
energies

Article

Time and Cost Efficient Cloud Resource Aallocation for
Real-Time Data-Intensive Smart Systems

Muhammad Shuaib Qureshi 1,2 , Muhammad Bilal Qureshi 3,* , Muhammad Fayaz 2,
Muhammad Zakarya 4 , Sheraz Aslam 5 and Asadullah Shah 1

1 KICT, International Islamic University, Kuala Lumpur 50728, Malaysia; muhammad.qureshi@ucentralasia.org
(M.S.Q.); asadullah@iium.edu.my (A.S.)

2 Department of Computer Science, School of Arts and Sciences, University of Central Asia, 310 Lenin Street,
Naryn 722918, Kyrgyzstan; muhammad.fayaz@ucentralasia.org

3 Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad
44000, Pakistan

4 Department of Computer Science, Abdul Wali Khan University, Mardan 23200, Pakistan;
mohd.zakarya@awkum.edu.pk

5 Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology,
Limassol 3036, Cyprus; sheraz.aslam@cut.ac.cy

* Correspondence: muhdbilal.qureshi@gmail.com

Received: 17 July 2020; Accepted: 9 September 2020; Published: 31 October 2020
����������
�������

Abstract: Cloud computing is the de facto platform for deploying resource- and data-intensive real-time
applications due to the collaboration of large scale resources operating in cross-administrative domains.
For example, real-time systems are generated by smart devices (e.g., sensors in smart homes that monitor
surroundings in real-time, security cameras that produce video streams in real-time, cloud gaming, social
media streams, etc.). Such low-end devices form a microgrid which has low computational and storage
capacity and hence offload data unto the cloud for processing. Cloud computing still lacks mature
time-oriented scheduling and resource allocation strategies which thoroughly deliberate stringent QoS.
Traditional approaches are sufficient only when applications have real-time and data constraints, and
cloud storage resources are located with computational resources where the data are locally available
for task execution. Such approaches mainly focus on resource provision and latency, and are prone
to missing deadlines during tasks execution due to the urgency of the tasks and limited user budget
constraints. The timing and data requirements exacerbate the efficient task scheduling and resource
allocation problems. To cope with the aforementioned gaps, we propose a time- and cost-efficient resource
allocation strategy for smart systems that periodically offload computational and data-intensive load
to the cloud. The proposed strategy minimizes the data files transfer overhead to computing resources
by selecting appropriate pairs of computing and storage resources. The celebrated results show the
effectiveness of the proposed technique in terms of resource selection and tasks processing within time
and budget constraints when compared with the other counterparts.

Keywords: data-intensive smart application; cloud computing; resource allocation; real-time systems;
smart grid

Energies 2020, 13, 5706; doi:10.3390/en13215706 www.mdpi.com/journal/energies

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/350766651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-3908-6302
https://orcid.org/0000-0003-2985-6120
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0003-4305-0908
https://orcid.org/0000-0002-9149-328X
http://www.mdpi.com/1996-1073/13/21/5706?type=check_update&version=1
http://dx.doi.org/10.3390/en13215706
http://www.mdpi.com/journal/energies

Energies 2020, 13, 5706 2 of 25

1. Introduction

With fast-growing advancements in smart systems, the real-time applications are handy candidates
for utilizing the computing power in a cloud computing environment in order to maintain deadline
constraints. Cloud computing is an economic-based paradigm consisting of distributed resources and
providing services by collaborating in executing user applications. The cloud services are categorized into
Infrastructure-as-a-Service (IaaS) that deals with providing computing such as VMs and storage resources
as services, Platform-as-a-Service (PaaS) that offer deployment and development platforms as services,
and Software-as-a-Service (SaaS) that facilitate users with web-based applications. The most common
examples are IBM’s Blue Cloud (for IaaS), Google AppEngine and Microsoft Azure (for PaaS), and EC2
(for SaaS). These services are employed by using cloud deployment models, namely public, private, and
hybrid established on the basis of organization preferences. The cloud compute and storage resources are
selected and allocated on the basis of nature of user application. In addition, the cloud storage resources
provide facilities such as accommodating data replication to satisfy data requirements of the data-intensive
real-time systems that need to access, process and transfer data files stored in distributed data repositories
[1,2]. Examples of such applications are self-driving vehicles, which depend on the data and computations
under a complex network of interconnected devices such as GPS, surveillance cameras, radar, laser light,
odometry, etc., to perceive the surroundings [3,4]. The cloud providers such as Amazon EC2 [5] provide
computing facilities (virtual machines) on a pay-as-you-go basis at the rate of 10 cents per hour. The lease
prices vary depending on the virtual machines (VMs) specifications. The normal VM offers an approximate
processing power of 1.2 GHz Opteron processor with a storage capacity of 160 GB disk space and 1.7 GB of
memory [5–7]. Such facilities pave the way for executing time-critical and IoT applications which demand
high processing and storage capabilities [8]. Stergioua et al. [9] merged cloud computing with IoT to
improve the functionality of the IoT. The IoT devices offload many tasks to the cloud environment from the
smart systems because these devices have very limited processing and storage capabilities. Leveraging the
capabilities of virtualization technology, VMs can be scaled up and down depending on the current system
workloads [10]. For executing VM code on smart platforms, smart virtual machines are proposed by Lee
et al. [11]. However, there is a lack of efficient resource scheduling and allocation strategies for deploying
real-time applications with stringent QoS and data requirements in cloud computing environments.
The scheduling policy for data-intensive real-time systems proposed in [12] allocates HPC resources by
considering that single copies of data-files are available on storage resources without taking into account
the computation and transfer cost. The concept of real time scheduling is used in the deployment of smart
environments [13–17].

The Global Institute [18] report on analyzing the economic impact of the IoT devices show that it
will increase upto $11 trillion by the year 2025. This increase is because the IoT devices and smart home
appliances ranging from small sensors to large scale biometrics offload data and computation to the
cloud computing environment on a regular basis [19,20]. For this purpose, the IT companies provide
solutions such as Apple’s HomeKit [21], Samsung’s SmartThings [22], Amazon’s Alexa [5], and Google’s
Home [23], etc. The smart systems are considered as data-intensive systems that are different from
compute-intensive or eScience applications because of the storage, access, execution and management
requirements of distributed datasets and hence, require different scheduling and allocation policies.
These systems basically deal with the data and transport layers for replication and access of datasets.
The data-intensive smart systems can be considered as a combination of data producers and consumers
geographically distributed across multiple organizations. The producers are the entities that produce data
and manage its distribution over multiple locations. The consumers can be the users or their applications
which need this data produced by the producers for multiple purposes. The consumers investigate efficient
ways out of many to access the data for executing applications on remote compute nodes.

Energies 2020, 13, 5706 3 of 25

The driving force of cloud computing is the virtual machine manager (VMM) that creates the virtual
resources of the physical machines. The basic functionality of the VMM is to separate the virtual computing
environment from the underlying physical infrastructure. In this research work, we implement the rate
monotonic (RM) scheduling policy to allocate cloud computing resources for the real-time data-intensive
periodic tasks. The scheduling problem is divided into three parts: the processing environment (cloud
virtual machines), the nature of the real-time task (fixed priority system), and the optimization criteria
(time- and cost-efficient allocation). The real-time task set is a collection of multiple tasks, each of which
requires data for processing. The required data files are requested from the remotely located storage
resources. The intelligent selection and assignment of cloud computing resources are investigated while
the data files are replicated on decoupled storage resources and accessed by utilizing networks of varying
capabilities. The proposed strategy evaluates all the storage locations for the replicas of the same data
file and selects the one which has minimum data access and transfer cost. It submits the application
to the computing resource that is closest to the selected storage location and can complete execution
within minimum possible execution time. These files are fetched to the computing resources where tasks
are executed, which add transfer time to the red tasks’ total execution time. In our proposed model, a
user-specified budget is associated with each smart system request, and hence resources are selected
not only on the basis of their high computational power, but also the cost associated with each and the
storage resource are computed, as well as the ability to process jobs within tasks deadlines and scheduling
preferences.

The major research contributions of our work are:

• Creating a model for selecting appropriate cloud computing and storage resources to execute real-time
data-intensive systems generated by smart devices where data is replicated on multiple storage
resources,

• Partitioning the task sets into groups based on common data-file demands such that the timing
constraints of the original tasks set are not disturbed,

• Analysing the economic perspective of data storage and processing by scheduling real-time smart
systems on distributed nodes with different storage, execution, and data transfer costs and allocating
heterogeneous cloud resources,

• Allocating cloud computing resources to periodic real-time tasks such that the overall timing
constraints of the smart devices remain intact,

• Analysing cloud computing and IoT usability in the context of data-intensive smart systems.

Cloud computing is considered a promising platform for executing large-scale computing-intensive
IoT and smart grid applications in a cost-efficient way due to the large pool of computing resources. These
resources need intelligent scheduling and allocation of the tasks such that all tasks in a batch can be
processed within the stipulated time span. The research community focuses on searching mechanisms for
scheduling and allocating distributed cloud resources in a systematic way which can satisfy formulated
objective function such as load balancing, makespan minimization, and cost-efficiency with respect to
the user-defined QoS criteria [3,24,25]. But, instead of the vast study in the cloud resource allocation
domain, the existing literature is not mature in providing suitable scheduling mechanisms for real-time
systems generated by smart devices due to the high deadline-miss ratio by a number of tasks in a batch
[26]. The problem becomes more challenging when such systems need data from external sources. A
real-time system is characterized by the deadlines of the tasks. In such systems, deadline meeting is
primarily important for utilizing maximum capabilities of the cloud resources, since most of the real-time
systems such as sensors in smart systems or actuators in automated systems generate periodic tasks,
which are sent to the processing units after regular intervals. Such systems need proper priority-based
and non priority-based strategies for scheduling. In priority-based scheduling policy, the scheduling

Energies 2020, 13, 5706 4 of 25

criteria is saved for the entire duration of task execution, while in non priority-based systems, the tasks
have no precedence constraints and the scheduling criteria may change with the arrival of the next job
of a task. The main advantage of priority-based policies is time-saving and its simple implementation.
The priority-based scheduling is also known as static priority scheduling. The well-known static priority
assignment algorithm is Rate Monotonic developed by Liu and Layland in 1973. The main features of
this algorithm are its simple implementation at OS kernel level, predictability in real-time behavior like
in smart systems, and its easy modification for implementing task priority inheritance protocol for the
purpose of synchronization [27].

In order to utilize the full potential of the cloud and IoT platforms, Suciu et al. [28] proposed a
conceptual framework for the deployment of IoT based smart microgrid applications. The developed
framework has the capability of integrating real-time data generated by the ubiquitous sensing devices
constituting the smart home with the cloud computing environment, but their system is prone to missing
deadlines because they have not evaluated their system on each time instant according to the workload of
the task. The dynamic algorithm for scheduling soft real-time systems on grid resources was proposed
in [29]. The proposed algorithm provides room for tasks with missed deadlines. Ye et al. [30] proposed
architecture of smart home-oriented cloud. They have suggested a layered cloud design that provides
efficient services for digital appliances. The authors have considered the sensors sending data continuously
without specifying any real-time constraints. Caron et al. [1] consider task priorities for scheduling real-time
tasks. The tasks are checked one by one. Shang et al. [1] formulated a model which elaborates grid service
reliability assessment for dependable and cost-efficient applications. They have derived a cost function
based on genetic and particle swarm optimization techniques that calculate service expense of each utilized
resource. Isard et al. [4] considered scheduling problem of data-intensive tasks using the Hadoop structure.
They have supposed coupled computing and data resources located at the same place and that the data is
available for each task without transferring from remotely located resources. Therefore, they have not
included the data transfer time in the task feasibility analysis. The proposed tasks are preemptable but no
specific criterion is discussed for which task is to be preempted when an interruption occurs or when high
priority tasks arrive. In ref. [5], the authors have focused on submitting preemptable tasks to the federated
grid. They have developed a schedule which maximizes the acceptance of incoming tasks, and minimizes
user-defined QoS criteria violation. The authors have not emphasized the heterogeneity of resources.
Poola et al. [6] presented a mechanism for robust and fault-tolerant scheduling of scientific workflows on
heterogeneous resources which concurrently optimizes makespan and execution cost. Ma et al. [7] used a
hybrid approach by combining the best features of genetic and greedy approaches for QoS-aware web
service composition. They have focused on minimizing cost, but they have considered non-real-time tasks.
A cost optimization technique for executing data-intensive tasks on distributed resources was developed
by Mansouri et al. [8]. Leveraging data storage and migration cost is addressed by using an optimal online
algorithm, but their system is not suitable for executing real-time smart systems tasks. The proposed
algorithm provides tasks scheduling and cloud resource allocation criteria for real-time tasks generated by
smart systems considering resources heterogeneity, availability, data-intensive and timing constraints of
the tasks.

The rest of the paper is structured as follows. In Section 2, we throw light on discussing task, resource,
and cost model. The proposed time- and cost-efficient scheduling algorithm is explained in Section 3,
while the performance of the proposed resource allocation strategy and details of the experimental setup
is evaluated in Section 4. The produced results are presented in Section 5 and conclusions and future
directions are provided in Section 6.

Energies 2020, 13, 5706 5 of 25

2. Task, Resource and Cost Models

In this research, we consider scheduling feasibility of real-time periodic tasks in a cloud environment.
Our model as shown in Figure 1 is composed of smart devices which generate periodic tasks (τ1, τ2, . . . , τn).
The tasks represent data-intensive applications that generate data on a regular basis and need computing
resources for processing. The represented smart devices have limited memory, storage and processing
capabilities. Each task needs data stored on some remote storage locations. The tasks constitute a task
set Ti(i = 1, 2, . . . , n) where the collection of task sets form a smart microgrid that sends data to a main
smart hub known as Smart Grid Management System. The smart hub manages the received data and
uploads the collected tasks to the cloud environment. The Cloud Resource Management System (Cloud
RMS) handles task requests and manages cloud resources. The Cloud RMS has the responsibility to
search suitable resources and required data files information from the Resource Files Information Directory
(RFID) according to the task requirements and schedule tasks on cloud resources. The Cloud RMS also
implements the scheduling policy. Our concerned cloud environment is comprised of both computational
(CR1, CR2, . . . , CRn) and data storage resources (DR1, DR2, . . . , DRn) located remotely and connected by
network links of different bandwidths. The resources are heterogeneous and characterized by power and
cost constraints.

In this paper, we concentrate on two basic constraints; (a) the real-time tasks’ deadlines, and (b)
user-specified budget. The presented model extends the RDTA model [12] by introducing cost parameters,
data files replication scenarios, and tasks’ grouping criteria.

2.1. Task and Resource Model

We consider batch processing of real-time periodic tasks, each of which can generate an infinite
number of jobs. In periodic tasks set T = {task1, task2, . . . , taskn}, each taskk is defined by the quadruple:

taskk = (rk, ek, dk, periodk) (1)

where rk shows the release time of the first job, ek the required computation time, dk the relative deadline
of taskk which is the time difference between the absolute deadline and release time of a job, and periodk
the period which is the time difference between the two successive jobs of a taskk.

In the above discussed model, a job i released at time instant rk + (i− 1).periodk needs to execute
for ek units before the time rk + (i− 1).periodk + dk. In our task model, we concentrate on a constrained
deadline model which assumes that dk ≤ periodk, ∀k ∈ T. Tasks preemption is not allowed and context
switching overhead is subsumed into ek. We also assume that rk = 0, ∀k ∈ T, which means that feasibility
of the tasks is checked when the system is most loaded.

We consider computing resource set CR such that CR = {CR1, CR2, . . . , CRr}. Each one
is characterized by a computing power CPy(1 ≤ y ≤ r) such that CPy ∈ CP, where CP =

{CP1, CP2, . . . , CPr}, and measured in Millions of Instructions per Second (MIPS). The execution time of a
taskk on resource CRy can be computed by

EETky = (ek + ehigher)/CPy, (2)

where ehigher is the execution time of higher priority tasks than taskk. Mathematically,

ehigher =
k−1

∑
j=1
d t

periodj
eej, t ∈ PNPj (3)

Energies 2020, 13, 5706 6 of 25

where PNP set accumulates points or time instants on which task feasibility is analyzed. The PNP set is
defined as follows.

Definition 1. PNPk is a set of positive and negative points for taskk constituted by the relation x.periodj such that
1 ≤ j ≤ k and 1 ≤ x ≤ bperiodk/periodjc, where periodj represents periods of higher priority tasks than taskk.
The point tP ∈ PNPk is said to be positive if taskk is declared feasible (i.e., completes its execution at or before the
deadline) at some point t by considering all associated time and data constraints. The point tN ∈ PNPk declares the
taskk infeasible when it misses the deadline. Each point in PNPk is called rate-monotonic scheduling point. From
Definition (1), it is concluded that the set PNP is the union of positive points set PP and negative points set NP
where PP = PNP− NP and NP = PNP− PP. In other words, PNP = PP ∪ NP.

2.2. Data Files Model

In our task model, a tasks set T = {task1, task2, . . . , taskn} consists of data-intensive real-time tasks
where each task taskk needs a set of data files DFk for its execution. The set DFk = { fk1, fk2, . . . , fkm} ⊆ DF.
The file fkx ∈ DFk is stored on data storage resource drw, where drw ∈ DRk and DRk ⊆ DR. The DR is
the set of total storage resources in the HPC environment. In other words, files in DFk are stored on DRk
storage resources. We assume that the data files are replicated on more than one data storage resources.

Energies 2020, 13, 5706 7 of 25

Figure 1. Model for offloading computation and data-intensive application from smart microgrid to the
cloud.

The total execution time TT of a task taskk is the sum of actual computation time EET of taskk
on computing resources CRy and the transfer time taken by the required m data files in the set DFk

Energies 2020, 13, 5706 8 of 25

by transferring from storage resources DRk to the computing resource CRk where task k is executed.
Mathematically,

TTk = EETky +
m

∑
z=1

FT(fkz) (4)

where FTfkz = Rw + Size fkz/BWwy is the transfer time of the file fkz.
The Rw represents the response time of the data storage resource drw ∈ DRk where the data file fkz

is stored. The response time is the time when the request to fetch the file is made at the time when the
request is entertained. Algebraically, the response time of data resource drw is calculated as:

Rw = STfkz + WTfkz (5)

where STfkz is the service time and WTfkz is the waiting time of the request respectively for accessing the
file fkz. Also, the Size fkz denotes the size of the file fkz, and BWwy shows the link bandwidth between data
storage resource drw and computing resource CRy. The proposed model selects that storage resource for
file access for which FT is minimum, i.e., min(FT).

2.3. Task Grouping

The data-intensive real-time tasks in T are grouped into x number of groups on the basis of common
data files demands. The tasks in a group represent a subset of T or we can say each group is a set of tasks
for easy understanding. The task grouping taxonomy is pictorially represented in Figure 2.

Figure 2. Task grouping taxonomy.

Based on real-time task grouping criteria, the group of tasks, its cardinality, and priority assignment
is defined in the following sections.

Definition 2. A group of real-time tasks Yx is a subset of tasks, i.e., Yx ⊆ T(x ≤ n) having common data files
demands. Each group Yx contains minimum one task which concludes that Yx 6= {}.

Energies 2020, 13, 5706 9 of 25

Definition 3. The cardinality of a task group defines the total number of tasks in a group. Let there be total x
number of groups, then cardinality of the original tasks set T = {task1, task2, . . . , taskn} can be defined as:

card(T) =
x

∑
l=1

card(Y1) (6)

The advantage of the task grouping mechanism is to reduce the total number of priority levels [25]. Additionally,
tN ∈ NP for a higher priority task task j ∈ Yx remains the member of NP for all lower priority tasks than task j in
Yx, since tasks in the same group are also sorted on the basis of RM priorities. In this way, the least number of points
is tested on the PNP set which decreases the execution time.

From the above definitions, the following can be observed.

Observation 1. Let each task group Yl constituted from task set T = {task1, task2, . . . , taskn} contains a single
task in a worst case scenario and x represents the total number of groups in the system, then x = n where n represents
card(T).

Each real-time task in our task model has deadline d, which demonstrates the maximum allowed
time for a task to complete its execution on a single computing resource. Let the maximum and minimum
deadlines of the tasks in a group Yx are denoted by dmax and dmin respectively. Here an interesting
observation can be made.

Observation 2. dmax of the tasks {task1, . . . , taskl} ∈ Yx(l ≤ n) sorted by RM priority assignment technique
and following the implicit deadline model (period = deadline) is the period of the last task while dmin is the period of
the first task in Yx. The relation follows:

dmax = periodldmin = period1 (7)

where periodl and period1 represent periods of the last and the first task in Yx, respectively.

Proof. The RM technique sort the tasks based on priority assignment criteria: the lesser the period of the
task, the higher the priority. This means that the last task taskl ∈ Υx has the lowest priority and first task
task1 ∈ Υx has the highest priority among all tasks in Yx. The task1 is executed in the first and taskl is
executed in the last slot. In other words, priority(task1) ≥ priority(task2) ≥, . . . ,≥ priority(taskl) which
follows that period(task1) ≤ period(task2) ≤, . . . ,≤ period(taskl). It also follows that dmax = periodl and
dmin = period1, which completes the proof.

The authors in [24] discussed that RM assigns static priorities to tasks and considered an optimal
scheduling algorithm among static priority assignment scheduling algorithms. By optimal they mean
that RM should schedule a task, if any other static priority assignment algorithm can schedule that task.
Following are the general characteristics of the RM scheduling technique which play a role in proving its
optimality.

1. the system should consist of a fixed number of tasks;
2. the tasks should have execution times known in advance;
3. each task has a completion deadline equal to its period;
4. tasks should be periodic which means that instances or jobs of a task should arrive after a fixed time

interval;

Energies 2020, 13, 5706 10 of 25

5. tasks should be independent;
6. all tasks should arrive at time 0. This time instant is also known as the critical instant and the system

is considered as the most overloaded at this instant.

Definition 4. The period of a task group is defined as the temporary period attached to the group of tasks which is
the period of the last task in a group. In other words, periodl is the group period because the tasks in a group are
sorted using RM technique. For example, if a group Yx accommodates tasks {task1, task2 . . . , taskl}, then

period(Yx) = periodl . (8)

Since the groups are sorted on the basis of RM priorities, so period(Y1) ≤ period(Y2) ≤, . . . ,≤ period(Yl)

which states that priority(Y1) ≥ priority(Y2) ≥, . . . ,≥ priority(Yl). Equation 8 states that all tasks in Yx must
complete execution at or before periodl . It has been further evaluated that since the tasks in the same group Yx are
also sorted by RM priorities, so tN ∈ NP for a higher priority task taski ∈ Yx remains the member of NP for all the
lower priority tasks than taski.

Definition 5. The group capacity can be defined as the total number of tasks in a group. Tasks in a group are added
on the basis of common data files demand. The group capacity can be analyzed on the basis of resource utilization by
a group of tasks called group utilization (GU) which is defined as the sum of the resource utilization of each task in
the group. The computing resource utilization of each task is termed as task utilization (TU). Let n denotes the total
number of tasks in a group Yx, then GU and TU can be found as follows.

GUYx = TU1 + TU2 + . . . + TUn =
n

∑
i=1

TUi (9)

where
TUi =

ei
periodi

(10)

Theorem 1. Let Yx be a group of n periodic tasks, where each task is characterized by TU. The group Yx is said to
be RM feasible if the following condition holds:

GUYx ≤ n(21/n − 1) (11)

The inequality (11) is called the Liu and Layland (LL) test reported in [24]. The expression n(21/n − 1) is
the threshold value of a group which means that a group Yx can accommodate tasks as for as the GU remains lower
than or equal to the threshold value. Equation (11) is checked repeatedly when a new task is added to the group. If
adding a task changes the inequality to GU ≥ n(21/n − 1), then the incoming tasks are added to another group.
The authors in [25] refer the LL test as the sufficient condition test. They claim that it is not necessary that the tasks
in a group are not schedulable if Equation (11) does not hold. This means that utilization-based tests are sufficient,
but not necessary. Let us explain by the following example task set taken from [26,29].

Example 1. Consider a task group Y = {task1, task2, task3, task4} where tasks follow RM ordering and having
following characteristics and utilizations mentioned in Table 1 and Table 2 respectively.

Energies 2020, 13, 5706 11 of 25

Table 1. Task characteristics in Y.

Tasks Ci periodi

Tak1 2 3
Tak2 1.5 6
Tak3 0.5 12
Tak4 1 24

Table 2. Task utilizations.

TU Value

TU1 0.666
TU2 0.250
TU3 0.041
TU4 0.041

For the above tasks set Y, the GUY ∼= 1 and threshold = 0.756.
It shows that the aforementioned example task group Y is not schedulable by using LL test because it

does not satisfy Equation (11). However, the gantt chart in Figure 3 shows the schedulability of these tasks
within deadlines under RM technique. From the above discussion, it is clear that LL test is sufficient only,
so we use LL test for checking group capacity only. For analyzing task or group feasibility, we use PNP
test which is necessary and sufficient conditions test.

Figure 3. Gantt chart for scheduling tasks set in Example 1.

Energies 2020, 13, 5706 12 of 25

Theorem 2. A group of real-time tasks Yx = {task1, task2, . . . , taskl} is schedulable if all tasks in Yx

are schedulable.

Theorem 3. The batch of real-time tasks called periodic tasks set represented by T = {task1, task2, . . . , taskn} is
deemed feasible if all task groups Y1, Y2, . . . , Yx are schedulable.

2.4. Cost Model

Scheduling decisions by integrating cost parameters change the way computational resources are
selected to fulfill the user QoS criteria. The data-intensive real-time tasks are submitted to the broker which
searches resources to process tasks within deadlines and user-specified budget constraints. The feasibility
of tasks’ groups on computational resources is checked by considering data transfer time, transfer costs,
computational cost, tasks’ deadlines, and computational power of the resources. The basic parameters
considered for feasibility decisions in this research are:

(a) user-specified budget, and
(b) tasks deadlines.

Based on the above two parameters, the cloud computing and storage resources which can execute
tasks within deadlines in a minimum cost by taking into account all data and processing constraints are
selected.

By introducing cost model, Theorem 3 can be extended in Theorem 4 for checking schedulability of
modified task set.

Theorem 4. The batch of real-time tasks called periodic tasks set represented by T = {task1, task2, . . . , taskn} is
deemed feasible with minimum cost if all task groups Y1, Y2, . . . , Yx are schedulable by following all tasks constraints
and holding inequality (12).

costT ≤ Budget (12)

where costT is the total cost incurred by the batch of tasks, and Budget is the total user-specified budget. The cost
of a resource can be expressed as execution cost per Millions of Instructions (MI), processing cost per unit time,
processing cost per task, or simulation cost per unit time, etc. The cost for a single task is the sum of task execution
cost and the data files transfer cost.

3. Time- and Cost-Efficient Scheduling Algorithm

The Algorithm 1 determines the schedulability of real-time independent tasks set consisting of tasks
with different data files and timing constraints. The execution procedure of the tasks involves checking
task group feasibility which cumulatively constitutes tasks set. The m number of tasks in a group are
checked on r number of distributed computing resources where r � m. Depending on the user budget and
tasks scheduling preferences, the main objective of this algorithm is to execute distributed data-oriented
applications by selecting computing and storage resources such that the tasks are processed with minimum
total execution time and cost while tasks’ deadlines are respected. The proposed algorithm works in three
parts: (a) task initial feasibility checking which predicts a task’s basic feasibility within a deadline by
searching initial feasible computing resources, (b) task final feasibility and cost analysis which determines
a task’s schedulability after considering all the associated constraints, and finally (c) task dispatching to
the best suitable resources after fulfilling all the pre-requisites. The first two parts are the matching and
mapping parts which create set of time- and cost-efficient computing–storage resources pairs. The third
part is the dispatching part which ensures that the selected resources can process tasks within time and
budget constraints. By cost we mean the sum of a task’s execution cost and data-files transfer cost. Similarly,

Energies 2020, 13, 5706 13 of 25

the total execution time to be minimized is the sum of tasks actual execution time and the transfer time
incurred by transferring data-files from the storage resources to the computing resources where the task
is executed. The data-files are replicated on multiple storage resources and the resource which has the
minimum transfer cost is selected for data-file transfer. The computing resource capability for executing
a task is checked by analyzing task feasibility on PNP points. As a result, the computing resource that
can execute a task by maintaining the deadlines is initially selected from the list of available computing
resources. The selected resource is called an initially feasible resource. The service requests are provisioned
according to the described scheduling strategy; i.e., the total execution time of the task set and the incurred
cost should be minimized. To ensure the fulfilment of the aforementioned two objectives, the set of storage
resources are demonstrated which accommodate data-files needed for the task taski after identifying the
initially feasible resources. A single file is assumed to be replicated on more than one storage resource,
so the resource which has less transfer time and cost is selected. All such computing–storage resources
pairs are further checked for calculating total execution time. The total execution time is the sum of all
time factors. If the total time is within the task taski deadline and the total cost is within the user-specified
budget, the compute–storage resources pair is declared feasible for assigning taski. After selecting all such
pairs for all tasks in a group, the tasks are then dispatched to the qualified resources by the dispatcher
and all required files are transferred. The tasks are scheduled and computations are carried out. In this
way, if all tasks in a group Yx are scheduled, then the group Yx is said schedulable by the Algorithm
1. Furthermore, if all groups are scheduled, then the original task set T is declared schedulable with
minimum time and cost. The resource allocation procedure completes when all the tasks are dispatched
to the resources and the unmapped queue becomes empty. The pseudocode of the tasks mapping and
dispatching procedures is given in Algorithm 1.

The purpose of Algorithm 2 is to find suitable compute–storage resource pairs for each data-file
required by a task. For each task, sets of required data-files and initially feasible computing resources
are passed from Algorithm 1 as input arguments to the file transfer time calculating function. For each
data file, the storage resources are identified and the best data storage resource which qualifies the
minimization criteria (transfer time and cost) are selected for retrieving data file. For each data file, all
possible combinations of initially feasible compute–storage resource pairs are tried and finally, the right
combination is returned with decreased transfer time and execution cost.

Energies 2020, 13, 5706 14 of 25

Algorithm 1: Time- and cost-efficient assignment of real-time data-intensive group of tasks to the
HPC resources
1 Input: Computing resources sorted in descending order of processing capacities, and a group Yx of

unmapped real-time tasks ordered by RM priorities and having budget constraints.;
2 Output: Time- and cost-efficient real-time data-intensive tasks schedule on HPC resources.

Procedure
3 for all taski ∈ Yx do
4 compute PNPi = {x.periodl |l = 1, . . . , i; x = 1, . . . , bperiodi/periodlc};
5 // Determining task initial feasibility for all available computing resources CRr ∈ CR do
6 for all t ∈ PNPi do
7 calculate EETir; //gives minimum EET because resources are already sorted
8 if EETir ≤ t then
9 CRi ← CRr; // CRi is set of comp resources on which taski is initially feasible

10 Break; //break if tp is found
11 End

12 End

13 End

14 if DFi do not locally exist then
15 DFi ← FT(CRi, DFi); //Call to Algorithm 2. CDi is comp-storage resource pairs set for

which DFi has min transfer time and cost
16 End

17 calculate TTir; //TT on CDi
18 // Determining the task final schedulability and cost analysis
19 if TTir ≤ t & & costi ≤ Budget then
20 mark CDi feasible for taski;
21 End

22 End

23 // Dispatching tasks to the feasible computing resources;
24 for schedulable tasks taski do
25 submit taski to CRr;
26 transfer all required files to CRr;
27 update resource information directory;
28 remove taski from unmapped tasks list;
29 End

30 initialize computing resources to maximum processing powers and update resource information
directory;

31 End Procedure

Energies 2020, 13, 5706 15 of 25

Algorithm 2: Selection of time- and cost-efficient compute–storage resource pairs for each data-file

1 Specify DRi; //storage resources on which files DFi are stored;
2 for all fx ∈ DFi do
3 for all CRz ∈ CRi do
4 //compute resource z on which taski is initially feasible;
5 for all drj ∈ DRi do
6 Czj ← (FTzj, costx) //transfer time and cost pair for file fx in matrix C;
7 End

8 End

9 Ax ← (zdr, min(C)) /pair of comp− storage resources for which transfer time and cost for
fx is min;

10 End

11 Return (A); //return comp-storage resources vector on which transfer time and cost for fx is
min;

4. Performance Evaluation

This section discusses the experimental set-up, the input data, and performance metrics used to
evaluate the proposed resource allocation technique.

4.1. Experimental Setup

The proposed RA technique and the existing counterparts were simulated using synthetic data
sets. These experiments were carried out in MATLAB R2016a on Intel Core i5 processor, 2.50 GHz
CPU and 8 GB RAM running on Microsoft Windows 10 platform. The reason for using MATLAB is
that it provides a multiprocessing environment for solving complex mathematical problems demanding
powerful computations. The HPC systems are difficult to implement practically due to the lack of real life
experimentation environment and multiple domain administration problems which make it difficult to
acquire stable configuration for evaluation. In addition, acquiring a practical HPC environment is almost
impossible due to the dynamic variations in the number of users and resources at a particular moment,
their characteristics, limited access, and inconsistent network conditions over the public network [1]. In
addition, effective evaluation needs the study of RA technique using different user inputs and varying
resource conditions. Therefore, we have created the same HPC simulated environment by managing
predefined resource and network configurations such as the number of computing and storage resources
connected by network links of various bandwidths randomly assigned within the range {1024, 2048} MB.

The heterogeneity in the modeled simulation environment was carried out by randomly generated
resource characteristics, network bandwidths connecting computing and storage resources, file sizes, task
workloads, and number of files required for each task. The data files requirements for each task were
also randomly assigned in the range {x, y} showing minimum and maximum values respectively where
x is assumed 1. This means that a task can demand at least 1 and at most y number of files. The files
sizes are fixed at 100 MB each. To model the data files distribution, each of the data file was replicated
on more than one storage resources. In our experimentation, we assume that there exist maximum
5 copies of any data file on the storage resources. The storage resources were decoupled from the nodes
where computing resources are deployed. The computing resources were initially equipped with the
full processing capabilities randomly chosen within the range {10,000, 40,000} Millions of Instructions
per Second (MIPS). The files required by a task are either pre-fetched or transferred during execution.

Energies 2020, 13, 5706 16 of 25

When the data file fetched for some higher priority task on the same computing resource is used by the
lower priority task or when the required file is locally available, the file transfer time is taken as zero. This
technique exploits both temporal and spatial locality of data access. This file transfer incurs communication
cost and time.

As discussed above, we evaluate our proposed technique on synthetic data sets where each task
(data-intensive application) gets the required computing resource within the deadlines. The applications
are scheduled for getting cloud resources using the RM scheduling algorithm. The workload for the smart
devices represented in Figure 1 is generated in such a way that each device generates a job periodically
after the interval of {α, β} seconds, where α = 100 and β = 10,000. This means that each smart device
sends a request for the cloud resources after the aforementioned time interval. The execution time ei for
each application taski was generated in the range {a, b} using normal distribution function representing
the best and worst-case execution times respectively, and virtual machines are allocated accordingly.
We have considered worst-case execution time equal to the periodi for taski in order to ensure the tasks
schedulability in any changing environment. In our task model, the period of the taski is equal to its
deadline, i.e., periodi = di. Initially, tasks were assigned RM priorities such that the task with high rate has
higher priority, where rate = 1

period . The tasks from the superset are grouped into subsets on the basis of
data files demands. It is understood that when the tasks set size increases, the number of VMs needed also
increases.

The task groups as well as tasks inside each group are sorted on the basis of the RM priority
assignment technique. Each task in the group has respective computation requirements and is entitled to
get computational resource no later than the deadline. The tasks in a group are scheduled on the HPC
system and computing resources are allocated on the basis of RM priorities. Each task generates multiple
jobs. Each job is generated after an interval of {α, β} seconds. The experimentation was carried out by
considering i.fferent number of computing and storage resources. The above-discussed setting is subsumed
in Table 3.

Table 3. Simulation parameters settings.

Parameters Values

Bandwidth 1024∼2048 MB
Task data files demand {x, y}

File size 100 MB
Computing resource capacity 10,000∼40,000 MIPS

ei {a, b}
periodi 100∼10,000

Data files transfer cost {1, 5}
Computing resource unit processing cost {5, 50}

The computation time and cost of each job is summed into the computational requirements of each
task. It is assumed that the communication cost of each job is minimal and is merged with the computation
demand ei of the task in our experimental setup. The data file is supplied to the task when it is requested
from the storage resource and hence response time is zero. The transfer cost per unit size of the data file
between data storage and computational resource was randomly generated between 1 and 5. In addition,
the unit processing cost of the computing resources was generated between 5 and 50 depending upon the
resource computing power. It is assumed that the file transfer within the same node incurs 0 transfer cost.

Energies 2020, 13, 5706 17 of 25

4.2. Performance Metrics

The proposed RA approach evaluates the HPC resource set for each task, and the overall objective is
to minimize the total execution time and cost. The total execution time is the cumulative time consumed
by the task set after assigning all task groups to the available computing resources. This time is also known
as makespan and mathematically defined as follows.

Makespan = max(TT1, TT2, . . . , TTl), (13)

where TTj represents the total execution time of task group j. Similarly, the cost of a task set T is the overall
cost incurred by all task groups. Mathematically,

CostT = max(Cost1, Cost2, . . . , Costl), (14)

and

Costj =
x

∑
i=1

costi (15)

The costi is a combined cost incurred by a task processing on a computing resource and data files
transfer taken by a taski in a group j. The time and cost for tasks context switching is negligible in our
experiments and hence not included in the objective function.

5. Results and Discussion

In this section, we evaluate the performance of our proposed algorithm by comparing it with two
methodologies, RDTA [12] and Greedy.

The makespan and cost minimization behavior of the proposed and the aforementioned two
techniques was checked for the randomly generated task sets consisting of 100, 200, 300, 400, 500, 600, 700,
800, 900, and 1000 tasks. The plots reported in this paper are the average values of 300 runs of all the task
sets. According to the task grouping criteria discussed in Section 3, the task sets are grouped into 5, 7, 7, 4,
8, 5, 7, 9, 9, and 10 groups respectively. Each group accommodates different number of tasks based on
applied grouping criteria. The task grouping details are given in Table 4. The experiments were performed
by checking system behavior on different number of computing resources. The number of computing
resources was randomly generated within the range {10, 100}. We assume that the data storage resource
gives a response immediately when a request is made by a task for data file access and hence the response
time is ignored. The time delay in preparing the computing resource is also taken as zero because in our
system, the computational resource is supposed to be ready for task execution as soon as the task arrives
at that resource.

It was observed that for small task sets, fewer number of computing resources was involved as
compared to the larger task sets. It is also understandable that choosing the proper number of computing
resources can contribute to maintaining tasks’ deadlines. If a lower number of computing resources is
selected as compared to a large number of task sets, then it is likely that some tasks may not be RM feasible
due to long waiting queues, which is crucial in real-time systems.

The main objective of this evaluation is to reduce the makespan and execution cost of the application
while tasks deadlines are intact. Figure 4a,b depicts the normalized values of the makespan. The variation
in magnitude depends upon the total number of tasks per task set, number of data files demands, and
the computation and deadline requirements of each task. The lower the makespan value, the better
the performance of the RA scheme. The other performance measurement criterion is the execution cost
minimization. From Figure 5a,b, it is evident that decrease in makespan results in reduced processing cost.

Energies 2020, 13, 5706 18 of 25

It is known from Figure 4a,b, that the proposed technique continues to make scheduling decision
by analyzing tasks feasibility on searching PNP sets and checking each scheduling point until some
positive point tP is found. Although, the size of PNP set for task group Yx becomes large if the ratio
between the periods of the first and the last task periodn

period1
in Yx is large which consumes time because large

number of inequalities are tested, but this procedure enhances the chance of task feasibility because more
positive− negative points become available for testing tasks schedulability. Furthermore, all the initial
feasible computing resources are encountered and the resource having minimum cost for the task execution
is selected for task processing. The RDTA approach merely deals with executing tasks within deadlines
and hence does not consider the cost parameters, which are considerably high in that case. In the case of
the Greedy technique, the graph is steeply higher because a feasible resource is selected at random without
taking into account the low time and cost constraints. So, the resources with high computing power are
selected when termed feasible.

(a) (b)

Figure 4. Average makespan for different task’s requirements scenarios: (a) Normalised makespan for
scenario 1. (b) Normalised makespan for scenario 2.

(a) (b)

Figure 5. Average cost on two different task’s requirements scenarios: (a) Cost for scenario 1. (b) Cost for
scenario 2.

To further investigate the effectiveness of the proposed technique, we have conducted more
experiments with different system settings. It is also noticeable from Figure 4a,b that the time taken

Energies 2020, 13, 5706 19 of 25

by all tasks test also increases uniformly as the number of tasks increase because more tasks are tested. It
is obvious that the makespan of some task sets is high although the computing resources were operated at
full speed because they need data files from remote storage resources which increase the total completion
time. The resources when operating on full capacities consume high energy, but currently energy efficiency
is out of the scope of this research. The situations where makespan is low demonstrates that the data
files are locally exist or perfected for some higher priority tasks and do not need re-fetching for the lower
priority tasks, which adds zero file transfer time to the overall execution time. The plots show that as the
task set size increases, the makespan of the Greedy and RDTA grow, as opposed to the proposed approach.
This growth in case of Greedy approach is because of making a greedy selection for the data storage and
computing resources among multiple choices for data files accessing and task execution. This selection
does not intelligently consider the minimization criteria. The RDTA mechanism also encounters high
execution time and hence cost as shown in Figure 5a,b because the data file replication is not taken into
account when making a choice for data files fetch among storage resources. In the case of the proposed
approach, the ratio periodn

period1
results in a larger value which constitutes larger PNP set that provides more

points for schedulability checking. This phenomenon provides more opportunities for task scheduling
and hence results in large number of tasks meeting the deadlines constraints.

Table 4 shows the formation of task groups in our experimental evaluation on the basis of randomly
generated data files demands. The task groups are created as for as the inequality GUYx ≤ n(21/n − 1) in
Theorem 1 holds.

Table 4. Task groups.

Task Set Size Group (No. of Tasks)

100 TG1(25), TG2(10), TG3(30), TG4(8), TG5(27)
200 TG1(31), TG2(5), TG3(53), TG4(12), TG5(48), TG6(32), TG7(19)
300 TG1(4), TG2(64), TG3(20), TG4(25), TG5(40), TG6(126), TG7(21)
400 TG1(101), TG2(32), TG3(130), TG4(137)
500 TG1(10), TG2(23), TG3(116), TG4(67), TG5(50), TG6(39), TG7(120), TG8(75)
600 TG1(146), TG2(3), TG3(43), TG4(201), TG5(207)
700 TG1(2), TG2(133), TG3(108), TG4(7), TG5(211), TG6(120), TG7(119)
800 TG1(234), TG2(21), TG3(233), TG4(41), TG5(19), TG6(115), TG7(123), TG8(5), TG9(9)
900 TG1(112), TG2(21), TG3(34), TG4(321), TG5(232), TG6(18), TG7(116), TG8(29), TG9(17)
1000 TG1(12), TG2(109), TG3(120), TG4(32), TG5(19), TG6(129), TG7(127), TG8(245), TG9(21), TG10(186)

5.1. Effect of Data Files Transfer on Performance

One of the basic components of calculating execution time is the data files transfer time incurred by
transferring data files from the remotely located storage resources to the decoupled computing resources
if the required files are not locally available. In addition to the makespan and cost values, two more
performance measures considered in the evaluation results are the percent share of the data transfer time
and local data access.

In our experiments, the percent share of the data files transfer time in the makespan calculation is
evaluated. The Figure 6a,b plot the impact of the average data transfer time for the task sets. The lower
value can put significant impact on reducing the overall makespan of the task set. As it is known from
the task workload, the lower priority tasks scheduled on the same computing resource can utilize the
same data files retrieved for the higher priority tasks in case the data requirements of the tasks are same.
In that case, the data transfer time is zero. Additionally, the transfer time is also zero if the required file
resides on the same node locally where the task is being executed. In this case, the more locally accessed
files decrease the impact of remote data files transfer on the performance. It is less likely that the task is
scheduled on the same computing resource for which all the required data files locally exist.

Energies 2020, 13, 5706 20 of 25

The above two factors can be correlated with the makespan calculation to indicate the impact of
resource selection made by the RA scheme on achieving the decided objective. It is evident from Figure
6a,b that the Greedy and RDTA schemes do not intelligently adapt for the data files locality of access
procedure and hence contribute to high data transfer percentage. The percentage of locality of access rises
with the increase in the task set size. In comparison to the RDTA and Greedy counterparts, there is a
high chance for the lower priority tasks to reuse the pre-transferred data files by using the proposed RA
scheme. In addition, it is more likely that the assigned tasks find the required data files locally. The Greedy
approach exhibits degraded performance because there is a very less probability of finding appropriate
computing resource for tasks assignment.

(a) (b)

Figure 6. Effect of data transfer time on task sets in two different scenarios: (a) Data transfer time for
scenario 1. (b) Data transfer time for scenario 2.

5.2. Impact on Resource Utilization

The utilization of the proposed RA scheme is measured on the basis of computing resources utilization
in the HPC system. The resource utilization is directly related with the computation workload; when the
task workload increases, the resource utilization also increases. The cumulative resource utilization can be
calculated by the following equation.

Utilcum =
r

∑
j=1

tasks workload processing time by a resource
resource active time

(16)

where Utilcum represents the cumulative utilization of all computational resources spent on processing
tasks workload, and r represents the total number of computing resources engaged in processing tasks sets.

It is observed from Figure 7 that the proposed RA scheme improves the resource utilization by keeping
resources as busy as possible. The resource utilization is lower for the tasks sets having less number of
tasks, but as soon as the number of tasks increases the resource utilization also increases. This means
that the resource will be 100% utilized for the large task sets. This is an understandable phenomenon,
because when the workload increases, more computational power is needed to complete tasks by their
respective deadlines. If the computational power of the resources is relaxed for energy-efficient allocation,
then it is very likely that some of the task groups may not be feasible. Moreover, this also will pertain to
an unfair comparison. When the number of tasks increases, the proposed procedure pushes the system
power to grow rapidly in order to accommodate more tasks to maintain the deadline constraints. This
behavior results in high energy consumption but in this research we do not deal with the energy-efficient

Energies 2020, 13, 5706 21 of 25

perspective. Figure 7 reveals that implementing the proposed approach, the minimum system utilization
is between 70% and 72% for small task sets but touches 100% when the task computational demands
increase. The maximum system utilization approaches 85% by the other counterparts.

5.3. Failure Ratio

Failure ratio determines the ratio of tasks missed their deadlines, or the ratio of tasks which finished
their execution after the deadlines. Mathematically,

Failure− ratio =
Number o f tasks missing deadlines

Total number o f tasks
(17)

Figure 7. Effect on resource utilization.

The proposed algorithm is reactive in the context of deadlines missing by the tasks due to the efficient
utilization of cloud resources, testing more and more PNP points, and task grouping on the basis of similar
data files demands which skip the re-fetching of the same data files from the storage resources on the same
computing resource again and again, which adds transfer time overhead to the makespan calculation. It is
also obvious that the RM technique gives higher priorities to the tasks with shorter periods. In our case,
since we assume that periods of the tasks are equal to the deadlines, so tasks with short deadlines have
higher priorities.

The proposed RA methodology incorporates the scheduling points test as feasibility criteria for
determining initial feasible resources, which is slower in performance as compared to the other scheduling
techniques. This performance gap is due to testing task feasibility on all scheduling points for all tasks in a
task set to offer more opportunity for finding feasible points. The other techniques, such as the iterative
one, have the advantage of skipping large number of scheduling points in the feasibility analysis and
concludes the task’s feasibility very earlier. The proposed approach also does not consider the resources

Energies 2020, 13, 5706 22 of 25

power consumption and the energy perspectives when operating with high power to execute more tasks
within deadlines.

6. Conclusions and Future Work

This paper presented the problem of resource reservation for smart systems in the cloud computing
environment. The real-time systems deadlines generated by smart devices were respected by modifying
the task model by incorporating data constraints. A task grouping technique was introduced that reduces
the priority levels and execution time. The scheduling and resource allocation decision is driven by the
need to improve the traditional performance parameters, such as resource utilization, and decrease the total
application execution time and cost. In a cloud computing environment, the providers are incentivized by
profit motives; while consumers would have a limited budget and would, therefore, like to execute the
application at resources that provide services within the budget. In such an environment, both provider
and consumers aim to improve their utility. This research is user-centric, which selects computing and
data storage resources in such way that the makespan and cost is minimized while keeping the deadlines
of the real-time system intact. The results were obtained through mathematical formulations by modifying
the original task model to incorporate the task’s data files requirements. The proposed resource allocation
scheme was compared with RDTA and Greedy approaches and celebrated results were achieved.

As a future work, it will be interesting to rank the cloud resources on the basis of different criteria
such as resource computational powers, storage capacities, imbalance workloads, and cost and allocate
them using machine learning techniques. It is also desirable to include energy-efficient perspectives in the
proposed research when resources operate with high power to execute more tasks within deadlines.

Author Contributions: conceptualization, M.S.Q. and M.B.Q.; methodology, M.B.Q.; software, M.S.Q. and M.B.Q.;
validation, M.S.Q.; formal analysis, M.F. and M.Z.; investigation, M.B.Q. and M.Z.; resources, M.S.Q.; data curation and
writing–original draft preparation, M.S.Q. and M.B.Q.; writing–review and editing, M.Z. and S.A.; supervision and
project administration, A.S.; funding acquisition, M.S.Q. and M.F. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC of this research was funded by University of Central Asia, Kyrgyzstan.

Conflicts of Interest: The authors declare no conflict of interest.

Energies 2020, 13, 5706 23 of 25

Nomenclature

Notation Description
T Task set
rk Release time of task k
ek Execution time of task k
dk Deadline of task k
CPy Computing power of resource y
PNP Positive-negative points set
DFk Data files set required by task k
EETky Execution time of task k on resource y
Υx Task group x
GUΥx Group utilization of task group x
TUi Utilization of task i
CD Compute and storage resource pair
CR Computing resource set
tP Positive point
tN Negative point
TT Total execution time
DR Data storage resource set
Rw Response time of the storage resource w
fkz File z needed by task k
FTfkz

Transfer time of the file fkz
card(T) Cardinality of task set T
drw Data storage resource w

References

1. Venugopal, S.; Buyya, R. An SCP-based heuristic approach for scheduling distributed data-intensive applications
on global grids. J. Parallel Distrib. Comput. 2008, 68, 471–487. [CrossRef]

2. Min-Allah, N.; Qureshi, M.B.; Alrashed, S.; Rana, O.F. Cost Efficient Resource Allocation for Real-Time Tasks in
Embedded Systems. Sustain. Cities Soc. 2019, 48, 101523. [CrossRef]

3. Martel, S. How Cars Have Become Rolling Computers. Available online: https://www.theglobeandmail.com/
globe-drive/how-cars-have-become-rollingcomputers/article29008154/ (accessed on 2 June 2020).

4. STATISTA. Number of Internet of Things (IoT) Connected Devices Worldwide in 2018, 2025 and 2030. Available
online: https://www.statista.com/statistics/802690/worldwideconnected-devices-by-access-\technology/
(accessed on 25 May 2020).

5. Amazon Elastic Compute Cloud (Amazon EC2). Available online: http://aws.amazon.com/ec2/ (accessed on 5
June 2020).

6. Li, J.; Qiu, M.; Ming, Z.; Quan, G.; Qin, X.; Gue, Z. Online optimization for scheduling preemptable tasks on IaaS
cloud systems. J. Parallel Distrib. Comput. 2012, 72, 666677. [CrossRef]

7. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.H.; Konwinski, A.; Lee, G.; Patterson, D.A.; Rabkin, A.;
Stoica, I.; et al. Above the clouds: A Berkeley View of Cloud Computing. Available online: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf (accessed on 12 June 2020).

8. Amadeo, M.; Molinaro, A.; Paratore, S.Y.; Altomare, A.; Giordano, A.; Mastroianni, C. A Cloud of Things
framework for smart home services based on Information Centric Networking. In Proceedings of the IEEE 14th
International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017.

9. Stergioua, C.; Psannis, K.E.; Kimb, B.G.; Gupta, B. Secure Integration of IoT and Cloud Computing. Future Gen.
Comput. Syst. 2018, 78, 964–975. [CrossRef]

http://dx.doi.org/10.1016/j.jpdc.2007.07.004
http://dx.doi.org/10.1016/j.scs.2019.101523
https://www.theglobeandmail.com/globe-drive/how-cars -have-become-rollingcomputers/article29008154/
https://www.theglobeandmail.com/globe-drive/how-cars -have-become-rollingcomputers/article29008154/
https://www.statista.com/statistics/802690/worldwideconnected-devices-by-access-\technology/
http://aws.amazon.com/ec2/
http://dx.doi.org/10.1016/j.jpdc.2012.02.002
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://dx.doi.org/10.1016/j.future.2016.11.031

Energies 2020, 13, 5706 24 of 25

10. Chen, H.; Zhu, X.; Guo, H.; Zhu, J.; Qin, X.; Wu, J. Towards energy-efficient scheduling for real-time tasks under
uncertain cloud computing environment. J. Syst. Softw. 2015, 99, 20–35. [CrossRef]

11. Lee, Y.S.; Son, Y. A study on the smart virtual machine for executing virtual machine codes on smart platforms.
Int. J. Smart Home 2012, 6, 93–106.

12. Qureshi, M.B.; Alqahtani, M.A.; Allah, N.M. Grid Resource Allocation for Real-Time Data-Intensive Tasks. IEEE
Access 2017, 5, 22724–22734. [CrossRef]

13. Zorkany, M.; Hussein, M.; Kader, N. Real Time Operating System for the Internet of Things, Vision, Architecture,
and Research Directions. In Proceedings of the World Symposium on Computer Applications & Research
(WSCAR), Cairo, Egypt, 12–14 March 2016. [CrossRef]

14. Dickerson, R.; Gorlin, E.; Stankovic, J, Empath: A continuous remote emotionalhealth monitoring system for
depressive illness. In Proceedings of the Wireless Health, San Diego, CA, USA, 10–13 October 2011.

15. Hishama, A.A.B.; Ishaka, M.H.I.; Teika, C.K.; Mohameda, Z.; Idrisb, N.H. Bluetooth-based home automation
system using an android phone. Jurnal Teknologi (Sci. Eng.) 2014, 70, 57–61.

16. Pavana, H.; Radhika, G.; Ramesan, R. PLC based monitoring and controlling systemusing WiFi device. IOSR J.
Electr. Commun. Eng. 2014, 9, 29–34.

17. Khalid, A.; Aslam, S.; Aurangzeb, K.; Haider, S.I.; Ashraf, M.; Javaid, N. An efficient energy management
approach using fog-as-a-service for sharing economy in a smart grid. Energies 2018, 11, 3500. [CrossRef]

18. Mckinsey, By 2025 Internet of Things Applications Could Have 11 Trillion Impact, 2015. Available
online: http://www.mckinsey.com/mgi/overview/in-the-news/by-2025-internetof-thingsapplications-could-
have\-11-trillion-impact/ (accessed on 28 May 2020).

19. Soliman, M.; Abiodun, T.; Hamouda, T.; Zhou, J.; Lung, C. Smart Home: Integrating Internet of Things with
Web Services and Cloud Computing. In Proceedings of the 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, Bristol, UK, 2–5 December 2013; pp. 317–320.

20. Son, J.Y.; Park, J.-h.; Moon, K.-d.; Lee, Y.-h. Resource-Aware smart home management system by constructing
resource relation graph. IEEE Trans. Consum. Electr. 2011, 57, 1112–1119. [CrossRef]

21. Davidson, J. Apple Homekit: The Beginner’s Guide. Van Helostein, 1st ed.; CreateSpace Independent Publishing
Platform: Scotts Valley, CA, USA, 2017.

22. The Ambient. Available online: https://www.the-ambient.com/guides/samsung-smartthings-guidesmart-
\home-163 (accessed on 20 May 2020).

23. Google Home Review (2018): The Smart Speaker that Answers almost Any Question, The Guardian. Available
online: https://www.theguardian.com/technology/2017/may/10/google-homesmart-speaker-\review-voice-
controll (accessed on 10 June 2020).

24. Liu, C.L.; Layland, J.W. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM
1973, 20, 40–61. [CrossRef]

25. Qureshi, M.B.; Alrashed, S.; Allah, N.M.; Kolodziej, J.; Arabas, P. Maintaining the Feasibility of a Hard Real-time
Systems with Reduced Number of Priority Levels. Int. J. Appl. Math. Comput. Sci. 2015, 25, 709–722. [CrossRef]

26. Min-Allah, N.; Khan, S.U. A hybrid test for faster feasibility analysis of periodic tasks. Int. J. Innov. Comput. Inf.
Control 2011, 7, 1–10.

27. Sha, L.; Goodenough, J.B. Real-Time Scheduling Theory and Ada, CMU/SEI-88-TR-33; Software Engineering Institute,
Carnegie-Mellon University: Pittsburgh, PA, USA, November 1988; p. 15213.

28. Suciu, G.; Vulpe, A.; Halunga, S.; Fratu, O.; Todoran, G.; Suciu, V. Smart Cities Built on Resilient Cloud
Computing and Secure Internet of Things. In Proceedings of the 2013 19th International Conference on Control
Systems and Computer Science, Bucharest, Romania, 29–31 May 2013; pp. 513–518.

http://dx.doi.org/10.1016/j.jss.2014.08.065
http://dx.doi.org/10.1109/ACCESS.2017.2760801
http://dx.doi.org/10.1109/WSCAR.2016.21
http://dx.doi.org/10.3390/en11123500
http://www.mckinsey.com/mgi/overview/in-the-news/by-2025-internetof-thingsapplications-could-have\-11 -trillion-impact/
http://www.mckinsey.com/mgi/overview/in-the-news/by-2025-internetof-thingsapplications-could-have\-11 -trillion-impact/
http://dx.doi.org/10.1109/TCE.2011.6018863
https://www.the-ambient.com/guides/samsung-smartthings-guidesmart-\home-163
https://www.the-ambient.com/guides/samsung-smartthings-guidesmart-\home-163
https://www.theguardian.com/technology/2017/may/10/google-homesmart-speaker-\review-voice-controll
https://www.theguardian.com/technology/2017/may/10/google-homesmart-speaker-\review-voice-controll
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1515/amcs-2015-0051

Energies 2020, 13, 5706 25 of 25

29. Liu, J.W.S. Real Time Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2000.
30. Ye, X.; Huang, J. A framework for Cloud-based Smart Home. In Proceedings of the 2011 International Conference on

Computer Science and Network Technology, Harbin, China, 24–26 December 2011; pp. 894–897.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Task, Resource and Cost Models
	Task and Resource Model
	Data Files Model
	Task Grouping
	Cost Model

	Time- and Cost-Efficient Scheduling Algorithm
	Performance Evaluation
	Experimental Setup
	Performance Metrics

	Results and Discussion
	Effect of Data Files Transfer on Performance
	Impact on Resource Utilization
	Failure Ratio

	Conclusions and Future Work
	References

