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Abstract. Convergence problems has been the focus of interest for researchers that are
working in the fields of spectral theory. In the current research we investigate issues relating to
the summability of the Fourier-Laplace series on the unit sphere. The necessary conditions which
are required to obtain good estimation for summability of the Fourier-Laplace series investigated.
This research will also provide new and sufficient conditions in the form of theorems and lemmas
which will validate the uniform summability of the Fourier-Laplace series on the sphere.

1. Introduction
Let SN is N dimensional sphere in RN+1 :

SN = {x = (x1, x2, ......, XN+1) ∈ RN+1 :
N+1∑
n=1

x2n = 1}

For any two point x and y in SN by γ = γ(x, y) denote spherical distance between these
two points which is radial value of an angle between vectors x and y . It is clear that γ ≤ π.

Denote by ∆s be Laplace-Beltrami operator on SN which has the following expression in
the spherical coordinates x = (ξ1, ξ2, ...., ξN−1, ζ) as:

∆s =
1

sinN−1 ξ1

∂

∂ξ1

(
sinN−1 ξ1

∂

∂ξ1

)
+

1

sin2 ξ1 sinN−2 ξ2

∂

∂ξ2

(
sinN−2 ξ2

∂

∂ξ2

)
+ . . . .+

+
1

sin2 ξ1 sin2 ξ2 . . . sin
2 ξN−1

∂2

∂ζ2
.

Consider this operator as a formal differential operator with domain of definition C∞(SN ).
It is a symmetric, non negative and essentially selfadjoint. Thus its closure −∆s is a selfadjoint
operator in L2(S

N ). Its eigenfunctions Y k are known as spherical harmonics and they are
complete and orthogonal system in L2(S

N ).
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For the any function f ∈ L2(S
N ) its Fourier series by spherical harmonics {Y k

j }
∣∣∣ak
j=1

is

called Fourier-Laplace series on sphere:

f(x) =
∞∑
k=0

ak∑
j=1

fk,jY
k
j (x), (1)

where fk,j =
∫
SN f(y)Y k

j (y)dσ(y) , and ak = (N+k)!
N !k! −

(N+k−2)!
N !(k−2)! is a frequency of the

corresponding eigenvalues λk = k(k + N − 1). Equality (1) should be understood in the sense
L2(S

N ).
A partial sum of the series (1) can be written as follows

Enf(x) =

∫
SN

f(y)Θ(x, y, n)dσ(y),

where Θ(x, y, n) is called a spectral kernel and has a form:

Θ(x, y, n) =
n∑
k=0

ak∑
j=1

Y k
j (x)Y k

j (y). (2)

Equation (1) can be unestood in the sense other than L2 topology. But in this case
application of the summation methods of the partial sum (regularization of the partial sum) is
required depending on the smoothnes of the function. Traditionally summation of the Fourier-
Laplace series carried of by the Cesaro means [4]. In [4] Kogbetliantz obtained asymptotic
representations of the Cesaro means of the spectral kernel of the Fourier-Laplace series.

In the present paper we consider the Riesz method of summation [1]. The Riesz means of
the partial sums of the series (1) also has an integral form:

Eαnf(x) =

∫
SN

f(x)Θα(x, y, n)dy,

where the kernel Θα(x, y, n), is the Riesz means of the spectral kernel (2) and has the following
asymptotic formula (see [10]):

if
∣∣π
2 − γ(x, y)

∣∣ < πn
2(n+1) , n→∞, then

Θα (x, y, n) = n
N−1

2
−α(N − 1)

sin
[
(n+ N

2 + α
2 )γ − π (N−1+2α)

4

]
(2 sin γ)

N−1
2
(
2 sin γ

2

)1+α
+n

N−3
2
−α ηn(γ)

(sin γ)
N+1

2
(
sin γ

2

)1+α +
εn(γ)

(n+ 1)
(
sin γ

2

)1+N (3)

where |ηn(γ)| < C, |εn(γ)| < C;

if 0 < γ0 ≤ γ ≤ π
|Θα (x, y, n)| ≤ C4n

N−1−α (4)

if 0 ≤ γ ≤ π
|Θα (x, y, n)| ≤ C5n

N . (5)

In the present paper we will study the problems of the uniform summability by the Riesz
means of the Fourier-Laplace series in the Nikolskii spaces Ha

p (SN ) [13]. These questions for
the Cesaro means studied by A.K.Pulatov [5].
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2. Main theorem
For any domain Σ ⊂ SN by Σ∗ denote its diametrically opposite: Σ∗ = {x∗ ∈ SN :
there exist x ∈ Σ such that γ(x, x∗) = π. }

Theorem 2.1 Let f ∈ Ha
p (SN ), p ≥ 1, a > 0.

(i) If pa > N and a+ s > N−1
2 , then

lim
n→∞

Esnf(x) = f(x),

uniformly on SN .

(ii) If pa = N and a+ s > N−1
2 , and in addition a function f above is continuous in the

domain Σ ⊂ SN , then
lim
n→∞

Esnf(x) = f(x),

uniformly on any compact K ⊂ Σ.

(iii) If f(x) is vanishing in some domain Σ ⊂ SN and a+ s > max{Np − 1, N−12 }, then

lim
n→∞

Esnf(x) = 0,

uniformly on any compact K ⊂ Σ.

(iv) If f(x) is vanishing in some domain Σ ⊂ SN and also in its diametrically opposite Σ∗.
and a+ s > N−1

2 , then
lim
n→∞

Esnf(x) = 0,

uniformly on any compact K ⊂ Σ.

Theorem 2.1 provides sufficient conditions for the uniform convergence of Esnf(x) functions
from the class Ha

p (SN ) . A condition ap > N is precise because in other case there exists an

unbounded function in Ha
p (SN ) whose Fourier-Laplace series trivially is divergent and cannot

be uniformly summable on SN . Item (ii) in the theorem shows that in critical case when
ap = N additional conditions gives positive answer for the uniform summability problem. This
clarification methods developed in [1] and [6]. Inequality a + s > max{Np − 1, N−12 }, of the

item (iii) of the theorem above makes corrections of the corresponding condition in theorem 2 of
the paper [11]. Necessity of the conditions in theorem 2.1 is discussed in the the theorem below.

Theorem 2.2 Let p ≥ 1, a > 0.

(i) if s + α = N
p − 1 , then for any x0 ∈ SN there is a function f ∈ Ha

p (SN ), that is
equal zero in some neighborhood of this point and satisfies the following inequality

lim
n→∞

Esnf(x0) > 0.

(ii) if s+ α = N−1
2 , then for any x0 ∈ SN there is a function f ∈ Ca(SN ), that is equal

zero in some neighborhood of this point as well as in some neighborhood of the diametrically
opposite point and satisfies the following inequality

lim
n→∞

Esnf(x0) > 0.

A condition s+α = N
p − 1 in (i) of theorem 2.2 proves preciseness of the condition in item

(iii) of the theorem 2.1. A condition s + α = N−1
2 proves preciseness of the corresponding

conditions in (i),(ii),(iii) and (iv)in the theorem 2.1. Moreover theorem 2.2 also corrects theorem
1 in [12].
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3. Preliminaries and proof of the theorem.
The proof of the main theorem based on number of supplementary statements. From the
estimations (3), (4) and (5) we obtain

Lemma 1 Let n > 1, α > −1 and 1 ≤ q ≤ ∞ (1/q + 1/p = 1). Uniformly with the respect
variable x we have

‖Θα(x, y, n)‖Lq(SN ) ≤ C(nN/p + n(N−1)/2−α), q 6= 2N

N + 1 + 2α
(6)

‖Θα(x, y, n)‖Lq(SN∩{γ(x,y)>γ0>0}) ≤ C(nN/p−1−α + n(N−1)/2−α), q 6= 2N

N − 1
(7)

‖Θα(x, y, n)‖Lq(SN∩{π−γ0>γ(x,y)>γ0>0}) ≤ Cn, (8)

where the norm in Lq is taken with the respect to the variable y.

Let τ is a positive number. Using equality (1) we can define powers of the sefadjoint operator
1 +−∆s

(1 +−∆s)
τf(x) =

∞∑
k=0

(1 + λk)
τ
ak∑
j=1

fk,jY
k
j (x). (9)

Note that operator (1 +−∆s)
τ implements isomorphic mapping between spaces Ha

p (SN ) and

Ha+2τ
p (SN ) by the modulo C∞(SN ) [2].

Let g(x) = (1 +−∆s)
τf(x) . Then we can obtain the new representation for Eαnf(x)

Eαnf(x) =

∫
SN

Θα
τ (x, y, n)g(y)dσ(y), (10)

where Θα
τ (x, y, n) defined as follows

Θα
τ (x, y, n) = (1 +−∆s)

−τΘα(x, y, n)

=
n∑
k=0

(
1− λk

λn

)α
(1 + λk)

−τ
ak∑
j=1

Y
(k)
j (x)Y

(k)
j (y). (11)

Using the Holder inequality we can estimate (10)

|Eαnf(x)| ≤
∫
SN
|Θα

τ (x, y, n)||g(y)|dσ(y)

≤
(∫

SN
|Θα

τ (x, y, n)|qdσ(y)

) 1
q

‖g‖Lp ,
1

p
+

1

q
= 1. (12)

We choose τ = a−ε
2 , ε > 0. The estimation of (

∫
SN |Θα

τ (x, y, n)|qdσ(y))
1
q follows from

the Lemma 1. Then for the estimation of ‖g‖Lp we apply theorem on isomorphism of the
Nikolskii spaces [2]

‖g‖Lp = ‖(1 +−∆s)
a−ε
2 f‖Lp ≤ C‖f‖Ha−ε

p
≤ C‖f‖Ha

p

This conclude the proof of the Theorem 1. Its statements follows from the statements of the
Lemma 1 and estimation for ‖g‖Lp above.

The proof of the theorem 2 is based on the analogue of the Lemma 3 in [5] for the Riesz
means.
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4. Discussions
The questions of the uniformly summability of the spectral expansions associated with the
selfadjoint extensions of elliptic differential operators of arbitrary order in N-dimensional domain
studied in [1]. These problems for the Fourier-Laplace series for the Cesaro means studied by
Pulatov in [5]. The Fourier-Laplace series in the spaces of singular distributions studied in [3]
and [9]. More general expansions for the singular distributions studied in [6], [7] and [8].

5. Conclusion
From the main statements of these paper and paper [5] we observe similar behavior of the Reisz
means of the Fourier-Laplace series on the sphere and the Chezaro means similar in terms of
uniform convergence.
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