0

ei2πλh dG(λ), h ∈ Z.

Let now ψ be a continuous function on [0, 1]. From calculus we know
(cf. Section 4.24 in Rudin (1974)) that we can find for arbitrary ε > 0

a trigonometric polynomial pε(λ) =
∑N

h=−N ahe
i2πλh, 0 ≤ λ ≤ 1, such

that

sup
0≤λ≤1

|ψ(λ) − pε(λ)| ≤ ε.

As a consequence we obtain that

∫ 1

0

ψ(λ) dF (λ) =

∫ 1

0

pε(λ) dF (λ) + r1(ε)

=

∫ 1

0

pε(λ) dG(λ) + r1(ε)

=

∫ 1

0

ψ(λ) dG(λ) + r2(ε),

where ri(ε) → 0 as ε→ 0, i = 1, 2, and, thus,

∫ 1

0

ψ(λ) dF (λ) =

∫ 1

0

ψ(λ) dG(λ).

Since ψ was an arbitrary continuous function, this in turn together
with F (0) = G(0) = 0 implies F = G.
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Suppose now that γ has the representation (4.3). We have for arbi-
trary xi ∈ R, i = 1, . . . , n

∑

1≤r,s≤n

xrγ(r − s)xs =

∫ 1

0

∑

1≤r,s≤n

xrxse
i2πλ(r−s) dF (λ)

=

∫ 1

0

∣∣∣
n∑

r=1

xre
i2πλr

∣∣∣
2

dF (λ) ≥ 0,

i.e., γ is positive semidefinite.
Suppose conversely that γ : Z → R is a positive semidefinite function.
This implies that for 0 ≤ λ ≤ 1 and N ∈ N (Exercise 4.2)

fN(λ) : =
1

N

∑

1≤r,s≤N

e−i2πλrγ(r − s)ei2πλs

=
1

N

∑

|m|<N

(N − |m|)γ(m)e−i2πλm ≥ 0.

Put now

FN(λ) :=

∫ λ

0

fN(x) dx, 0 ≤ λ ≤ 1.

Then we have for each h ∈ Z
∫ 1

0

ei2πλh dFN(λ) =
∑

|m|<N

(
1 − |m|

N

)
γ(m)

∫ 1

0

ei2πλ(h−m) dλ

=

{(
1 − |h|

N

)
γ(h), if |h| < N

0, if |h| ≥ N.
(4.4)

Since FN(1) = γ(0) < ∞ for any N ∈ N, we can apply Helly’s
selection theorem (cf. Billingsley (1968), page 226ff) to deduce the ex-
istence of a measure generating function F̃ and a subsequence (FNk

)k

such that FNk
converges weakly to F̃ i.e.,

∫ 1

0

g(λ) dFNk
(λ)

k→∞−→
∫ 1

0

g(λ) dF̃ (λ)

for every continuous and bounded function g : [0, 1] → R (cf. Theorem
2.1 in Billingsley (1968)). Put now F (λ) := F̃ (λ) − F̃ (0). Then F is
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a measure generating function with F (0) = 0 and
∫ 1

0

g(λ) dF̃ (λ) =

∫ 1

0

g(λ) dF (λ).

If we replace N in (4.4) by Nk and let k tend to infinity, we now obtain
representation (4.3).

Example 4.1.3. A white noise (εt)t∈Z has the autocovariance function

γ(h) =

{
σ2, h = 0

0, h ∈ Z \ {0}.

Since ∫ 1

0

σ2ei2πλh dλ =

{
σ2, h = 0

0, h ∈ Z \ {0},
the process (εt) has by Theorem 4.1.2 the constant spectral density
f(λ) = σ2, 0 ≤ λ ≤ 1. This is the name giving property of the white
noise process: As the white light is characteristically perceived to
belong to objects that reflect nearly all incident energy throughout the
visible spectrum, a white noise process weighs all possible frequencies
equally.

Corollary 4.1.4. A symmetric function γ : Z → R is the autocovari-
ance function of a stationary process (Yt)t∈Z, iff it satisfies one of the
following two (equivalent) conditions:

1. γ(h) =
∫ 1

0 e
i2πλh dF (λ), h ∈ Z, where F is a measure generating

function on [0, 1] with F (0) = 0.

2.
∑

1≤r,s≤n xrγ(r − s)xs ≥ 0 for each n ∈ N and x1, . . . , xn ∈ R.

Proof. Theorem 4.1.2 shows that (i) and (ii) are equivalent. The
assertion is then a consequence of Theorem 4.1.1.

Corollary 4.1.5. A symmetric function γ : Z → R with
∑

t∈Z |γ(t)| <
∞ is the autocovariance function of a stationary process iff

f(λ) :=
∑

t∈Z

γ(t)e−i2πλt ≥ 0, λ ∈ [0, 1].

The function f is in this case the spectral density of γ.
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Proof. Suppose first that γ is an autocovariance function. Since γ is in
this case positive semidefinite by Theorem 4.1.1, and

∑
t∈Z |γ(t)| <∞

by assumption, we have (Exercise 4.2)

0 ≤ fN(λ) : =
1

N

∑

1≤r,s≤N

e−i2πλrγ(r − s)ei2πλs

=
∑

|t|<N

(
1 − |t|

N

)
γ(t)e−i2πλt → f(λ) as N → ∞,

see Exercise 4.8. The function f is consequently nonnegative. The in-
verse Fourier transform in Theorem 3.2.5 implies γ(t) =

∫ 1

0 f(λ)ei2πλt dλ,
t ∈ Z i.e., f is the spectral density of γ.
Suppose on the other hand that f(λ) =

∑
t∈Z γ(t)e

i2πλt ≥ 0, 0 ≤
λ ≤ 1. The inverse Fourier transform implies γ(t) =

∫ 1

0 f(λ)ei2πλt dλ

=
∫ 1

0 e
i2πλt dF (λ), where F (λ) =

∫ λ

0 f(x) dx, 0 ≤ λ ≤ 1. Thus we have
established representation (4.3), which implies that γ is positive semi-
definite, and, consequently, γ is by Corollary 4.1.4 the autocovariance
function of a stationary process.

Example 4.1.6. Choose a number ρ ∈ R. The function

γ(h) =





1, if h = 0

ρ, if h ∈ {−1, 1}
0, elsewhere

is the autocovariance function of a stationary process iff |ρ| ≤ 0.5.
This follows from

f(λ) =
∑

t∈Z

γ(t)ei2πλt

= γ(0) + γ(1)ei2πλ + γ(−1)e−i2πλ

= 1 + 2ρ cos(2πλ) ≥ 0

for λ ∈ [0, 1] iff |ρ| ≤ 0.5. Note that the function γ is the autocorre-
lation function of an MA(1)-process, cf. Example 2.2.2.

The spectral distribution function of a stationary process satisfies (Ex-
ercise 4.10)

F (0.5 + λ) − F (0.5−) = F (0.5) − F ((0.5 − λ)−), 0 ≤ λ < 0.5,
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where F (x−) := limε↓0 F (x − ε) is the left-hand limit of F at x ∈
(0, 1]. If F has a derivative f , we obtain from the above symmetry
f(0.5 + λ) = f(0.5 − λ) or, equivalently, f(1 − λ) = f(λ) and, hence,

γ(h) =

∫ 1

0

cos(2πλh) dF (λ) = 2

∫ 0.5

0

cos(2πλh)f(λ) dλ.

The autocovariance function of a stationary process is, therefore, de-
termined by the values f(λ), 0 ≤ λ ≤ 0.5, if the spectral density
exists. Recall, moreover, that the smallest nonconstant period P0

visible through observations evaluated at time points t = 1, 2, . . . is
P0 = 2 i.e., the largest observable frequency is the Nyquist frequency
λ0 = 1/P0 = 0.5, cf. the end of Section 3.2. Hence, the spectral
density f(λ) matters only for λ ∈ [0, 0.5].

Remark 4.1.7. The preceding discussion shows that a function f :
[0, 1] → R is the spectral density of a stationary process iff f satisfies
the following three conditions

(i) f(λ) ≥ 0,

(ii) f(λ) = f(1 − λ),

(iii)
∫ 1

0 f(λ) dλ <∞.

4.2 Linear Filters and Frequencies
The application of a linear filter to a stationary time series has a quite
complex effect on its autocovariance function, see Theorem 2.1.6. Its
effect on the spectral density, if it exists, turns, however, out to be

quite simple. We use in the following again the notation
∫ λ

0 g(x) dF (x)
in place of

∫
(0,λ] g(x) dF (x).

Theorem 4.2.1. Let (Zt)t∈Z be a stationary process with spectral
distribution function FZ and let (at)t∈Z be an absolutely summable
filter with Fourier transform fa. The linear filtered process Yt :=∑

u∈Z auZt−u, t ∈ Z, then has the spectral distribution function

FY (λ) :=

∫ λ

0

|fa(x)|2 dFZ(x), 0 ≤ λ ≤ 1. (4.5)



4.2 Linear Filters and Frequencies 159

If in addition (Zt)t∈Z has a spectral density fZ, then

fY (λ) := |fa(λ)|2fZ(λ), 0 ≤ λ ≤ 1, (4.6)

is the spectral density of (Yt)t∈Z.

Proof. Theorem 2.1.6 yields that (Yt)t∈Z is stationary with autoco-
variance function

γY (t) =
∑

u∈Z

∑

w∈Z

auawγZ(t− u+ w), t ∈ Z,

where γZ is the autocovariance function of (Zt). Its spectral repre-
sentation (4.3) implies

γY (t) =
∑

u∈Z

∑

w∈Z

auaw

∫ 1

0

ei2πλ(t−u+w) dFZ(λ)

=

∫ 1

0

(∑

u∈Z

aue
−i2πλu

)(∑

w∈Z

awe
i2πλw

)
ei2πλt dFZ(λ)

=

∫ 1

0

|fa(λ)|2ei2πλt dFZ(λ)

=

∫ 1

0

ei2πλt dFY (λ).

Theorem 4.1.2 now implies that FY is the uniquely determined spec-
tral distribution function of (Yt)t∈Z. The second to last equality yields
in addition the spectral density (4.6).

Transfer Function and Power Transfer Function
Since the spectral density is a measure of intensity of a frequency λ
inherent in a stationary process (see the discussion of the periodogram
in Section 3.2), the effect (4.6) of applying a linear filter (at) with
Fourier transform fa can easily be interpreted. While the intensity of λ
is diminished by the filter (at) iff |fa(λ)| < 1, its intensity is amplified
iff |fa(λ)| > 1. The Fourier transform fa of (at) is, therefore, also
called transfer function and the function ga(λ) := |fa(λ)|2 is referred
to as the gain or power transfer function of the filter (at)t∈Z.
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Example 4.2.2. The simple moving average of length three

au =

{
1/3, u ∈ {−1, 0, 1}
0 elsewhere

has the transfer function

fa(λ) =
1

3
+

2

3
cos(2πλ)

and the power transfer function

ga(λ) =





1, λ = 0(
sin(3πλ)
3 sin(πλ)

)2

, λ ∈ (0, 0.5]

(see Exercise 4.13 and Theorem 3.2.2). This power transfer function
is plotted in Plot 4.2.1a below. It shows that frequencies λ close to
zero i.e., those corresponding to a large period, remain essentially
unaltered. Frequencies λ close to 0.5, which correspond to a short
period, are, however, damped by the approximate factor 0.1, when the
moving average (au) is applied to a process. The frequency λ = 1/3
is completely eliminated, since ga(1/3) = 0.
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Plot 4.2.1a: Power transfer function of the simple moving average of
length three.

1 /* power_transfer_sma3 .sas */

2 TITLE1 ’Power transfer function ’;

3 TITLE2 ’of the simple moving average of length 3’;

4

5 /* Compute power transfer function */

6 DATA data1;

7 DO lambda =.001 TO .5 BY .001;

8 g=(SIN (3* CONSTANT(’PI ’)*lambda)/(3* SIN(CONSTANT(’PI ’)*lambda)))

↪→**2;

9 OUTPUT;

10 END;

11

12 /* Graphical options */

13 AXIS1 LABEL=(’g’ H=1 ’a’ H=2 ’(’ F=CGREEK ’l)’);

14 AXIS2 LABEL =(F=CGREEK ’l’);

15 SYMBOL1 V=NONE C=GREEN I=JOIN;

16

17 /* Plot power transfer function */

18 PROC GPLOT DATA=data1;

19 PLOT g*lambda / VAXIS=AXIS1 HAXIS=AXIS2;

20 RUN; QUIT;

Program 4.2.1: Plotting power transfer function.
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Example 4.2.3. The first order difference filter

au =





1, u = 0

−1, u = 1

0 elsewhere

has the transfer function

fa(λ) = 1 − e−i2πλ.

Since

fa(λ) = e−iπλ
(
eiπλ − e−iπλ

)
= ie−iπλ2 sin(πλ),

its power transfer function is

ga(λ) = 4 sin2(πλ).

The first order difference filter, therefore, damps frequencies close to
zero but amplifies those close to 0.5.
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Plot 4.2.2a: Power transfer function of the first order difference filter.

Example 4.2.4. The preceding example immediately carries over to
the seasonal difference filter of arbitrary length s ≥ 0 i.e.,

a(s)
u =





1, u = 0

−1, u = s

0 elsewhere,

which has the transfer function

fa(s)(λ) = 1 − e−i2πλs

and the power transfer function

ga(s)(λ) = 4 sin2(πλs).
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Plot 4.2.3a: Power transfer function of the seasonal difference filter of
order 12.

Since sin2(x) = 0 iff x = kπ and sin2(x) = 1 iff x = (2k + 1)π/2,
k ∈ Z, the power transfer function ga(s)(λ) satisfies for k ∈ Z

ga(s)(λ) =

{
0, iff λ = k/s

4 iff λ = (2k + 1)/(2s).

This implies, for example, in the case of s = 12 that those frequencies,
which are multiples of 1/12 = 0.0833, are eliminated, whereas the
midpoint frequencies k/12 + 1/24 are amplified. This means that the
seasonal difference filter on the one hand does what we would like it to
do, namely to eliminate the frequency 1/12, but on the other hand it
generates unwanted side effects by eliminating also multiples of 1/12
and by amplifying midpoint frequencies. This observation gives rise
to the problem, whether one can construct linear filters that have
prescribed properties.
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Least Squares Based Filter Design
A low pass filter aims at eliminating high frequencies, a high pass filter
aims at eliminating small frequencies and a band pass filter allows only
frequencies in a certain band [λ0 − ∆, λ0 + ∆] to pass through. They
consequently should have the ideal power transfer functions

glow(λ) =

{
1, λ ∈ [0, λ0]

0, λ ∈ (λ0, 0.5]

ghigh(λ) =

{
0, λ ∈ [0, λ0)

1, λ ∈ [λ0, 0.5]

gband(λ) =

{
1, λ ∈ [λ0 − ∆, λ0 + ∆]

0 elsewhere,

where λ0 is the cut off frequency in the first two cases and [λ0 −
∆, λ0 + ∆] is the cut off interval with bandwidth 2∆ > 0 in the final
one. Therefore, the question naturally arises, whether there actually
exist filters, which have a prescribed power transfer function. One
possible approach for fitting a linear filter with weights au to a given
transfer function f is offered by utilizing least squares. Since only
filters of finite length matter in applications, one chooses a transfer
function

fa(λ) =
s∑

u=r

aue
−i2πλu

with fixed integers r, s and fits this function fa to f by minimizing
the integrated squared error

∫ 0.5

0

|f(λ) − fa(λ)|2 dλ

in (au)r≤u≤s ∈ Rs−r+1. This is achieved for the choice (Exercise 4.16)

au = 2 Re
(∫ 0.5

0

f(λ)ei2πλu dλ
)
, u = r, . . . , s,

which is formally the real part of the inverse Fourier transform of f .
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Example 4.2.5. For the low pass filter with cut off frequency 0 <
λ0 < 0.5 and ideal transfer function

f(λ) = 1[0,λ0](λ)

we obtain the weights

au = 2

∫ λ0

0

cos(2πλu) dλ =

{
2λ0, u = 0
1

πu sin(2πλ0u), u 6= 0.

Plot 4.2.4a: Transfer function of least squares fitted low pass filter
with cut off frequency λ0 = 1/10 and r = −20, s = 20.

1 /* transfer.sas */

2 TITLE1 ’Transfer function ’;

3 TITLE2 ’of least squares fitted low pass filter ’;

4

5 /* Compute transfer function */

6 DATA data1;

7 DO lambda =0 TO .5 BY .001;

8 f=2*1/10;
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9 DO u=1 TO 20;

10 f=f+2*1/( CONSTANT(’PI ’)*u)*SIN (2* CONSTANT(’PI ’) *1/10*u)*COS (2*

↪→CONSTANT(’PI ’)*lambda*u);

11 END;

12 OUTPUT;

13 END;

14

15 /* Graphical options */

16 AXIS1 LABEL=(’f’ H=1 ’a’ H=2 F=CGREEK ’(l)’);

17 AXIS2 LABEL =(F=CGREEK ’l’);

18 SYMBOL1 V=NONE C=GREEN I=JOIN L=1;

19

20 /* Plot transfer function */

21 PROC GPLOT DATA=data1;

22 PLOT f*lambda / VAXIS=AXIS1 HAXIS=AXIS2 VREF =0;

23 RUN; QUIT;

Program 4.2.4: Transfer function of least squares fitted low pass filter.

The programs in Section 4.2 (Linear Filters and
Frequencies) are just made for the purpose
of generating graphics, which demonstrate the
shape of power transfer functions or, in case of
Program 4.2.4 (transfer.sas), of a transfer func-
tion. They all consist of two parts, a DATA step
and a PROC step.
In the DATA step values of the power transfer
function are calculated and stored in a variable

g by a DO loop over lambda from 0 to 0.5 with
a small increment. In Program 4.2.4 (trans-
fer.sas) it is necessary to use a second DO loop
within the first one to calculate the sum used in
the definition of the transfer function f.
Two AXIS statements defining the axis labels
and a SYMBOL statement precede the procedure
PLOT, which generates the plot of g or f versus
lambda.

The transfer function in Plot 4.2.4a, which approximates the ideal
transfer function 1[0,0.1], shows higher oscillations near the cut off point
λ0 = 0.1. This is known as Gibbs’ phenomenon and requires further
smoothing of the fitted transfer function if these oscillations are to be
damped (cf. Section 6.4 of Bloomfield (1976)).

4.3 Spectral Densities of ARMA-Processes
Theorem 4.2.1 enables us to compute the spectral density of an ARMA-
process.

Theorem 4.3.1. Suppose that

Yt = a1Yt−1 + · · · + apYt−p + εt + b1εt−1 + · · · + bqεt−q, t ∈ Z,
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is a stationary ARMA(p, q)-process, where (εt) is a white noise with
variance σ2. Put

A(z) := 1 − a1z − a2z
2 − · · · − apz

p,

B(z) := 1 + b1z + b2z
2 + · · · + bqz

q

and suppose that the process (Yt) satisfies the stationarity condition
(2.3), i.e., the roots of the equation A(z) = 0 are outside of the unit
circle. The process (Yt) then has the spectral density

fY (λ) = σ2 |B(e−i2πλ)|2
|A(e−i2πλ)|2 = σ2 |1 +

∑q
v=1 bve

−i2πλv|2
|1 −

∑p
u=1 aue−i2πλu|2 . (4.7)

Proof. Since the process (Yt) is supposed to satisfy the stationarity
condition (2.3) it is causal, i.e., Yt =

∑
v≥0 αvεt−v, t ∈ Z, for some

absolutely summable constants αv, v ≥ 0, see Section 2.2. The white
noise process (εt) has by Example 4.1.3 the spectral density fε(λ) = σ2

and, thus, (Yt) has by Theorem 4.2.1 a spectral density fY . The
application of Theorem 4.2.1 to the process

Xt := Yt − a1Yt−1 − · · · − apYt−p = εt + b1εt−1 + · · · + bqεt−q

then implies that (Xt) has the spectral density

fX(λ) = |A(e−i2πλ)|2fY (λ) = |B(e−i2πλ)|2fε(λ).

Since the roots of A(z) = 0 are assumed to be outside of the unit
circle, we have |A(e−i2πλ)| 6= 0 and, thus, the assertion of Theorem
4.3.1 follows.

The preceding result with a1 = · · · = ap = 0 implies that an MA(q)-
process has the spectral density

fY (λ) = σ2|B(e−i2πλ)|2.

With b1 = · · · = bq = 0, Theorem 4.3.1 implies that a stationary
AR(p)-process, which satisfies the stationarity condition (2.3), has
the spectral density

fY (λ) = σ2 1

|A(e−i2πλ)|2 .
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Example 4.3.2. The stationary ARMA(1, 1)-process

Yt = aYt−1 + εt + bεt−1

with |a| < 1 has the spectral density

fY (λ) = σ2 1 + 2b cos(2πλ) + b2

1 − 2a cos(2πλ) + a2
.

The MA(1)-process, in which case a = 0, has, consequently the spec-
tral density

fY (λ) = σ2(1 + 2b cos(2πλ) + b2),

and the stationary AR(1)-process with |a| < 1, for which b = 0, has
the spectral density

fY (λ) = σ2 1

1 − 2a cos(2πλ) + a2
.

The following figures display spectral densities of ARMA(1, 1)-processes
for various a and b with σ2 = 1.
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Plot 4.3.1a: Spectral densities of ARMA(1, 1)-processes Yt = aYt−1 +
εt + bεt−1 with fixed a and various b; σ2 = 1.

1 /* arma11_sd.sas */

2 TITLE1 ’Spectral densities of ARMA (1,1)-processes ’;

3

4 /* Compute spectral densities of ARMA (1,1)-processes */

5 DATA data1;

6 a=.5;

7 DO b=-.9, -.2, 0, .2, .5;

8 DO lambda =0 TO .5 BY .005;

9 f=(1+2*b*COS (2* CONSTANT(’PI ’)*lambda)+b*b)/(1-2*a*COS (2*

↪→CONSTANT(’PI ’)*lambda)+a*a);

10 OUTPUT;

11 END;

12 END;

13

14 /* Graphical options */

15 AXIS1 LABEL=(’f’ H=1 ’Y’ H=2 F=CGREEK ’(l) ’);

16 AXIS2 LABEL =(F=CGREEK ’l’);

17 SYMBOL1 V=NONE C=GREEN I=JOIN L=4;

18 SYMBOL2 V=NONE C=GREEN I=JOIN L=3;

19 SYMBOL3 V=NONE C=GREEN I=JOIN L=2;

20 SYMBOL4 V=NONE C=GREEN I=JOIN L=33;

21 SYMBOL5 V=NONE C=GREEN I=JOIN L=1;

22 LEGEND1 LABEL=(’a=0.5, b=’);

23

24 /* Plot spectral densities of ARMA (1,1)-processes */
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25 PROC GPLOT DATA=data1;

26 PLOT f*lambda=b / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

27 RUN; QUIT;

Program 4.3.1: Computation of spectral densities.

Like in section 4.2 (Linear Filters and Frequen-
cies) the programs here just generate graphics.
In the DATA step some loops over the varying
parameter and over lambda are used to calcu-
late the values of the spectral densities of the

corresponding processes. Here SYMBOL state-
ments are necessary and a LABEL statement
to distinguish the different curves generated by
PROC GPLOT.

Plot 4.3.2a: Spectral densities of ARMA(1, 1)-processes with parame-
ter b fixed and various a. Corresponding file: arma11 sd2.sas.
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Plot 4.3.3a: Spectral densities of MA(1)-processes Yt = εt + bεt−1 for
various b. Corresponding file: ma1 sd.sas.
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Plot 4.3.4a: Spectral densities of AR(1)-processes Yt = aYt−1 + εt for
various a. Corresponding file: ar1 sd.sas.

Exercises
4.1. Formulate and prove Theorem 4.1.1 for Hermitian functions K
and complex-valued stationary processes. Hint for the sufficiency part:
Let K1 be the real part and K2 be the imaginary part of K. Consider
the real-valued 2n× 2n-matrices

M (n) =
1

2

(
K

(n)
1 K

(n)
2

−K(n)
2 K

(n)
1

)
, K

(n)
l =

(
Kl(r − s)

)
1≤r,s≤n

, l = 1, 2.

Then M (n) is a positive semidefinite matrix (check that zTKz̄ =
(x, y)TM (n)(x, y), z = x + iy, x, y ∈ Rn). Proceed as in the proof
of Theorem 4.1.1: Let (V1, . . . , Vn,W1, . . . ,Wn) be a 2n-dimensional
normal distributed random vector with mean vector zero and covari-
ance matrix M (n) and define for n ∈ N the family of finite dimensional
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distributions

Ft+1,...,t+n(v1, w1, . . . , vn, wn) := P{V1 ≤ v1,W1 ≤ w1, . . . , Vn ≤ vn,Wn ≤ wn},

t ∈ Z. By Kolmogorov’s theorem there exists a bivariate Gaussian
process (Vt,Wt)t∈Z with mean vector zero and covariances

E(Vt+hVt) = E(Wt+hWt) =
1

2
K1(h)

E(Vt+hWt) = −E(Wt+hVt) =
1

2
K2(h).

Conclude by showing that the complex-valued process Yt := Vt − iWt,
t ∈ Z, has the autocovariance function K.

4.2. Suppose that A is a real positive semidefinite n× n-matrix i.e.,
xTAx ≥ 0 for x ∈ Rn. Show that A is also positive semidefinite for
complex numbers i.e., zTAz̄ ≥ 0 for z ∈ Cn.

4.3. Use (4.3) to show that for 0 < a < 0.5

γ(h) =

{
sin(2πah)

2πh , h ∈ Z \ {0}
a, h = 0

is the autocovariance function of a stationary process. Compute its
spectral density.

4.4. Compute the autocovariance function of a stationary process with
spectral density

f(λ) =
0.5 − |λ− 0.5|

0.52
, 0 ≤ λ ≤ 1.

4.5. Suppose that F and G are measure generating functions defined
on some interval [a, b] with F (a) = G(a) = 0 and

∫

[a,b]

ψ(x)F (dx) =

∫

[a,b]

ψ(x)G(dx)

for every continuous function ψ : [a, b] → R. Show that F=G. Hint:
Approximate the indicator function 1[a,t](x), x ∈ [a, b], by continuous
functions.
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4.6. Generate a white noise process and plot its periodogram.

4.7. A real valued stationary process (Yt)t∈Z is supposed to have the
spectral density f(λ) = a+bλ, λ ∈ [0, 0.5]. Which conditions must be
satisfied by a and b? Compute the autocovariance function of (Yt)t∈Z.

4.8. (Césaro convergence) Show that limN→∞
∑N

t=1 at = S implies

limN→∞
∑N−1

t=1 (1−t/N)at = S. Hint:
∑N−1

t=1 (1−t/N)at = (1/N)
∑N−1

s=1

∑s
t=1 at.

4.9. Suppose that (Yt)t∈Z and (Zt)t∈Z are stationary processes such
that Yr and Zs are uncorrelated for arbitrary r, s ∈ Z. Denote by FY

and FZ the pertaining spectral distribution functions and put Xt :=
Yt + Zt, t ∈ Z. Show that the process (Xt) is also stationary and
compute its spectral distribution function.

4.10. Let (Yt) be a real valued stationary process with spectral dis-
tribution function F . Show that for any function g : [−0.5, 0.5] → C

with
∫ 1

0 |g(λ− 0.5)|2 dF (λ) <∞
1∫

0

g(λ− 0.5) dF (λ) =

∫ 1

0

g(0.5 − λ) dF (λ).

In particular we have

F (0.5 + λ) − F (0.5−) = F (0.5) − F ((0.5 − λ)−).

Hint: Verify the equality first for g(x) = exp(i2πhx), h ∈ Z, and then
use the fact that, on compact sets, the trigonometric polynomials
are uniformly dense in the space of continuous functions, which in
turn form a dense subset in the space of square integrable functions.
Finally, consider the function g(x) = 1[0,ξ](x), 0 ≤ ξ ≤ 0.5 (cf. the
hint in Exercise 4.5).

4.11. Let (Xt) and (Yt) be stationary processes with mean zero and
absolute summable covariance functions. If their spectral densities fX

and fY satisfy fX(λ) ≤ fY (λ) for 0 ≤ λ ≤ 1, show that

(i) Γn,Y −Γn,X is a positive semidefinite matrix, where Γn,X and Γn,Y

are the covariance matrices of (X1, . . . , Xn)
T and (Y1, . . . , Yn)

T

respectively, and
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(ii) Var(aT (X1, . . . , Xn)) ≤ Var(aT (Y1, . . . , Yn)) for all a = (a1, . . . , an)
T ∈

Rn.

4.12. Compute the gain function of the filter

au =





1/4, u ∈ {−1, 1}
1/2, u = 0

0 elsewhere.

4.13. The simple moving average

au =

{
1/(2q + 1), u ≤ |q|
0 elsewhere

has the gain function

ga(λ) =





1, λ = 0(
sin((2q+1)πλ)
(2q+1) sin(πλ)

)2

, λ ∈ (0, 0.5].

Is this filter for large q a low pass filter? Plot its power transfer
functions for q = 5/10/20. Hint: Exercise 3.2.

4.14. Compute the gain function of the exponential smoothing filter

au =

{
α(1 − α)u, u ≥ 0

0, u < 0,

where 0 < α < 1. Plot this function for various α. What is the effect
of α → 0 or α→ 1?

4.15. Let (Xt)t∈Z be a stationary process, (au)u∈Z an absolutely sum-
mable filter and put Yt :=

∑
u∈Z auXt−u, t ∈ Z. If (bw)w∈Z is another

absolutely summable filter, then the process Zt =
∑

w∈Z bwYt−w has
the spectral distribution function

FZ(λ) =

λ∫

0

|Fa(µ)|2|Fb(µ)|2 dFX(µ)

(cf. Exercise 3.11 (iii)).
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4.16. Show that the function

D(ar, . . . , as) =

0.5∫

0

|f(λ) − fa(λ)|2 dλ

with fa(λ) =
∑s

u=r aue
−i2πλu, au ∈ R, is minimized for

au := 2 Re
(∫ 0.5

0

f(λ)ei2πλu dλ
)
, u = r, . . . , s.

Hint: Put f(λ) = f1(λ) + if2(λ) and differentiate with respect to au.

4.17. Compute in analogy to Example 4.2.5 the transfer functions of
the least squares high pass and band pass filter. Plot these functions.
Is Gibbs’ phenomenon observable?

4.18. An AR(2)-process

Yt = a1Yt−1 + a2Yt−2 + εt

satisfying the stationarity condition (2.3) (cf. Exercise 2.23) has the
spectral density

fY (λ) =
σ2

1 + a2
1 + a2

2 + 2(a1a2 − a1) cos(2πλ) − 2a2 cos(4πλ)
.

Plot this function for various choices of a1, a2.

4.19. Show that (4.2) is a necessary condition for K to be the auto-
covariance function of a stationary process.
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Chapter

5Statistical Analysis in
the Frequency Domain

We will deal in this chapter with the problem of testing for a white
noise and the estimation of the spectral density. The empirical coun-
terpart of the spectral density, the periodogram, will be basic for both
problems, though it will turn out that it is not a consistent estimate.
Consistency requires extra smoothing of the periodogram via a linear
filter.

5.1 Testing for a White Noise
Our initial step in a statistical analysis of a time series in the frequency
domain is to test, whether the data are generated by a white noise
(εt)t∈Z. We start with the model

Yt = µ+ A cos(2πλt) +B sin(2πλt) + εt,

where we assume that the εt are independent and normal distributed
with mean zero and variance σ2. We will test the nullhypothesis

A = B = 0

against the alternative

A 6= 0 or B 6= 0,

where the frequency λ, the variance σ2 > 0 and the intercept µ ∈ R

are unknown. Since the periodogram is used for the detection of highly
intensive frequencies inherent in the data, it seems plausible to apply
it to the preceding testing problem as well. Note that (Yt)t∈Z is a
stationary process only under the nullhypothesis A = B = 0.
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The Distribution of the Periodogram
In the following we will derive the tests by Fisher and Bartlett–
Kolmogorov–Smirnov for the above testing problem. In a preparatory
step we compute the distribution of the periodogram.

Lemma 5.1.1. Let ε1, . . . , εn be independent and identically normal
distributed random variables with mean µ ∈ R and variance σ2 > 0.
Denote by ε̄ := n−1

∑n
t=1 εt the sample mean of ε1, . . . , εn and by

Cε

(
k

n

)
=

1

n

n∑

t=1

(εt − ε̄) cos

(
2π
k

n
t

)
,

Sε

(
k

n

)
=

1

n

n∑

t=1

(εt − ε̄) sin

(
2π
k

n
t

)

the cross covariances with Fourier frequencies k/n, 1 ≤ k ≤ [(n −
1)/2], cf. (3.1). Then the 2[(n− 1)/2] random variables

Cε(k/n), Sε(k/n), 1 ≤ k ≤ [(n− 1)/2],

are independent and identically N(0, σ2/(2n))-distributed.

Proof. Note that with m := [(n− 1)/2] we have

v :=
(
Cε(1/n), Sε(1/n), . . . , Cε(m/n), Sε(m/n)

)T

= An−1(εt − ε̄)1≤t≤n

= A(In − n−1En)(εt)1≤t≤n,

where the 2m× n-matrix A is given by

A :=
1

n




cos
(
2π 1

n

)
cos
(
2π 1

n2
)

. . . cos
(
2π 1

nn
)

sin
(
2π 1

n

)
sin
(
2π 1

n2
)

. . . sin
(
2π 1

nn
)

...
...

cos
(
2πm

n

)
cos
(
2πm

n 2
)

. . . cos
(
2πm

n n
)

sin
(
2πm

n

)
sin
(
2πm

n 2
)

. . . sin
(
2πm

n n
)




.
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In is the n × n-unity matrix and En is the n × n-matrix with each
entry being 1. The vector v is, therefore, normal distributed with
mean vector zero and covariance matrix

σ2A(In − n−1En)(In − n−1En)
TAT

= σ2A(In − n−1En)A
T

= σ2AAT

=
σ2

2n
In,

which is a consequence of (3.5) and the orthogonality properties from
Lemma 3.1.2; see e.g. Definition 2.1.2 in Falk et al. (2002).

Corollary 5.1.2. Let ε1, . . . , εn be as in the preceding lemma and let

Iε(k/n) = n
{
C2

ε (k/n) + S2
ε (k/n)

}

be the pertaining periodogram, evaluated at the Fourier frequencies
k/n, 1 ≤ k ≤ [(n − 1)/2]. The random variables Iε(k/n)/σ2 are
independent and identically standard exponential distributed i.e.,

P{Iε(k/n)/σ2 ≤ x} =

{
1 − exp(−x), x > 0

0, x ≤ 0.

Proof. Lemma 5.1.1 implies that

√
2n

σ2
Cε(k/n),

√
2n

σ2
Sε(k/n)

are independent standard normal random variables and, thus,

2Iε(k/n)

σ2
=

(√
2n

σ2
Cε(k/n)

)2

+

(√
2n

σ2
Sε(k/n)

)2

is χ2-distributed with two degrees of freedom. Since this distribution
has the distribution function 1 − exp(−x/2), x ≥ 0, the assertion
follows; see e.g. Theorem 2.1.7 in Falk et al. (2002).
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Denote by U1:m ≤ U2:m ≤ · · · ≤ Um:m the ordered values pertaining
to independent and uniformly on (0, 1) distributed random variables
U1, . . . , Um. It is a well known result in the theory of order statistics
that the distribution of the vector (Uj:m)1≤j≤m coincides with that
of ((Z1 + · · · + Zj)/(Z1 + · · · + Zm+1))1≤j≤m, where Z1, . . . , Zm+1 are
independent and identically exponential distributed random variables;
see, for example, Theorem 1.6.7 in Reiss (1989). The following result,
which will be basic for our further considerations, is, therefore, an
immediate consequence of Corollary 5.1.2; see also Exercise 5.3. By
=D we denote equality in distribution.

Theorem 5.1.3. Let ε1, . . . , εn be independent N(µ, σ2)-distributed
random variables and denote by

Sj :=

∑j
k=1 Iε(k/n)∑m
k=1 Iε(k/n)

, j = 1, . . . ,m := [(n− 1)/2],

the cumulated periodogram. Note that Sm = 1. Then we have

(
S1, . . . , Sm−1

)
=D

(
U1:m−1, . . . , Um−1:m−1).

The vector (S1, . . . , Sm−1) has, therefore, the Lebesgue-density

f(s1, . . . , sm−1) =

{
(m− 1)!, if 0 < s1 < · · · < sm−1 < 1

0 elsewhere.

The following consequence of the preceding result is obvious.

Corollary 5.1.4. The empirical distribution function of S1, . . . , Sm−1

is distributed like that of U1, . . . , Um−1, i.e.,

F̂m−1(x) :=
1

m− 1

m−1∑

j=1

1(0,x](Sj) =D
1

m− 1

m−1∑

j=1

1(0,x](Uj), x ∈ [0, 1].

Corollary 5.1.5. Put S0 := 0 and

Mm := max
1≤j≤m

(Sj − Sj−1) =
max1≤j≤m Iε(j/n)∑m

k=1 Iε(k/n)
.
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The maximum spacing Mm has the distribution function

Gm(x) := P{Mm ≤ x} =
m∑

j=0

(−1)j

(
m

j

)
(max{0, 1−jx})m−1, x > 0.

Proof. Put

Vj := Sj − Sj−1, j = 1, . . . ,m.

By Theorem 5.1.3 the vector (V1, . . . , Vm) is distributed like the length
of the m consecutive intervals into which [0, 1] is partitioned by the
m− 1 random points U1, . . . , Um−1:

(V1, . . . , Vm) =D (U1:m−1, U2:m−1 − U1:m−1, . . . , 1 − Um−1:m−1).

The probability that Mm is less than or equal to x equals the prob-
ability that all spacings Vj are less than or equal to x, and this is
provided by the covering theorem as stated in Theorem 3 in Section
I.9 of Feller (1971).

Fisher’s Test
The preceding results suggest to test the hypothesis Yt = εt with εt

independent and N(µ, σ2)-distributed, by testing for the uniform dis-
tribution on [0, 1]. Precisely, we will reject this hypothesis if Fisher’s
κ-statistic

κm :=
max1≤j≤m I(j/n)

(1/m)
∑m

k=1 I(k/n)
= mMm

is significantly large, i.e., if one of the values I(j/n) is significantly
larger than the average over all. The hypothesis is, therefore, rejected
at error level α if

κm > cα with 1 −Gm(cα) = α.

This is Fisher’s test for hidden periodicities. Common values are
α = 0.01 and = 0.05. Table 5.1.1, taken from Fuller (1976), lists
several critical values cα.
Note that these quantiles can be approximated by corresponding quan-
tiles of a Gumbel distribution if m is large (Exercise 5.12).
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m c0.05 c0.01 m c0.05 c0.01
10 4.450 5.358 150 7.832 9.372
15 5.019 6.103 200 8.147 9.707
20 5.408 6.594 250 8.389 9.960
25 5.701 6.955 300 8.584 10.164
30 5.935 7.237 350 8.748 10.334
40 6.295 7.663 400 8.889 10.480
50 6.567 7.977 500 9.123 10.721
60 6.785 8.225 600 9.313 10.916
70 6.967 8.428 700 9.473 11.079
80 7.122 8.601 800 9.612 11.220
90 7.258 8.750 900 9.733 11.344

100 7.378 8.882 1000 9.842 11.454

Table 5.1.1: Critical values cα of Fisher’s test for hidden periodicities.

The Bartlett–Kolmogorov–Smirnov Test
Denote again by Sj the cumulated periodogram as in Theorem 5.1.3.
If actually Yt = εt with εt independent and identically N(µ, σ2)-
distributed, then we know from Corollary 5.1.4 that the empirical
distribution function F̂m−1 of S1, . . . , Sm−1 behaves stochastically ex-
actly like that ofm−1 independent and uniformly on (0, 1) distributed
random variables. Therefore, with the Kolmogorov–Smirnov statistic

∆m−1 := sup
x∈[0,1]

|F̂m−1(x) − x|

we can measure the maximum difference between the empirical dis-
tribution function and the theoretical one F (x) = x, x ∈ [0, 1]. The
following rule is quite common. For m > 30 i.e., n > 62, the hy-
pothesis Yt = εt with εt being independent and N(µ, σ2)-distributed
is rejected if ∆m−1 > cα/

√
m− 1, where c0.05 = 1.36 and c0.01 = 1.63

are the critical values for the levels α = 0.05 and α = 0.01.
This Bartlett-Kolmogorov-Smirnov test can also be carried out visu-
ally by plotting for x ∈ [0, 1] the sample distribution function F̂m−1(x)
and the band

y = x± cα√
m− 1

.
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The hypothesis Yt = εt is rejected if F̂m−1(x) is for some x ∈ [0, 1]
outside of this confidence band.

Example 5.1.6. (Airline Data). We want to test, whether the vari-
ance stabilized, trend eliminated and seasonally adjusted Airline Data
from Example 1.3.1 were generated from a white noise (εt)t∈Z, where
εt are independent and identically normal distributed. The Fisher
test statistic has the value κm = 6.573 and does, therefore, not reject
the hypothesis at the levels α = 0.05 and α = 0.01, where m = 65.
The Bartlett–Kolmogorov–Smirnov test, however, rejects this hypoth-
esis at both levels, since ∆64 = 0.2319 > 1.36/

√
64 = 0.17 and also

∆64 > 1.63/
√

64 = 0.20375.

SPECTRA Procedure

----- Test for White Noise for variable DLOGNUM -----

Fisher ’s Kappa: M*MAX(P(*))/SUM(P(*))

Parameters: M = 65

MAX(P(*)) = 0.028

SUM(P(*)) = 0.275

Test Statistic: Kappa = 6.5730

Bartlett ’s Kolmogorov -Smirnov Statistic:

Maximum absolute difference of the standardized

partial sums of the periodogram and the CDF of a

uniform (0,1) random variable.

Test Statistic = 0.2319

Listing 5.1.1a: Fisher’s κ and the Bartlett-Kolmogorov-Smirnov test

with m = 65 for testing a white noise generation of the adjusted

Airline Data.

1 /* airline_whitenoise.sas */

2 TITLE1 ’Tests for white noise ’;

3 TITLE2 ’for the trend und seasonal ’;

4 TITLE3 ’adjusted Airline Data ’;

5

6 /* Read in the data and compute log -transformation as well as

↪→seasonal and trend adjusted data */

7 DATA data1;

8 INFILE ’c:\data\airline.txt ’;
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9 INPUT num @@;

10 dlognum=DIF12(DIF(LOG(num)));

11

12 /* Compute periodogram and test for white noise */

13 PROC SPECTRA DATA=data1 P WHITETEST OUT=data2;

14 VAR dlognum;

15 RUN; QUIT;

Program 5.1.1: Testing for white noise.

In the DATA step the raw data of the airline pas-
sengers are read into the variable num. A log-
transformation, building the fist order difference
for trend elimination and the 12th order differ-
ence for elimination of a seasonal component
lead to the variable dlognum, which is supposed
to be generated by a stationary process.
Then PROC SPECTRA is applied to this variable,
whereby the options P and OUT=data2 gener-

ate a data set containing the periodogram data.
The option WHITETEST causes SAS to carry out
the two tests for a white noise, Fisher’s test
and the Bartlett-Kolmogorov-Smirnov test. SAS
only provides the values of the test statistics but
no decision. One has to compare these values
with the critical values from Table 5.1.1 (Criti-
cal values for Fisher’s Test in the script) and the
approximative ones cα/

√
m − 1.

The following figure visualizes the rejection at both levels by the
Bartlett-Kolmogorov-Smirnov test.
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Plot 5.1.2a: Bartlett-Kolmogorov-Smirnov test with m = 65 test-
ing for a white noise generation of the adjusted Airline Data. Solid
line/broken line = confidence bands for F̂m−1(x), x ∈ [0, 1], at levels
α = 0.05/0.01.

1 /* airline_whitenoise_plot .sas */

2 TITLE1 ’Visualisation of the test for white noise ’;

3 TITLE2 ’for the trend und seasonal adjusted ’;

4 TITLE3 ’Airline Data ’;

5 /* Note that this program needs data2 generated by the previous

↪→program (airline_whitenoise.sas) */

6

7 /* Calculate the sum of the periodogram */

8 PROC MEANS DATA=data2(FIRSTOBS =2) NOPRINT;

9 VAR P_01;

10 OUTPUT OUT=data3 SUM=psum;

11

12 /* Compute empirical distribution function of cumulated periodogram

↪→ and its confidence bands */

13 DATA data4;

14 SET data2(FIRSTOBS =2);

15 IF _N_=1 THEN SET data3;

16 RETAIN s 0;

17 s=s+P_01/psum;

18 fm=_N_/(_FREQ_ -1);

19 yu_01=fm +1.63/ SQRT(_FREQ_ -1);

20 yl_01=fm -1.63/ SQRT(_FREQ_ -1);

21 yu_05=fm +1.36/ SQRT(_FREQ_ -1);
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22 yl_05=fm -1.36/ SQRT(_FREQ_ -1);

23

24 /* Graphical options */

25 SYMBOL1 V=NONE I=STEPJ C=GREEN;

26 SYMBOL2 V=NONE I=JOIN C=RED L=2;

27 SYMBOL3 V=NONE I=JOIN C=RED L=1;

28 AXIS1 LABEL=(’x’) ORDER =(.0 TO 1.0 BY .1);

29 AXIS2 LABEL=NONE;

30

31 /* Plot empirical distribution function of cumulated periodogram

↪→with its confidence bands */

32 PROC GPLOT DATA=data4;

33 PLOT fm*s=1 yu_01*fm=2 yl_01*fm=2 yu_05*fm=3 yl_05*fm=3 / OVERLAY

↪→ HAXIS=AXIS1 VAXIS=AXIS2;

34 RUN; QUIT;

Program 5.1.2: Testing for white noise with confidence bands.

This program uses the data set data2 cre-
ated by Program 5.1.1 (airline whitenoise.sas),
where the first observation belonging to the fre-
quency 0 is dropped. PROC MEANS calculates
the sum (keyword SUM) of the SAS periodogram
variable P 0 and stores it in the variable psum of
the data set data3. The NOPRINT option sup-
presses the printing of the output.
The next DATA step combines every observa-
tion of data2 with this sum by means of the
IF statement. Furthermore a variable s is ini-
tialized with the value 0 by the RETAIN state-
ment and then the portion of each periodogram
value from the sum is cumulated. The variable

fm contains the values of the empirical distrib-
ution function calculated by means of the auto-
matically generated variable N containing the
number of observation and the variable FREQ ,
which was created by PROC MEANS and contains
the number m. The values of the upper and
lower band are stored in the y variables.

The last part of this program contains SYMBOL

and AXIS statements and PROC GPLOT to visu-
alize the Bartlett-Kolmogorov-Smirnov statistic.
The empirical distribution of the cumulated peri-
odogram is represented as a step function due
to the I=STEPJ option in the SYMBOL1 statement.

5.2 Estimating Spectral Densities
We suppose in the following that (Yt)t∈Z is a stationary real valued
process with mean µ and absolutely summable autocovariance func-
tion γ. According to Corollary 4.1.5, the process (Yt) has the contin-
uous spectral density

f(λ) =
∑

h∈Z

γ(h)e−i2πλh.

In the preceding section we computed the distribution of the empirical
counterpart of a spectral density, the periodogram, in the particular
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case, when (Yt) is a Gaussian white noise. In this section we will inves-
tigate the limit behavior of the periodogram for arbitrary independent
random variables (Yt).

Asymptotic Properties of the Periodogram

In order to establish asymptotic properties of the periodogram, its
following modification is quite useful. For Fourier frequencies k/n,
0 ≤ k ≤ [n/2] we put

In(k/n) =
1

n

∣∣∣
n∑

t=1

Yte
−i2π(k/n)t

∣∣∣
2

=
1

n

{( n∑

t=1

Yt cos
(
2π
k

n
t
))2

+
( n∑

t=1

Yt sin
(
2π
k

n
t
))2
}
.

(5.1)

Up to k = 0, this coincides by (3.6) with the definition of the peri-
odogram as given in (3.7). From Theorem 3.2.3 we obtain the repre-
sentation

In(k/n) =

{
nȲ 2

n , k = 0∑
|h|<n c(h)e

−i2π(k/n)h, k = 1, . . . , [n/2]
(5.2)

with Ȳn := n−1
∑n

t=1 Yt and the sample autocovariance function

c(h) =
1

n

n−|h|∑

t=1

(
Yt − Ȳn

)(
Yt+|h| − Ȳn

)
.

By representation (5.1) and the equations (3.5), the value In(k/n)
does not change for k 6= 0 if we replace the sample mean Ȳn in c(h) by
the theoretical mean µ. This leads to the equivalent representation of
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the periodogram for k 6= 0

In(k/n) =
∑

|h|<n

1

n

( n−|h|∑

t=1

(Yt − µ)(Yt+|h| − µ)
)
e−i2π(k/n)h

=
1

n

n∑

t=1

(Yt − µ)2 + 2
n−1∑

h=1

1

n

( n−|h|∑

t=1

(Yt − µ)(Yt+|h| − µ)
)

cos
(
2π
k

n
h
)
.

(5.3)

We define now the periodogram for λ ∈ [0, 0.5] as a piecewise constant
function

In(λ) = In(k/n) if
k

n
− 1

2n
< λ ≤ k

n
+

1

2n
. (5.4)

The following result shows that the periodogram In(λ) is for λ 6= 0 an
asymptotically unbiased estimator of the spectral density f(λ).

Theorem 5.2.1. Let (Yt)t∈Z be a stationary process with absolutely
summable autocovariance function γ. Then we have with µ = E(Yt)

E(In(0)) − nµ2 n→∞−→ f(0),

E(In(λ))
n→∞−→ f(λ), λ 6= 0.

If µ = 0, then the convergence E(In(λ))
n→∞−→ f(λ) holds uniformly on

[0, 0.5].

Proof. By representation (5.2) and the Césaro convergence result (Ex-
ercise 4.8) we have

E(In(0)) − nµ2 =
1

n

( n∑

t=1

n∑

s=1

E(YtYs)

)
− nµ2

=
1

n

n∑

t=1

n∑

s=1

Cov(Yt, Ys)

=
∑

|h|<n

(
1 − |h|

n

)
γ(h)

n→∞−→
∑

h∈Z

γ(h) = f(0).
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Define now for λ ∈ [0, 0.5] the auxiliary function

gn(λ) :=
k

n
, if

k

n
− 1

2n
< λ ≤ k

n
+

1

2n
, k ∈ Z. (5.5)

Then we obviously have

In(λ) = In(gn(λ)). (5.6)

Choose now λ ∈ (0, 0.5]. Since gn(λ) −→ λ as n→ ∞, it follows that
gn(λ) > 0 for n large enough. By (5.3) and (5.6) we obtain for such n

E(In(λ)) =
∑

|h|<n

1

n

n−|h|∑

t=1

E
(
(Yt − µ)(Yt+|h| − µ)

)
e−i2πgn(λ)h

=
∑

|h|<n

(
1 − |h|

n

)
γ(h)e−i2πgn(λ)h.

Since
∑

h∈Z |γ(h)| <∞, the series
∑

|h|<n γ(h) exp(−i2πλh) converges

to f(λ) uniformly for 0 ≤ λ ≤ 0.5. Kronecker’s Lemma (Exercise 5.8)
implies moreover

∣∣∣
∑

|h|<n

|h|
n
γ(h)e−i2πλh

∣∣∣ ≤
∑

|h|<n

|h|
n
|γ(h)| n→∞−→ 0,

and, thus, the series

fn(λ) :=
∑

|h|<n

(
1 − |h|

n

)
γ(h)e−i2πλh

converges to f(λ) uniformly in λ as well. From gn(λ)
n→∞−→ λ and the

continuity of f we obtain for λ ∈ (0, 0.5]

|E(In(λ)) − f(λ)| = |fn(gn(λ)) − f(λ)|
≤ |fn(gn(λ)) − f(gn(λ))| + |f(gn(λ)) − f(λ)| n→∞−→ 0.

Note that |gn(λ) − λ| ≤ 1/(2n). The uniform convergence in case of
µ = 0 then follows from the uniform convergence of gn(λ) to λ and
the uniform continuity of f on the compact interval [0, 0.5].
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In the following result we compute the asymptotic distribution of
the periodogram for independent and identically distributed random
variables with zero mean, which are not necessarily Gaussian ones.
The Gaussian case was already established in Corollary 5.1.2.

Theorem 5.2.2. Let Z1, . . . , Zn be independent and identically dis-
tributed random variables with mean E(Zt) = 0 and variance E(Z2

t ) =
σ2 < ∞. Denote by In(λ) the pertaining periodogram as defined in
(5.6).

1. The random vector (In(λ1), . . . , In(λr)) with 0 < λ1 < · · · <
λr < 0.5 converges in distribution for n→ ∞ to the distribution
of r independent and identically exponential distributed random
variables with mean σ2.

2. If E(Z4
t ) = ησ4 <∞, then we have for k = 0, . . . , [n/2]

Var(In(k/n)) =

{
2σ4 + n−1(η − 3)σ4, k = 0 or k = n/2, if n even

σ4 + n−1(η − 3)σ4 elsewhere

(5.7)

and
Cov(In(j/n), In(k/n)) = n−1(η − 3)σ4, j 6= k. (5.8)

For N(0, σ2)-distributed random variables Zt we have η = 3 (Exer-
cise 5.9) and, thus, In(k/n) and In(j/n) are for j 6= k uncorrelated.
Actually, we established in Corollary 5.1.2 that they are independent
in this case.

Proof. Put for λ ∈ (0, 0.5)

An(λ) := An(gn(λ)) :=
√

2/n
n∑

t=1

Zt cos(2πgn(λ)t),

Bn(λ) := Bn(gn(λ)) :=
√

2/n
n∑

t=1

Zt sin(2πgn(λ)t),

with gn defined in (5.5). Since

In(λ) =
1

2

{
A2

n(λ) +B2
n(λ)

}
,
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it suffices, by repeating the arguments in the proof of Corollary 5.1.2,
to show that

(
An(λ1), Bn(λ1), . . . , An(λr), Bn(λr)

)
−→D N(0,σ2I2r),

where I2r denotes the 2r × 2r-unity matrix and −→D convergence in
distribution. Since gn(λ)

n→∞−→ λ, we have gn(λ) > 0 for λ ∈ (0, 0.5) if
n is large enough. The independence of Zt together with the definition
of gn and the orthogonality equations in Lemma 3.1.2 imply

Var(An(λ)) = Var(An(gn(λ)))

= σ2 2

n

n∑

t=1

cos2(2πgn(λ)t) = σ2.

For ε > 0 we have

1

n

n∑

t=1

E
(
Z2

t cos2(2πgn(λ)t)1{|Zt cos(2πgn(λ)t)|>ε
√

nσ2}

)

≤ 1

n

n∑

t=1

E
(
Z2

t 1{|Zt|>ε
√

nσ2}

)
= E

(
Z2

11{|Z1|>ε
√

nσ2}

)
n→∞−→ 0

i.e., the triangular array (2/n)1/2Zt cos(2πgn(λ)t), 1 ≤ t ≤ n, n ∈
N, satisfies the Lindeberg condition implying An(λ) −→D N(0, σ2);
see, for example, Theorem 7.2 in Billingsley (1968). Similarly one
shows that Bn(λ) −→D N(0, σ2) as well. Since the random vector
(An(λ1), Bn(λ1), . . . , An(λr), Bn(λr)) has by (3.2) the covariance ma-
trix σ2I2r, its asymptotic joint normality follows easily by applying
the Cramér-Wold device, cf. Theorem 7.7 in Billingsley (1968), and
proceeding as before. This proves part (i) of Theorem 5.2.2.

From the definition of the periodogram in (5.1) we conclude as in the
proof of Theorem 3.2.3

In(k/n) =
1

n

n∑

s=1

n∑

t=1

ZsZte
−i2π(k/n)(s−t)
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and, thus, we obtain

E(In(j/n)In(k/n))

=
1

n2

n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

E(ZsZtZuZv)e
−i2π(j/n)(s−t)e−i2π(k/n)(u−v).

We have

E(ZsZtZuZv) =





ησ4, s = t = u = v

σ4, s = t 6= u = v, s = u 6= t = v, s = v 6= t = u

0 elsewhere

and

e−i2π(j/n)(s−t)e−i2π(k/n)(u−v) =





1, s = t, u = v

e−i2π((j+k)/n)sei2π((j+k)/n)t, s = u, t = v

e−i2π((j−k)/n)sei2π((j−k)/n)t, s = v, t = u.

This implies

E(In(j/n)In(k/n))

=
ησ4

n
+
σ4

n2

{
n(n− 1) +

∣∣∣
n∑

t=1

e−i2π((j+k)/n)t
∣∣∣
2

+
∣∣∣

n∑

t=1

e−i2π((j−k)/n)t
∣∣∣
2

− 2n
}

=
(η − 3)σ4

n
+ σ4

{
1 +

1

n2

∣∣∣
n∑

t=1

ei2π((j+k)/n)t
∣∣∣
2

+
1

n2

∣∣∣
n∑

t=1

ei2π((j−k)/n)t
∣∣∣
2}
.

From E(In(k/n)) = n−1
∑n

t=1 E(Z2
t ) = σ2 we finally obtain

Cov(In(j/n), In(k/n))

=
(η − 3)σ4

n
+
σ4

n2

{∣∣∣
n∑

t=1

ei2π((j+k)/n)t
∣∣∣
2

+
∣∣∣

n∑

t=1

ei2π((j−k)/n)t
∣∣∣
2}
,

from which (5.7) and (5.8) follow by using (3.5)).

Remark 5.2.3. Theorem 5.2.2 can be generalized to filtered processes
Yt =

∑
u∈Z auZt−u, with (Zt)t∈Z as in Theorem 5.2.2. In this case one

has to replace σ2, which equals by Example 4.1.3 the constant spectral
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density fZ(λ), in (i) by the spectral density fY (λi), 1 ≤ i ≤ r. If in
addition

∑
u∈Z |au||u|1/2 <∞, then we have in (ii) the expansions

Var(In(k/n)) =

{
2f 2

Y (k/n) +O(n−1/2), k = 0 or k = n/2, if n is even

f 2
Y (k/n) +O(n−1/2) elsewhere,

and
Cov(In(j/n), In(k/n)) = O(n−1), j 6= k,

where In is the periodogram pertaining to Y1, . . . , Yn. The above terms
O(n−1/2) and O(n−1) are uniformly bounded in k and j by a constant
C. We omit the highly technical proof and refer to Section 10.3 of
Brockwell and Davis (1991).
Recall that the class of processes Yt =

∑
u∈Z auZt−u is a fairly rich

one, which contains in particular ARMA-processes, see Section 2.2
and Remark 2.1.12.

Discrete Spectral Average Estimator
The preceding results show that the periodogram is not a consistent
estimator of the spectral density. The law of large numbers together
with the above remark motivates, however, that consistency can be
achieved for a smoothed version of the periodogram such as a simple
moving average

∑

|j|≤m

1

2m+ 1
In

(
k + j

n

)
,

which puts equal weights 1/(2m + 1) on adjacent values. Dropping
the condition of equal weights, we define a general linear smoother by
the linear filter

f̂n

(k
n

)
:=
∑

|j|≤m

ajnIn

(k + j

n

)
. (5.9)

The sequence m = m(n), defining the adjacent points of k/n, has to
satisfy

m
n→∞−→ ∞ and m/n

n→∞−→ 0, (5.10)

and the weights ajn have the properties

(a) ajn ≥ 0,
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(b) ajn = a−jn,

(c)
∑

|j|≤m ajn = 1,

(d)
∑

|j|≤m a
2
jn

n→∞−→ 0. (5.11)

For the simple moving average we have, for example

ajn =

{
1/(2m+ 1), |j| ≤ m

0 elsewhere

and
∑

|j|≤m a
2
jn = 1/(2m + 1)

n→∞−→ 0. For λ ∈ [0, 0.5] we put In(0.5 +

λ) := In(0.5 − λ), which defines the periodogram also on [0.5, 1].
If (k + j)/n is outside of the interval [0, 1], then In((k + j)/n) is
understood as the periodic extension of In with period 1. This also
applies to the spectral density f . The estimator

f̂n(λ) := f̂n(gn(λ)),

with gn as defined in (5.5), is called the discrete spectral average esti-
mator . The following result states its consistency for linear processes.

Theorem 5.2.4. Let Yt =
∑

u∈Z buZt−u, t ∈ Z, where Zt are iid with

E(Zt) = 0, E(Z4
t ) < ∞ and

∑
u∈Z |bu||u|1/2 < ∞. Then we have for

0 ≤ µ, λ ≤ 0.5

(i) limn→∞ E
(
f̂n(λ)

)
= f(λ),

(ii) limn→∞
Cov
(
f̂n(λ),f̂n(µ)

)
(∑

|j|≤m a2
jn

) =





2f 2(λ), λ = µ = 0 or 0.5

f 2(λ), 0 < λ = µ < 0.5

0, λ 6= µ.

Condition (d) in (5.11) on the weights together with (ii) in the preced-

ing result entails that Var(f̂n(λ))
n→∞−→ 0 for any λ ∈ [0, 0.5]. Together

with (i) we, therefore, obtain that the mean squared error of f̂n(λ)
vanishes asymptotically:

MSE(f̂n(λ)) = E
{(
f̂n(λ)−f(λ)

)2}
= Var(f̂n(λ))+Bias2(f̂n(λ)) −→n→∞ 0.
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Proof. By the definition of the spectral density estimator in (5.9) we
have

|E(f̂n(λ)) − f(λ)| =
∣∣∣
∑

|j|≤m

ajn

{
E
(
In(gn(λ) + j/n)) − f(λ)

}∣∣∣

=
∣∣∣
∑

|j|≤m

ajn

{
E
(
In(gn(λ) + j/n)) − f(gn(λ) + j/n)

+ f(gn(λ) + j/n) − f(λ)
}∣∣∣,

where (5.10) together with the uniform convergence of gn(λ) to λ
implies

max
|j|≤m

|gn(λ) + j/n− λ| n→∞−→ 0.

Choose ε > 0. The spectral density f of the process (Yt) is continuous
(Exercise 5.16), and hence we have

max
|j|≤m

|f(gn(λ) + j/n) − f(λ)| < ε/2

if n is sufficiently large. From Theorem 5.2.1 we know that in the case
E(Yt) = 0

max
|j|≤m

|E(In(gn(λ) + j/n)) − f(gn(λ) + j/n)| < ε/2

if n is large. Condition (c) in (5.11) together with the triangular

inequality implies |E(f̂n(λ))−f(λ)| < ε for large n. This implies part
(i).

From the definition of f̂n we obtain

Cov(f̂n(λ), f̂n(µ))

=
∑

|j|≤m

∑

|k|≤m

ajnakn Cov
(
In(gn(λ) + j/n), In(gn(µ) + k/n)

)
.

If λ 6= µ and n sufficiently large we have gn(λ) + j/n 6= gn(µ) + k/n
for arbitrary |j|, |k| ≤ m. According to Remark 5.2.3 there exists a
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universal constant C1 > 0 such that

|Cov(f̂n(λ), f̂n(µ))| =
∣∣∣
∑

|j|≤m

∑

|k|≤m

ajnaknO(n−1)
∣∣∣

≤ C1n
−1

( ∑

|j|≤m

ajn

)2

≤ C1
2m+ 1

n

∑

|j|≤m

a2
jn,

where the final inequality is an application of the Cauchy–Schwarz
inequality. Since m/n

n→∞−→ 0, we have established (ii) in the case
λ 6= µ. Suppose now 0 < λ = µ < 0.5. Utilizing again Remark 5.2.3
we have

Var(f̂n(λ)) =
∑

|j|≤m

a2
jn

{
f 2(gn(λ) + j/n) +O(n−1/2)

}

+
∑

|j|≤m

∑

|k|≤m

ajnaknO(n−1) + o(n−1)

=: S1(λ) + S2(λ) + o(n−1).

Repeating the arguments in the proof of part (i) one shows that

S1(λ) =
( ∑

|j|≤m

a2
jn

)
f 2(λ) + o

( ∑

|j|≤m

a2
jn

)
.

Furthermore, with a suitable constant C2 > 0, we have

|S2(λ)| ≤ C2
1

n

( ∑

|j|≤m

ajn

)2

≤ C2
2m+ 1

n

∑

|j|≤m

a2
jn.

Thus we established the assertion of part (ii) also in the case 0 < λ =
µ < 0.5. The remaining cases λ = µ = 0 and λ = µ = 0.5 are shown
in a similar way (Exercise 5.17).

The preceding result requires zero mean variables Yt. This might, how-
ever, be too restrictive in practice. Due to (3.5), the periodograms
of (Yt)1≤t≤n, (Yt − µ)1≤t≤n and (Yt − Ȳ )1≤t≤n coincide at Fourier fre-
quencies different from zero. At frequency λ = 0, however, they
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will differ in general. To estimate f(0) consistently also in the case
µ = E(Yt) 6= 0, one puts

f̂n(0) := a0nIn(1/n) + 2
m∑

j=1

ajnIn
(
(1 + j)/n

)
. (5.12)

Each time the value In(0) occurs in the moving average (5.9), it is

replaced by f̂n(0). Since the resulting estimator of the spectral density
involves only Fourier frequencies different from zero, we can assume
without loss of generality that the underlying variables Yt have zero
mean.

Example 5.2.5. (Sunspot Data). We want to estimate the spectral
density underlying the Sunspot Data. These data, also known as the
Wolf or Wölfer (a student of Wolf) Data, are the yearly sunspot num-
bers between 1749 and 1924. For a discussion of these data and further
literature we refer to Wei (1990), Example 6.2. Plot 5.2.1a shows the
pertaining periodogram and Plot 5.2.1b displays the discrete spectral
average estimator with weights a0n = a1n = a2n = 3/21, a3n = 2/21
and a4n = 1/21, n = 176. These weights pertain to a simple mov-
ing average of length 3 of a simple moving average of length 7. The
smoothed version joins the two peaks close to the frequency λ = 0.1
visible in the periodogram. The observation that a periodogram has
the tendency to split a peak is known as the leakage phenomenon.
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Plot 5.2.1a: Periodogram for Sunspot Data.

Plot 5.2.1b: Discrete spectral average estimate for Sunspot Data.

1 /* sunspot_dsae.sas */
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2 TITLE1 ’Periodogram and spectral density estimate ’;

3 TITLE2 ’Woelfer Sunspot Data ’;

4

5 /* Read in the data */

6 DATA data1;

7 INFILE ’c:\data\sunspot.txt ’;

8 INPUT num @@;

9

10 /* Computation of peridogram and estimation of spectral density */

11 PROC SPECTRA DATA=data1 P S OUT=data2;

12 VAR num;

13 WEIGHTS 1 2 3 3 3 2 1;

14

15 /* Adjusting different periodogram definitions */

16 DATA data3;

17 SET data2(FIRSTOBS =2);

18 lambda=FREQ /(2* CONSTANT(’PI ’));

19 p=P_01 /2;

20 s=S_01 /2*4* CONSTANT(’PI ’);

21

22 /* Graphical options */

23 SYMBOL1 I=JOIN C=RED V=NONE L=1;

24 AXIS1 LABEL =(F=CGREEK ’l’) ORDER =(0 TO .5 BY .05);

25 AXIS2 LABEL=NONE;

26

27 /* Plot periodogram and estimated spectral density */

28 PROC GPLOT DATA=data3;

29 PLOT p*lambda / HAXIS=AXIS1 VAXIS=AXIS2;

30 PLOT s*lambda / HAXIS=AXIS1 VAXIS=AXIS2;

31 RUN; QUIT;

Program 5.2.1: Periodogram and discrete spectral average estimate

for Sunspot Data.

In the DATA step the data of the sunspots are
read into the variable num.
Then PROC SPECTRA is applied to this variable,
whereby the options P (see Program 5.1.1,
airline whitenoise.sas) and S generate a data
set stored in data2 containing the periodogram
data and the estimation of the spectral density
which SAS computes with the weights given in

the WEIGHTS statement. Note that SAS auto-
matically normalizes these weights.

In following DATA step the slightly different de-
finition of the periodogram by SAS is being
adjusted to the definition used here (see Pro-
gram 3.2.1, star periodogram.sas). Both plots
are then printed with PROC GPLOT.

A mathematically convenient way to generate weights ajn, which sat-
isfy the conditions (5.11), is the use of a kernel function. Let K :
[−1, 1] → [0,∞) be a symmetric function i.e., K(−x) = K(x), x ∈
[−1, 1], which satisfies

∫ 1

−1K
2(x) dx <∞. Let now m = m(n)

n→∞−→ ∞
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be an arbitrary sequence of integers with m/n
n→∞−→ 0 and put

ajn :=
K(j/m)∑m

i=−mK(i/m)
, −m ≤ j ≤ m. (5.13)

These weights satisfy the conditions (5.11) (Exercise 5.18).
Take for example K(x) := 1 − |x|, −1 ≤ x ≤ 1. Then we obtain

ajn =
m− |j|
m2

, −m ≤ j ≤ m.

Example 5.2.6. (i) The truncated kernel is defined by

KT (x) =

{
1, |x| ≤ 1

0 elsewhere.

(ii) The Bartlett or triangular kernel is given by

KB(x) :=

{
1 − |x|, |x| ≤ 1

0 elsewhere.

(iii) The Blackman–Tukey kernel (1959) is defined by

KBT (x) =

{
1 − 2a+ 2a cos(x), |x| ≤ 1

0 elsewhere,

where 0 < a ≤ 1/4. The particular choice a = 1/4 yields the Tukey–
Hanning kernel .
(iv) The Parzen kernel (1957) is given by

KP (x) :=





1 − 6|x|2 + 6|x|3, |x| < 1/2

2(1 − |x|)3, 1/2 ≤ |x| ≤ 1

0 elsewhere.

We refer to Andrews (1991) for a discussion of these kernels.

Example 5.2.7. We consider realizations of the MA(1)-process Yt =
εt−0.6εt−1 with εt independent and standard normal for t = 1, . . . , n =
160. Example 4.3.2 implies that the process (Yt) has the spectral
density f(λ) = 1 − 1.2 cos(2πλ) + 0.36. We estimate f(λ) by means
of the Tukey–Hanning kernel.
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Plot 5.2.2a: Discrete spectral average estimator (broken line) with
Blackman–Tukey kernel with parameters r = 10, a = 1/4 and under-
lying spectral density f(λ) = 1 − 1.2 cos(2πλ) + 0.36 (solid line).

1 /* ma1_blackman_tukey.sas */

2 TITLE1 ’Spectral density and Blackman -Tukey estimator ’;

3 TITLE2 ’of MA(1)-process ’;

4

5 /* Generate MA(1)-process */

6 DATA data1;

7 DO t=0 TO 160;

8 e=RANNOR (1);

9 y=e-.6* LAG(e);

10 OUTPUT;

11 END;

12

13 /* Estimation of spectral density */

14 PROC SPECTRA DATA=data1(FIRSTOBS =2) S OUT=data2;

15 VAR y;

16 WEIGHTS TUKEY 10 0;

17 RUN;

18

19 /* Adjusting different definitions */

20 DATA data3;
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21 SET data2;

22 lambda=FREQ /(2* CONSTANT(’PI ’));

23 s=S_01 /2*4* CONSTANT(’PI ’);

24

25 /* Compute underlying spectral density */

26 DATA data4;

27 DO l=0 TO .5 BY .01;

28 f=1 -1.2* COS (2* CONSTANT(’PI ’)*l)+.36;

29 OUTPUT;

30 END;

31

32 /* Merge the data sets */

33 DATA data5;

34 MERGE data3(KEEP=s lambda) data4;

35

36 /* Graphical options */

37 AXIS1 LABEL=NONE;

38 AXIS2 LABEL =(F=CGREEK ’l’) ORDER =(0 TO .5 BY .1);

39 SYMBOL1 I=JOIN C=BLUE V=NONE L=1;

40 SYMBOL2 I=JOIN C=RED V=NONE L=3;

41

42 /* Plot underlying and estimated spectral density */

43 PROC GPLOT DATA=data5;

44 PLOT f*l=1 s*lambda =2 / OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;

45 RUN; QUIT;

Program 5.2.2: Computing discrete spectral average estimator with

Blackman–Tukey kernel.

In the first DATA step the realizations of an
MA(1)-process with the given parameters are
created. Thereby the function RANNOR, which
generates standard normally distributed data,
and LAG, which accesses the value of e of the
preceding loop, are used.
As in Program 5.2.1 (sunspot dsae.sas) PROC

SPECTRA computes the estimator of the spec-
tral density (after dropping the first observa-
tion) by the option S and stores them in data2.
The weights used here come from the Tukey–
Hanning kernel with a specified bandwidth of

m = 10. The second number after the TUKEY

option can be used to refine the choice of the
bandwidth. Since this is not needed here it is
set to 0.
The next DATA step adjusts the different
definitions of the spectral density used
here and by SAS (see Program 3.2.1,
star periodogram.sas). The following DATA step
generates the values of the underlying spec-
tral density. These are merged with the values
of the estimated spectral density and then dis-
played by PROC GPLOT.

Confidence Intervals for Spectral Densities
The random variables In((k+j)/n)/f((k+j)/n), 0 < k+j < n/2, will
by Remark 5.2.3 for large n approximately behave like independent
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and standard exponential distributed random variables Xj. This sug-
gests that the distribution of the discrete spectral average estimator

f̂(k/n) =
∑

|j|≤m

ajnIn

(k + j

n

)

can be approximated by that of the weighted sum
∑

|j|≤m ajnXjf((k+

j)/n). Tukey (1949) showed that the distribution of this weighted sum
can in turn be approximated by that of cY with a suitably chosen
c > 0, where Y follows a gamma distribution with parameters p :=
ν/2 > 0 and b = 1/2 i.e.,

P{Y ≤ t} =
bp

Γ(p)

∫ t

0

xp−1 exp(−bx) dx, t ≥ 0,

where Γ(p) :=
∫∞

0 xp−1 exp(−x) dx denotes the gamma function. The
parameters ν and c are determined by the method of moments as
follows: ν and c are chosen such that cY has mean f(k/n) and its

variance equals the leading term of the variance expansion of f̂(k/n)
in Theorem 5.2.4 (Exercise 5.21):

E(cY ) = cν = f(k/n),

Var(cY ) = 2c2ν = f 2(k/n)
∑

|j|≤m

a2
jn.

The solutions are obviously

c =
f(k/n)

2

∑

|j|≤m

a2
jn

and

ν =
2∑

|j|≤m a
2
jn

.

Note that the gamma distribution with parameters p = ν/2 and
b = 1/2 equals the χ2-distribution with ν degrees of freedom if ν



206 Statistical Analysis in the Frequency Domain

is an integer. The number ν is, therefore, called the equivalent de-
gree of freedom. Observe that ν/f(k/n) = 1/c; the random vari-

able νf̂(k/n)/f(k/n) = f̂(k/n)/c now approximately follows a χ2(ν)-
distribution with the convention that χ2(ν) is the gamma distribution
with parameters p = ν/2 and b = 1/2 if ν is not an integer. The in-
terval

(
νf̂(k/n)

χ2
1−α/2(ν)

,
νf̂(k/n)

χ2
α/2(ν)

)
(5.14)

is a confidence interval for f(k/n) of approximate level 1 − α, α ∈
(0, 1). By χ2

q(ν) we denote the q-quantile of the χ2(ν)-distribution

i.e., P{Y ≤ χ2
q(ν)} = q, 0 < q < 1. Taking logarithms in (5.14), we

obtain the confidence interval for log(f(k/n))

Cν,α(k/n) :=
(

log(f̂(k/n)) + log(ν) − log(χ2
1−α/2(ν)),

log(f̂(k/n)) + log(ν) − log(χ2
α/2(ν))

)
.

This interval has constant length log(χ2
1−α/2 (ν)/χ2

α/2(ν)). Note that

Cν,α(k/n) is a level (1 − α)-confidence interval only for log(f(λ)) at
a fixed Fourier frequency λ = k/n, with 0 < k < [n/2], but not
simultaneously for λ ∈ (0, 0.5).

Example 5.2.8. In continuation of Example 5.2.7 we want to esti-
mate the spectral density f(λ) = 1−1.2 cos(2πλ)+0.36 of the MA(1)-
process Yt = εt − 0.6εt−1 using the discrete spectral average estimator
f̂n(λ) with the weights 1, 3, 6, 9, 12, 15, 18, 20, 21, 21, 21, 20, 18, 15,
12, 9, 6, 3, 1, each divided by 231. These weights are generated by
iterating simple moving averages of lengths 3, 7 and 11. Plot 5.2.3a
displays the logarithms of the estimates, of the true spectral density
and the pertaining confidence intervals.
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Plot 5.2.3a: Logarithms of discrete spectral average estimates (broken
line), of spectral density f(λ) = 1− 1.2 cos(2πλ) + 0.36 (solid line) of
MA(1)-process Yt = εt − 0.6εt−1, t = 1, . . . , n = 160, and confidence
intervals of level 1 − α = 0.95 for log(f(k/n)).

1 /* ma1_logdsae.sas */

2 TITLE1 ’Logarithms of spectral density ,’;

3 TITLE2 ’of their estimates and confidence intervals ’;

4 TITLE3 ’of MA(1)-process ’;

5

6 /* Generate MA(1)-process */

7 DATA data1;

8 DO t=0 TO 160;

9 e=RANNOR (1);

10 y=e-.6* LAG(e);

11 OUTPUT;

12 END;

13

14 /* Estimation of spectral density */

15 PROC SPECTRA DATA=data1(FIRSTOBS =2) S OUT=data2;

16 VAR y; WEIGHTS 1 3 6 9 12 15 18 20 21 21 21 20 18 15 12 9 6 3 1;

17 RUN;

18

19 /* Adjusting different definitions and computation of confidence

↪→bands */

20 DATA data3; SET data2;

21 lambda=FREQ /(2* CONSTANT(’PI ’));

22 log_s_01=LOG(S_01 /2*4* CONSTANT(’PI ’));
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23 nu =2/(3763/53361);

24 c1=log_s_01+LOG(nu)-LOG(CINV (.975,nu));

25 c2=log_s_01+LOG(nu)-LOG(CINV (.025,nu));

26

27 /* Compute underlying spectral density */

28 DATA data4;

29 DO l=0 TO .5 BY 0.01;

30 log_f=LOG ((1 -1.2* COS (2* CONSTANT(’PI ’)*l)+.36));

31 OUTPUT;

32 END;

33

34 /* Merge the data sets */

35 DATA data5;

36 MERGE data3(KEEP=log_s_01 lambda c1 c2) data4;

37

38 /* Graphical options */

39 AXIS1 LABEL=NONE;

40 AXIS2 LABEL =(F=CGREEK ’l’) ORDER =(0 TO .5 BY .1);

41 SYMBOL1 I=JOIN C=BLUE V=NONE L=1;

42 SYMBOL2 I=JOIN C=RED V=NONE L=2;

43 SYMBOL3 I=JOIN C=GREEN V=NONE L=33;

44

45 /* Plot underlying and estimated spectral density */

46 PROC GPLOT DATA=data5;

47 PLOT log_f*l=1 log_s_01*lambda =2 c1*lambda =3 c2*lambda =3 /

↪→OVERLAY VAXIS=AXIS1 HAXIS=AXIS2;

48 RUN; QUIT;

Program 5.2.3: Computation of logarithms of discrete spectral average

estimates, of spectral density and confidence intervals.

This program starts identically to Program 5.2.2
(ma1 blackman tukey.sas) with the generation
of an MA(1)-process and of the computation
the spectral density estimator. Only this time
the weights are directly given to SAS.
In the next DATA step the usual adjustment of
the frequencies is done. This is followed by the
computation of ν according to its definition. The
logarithm of the confidence intervals is calcu-

lated with the help of the function CINV which
returns quantiles of a χ2-distribution with ν de-
grees of freedom.

The rest of the program which displays the
logarithm of the estimated spectral density,
of the underlying density and of the confi-
dence intervals is analogous to Program 5.2.2
(ma1 blackman tukey.sas).

Exercises
5.1. For independent random variables X, Y having continuous dis-
tribution functions it follows that P{X = Y } = 0. Hint: Fubini’s
theorem.
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5.2. Let X1, . . . , Xn be iid random variables with values in R and
distribution function F . Denote by X1:n ≤ · · · ≤ Xn:n the pertaining
order statistics. Then we have

P{Xk:n ≤ t} =
n∑

j=k

(
n

j

)
F (t)j(1 − F (t))n−j, t ∈ R.

The maximum Xn:n has in particular the distribution function F n,
and the minimum X1:n has distribution function 1 − (1 − F )n. Hint:
{Xk:n ≤ t} =

{∑n
j=1 1(−∞,t](Xj) ≥ k

}
.

5.3. Suppose in addition to the conditions in Exercise 5.2 that F has
a (Lebesgue) density f . The ordered vector (X1:n, . . . , Xn:n) then has
a density

fn(x1, . . . , xn) = n!
n∏

j=1

f(xj), x1 < · · · < xn,

and zero elsewhere. Hint: Denote by Sn the group of permutations
of {1, . . . , n} i.e., (τ(1), . . . , (τ(n)) with τ ∈ Sn is a permutation of
(1, . . . , n). Put for τ ∈ Sn the set Bτ := {Xτ(1) < · · · < Xτ(n)}. These
sets are disjoint and we have P (

∑
τ∈Sn

Bτ) = 1 since P{Xj = Xk} = 0
for i 6= j (cf. Exercise 5.1).

5.4. (i) Let X and Y be independent, standard normal distributed

random variables. Show that the vector (X,Z)T := (X, ρX+
√

1 − ρ2Y )T ,
−1 < ρ < 1, is normal distributed with mean vector (0, 0) and co-

variance matrix

(
1 ρ
ρ 1

)
, and that X and Z are independent if and

only if they are uncorrelated (i.e., ρ = 0).

(ii) Suppose that X and Y are normal distributed and uncorrelated.
Does this imply the independence of X and Y ? Hint: Let X N(0, 1)-
distributed and define the random variable Y = V X with V inde-
pendent of X and P{V = −1} = 1/2 = P{V = 1}.

5.5. Generate 100 independent and standard normal random variables
εt and plot the periodogram. Is the hypothesis that the observations
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were generated by a white noise rejected at level α = 0.05(0.01)? Visu-
alize the Bartlett-Kolmogorov-Smirnov test by plotting the empirical
distribution function of the cumulated periodograms Sj, 1 ≤ j ≤ 48,
together with the pertaining bands for α = 0.05 and α = 0.01

y = x± cα√
m− 1

, x ∈ (0, 1).

5.6. Generate the values

Yt = cos

(
2π

1

6
t

)
+ εt, t = 1, . . . , 300,

where εt are independent and standard normal. Plot the data and the
periodogram. Is the hypothesis Yt = εt rejected at level α = 0.01?

5.7. (Share Data) Test the hypothesis that the share data were gener-
ated by independent and identically normal distributed random vari-
ables and plot the periodogramm. Plot also the original data.

5.8. (Kronecker’s lemma) Let (aj)j≥0 be an absolute summable com-
plexed valued filter. Show that limn→∞

∑n
j=0(j/n)|aj| = 0.

5.9. The normal distribution N(0, σ2) satisfies

(i)
∫
x2k+1 dN(0, σ2)(x) = 0, k ∈ N ∪ {0}.

(ii)
∫
x2k dN(0, σ2)(x) = 1 · 3 · · · · · (2k − 1)σ2k, k ∈ N.

(iii)
∫
|x|2k+1 dN(0, σ2)(x) = 2k+1√

2π
k!σ2k+1, k ∈ N ∪ {0}.

5.10. Show that a χ2(ν)-distributed random variable satisfies E(Y ) =
ν and Var(Y ) = 2ν. Hint: Exercise 5.9.

5.11. (Slutzky’s lemma) Let X, Xn, n ∈ N, be random variables
in R with distribution functions FX and FXn

, respectively. Suppose
that Xn converges in distribution to X (denoted by Xn →D X) i.e.,
FXn

(t) → FX(t) for every continuity point of FX as n → ∞. Let
Yn, n ∈ N, be another sequence of random variables which converges
stochastically to some constant c ∈ R, i.e., limn→∞ P{|Yn−c| > ε} = 0
for arbitrary ε > 0. This implies
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(i) Xn + Yn →D X + c.

(ii) XnYn →D cX.

(iii) Xn/Yn →D X/c, if c 6= 0.

This entails in particular that stochastic convergence implies conver-
gence in distribution. The reverse implication is not true in general.
Give an example.

5.12. Show that the distribution function Fm of Fisher’s test statistic
κm satisfies under the condition of independent and identically normal
observations εt

Fm(x+ln(m)) = P{κm ≤ x+ln(m)} m→∞−→ exp(−e−x) =: G(x), x ∈ R.

The limiting distribution G is known as the Gumbel distribution.
Hence we have P{κm > x} = 1 − Fm(x) ≈ 1 − exp(−me−x). Hint:
Exercise 5.2 and 5.11.

5.13. Which effect has an outlier on the periodogram? Check this for
the simple model (Yt)t,...,n (t0 ∈ {1, . . . , n})

Yt =

{
εt, t 6= t0

εt + c, t = t0,

where the εt are independent and identically normalN(0, σ2)-distributed
and c 6= 0 is an arbitrary constant. Show to this end

E(IY (k/n)) = E(Iε(k/n)) + c2/n

Var(IY (k/n)) = Var(Iε(k/n)) + 2c2σ2/n, k = 1, . . . , [(n− 1)/2].

5.14. Suppose that U1, . . . , Un are uniformly distributed on (0, 1) and

let F̂n denote the pertaining empirical distribution function. Show
that

sup
0≤x≤1

|F̂n(x) − x| = max
1≤k≤n

{
max

{
Uk:n −

(k − 1)

n
,
k

n
− Uk:n

}}
.
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5.15. (Monte Carlo Simulation) For m large we have under the hy-
pothesis

P{
√
m− 1∆m−1 > cα} ≈ α.

For different values of m (> 30) generate 1000 times the test statistic√
m− 1∆m−1 based on independent random variables and check, how

often this statistic exceeds the critical values c0.05 = 1.36 and c0.01 =
1.63. Hint: Exercise 5.14.

5.16. In the situation of Theorem 5.2.4 show that the spectral density
f of (Yt)t is continuous.

5.17. Complete the proof of Theorem 5.2.4 (ii) for the remaining cases
λ = µ = 0 and λ = µ = 0.5.

5.18. Verify that the weights (5.13) defined via a kernel function sat-
isfy the conditions (5.11).

5.19. Use the IML function ARMASIM to simulate the process

Yt = 0.3Yt−1 + εt − 0.5εt−1, 1 ≤ t ≤ 150,

where εt are independent and standard normal. Plot the periodogram
and estimates of the log spectral density together with confidence
intervals. Compare the estimates with the log spectral density of
(Yt)t∈Z.

5.20. Compute the distribution of the periodogram Iε(1/2) for inde-
pendent and identically normal N(0, σ2)-distributed random variables
ε1, . . . , εn in case of an even sample size n.

5.21. Suppose that Y follows a gamma distribution with parameters
p and b. Calculate the mean and the variance of Y .

5.22. Compute the length of the confidence interval Cν,α(k/n) for
fixed α (preferably α = 0.05) but for various ν. For the calculation of
ν use the weights generated by the kernel K(x) = 1−|x|, −1 ≤ x ≤ 1
(see equation (5.13).
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5.23. Show that for y ∈ R

1

n

∣∣∣
n−1∑

t=0

ei2πyt
∣∣∣
2

=
∑

|t|<n

(
1 − |t|

n

)
ei2πyt = Kn(y),

where

Kn(y) =




n, y ∈ Z

1
n

(
sin(πyn)
sin(πy)

)2

, y /∈ Z,

is the Fejer kernel of order n. Verify that it has the properties

(i) Kn(y) ≥ 0,

(ii) the Fejer kernel is a periodic function of period length one,

(iii) Kn(y) = Kn(−y),

(iv)
∫ 0.5

−0.5Kn(y) dy = 1,

(v)
∫ δ

−δ Kn(y) dy
n→∞−→ 1, δ > 0.

5.24. (Nile Data) Between 715 and 1284 the river Nile had its lowest
annual minimum levels. These data are among the longest time series
in hydrology. Can the trend removed Nile Data be considered as being
generated by a white noise, or are these hidden periodicities? Estimate
the spectral density in this case. Use discrete spectral estimators as
well as lag window spectral density estimators. Compare with the
spectral density of an AR(1)-process.
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Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document ”free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.
This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The ”Document”,
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below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as ”you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.
A ”Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.
A ”Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.
The ”Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.
The ”Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.
A ”Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a pub-
licly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.
The ”Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires to
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appear in the title page. For works in formats which do not have any title page
as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.
A section ”Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or
”History”.) To ”Preserve the Title” of such a section when you modify the
Document means that it remains a section ”Entitled XYZ” according to this defi-
nition.
The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void
and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.
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If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever pos-
sesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.
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H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the ”History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to con-
flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled ”Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements
of peer review or that the text has been approved by an organization as the author-
itative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you



230 GNU Free Documentation Licence

may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of
any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple iden-
tical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.
In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any
sections Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”.
You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it in-
dividually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an ”aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works



GNU Free Documentation Licence 231

permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in elec-
tronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.
If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or
”History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Doc-
ument specifies that a particular numbered version of this License ”or any later
version” applies to it, you have the option of following the terms and conditions
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either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled ”GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such

as the GNU General Public License, to permit their use in free software.


