
Ordering N°: Year: 2014

Thesis
Cotutelle-de-thèse

Usage-Driven Unified Model for User Profile and
Data Source Profile Extraction

Submitted to

University of Passau
Department of Informatics and Mathematics

Passau, Germany

National Institute Of Applied Sciences
Doctoral School of Computer Science and Mathematics

Lyon, France

In fulfillment of the requirements for

Doctoral Degree

Prepared by

Lyes Limam

Defended on the 24th of June 2014

Examining Committee
Prof. Christine Verdier Université Joseph Fourier, France Rapporteur

Dr. HdR. Markus Zanker Université de Klagenfurt, Autriche Rapporteur

Prof. Michael Granitzer Université de Passau, Allemagne Examinateur

Dr. Matthieu Exbrayat Université d’Orléans, France Examinateur

Prof. Ernesto Damiani Université de Milan, Italie Examinateur

Dr. Elöd Egyed-Zsigmond INSA de Lyon, France Examinateur

Dr. David Coquil Université de Passau, Allemagne Examinateur

Prof. Lionel Brunie INSA de Lyon, France Co-Directeur de thèse

Prof. Harald Kosch Université de Passau, Allemagne Co-Directeur de thèse

Contents

Abstract 7

Résumé 9

Zusammenfassung 11

I. Introduction 13

1. Introduction and Motivations 15
1.1. General Context . 15
1.2. Research Questions . 17
1.3. Contribution . 18
1.4. Thesis Organization . 20

II. State of the Art 23

2. User Modeling 25
2.1. Introduction . 25
2.2. Profiling Model Approaches . 26

2.2.1. Kobsa et al. 27
2.2.2. Armstrong et al. 30
2.2.3. Bollackar et Al. 32
2.2.4. Kim et al. 35
2.2.5. Middleton et al. 38
2.2.6. Shen et al. 41
2.2.7. Vallet et al. 43
2.2.8. Abel et al. 45
2.2.9. Synthesis . 47

i

Contents Contents

2.3. Search Query Log Analysis and Positioning of the Thesis 50
2.3.1. Search Query Log Analysis and its Challenges 50
2.3.2. Search Query Log and Semantics 51
2.3.3. Usage Analysis in Search Query Logs 52

3. Overview on Similarity Functions and Clustering Algorithms 55
3.1. Introduction . 55
3.2. Distance and Similarity Functions . 55

3.2.1. Similarity and Distance Functions Based on Vector of Features 57
3.2.2. Semantic Similarity Functions 57
3.2.3. Thesis Positioning . 60

3.3. Baseline Clustering Algorithms . 62
3.3.1. Hierarchical Algorithms . 62
3.3.2. Partition-Based Algorithms 64
3.3.3. Density-Based Algorithms . 65
3.3.4. Thesis Positioning . 70

3.4. Summary . 70

III. A Framework for Usage Analysis in Information Retrieval
Systems 73

4. Overview of a Framework for Usage Analysis in IR systems 75
4.1. Introduction . 75
4.2. Data Gathering and Query Log Preprocessing 77

4.2.1. Preprocessing Statistics . 79
4.2.2. Lexical Analysis . 80
4.2.3. Semantic Analysis . 81

4.3. Taxonomy Construction : a Support for Analysis 82
4.4. Usage-Based User Profile and Data Source Profile Modeling 83

4.4.1. Extracting User Interests : a Pruning Algorithm 83
4.4.2. A Two-Face Model of User Profile and Data Source Profile . . 84

4.5. Usage of the Model . 85
4.6. Summary . 85

ii ii

Contents

5. Keyword-Based Query Log Analysis 87
5.1. Introduction . 87
5.2. Keyword Taxonomy Construction: A Global Semantic Representation 88

5.2.1. Keywords Disambiguation by Using External Source of Se-
mantics: . 88

5.2.2. Basic Hypernymy Structure 97
5.2.3. Semantic Distance Function 101

5.3. The Computational Complexity of the Taxonomy Construction 106
5.3.1. Tokenization: . 106
5.3.2. Stemming . 106
5.3.3. Lemmatization . 106
5.3.4. Disambiguation . 108
5.3.5. Hypernymy Structure . 109
5.3.6. Overall Complexity . 109

5.4. Using the Taxonomy for Analysis . 110
5.4.1. Structure Analysis . 110
5.4.2. User Interests Analysis . 112

5.5. Experimental Results . 112
5.5.1. Consistency of the Disambiguation Method 112
5.5.2. Characterization of the Semantic Distance 114
5.5.3. Results From the AOL Keywords Taxonomy 116

5.6. Summary . 117

6. Usage-Based Profile Modeling 119
6.1. Introduction . 119
6.2. Extracting User Interests . 119

6.2.1. Query Terms Clustering . 120
6.2.2. A Model of General Interests 124

6.3. Implicit User Profile and Data Source Profile Modeling 125
6.4. Community Discovery and Data Source Categorization 130

6.4.1. User Community Discovery 131
6.4.2. Data Source Categorization 131
6.4.3. Mapping the Users to the Data Sources 131

6.5. Experimental Results . 132
6.5.1. Clustering Evaluation . 132

iii

Contents Contents

6.5.2. Semantic clustering of the AOL search keywords 133
6.5.3. Structure-Based Clustering Evaluation 135

6.6. Summary . 136

IV. Conclusion 137

7. Conclusion and Futures Perspectives 139

Bibliography 143

iv iv

List of Figures

1.1. Interest based Network Organization 16

2.1. User Model Parameters . 26

4.1. A Framework for Usage Analysis . 77
4.2. AOL Search Query Log . 78

5.1. Taxonomy Extraction from Keyword Search Log 88
5.2. Keyword Disambiguation . 91
5.3. The WordNet Structure . 97
5.4. Hypernymy Structure Construction by Hpaths Merging 98
5.5. Examples of Queries Containing Keywords: Handball, Football and

Soccer . 100
5.6. Decreasing Weight Function . 102
5.7. Distance Measurement . 103
5.8. Counter example for triangle inequality 105
5.9. The Disambiguation Precision and Recall 113
5.10. Semantic distance with respect to the taxonomy level 115
5.11. Synsets Distribution over the taxonomy 117

6.1. Example of Taxonomy Before and After Clustering 124
6.2. Basic Profile Extraction . 126
6.3. Hierarchical Normalization . 128
6.4. Inter-Cluster Normalization . 129
6.5. Examples of Semantic Clusters . 133
6.6. Number of Clusters Corresponding to the Threshold Values 134
6.7. Semantic Clustering by Threshold Tuning 135
6.8. Structure-based Clustering Evaluation 136

1

List of Tables

2.1. User profiling models . 54

3.1. Similarity and distance based on vector of features 58
3.2. Semantic similarity functions . 61
3.3. Baseline clustering algorithms comparison 69

5.1. Validation tests of the disambiguation method 115
5.2. Semantic distance with respect to the taxonomy level 116
5.3. Results from the AOL keywords taxonomy 117

3

List of Algorithms

5.1. Keywords Disambiguation Algorithm 94
5.2. Hypernymy Structure Construction Algorithm 99
5.3. Keyword-based Taxonomy Construction 107

6.1. General User Interests Extraction . 122

5

Abstract

This thesis addresses a problem related to usage analysis in information retrieval
systems. Indeed, we exploit the history of search queries as support of analysis to
extract a profile model. The objective is to characterize the user and the data source
that interact in a system to allow different types of comparison (user-to-user, source-
to-source, user-to-source). According to the study we conducted on the work done on
profile model, we concluded that the large majority of the contributions are strongly
related to the applications within they are proposed. As a result, the proposed
profile models are not reusable and suffer from several weaknesses. For instance,
these models do not consider the data source, they lack of semantic mechanisms and
they do not deal with scalability (in terms of complexity). Therefore, we propose
a generic model of user and data source profiles. The characteristics of this model
are the following. First, it is generic, being able to represent both the user and the
data source. Second, it enables to construct the profiles in an implicit way based on
histories of search queries. Third, it defines the profile as a set of topics of interest,
each topic corresponding to a semantic cluster of keywords extracted by a specific
clustering algorithm. Finally, the profile is represented according to the vector space
model. The model is composed of several components organized in the form of a
framework, in which we assessed the complexity of each component.

The main components of the framework are:

• a method for keyword queries disambiguation

• a method for semantically representing search query logs in the form of a
taxonomy;

• a clustering algorithm that allows fast and efficient identification of topics of
interest as semantic clusters of keywords;

• a method to identify user and data source profiles according to the generic
model.

7

This framework enables in particular to perform various tasks related to usage-based
structuration of a distributed environment. As an example of application, the frame-
work is used to the discovery of user communities, and the categorization of data
sources. To validate the proposed framework, we conduct a series of experiments
on real logs from the search engine AOL search, which demonstrate the efficiency
of the disambiguation method in short queries, and show the relation between the
quality based clustering and the structure based clustering.

8

Résumé

La problématique traitée dans la thèse s’inscrit dans le cadre de l’analyse d’usage
dans les systèmes de recherche d’information. En effet, nous nous intéressons à
l’utilisateur à travers l’historique de ses requêtes, utilisées comme support d’analyse
pour l’extraction d’un profil d’usage. L’objectif est de caractériser l’utilisateur et les
sources de données qui interagissent dans un réseau afin de permettre des compara-
isons utilisateur-utilisateur, source-source et source-utilisateur. Selon une étude que
nous avons menée sur les travaux existants sur les modèles de profilage, nous avons
conclu que la grande majorité des contributions sont fortement liés aux applications
dans lesquelles ils étaient proposés. En conséquence, les modèles de profils proposés
ne sont pas réutilisables et présentent plusieurs faiblesses. Par exemple, ces modèles
ne tiennent pas compte de la source de données, ils ne sont pas dotés de mécanismes
de traitement sémantique et ils ne tiennent pas compte du passage à l’échelle (en
termes de complexité). C’est pourquoi, nous proposons dans cette thèse un modèle
d’utilisateur et de source de données basé sur l’analyse d’usage. Les caractéris-
tiques de ce modèle sont les suivantes. Premièrement, il est générique, permettant
de représenter à la fois un utilisateur et une source de données. Deuxièmement,
il permet de construire le profil de manière implicite à partir de l’historique de re-
quêtes de recherche. Troisièmement, il définit le profil comme un ensemble de centres
d’intérêts, chaque intérêt correspondant à un cluster sémantique de mots-clés déter-
miné par un algorithme de clustering spécifique. Et enfin, dans ce modèle le profil
est représenté dans un espace vectoriel. Les différents composants du modèle sont
organisés sous la forme d’un framework, la complexité de chaque composant y est
evaluée. Le framework propose :

• une methode pour la désambiguisation de requêtes ;

• une méthode pour la représentation sémantique des logs sous la forme d’une
taxonomie ;

• un algorithme de clustering qui permet l’identification rapide et efficace des

9

centres d’intérêt représentés par des clusters sémantiques de mots clés ;

• une méthode pour le calcul du profil de l’utilisateur et du profil de la source
de données à partir du modèle générique.

Le framework proposé permet d’effectuer différentes tâches liées à la structura-
tion d’un environnement distribué d’un point de vue usage. Comme exemples
d’application, le framework est utilisé pour la découverte de communautés d’utilisa-
teurs et la catégorisation de sources de données. Pour la validation du framework,
une série d’expérimentations est menée en utilisant des logs du moteur de recherche
AOL-search, qui ont démontrées l’efficacité de la désambiguisation sur des requêtes
courtes, et qui ont permis d’identification de la relation entre le clustering basé sur
une fonction de qualité et le clustering basé sur la structure.

10

Zusammenfassung

Die Arbeit befasst sich mit der Nutzungsanalyse von Informationssuchsystemen.
Auf Basis vergangener Anfragen sollen Nutzungsprofile ermittelt werden. Diese Pro-
file charakterisieren die im Netz interagierenden Anwender und Datenquellen und
ermöglichen somit Vergleiche von Anwendern, Anwendern und Datenquellen wie
auch Vergleiche von Datenquellen. Die Arbeit am Profil-Modell und die damit ver-
bundenen Studien zeigten, dass praktisch alle Beiträge stark auf die entsprechende
Anwendung angepasst sind. Als Ergebnis sind die vorgeschlagenen Profil-Modelle
nicht wiederverwendbar; darüber hinaus weisen sie mehrere Schwächen auf. Die
Modelle sind zum Beispiel nicht für Datenquellen einsetzbar, Mechanismen für se-
mantische Analysen sind nicht vorhanden oder sie verfügen übe keine adequate
Skalierbarkeit (Komplexität). Um das Ziel von Nutzerprofilen zu erreichen wurde
ein einheitliches Modell entwickelt. Dies ermöglicht die Modellierung von beiden El-
ementen: Nutzerprofilen und Datenquellen. Ein solches Nutzerprofil wird als Menge
von Themenbereichen definiert, welche das Verhalten des Anwenders (Suchanfragen)
beziehungsweise die Inhalte der Datenquelle charakterisieren. Das Modell ermöglicht
die automatische Profilerstellung auf Basis der vergangenen Suchanfragen, welches
unmittelbar zur Verfügung steht. Jeder Themenbereich korrespondiert einem Clus-
ter von Schlüsselwörtern, die durch einen semantischen Clustering-Algorithmus ex-
trahiert werden. Das Modell umfasst mehrere Komponenten, welche als Framework
strukturiert sind. Die Komplexität jeder einzelner Komponente ist dabei festgehal-
ten worden. Die wichtigsten Komponenten sind die Folgenden:

• eine Methode zur Anfragen Begriffsklärung

• eine Methode zur semantischen Darstellung der Logs als Taxonomie

• einen Cluster-Algorithmus, der Themenbereiche (Anwender-Interessen,
Datenquellen-Inhalte) über semantische Cluster der Schlüsselbegriffe identi-
fiziert

11

• eine Methode zur Berechnung des Nutzerprofils und des Profils der Daten-
quellen ausgehend von einem einheitlichen Modell

Als Beispiel der vielfältigen Einsatzmöglichkeiten hinsichtlich Nutzerprofilen wurde
das Framework abschließend auf zwei Beispiel-Szenarien angewendet: die Ermit-
tlung von Anwender-Communities und die Kategorisierung von Datenquellen. Das
Framework wurde durch Experimente validiert, welche auf Suchanfrage-Logs von
AOL Search basieren. Die Effizienz der Verfahren wurde für kleine Anfragen demon-
striert und zeigt die Beziehung zwischen dem Qualität-basiertem Clustering und dem
Struktur-basiertem Clustering.

12

Part I.

Introduction

13

1. Introduction and Motivations

1.1. General Context

Nowadays, the amount of information available in the digital world grows up expo-
nentially. According to a study conducted by the International Data Corporation
(IDC) [GR11], the amount of information created and replicated in the world is
doubling every two years and has exceeded 1,8 Zettabyte in 2011. In addition to
that, the rapid growth of information volume affects both structures of smaller and
larger scale. Exploiting such a huge amount of information in structures of small
scale like enterprise or large scale like the Internet, is usually confronted with the
challenge of relevant information seeking.

Naturally, the structure that controls the information takes the form of a network.
Moreover, a network is a set of nodes exchanging data where a node is either a
user or a data-source. In an information system, the user is the entity that requests
and consumes information in the form of text, multimedia objects or services that
correspond to its interest, while the data-source is the entity which is able to deliver
information as a response for a user request. In order to facilitate access to relevant
information, organizing the network is necessary from both the user side and the
data-source side.

In the user side, such an organization consists in grouping together the users with
similar interests. Therefore, a user who needs information from others has to ask
the group who shares similar interests with him. In fact, dealing with groups of
users, rather than individuals reduces the search space, which has the advantage of
saving time and efforts and improving the quality of information. As an example,
in social networks, the process of users grouping is known as community discovery.

Unlike the user, the data-source plays the role of the provider. Its function is to
answer, when it is possible, to the user query. Organizing the data-sources consists

15

Chapter 1 Introduction and Motivations

in grouping together the ones whose contents cover the same topics. This results in
two advantages: first, in a search session, the user query is submitted to a group
of data sources whose contents match the user interests, which reduces the search
space. Second, grouping data-sources improves the global efficiency of the system
because it facilitates data transfers within the same group. For instance, it enables
workload balancing by taking decisions about data placement within the same group.
We call the process of grouping data sources, data source categorization.

In summary, both user grouping and data source grouping should be based on the
interest. Moreover, we note three types of relationships (see Fig. 1.1) :

1. User to a Group of users: a relationship in which a user exchange information
with users with similar interests.

2. User to Group of data-sources: a relationship in which a user requests infor-
mation from data sources covering his interest.

3. Data-source to Group of data-sources: a relationship in which a data source
exchanges information with other data sources covering similar topics.

Figure 1.1.: Interest based Network Organization

16 16

1.2 Research Questions

1.2. Research Questions

As we have shown previously, network organization consists in splitting the network
into groups of users having similar interests and into groups of data-sources covering
similar topics. Such an organization facilitates the access to relevant information
by reducing the search space and improving the efficiency of the system. In fact,
the core problem in either user grouping or data-source grouping is a modeling
problem. Indeed, the grouping process consists basically in comparing the entities
(users and/or data-sources) of the system. However, comparing entities should be
done on the basis of a model that represents the characteristics of those entities.
Actually, if we consider the heterogeneous nature of the user and the data-source,
there is a need of two different models, each of which performing a set of tasks:

The User Model:

• Representing the user interests

• Enabling comparisons:

– User to User: Comparison enables to construct groups of users with sim-
ilar interest and to simplify interactions between users.

– User to Data-source: Comparison enables to identify the data-sources
which are likely to match the users interests.

The Data Source Model

• Representing the topics provided by the data-source

• Enabling comparisons:

– Data-source to Data-source: Comparison enables to construct groups of
data-sources with similar contents and to simplify data transfers between
data-sources.

The main objective of this thesis is to propose a profile model for both user and
data source. Thus, through our proposal, we attempt to answer a number of specific
research questions, which are:

1. What is the best technique to represent the user interests and the data source
topics, to be interpreted by the system, and understandable by the user?

17

Chapter 1 Introduction and Motivations

2. Is there a way to characterize both the user and the data source in a unique
model?

3. What is the data that should be analyzed to construct the model? Is the data
collected implicitly or explicitly?

4. Should the model characterize the user short term interests and/or long term
interests?

5. How can semantic mechanisms contribute to enrich the model?

6. Can the model perform the three types of comparison (i.e., user-user, user-data
source, and data source-data source)?

7. Can the model construction method be scalable to deal with large amount of
data?

1.3. Contribution

In this thesis, we design a model and a framework for user and data-source profiling
based on the analysis of usage. The main idea of the framework is to exploit the
history of queries in which the users interact with data-sources. In our study we use
information retrieval system application example, but the principles of the frame-
work are still valid in other interaction-based applications, such as social network
applications, microblogging platforms (e.g., Twitter), etc. The main components of
the framework comprise:

• Data gathering and query log preprocessing (cf. sec. 4.2)
This consists in collecting the user queries submitted to a web search engine,
and in preprocessing the resulting log by filtering out meaningless queries and
keywords. In this component, we propose two types of analysis: lexical and se-
mantical. The former consists in using text analysis techniques (tokenization,
stemming and, lemmatization). The latter consists in integrating semantic
resources to check the validity of the keywords.

• Semantic representation of the log by using keywords taxonomy (cf. chapter 5)
This consists in preparing the logs to the effective process of user and data
source profiling. The main objective is to enrich the textual query log with se-
mantics. In this component, we represent the query log in the form of keywords

18 18

1.3 Contribution

taxonomy. Thus, the main contributions are: first, a method for keyword dis-
ambiguation, which consists in replacing each keyword by its corresponding
sense, and second, a semantic distance function, which measures the distance
between keywords in the taxonomy.

• Usage-based user profile and data-source profile modeling (chapter 6)
This consists in extracting the user profile and the data source profile from the
keywords taxonomy. In this component, we first, transform the taxonomy into
a model representing the general user interests (i.e., the interests that concern
all the users), then we instantiate the previous model for each individual user
and individual data-source. The main contributions in this component are:
first, a pruning clustering algorithm, which splits the taxonomy into a set of
general interests, second, a method to represent the user profile and the data
source profile in the vector space model.

The framework we propose answers the previous research questions (cf. sec. 1.2) as
follows:

1. What is the best technique to represent the user interests and the data source
topics, to be interpreted by the system, and understandable by the user?
In our proposal, we use basic elements (keywords/synsets) and structures with
positive added-value. In fact, as basic elements we use sense of the words also
called synsets instead of text of words, extracted from the WordNet database.
In addition to that, we consider clusters of concepts (synsets) as composite ele-
ments. The objective is to extract the user interests by exploiting the semantic
relatedness between the concepts. Moreover, we introduce two structures: a
hierarchy structure and a vector structure. The hierarchy structure relates
the concepts and is used as a base on which user interests are extracted in
the form of clusters. The vector structure is used to represent numerically the
user interests.

2. Is there a way to characterize both the user and the data source in a unique
model?
In our proposal, the profile model enables to represent both of the data source
and the user in the same model.

3. What is the data that should be analyzed to construct the model? Is the data
collected implicitly or explicitly?
In our proposal, we use the user queries as usage data to analyze. This type

19

Chapter 1 Introduction and Motivations

of data is collected implicitly from the search engine. Of course explicit usage
data (e.g., age, gender, etc.) can improve the precision of the constructed
profile, but collecting explicit data requires effort from the user and is time
consuming.

4. Should the model characterize the user short term interests and/or long term
interests?
In our proposal, we make the choice of long term interest as it is the more
general, but it would be possible to extend to short term in the future.

5. How can semantic mechanisms contribute to enrich the model?
In our model, we use WordNet, a linguistic ontology, as a source of semantics.
The advantage is that WordNet is domain independent which enables to ana-
lyze any type of usage data, especially that coming from a regular user. Thus,
we use WordNet to enrich the profile model (which is based on keywords) with
semantics by providing senses to words and inferring the hierarchical relations
between them.

6. Can the model perform the three types of comparison (i.e., user-user, user-data
source, and data source-data source)?
In our model the comparison between user profiles is done by comparing their
corresponding vector of interests.

7. Can the model construction method be scalable to deal with large amount of
data?
In our proposal, the scalability of the model is demonstrated by calculating
the complexity of the steps composing the modeling process.

1.4. Thesis Organization

The remaining of the dissertation comprises three parts:

The first part is the state of the art; it is divided into two chapters:

Chapter two reviews existing approaches in user modeling and discusses the possi-
bility of using query logs as usage data representative of the user interests. Chapter
three reviews the main existing distance/similarity functions and the most well-
known clustering algorithms. Their performance and characteristics are discussed.

The second part is devoted to the contributions of the thesis:

20 20

1.4 Thesis Organization

Chapter four is an overview of the framework that we propose. Chapter five presents
a method for semantically representing the query log. Chapter six discusses the
design of a model of user interests, which is transformed to a profile model. In
addition to that, it shows how to use the profile model in the process of user group
identification and data-source categorization.

The dissertation ends with chapters discussion and conclusion.

21

Part II.

State of the Art

23

2. User Modeling

2.1. Introduction

User modeling usually means characterizing and representing the user in a way that
enables to exploit information about his behavior and his preferences; it is also called
“user profiling”. The model aims to inform the system about the user’s needs so
that it enables the system to adapt to him. This is usually made by inferring the
user interests based on his interactions with the system. Thus, constructing the user
profile is essential for inferring user interests.

A user profile is constructed from the explicit and implicit interactions of the user
with the system. In other words, usage data for user profiling can be collected
implicitly or explicitly. Explicit collection usually requires the user’s active par-
ticipation, which allows the user to control the information in his profile. Explicit
profiling can take different forms. The user may fill out a form, take part in a survey,
submit personal information to register, etc. One advantage of this method is that
it lets the users directly inform the system what they need and how they need it.
One major inconvenience of this method is that it needs time and effort from the
user, especially when the user interests may change frequently. Conversely, implicit
profiling does not require the users’ input and is performed as a background task. It
usually means tracking and monitoring users’ behavior in order to identify patterns
[Bra04]. Amazon.com, for example, keeps track of each user’s purchasing history
and recommends specific purchases.

In general, two fundamental characteristics must be found in a user profile. First,
the profile must be able to represent the user’s multiple interests in different topics.
Second, the profile extraction must be fast enough to adapt to the users’ change in
interests and possibly to deal with big amounts of user data. However, there are
other characteristics (e.g., representation, usage data, semantics, etc.) that should
be taken into account as it will be shown in the next section. Thus, different profiling

25

Chapter 2 User Modeling

approaches have been proposed for different applications. These approaches rely on
a variety of techniques like: knowledge management, classification, clustering, etc.

The rest of the chapter is composed of two parts. In sec. 2.2, we analyze chronologi-
cally the most important proposals done in the last twenty years in the field of user
modeling. The review is done according to several dimensions. Then, in sec. 2.3 we
show how it is possible to exploit query logs as usage data.

2.2. Profiling Model Approaches

In this section, we propose to analyze the existing profiling models. Thus, we show
chronologically the major improvements that have been made according to a number
of dimensions, each of which defines a profiling model parameter1. In fact, this
results in a set of classes of approaches more or less independent. The parameters
in question are illustrated in (Fig. 2.1):

Figure 2.1.: User Model Parameters

1. Profile Representation: The profile representation technique used in the
construction method. We focus on the most common techniques: keywords
based, concepts based and structures based (semantic networks, hierarchical
representations, etc.) [GSCM07].

2. Genericity: Capability to model both the user and the data source.
1In this chapter, we use the words “dimension” and “parameter” equivalently to mean one pa-
rameter of analysis

26 26

2.2 Profiling Model Approaches

3. Usage data: Type of usage data to analyze, i.e., implicit and/or explicit.

4. Duration: Capability to characterize both short and/or long term user inter-
ests.

5. Semantics: Integration of semantic mechanisms and/or statistical models.

6. Operability: Capability to make operations on the profiles, specifically binary
comparison and statistical analysis in general.

7. Scalability: Capability to deal with large amounts of data.

The user modeling is one of the early problems that has interested the computer
scientists [PAC78, Ric79b, Ric79a, PA80]. At that time, the concept of user mod-
eling was integrated in the application system and no separation was done between
the user model components and the components of the other tasks [Kob01]. The
big problem with this trend of user-adaptive applications is that the user model is
application specific and cannot be reused. The separation between the user model
and the user adaptive applications has started in the mid-eighties (e.g. [Sle85]).
Since then an important number of profile models have been proposed. In our bibli-
ographic study, we focused on works which match fully or partially the parameters
that we cited above.

2.2.1. Kobsa et al.

One of the first generic and application independent user modeling systems was
proposed by A. Kobsa and W. Pohl [KP94]. The authors proposed BGP-MS which
is a user modeling shell system that assists the user application in adapting to
the user by taking into account: knowledge, beliefs, and goals. In order to infer
the user model, BGP-MS and the user application dialog permanently to exchange
information about the user behavior. This is done by means of a set of messages,
including:

• The user application informs BGP-MS about observed user beliefs and goals:
Beliefs and goals are described by a specific description language (BGDL).
Moreover, the content of the message is described following a first order logic
syntax. When BGP-MS receives this message from the application, it stores
it as primary information.

27

Chapter 2 User Modeling

• BGP-MS sends an interview question to the user: The objective is to infer
assumptions directly from the user answers, which will be integrated in the
user model.

• The user application sends the answer to BGP-MS.

• The user application informs BGP-MS about observed user actions: This in-
formation allows BGP-MS to infer all the possible assumptions about the user
beliefs and goals.

• The user application asks BGP-MS for its current assumptions about the user:
The objective is to allow the application to adapt to the assumptions about
the user model.

• BGP-MS gives the current assumptions to the application.

• BGP-MS informs the user application about important events in the user
model. When important assumptions are inferred in the user model, BGP-MS
can inform the application without waiting for a question.

The communication between BGP-MS and the user application is done via KN-
IPCMS which is a platform-independent message-oriented communication protocol
which allows asynchronous communication (e.g., observation about the user beliefs,
goals and actions) and synchronous communication (e.g. BGP-MS current assump-
tions about the user or interview questions) when the user-application waits for an
answer from BGP-MS.

In order to represent the user model and the domain knowledge, the authors use
a partition hierarchy mechanism based on a partition mechanism called KN-PART
[FH93]. KN-PART enables to represent knowledge and assumptions about the user
(beliefs and goals) in a conceptual representation scheme as well as in first-order
logic. It has two principal functions: First, it represents assumptions about the
user model and the domain knowledge in the form of several separated partitions
where each partition is a set of assumptions of the same type. The objective is to
enable inference of new assumptions from each partition. Second, it relates these
partitions to form a hierarchy. Finally, the common content of subordinate partitions
is propagated to their superordinate partition and the content of this partition is
inherited by the subordinate partitions. In order to collect assumptions about the
user, BGP-MS uses inference mechanisms carried out on the basis of first order
logic. The inference process is based essentially on the observed beliefs and goals,
interviews, user’s actions and the current user model.

28 28

2.2 Profiling Model Approaches

The BGP-MS user modeling system matches the parameters we discussed above, as
follows:

1. Profile representation: The model derived by BGP-MS consists of a set of
assumptions organized into a hierarchical partition. These assumptions are
represented both in conceptual scheme and in first order logic.

2. Genericity: The proposed model is exclusively a user model.

3. Usage data: The modeling system uses both implicit (e.g., the user actions)
and explicit (e.g., interview questions) usage data.

4. Duration: The proposed model is based principally on current assumptions
collected and inferred from the user interview answers, beliefs, goals and ac-
tions. Thus, the model is constantly re-adapted according to new events. In
fact, the model is more adapted to capture short term user assumptions.

5. Semantics: The construction of the user model is based only on the interac-
tions between the user and the application and between the user and the mod-
eling system. Moreover, there is no way to insure that collected assumptions
are correct (e.g. the user can misunderstand an interview question because
of ambiguity). In case of an error in an assumption, BGP-MS continues un-
til it reaches an inconsistency state. The use of semantics could significantly
improve the capacity of BGP-MS in detecting inconsistency situations.

6. Operability: The authors do not show how operations could be done on indi-
vidual user models.

7. Scalability: The scalability issue is not discussed by the authors. Nevertheless,
in our opinion, the efficiency of the construction process depends mainly on two
factors, which are: the communication protocol and the inference mechanism.
Depending on the user application, functions the construction process could
be notably slowed down because of the high number of generated messages at
each application event and the inconsistencies that the inference mechanism
has to manage.

Other work

There are many proposals that can be compared to the work of Kobsa et al. We
can cite [FK02] which applies BGP-MS mechanisms (assumptions, user modeling

29

Chapter 2 User Modeling

server, communication protocol, etc.) in the framework of a personalized city tours
application.

2.2.2. Armstrong et al.

At almost the same period of time, Armstrong et al. proposedWebWatcher [AFJM95],
an agent-based system for user modeling in the web. The goal of the system is to
assist the user in searching information on the web by identifying hyperlinks which
are the most likely to be relevant for the user. To do this, the system relies on
the results of previous searches by analyzing both desired and undesired retrieved
information by a machine learning method.

Technically, WebWatcher calculates a function LinkUtility that measures the prob-
ability that a hyperlink leads to the user goal:

LinkUtility : Page×Goal × User × Link → [0, 1]

Where Page is the current page, Goal is the user goal, User is the current user and
Link is a hyperlink on the current page.

In order to calculate the values returned by the function, the agent should pass
a learning phase. The Learning process is composed of two parts: the training
data collection and the learning method. The training data collection consists of
recording for each user link selection an entry in a log file. The content of each
entry is represented in a fixed length vector of Boolean elements corresponding to
the occurrence or not of a word in the user selection. The vector is composed of
four sub-vectors that represent underlined words, words of the sentence containing
the link and the words used to describe the goal.

The objective of collecting training data is to calculate for each link the probability
that it will be selected for a specific goal (i.e., a user query). The learned model is
defined by the function UserChoice :

UserChoice : Page×Goal × Link → [0, 1]

The second part of the learning process is the learning method. The authors apply
three different learning methods: Winnow, Wordstat, TFiDF (see [AFJM95] for

30 30

2.2 Profiling Model Approaches

more details), in addition to a reference random method (i.e., without learning).
The objective is to measure the effectiveness of each one with respect to the proposed
user model.

The authors show two interesting results. First, the precision of WebWatcher when
using the three learning methods is significantly higher compared to a random recom-
mendation. This result shows the impact of the proposed model. Second, the preci-
sion of the learning methods can be improved by reducing the coverage. This means
that WebWatcher proposes recommendation only when its confidence is higher than
a certain threshold which consequently reduces the number of link recommendations.

According to our parameters we deduce the following:

1. Profile representation: The data of the user model is textual and is first, orga-
nized into a set of vectors of words and then, transformed to vectors of features,
where each feature corresponds to a word occurrence or nonoccurrence in the
user selection of link.

2. Genericity: The proposed model concerns only the user and does not consider
the data source as it focus only on what the user wants (goal) and never what
the website proposes. Nevertheless, the model could be extended by taking
into account words of the web page.

3. Usage data: The learning process is based only on searches done by the user
(goal), which means that the model is fully implicit.

4. Duration: The user model is constructed thanks to a learning method. Con-
sequently, the result user model is more adapted to capture the long term user
goal. The reason is that whatever the goal is, it is always affected by all of the
previously learned goals.

5. Semantics: The training data considered by the authors is textual and orga-
nized into vectors of words. One of the major problems that could affect the
user model is the fact that words could be interpreted differently by the users
because of ambiguity. Indeed, the authors do not deal with this issue.

6. Operability: One of the advantages of the proposed model is its presentation.
The fact that the training data has numerical form, enables operations such
as comparison between users.

7. Scalability: The proposed user model is intended to assist users on the web
to select hyperlinks that are the most likely to lead to their goal. Considering

31

Chapter 2 User Modeling

the size of the web, the model should be adapted to deal with big amounts
of data (i.e., the training data). However, the author did not deal with the
scalability issue even if they are convinced that the bigger the set of training
data the better for precision. Thus, the experiments were done on 30 user
sessions of depth of 6 searches for each session. Nevertheless, the authors
showed further in [JFM97] that WebWatcher is still efficient even with a more
significant number of users and data.

Other Work

WebWatcher can be compared with other similar work. For instance, the authors in
[PBMW97] proposed an agent based system that assists the user to find interesting
websites. The proposed approach is based on a naive Bayesian classifier that enables
to learn and revise the user profile by using the user feedback and features (keywords)
extracted from the visited webpages. In the context of the web, the authors in
[HDSB03] proposed another approach to model the user profile by exploiting the
history of navigation. The objective is to predict the user navigation behavior
by using probabilistic Markov models. Almost in the same field of application,
the authors in [DLSA03] proposed an approach to extract the user interests in e-
commerce. The objective is to recommend new objects by exploiting the history of
purchase. The approach is based on a naive Bayes machine learning method applied
on text annotations provided with objects (books).

2.2.3. Bollackar et Al.

In [BLG99] the authors introduced a tracking system which they integrate to Cite-
Seer, a system for Autonomous Citation Indexing (ACI) of scientific publications on
the Web, that they proposed previously in [GBL98]. The objective of the tracking
system is to keep up to date scientific researchers with publications that correspond
to their research topics in web digital libraries. To do this, the tracking system
constructs the profile of the user that is used to track new interesting publications.
Contrary to the previously proposed approaches, the user profile is not based only
on keywords. The authors introduced the concept of Heterogeneous profile. It con-
sists of making several and different representations of the user interest’s topics.
Indeed, the profile consists in a heterogeneous set of features (representative key-

32 32

2.2 Profiling Model Approaches

words, related papers, citation links, metadata). The authors claim that, by using
Heterogeneous profile a wider variety of users may be accommodated as each user
has his/her own set of techniques of searching papers.

The profile building process is launched with a CiteSeer’s searching session to find
papers of interest. Thus, one needs three types of data: search keywords, citing
paper and related paper of a paper that interests the user. The search keywords are
words that separately match: the title, the header, the abstract or the main text
body. The citing papers are papers that cite the paper of interest. The related papers
are papers found thanks to relatedness measures and not by a citing relationship.

In fact, by using one of the above information, the tracking system can start building
the profile. For instance, in the CiteSeer interface, if the user submits a keyword
query containing the title of a paper, the tracking system retrieves the documents
that corresponds to that query. If the user wants that the tracking system tracks new
documents corresponding to those keywords, they will be saved in his/her profile.
Then, if the user selects one of the retrieved items (i.e., papers) and wants to keep up
to date with related papers, the paper in question will be saved in his/her profile and
future related papers will be recommended to him/her. In the end, if the user wants
to look into the list of citing papers and track one of them, he/she can reflexively
save the paper in his/her profile and/or look for other related papers.

In addition to the possibility of adding keywords and documents to the user profile,
the system allows explicit tuning of the profile by the user. He/she can do this, for
example, by deleting component (keywords, documents) that do not belong anymore
to his/her interests.

In summary, the heterogeneous profile proposed by the authors is composed of key-
words and documents that interest the user. The advantage of such a profile model
is the complementarity that exists between keywords and documents. For example,
in a searching session, a relevant document that is not recommended to the user
because of no or partial matching of the profile keywords could be proposed to the
user thanks to a related document in his/her profile.

Let’s show how [BLG99] fits our parameters:

1. Profile representation: The profile model is represented by keywords, in addi-
tion to their related documents.

2. Genericity: Only the user is considered in the profile model. Although, it

33

Chapter 2 User Modeling

would be very useful for the user to know, for example, interesting data sources
(libraries) which need to be modeled.

3. Usage data: The process of constructing the user profile is based on data
(keywords and documents) collected during a search session or recommended
by the tracking system. The process is done implicitly. Nevertheless, it comes
to the user to explicitly decide if the collected/recommended data can be used
to tun his profile.

4. Duration: The fact that it is possible to tune the profile by the user himself
makes possible for the profile to keep up to date with both long and short
term user interests.

5. Semantics: The authors do not deal with semantics, likely because they are
limited to the domain of scientific research papers. Consequently, the problem
of ambiguity is not considered.

6. Operability: Since the authors have used the vector space model to realize
keywords matching and TFiDF (Term Frequency X Inverse Document Fre-
quency) with CCiDF (Common Citation X Inverse Document Frequency) to
measure the documents relatedness, operations between user profiles seems to
be possible.

7. Scalability: We can consider two levels of scalability. Local data base scala-
bility and search engine combined with crawling agents scalability. Although
there are no performance measures shown by the authors, the system seems
to be scalable on the web as it depends on the performance of a web search
engine2.

Other Work

Bollacker et al. work [BLG99] can be compared to Amato et al. work [AS99]. In
fact, both of the two proposals are interested in modeling the user in the context
of digital libraries. The most important resemblance in the two proposals is that
both of them consider the fact that the presentation of interests could be very
heterogeneous (keywords, documents, etc.) and hence has to be taken into account
in the user profile model. However, we note a small difference which comes from
the fact that the former focuses on scientific libraries whereas the latter deals with

2http://citeseerx.ist.psu.edu/index, 2013

34 34

2.2 Profiling Model Approaches

general libraries. Consequently, in term of precision the Bollacker et al. model can
be better than the Amato et al. model. The reason is that the topics of interest are
well defined in Bollacker et al. (i.e., research topics) compared to Amato et al. (i.e.,
general libraries).

2.2.4. Kim et al.

The authors in [KC03] proposed a hierarchical approach to extract user’s interest
topics by implicitly analyzing previously visited web pages. The objective is to
provide the search system with a robust context for personalization.

The proposed profile model consists in a set of classes of interests organized from
general to specific. General classes represent long term interests and specific classes
represent short term interests. The process starts by extracting the document (web
page) features. It consists of representing each document by a set of words that
represent the most accurately its content. Then, the set of all the words is split
recursively into a cluster hierarchy by using a top down clustering algorithm called
DHC. The algorithm works as follows:

First of all, the similarity between each couple of words is calculated using a similar-
ity function. Thus, the set of words is transformed into a similarity graph. Second,
the algorithm calculates a clustering threshold in the current cluster. Third, the
graph is split into a set of connected components (sub-graphs) by eliminating edges
whose weights are less than the threshold value. The resulting sub-graphs are the
child clusters. Fourth, the two first steps are recursively applied on each child clus-
ter. The clustering stops when there are no components to split or when the number
of words is less than a predefined threshold (different from the splitting threshold).

The similarity function and threshold-finding function are the two major parts of the
algorithm. Moreover, both of the threshold and the similarity matrix are calculated
dynamically at every new child cluster. This property has an advantage since it
enables to adapt to the size of the current child cluster.

The similarity function measures the relatedness of words occurring in the same
documents. The authors used three different functions:

• AEMI (Augmented Expected Mutual Information): It measures the similarity
of two words by considering co-occurrence:

35

Chapter 2 User Modeling

AEMI (A, B) = p(a, b) log p(a, b)
p(a)p(b) −

∑
(A=a,B=b)(A=a,B=b)

p(A, B) log p(A, B)
p(A)p(B)

where:

– p(a) is the probability of a document containing a ; p(b) is the probability
of a document containing b ;

– p(a, b) is the probability of a document containing a and b.

– p(a) is the probability of a document not containing a ; p(b) is the prob-
ability of a document not containing b

• AEMI−SP : Enhances AEMI by considering the IDF (inverse document fre-
quency) of a word. It is expressed by the function SP:

AEMI−SP = AEMI − SP

2

SP (m) = 1
1 + exp(0.6 ∗ (m ∗ 10.5− 5))

m = MAX(P (a), P (b))

The clustering threshold is determined dynamically by different threshold-finding
methods. The first method consists of finding the threshold value that optimizes
the number of eliminated edges on each step. To do this, the authors use the
concept of Valley on the graph involving the number of edges by regions of weights.
It consists first of dividing the difference between the smallest edge weight and the
highest one into ten equal regions. Then, the value of the threshold corresponds to
the deepest point (the lowest weight) in the widest and steepest valley in the graph
(# of edges / region).

The second threshold-finding method consists of finding the threshold that generates
the maximum number of child clusters. After having specified the regions, the
threshold will correspond to the boundary between two regions that generates the
maximum child clusters.

In the end, we notice that the evaluation of the constructed hierarchy is done by
analyzing the shape and the number of words within a cluster.

The hierarchical approach of [KC03] fits our parameters as follows:

36 36

2.2 Profiling Model Approaches

1. Profile representation: The profile is represented by a hierarchy of interests
where each interest is a cluster of keywords.

2. Genericity: The profile model considers only the user and does not model the
data source (the web site).

3. Usage data: The usage data is implicitly extracted from previously visited web
pages

4. Duration: The profile model represents both long term interests and short
term interests. The authors consider general interests in the hierarchy to be
long term interests and specific interests to be short term interests.

5. Semantics: The authors do not use any external source of semantics. However,
using the concept of relatedness by word co-occurrence can fix some problems
of ambiguity.

6. Operability: The extracted profile model depends on the usage data of an in-
dividual user. Moreover, the hierarchy and the interest clusters can be very
heterogeneous from a user to another one, since both of the hierarchy genera-
tion and the clustering are based on dynamic threshold. Consequently, profile
comparison is not possible.

7. Scalability: The scalability issue was not studied by the authors. The experi-
ments were performed on a small number of users.

In the work of Kim et al., there are two aspects that we use in our approach (cf.,
chapter 5 and chapter 6): hierarchical classification and clustering algorithm. How-
ever, the techniques and the results are different. First, the Kim et al. word hierarchy
puts into clusters words that are related by the co-occurrence relationship in docu-
ments. However, in our proposal, the clusters are constructed by using the semantic
relationship between word meanings. Second, Kim et al. propose a top-down clus-
tering algorithm. It produces large clusters in the top of the hierarchy as long term
interests and short clusters in the bottom of the hierarchy as short term interests.
However, our proposal is a bottom-up clustering, that favors clusters in the bottom
of the hierarchy as they identify more accurately the user interests. Third, the user
interests extracted by Kim et al. algorithm do not represent the degree of interest
of a user regarding an interest. In contrary, our clustering algorithm extracts and
affects interest weight for each cluster. Indeed, the interests hierarchy proposed by
Kim et al. consists of an input for user profiling while our proposal is a profiling
model.

37

Chapter 2 User Modeling

Other Work

The authors in [SDW06] proposed an approach to construct the user profile in the
context of news filtering items. The user profile in this approach is defined as a
hierarchy of user interests. This work differs from Kim et al. [KC03] in three
aspects: First, the construction process needs explicit feedback from the user while
[KC03] use implicit feedback. (In [SDW06], the user is presented with a set of news
articles and is required to indicate if a news article is of interest or not of interest).
Second, the interest hierarchy is evaluated based on news articles re-ranking while
[KC03] analyze the resulting hierarchy in terms of the shape of the hierarchy tree and
clusters of terms. Third, in [SDW06], once the interest hierarchy is constructed, its
leaf categories are updated after each user session, based on explicit feedback while
[KC03] does not update the hierarchy.

2.2.5. Middleton et al.

Middleton et al. [MSDR04], proposed one of the first ontological user profiling
approach destined to assist academic researchers by recommending on-line academic
research papers.

The user profile is created and maintained by two recommender systems: Quickstep
and Foxtrot.

Quickstep first classifies papers that have been discovered by the users. To do this
it uses classes of research topics of an ontology (extracted from the dmoz open
directory project). The documents classification is done by a k-Nearest Neighbor
classifier using training documents, which are represented in term-vector space to
enable closeness measurement by the TFiDF metric. After the classification phase,
Quickstep creates the user profile by measuring the interest of the user with respect
to the different topics. The topic interest is calculated considering the user’s feed-
back when papers are recommended. The feedback consists in a set of actions which
are: paper interest rating (positive or negative), browsing a paper, following a rec-
ommended paper and paper topic’s correction (helps only the classifier). Moreover
the topic interest function is time dependent, which means the less the papers of
a topic receive feedback over time the less the topic interests the user. Hence the
authors propose the following formula to measure the topic interest:

38 38

2.2 Profiling Model Approaches

Topic−interest =
n∑
i=1

Interest−value(i) / days−old(i)

Where n is the number of documents within a topic, day_old(i) is the number of
days since the last feedback on the document i, interest_value is the rate given
to the feedback of the document i. It is equal to “1” for paper brows, “2” for
following recommendation, “10” for positive interest, “-10” for negative interest (not
interested).

One particular characteristic of Quickstep is that it enables the inference of new user
interest topics. In fact, a new topic is a super class whose interest_value is rated as
50% of the interest_value of its subclass.

Foxtrot is the second recommendation system that constructs the user profile based
on the user interest feedback. Foxtrot and Quickstep are very similar, since both of
them use similar ontologies and user feedback. Thus, the author used them together
to enhance the recommendation precision and to resist to the famous problem of
cold start. However, even if the two systems are similar, Foxtrot has the advantage
to be more accurate in acquiring the user feedback. In fact, Foxtrot uses a graphic
visualization of the user profile which enables the user to indicate the exact level
and duration of interest for a topic by drawing interest bars onto the time/interest
graph.

In summary, the profile model proposed by the authors shows two novel ideas com-
pared to the previous work. First, the profile is represented in the form of an
ontology of interest topics and second, it is visualized in the form of a graph. These
two original ideas have several advantages. First, the use of ontology enables to
provide a base on which the users can be compared. This can be done by compar-
ing documents of the same topic (class). Second, the profile model can be easily
mapped with other models by merging their ontologies. Third, the ontology provides
a more understandable vocabulary to the users, which facilitate feedback acquiring.
Forth, the model is flexible since it can infer new topics. Finally, the graphic profile
visualization increases the user profile accuracy.

In contrary, one inconvenient in using ontological profile could be the fact that
the profile is strongly related to the domain ontology. For instance, if one wants
to construct the user profile in different domains the user might have several sub-

39

Chapter 2 User Modeling

profiles instead of one, which for example complicates comparisons.

[MSDR04] fits our parameters as follows:

1. Profile representation: The profile is represented by a research topic ontology
which classifies documents that interests the user.

2. Genericity: The data-source is not modeled, only the user is considered.

3. Usage data: The user browsing behavior is monitored by a web proxy. Thus,
papers that interest the users are unobtrusively saved in a central database
which makes the data collection implicit. However, during the profile con-
struction process the profile is explicitly tuned by the user in the profile graph
(called profile feedback by the authors).

4. Duration: The profile model can represent both short and long term interests.
This is done thank to the time/interest graph visualization of the profile which
allows the user to teach the system which interests are short or long term by
specifying both the interest level and the duration.

5. Semantics: The ontology provides a unified vocabulary which facilitates the
profile interpretation and avoid ambiguity, in particular, when the users return
their profile feedback (they use the terms of the ontology).

6. Operability: The profile model proposed by the authors is intended to be
used in the context of recommendation by collaborative filtering. Thus, the
profile model is represented in a way that it enables to compare individual
users. The ontological representation facilitates comparison since it separates
interests documents into a set of topics and hence the comparison is made
between documents of the same topics. The author used Pearson-r metric
[Sti89] to measure correlation between profiles.

7. Scalability: The experiments presented by the authors were done on small and
large scale.

In the work of Middleton et al. the semantics aspect is strongly highlighted. In
fact, by using an ontology to represent the profile, the authors intend to address
the problems related to ambiguity. In this sense, the semantics aspect is also one of
the issues that we addressed in this thesis. However, there are two main differences
compared to the work of Middleton et al. First, in this thesis we use keywords to
represent the profile while Middleton et al. use documents. Thus, in our profiling
model, the interests are clusters of keywords while in Middleton et al. the interests

40 40

2.2 Profiling Model Approaches

are class of documents. Second, Middleton et al. use a domain ontology (research
topic ontology) as a source of semantics while in this thesis we use WordNet. Thus,
in Middleton et al. the modeling process is intended for specific public of users (i.e.,
research community) while in this thesis the modeling process is intended to any
type of users.

Other Work

In addition to Middleton et al. work, the use of ontologies to model the user profile
was the subject of many other proposals. The common point of these proposals
is that they focus on the issue of semantics. [SMB07] for instance, proposed an
approach to produce a semantic representation of the user interests by analyzing
search history and using a predefined ontology. In [GA06] the authors introduced
the notion of conceptual clustering. Their approach consists of representing the user
interests as clusters of visited documents, where each cluster is attached to the most
specific concept of a conceptual hierarchy extracted from the whole set of documents.
The authors in [MS04] proposed to model the user interests as a semantic network.
Their approach consists of transforming the word based document visited by the
user into word sense based document by using the WordNet database. Thus, words
(senses) co-occurring in documents are related to form a semantic network.

2.2.6. Shen et al.

The authors in [STZ05] proposed an approach to improve the accuracy of traditional
web search engine by employing eager user profile. The authors claim that using
immediate user feedback in the construction of the user profile can significantly
improve the quality of search as it adapts in real time to any change of the user
needs. Moreover, the proposed approach does not need any explicit feedback from
the user to construct the profile. This means, that the user model is based only on
implicit and immediate user feedback.

Since the user model has to dynamically adapt to every user needs change, it is
necessary to take into account the time factor. The authors define the user model
to be composed of four components:

41

Chapter 2 User Modeling

mt = (S, ~x, At, Rt−1)

Where:

• S is the set of documents which have been seen by the user (i.e., the navigation
history),

• ~x = (x1, ..., xn) describes the system understanding about what the user is
interested in. It consists in a vector whose components are weights attributed
to a set of keywords v = {w1, ..., wn}. The keywords are extracted from the
history of search queries and documents. Indeed, the ~x values change instantly
regarding the user’s actions like: submitting a keyword query, viewing a doc-
ument, etc.

• At represents the set of actions made by the user up to a time t,

• Rt−1represents all the system responses just before the last user action at ∈ At.
The model mtis used later to generate the system response rt ∈ Rt

When a query is submitted by a user, the system responds with a set of document
summaries. The accuracy of the response depends on the current user model mt,
which depends on ~x:

~x = α~q + (1− α)1
k

k∑
i=1

−→si

where ~q is query term vector, −→si the summary term vector (i.e., terms weighted by
a TF-IDF function) of a document the user clicked on following the current query.
k is the number of summaries, α (= 0, 5) is a parameter that controls the influence
of the clicked summaries on the inferred ~x.

The proposed user model fits our parameters as follows:

1. Profile representation: The user model mt is composed of four components:
keywords (~x), viewed documents (S) and the user-system interaction history
(actions At, responses Rt−1). The two fist components form the model (profile)
representation while the others enable to update the model over time.

42 42

2.2 Profiling Model Approaches

2. Genericity: The proposed model concerns only the user and is not extended
to the data source.

3. Usage data: The data used to construct the model is based on implicit user
feedback. The model is constructed on the base of the user search queries and
clickthrough information (viewed documents).

4. Duration: The proposed profile model is based on immediate user feedback; it
is an eager user profile. Consequently, only current user interests are consid-
ered.

5. Semantics: The user model is represented by the term vector ~x which is cal-
culated and updated based on the history of viewed documents −→si and the
current query ~q. However, the model does not integrate any semantic mecha-
nism, in spite the textual nature of analyzed data.

6. Operability: Operations between user profiles are possible, since the profile is
represented in the vector space model (~x, −→si)

7. Scalability: The construction of the user profile is scalable for two reasons.
First, the user profiling component is deployed in the client side and not on
the server which reduce significantly the server load. Second, only current user
interests are considered which reduce the amount of analyzed data.

2.2.7. Vallet et al.

Recently, the authors in [VCJ10] have proposed two approaches for web search
personalization by exploiting the new concept of folksonomy. The main objective is
to make ranking algorithms more effective compared to that of classical web search
engines by using personalized ranking.

The authors therefore propose a profile model based on the user’s annotations of
interesting web pages. The user profile is defined by the set of tags that the user
gives to the documents (web pages) that she/he has retrieved. Formally, the profile
of a user um is defined as a vector −→um = (um,1, ..., um,l) of annotations, where um,i is
the number of times the user um used the term “ti” for annotating documents. In
addition to the user profile, the authors define the document profile by the tags that
the users have given to it. By the same way as for the user, the document profile is
represented by a vector −→dn = (dn,1, ..., dn,l) of annotations, where dn,i is the number
of times the document dn has been annotated using the term ti.

43

Chapter 2 User Modeling

The above definitions of the user profile and the document profile are used to re-rank
the documents retrieved by the search engine such that the document re-ranking
corresponds to the user preferences. For a given retrieved set of documents, the
personalization system measures the similarity between the documents and the user
profile; then, according to the obtained scores, the documents are re-ranked. To
do this, the authors propose two different approaches. The first approach uses a
similarity function based on the vector space model and the second approach uses
a similarity function based on a probabilistic model.

In the end, the experiments conducted by the authors show a significant improve-
ment (23.7%) of the ranking quality of the Yahoo search engine.

The Vallet et al. profile model matches our parameters as follows:

1. Profile representation: The profile model enables to represent the user profile
and the document profile. It consists in a vector of tags used by the users for
annotating documents. A component of a user profile vector represents the
number of times the corresponding tag has been used for annotating docu-
ments, while a component of a document profile vector represents the number
of times the corresponding tag has been used by users for annotating that
document.

2. Genericity: The profile model enables to represent both the user and the
document. Nevertheless, even if one considers a document to be a data source,
the model mostly covers one topic of interest. It would be more interesting and
efficient if the model was capable to represent data sources covering multiple
topics. Indeed, extending the profile model in such a way would enable to
perform a high level comparison between the user profile and the data sources,
e.g. web sites, digital libraries, etc.

3. Usage data: The profile model is extracted from the user folksonomy which is
made of users’ annotations. Moreover, since the user is not asked to annotate
systematically the interesting documents, we consider the usage data collection
to be hybrid (implicit and explicit).

4. Duration: The profile model does not take time into consideration. Hence, all
the user’s tags are used to construct both the user profile and the document
profile whatever if there are old or recent. Consequently, the profile model
represents long term user interests.

44 44

2.2 Profiling Model Approaches

5. Semantics: The profile construction process relies only on the user tags that
form the folksonomy and does not use any semantic resource. In fact, the
model considers only the word form of the tags, since neither the word sense
nor the semantic relationship between words are extracted.

6. Operability: The model is well adapted to make profile comparison. Indeed,
the ranking personalization approaches proposed by the authors are based on
the comparison of the user profile and the document profile.

7. Scalability: The experiments presented by the authors are made on 2000 users,
161,542 documents and 69,930 distinct tags extracted from the social book-
marking website3 “Delicious” (formerly del.icio.us). Even if the data set is
relatively large, it is still not large enough to prove the scalability of the profile
construction process. Nevertheless, since the user and the document profiles
are based on the counting of the tag usage, the construction method is scalable.

2.2.8. Abel et al.

More recently, the authors in [AGHT11] have discussed an approach to construct a
semantic user profile by exploiting user posts in the microblogging platform Twitter.
The authors deal with two issues:

The first issue is to enrich the user tweets with semantics as it is difficult to use them
in their crude form. The idea proposed by the authors consists of finding possible
links between the news articles and the user posts (tweets) as there is usually an
influence of news on the users’ discussions. The objective is to provide a contextual
base to enrich the user messages with semantics. Therefore, different strategies are
proposed to analyze the link between tweets and news articles. The first strategy
consists of detecting whether there is an URL within the message that leads to a
news article or whether the message is a reply to another one citing a news URL. The
second strategy consists of analyzing the content of the message and the content of
recent (two days) articles by extracting and comparing their features. The features
could be: bag of words, hash tags or entities. Thus, the relationship between the
message and the article is measured by the sum of TF × IDF of the features of the
message.

3http://www.delicious.com

45

Chapter 2 User Modeling

sim(t, n) =
m∑
i=1

TFi × IDFi

Where: “t” is a vector of features extracted from the message, “n” is the corre-
sponding vector of features extracted from a news article, “TFi” is the frequency
of a feature “i” in the article “n”, “IDFi” is the inverse document frequency of a
feature in the article “n”.

According to the above function, the first ranked tweet-news pairs (t, n) are consid-
ered to be related and thus, linked. Moreover, the content of the related articles is
analyzed in order to extract elements that enrich the user message. To this end, the
authors use web services provided by OpenCalais4 (a platform for semantic analysis
of web pages) to extract entities (people, organizations, etc.) and topics embedded
within the article. Then, these elements, in addition to the user tweets and related
articles, are used to construct a RDF graph representing the enriched message. The
RDF graphs are then used to construct the user profile, which is the second issue.

The second issue that the authors deal with is how to use the enriched messages (i.e.,
the RDF graphs) to construct the user profile. The authors distinguish between
two parts of the profile: entity based profile and topic based profile. Thus, the
user profile is defined as entities and topics the user is interested in. The user
interest representation in terms of entities and topics is based on the RDF graph
representation of the messages. In fact, after having constructed the RDF graph
representing all the user messages, the entities and topics are weighted. To do this,
the authors use two different strategies. The first weighting strategy is based on
the number of tweets. Each entity or topic receives a weight corresponding to the
number of related tweets. The second weighting strategy is based on the number of
news articles. Each entity or topic receives a weight corresponding to the number
of related news. The experimental results presented by the authors show that the
news weighting strategy is more precise that the tweet-base strategy.

The approach proposed by [AGHT11] matches our parameters as follows:

1. Profile representation: The user profile is represented by an RDF graph which
connects entities and topics that interest the user, in addition to the user’s
tweets and related news articles.

4http://www.opencalais.com

46 46

2.2 Profiling Model Approaches

2. Genericity: Only user interests are represented in the profile model.

3. Usage data: The usage data is implicit, since the profile model bases only on
the user tweets and related news article.

4. Duration: The user profile is constructed using only recent user tweets and
recent news articles. Consequently, only short term interests are modeled.

5. Semantics: The construction of the profile model is based on enriched user
posts. The use of RDF graph to represent the user posts with their related
news enables to infer valuable semantic information.

6. Operability: Individual user profiles are compared by analyzing their corre-
sponding RDF graphs. Comparing RDF graphs consists of verifying whether
the two graphs are isomorphic or to find part of the graphs that are isomor-
phic [w3c01]. However, isomorphism does not enable to calculate the similarity
value between two graphs, which limits the operability of the model.

7. Scalability: The evaluation has been done on large data-set (more than 3
million tweets posted by more than 45,000 users).

2.2.9. Synthesis

Since user profiling has become application independent, it has been possible to plug
in a profiling component in different adaptive applications. However, no model is
compatible with all applications. In fact, it is necessary that the model respects cer-
tain requirement to be compatible with the application’s functions. For this reason,
in order to generalize the use of profile models to a higher number of compatible
applications we have enumerated a set of generic parameters.

Tab. 2.1 summarizes chronologically the bibliographic study we have done on the
most important work of each period of time. According to the review of the previous
work regarding our generic parameters, proposed user profiling models match only a
part of these parameters. In fact, the choice made by the authors depends on their
objectives and hence on the target application’s functions. In this thesis, we aim
to match all these parameters. The objective is twofold: on one hand, to make the
profile model as generic as possible in order to be compatible with higher number
of applications; and on the other hand, to attempt to overcome shortcomings of
previous work.

47

Chapter 2 User Modeling

In the following we summarize the different contributions according to our parame-
ters:

The first parameter we studied is the profile representation. It is the way in
which the user profile is modeled in the system. Thus, it should first, represent
the most accurately the user interests and second, be as simple as possible to be
interpreted by the system and understandable by the user. In the previous work
we have reviewed, the profile is composed of basic elements (keywords, concepts
or tags), composite elements (assumption, clusters or documents), in addition to a
structure (hierarchy, vector, ontology or RDF graph) on which these elements are
organized. In terms of basic elements, keywords are the mostly used (Armstrong et
al., Bollackar et al., Kim et al., Shen et al., Abel et al.). The advantage of using
keywords is the simplicity of the profile representation and hence its interpretation.
However, using keywords in their textual form gives rise to problems of ambiguity
because of their contextual usage. Consequently, the use of an external source of
semantics is mandatory in this case; this was not taken into account in the above
work. Exceptionally, Kobsa et al. and Abel et al. used receptively concepts and RDF
entities and topics instead of simple keywords. However, their profile models still
suffer from semantics and operability. In terms of composite element, Kobsa et al.
used assumptions, Bollackar et al., Middleton et al., and Shen et al. used documents
while Kim et al. used clusters. In fact, while using assumptions and documents
aims only to complete the information contained in basic elements, clustering aims
to organize them into topics of interests to facilitate the interpretation. In terms of
structure, Kobsa et al. and Kim et al. used a hierarchy structure to represent the
topics of interests and their relationships. Armstrong et al. and Vallet et al. used a
vector structure to represent a certain feature of the basic elements (keywords): In
the former, it is the occurrence or nonoccurrence of a keyword (0 or 1) and in the
latter, it is the number of times the tag is used for annotation. Middleton et al. and
Abel et al. used respectively ontology and RDF graph as structure to represent the
profile elements. The former classifies user interest documents into ontology classes
while the latter connects user interest entities and topics in an RDF graph. The
advantage of using such structures is the ability to fix semantic issues.

The second parameter we have studied is the genericity of the profile models.
The objective was to study the extendability of the existing profile models to the
data source. In fact, in this thesis we consider the data source and the user to be
symmetric. Thus, if the profile model should improve the system behavior regarding

48 48

2.2 Profiling Model Approaches

the user it should do the same regarding the data source (see sec. 1.3). In all the
work we have reviewed, the data source side is not considered, except by Vellet et
al. who define the document profile jointly with the user profile. However, even if
we consider a document to be a data source, the document profile defined by the
authors covers only one topic while the profile by definition should cover multiple
topics (cf. sec. 2.1).

The third parameter is the usage data. It consists of describing the data used
to construct the profile. As we said previously (sec. 2.1), the data used for user
profile analysis can be implicitly collected from the user interaction with the system
(usage) or explicitly given by the user. The previous proposals can be divided into
two groups: those using both explicit and implicit usage data (Kobsa et al., Bollackar
et al., Middleton et al.) and those using exclusively implicit data (Armstrong et al.,
Kim et al., Shen et al., Vallet et al., Abel et al.).

The fourth parameter is the duration. It defines the lifetime of the user interests
as it is taken into account in the user profile. In the literature, the profile models
consider short or long term user interests or both of them. The choice between short
or long term user profiling depends on the user change in interests. For instance,
research topics of a scientist do not change as frequently as the interests of a regular
user surfing on the Internet. In fact, it all depends on the domain application.

The fifth parameter is the semantics. The objective of this parameter is to check
the existence of mechanisms used in the profiling process to deal with semantic
issues. In the reviewed work, only Middleton et al. and Abel et al. effectively
deal with this issue. The former work uses predefined ontology to classify interest
documents while the latter work, uses RDF graphs to connect entities and topics
that interest the user. The advantage of using domain ontology (or RDF graphs)
is the unification of the vocabulary and hence the avoidance of ambiguity while
the advantage of using RDF graphs is the ability to put profile elements (entities
and topics) in their right context by means of links. However, there are problems
related to each of the two. Using predefined domain ontology is restrictive since
the ontology is limited to a certain domain, which prevents the emergence of real
user interests. Moreover, using RDF graphs does not favor the operability of the
model. The reason is that the comparison between RDF graphs is limited to finding
equality by means of isomorphism [Car02], which does not quantify the similarity.

The sixth parameter is the operability of the profile model. The objective of this

49

Chapter 2 User Modeling

parameter is to check the ability of the model to allow operations, namely, compar-
ison of user profiles. In fact, this parameter is related to the profile representation.
More specifically, it depends on the structure used to represent the profile. For in-
stance, the vector structure (Armstrong et al. , Middleton et al. and Vallet et al.)
enables comparison between user profiles by calculating the Cosine similarity or the
Euclidean distance.

The seventh parameter is the scalability of the profile model. It checks the
ability of the profile construction method to deal with big amounts of usage data.
The study that we have conducted on this parameter is based on our analysis of
the profile construction method presented by the authors. In fact, in most of the
papers, this parameter is not explicitly tested; except Armstrong et al., which shows
the scalability of their profile model.

2.3. Search Query Log Analysis and Positioning of
the Thesis

In this thesis, we use search query logs as usage data to analyze. The reason is
that the search query log is without doubt one of the richest sources of information
about the user interests and opinions. In addition to that the queries are collected
implicitly, which does not need any effort from the user. Nevertheless, analyzing
search query logs comprises some specificities that should be taken into account.
The following sections outline some of these specificities discussed in early work.

2.3.1. Search Query Log Analysis and its Challenges

Since the emergence of the first search engines, many researchers have proposed
methods for extracting information from search logs [BC01, CFS05, JST08, SMHM99].
This topic is frequently referred to as Search Query Log Analysis, or SLA. In the
SLA context, a search log is defined as an electronic record of interactions between
a search engine and users searching for information on that search engine [Jan06].
Indeed, the set of queries issued by a user in a specific period of time contains
information about his/her topics of interest; one goal of SLA is the extraction of
this information. However, several authors [BBD+98, Kur93, PSF04] have criticized
analysis processes that rely uniquely on search logs because they record neither the

50 50

2.3 Search Query Log Analysis and Positioning of the Thesis

users’ perceptions of search nor their satisfaction with the results. However, this
definitely complicates the task of accurately identifying user search behavior. On
the other hand, these valid critics do not imply that search logs are useless. First, a
number of applications of SLA can provide useful results without needing the miss-
ing information identified by the critics (e.g., [LOPS07, ZN08, MCL+10, VLB+12]).
Moreover, the quality of the knowledge produced by SLA can be enhanced by using
external sources of information in addition to query logs. Indeed, we argue in this
thesis (cf. chapter 5) that it is possible to extract large amounts of information from
search logs by including the implicit semantic relations between query terms in the
process [LBCK08, LCKB10].

2.3.2. Search Query Log and Semantics

Jansen [Jan06] proposed a unified methodology to conduct the analysis of search
query logs. He defined three levels of analysis: term level (terms as the basis for
analysis), query level (queries as the basis for analysis) and session level (in-session
interactions as a basis for analysis). A closer examination of the first two levels re-
veals that the analysis is mostly statistical and does not consider semantics. Indeed,
for term level analysis, all proposed metrics (term occurrence, total terms, unique
terms, high usage terms and term co-occurrence, etc.) are statistical measures that
consider neither the problem of the polysemy of query terms nor the semantic rela-
tions between terms. The query analysis level is also based on statistical metrics:
initial query, modified query, identical query, unique query, query complexity and
failure rate. These metrics are actually based on the classic definition of a keyword
search query, which is a list of strings of zero or more terms submitted to a search
engine [Jan06]. Besides, the session level characterizes the time aspects (session
duration, query frequency, etc.) in a user interaction approach which is out of the
scope of this thesis. Another limitation of existing metrics is that they are exclu-
sively based on string comparison. For instance, the queries “Hotel Booking” and
“Booking Hotel” are considered to be different though they are in fact semantically
equivalent. In our work, we strive to address these shortcomings by enhancing the
SLA methodology with semantics. We argue that a larger amount of more mean-
ingful information may be extracted from the logs if external information about
semantic relations between terms is coupled with the query logs before the start of
the analysis phase. We propose a method to achieve this, which results in a novel

51

Chapter 2 User Modeling

way of representing the logs in the form of a taxonomy of query terms. Such a global
representation lends itself very well to the definition of a metric that measures the
distance between query terms. Subsequently, the taxonomy equipped with the dis-
tance function enables us to define a semantic query clustering method, which can
extract user interests from search data.

2.3.3. Usage Analysis in Search Query Logs

The query log represents the history of usage that a user or a group of users have
operated on the system. In the literature, we observed lots of and various works
that attempt to use query logs as a base for analyzing the user behavior. The appli-
cations are essentially personalization, recommendation, data mining, community
discovery, etc. For example, in [CCHB10], the authors used the lick-through data
(e.g., hypertext links), in the form of query logs. Hence, they investigate the utility
of topic models for the task of personalizing search results based on the information
present in the query log. They define generative models that take both the user
and the clicked document into account when estimating the probability of query
terms. These models can be used to rank documents by their likelihood given a
particular query and user pair. In the same domain, i.e., personalization, the au-
thors of [AGM+11] proposed a proactive approach that couples a MultiDimensional
eXpressions (MDX) based language for expressing OLAP preferences to a mining
technique for automatically deriving user preferences. The main idea is to use the
queries issued by a user in a mining process to extract set of association rules that
relate sets of frequent query fragments; then, for each future query, a subset of rules
is selected and translated into a preference that is used to annotate the user’s query.
A set of experimental results proves the effectiveness and efficiency of the approach.
In [SN09] the authors propose a method that exploits the click history of each user
to build a topical ontology, i.e., a model of the different topics that interest the
user. The topical ontology is used to guide the search engine when it receives a
query. In addition, the authors define a ranking function to sort the search result
according to the user preferences. Their experiments show that user preferences can
be learned accurately thanks to the topical ontology. In the content management
domain, the analysis of queries is used for instance to determine the most frequently
asked questions. [WNZ02] deals with this issue by treating it as a query clustering
problem. They propose to combine the queries with the documents selected by the

52 52

2.3 Search Query Log Analysis and Positioning of the Thesis

user. Query clustering is conducted based on the idea that queries are similar if the
selected documents are the same. [CC02] constructs a hierarchical classification of
query terms, which is called taxonomy. The terms are grouped together in hierar-
chical clusters based on a vector space model. Each term is represented by a vector
V of characteristics and each component Vij(i.e. the jth unique term corresponding
to the ith query term) is calculated by a TF ∗ IDF weighting function on the top
ranked documents. The clusters are then constructed by comparing the terms using
the Euclidean distance.

In this thesis, we propose an approach that uses query logs as usage data to analyze
the user profile. Details and deeper explanations of our proposal and contributions
are discussed in the next chapters.

53

Chapter 2 User Modeling

Pr
ofi

le
re
pr
es
en
ta
tio

n
(B

as
ic

el
em

en
t)

G
en
er
ic
ity

U
sa
ge

da
ta

D
ur
at
io
n

Se
m
an

tic
s

O
pe

ra
bi
lit
y

Sc
al
ab

ili
ty

A
pp

lic
at
io
n

D
om

ai
n

K
ob

sa
et

al
.

(1
99
4)

C
on

ce
pt
s,

A
ss
um

pt
io
ns
,

H
ie
ra
rc
hy

N
o

Im
pl
ic
it,

Ex
pl
ic
it

Sh
or
t

N
o

N
o

N
o

Pe
rs
on

al
iz
at
io
n,

A
da

pt
at
io
n

A
rm

st
ro
ng

et
al
.
(1
99
5)

K
ey
w
or
ds
,

Ve
ct
or

of
oc
cu
rr
en
ce

N
o

Im
pl
ic
it

Lo
ng

N
o

Ye
s

Ye
s

R
ec
om

m
en
da

tio
n

B
ol
la
ck
ar

et
al
.
(1
99
9)

K
ey
w
or
ds
,

D
oc
um

en
ts

N
o

Im
pl
ic
it,

Ex
pl
ic
it

Lo
ng

,
Sh

or
t

N
o

Ye
s

Ye
s

R
ec
om

m
en
da

tio
n

K
im

et
al
.

(2
00
3)

K
ey
w
or
ds
,

C
lu
st
er
s,

H
ie
ra
rc
hy

N
o

Im
pl
ic
it

Lo
ng

,
Sh

or
t

N
o

N
o

N
o

Pe
rs
on

al
iz
at
io
n

M
id
dl
et
on

et
al
.
(2
00
4)

D
oc
um

en
ts
,

O
nt
ol
og
y

N
o

Im
pl
ic
it,

Ex
pl
ic
it

Lo
ng

,
Sh

or
t

Ye
s

Ye
s

Ye
s

R
ec
om

m
en
da

tio
n

Sh
en

et
al
.

(2
00
5)

K
ey
w
or
ds
,

D
oc
um

en
ts

N
o

Im
pl
ic
it

Sh
or
t

N
o

N
o

N
o

Pe
rs
on

al
iz
at
io
n

Va
lle

t
et

al
.

(2
01
0)

Ta
gs
,

Ve
ct
or

of
an

no
ta
tio

ns
Ye

s
Im

pl
ic
it,

Ex
pl
ic
it

Lo
ng

,
N
o

Ye
s

Ye
s

Pe
rs
on

al
iz
at
io
n

A
be

le
t
al
.

(2
01
1)

En
tit

ie
s
an

d
to
pi
cs

R
D
F
gr
ap

h

N
o

Im
pl
ic
it

Sh
or
t

Ye
s

N
o

Ye
s

Pe
rs
on

al
iz
at
io
n,

So
ci
al

N
et
w
or
ks

O
ur

M
od

el
(2
01
3)

C
on

ce
pt
s

(S
yn

se
ts
),

C
lu
st
er
s,

H
ie
ra
rc
hy
,

Ve
ct
or

of
in
te
re
st
s

Ye
s

Im
pl
ic
it

Lo
ng

,
Ye

s
Ye

s
Ye

s
R
ec
om

m
en
da

tio
n,

Pe
rs
on

al
iz
at
io
n,

co
m
m
un

ity
di
sc
ov
er
y

Table 2.1.: User profiling models

54 54

3. Overview on Similarity Functions
and Clustering Algorithms

3.1. Introduction

In order to measure the relatedness between objects, we can process the objects
in two different but comparable ways. The first consists in calculating how the
objects are far according to their representations: this concept is called Distance
or dissimilarity. The second way consists in measuring how an object resembles to
another according to their representations: this concept is called Similarity.

Clustering is a process whereby a set of objects is split into groups of similar objects.
The most of researchers describe a cluster by considering the internal homogeneity
and the external separation, which means that patterns in the same cluster should be
similar to each other, at the opposite of patterns in different clusters [JD88, HJ97].
Thus, the clustering relies on a distance/similarity function to measure the object
relatedness. Indeed, the choice of a distance/similarity function is essential since
the clustering quality depends on it. From a practical point of view, clustering plays
an important role in many domains such as databases, information retrieval, Web
analysis, and many others.

3.2. Distance and Similarity Functions

In general, both of the distance and the similarity functions are used to measure the
relatedness between two objects, an object and a cluster, or a pair of clusters. In the
last two cases, only one object of the cluster (a member of the cluster or a virtual
member, e.g., centroid) is used to calculate the distance or the similarity. Moreover,
the definition of a distance or a similarity function has to respect certain conditions
[DD09, Lux04].

55

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

A distance function defined on a data set X should satisfy the following conditions:

1. Symmetry. ∀x, y ∈ X, D(x, y) = D(y, x)

2. Positivity. ∀x, y ∈ X, D(x, y) ≥ 0

3. Triangle inequality. ∀x, y, z ∈ X, D(x, z) ≤ D(x, y) +D(y, z)

4. Reflexivity. D(x, y) = 0 Iff x = y.

A similarity function should satisfy the following conditions:

1. Symmetry. ∀x, y ∈ X, S(x, y) = S(y, x)

2. Positivity. ∀x, y ∈ X, 0 ≤ S(x, y) ≤ 1 (the similarity function is positive and
normalized)

3. Reflexivity.S(x, y) = 1 Iff x = y (the similarity function is reflexive and nor-
malized)

In case the similarity function satisfies condition 2 (i.e., positive and normalized),
one can transform the similarity function into a distance function, such as: ∀x, y ∈
X, D(x, y) = 1− S(x, y).

Since the problem of objects clustering or classification has been investigated, many
distances and similarity functions have been proposed [XW05, Cha07, DD09]. The
choice of a distance or similarity function determines the quality of the clustering.
This means that the best choice is the one that insures the highest modularity,
(i.e., strong intra-cluster similarity and a week inter-cluster similarity). Backer and
Jain [BJ81] formulate it as, “in cluster analysis a group of objects is split up into a
number of more or less homogeneous subgroups on the basis of an often subjectively
chosen measure of similarity, such that the similarity between objects within a sub-
group is larger than the similarity between objects belonging to different subgroups”.
In this thesis, we distinguish two classes of similarity/distance functions: similarity
functions between objects described by a vector of multiple features1, and seman-
tic similarity functions in which only semantic features2 are taken into account.
Thus, the comparison between objects is done by measuring the distance/similarity
between them on the basis of the same representation.

1Quantitative features
2The features are usually extracted from a semantic resource: ontology, dictionary, annotated
corpus, etc.

56 56

3.2 Distance and Similarity Functions

3.2.1. Similarity and Distance Functions Based on Vector of
Features

In several domains, such as statistics, objects are naturally represented by their
vectors of features. Thus, in the aim of comparing these objects one can use a
number of functions ([Cha07, DD09]).

The most used distance functions are derived from the Minkowski distance. This
class of functions enables to measure the distance between two vectors by calculating
the norm of their difference. The Minkowski distance is a n-norm distance where n ≥
1 is the order of the distance. Indeed, in the special cases where n = 1, n = 2 and,
n = +∞ we obtain respectively, the Manhattan distance, the Enclidean distance,
and the Chebyshev distance. In general, the Minkowski class is well adapted to non-
sparse vectors of low dimensionality (i.e., vectors with a small number of features)

Another class of distances is based on the correlation parameter. The Mahalanobis
distance measures the distance between two vectors by taking into account the corre-
lation of all the other vectors. Thus, the covariance matrix is calculated in advance.
The Pearson distance between two vectors, is based on their linear correlation. Thus,
the Person distance is based on the Person correlation coefficient.

Another class of distances is based on the inner product. This class is represented by
the Cosine similarity3. The Cosine similarity measures the similarity between two
vectors by calculating the cosine of the angle between them. Moreover, the cosine
similarity is known to be well adapted to the high dimensionality (i.e., vectors with
high number of features) and space data.

Tab. 3.1 gives the formulas and summarizes the three families of distances [Cha07,
DD09].

3.2.2. Semantic Similarity Functions

In the domain of natural language processing (NLP) there are many applications
where the semantic similarity/distance is the key concept, such as word sense disam-
biguation, document classification, semantic search, etc. Oppositely to the similarity
functions based only on vectors of features (cf. sec. 3.2.1), the semantic similarity
functions are usually based on semantic resources, such as dictionaries, thesauri,

3It can be transformed to a distance since it is normalized

57

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

Measure Formula Comment

Minkowski
distance D(x, y) =

(
d∑
i=1
|xi − yi|n

)1/n

It measure the distance
between two vectors by
calculating the norm of
their difference. The
Minkowski distance is a
n-norm distance.

Euclidean
distance D(x, y) =

(
d∑
i=1
|xi − yi|2

)1/2 Special case of
Minkowski distance,
with n = 2.

Manhattan
distance D(x, y) =

d∑
i=1
|xi − yi|

Special case of
Minkowski distance,
with n = 1.

Chebyshev
distance

D(x, y) = max
1<i<d

|xi − yi|

Special case of
Minkowski distance.
The limit of the
Minkowski distance,
with n→∞.

Mahalanobis
distance

D(x, y) = (x− y)T S−1 (x− y), where
S is the covariance matrix,

It measure the distance
between two vectors by
taking into account the
correlation of all the
data set. S is
calculated based on all
of the vectors

Pearson
correlation
distance

D(x, y) =
(1− rxy)

2 , where

rxy =

d∑
i=1

(xi − x̄) (yi − ȳ)√√√√ d∑
i=1

(xi − x̄)2
d∑
i=1

(yi − ȳ)2

It measures the
distance between two
variables based on their
linear correlation.
rxy ∈ [−1, 1] is the
Pearson correlation
coefficient.

Cosine
similarity S(x, y) = cosα =

xTy

‖x‖‖y‖

It measures the
distance between two
vectors by calculating
the cosine of the angle
(α) between them.

Table 3.1.: Similarity and distance based on vector of features

58 58

3.2 Distance and Similarity Functions

and ontologies. Indeed, the semantic similarity functions can be organized into four
classes [SAR10].

The similarity functions of the first class consist in calculating the path separating
two concepts in the ontology where they are represented. The length of the path
is calculated in term of the number of edges or nodes it contains. This class of
functions includes: Wu-Palmer similarity, Zargayouna similarity, Leacock-Chorodow
similarity, Resnik (Edge) similarity, Hirst-St.Onge similarity.

The functions of the second class are based on the concept of Information Content
(IC). In information theory, the IC is considered as a measure that quantifies the
amount of information a concept contains. The IC of a concept c is: IC(c) =
−log(P (c)). With P (c) the probability that the concept c is found in a corpus. This
class of functions includes: Resnik (IC) similatiry, and Lin similarity.

The functions of the third class are based on the matching of features (attributes and
relations) of the concepts. The similarity between two concepts c1 and c2 is measured
by considering the common features of c1 and c2, the features of c1 that are not in
c2, and the features of c2 that are not in c1. As an example of common features,
both of concepts car and bus are used for transport. In this class of functions one
supposes that each concept is defined by a set of features. This class of functions
includes Tversky similarity and Pirrò similarity.

The last class of functions is the class of hybrid functions. It includes functions that
combine techniques from different classes. For example, the Jiang-Conrath similarity
is a combination of a path based (edge counting) approach and an information
content (IC) approach. The OSS (Ontology Structure based Similarity) is another
hybrid semantic similarity function. The OSS similarity is based on the a-priori
scoring of concepts (a weighing function of concepts) and the length of the path
separating them in the ontology. Thus, the similarity between two concepts c1 and
c2 consists of measuring the transfer of score (denoted T(c1, c2)), which is the
propagation of the a-priori score of c1 to c2 along the path relating them. The
transfer (i.e., T(c1, c2)) is then transformed to a similarity value.

More recently, [BMI11] proposed a semantic similarity function, which is based on
the page counts and text snippets retrieved from a search engine for two words.
The idea consists of measuring the co-occurrence of two words by using page counts
and extracting patterns of semantic relations (i.e., the different types of semantic
relations) existing between two words to identify the features of word pairs. Those

59

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

features measure the relation between the two words. Thought the proposed ap-
proach outperforms some existing approaches, the problem is that it is solely based
on the search engine, which can limit its use.

Tab. 3.2 summarizes the semantic similarity functions discussed above.

3.2.3. Thesis Positioning

3.2.3.1. A Semantic Distance Function

In this thesis, we propose a semantic distance function to measure the distance
between search query keywords sec. 5.2.3. Indeed, we are interested in the class of
path based functions for several reasons. First, this class of functions is independent
from the corpus (contrary to IC based class). Second, it is based on the structure of
the ontology (or taxonomy) on which the concepts are represented. This property fits
well into our scheme since we are using a hierarchical structure of concepts. Third,
in practice it is easier to calculate the semantic similarity between two concepts
by measuring the length of the path separating them than measuring their IC or
extracting their features. Indeed, in this thesis we propose a semantic distance which
is a path-based function. One characteristic of this function is that it is based on
a weighting strategy that favors concepts of low level of abstraction. Hence, two
adjacent concepts of low level of abstraction are considered to be more similar that
two others of higher level of abstraction. The objective of this function is not to
calculate the semantic similarity in absolute terms, but to be used to identify clusters
in a taxonomy structure.

3.2.3.2. Euclidean Distance for Profiles Comparison

In this thesis, we use the Euclidean distance as a metric to measure the distance
between vectors of features (cf. sec. 6.4). The vectors represent both the user profile
and data source profile, while the features represent the user interests. The objective
is to cluster similar user and data sources. The use of the Euclidean distance is
motivated by its efficiency in measuring the distance between vectors of features.
In addition to that the usage of the other distances is out of scope of this thesis
(e.g., Cosine similarity is adapted for sparse and high dimensional data and Pearson
correlation distance is based on the correlation parameter).

60 60

3.2 Distance and Similarity Functions

Measure Formula Comment

Wu-Palmer

similarity

[WP94]

SW u−P a(c1, c2) =
2 ∗ depth(LCS)

depth(c1) + depth(c2)
LCS is the least common subsumer of c1 and c2

Path based similarity

(Edge counting)

Zargayouna

similarity

[ZS04]

SZarga(c1, c2) =
2 ∗ depth(LCS)

depth(c1) + depth(c2) + spec(c1, c2)
spec(c1, c2) = depth(LC) ∗ length(LC, c1) ∗ length(LC, c2)

LCS is the least common subsumer of c1 and c2, LC is the most

specific concept in the ontology

Path based similarity
(Edge counting)

spec(c1, c2) calculates

the specificity of the

two concepts

compared to the most

specific concept

Leacock-

Chodorow

similarity

[LC98]

SLe−Ch(c1, c2) = − log
(

min length(c1, c2)
2 ∗D

)
D is the max depth of the taxonomy

Path based similarity

(node counting)

Resnik (Edge)

similarity

[Res95]

SResEdge(c1, c2) = 2D − length(c1, c2)

D is the max depth of the taxonomy

Path based similarity

(Edge counting)

Hirst-St.Onge

similarity

[HSO98]

SHirst(c1, c2) = T − length(c1, c2)− k ∗R
T and k are experimental constants

R is the number of changes of direction in the path c1c2

Path based similarity

(Edge counting)

Resnik (IC)

similatiry

[Res95]

SResIC(c1, c2) = IC(LCS)

where,IC(c) = −log(P (c))

Information content

based similarity

Lin similarity

[Lin98] SLin(c1, c2) =
2 ∗ IC(LCS)

IC(c1) + IC(c2)

Information content

based similarity

Tversky

similarity

[Tve77]

ST rv = αF (ψ(c1) ∩ ψ(c2))− βF (ψ(c1)/ψ(c2))− γF (ψ(c2)/ψ(c2))
F reflects the salience of a set of features

ψ(c) represents the features of the concept c

α, β, γ express the focus on each component

Features matching

based similarity

Pirro similarity

[Pir09]
Spirro(c1, c2) =

{
ST rv′ (c1, c2) c 6= c2
1 c = c2

ST rv′ (c1, c2) = 3 ∗ IC(LCS)− IC(c1)− IC(c2)

Features matching
based similarity

an adaptation of the

Tversky similarity to

IC

Jiang-Conrath

similarity

[JC97]
SJi−Co(c1, c2) =

1
IC(c1) + IC(c2)− 2 ∗ IC(LCS)

Hybrid similarity
measure

It combines a node

counting approach and

an IC approach

OSS similarity

[SZF07]

SOSS(c1, c2) = 1−
log(T (c1, c2))

maxD

T (c1, c2) is the transfer of the a-priori score from c1 to c2, maxD is

the max distance between any concepts in the ontology

Hybrid similarity

Combines the a-priori

scores of concepts in

specific contexts and

the distance between

them in the ontology

Table 3.2.: Semantic similarity functions 61

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

3.3. Baseline Clustering Algorithms

The literature on clustering algorithms is generally divided into several classes. The
most known classes include, hierarchical, partitioning and density based algorithms
[XW05, Ber06, Cha07, DD09]. The next subsections detail some baseline algorithms
of each class. The algorithms are selected according to some parameters in which
we are interested. These parameters are: complexity, granularity, and outliers pro-
cessing. The complexity defines the scalability of the algorithm. The granularity
discusses the capability of the algorithm to deal with data in different level of gran-
ularity. The outliers processing parameter discusses the resistance of the clustering
method against outliers. In this thesis, the granularity parameter is highlighted in
chapter 6 (sec. 6.2).

Tab. 3.3 summarizes the algorithms we have selected.

3.3.1. Hierarchical Algorithms

The hierarchical clustering methods consist in constructing a hierarchy of clusters
in the form of a tree, called dendrogram [Ber06]. Each node of the dendrogram
contains a child cluster, which is a part of a parent cluster. Thus, the hierarchical
partition enables clustering on different levels of granularity. Moreover, hierarchical
clustering methods are divided into agglomerative (bottom-up) and divisive (top-
down) [JD88]. An agglomerative clustering starts with clusters of one object and
recursively merges the two most appropriate clusters until the cluster of all of the
objects. In the opposite, a divisive clustering starts with one cluster containing all
the objects and recursively splits the most appropriate cluster until clusters of one
objects. The result of the clustering in both of the two approaches corresponds to a
cluster partition that satisfies a given criterion.

Obviously, the advantage of hierarchical clustering is the flexibility regarding the
level of granularity. However, the major drawback is that there is no way to backward
once a cluster is constructed, which prevent any possible improvement.

3.3.1.1. Linkage Methods

Merging or splitting (agglomerative/divisive) clusters in hierarchical clustering re-
lies basically on a similarity or a dissimilarity (distance) function (d). However,

62 62

3.3 Baseline Clustering Algorithms

a similarity/distance function is defined to compare individual objects. Since, the
hierarchical clustering involves comparison between clusters (partition), the similar-
ity/distance function has to be generalized to clusters (D). Indeed, there are three
different methods to calculate the distance between two clusters C1 and C2:

First, the distance between C1 and C2 is the distance between their two closest
objects, this method is called single linkage:

D(C1, C2) = min {d(x, y) |x ∈ C1, y ∈ C2}

Second, the distance between C1 and C2 is the distance between their two farthest
objects, this method is called complete linkage:

D(C1, C2) = max {d(x, y) |x ∈ C1, y ∈ C2}

Third, the distance between C1 and C2 is the average distance between their all of
objects, this method is called average linkage:

d(C1, C2) =
1

|C1||C2|
∑
x∈C1

∑
y∈C2

d(x, y)

These methods has been respectively implemented by: [Sib73], [Sei89], [Def77]. In
general, the time complexity of linkage based hierarchical clustering is O(n2).

3.3.1.2. Shape and Outliers Sensitive Methods

The linkage based methods suffer from two problems. The first problem is that these
methods are adapted to clusters of convex shape, while in real life data, the clusters
shape is more complex. The second problem is that these methods are not adapted
to deal with noise and outliers, which can distort the clusters. Some attempts
to deal with these issues are CURE [GRS98] and CHAMELEON [KHK99]. CURE
represents the clusters by a fixed number of representative objects (a sample). Thus,
the distance between two clusters is the minimum distance between two objects of

63

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

their corresponding representatives. The Complexity of CURE is O(n2
sample), with

nsample the size of the sample (i.e., the representatives). CHAMELEON is composed
of two steps. In the first step, it represents the data set (the objects) as a k-nearest
neighbor graph, in which each object is connected only to its k-nearest neighbors
(the rest of the edges are removed). The result of this step is a set of sub-clusters
of k-connected objects (initialization step). In the second step, the sub-clusters are
merged using a hierarchical merging approach to find the clusters. The merging
process depends on the inter-connectivity within the clusters and their closeness.
Thus, two clusters are merged if their inter-connectivity is high and they are close
together. Moreover, the size of a cluster has to be higher than a threshold fixed by
the user. The complexity of CHAMELEON is O(nm + N log N + m2 log m), with
m the number of the initial sub-clusters and n the size of the data set.

3.3.2. Partition-Based Algorithms

The principle of the partition based algorithms is to split a given set of objects into
a fix number of clusters. Unlike hierarchical methods, in which it is not possible
to backward during the clustering process, partition based algorithms construct the
clusters by iterative improvements. Thus, these algorithms use some heuristics to
optimize the number of iterations when choosing the most appropriate objects to
cluster. The advantage of the partition based algorithms is that they are more
scalable compared to hierarchical algorithms, while the drawbacks are the difficulty
to define the best number of clusters, the fact that the result of the clustering
is a local optimum, and the sensibility to outliers. In terms of granularity these
algorithms are not adapted since the clustering is iterative and depends on a fix
number of clusters.

The most well-known methods in this class of algorithms are K-Means and K-
Medoids.

3.3.2.1. K-Means Methods

The K-Means algorithm [HW79] is based on the parameter k, which represents
the number of clusters to find. The K-Means algorithm consists mainly of four
steps. In the first step the algorithm selects randomly k objects, which initialize
k clusters. Those, objects are initially the means of these clusters. In the second

64 64

3.3 Baseline Clustering Algorithms

step, each of the remaining objects is assigned to the closest cluster (i.e., the cluster
mean). This is done by calculating the distance (the Euclidean distance) between
the object and the mean of the cluster. In the third step, the means (the mean of
a cluster is not necessarily a real object) of each cluster is recalculated according
to the new configuration (i.e., the clusters). The steps two and three are repeated
until a stopping criterion is achieved, which is the square-error criterion: E(m) =
k∑
i=1

∑
x∈Ci

‖x − mi‖2, with x an object of cluster Ci and mi the mean of the cluster

Ci. It is the sum of the square error between the objects of each cluster the mean
of that cluster. The clustering process stops when E(m) cannot be reduced. The
complexity of the general K-Means algorithm is O(nkl), where n the number of
objects, k the number of clusters, and l the number of iterations until the stopping
criterion.

3.3.2.2. K-Medoids Methods

The K-medoids algorithm [KR87] processes as K-Means. However, contrary to K-
Means, which represents a cluster by its means, in K-medoids a cluster is represented
by one of its points, which is the medoid. In the first step, the algorithm selects
randomly k objects as medoids. In the second step, each of the remaining objects
is assigned to the closest medoid. In contrary to k-means, the distance measure is
not necessarily the Euclidean distance; it could be any dissimilarity measure. In
the third step, the medoids are replaced by new ones, such that they minimize the

square-error: E(om) =
k∑
i=1

∑
x∈Ci

‖x− om‖2, with x an object of cluster Ci and om the

medoid of the cluster Ci. The steps two and three are repeated until E(om) cannot
be reduced. The complexity of the general K-Medoids algorithm is O(n2), where n
the number of objects.

3.3.3. Density-Based Algorithms

Another class of clustering algorithms is based on the concept of density. In this
class, there are mainly two methods. In the first method the density is defined by
a set of training data points. This method is implemented in DBSCAN. In the
second method the density is defined by a point associated with a density function.
This method is implemented in the algorithm DENCLUE. The advantages of the

65

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

density-based algorithms are a good scalability and a good resistance against out-
liers. However, there are two main drawbacks. First, the clustering depends on the
user input parameters, and second, the algorithm often fails to distinguish between
two clusters when their densities are very similar.

In terms of granularity, these algorithms are not adapted for two reasons. First
the clustering depends usually on a user threshold (the min size of a cluster), and
second, the clustering process consists in merging sub-clusters with high density.

3.3.3.1. DBSCAN

DBSCAN (Density Based Spatial Clustering of Applications with Noise) [EKSX96]
is one of the very known density-based clustering algorithms. The algorithm has
two input parameters, which are:

1. “ε”: A threshold distance used to delimit theε-neighborhood of the point x rep-
resenting the points whose the distance from x is less than ε. Theε-neighborhood
denoted as Nε(x) is defined as: Nε(x) = {y ∈ X | dist(x, y) ≤ ε}, where X is
the set of all the points.

2. “MinPts” : A minimum number of points required in the ε-neighborhood of x
to form a cluster. If the condition| Nε(x) |≥ MinPts is satisfied, then x is
called a core point.

The authors define a cluster by using the key concepts of density-reachable and
density-connectivity relationships wrt. ε and MinPts.

The density-reachable relationship is defined between a core point and another arbi-
trary point. A point y is density-reachable from a core point x if y is in ε-neighborhood
of x or there is a finite sequence of core points x, x1... xn, y such as each point in
this sequence belongs to the ε-neighborhood of its predecessor.

The density-connectivity extends the definition of density-reachable, since it enables
to define a density based relationship between two points when they cannot be
connected by a simple density-reachable relationship. Thus, two points x and y are
density-connected if there is a core point o from which both x and y are density-
reachable.

The authors define a density-based cluster as a subset of D (a database of points)
satisfying the following conditions:

66 66

3.3 Baseline Clustering Algorithms

• ∀ x, y : if x ∈ C (cluster) and y is density-reachable from x, then y ∈ C

• ∀ x, y ∈ C : x is density-connected to y

To discover the clusters, the DBSCAN algorithm follows the steps bellow:

1. For each unvisited p in dataset D

a) Mark p as visited

b) Discover the ε-neighborhood of p,

c) If p satisfies the MinPts condition (p is a core point) then

i. Create a new cluster C

ii. Add p to C,

iii. ExpandCluster (p, C)

d) Else

i. p is a noise (p could be part of another cluster if it is density-
reachable)

ExpandCluster function explores the ε-neighborhood of the core point p and try to
find new density-reachable points. The function follows the steps bellow:

1. For each q in ε-neighborhood of p,

a) If q is not visited

i. Mark q as visited

A. Discover the ε-neighborhood of q,

B. If q satisfies the MinPts condition,
Add ε-neighborhood of q to ε-neighborhood of p,

b) If q do not belong to any other cluster then

i. Add q to C (q could be either a core-point, a non-core point or
considered previously as noise of another cluster)

The complexity of the DBSCAN algorithm is mainly related to the process of discov-
ering theε-neighborhoods of a point. In order to discover the ε-neighborhoods of each
point the algorithm relies on R*-tree indexation whose complexity is of O(log(n))
where n represents the whole number of points. Therefore, the overall complexity
of DBSCAN is O(n log(n)) where n is the number of points.

67

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

In the end, the DBSCAN algorithm was generalized to consider more complex ob-
jects rather than simple points (e.g., polygons). This gave rise to the GDBSCAN
algorithm [SEKX98].

3.3.3.2. DENCLUE

The algorithm DENCLUE (DENsity-based CLUstEring) [HHK98] is another density-
based algorithm whose the approach is different from the DBSCAN. In fact, instead
of density-connectivity and density-reachable concepts, DENCLUE uses the concept
of density function. To define the density function, the authors introduced first, the
influence function which models the influence of a data point within its neighbor-
hood. Thus, the density function at a point x is defined as the sum of the influence
functions of the overall data points at point x. Given a basic influence function fB,
the general definition of the density function fDB at point x is defined as:

fDB (x) =
n∑
i=1
fB(x, xi) =

n∑
i=1

fxi
B (x)

Where D = x1, ..., xN is the set of feature vectors of the overall N points and fxi
B (x)

is the influence function of point xi at point x. In real data set, the influence function
of each point can take different forms, such as square wave influence function fSquare,
or Gaussian influence function fGauss (details are included in [HHK98]).

The definition of a cluster in DENCLUE relies on the concept of density-Attractor
and density-attracted points.

A point x∗ is a density-attractor for a given influence function fB, iff x∗is a local
maximum of the density-function fDB .

This leads to the definition of density-attracted point. A point x is density-attracted
by x∗ iff :

∃ k ∈ N : d(xk, x∗) ≤ ε with: x0 = x, xi = xi−1 + δ.
∇fDB (xi−1)
‖ ∇fDB (xi−1) ‖ , (i.e., find i that

corresponds to k)

∇fDB (x) is the gradient of fDB (x).

The DENCLUE algorithm finds the clusters following the next two steps:

68 68

3.3 Baseline Clustering Algorithms

The first step is the pre-clustering. It consists in constructing a map of highly
populated areas by dividing the data space into a set of neighboring hypercubes. The
number of the hypercubes depends on the value of σ, which determines the length of
a hypercube (2σ). Thus, the hypercubes are numbered according to their position
from a given origin in the map. The highly populated neighboring hypercubes are
merged. More formally, if two clusters c1 and c2 are highly populated (according to a
predefined threshold ξ) and d(mean(c1),mean(c2)) ≤ 4σ then c1 and c2 are merged.
Obviously, the objective of this step is to produce a map of highly populated areas
of connected hypercubes (the non-connected hypercubes represents the outliers).

The second step is the effective clustering step. In fact, the algorithm calculates the
local density function at each point x (i.e., f̂D(x)), which is the density function
at x that takes into account the influence of the points in its neighborhood (i.e.,
a distance of 4σ). Furthermore, the algorithm uses the local density function to
identify the density attractor (x∗) (i.e., the point that maximizes the local density
function). Indeed, the clusters are identified by finding the density attracted points
of each density attractor.

The complexity of the DENCLUE algorithm in the worst case is O(n log n), with n
the number of points.

Cluster algorithm Time Complexity Granularity Outliers

Hierarchical
clustering

Linkage
metrics O(n2) Yes No

CURE O(n2
sample) Yes Yes

CHAMELEON O(nm+N log n+
m2 log m)

Yes Yes

Partitioning
clustering

K-Means O(nkl) No No

K-Medoids O(n2) No Yes

Density-based
clustering

DBSCAN O(n log n) No Yes

DENCLUE O(n log n) No Yes

Table 3.3.: Baseline clustering algorithms comparison

69

Chapter 3 Overview on Similarity Functions and Clustering Algorithms

3.3.4. Thesis Positioning

In this thesis, we propose a clustering algorithm based on a taxonomy structure of
keywords sec. 6.2.1.1. The objective of the algorithm is to cluster the keywords by
pruning the taxonomy. Indeed, the algorithm can be classified with the hierarchical
algorithms by assimilating the taxonomy to a simplified dendrogram. In fact, the
difference between a real dendrogram and the keyword taxonomy is that the in the
dendrogram the nodes are child clusters and parent clusters related by the partition
relationship, while in the taxonomy the nodes are single keywords (concepts) related
by the IS-A relation. The algorithm is characterized by a low complexity and defines
a certain clustering granularity. Moreover, the algorithm measures the distance
between keywords by using a semantic distance (cf. sec. 5.2.3).

3.4. Summary

The state of the art on distance functions distinguishes two types of distance func-
tions (cf. Tab. 3.1 and Tab. 3.2); those based on vectors of features and those based
on semantic features. This chapter reviews the main existing functions for both of
the two types of functions. Thus, functions based on vector of features are split
into three classes, each of which has a specific usage. The choice made for a func-
tion depends on the target application and the usage of these functions. Indeed,
the Minkowski class is well adapted to non-sparse vectors with low dimensionality.
At the opposite of the inner product (i.e., the cosine similarity) class which is well
adapted to high dimensionality and sparse vectors. Otherwise, the class of functions
based on the correlation parameter is mostly used in statistics when the objects are
supposed to be highly correlated. The functions based on semantic features are split
into four classes. The choice made for a function depends on the semantic resource
being used. Indeed, the class of path based functions is well adapted in case the
there is a semantic structure that represents the concepts (e.g., ontology, taxonomy,
etc.). The class of functions base on the information content (IC) is well adapted in
case the concepts are extracted from an existing annotated corpus (BNC, SimCor,
etc.). The class of features matching based functions is well adapted in case the con-
cepts are clearly defined by their corresponding attributes and features. The class
of hybrid functions is well adapted in case there are multiple semantic resources.

The state of the art on clustering algorithms is divided into several classes (cf.

70 70

3.4 Summary

Tab. 3.3). This chapter reviews the main three classes, which are the class of hier-
archical algorithms, the class of partition-based algorithm, and the class of density
based algorithms. The review is done following four parameters: the complexity, the
granularity and the outliers processing. Indeed, the algorithms of this class are the
best in term of granularity, since they enable to show several clustering levels with
different size of clusters (partitions), which corresponds to the granularity levels.
However, the class of hierarchical clustering is characterized by relatively high time
complexity compared to the other classes. In addition to that, they are sensible
against outliers, except some algorithms (CURE, CHAMELEON), which are rela-
tively resistant against outliers. The partition based algorithms are characterized by
a less complexity compared to hierarchical clustering and better resistance against
outliers (K-Medoids). However, this class of algorithms does not define any kind of
granularity since the cluster are defined iteratively from the initial set of clusters.
The class of density based algorithms is characterized by a lowest complexity over
the reviewed classes; in addition to that it has a good resistance against outliers.
However, as for partition based algorithms, this class do not define any kind of gran-
ularity, since the clustering depends usually on a user threshold (e.g., the min size of
a cluster), and the fact that the clusters are obtained by merging sub-clusters (e.g.,
ε-neighborhood and hypercubes).

71

Part III.

A Framework for Usage Analysis in
Information Retrieval Systems

73

4. Overview of a Framework for
Usage Analysis in IR systems

4.1. Introduction

Nowadays, the world of computer science is overwhelmed by applications intended
to be used by always connected end-users. In this kind of applications, the quality
of service is directly related to the user satisfaction. This implies that the design
process should integrate the user model. Depending on the role given to the model,
we can distinguish two different levels of application: individual and group levels.
At the individual level, the user model, which is also the user profile, is mostly used
for adaptation and personalization, i.e., basically, to improve the human-machine
interaction (the interface) [Fis01] or to adapt the information content with respect
to the user interests and characteristics [JCECWtC00]. As examples of individual
user profile we can cite: web page personalization and recommender system. At the
group level, the user profile is extended to groups of users sharing similar character-
istics. In addition to the advantages related to a single user profile, the profile of a
group allows the users to exchange easily their content within the group, especially
in some specific network applications, like: sharing data over P2P networks, data
propagation on mobile networks or extracting documents in a distributed informa-
tion retrieval system.

Along with the need to identify the user profile in a distributed environment, the
need to model the data-source emerges for the same reasons as for the user. In fact,
a data-source can play symmetrically the role of a user Fig. 1.1. If we consider, that
the user’s interactions are requesting data from data-sources and exchanging data
with other users, the data-source interactions are responding to the user request and
exchanging data with other data-sources. Consequently, the applications deployed
on a distributed environment composed of users and data-sources should integrate

75

Chapter 4 Overview of a Framework for Usage Analysis in IR systems

both the user model and the data-source model.

There is an important amount of work, that has attempted to resolve the problem
of user modeling. However, existing techniques (sec. 2.2) depend strongly on the
domain application and the usage data. We mean by usage data all the information
about the user, resulting implicitly from an interaction with the system or specified
explicitly by the user (e.g. user preferences). For instance, in the domain of
interface adaptation the usage data are essentially composed of user behavioral
actions (click-through, focus areas, etc.) and user preferences (color, screen size,
etc.). In this perspective, the technique used to model the user definitely depends
on the usage data to analyze.

In this thesis, we focus on the problem of modeling the user in a distributed environ-
ment. The objective is to propose a model which offers the possibility of organizing
the network of users and data sources in the form of groups which share similar
interests, so that, the model should in the end, improve the communication within
the network. In our approach we consider that:

• The domain application is a network of users and data sources, which means
that it is necessary to model the two entities.

• The usage data are textual, which means that the users interactions with the
system have a textual form.

To resolve this problem we proposed a generic framework (Fig. 4.1) that integrates
a unified model to extract both the user profile and the data source profile from
textual usage data. The main strong points of the proposed model are :

• Ability to model both of the user and the data source in one unified model

• Semantic analysis of usage data

• The efficiency of the model in the profile extraction which enables high scale
computations and easy updates.

In our study, we consider as usage data the user query logs extracted from a web
search engine (Fig. 4.1). The log has a form of a table with three entries which are:
the user_id (the user), the textual query (the usage data) and the selected_url (the
data source). However, the model is actually applicable for any textual usage data.
In the next sections, we give a short overview of the different steps of the profiling
model. Step 3 is detailed in chapter V while steps 4, 5 are detailed in chapter VI.

76 76

4.2 Data Gathering and Query Log Preprocessing

Figure 4.1.: A Framework for Usage Analysis

4.2. Data Gathering and Query Log Preprocessing

Data gathering and query log preprocessing (Fig. 4.1, components 1 and 2) are the
two first steps in the usage analysis framework. It consists first, in collecting the user
queries submitted to a web search engine1 (Fig. 4.2(a)), and second, in preprocessing
the resulting log by filtering out meaningless queries and keywords.

The collecting process consists in recording the queries submitted by the user through
the search engine and for which he/she has selected at least one result item (i.e., a
URL). The objective behind keeping only queries for which the user selected result
items is twofold. First, it enables to avoid wrong queries (i.e., queries that are re-
formulated by the user after reading the summaries). Second, it enables to join the
user and the URL, which represents the data source. As we will show further in this
thesis, the fact that the user and the data-source are joined by the query represents
the basis on which the profile model will be constructed. In the end, the result of
this step is an adapted query log containing a set of entries ordered by timestamp,
where each entry is composed of the user ID, the text query and the URL.

The preprocessing step aims to obtain a refined vocabulary of query terms that will
1In our experiments, the AOL search engine

77

Chapter 4 Overview of a Framework for Usage Analysis in IR systems

Figure 4.2.: AOL Search Query Log

form the set of elements of a semantic representation of the log. There are two
levels of preprocessing: the query level and the term level. Query preprocessing
is mostly a filtering process. First, identical queries2 resulting from the structure
of the logs are deleted. Second, the “bad queries” are filtered out. We mean by
a bad query a non interpretable query, e.g., a wrong URL, an email address, etc.
This kind of query may for example occur when the user is trying to check a text
spelling without expecting relevant results. At the term level, we apply a classical
lexical analysis on the queries. First, each query is split into a set of terms by
means of a tokenizer. The goal is to extract the set of meaningful keywords. The
tokenizer deletes all stop words, such as articles and prepositions. Second, each
term is processed separately using stemming and lemmatization methods. These
tools group together the different inflected forms of a word into a single item, e.g.,
the plural and singular form of a noun are identified as a single item. Third, query
terms that appear more than once in the log are deleted. Fourth, we match each
term with a WordNet synset; terms that are not in WordNet are considered as

2The query is duplicated if the user clicks on several result items

78 78

4.2 Data Gathering and Query Log Preprocessing

non-interpretable.

Fig. 4.2 shows a part of a log that concerns the user “2771158“ (cf. step (a) in Fig. 4.2
). Applying the preprocessing steps (i.e., at query level and at keyword level) to
these queries produces first, a new (adapted) log (cf. step (b) in Fig. 4.2) and then
a set of refined keywords (cf. step (c) in Fig. 4.2). In more details:

At query level preprocessing :

• The queries without click (data source) are filtered out. In the example, these
queries are: 1, 3, 4, 5, 10, 13

• The wrong queries, which are reformulated (i.e., by adding keywords) are
filtered out. In the example, query 5 is reformulated to query 6. Hence, query
5 could be filtered out.

• The bad queries (i.e., non interpretable queries) are filtered out. In the exam-
ple, it is query: 12

• The duplicated queries are filtered out. In the example, these queries are: 6,
8, 10

At keyword level preprocessing :

• The stop words are deleted. In the example, the stop word is: “the”

• The words that are not found in the dictionary (WordNet) are deleted. In the
example, the non-defined word is: “el paseo”

4.2.1. Preprocessing Statistics

The preprocessing step is mostly a filtering process in which same queries and key-
words are deleted. In order to measure the usability of the post-processed query
log, we specify two kinds of thresholds : local usability threshold Tl and global us-
ability threshold Tg. The local usability threshold enables to determine weather a
query is kept in the log or is deleted. This threshold is the result of the keyword
preprocessing level where several keywords are deleted. This threshold depends on
the ratio r between the number of remaining keywords and the number of keywords
in the input query. If r ≥ Tl then the query is kept else it is deleted. The global us-
ability threshold enables to determine whether the log is ready for further analysis.
It depends on the ratio R between the number of post-processed (non-deleted) user

79

Chapter 4 Overview of a Framework for Usage Analysis in IR systems

queries and the number of input user queries. If R ≥ Tg than the result of the step
2 passes to the step 3, else the process waits for additional queries.

4.2.2. Lexical Analysis

The lexical analysis is based on three main techniques : Tokenization, Stemming,
Lemmatization.

4.2.2.1. Tokenization

The tokenization is the process whereby a text (phrase, query, etc.) is transformed
into a set of keywords; empty words (articles, piece of URL, numbers, etc.) are
deleted from the output set of keywords. The process consists in parsing an input
query and extracting words separated by predefined separators. In the case of a
query, keywords are mostly separated by white spaces.

4.2.2.2. Stemming

The stemming aims to analyze morphologically the keywords obtained by tokeniza-
tion to reduce them to their canonical form, i.e, the stem (e.g. are->ar, saw,see->s,
cars,car’s->car). The stemmer we use in this thesis is based on the Porter stemmer
[Por80] which determines the stem of a word by eliminating or replacing the suffix.
The Porter stemmer is based on a list of rules organized by groups into five steps.
Each rule deals with one suffix and is composed of a condition and an action. The
condition checks the part of the word before the suffix, and the action eliminates
or replaces the suffix. Thus, depending on the part before the suffix a decision is
made about eliminating or replacing the suffix. For a given word “Stem+suffix” the
stemmer starts parsing by the end to identify the suffix that matches one of the
rules. If the condition of the rule is satisfied the action is applied and the stemmer
swishes to the next step, until the end of the rules.

4.2.2.3. Lemmatization

The lemmatization aims to reduce the input word to its base form by considering
the part of speech (word class: noun, verb, preposition, etc.) of the word; the result

80 80

4.2 Data Gathering and Query Log Preprocessing

of the process is a Lemma (e.g. am, is, are->be). Lemmatization has the same
objective as stemming. However, lemmatization is more complex, since in addition
to deal morphologically with the word, the retrieved lemma should be a real word. In
contrast, a stem is sometimes a truncated word. One consequence of this difference
is that a lemmatizer is often slower compared to stemmer. In fact, a lemmatizer
can be defined as composed of two phases. In the first phase, the lemmatizer has
to identify the part of speech of the word which represents the category of the word
(noun, verb, etc) within its context (phrase, query, etc.). A word whose the POS
is identified is said to be annotated. The POS of the word is used to determine
correctly the action to perform in the next phase. This first phase is the one that
slows the lemmatization since its based on a training model. This latter is a set
of previously annotated words (a corpus) used to predict the POS of future words
by using a probabilistic model. In the second phase, the lemmatizer applies the
appropriate rule to eliminate or to replace the inflectional part of the input word.
These rules are different from those used in stemming since the objective is not
necessarily to deal with suffixes and produce very often real words. The function
“LuceneLemmatizer” is based on the Stanford POS tagger3 [TKMS03, Rat96]. It
deals with the input words all at once; it analyzes them by using a pre-trained model
(trained on the Wall Street Journal) to identify the POS of each word. The words
and their corresponding POS are used by the reduction rules to identify the lemmas.

4.2.3. Semantic Analysis

In this thesis, we use mainly WordNet as source of semantics. Nevertheless, there
exist other sources of semantics such as DBpedia that is possible to combine with
WordNet:

• WordNet : It is a lexical database for the English language [FM98]. In Word-
net, words (nouns, verbs, adjectives) are grouped into sets of synonyms called
synsets. As a result, a polysemous word can be included in several synsets.
In addition to synsets, wordnet provides definitions, and presents several se-
mantic relations between synsets, for instance : Is-A, Part-of, etc. One of the
most important objective of Wordnet is to support automatic text analysis.
Moreover, it is widely used by text disambiguation technics. The Wordnet
dataset describes about 200000 words which represent about 115000 synsets.

3http://nlp.stanford.edu/software/corenlp.shtml

81

Chapter 4 Overview of a Framework for Usage Analysis in IR systems

• DBpedia : It is a structured representation of the information available in the
Wikipedia resources4. It provides users with an interface to query relation-
ships and properties associated with Wikipedia resources, including links to
other related datasets. The DBpedia dataset describes more than 3.64 million
entities, including, persons, places, organizations, etc. In order to represent
the relationships between the objects, DBpedia uses the Resource Description
Framework (RDF).

• Combined dictionaries, thesauruses and ontologies: In order to complete the
lack of information in a dictionary or in an ontology, we need to combine them
with others. This is the case with Wordnet. Although it covers a large space of
words, Wordnet suffers from the lack of named entities. The solution consists
in combining it with another ontology. For example, DBpedia and Wordnet
are already linked by 318,000 RDF links5.

4.3. Taxonomy Construction : a Support for Analysis

The result of the first two steps is a refined vocabulary of query terms which are
the inputs of the next step. The third step in the framework (Fig. 4.1, component
3) attempts to produce a basis on which all the future calculations of the model will
be done. More specifically, it consists in producing a global semantic reference for
the whole log before starting any process of query log mining. Query log mining
is frequently done by extracting meaningful patterns from the whole set of queries.
In this thesis, we consider the problem of patterns extraction to be a clustering
problem. This means that more attention is given to groups of queries independently
from the whole set. However, we argue that it is also important to understand the
relationships between the different discovered patterns, and to compare patterns
between users. In the case of keyword-based queries, the extracted global reference
should take into account semantic relations that exist between natural language
words.

To this end, we outline a method to construct a taxonomy over the terms used
in keyword search logs. This method uses the WordNet lexical database of English
terms. The construction of the taxonomy is based on two principal aspects: the first

4http://wiki.dbpedia.org/About
5http://wiki.dbpedia.org/UseCases, 2012

82 82

4.4 Usage-Based User Profile and Data Source Profile Modeling

is the hierarchical relationship between the terms established by the hypernymy and
generalization/specialization relations (“is a”). This kind of relationship enables to
sort the terms into different levels of abstractions and then gives rise to a tree struc-
ture. The second aspect is the semantic distance between each pair of neighboring
terms; it represents the weight of the edges of the tree. Here, we introduce a weight-
ing function that takes into account the abstraction level of each element. In fact,
two terms at the bottom of the hierarchy are considered to be closer than two terms
located at the top of the hierarchy.

4.4. Usage-Based User Profile and Data Source
Profile Modeling

The step four (Fig. 4.1, component 4) is the step when the profile model is estab-
lished. It is composed of two sub-steps. In the first sub-step, we apply a pruning
algorithm on the taxonomy (of step 3) which is actually a clustering algorithm on
a tree structure. The goal is to extract the general users’ interests by considering
together all the queries, independently from the users. Hence, the result of this
sub-step is a model of user interests. In the second sub-step, the model of interests
evolves to a profile model. It consists in instantiating the model to take into account
the characteristics of each individual user, and each individual data source.

4.4.1. Extracting User Interests : a Pruning Algorithm

The goal of the clustering algorithm is to transform the tree structure obtained in
step 3 into a set of sub-trees. To achieve this purpose, the algorithm is based on
three parameters, which are: the size of a cluster and the abstraction level in one
side and the semantic distance between clusters in the other side. The key idea is
to maximize a certain quality function F which depends on these parameters. The
specification and the role of each parameter are defined as follows :

• Size (s) : It measures the number of terms within a cluster by taking into

account the frequency of each term. Thus, s =
k∑
i=1
fr(ti), with ti a term of the

cluster, and k the number of terms within the cluster.

83

Chapter 4 Overview of a Framework for Usage Analysis in IR systems

– Frequency (fr) : It measures the number of occurrence of a term in the
queries.

• Abstraction level (li): It measures the abstraction level of a cluster i based on
the depth of the its elements in the taxonomy.

• Distance (d) : It measures the distance between terms and between clusters.
The distance between two terms is directly related to there abstraction level
l. Thus, the lowest the abstraction levels of (adjacent) terms is, the smallest
the distance is.

The size si of a cluster i and the abstraction level li of its elements enable to de-
termine the local cluster quality value ”v = f(si, li)” while the distance enables to
determine the value of the threshold for clustering.

4.4.2. A Two-Face Model of User Profile and Data Source
Profile

After having built the model the users of interests (cf.sec. 4.4.1), the next step con-
sists in adapting it to characterize individual users and individual data sources.
Basically, the task is to recalculate the value vi of each cluster by taking into ac-
count only the queries submitted by each individual user.

The process consists in three sub-steps. First, we calculate the contribution of each
individual user in the query log by deleting the terms that do not appear in his/her
own queries. It consists in recalculating the value of vi of each cluster according
to the remaining terms. Second, in order to include the influence of the child
clusters on the their corresponding parent, the value of viof each child cluster is
propagated to the parent cluster. The propagated value is equal to vi/d where d is
the distance between the child cluster and his parent cluster. The third sub-step
consists in normalizing the vectors vi obtained from the last sub-step. It consists to
divide the components of the each vector vi by the component with the max value.
The objective of this step is to remove the gap between active users (with frequent
query) and less active users.

Symmetrically, in order to calculate the vector vj of a data source, the same process
is applied from the data-source side. The only difference is in the subtracting step.
The terms that do not appear in the queries submitted to the data source are
subtracted from the initial clusters.

84 84

4.5 Usage of the Model

4.5. Usage of the Model

The dual nature of the profile model introduces two equivalent but independent ap-
plications (cf. sec. 6.4): user communities discovery and data source categorization
(cf. Fig. 4.1, component 5). The main objective of these applications consists in
grouping together entities that share similar objects. Therefore, we define a com-
munity as a set of users, who share similar interests while a data source category
as a class of data sources, which share similar contents. In addition to these two
applications, the profile model enables to directly compare the user profile to the
data source profile which enables to create mappings between the users and the data
sources. In fact, the mappings process is typically a recommendation process.

User Community Discovery In order to group the users according to their inter-
ests, their respective vector of profile are clustered together by using a clustering
algorithm.

Data Source Categorization Symmetrically, In order to group the data sources
according to their similar contents, their respective vector of profile are clustered
together by using a clustering algorithm

Mappings discovery between the users and the data sources The mappings
are identified by calculating the distance between each user profile vector and data
source profile vector. Thus, if the distance is greater that a predefined threshold a
mapping is created between the user and the corresponding data source.

4.6. Summary

In this chapter, we have briefly presented the framework we propose for usage anal-
ysis. The goal was to give a global description of the contribution and to show
relationships between the different components of the framework.

The proposed framework is composed of six steps. The step one consists in collecting
the textual usage data to be analyzed. The step two (per-processing step), consists
in preparing the data for further analysis; the objective of this step is to obtain
a refined vocabulary that will be used in the next step. In the step three, we

85

Chapter 4 Overview of a Framework for Usage Analysis in IR systems

construct the basis on which the profile model will be calculated; it consists in an
enhanced taxonomy of terms obtained from the previous step. In the step four, the
model is calculated in two sub-steps. First, we apply a clustering algorithm that
extracts a model of user interests in the form of clusters of keywords. Then, the
model of interests is enhanced to a user profile model that takes into account the
characteristics of each user. The step five, presents direct usages of the model, which
are the communities discovery and the data sources categorization. Finally, the step
six represents the applications that can be deployed on the network that can make
use of communities and data source categories. Details of steps three, four and five
will be given in the next two chapters.

86 86

5. Keyword-Based Query Log
Analysis

5.1. Introduction

Search query logs have always been considered to be a rich source of information
about the user behavior [JST08]. Mining processes are usually applied to search
query logs in order to extract knowledge about the usage [Jan06]. This is in partic-
ular a necessary step for the design of true user-centric applications in which user
search interests are identified and taken into account [ZN08, LOPS07, WNZ02].
In recent years, much research has been done in the domain of search query logs
analysis. To date, researchers have mostly focused on analytical and statistical
methods for extracting knowledge from log [WGB12, JCG10, HGM+10, BLL+10,
Jan07, PCT06, SMHM99]. However, most of these proposals lack a mechanism to
extract semantic features and include them in the analyzing process. This makes
them unable to deal with problems related to the semantics of the data such as the
identification of users search interests. In this chapter, we discuss possibilities of
resolving this issue using semantic mechanisms (query terms relations, dictionaries,
disambiguation, semantic distance) in order to enrich traditional mining processes.
The ultimate objectives are to produce a semantically enhanced global reference for
the whole log that integrates these semantic mechanisms and to construct a base on
which the user interests and the data source content can be identified.

87

Chapter 5 Keyword-Based Query Log Analysis

5.2. Keyword Taxonomy Construction: A Global
Semantic Representation

The objective of this section is to detail the process of constructing a semantics-
based global reference of the query logs. To start, we define this global reference as
a data structure organizing the query terms in a taxonomy equipped with a semantic
distance function. Thus, we describe an approach to construct this taxonomy over
the terms used in keyword search logs by means of the WordNet lexical database of
English terms. More specifically, the construction of the taxonomy is based on two
main aspects. The first is the hierarchical relation between the terms established
by the hypernymy (generalization/specialization relations) “IS-A”. This kind of
relation enables sorting the terms into different levels of abstraction and organizing
them in a hierarchical structure. The second aspect is the semantic distance between
two terms connected by a IS-A relation. Here, we introduce a weighting function
that takes into account the abstraction level of the terms. In fact, two terms in
the bottom of the hierarchy are considered to be semantically closer than two terms
situated at the top of the hierarchy. The taxonomy construction step follows a
preprocessing step (cf. sec. 4.2 for more details). The two steps are summarized in
Fig. 5.1.

Figure 5.1.: Taxonomy Extraction from Keyword Search Log

5.2.1. Keywords Disambiguation by Using External Source of
Semantics:

One of the objectives targeted in this chapter is to enhance search query log analysis
with semantics. More specifically, this consists in identifying the meanings of query
log terms and the semantic relations between them. These aspects are key elements
in the taxonomy construction process.

88 88

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

5.2.1.1. Overview on Existing Disambiguation Methods

In the literature, text disambiguation refers to Word sense disambiguation (WSD),
which is a field of research on text mining that deals with the problem of disam-
biguating polysemous words within a text. Navigli, in [Nav09], classifies the WSD
methods based on two dimensions, supervision and knowledge.

The supervision dimension divides the methods into three classes: supervised meth-
ods, semi-supervised methods, and unsupervised methods. The supervised methods
use machine-learning techniques to learn a classifier from manually annotated text
(mainly word senses). This class of methods includes: decision mechanisms, naive
Bayes classifiers, neural networks, example-based learning, support vector machines,
and combined classifiers. The semi-supervised methods use different techniques to
learn sense classifiers from minimally annotated text. This class of methods include:
self-learning classifiers by bootstrapping, and self-learning classifiers by bootstrap-
ping and monosemous words. The unsupervised methods are based on unlabeled
text, and do not use any manually annotated text. This class of methods includes:
word context clustering, synonymous words clustering, and co-occurrence graphs of
grammatical relations.

The knowledge dimension characterizes the disambiguation methods that use ex-
ternal source of knowledge/semantics such as dictionaries, thesauri, and ontologies.
Knowledge-based methods are divided into three classes: methods based the overlap
of sense definitions, methods based on selectional preferences, and structural meth-
ods. The overlap of sense definitions methods consist in calculating the overlap of
the textual definitions of the word in the dictionary with its word context. The
definition with the highest overlap then corresponds to the sense of the target word.
The methods based on selectional preferences consists in using selectional preferences
(rules) to reduce the number of possible meanings of a word occurring in its context.
The selectional preferences are identified from the syntactical relations between the
words of the context. The structural methods use semantic structures to calculate
the words relatedness; most of the existing approaches use the WordNet structure.
The first part of these methods are based on semantic similarity in WordNet. Thus,
disambiguating a word consists in finding the sense that maximizes the sum of the
binary similarities with the word senses of the same context. The second part of
these methods are based on the graph representation. The senses of the words of
the same context are represented in the form of a graph which nodes are senses and

89

Chapter 5 Keyword-Based Query Log Analysis

which edges are the semantic relations between them (is-kind-of, has-part, etc.).
The disambiguation then consists in finding the set of senses that maximizes a score
function (which is not a semantic similarity function) that takes as input one sense
of a word and the set of senses of its context.

5.2.1.2. A Graph-Based Disambiguation Method for Search Query Keywords

As in the natural language, in search queries, keywords (query terms) are very often
polysemous and therefore have several interpretations. Consequently, there is a
need to attribute a sense to each keyword. To achieve this objective, we make use
of the concept of synset defined in WordNet. A synset is a set of words that are
synonymous in a specific context where a specific meaning is attached to each synset
[FM98]. A keyword supporting multiple senses belongs to as many synsets as it has
senses. Indeed, finding the meaning of a keyword comes to find the best mapping
to the corresponding synset. We call the process of mapping keywords to synsets:
keywords disambiguation.

In this thesis, we present a disambiguation method that tackles the problem of pol-
ysemous keywords in search queries. This method is knowledge-based (structural),
as it is based on the dictionary and the structure of WordNet, and supervised, as
the WordNet inventory is manually annotated (cf. sec. 5.2.1.1)[Nav09]. Moreover,
the method uses the keyword context, which is a set of keywords appearing together
within the same user query. The goal behind the use of the context is to extract
the sense of each keyword by considering the semantics shared by the keyword and
the keywords of its context (i.e., the subject of the query). The way of dealing
with keywords in this process differs from that used in classical text mining: indeed,
syntactical and grammatical relations are not taken into account.

The example in (Fig. 5.2) illustrates the application of the method to real AOL
search queries:

The disambiguation method includes two steps:

First, for each keyword in the query, a ranked list of synsets is extracted form the
WordNet database. This list of synsets corresponds to all senses that a keyword
could have. Formally, given a query Q = {w1..wn}, for each w in Q we attribute a
set of synsets Sw, such as:

∀w ∈ Q,∃Sw = {s1..sk}: w ∈
k⋂
i=1

si (means that the word “w” belongs to “k” synsets)

90 90

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

Use query: (taken from the AOL search log)
“paper line border”
“scientific journal paper”
Synsets of the keyword “paper”: (from WordNet)

1. paper – (a material made of cellulose pulp derived mainly from wood or rags or
certain grasses)

2. composition, paper, report, theme – (an essay (especially one written as an assign-
ment); "he got an A on his composition")

3. newspaper, paper – (a daily or weekly publication on folded sheets; contains news
and articles and advertisements; "he read his newspaper at breakfast")

4. paper – (a scholarly article describing the results of observations or stating hypothe-
ses; "he has written many scientific papers")

5. paper – (medium for written communication; "the notion of an office running without
paper is absurd")

6. newspaper, paper, newspaper publisher – (a business firm that publishes newspa-
pers; "Murdoch owns many newspapers")

7. newspaper, paper – (a newspaper as a physical object; "when it began to rain he
covered his head with a newspaper")

Result of the disambiguation: (the integers at the front of the keywords corresponds
to the synset number)
“paper line border”≡“paper.1 line.2 border.1”
“scientific journal paper”≡“scientific.1 journal.2 paper.4”

Figure 5.2.: Keyword Disambiguation

∀si, si+1 ∈ Sw :si > si+1 (“>” is read like “precedes”)

In WordNet, senses (i.e., synsets) of the same word are ranked based on the frequency
of occurrence of each sense in the British National Corpus [Lee93, sev09, pri12].
Thus, the ranking of the synsets corresponds to an ordered set of synsets from the
most common sense to the less common for a given word.

The second step consists in finding the best combination of synsets ŜQ = {ŝ1..ŝn}
that is semantically equivalent to the query Q = {w1..wn} (noted: Q ≡ ŜQ). From
the list of synsets (Sw, >) attributed to each keyword “w”, the method selects the
synset with the closest sense to “w” in the context of Q:

Q ≡ ŜQ ⇐⇒∀wi ∈ Q, ∃ŝi ∈ ŜQ : wi ∈ ŝi (with ŝi the closest synset of wi in the

91

Chapter 5 Keyword-Based Query Log Analysis

context of Q)

To find ŜQ, the method relies on the WordNet structure. Indeed, in addition to
the concept of synset, WordNet defines different types of relations between synsets
(cf. sec. 5.2.1.4). Thus, the WordNet structure can be assimilated to a graph which
nodes are the synsets and which edges are the relations between them. Disambigua-
tion then consists in finding in the WordNet graph the best combination of synsets
ŜQ corresponding to the keywords of Q. By considering the set of synsets Sw of
every keyword w ∈ Q, we can generate several graphs, each of which represents
a combination of synsets. We consider the problem of finding ŜQ as a problem of
calculating the best minimum spanning tree (MST) among the set of graphs gener-
ated by Q. More formally, we calculate the MST of each graph G = (SQ, E) where
SQ = {s1..sn} is a combination of synsets corresponding to Q = {w1..wn} and E a
set of weighted edges whose weights represent the length (i.e., number of edges) of
the WordNet path linking si to sj.

As each keyword in Q supports multiple synsets, there are different combinations to
analyze and hence, several MST to calculate. Finding ŜQ using an exact approach
amounts to explore all the combinations, which is a combinatorial problem of expo-
nential complexity. The complexity of such a method is related to the number of
time the MST algorithm is applied. Let n be the number of keywords and k1..kn be
the number of synsets corresponding respectively to keywords w1..wn. The complex-
ity of the general MST algorithm is O(n+m), with n the number of keywords and m
the number of edges [FW94]. The number of all possible combinations of synsets is

equal to
n∏
i=1

ki. Consequently, the overall complexity of an exhaustive search method

is equal to O(
(

n∏
i=1

ki

)
(n+m)).

The search space in the proposed method is significantly reduced thanks to a heuris-
tic approach. The main idea of this heuristics is to suppose that a keyword in a
search query is used to express its most common sense. This assumption is sup-
ported by the fact that the queries in a public search engine are usually submitted
by regular users. The Algorithm 5.1 describes how to approximate ŜQ by exploiting
the order of the synsets1 of a word w defined in (Sw, >). Here, the graph of synsets
is incrementally constructed by following the order of the synsets in (Sw, >). Thus,

1the synsets of a word are ranked from the most common the least common by using the SemCor
corpus

92 92

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

the construction of the final graph goes forward step by step. In the first step, all the
nodes are initialized to the first synset (i.e., the most common sense); the first MST
is calculated. Thus, each node tries to reach the next step by replacing the current
synset by the next one in (Sw, >). At each replacement, the MST is recalculated.
If the MST is not improved, the node is marked as final and is excluded from the
next step; the previously considered synset is established. If the replacement im-
proves the MST, the new synset is considered in the next step; the previous synset
is temporarily established in the current step.

93

Chapter 5 Keyword-Based Query Log Analysis

Algorithm 5.1 Keywords Disambiguation Algorithm
Input: Q = {w0, w1, . . . , wn} /* the keyword query Q
Output: ŜQ = {ŝ0, ŝ1, . . . , ŝn} /* the set of synsets corresponding to Q
1: Create G(SQ, E) /* G is the graph of Q, SQ is a combination of sysnets corresponding

to Q, and E the set of edges representing the length of the shortest
path between each couple of synsets

2: for all nodeN in SQ do /* Initialize the nodes
3: Initialize N with the first synset of the corresponding keyword in Q
4: Mark N as non-final and non-visited
5: end for
6: for all edge e in E do /* Initialize the edges
7: Initialize e with the length of the shortest path between the two first synsets
8: end for
9: Calculate the MST of G
10: while G contains non-final nodes do
11: for all non-visited node N do
12: Mark N as visited
13: Gtemp = G
14: if N is non-final then /* N represents the keyword w and sw is the set of synsets of w
15: Replace the current synset s by s+, the next synset in (sw,<)
16: Update G
17: Calculate the MST of G
18: if MST is not improved then
19: Mark N as final
20: end if
21: Replace s+ by s /* return to the previous synset
22: G = Gtemp /* return to the previous graph
23: end if
24: end for
25: for all N non-final do
26: Replace s by s+

27: Mark N as non-visited
28: end for
29: Update G
30: end while
31: Return the list of final nodes corresponding to ŜQ

In the next step, only non-final nodes are considered. The process continues until
all the node are marked as final, which means that no improvement is possible. The
synsets of the final nodes represent the approximation of the best combination of
the query synsets (Algorithm 5.1).

We notice that in the particular case of a query composed of unrelated keywords
in WordNet, the query is split into several sub-queries (i.e., sub-graphs) and the

94 94

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

disambiguation method is applied separately to each sub-query. In the case of a
single keyword sub-query, the first synset is automatically selected.

The complexity of the disambiguation method depends on the number of keywords
in the query and on the number of synsets of each keyword. Let n be the number of
keywords and k1..kn be the number of synsets corresponding respectively to keywords
w1..wn. The complexity of the MST algorithm is O(n + m) [FW94] (n the number
of nodes and m the number of edges). According to Algorithm 5.1, the MST is
recalculated as many times as one synset is replaced by the next synset. Thus, the
MST algorithm is applied at most

n∑
i=1

ki times because the method follows a greedy

approach and hence a synset is visited only once. Consequently, the complexity of

the disambiguation heuristics is equal to
(

n∑
i=1

ki

)
×O(n+m). Suppose kmax be the

maximum number of synsets that a keyword in Q could have. The disambiguation
complexity is then equal to: k×n×O(n + m)=O(n2 + nm), “m” being the number
of edges among the graphs of Q. In the worst case of a complete graph (i.e.,
m = n(n− 1)

2), the complexity of the disambiguation is equal to: O(n3) which is
polynomial.

The proposed method has three main advantages. First, it uses a reliable source
of semantics, which is WordNet with possible mappings to other resources (cf.
sec. 5.2.1.3). Second, it enables to find with a satisfactory precision (cf. sec. 5.5.1)
the sense of a keyword by considering the context. Third, it is based on a greedy
algorithm. However, in spite of these strong points, the method can relatively suf-
fer from some problems. The first problem is related to the size of the query (cf.
sec. 5.5.1). In fact, the method works with queries of multiple keywords, and sup-
poses that the query contains only one subject (i.e. the context). However, if a
query contains several sub-subjects the method can fail to find the right synset,
since it cannot find the context of the keyword. Indeed, the method works well with
relatively short queries. The second problem that can affect our method is related
to the capabilities of WordNet. Indeed, even though the WordNet database covers
most English words, it contains only a few named entities. Fortunately, thanks to
the mapping possibility included in WordNet, it is possible to extend its capacity by
considering other databases of named entity like DBpedia sec. 4.2.3. Such a map-
ping is for instance realized in the YAGO project which aims to unify WordNet and
Wikipedia [SKW07]. The third problem is related to the heuristics. The principle of
the heuristics is to exclude a node from the next step when it does not improve the

95

Chapter 5 Keyword-Based Query Log Analysis

MST. This heuristics may fail (i.e., its precision can be affected) if the excluded node
could improve the MST when it is considered with nodes of farther steps. However,
we consider this case to be rare since it concerns synsets of less common sense.

5.2.1.3. Discussion: WordNet as a Main Source of Semantics

There are several reasons that motivated us to choose WordNet as a main source of
semantics:

1. First, WordNet is one of the richest thesaurusi, as it comprises more than
200000 word-synset pairs;

2. Second, it provides many types of relations which enables to connect the
synsets between them. This property is particularly used by the Disambigua-
tion method;

3. Third, it contributes to the definition of the structure of the taxonomy thanks
to the IS-A relation between synsets;

4. Finally, it is compatible with a large number of dictionaries and other semantic
sources e.g. DBpedia, which provides mappings to the synsets and therefore
extends its semantic scope (cf. sec. 4.2.3).

5.2.1.4. Keywords and Semantic Relations

The process of keyword disambiguation enables to specify the meaning of a key-
word. However, the construction of the taxonomy needs also to determine the
relations between keywords. In our context, what we mean by semantic relations
between keywords is more precisely defined as relations between synsets. As we deal
with textual queries, a linguistic ontology can provide us with information about
synsets and the relations between them. To this end, we use the WordNet structure
that includes several types of semantic relations (about twenty) e.g. hyponymy vs.
hypernymy (IS-A), holonymy vs. melonymy (is part of), etc. In the framework of
the disambiguation method, all the relations are considered to construct the graphs
of the query. Indeed, using different relations contributes to the enrichment of the
query graphs since it enables the emergence of all possible relations between synsets.
Fig. 5.3 shows the different relations included in WordNet that are related to the
synsets of the word “paper”. This figure was created using visuwords [Log13].

96 96

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

Figure 5.3.: The WordNet Structure

In the remainder of the process of constructing the taxonomy, we use the hypernymy
relation (IS-A) as a basic structural characteristic to define a hierarchical order
between the keywords (i.e., sysnsets). Semantically, it cooresponds to the relation
of being super-ordinate or belonging to a higher rank or class, e.g., “paper” is the
hypernym of “wallpaper”. Fig. 5.3 shows the synsets of the word “paper” and the
relations with their direct subordinates.

5.2.2. Basic Hypernymy Structure

The aim of this step is to construct a hierarchical structure that semantically relates
the synsets corresponding to the keywords extracted from search logs. To this end,
we use the hypernymy relation “IS-A”. We choose the IS-A relation for two main
reasons: first, it enables to classify the keywords with a high degree of granular-
ity; second, it provides a means to measure the distance between keywords in the
taxonomy (cf. sec. 5.2.3).

97

Chapter 5 Keyword-Based Query Log Analysis

Such a relation enables to identify for each synset the hierarchy of hypernyms and to
relate them by merging those hierarchies. Merging different hierarchies of hypernyms
gives rise to two possible structures. If we consider a simple hypernymy i.e., a synset
accepts only one hypernym, the merging process produces a tree structure. However,
if we consider that a synset accepts multiple hypernyms, then the merging process
produces a semi-lattice. In our proposal, we call both structures Taxonomy. The
hypernymy structure is generated as follows. In the first step, for each synset we
identify the list of its direct hypernyms in WordNet. It is a set of hypernyms to which
the sysnet is directly connected by an IS-A relation. The process is then applied
recursively to each hypernym until it reaches the last hypernym which hypernym
is the root2. For example, let us take the term: “football”. Suppose that this
term matches the synset: “football.1” (the integer “1” reflects the rank of the
synset). According to WordNet, sport.1 and game.2 are the hypernyms of football.1,
diversion.1 is the hypernym of sport.1, activity.1 is the hypernym of game.2 and
diversion.1 (cf. Fig. 5.4).

Figure 5.4.: Hypernymy Structure Construction by Hpaths Merging

Hence, we get the sub-paths “football.1” is − a sport.1 is − a “diversion.1 is − a

“activity.1” and “football.1” is− a game.2 is− a “activity.1” (cf. Fig. 5.4). We call
the hierarchy of hypernyms “Hpath”.

2Note that WordNet does not have a inique global root. For technical purposes, one can assume
the existence of a virtual root. Moreover, in recent version of WordNet (from v2.1) there exists
a root for nouns, which is “Entity”.

98 98

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

Algorithm 5.2 Hypernymy Structure Construction Algorithm
Input: S /* Set of synsets obtained after disambiguation
Output: T /* hypernymy structure
1: T = {∅}
2: for all s ∈ S do
3: Hpath = getHpath(s)
4: T = merge(Hpath,T)
5: end for
6: Return T

7: function getHpathsimple(s) /* This function is used if every hypernym is defined with one direct
hypernym

8: Hpath = ∅
9: while s 6= R do /* R represents the root

10: t = getHypernym(s) /* getHypernym returns one direct hypernym
11: Hpath = Hpath ∪ (s, t)
12: s = t
13: end while
14: Return Hpath
15: end function

16: function getHpathmultiple(s) /* This function considers the general case of hypernyms with multiple
direct hypernyms

17: Hpaths = ∅
18: if s 6= R then /* R represents the root
19: H = getHypernyms(s) /* getHypernyms returns the set of all the direct hypernyms
20: for all t ∈ H do
21: Hpaths = getHpathmultiple(t) ∪ (s, t)
22: end for
23: end if
24: Return Hpaths
25: end function

26: function merge(Hpath1, Hpath2)
27: return(Hpath1 ∪Hpath2)
28: end function

Depending on the type of hypernymy (simple or multiple), the Hpath is either
straight or contains derivations (sub-paths). In the second step, the produced
Hpaths are merged based on their common edges to form a tree or semi-lattice
structure. Fig. 5.4 shows the Hpaths of Handball.2, Football.1 and Soccer.1 con-
nected in one semi-lattice. These synsets corresponds to keywords extracted from
queries in Fig. 5.5.

The process of hypernymy structure construction is summarized in Algorithm 5.2.

99

Chapter 5 Keyword-Based Query Log Analysis

Figure 5.5.: Examples of Queries Containing Keywords: Handball, Football and
Soccer

The complexity of the hypernymy structure construction is related to the complexity
of the functions getHpathmultiple (if we consider the general case) and merge.

The complexity of getHpathmultiple is related to the number of hypernyms (including
hypernyms of hypernyms) and to the number of edges linking these hypernyms in
the Hpath. In Algorithm 5.2, the number of edges equals the number of times the
getHpathmultiple is called recursively. We consider the getHypernyms function
complexity to be constant, since it is a selection query submitted to the WordNet
data base.

Let k be the number of hypernyms (including the root R) of a query synset s (i.e.,
a keyword of a query after disambiguation), and A the number of edges. Thus, we
can write:

A =
k−1∑
i=1

Hi (5.1)

with Hi the number of hypernyms of hypernym “i” (H1 represents the set of direct
hypernyms of s and Hk = 0 represents the set of hypernyms of the root R).

Moreover, because a synset (or hypernym) can have at most k hypernyms (if it is
linked to all of the hypernyms of the Hpath):

∀i ∈ {1..k}, 0 ≤ Hi ≤ k (5.2)

From 5.1 and 5.2 we obtain:

0 ≤ A ≤ k(k − 1)

Indeed, the complexity of the getHpathmultiple algorithm in the worst case is then:

100 100

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

O(k2).

The merge function consists in unifying the Hpaths by merging their correspond-
ing sets of hypernyms and edges while deleting duplicates. Since the Hpaths take
the form of semi-lattices (i.e., tries), the merge function can be represented as a
“union-find” problem [KT06, GF64]. Thus, the complexity of such a function is
O (log (k1 + k2)) with k1 and k2 being the number of hypernyms of Hpath1 and
Hpath2. Assuming k1 is comparable to k2, the complexity of merge function is
O (log (k)). Consequently, the getHpathmultiple complexity is higher than the merge
complexity: O (log (k)) ⊆ O(k2).

The complexity of the whole process of hypernymy structure construction is therefore
O(X k2) with k the number of hypernyms in a Hpath and X the number of query
synsets in the taxonomy.

The hypernymy structure produced in this step defines the structure of the keyword
taxonomy. The keywords are organized into different abstraction levels where each
keyword is attached to one synset represented by an integer (the sense number).
In the next step, the taxonomy is provided with a means to measure the semantic
distance between keywords.

5.2.3. Semantic Distance Function

In order to provide the taxonomy with a means of quantitative evaluation of the
semantic distance between two terms (keywords), we first introduce a weight associ-
ated to the individual “is− a” links. This weight is defined as a decreasing function
of the semantic proximity between the parent and the child (i.e., the higher the
weight, the less related the terms). As all relations contained in the taxonomy are
of type “is− a”, the nodes go from the most general at the top to the most specific
at the bottom. Therefore, two connected terms at the bottom of the taxonomy are
more closely related than two connected terms at the top. The weighting function
should thus be decreasing with respect to the level of the terms. The choice of a
decreasing function is motivated by the fact that the relations between concrete and
less abstract terms are more relevant and hence stronger than relations between
general terms. In addition to that, a decreasing weighting function enables to char-
acterize the dimension of the domain covered by the query terms. This means that
depending on the terms used, the query varies from general (i.e., large domain di-

101

Chapter 5 Keyword-Based Query Log Analysis

mension) to specific (small domain dimension). We argue that the more general the
terms, the larger is the distance between them and hence the larger is the domain
covered by the query. For example, let us consider two queries Q1 and Q2 where
Q1 is “Sport diversion”, which is a general query about sport, and Q2 is “football
player X”, a more specific query about a football player. In this example, the do-
main covered by “Sport” and “diversion” is larger that the one covered by “football
player” and a given person “X”. It is why the weight of the relation “Sport is − a
diversion” is higher that the one of the relation: “X is − a football player”. Based
on this, we define the weight function W as:

Definition 1. Let x, y two terms (i.e., synsets) related by the direct relation y “is-a”
x. The weight function W is defined on x and y as:

W (x, y) = 1
l(y) , with “l” is the function that returns the level of “y”.

Fig. 5.6 illustrates the use of this function.

Figure 5.6.: Decreasing Weight Function

In order to be able to compare every couple of terms of the taxonomy, we introduce
a function that depends on the weights of the edges composing the shortest path
between the terms. Depending on the type of path, there are two ways to compute
the distance.

• If the path is straight (cf. Fig. 5.7), the distance is the sum of the weights of
its edges; in case of multiple paths, the shortest one is considered.

102 102

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

• If the path is deviated (cf. Fig. 5.7), the distance is the sum of distances of
the two sub-paths (straight paths) that have a common hypernym as a upper
bound and form together the shortest path.

Hence, the function is defined as:

Definition 2. Let x, y two terms (i.e., synsets) of the taxonomy. The dissimilarity
(or distance3) function D is defined on x and y as:

D(x, y) =

0, if (x = y).
l(x)∑

i=l(y)+1
(1
i
), if x→ y (the shortest straight path) exists.

l(y)∑
i=l(x)+1

(1
i
), if y → x (the shortest straight path) exists.

l(x)∑
i=l(c)+1

(1
i
) +

l(y)∑
i=l(c)+1

(1
i
), with x→ c← y the shortest path deviated by c exists.

with “l” being the level function (the level function returns the depth of a term, its
value increases when going to the bottom of the taxonomy) and “c” the common
hypernym of terms “x” and “y”.

Figure 5.7.: Distance Measurement

With this definition, we aim to focus on the abstraction level of terms to evaluate
their distance. The notion of semantic distance between words has been extensively

3In the rest of this chapter, we call the function D “distance” as it is more illustrative and
therefore commonly used in the domain. In mathematical terms, a distance should satisfy the
four conditions presented in sec. 3.2. However, the function D does not satisfy the triangle
inequality as we will see in this section. Indeed, the function D is in this case a semimetric.

103

Chapter 5 Keyword-Based Query Log Analysis

studied in the litterature, especially in the information retrieval domain (cf. sec. 3.2.2
for more details). However, the aim of the proposed semantic distance “D” is not
to measure the absolute semantic relatedness of terms but to provide a means to
measure the semantic proximity in the specific context of our taxonomy. Therefore,
we aimed to model the semantic variation (the weight function) of the “is − a”
relation depending on the abstraction level of the related terms in the taxonomy (cf.
Fig. 5.6). This property had never been explicitly studied in earlier works. However,
we could verify its effectiveness with respect to the other functions (cf. sec. 5.5.2).

The function presented in definition 2 satisfies the following conditions:

1. Positivity. ∀x, y ∈ V, D(x, y) ≥ 0 (with V the set of terms)

• In case of a straight path (y → x) or (x → y), the distance is the sum of
positive weights of the edges composing the path.

• In case of a deviated path (x → c ← y): the distance is the sum of the two
straight paths x→ c and y → c

Consequently, D satisfies the positivity condition.

2. Symmetry.∀x, y ∈ V, D(x, y) = D(y, x)

• In case of a straight path (x → y) : D(x, y) is the sum of positive weights of
edges composing the path. Consequently:
D(x, y) = 1

l(y) + 1 + ...+ 1
l(x) = 1

l(x) + ...+ 1
l(y) + 1 = D(y, x)

• In case of a straight path (y → x):
D(x, y) = 1

l(x) + 1 + ...+ 1
l(y) = 1

l(y) + ...+ 1
l(x) + 1 = D(y, x)

• In case of a deviated path (x → c ← y): D(x, y) is the sum of two straight
paths (cf. the previous case).

Consequently, D is symmetric.

3. Reflexivity. ∀x, y ∈ V D(x, y) = 0 Iff x = y.
There are two cases :

• if x = y ⇒ D(x, y) = 0 (directly from the definition 2)

• if D(x, y) 6= 0 ⇒ x 6= y

In fact, if D(x, y) 6= 0 means that at least:

– D(x, y) = 1
l(y) (i.e., y ”is− a” x) ⇒ x 6= y

104 104

5.2 Keyword Taxonomy Construction: A Global Semantic Representation

– D(x, y) = 1
l(x) (i.e., x ”is− a” y) ⇒ x 6= y

– Otherwise the path between x and y is the sum of positive weights
(positivity)⇒ x 6= y

Consequently, D is reflexive.

The distance D does not satisfy the triangle inequality (Fig. 5.8 shows a counter
example).

By definition, the triangle inequality is formalized as: ∀x, y, z ∈ V, D(x, z) ≤
D(x, y)+D(y, z). Thus, let us suppose the following concepts represented in Fig. 5.8:

• X, Y , Z: three different players.

• C1: a player in a football club

• C2: a player in a national football team

• C: the concept football player

In the example (cf. Fig. 5.8), the shortest path between player X and Z passes
through the common concept “football player”, while the shortest path between
players X and Y passes through the concept “player in a football club” and the
shortest path between players Y and Z passes through the concept “player in a
national football team”. According to definition 2, D(X,Z) = 3, D(X, Y) = 1, and
D(Y, Z) = 1. Consequently, D(X,Z) > D(X, Y) + D(Y, Z), which means that D
do not satisfy the triangle inequality.

Figure 5.8.: Counter example for triangle inequality

105

Chapter 5 Keyword-Based Query Log Analysis

5.3. The Computational Complexity of the Taxonomy
Construction

The complexity of the taxonomy construction depends on the complexity of its
different steps including the preprocessing and the effective process of construction
(Algorithm 5.3). The algorithm includes five main functions:

5.3.1. Tokenization:

The complexity of the function (luceneTokenizer(q)) is related to the cost of
parsing the query, which is itself related to the size of the input text; it is equal
to O(l) with l the number of words (including stop words) within the query q (cf.
sec. 4.2.2.1). Indeed, this function transforms q to Rq being the number of the
keywords in q without stop words.

5.3.2. Stemming

The complexity of stemming a word is related to the cost of parsing the suffix
to identify the rule, to the cost of parsing the stem to check the condition, and
to the number of rules (cf. sec. 4.2.2.2). The complexity of stemming one word
is O(kp) with p the length of the word and k the number of rules. Since k is
fixed O(kp) = O(p). The complexity of the stemming function (luceneStemmer)
takes also into account the number of input keywords. Indeed, the complexity of
luceneStemmer is O(np) with n (n =| Rq |) the number of keywords to stem in
q.

5.3.3. Lemmatization

Lemmatization (luceneLemmatizer) consists of two phases (cf. sec. 4.2.2.3). The
complexity of the first phase applied on a set of words of size n (n =| Rq |) is
O(nTAB), where: T is the number of available tags for a word (verb, preposition,
noun, etc.), A is the number of available lexical features for a tag given its context
(the query), and B represents the number of the B-best annotations of Rq used to
estimate the best annotation. For more details, see [Rat96]. The complexity of the

106 106

5.3 The Computational Complexity of the Taxonomy Construction

second phase is related to the number of rules and to the length of the word, as for
stemming, which is O(np) with n the number of words to analyze and p the length
of the word. Indeed, as the complexity of the function LuceneLemmatizer depends
on the parameters of the first and the second phases, it is O(n(TAB + p)).

Algorithm 5.3 Keyword-based Taxonomy Construction
Input: Q = {q0, q1, . . . , qz} /* set of queries extracted from a search log
Output: T /* taxonomy of query terms
1: Rq = ∅ /* sequence of keywords
2: Rstem = ∅ /* sequence of stems
3: Rlemma = ∅ /* sequence of lemmas
4: S = ∅ /* set of synsets
5: for all q ∈ Q do
6: Rq = luceneTokenizer(q)
7: stemsuccess = false
8: for all w ∈ Rq do
9: stem = luceneStemmer(w) /* retrieve the stem of w

/* check stem in WordNet
10: if not check_wordnet (stem) then
11: stemsuccess = false
12: break
13: else
14: stemsuccess = true
15: Rstem = Rstem ∪ stem
16: end if
17: end for
18: if stemsuccess = true then /* stemsuccess is true iif all stems are in wordnet
19: Rq = Rstem
20: else /* retrieve the lemmas of Rq
21: Rlemma = luceneLemmatizer(Rq)
22: for all lemma ∈ Rlemma do

/* check lemma in WordNet
23: if not check_wordnet (lemma) then
24: Rlemma = Rlemma\lemma
25: end if
26: end for
27: Rq = Rlemma
28: end if
29: if Rq 6= ∅ then
30: S = S ∪ getSyn(Rq)
31: end if
32: end for
33: if S 6= ∅ then
34: getStructure(S)
35: end if

107

Chapter 5 Keyword-Based Query Log Analysis

36: function luceneTokenizer(q)
37: Implements the Lucene tokenizer
38: Return Rq
39: end function

40: function luceneStemmer(e)
41: Implements the Porter algorithm for stemming
42: Return stem
43: end function

44: function luceneLemmatizer(e)
45: Implements the Lucene Stanford Lemmatizer
46: Return Rlemma
47: end function

48: function getSyn(Rq) /* affect a synset number to each query term
49: Implements the keywords disambiguation alg.

/* Algorithm 5.1
50: end function

51: function getStructure(S) /* return a hierarchical structure of S
52: Implements the hypernymy construction alg.

/* Algorithm 5.2
53: end function

Note: In the algorithm (Algorithm 5.3) both stemming and lemmatization are
used though their objectives are similar (which is word normalization). In fact, the
objective behind combining these two techniques is, on the one hand, to exploit
the simplicity of stemming and on the other hand to benefit from the efficiency of
lemmatization. Indeed, the algorithm is designed in a way that avoids the senseless
words produced by stemming and the slowness caused by lemmatization.

5.3.4. Disambiguation

The complexity of the disambiguation function (getSyn(Rq)) is O(n3) (the case
of a complete graph) with n =| Rq | the number of keywords in the query (cf.
sec. 5.2.1.2).

108 108

5.3 The Computational Complexity of the Taxonomy Construction

5.3.5. Hypernymy Structure

The complexity of the hypernymy construction function (getStructure(S)) is
O(X k2) with X the whole number of query synsets (i.e., the number of all the key-
words in taxonomy) and k the max number of hypernyms of a synset (cf. sec. 5.2.2).

5.3.6. Overall Complexity

The algorithm deals with a set of queries as input and produces a taxonomy of
keywords as output.

According to Algorithm 5.3, the complexity of the construction process is the sum
of the complexities of the above functions applied to the whole set of queries. Let
“z” be the number of queries, n the maximum number of keywords within one query
(without stop words), X = z ∗ n the maximum number of keywords4, t the number
of stop words, l = n+t the number of keywords including stop words, p the length of
keyword, and k the max number of hypernyms (including hypernyms of hypernyms)
of a synset:

• The complexity of tokenization is O(z l) = O(z(n + t)) = O(z n) = O(X)
(since n and t are in the same order)

• The complexity of stemming is O(z n p) = O(X p)

• The complexity of lemmatization is O(z n(T AB + p)) = O(X(T AB + p))

• The complexity of disambiguation is O(z n3) = O(X n2)

• The complexity of hypernymy structure construction is O(X k2)

In addition to the above functions, the function “check_wordnet” is used to
check the availability of a word in WordNet. The complexity of such a function is
considered to be the complexity of a binary search on a sorted list (i.e., WordNet
words). Thus the complexity of check_wordnet is O(log(G)) with “G” the
number of WordNet words [LBB81]. In the main algorithm:

• The complexity of checking all the words in WordNet is O(X log(G)) (Notice
that the function is called in lines 10 and 23 of Algorithm 5.3)

Consequently, the complexity of the taxonomy construction algorithm is:
4X is the number of all the keywords of the taxonomy

109

Chapter 5 Keyword-Based Query Log Analysis

O(X(1+p+TAB+n2+k2+log(G))), with X the number of keywords, p the average
size of a word, T the number of available tags for a word (verb, preposition, noun,
etc.), A the average number of available lexical features for a tag, B the number
of B-best annotations for a sequence of keywords (i.e., query) used to estimate
the best annotation, n the number of keywords in a query, k the average number
of hypernyms (i.e., the size of Hpath) of a synset and G the number of words in
WordNet.

Indeed, except the number of input keywords X which is not bounded, the other
parameters are bounded and can be estimated in advance. Therefore, the complexity
of the taxonomy construction can be written: O(λX) with λ = 1 + p+TAB+n2 +
k2 + log(G). As λ is bounded, the algorithm complexity is O(X).

5.4. Using the Taxonomy for Analysis

The keywords taxonomy can be used to analyze the query log. The analysis can be
either general and based on the structure of the taxonomy or empirical and based
on the content of the taxonomy. In the following we detail the two ways:

5.4.1. Structure Analysis

Before actually using the keywords taxonomy for its semantric value, its structure
can be studied in order to estimate its utility. The parameters that characterize this
structure are: its size, its width, and its average depth.

5.4.1.1. Size

This parameter represents the number of nodes independently from their position
in the taxonomy. The size of a taxonomy T is:

ST =| {x ∈ V : x has a node in T} |,

with V the set of keywords.

110 110

5.4 Using the Taxonomy for Analysis

The size of the taxonomy can be used as a precondition for analysis since the analysis
cannot provide meaningful results if the query log that is not large enough. We can
therefore threshold the number of keywords (i.e., the size of the taxonomy) to decide
when the analysis can be started.

5.4.1.2. Average Depth

This parameter enables to measure the granularity of the taxonomy. In other words,
it measures the level of detail between the root and the keywords of the taxonomy.
Technically, it is the average length of a path from the root to a keyword of T :

LT =

|ST |∑
j=1

length(Pj)

| ST |
,

with length(Pj) the length (the number of edges) of the path Pj from a keyword
(represented as a synset) wj to the root, and m the number of keywords.

The average depth measures the level of detail of the users topics of interests. A
deep taxonomy is focused on a number of topics of interests.

5.4.1.3. Width

This parameter enables to show how thick or thin is the taxonomy. Technically, it
is the average number of nodes in one level. Formally, the width of a taxonomy T
is:

WT = ST
LT

,

with ST the size of T , and LT the average depth of T .

The width of the taxonomy is inversely related to its depth. It enables to study the
diversity of the users topics of interest. A wide taxonomy means that it involves a
large number of different users topics of interest.

111

Chapter 5 Keyword-Based Query Log Analysis

5.4.2. User Interests Analysis

The main objective of the keywords taxonomy is to provide traditional query logs
with a semantically rich representation. This representation is the basis for further
analysis in the next steps. In this thesis, we use the keywords taxonomy to build the
user profile by extracting its interests. The method for extracting the interests is
based on a clustering algorithm applied on the taxonomy. Therefore, the hierarchical
representation in addition to the semantic distance are the main aspects used by
the algorithm. Details for user interests extracting and user modeling are given in
chapter 6.

5.5. Experimental Results

In order to verify the consistency of the taxonomy we have conducted three series
of experiments, each one including validation tests. In the first experiment, we
check the consistency of the disambiguation method. In the second experiment, we
analyze the effect of the taxonomy level on our semantic distance function in order
to compare it with other functions of state of the art. In the third experiment,
we analyze the taxonomy that we obtained from real-world search logs. These logs
originate from the AOL search engine [PCT06]; they consist of almost 20M Web
queries collected from almost 650k users over three months in 2006.

5.5.1. Consistency of the Disambiguation Method

To test the validity of our method, we measure its precision and its recall. To
this end, we randomly select from the AOL search log 100 queries of different sizes
in terms of number of keywords. Using the WordNet dictionary, we apply our
disambiguation method to determine the most appropriate synset to each keyword
in the context of the query. The obtained results are then compared to a manual
disambiguation of the keywords.

The precision of the method is the number of correctly attributed synsets divided by
the number of attributed synsets (i.e., the number of keywords that match a synset
regardless of whether the matching is correct or not):

112 112

5.5 Experimental Results

P = # correctly attributed synsets

attibuted synsets

The recall is the number of correctly attributed synsets divided by the number of
keywords:

R = # correctly attributed synsets

keywords

The recall in our method is sensitive to the WordNet coverage (i.e., the capacity to
attribute a synset to each keyword). In fact, if the queries contain mostly keywords
defined in WordNet, the recall will be high. However, if the queries are mostly
composed of non-WordNet words the recall will be affected. This is in particular
the case with named entities.

The results of our experimentation are summarized in Tab. 5.1:

Figure 5.9.: The Disambiguation Precision and Recall

The graph in Fig. 5.9 shows the precision and the recall of the method with respect
to different sizes of the queries in terms of number of keywords5.

The highest measure of the precision (0.89) is obtained for queries with 2 keywords.
It decreases when the size increases, and stabilizes (0.60) when the number of key-
words is more than five. Otherwise, the overall average value of the precision is 0.70

5In the experimentation, we consider only queries whose the size is more that 2 keywords. Queries
with one keyword are directly matched to the first synset of the keyword.

113

Chapter 5 Keyword-Based Query Log Analysis

(cf. Tab. 5.2). The precision of the method can be affected by three factors. The
first factor is related to the size of the query. The more keywords the query contains,
the lesser the precision of the method. This is due to the fact that the method is
based on the minimum spanning tree to approximate the most appropriate synsets.
Thus, it deals with a query as composed of one subject, whereas a query of multiple
keywords seems to contain several sub-subjects. Since the MST tries to find the
synsets that are close each to other, the method can fail to find the right synset
since the synset can belong to several subjects. The fact that the method is well
adapted to relatively short queries makes it pertinent for web search query term
disambiguation since the average size of a search queries is known to be small (2,4
according to[SWJS01]). The second factor is related to the heuristics used by the
method. Since this heuristics supposes that a synset of a keyword can be found in
the first top synsets, the method can fail in some specific cases in which the synsets
are in the end of the list (cf. the last paragraph in sec. 5.2.1.2). The third factor
is related to the specific case of synsets which are not defined in WordNet. In fact,
the method in this case attributes a default synset.

The highest measure of the recall (0.83) is obtained at 2 keywords. It decreases and
stabilizes (0.52) after 5 keywords. The overal average value of the recall is 0.63 (cf.
Tab. 5.2). In fact, the recall depends on the WordNet coverage. The more keywords
exists in WordNet, the higher the recall of the method. Thus, the recall can be
affected in two cases. First, if the keyword is not defined in WordNet at all, and
second, if the synset corresponding to the keyword is not in the list of synsets of the
keyword.

We notice that in the SemEval competition [Nav09], which is dedicated to the eval-
uation of systems based on semantic analysis, some methods for word sense disam-
biguation reach a high level of accuracy (e.g., NUS-ML with 88.7% and UBC-ALM
with 86.9%). However, these methods were only tested on regular text, and none of
them was tested for keywords disambiguation.

5.5.2. Characterization of the Semantic Distance

The main objective of our semantic distance is to measure the relationship be-
tween keywords in the taxonomy. In addition to that, this distance distinguishes
between keywords (i.e., synsets) related by the “is-a” relation (e.g., a couple of
synset-hypernym) situated at the bottom of the taxonomy (i.e., specific keywords)

114 114

5.5 Experimental Results

The Number of keywords (n) Precision Recall
n = 2 0.89 0.83
n = 3 0.72 0.62
n = 4 0.65 0.55
n ≥ 5 0.60 0.52

Average measure 0.70 0.63

Table 5.1.: Validation tests of the disambiguation method

and those situated at the top of the taxonomy (i.e., general keywords). Indeed, spe-
cific keywords are more closely than general keywords. In this section, we attempt
to check this property with respect to other semantic similarity metrics of the state
of the art. The metrics are selected from different classes (edge counting, informa-
tion content, hybrid). To do this, we first randomly select keywords from each level
of the taxonomy (i.e., levels of abstraction), and thenmeasure for each keyword its
similarity/distance to its parent (i.e., hypernym) Tab. 5.2.

Figure 5.10.: Semantic distance with respect to the taxonomy level

The graph in Fig. 5.10 shows the variation of the similarity between consecutive
synsets with respect to the level of the taxonomy. In order to enable comparison,
the values of the similarity shown on the figure are normalized with respect to the
maximum value of each metric. The real values are presented in Tab. 5.2. In this
graph, we can distinguish three types of curves: those that are constant (Leacock-
Chodorow and Hirst-St.onge), those that are variating randomly (Lin, Resnik, Wu-
Palmer and Jiang-Conrath), and one that is variating monotonously (our semantic
distance6). The first type of curves (Leacock-Chodorow and Hirst-St.onge) shows
that the metrics are independent from the level of the taxonomy, and do not make

6The semantic distance is normalized and transformed to a similarity by s = 1− d

115

Chapter 5 Keyword-Based Query Log Analysis

difference between specific keywords and between general keywords. The second
type of curves (Lin, Resnik, Wu-Palmer and Jiang-Conrath) shows that the metrics
are affected by the level of synsets in the taxonomy but in a random way. The curve
of our distance (transformed to a similarity) shows that the distance variates in a
monotonous way with respect to the level of the taxonomy. In fact, this property
is very important since it enables to cluster similar synsets and to separate specific
keywords from general keywords. This property does not exist neither in the first
type nor in the second type of metrics.

Wu-Palmer Leac.-Chod. Hir.-St.O. Resnik Lin Jian.-Conr. Ours

level 3 0.952 2.995 6 7.758 0 0 0.333
level 4 0.857 2.995 4 0.779 0.404 0.436 0.250
level 5 0.888 2.995 4 3.558 0.629 0.239 0.200
level 6 0.909 2.995 4 5.254 0 0 0.166
level 7 0.923 2.995 4 6.000 0.742 0.240 0.142
level 8 0.933 2.995 4 8.182 0 0 0.125
level 9 0.941 2.995 4 8.154 0 0 0.111
level 10 0.947 2.995 4 7.915 0.804 0.259 0.100
level 11 0.952 2.995 4 9.819 0.909 0.513 0.090
level 12 0.956 2.995 4 8.932 0.971 1.884 0.083
level 13 0.960 2.995 4 8.875 0.921 0.664 0.076
level 14 0.960 2.995 4 0 0 0 0.071
level 15 0.965 2.995 4 9.057 0 0 0.066
level 16 0.967 2.995 4 0 0 0 0.062
level 17 0.971 2.995 4 0 0 0 0.058
level 18 0.971 2.995 4 0 0 0 0.055
level 19 0.973 2.995 4 0 0 0 0.052
level 20 0.971 2.995 4 9.463 0 0 0.050

Table 5.2.: Semantic distance with respect to the taxonomy level

5.5.3. Results From the AOL Keywords Taxonomy

Fig. 5.11 shows the shape of the taxonomy obtained from the AOL search logs. The
taxonomy is composed of 36177 synsets, which are distributed over 20 levels. The
most populated levels are situated between the levels 6 and 14, which means that
the taxonomy is mostly composed of synsets of moderate abstraction level. Indeed,
the average depth of the taxonomy is equal to 10. In addition to that, the width

116 116

5.6 Summary

Figure 5.11.: Synsets Distribution over the taxonomy

of the taxonomy, which represents the distribution of the keywords over its levels is
equal to 3617. In fact, the shape of the taxonomy and its parameters can be used
for further analysis (e.g., keywords clustering).

Size Average Depth Width
36177 10 3617

Table 5.3.: Results from the AOL keywords taxonomy

5.6. Summary

The aim of this chapter is to enhance query log analysis with semantics. To achieve
this objective we described a process to extract a global semantics reference in form
of a taxonomy. The construction process comprises, in addition to the preprocess-
ing steps, the proposition of a method for keyword disambiguation, the definition
of semantic distance function and the effective process of the taxonomy construc-
tion. The proposed disambiguation method is a graph-based approach that uses a
heuristics combined with the MST algorithm. We conducted experiments on real
search query logs, which show that the method reaches very high performance, es-
pecially with very short queries. This performance makes it well adapted for web
search queries. In addition, we proposed a semantic distance function which ob-
jective is to calculate the distance between each two keywords in the context of
the taxonomy. In the experimentation, we showed that this function has a specific

117

Chapter 5 Keyword-Based Query Log Analysis

property of distinguishing specific keywords and general keywords, since it consider
that specific keywords are closer compared to general keywords. This property does
not exist in the metrics of the state of the art, which makes this function the most
appropriate function in our case, as this property is a requirement of the further
analysis process described in the next chapter. The taxonomy construction process
uses the relation of hypernymy between the synsets identified after matching the
keywords to WordNet synsets and disambiguating them. The taxonomy structure
is obtained by merging the Hyperpaths of each synset. The taxonomy construction
process is efficient, as it is of linear complexity. In the next chapter, we will aim to
demonstrate the usefulness of the extracted taxonomy for extracting user profiles.

118 118

6. Usage-Based Profile Modeling

6.1. Introduction

The object of this chapter is to describe a method to construct a profile model from
search query logs. The method distinguishes between two different types of profiles:
user profile and data source profile. The former represents the user interests, which
depict what he/she is looking for. The latter represents the data source topics
of interest, which depicts the documents provided by the data source. As a first
step, the method extracts a model representing the interests of all the users of
the log. This model is then instantiated for each user and data source in form of
individual profiles. This is done based on a clustering algorithm applied on the
keyword taxonomy (see chapter 5); thus, the interests are extracted in the form of
clusters of keywords.

6.2. Extracting User Interests

The goal behind the search log analysis is the extraction of the user interests. Tech-
nically, the problem is defined as a query terms clustering problem. This problem
has been discussed earlier in different ways [WNZ02, CC02] but without consider-
ing the semantic features involved in query terms. On the contrary, we propose to
take advantage of the keyword taxonomy (see chapter 5) that extracts the semantic
features of the query terms by replacing terms by synsets related by the hierarchical
relation is− a.

119

Chapter 6 Usage-Based Profile Modeling

6.2.1. Query Terms Clustering

6.2.1.1. Pruning Algorithm

The main objective of the algorithm is to split the taxonomy structure into a set of
smaller structures corresponding to clusters (see Fig. 6.1). The proposed algorithm
is designed to take advantage of the decreasing property of our distance function
D (see sec. 5.2.3) i.e., the fact that the distance between two adjacent elements in
the bottom of a taxonomy T is smaller than between two adjacent elements in the
top. This property directly affects the clustering algorithm since it favors clustering
elements at the bottom rather than elements at the top of T . This implies that the
size of the clusters increases in the bottom of T . The advantage of such a property
is to form clusters with the maximum of specific terms [LCKB10].

To identify the clusters, the algorithm uses a threshold value δ on the semantic
distance, such that D(sd, s1) ≤ δ ≤ D(sd, sn) with PT = sd, s1...sn the longest path
in the taxonomy T . In addition to that, the algorithm defines a quality function Fδ
that attributes a global quality value to the clustering. It is the sum of the local
quality values v(C) of each cluster C , which depends on the size, the frequency and
the abstraction level of the cluster elements.

We define a cluster in a keyword taxonomy as follows:

Definition 3. Let T be a keyword taxonomy, C = {s1...sk} a set of synsets in T ,
D the semantic distance and Fδ a clustering quality function.

C is a cluster iff: ∀si, sj ∈ C: D(si, sj) ≤ δ and Fδ is maximal.

The quality function Fδ(C) defined on a set of clusters C is:

Fδ(C) =
∑
C∈C

v(C) =
∑
C∈C

f(zC , lC) =
∑
C∈C

zC/lC

With:

• zC =
∑

term∈C
frterm denotes the size of a cluster C and frterm the frequency of

a term in C (i.e., the number of times the term occurs in the queries)

120 120

6.2 Extracting User Interests

• lC = 1/(1 +
∑

term∈C
depthterm) denotes the abstraction level of a cluster C and

depthterm the depth of a term in the taxonomy. The abstraction level of a
cluster is inversely related to the sum of the depths. Thus, the deeper the
terms, the lower the abstraction level of the cluster.

The threshold δ and the quality function Fδ are actually directly related since the
modification of δ implies the modification of the set of clusters C , and hence the
modification of Fδ(C). Indeed, the value of δ to find is the one which maximizes Fδ.

121

Chapter 6 Usage-Based Profile Modeling

Algorithm 6.1 General User Interests Extraction
Input:
1: T /* taxonomy with weighted links
2: S0 /* the set of all the synsets of T
3: D /* distance function
4: Fδ /* clustering quality function
Output: C /* the set of clusters
5: PT = getLongestPath(T) /* list the weights of edges of the longest path
6: δ = 0, i = 0, q = 0
7: for all edgeWeight ∈ PT do
8: δ = δ+edgeWeight /* update the threshold value
9: S = S0
10: Ctemp = {∅} /* set of clusters
11: C = null /* C ∈ Ctemp
12: while not isEmpty(S) do
13: sd = getDeepest(S) /* find the deepest term ; randomly select one in case of several terms
14: for all θ = parentOf(sd) do
15: C = {sd} ∪ cluster_up(sd, sd, θ)
16: end for
17: Ctemp = Ctemp ∪ {C}
18: S = S − C
19: end while
20: i = i++
21: if Fδ(Ctemp) > q then
22: q = Fδ(Ctemp)
23: C = Ctemp
24: end if
25: end for

26: function cluster_up(deepest, predecessor, s)
27: if D(deepest, s) ≤ δ then
28: for all σ = childOf(s) such as σ 6= predecessor do
29: C ′ = C ′ ∪ cluster_down(deepest,s, σ)
30: end for
31: C ′ = C ′ ∪ {s}
32: end if
33: for all π = parentOf(s) do
34: cluster_up(deepest, s, π)
35: end for
36: return C ′

37: end function

38: function cluster_down(deepest, predecessor, s)
39: if D(deepest, s) ≤ δ then
40: for all π = parentOf(s) such as π 6= predecessor do
41: C ′′ = C ′′ ∪ cluster_up(deepest,s, π)
42: end for
43: C ′′ = C ′′ ∪ {s}
44: end if
45: for all σ = childOf(s) do
46: cluster_down(deepest, s, σ)
47: end for
48: return C ′′

49: end function

122 122

6.2 Extracting User Interests

The clustering algorithm (see Algorithm 6.1) acts as follows:

1. It initializes the value of the threshold δ with the weight of the first edge of
PT (i.e., D(sd, s1)), (cf. lines 6 and 8).

2. It initializes the cluster with the deepest term (sd) in the taxonomy T (cf. lines
13 to 16); the goal is to get the most specific terms in the cluster currently
being built .

3. It tries to find the closest terms to the deepest term sd that respect the thresh-
old by switching in two dimensions, height (parents) and width (children) of
the taxonomy (cf. lines 15, 29, 34, 41, 46). Thus, first it checks the distance
between sd and its parents with respect to the threshold using the function
“cluster_up” then, if the threshold condition is satisfied for a parent, it uses
cluster_down to similarly check the children terms related to that parent.
The process is recursively applied on the next parents (parents of parents)
until there is no term that respects the threshold condition with the initial
term sd. The result of this iteration is one cluster; all terms of the cluster are
excluded from the next iterations (cf. lines 17, 18).

4. It seeks the deepest term again and repeats 2 and 3 on the rest of the terms
until they are all clustered (cf. loop while, lines 12-21).

5. It calculates Fδ(C) with C the current set of clusters and increases the value
of the threshold by the next edge of PT (cf. lines 21-24 and line 8).

6. It repeats steps 1,...,5 until δ is equal to the length of PT . The set of clusters
C corresponds to the one which maximizes Fδ(C).

Starting with the deepest term and using our distance D favors the construction of
large clusters of specialized term at the expense of general terms. In fact, since the
distance between a term and its child is smaller than the distance between the term
and its parent (the property of the distance function, cf. sec. 5.2.3) the clustering
grows in width rather than in height. For example (cf. Fig. 6.1), the algorithm
produces the cluster1: “Contact-sport, rugby, boxing, fight, football, hokey” but
puts the terms “sport” and “diversion” into two different clusters as they are situated
at the top of the taxonomy and hence less related.

1In the example, we consider that each term has a frequency equal to 1

123

Chapter 6 Usage-Based Profile Modeling

Figure 6.1.: Example of Taxonomy Before and After Clustering

6.2.1.2. The Computational Complexity

One of the strong points of the algorithm is its computational complexity. As
the algorithm works on already sorted elements (i.e. by the is − a relation), the
elements are visited only once. As a result, the number of clustering operations
(i.e., cluster_up and cluster_down functions) is limited to "(| PT |)×n", with n the
number of terms in the taxonomy and PT the longest path. Thus, the complexity of
the algorithm is O(kn), k being the length of PT . Note that the algorithm is based
on a self optimization approach, since it tries several values of δ to calculate Fδ(C)
(i.e., as many values as the length of PT). In fact, if δ is known in advance (i.e.,
experimentally defined) the algorithm is linear and has as complexity O(n).

6.2.2. A Model of General Interests

The query terms clustering algorithm applied on the keyword taxonomy produces
a set of clusters which elements are semantically related by the is − a relation. In
addition to that the clusters are sorted into different abstraction levels. Since the

124 124

6.3 Implicit User Profile and Data Source Profile Modeling

keywords in the queries are specified by the user, they express implicitly the user’s
interests. In fact, the clusters of keywords computed by the previous algorithm
represent the set of general interests expressed by the whole set of users registered
in the log. The example in Fig. 6.1 shows the keyword taxonomy transformed into
a set of seven clusters of user’s interests in music and sport. Therefore, we define
the model of general user interests as follows:

Definition 4. Let T be a keyword taxonomy, C = {c1...cn} the set of clusters of T .
The model of general interests MC is defined on C as a vector such as:

MC = (zc1 ...zcn), with zci
=

∑
term∈ci

frterm denote the size of the cluster ci and frterm

the frequency of “term” in ci

6.3. Implicit User Profile and Data Source Profile
Modeling

The model of interests MC described in definition 4 is a global representation of the
interests of the whole set of users. The user profile is defined by the set of the user’s
personal interests. Therefore, the user profile is defined on MC as the contribution
of the user in each cluster ci inMC . The user contribution in a cluster represents the
ratio between the keywords submitted by the user and the whole set of the keywords
in the cluster. In fact, the ratio represents the level of interest of the user in one
interest identified in the model. The user profile is formally defined below:

Definition 5. Let T be a keyword taxonomy, C = {c1...cn} the set of clusters of T ,
MC the model of general interests defined on C , and u a user contributing in MC .
The user profile Mu

C is defined on MC such as:

Mu
C = (

zuc1

zc1

...
zucn

zcn

),

with zuci
the number of keywords of the user u in the cluster ci, and zi the number of

all the keywords of the cluster ci.

Fig. 6.2 is an example of a user profile extracted from the model of interests in
Fig. 6.1. The struck out keywords are those that the user did not include in his/her
queries u (e.g., zuc1 = 0, zuc2 = 0, zuc3 = 3, etc.).

125

Chapter 6 Usage-Based Profile Modeling

Figure 6.2.: Basic Profile Extraction

The user profile definition given in definition 5 represents the user’s contribution
in each cluster of the model of interests. This definition is valid when the clusters
are completely independent. In contrast, since the clustering algorithm is operated
on the taxonomy structure, the clusters are hierarchically related by the is − a

relation. This relation between clusters is derived from the relations between their
corresponding elements. For example, in Fig. 6.2 cluster c4 and c2 are hierarchically
related since the element “contact-sport” of the cluster c4 is related to the element
“sport” of the cluster c2 by the is − a relation. In fact, if we consider the clusters
hierarchy one has to consider the influence of the child cluster on the parent cluster.
For instance, in the example of the Fig. 6.2, the fact that the user is interested in
“contact-sport” means implicitly that he/she is interested in “sport” but partially.
To this end, we introduce the concept of hierarchical normalization.

The hierarchical normalization consists in adding the influence of the child clusters
to their corresponding parents (e.g. clusters c1and c2 in Fig. 6.3). Moreover, the
influence of a child cluster cchild on the parent cluster cparent depends on the distance
between the two clusters. We define the distance D(cchild, cparent) to be the distance
between their corresponding closest elements. The distance between two elements
has been defined previously (cf. sec. 5.2.3). Let A be the set of child clusters of
cparent. We denote fcparent the influence on the parent cluster cparent coming from
child clusters. It is defined recursively as:

126 126

6.3 Implicit User Profile and Data Source Profile Modeling

fcparent =
∑

cchild∈A

zcchild
+ fcchild

D(cparent, cchild)

With: fcchild
= 0, if cchild is a leaf cluster.

Consequently, the influence of a child cluster on its parent is higher in the bottom
of the clusters hierarchy as the distance is smaller. Indeed, the next definition of
the user profile takes into account this hierarchical normalization:

Definition 6. Let T be a keyword taxonomy, C = {c1...cn} the set of clusters of T ,
MC the model of general interests defined on C , and u a user contributing in MC .
The user profile Mu

C is defined on MC such as:

Mu
C = (Iuc1 ,..., I

u
cn

),

with:

• Iuci
=
zuci

+ fuci

zci
+ fci

the contribution of the user u in the cluster ci after hierarchical
normalization

– fuci
=

k∑
j=1

(
zucj

+ fucj

D(ci, cj)
) the influence of the k child clusters on the parent

cluster ci, which considers only the keywords of the user u

– fci
=

k∑
j=1

(
zcj

+ fcj

D(ci, cj)
) the influence of the k child clusters on the parent

cluster ci

– If a child cluster “cj” is a leaf cluster: fucj
= 0 and fj = 0, where ci is the

parent of cj

In the example in Fig. 6.3, the contributions of the user in clusters c1 and c2 are
updated to include the influence of the child clusters. In this way, the cluster c2 is
influenced by the clusters c4, c5, c6, and c7, and the cluster c1 is influenced by the
clusters c2 and c3. Indeed, the contribution of the user u in the clusters c1 and c2

are respectively updated to 50% and 59% (cf. Fig. 6.3):

• Iuc2 =
zuc2 + fuc2

zc2 + fc2
= 0 + 16

1 + 26 ≈ 0.59 ≡ 59%

– fuc2 =
zuc4

D(c2, c4) +
zuc5

D(c2, c5) +
zuc6

D(c2, c7) +
zuc7

D(c2, c7) = 4
1/2

+ 2
1/2

+ 1
1/2

+ 1
1/2

= 16

127

Chapter 6 Usage-Based Profile Modeling

– fc2 = zc4

D(c2, c4) + zc5

D(c2, c5) + zc6

D(c2, c7) + zc7

D(c2, c7) = 6
1/2

+ 3
1/2

+ 2
1/2

+ 2
1/2

=26

• Iuc1 =
zuc1 + fuc1

zc1 + fc1
= 0 + 19

1 + 33 ≈ 0.55 ≡ 55%

– fuc1 =
zuc2 + fuc2

D(c1, c2) +
zuc3

D(c1, c3) = 0 + 16
1 + 3

1 = 19

– fc1 = zc2 + fc2

D(c1, c2) + zc3

D(c1, c3) = 1 + 26
1 + 6

1 = 33

Figure 6.3.: Hierarchical Normalization

The hierarchical normalization introduced in definition 6 enables to update the user
profile by taking into account the hierarchical relations between the clusters. Nev-
ertheless, the definition 6 is still not adapted to allow comparison between the users
profiles. The problem is that the users do not have the same number of search queries
in the same search session. As a result, the profile vectors calculated from the model
of general interests are affected by the number of the search queries, which may artifi-
cially create differences between otherwise similar profiles. For example, two users u1

and u2 who have respectively the profiles Mu1
C (50%, 57%, 50%, 66%, 33%, 100%, 50%)

and Mu2
C (5%, 5, 7%, 5%, 6, 6%, 3, 3%, 10%, 5%) are similar in term of interests distri-

bution but different if we calculate the distance between them. In fact, the only
difference is that user u1 is ten times more active than user u2. In order to remove
the search activity effect we add a linear normalization to the process. This nor-
malization consists in recalculating the profile vector in relation to the maximum
contribution of the user within the vector (see Fig. 6.4). To this end, we propose the
following definition:

128 128

6.3 Implicit User Profile and Data Source Profile Modeling

Definition 7. Let T be a keyword taxonomy, C = {c1...cn} the set of clusters of T ,
MC the model of general interests defined on C , and u a user contributing in MC .
The user profile Mu

C is defined as:

Mu
C = (

Iuc1

max{Iuc1 ...I
u
cn
}
...

Iucn

max{Iuc1 ...I
u
cn
}

),

Figure 6.4.: Inter-Cluster Normalization

The user profile in definitions 5, 6, 7 is based on the model of general interests
in definition 4. This model is a hierarchy of clusters of keywords. The keywords
are extracted from search queries of the users registered in the search log. In fact,
using search queries to analyze the user interests is very advantageous since a query
enables to relate the user (i.e., the requester) to the data source (i.e., the provider).
Indeed, we can exploit the relation induced by the query to similarly model the data
source profile in order to describe the content of the data-source. This profile is
calculated in the form of a vector which components represent the contributions of
the data source to the model of general interests. The contribution of a data source
in a cluster is the ratio between the number of keywords for which the data-source
has delivered content and the number of the keywords composing the cluster. The
definition of the data source profile is similar to definition 7 , the definition of the
user profile:

Definition 8. Let T be a keyword taxonomy, C = {c1...cn} the set of clusters of T ,
MC the model of general interests defined on C , and d a data source contributing in
MC . The data source profile Md

C defined on MC is:

129

Chapter 6 Usage-Based Profile Modeling

Md
C = (

Idc1

max{Idc1 ...I
d
cn
}
...

Idcn

max{Idc1 ...I
d
cn
}

),

with:

Idci
=
zdci

+ fdci

zci
+ fci

the contribution of the data source d in the cluster ci after hierarchical
normalization.

6.4. Community Discovery and Data Source
Categorization

The two direct applications of the user profile and data source profile models respec-
tively are community discovery and data source categorization. The main objective
of these applications is to group together entities that have similar profiles. There-
fore, we define a community as a set of users, who share similar interests while a
data source category is defined as a set of data sources, which share similar con-
tents. In fact, the profile model we presented above has specific advantages in these
applications related to its characteristics.

First, the user/data sources profiles are calculated from a set of semantic clusters
of synsets, which enables more precise profile comparison as opposed to comparison
based only on the text form of keywords.

Second, interests are represented in the form of a hierarchy that separates general
interests from specific ones, which enables a fine grained comparison.

Third, the user interests are transformed into vectors of numerical values, which
enables the use analytical tools (such as clustering, PCA, etc.).

Fourth, it provides a unified representation of the user profile and the data source
profile as they are derived from the same model (i.e., the model of general interests).
The advantage of such a unified representation of the profiles is the ability to make
all kinds of comparisons: user to user, data source to data source, and user to data
source. The first two comparisons enable respectively to identify user communities
and to categorize the data sources while the third enables to identify the mapping
between the user interests and the data source contents, which is typically used for
query routing. These three applications are formalized in the next sections.

130 130

6.4 Community Discovery and Data Source Categorization

6.4.1. User Community Discovery

The definition of the concept of community is based on definition 7 , which defines
the user profile. A community is then a set of users whose profile vectors are grouped
together in one cluster:

Definition 9. LetMC be the model of general interests, UC = {U1
C , ..., U

n
C } the set of

user profiles defined over MC , and ψ a clustering function. We define a community
of users as a subset of user profiles RC ⊆ UC , such that RC is a cluster generated
by ψ.

6.4.2. Data Source Categorization

The definition of a data source category is based on definition 8 , which defines the
data source profile. A data source category is then a set of data sources which profile
vectors are grouped together in one cluster:

Definition 10. Let MC be the model of general interests, DC = {D1
C , ..., D

m
C } the

set of data source profiles defined over MC , and ψ a clustering function. We define
a category of data sources as a subset of data sources SC ⊆ DC , such that SC is a
cluster generated by ψ.

6.4.3. Mapping the Users to the Data Sources

The mapping between the users and the data sources is the set of couples user ×
data source such that the distance between the user profile and the data source is
less than a predefined threshold. The value of the threshold represents the degree of
similarity between the user needs and the contents of the data source in question.
For instance, in an information retrieval system, it can be used for keyword query
routing [TZ14], which is the process whereby search queries are only routed to
relevant data sources in order to reduce the processing cost.

Definition 11. Let MC be the model of general interests, UC = {U1
C , ..., U

n
C } the

set of the user profiles, and DC = {D1
C , ..., D

m
C } the set of the data source profiles

defined over MC . We define a mapping PC ⊆ UC × DC as a set of couples user ×
data source such that :

131

Chapter 6 Usage-Based Profile Modeling

PC = {(U i
C , D

j
C) ∈ UC ×DC : d(U i

C , D
j
C) ≤ t}

with:

• U i
C and Dj

C are respectively the profiles of the user “i” and the data source “j”.

• d: a distance function (e.g., the Euclidean distance).

• t : the mapping threshold.

Note that each user profile could be associated with several data source profiles, and
conversely, each data source could be associated with several user profiles.

6.5. Experimental Results

6.5.1. Clustering Evaluation

From a structural point of view, the quality of the clustering depends on a sep-
aration criterion that measures the intra-cluster relatedness and the inter-cluster
unrelatedness. Thus, a clustering of good quality should maximize the intra-cluster
similarity and minimize the inter-cluster similarity. In our experimentation we use
the Davies–Bouldin index (DBI) [DB79] to evaluate our clustering algorithm. The
DBI is given by the following formula:

DBI = 1
n

n∑
i=1

(
max
i 6=j

si + sj
d(ci, cj)

)

With,

• si corresponding to the average distance of all elements in cluster “i” to cen-
troid ci. It is a measure of the scattering within the cluster “i”. (sj is defined
symmetrically on the cluster “j”).

• d(ci, cj) the distance between the centroids of cluster i and cluster j.

The DBI calculates the separation between the clusters by considering the distance
between the centroids and the scattering within each cluster. The DBI determines
first for each cluster “i” the cluster “j” that maximizes the ratio between si+sj and
d (ci, cj). The value of the DBI is then the average value of these ratios. Indeed, the
best clustering corresponds to the one which has the smallest value of the DBI.

132 132

6.5 Experimental Results

Cluster5: bren={SynID: 02897097} kalashnikov={SynID: 03607659} luger={SynID: 03695857} spyglass={SynID:
03333129} spandau={SynID: 04267091} glass={SynID: 03333129} peacemaker={SynID: 02907656} colt={SynID:
03073296} lance={SynID: 03637618} garand={SynID: 03416775} m-1={SynID: 03416775} lancet={SynID:
03637618} dragunov={SynID: 03231819},...

Cluster11: freezer={SynID: 03170635} slicker={SynID: 03844815} oilskin={SynID: 03844815} mac={SynID:
03702719} blazer={SynID: 02850358} mack={SynID: 03702719} burberry={SynID: 02921406} fridge={SynID:
03273913} lumberjack={SynID: 03696909} mink={SynID: 03770954} swallowtail={SynID: 04368496}
banyan={SynID: 02788462} undies={SynID: 04509171} rotisserie={SynID: 04111531},...

Cluster23: stash={SynID: 13366912} hoard={SynID: 13366912} cache={SynID: 13366912} fund={SynID:
13367070} reserve={SynID: 13368052} rent={SynID: 13296270} dividend={SynID: 13408023} taxation={SynID:
13261916} revenue={SynID: 13261916} killing={SynID: 13259797} cleanup={SynID: 13259797} margin={SynID:
13260762} net={SynID: 13258362} profit={SynID: 13258362} payoff={SynID: 13260190} earnings={SynID:
13258362-},...

Cluster28: entomophobia={SynID: 14385160} arachnophobia={SynID: 14382075} acrophobia={SynID: 14382766}
photophobia={SynID: 14384351} triskaidekaphobia={SynID: 14384684} androphobia={SynID: 14381997}
aaa={SynID: 14106456} pvc={SynID: 14362841} frenzy={SynID: 14391876} tachycardia={SynID: 14363027} ago-
raphobia={SynID: 14381840} hysteria={SynID: 14391876} bradycardia={SynID: 14362510},...

Cluster30: christmas={SynID: 15196186} ascension={SynID: 15193052} xmas={SynID: 15196186} easter={SynID:
15188154} passover={SynID: 15195928} purim={SynID: 15196870} pentecost={SynID: 15197042} pe-
sach={SynID: 15195928} shavuot={SynID: 15197042} hanukkah={SynID: 15199033} hanukah={SynID:
15199033} chanukah={SynID: 15199033} hannukah={SynID: 15199033} chanukkah={SynID: 15199033}
stp={SynID: 13780339} thanksgiving={SynID: 15201116} dormition={SynID: 15194194},...

Cluster73: revisionism={SynID: 08368516} international={SynID: 08366071} communism={SynID: 08365855}
socialism={SynID: 08366202} capitalism={SynID: 08364143} purdah={SynID: 08379882} segregation={SynID:
08380340} feudalism={SynID: 07972425} pluralism={SynID: 08367683} industrialism={SynID: 08364757} patri-
archy={SynID: 07972674} patriarchate={SynID: 07972674} separatism={SynID: 08380340},...

Figure 6.5.: Examples of Semantic Clusters

6.5.2. Semantic clustering of the AOL search keywords

The graph in Fig. 6.7 shows the variation of the clustering quality function with
respect to the threshold values. The threshold values are represented with intervals
where there is no variation of the clustering quality2. As shown in definition 3, the
clusters should correspond to the maximum value of the quality function. The value
of the threshold that maximizes the quality function in Fig. 6.7 corresponds to the
interval [1, 314, 1, 514[. This means that the sum of the ratios between the size of
a cluster and its abstraction level is maximal in the set of the obtained clusters.
Oppositely, the values of the threshold that are out of this interval decreases the
clustering quality, since for the values that are less than this interval the clusters are
smaller, and for the values that are higher than this interval the abstraction level is
higher within the clusters. Fig. 6.5 shows some examples of clusters corresponding to

2The reason is that, the result of the clustering do not change as well

133

Chapter 6 Usage-Based Profile Modeling

the threshold in [1, 314, 1, 514[. Indeed, cluster5 seems to correspond to a collection
of arms, cluster11 seems to corresponds to house appliances, cluster23 is related to
financial concerns, cluster28 corresponds to human psychological status including
phobias, cluster30 corresponds to religious holidays and finally cluster73 corresponds
to political trends.

Figure 6.6.: Number of Clusters Corresponding to the Threshold Values

The number of clusters corresponding to the different values of the threshold3 are
shown in Fig. 6.6. The figure shows a monotonous decrease of the number of clusters
between the two extreme values of the threshold. Indeed, since the clustering is based
on a pruning approach, the number of clusters is directly affected by the value of the
threshold. Thus, the more the threshold increases the more the size of the clusters
increases and, hence, the number of cluster decreases. Furthermore, the speed of
the decrease of the number of clusters depends on the shape of the taxonomy (cf.
sec. 5.4). For instance, a wide taxonomy favors large clusters because a child element
is closer than a parent element (cf. the distance function) and hence, reduces the
number of clusters; to the contrary, a deep taxonomy favors small clusters and hence,
increases the number of clusters.

3The interval [0, 05, 0, 417[shows the average number of clusters corresponding to the first
five smallest values of threshold

134 134

6.5 Experimental Results

Figure 6.7.: Semantic Clustering by Threshold Tuning

6.5.3. Structure-Based Clustering Evaluation

In order to evaluate the clusters from a structural point of view, we use the DBI
measure. Contrarily to the clustering quality function, the best value of the DBI is
the smallest one. Fig. 6.8, shows the DBI for the same values of threshold as defined
previously. The DBI corresponding to the highest value of the quality function is
not necessarily the lowest one. In fact, the graph shows the DBI of the best value
of the quality function at the 11th position from the 15 values represented in the
graph. Nevertheless, the values of the DBI corresponding to thresholds [1, 764, 2, 097[,
[2, 097, 2, 597[, [2, 597, 3, 597[and [3, 597, 7, 145[are better than the the value of the DBI
corresponding to the best value of the quality function. These results are related
to the definition of the DBI. By definition, the DBI determines for each cluster “i”
the cluster “j” that maximizes the ratio between si + sj and d (ci, cj). Thus, its
value can be directly affected by si and sj. In the case of the previous thresholds,
the clusters contain more specific keywords (i.e., close each to other) than general
keywords, which makes the average distance smaller compared to other clusters.
Indeed, Fig. 6.6 shows that the number of clusters corresponding to these thresholds
is very small, meaning that these clusters are large and contain a large amount
of specific keywords (cf. the shape of the taxonomy in sec. 5.5.3). Consequently,
semantic clustering cannot be performed on the taxonomy by considering only the
structure of the clusters, but should also make use of a clustering quality function.

135

Chapter 6 Usage-Based Profile Modeling

Figure 6.8.: Structure-based Clustering Evaluation

6.6. Summary

In this chapter we present a methodology to extract the user profile and the data
source profile, by using the keyword taxonomy. Thus, we first apply a clustering
algorithm on the taxonomy to extract the general user interests. The algorithm
makes use of a custom clustering quality function Fδ, which depends on the size
of the clusters and on their abstraction level. Second, the model of interests is
instantiated to each user and data source to calculate their corresponding profiles.
The instantiation is done by calculating the contribution of each user/data source
in the model. The experimentation conducted on the clustering algorithm enabled
us first to evaluate the clustering with respect to our clustering quality functionFδ.
We then evaluated our clustering algorithm using the clustering structural quality
measure DBI and studied the relationship between clustering based on the quality
function Fδ and clustering based on the structure. Indeed, we conclude from the
experimentation that semantic clustering can be performed on the taxonomy by
considering both the structure and the clustering quality function.

136 136

Part IV.

Conclusion

137

7. Conclusion and Futures
Perspectives

The user profile is the cornerstone in user-centric systems such as adaptive infor-
mation retrieval systems. Therefore, much research has been done to find the best
profile model. In this thesis, we assessed the most important work on user modeling
since the first proposals. Our study was based on a set of parameters, which we
deemed necessary to consider in the development of any user model. These pa-
rameters are: the representation, the genericity, the type of data, the duration, the
semantics, the operability and the scalability (i.e., in terms of complexity). In our
study, we found that most of the previous models consider only a part of these pa-
rameters, which makes them dependent on the application in which they have been
proposed.

In this regard, we developed in this thesis a profile model which considers all these
parameters so that it can be integrated in any user-centric application. In addition
to that, it gives a special attention to the genericity, the semantics and the scalability
parameters. The reasons are that, first, the data source is as important as the user,
thus it should be integrated in the model (genericity), second, it should be able
to integrate semantic mechanisms to enhance its interpretabilty (semantics), third,
it should be able to deal with big amount of data (scalability). Furthermore, the
construction of the model is based on the analysis of the user web search logs, which
represents one of the challenges of this thesis because of their textual nature.

The model we proposed is composed of several components which are organized in
the form of a framework. The main contributions can be summarized as follows:

• A preprocessing methodology to extract the query keywords.

• An algorithm for keywords disambiguation, which enhances the interpretabilty
of the model and avoids the problems related to polysemous keywords. The
algorithm shows satisfactory performance in short queries, which makes it

139

Chapter 7 Conclusion and Futures Perspectives

well adapted to deal with search queries. The complexity of the algorithm is
polynomial.

• An algorithm to construct a keyword taxonomy based on the sense of each
keyword. The taxonomy represents the semantic basis on which the profile is
calculated. The complexity of the algorithm is linear.

• A semantic dissimilarity function which enables to distinguish between specific
keywords and general keywords.

• A clustering algorithm to extract semantically the user interests from the key-
word taxonomy. The algorithm is based on a pruning approach and on a
quality function. Thanks to the dissimilarity function, the algorithm distin-
guishes specific clusters and general clusters. The experimentation shows that
the algorithm is consistent with the DBI measure in terms of structure.

• A methodology to calculate the user and the data source profiles from the pro-
file model. The strong points of this method are that, first, it takes advantage
of the semantic representation of the user interests, and second, it represents
the profile in the form of a vector which favors comparison between profiles.

• A unified profile model which can represent both of the user profile and the
data source profile

The first objective of the model is to consider all of our parameters, so that it can be
integrated in any user-centric application. In this way, the model opens several new
perspectives. In fact, the objective in the near future is to assess its contribution to
some of potential applications in the domains of information retrieval.

• Extraction of Documents in a Distributed Information Retrieval System
In distributed information retrieval systems, the user requests documents from
multiple data-sources that correspond to a specific information need. In this
kind of system, the users are separated from the data-sources. This means that
the users are considered to be the requesters while data-sources are considered
to be the providers. Therefore, the network organization should consider both
of the user side and the data-source side. User grouping favors information
flows between users [Tor12, YCB13] while the data-source categorization en-
ables in one hand, to improve the retrieval process and on the other hand, to
balance the workload. This is illustrated in the following interaction scenario:

– User to Group of users: The user submits a query which returns the

140 140

Conclusion and Futures Perspectives

documents which have been extracted by users with similar interests.
This is typically a collaborative filtering process.

– User to a Group of data-sources: The user submits a query through the
retrieval system which distributes the query over the appropriate data-
sources and merges the returned results.

– Data-source to a Group of data-sources: The data-source replicates some
documents within a group of data-sources of similar topics. The objective
is to avoid bottlenecks related to an increasing demand by balancing the
workload between data-sources with similar topics [SGD+02, CC04].

• Data Propagation on Mobile Networks
In mobile networks (e.g., MANET), the users exchange information by means
of their devices. Oppositely with the previous application, there is only one
type of entity that composes the network (i.e., the users) since a user can play
both roles of the requester and the provider of information. Usually, a mobile
network is divided into a set of small and disconnected subnets where each
user has the possibility to share information with the neighbors of its subnet
[RT99]. Moreover, the user has the possibility to move among the subnets,
which enables to discover new neighbors. In practice, the user saves a list of
physical neighbors and updates it when he/she moves from a subnet to another
one. The network organization consists in discovering and grouping the users
who have similar interests. In the following scenario we distinguish two kinds
of users: requester and provider:

– Requester user to a Group of users: The user requests information from
its neighborhood. The user first, discovers the physical neighbors in its
subnet and then, he/she identifies the group of users whose interest is
similar to his own. In this way, the requests are sent only to similar
users, which optimizes the number of interactions within the subnet.

– Provider user to Group of users: The provider user proposes to replicate
its resources to its neighbors of similar interests. The objectives can be to
recommend resources, or to insure the data availability over the network.

141

Bibliography

[AFJM95] Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom
Mitchell. WebWatcher: a learning apprentice for the world wide
web. In 1995 AAAI Spring Symposium on Information Gathering
from Heterogeneous Distributed Environments, pages 6–12, 1995.

[AGHT11] Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Semantic
enrichment of twitter posts for user profile construction on the social
web. In Proceedings of the 8th extended semantic web conference
on The semantic web: research and applications - Volume Part II,
ESWC’11, pages 375–389, Berlin, Heidelberg, 2011. Springer-Verlag.

[AGM+11] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and
Elisa Turricchia. Mining preferences from OLAP query logs for
proactive personalization. In Proceedings of the 15th international
conference on Advances in databases and information systems, AD-
BIS’11, pages 84–97, Berlin, Heidelberg, 2011. Springer-Verlag.

[AS99] Giuseppe Amato and Umberto Straccia. User profile modeling and
applications to digital libraries. In Proceedings of the Third Euro-
pean Conference on Research and Advanced Technology for Digital
Libraries, ECDL ’99, pages 184–197, London, UK, 1999. Springer-
Verlag.

[BBD+98] Deborah D. Blecic, Nirmala S. Bangalore, Josephine L. Dorsch, Cyn-
thia L. Henderson, Melissa H. Koenig, and Ann C. Weller. Using
transaction log analysis to improve OPAC retrieval results. College
& Research Libraries, 59(1):39–50, 1998.

[BC01] R. Baeza-Yates and C. Castillo. Relating web characteristics with
link based web page ranking. In International Symposium on String
Processing and Information Retrieval, pages 21–32, Los Alamitos,
CA, USA, 2001. IEEE Computer Society.

143

Bibliography

[Ber06] P. Berkhin. A survey of clustering data mining techniques. In Ja-
cob Kogan, Charles Nicolas, and Marc Teboulle, editors, Grouping
Multidimensional Data. 2006.

[BJ81] Eric Backer and Anil K. Jain. A clustering performance measure
based on fuzzy set decomposition. IEEE Trans. Pattern Anal. Mach.
Intell., 3(1):66–75, January 1981.

[BLG99] Kurt D. Bollacker, Steve Lawrence, and C. Lee Giles. A system for
automatic personalized tracking of scientific literature on the web.
In Digital Libraries 99 - The Fourth ACM Conference on Digital
Libraries, pages 105–113. ACM Press, 1999.

[BLL+10] Jiang Bian, Xin Li, Fan Li, Zhaohui Zheng, and Hongyuan Zha.
Ranking specialization for web search: a divide-and-conquer ap-
proach by using topical RankSVM. In Proceedings of the 19th inter-
national conference on World wide web, WWW ’10, pages 131–140,
New York, NY, USA, 2010. ACM.

[BMI11] D. Bollegala, Y. Matsuo, and M. Ishizuka. A web search engine-
based approach to measure semantic similarity between words. IEEE
Transactions on Knowledge and Data Engineering, 23(7):977–990,
2011.

[Bra04] Sviatoslav Braynov. Personalization and customization technologies.
In The Internet Encyclopedia. John Wiley & Sons, Inc., 2004.

[Car02] Jeremy J. Carroll. Matching RDF graphs. In Ian Horrocks and
James Hendler, editors, The Semantic Web – ISWC 2002, number
2342 in Lecture Notes in Computer Science, pages 5–15. Springer
Berlin Heidelberg, January 2002.

[CC02] Shui-Lung Chuang and Lee-Feng Chien. Towards automatic gener-
ation of query taxonomy: A hierarchical query clustering approach.
In Proceedings of the 2002 IEEE International Conference on Data
Mining, ICDM ’02, pages 75—82, Washington, DC, USA, 2002.
IEEE Computer Society.

[CC04] Tzung-Shi Chen and Kuo-Lian Chen. Balancing workload based on
content types for scalable web server clusters. In 18th International

144 144

Bibliography

Conference on Advanced Information Networking and Applications,
volume 2, pages 321–325, Fukuoka, Japan, March 2004.

[CCHB10] Mark J. Carman, Fabio Crestani, Morgan Harvey, and Mark Bail-
lie. Towards query log based personalization using topic models. In
Proceedings of the 19th ACM international conference on Informa-
tion and knowledge management, CIKM ’10, pages 1849–1852, New
York, NY, USA, 2010. ACM.

[CFS05] Michael Chau, Xiao Fang, and Olivia R. Liu Sheng. Analysis of
the query logs of a web site search engine. Journal of the American
Society for Information Science and Technology, 56(13):1363–1376,
November 2005.

[Cha07] Sung-Hyuk Cha. Comprehensive survey on distance/similarity mea-
sures between probability density functions. International Journal of
Mathematical Models and Methods in Applied Sciences, 1(4), 2007.

[DB79] David L. Davies and Donald W. Bouldin. A cluster separation mea-
sure. IEEE Trans. Pattern Anal. Mach. Intell., 1(2):224–227, Febru-
ary 1979.

[DD09] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In
Encyclopedia of Distances, pages 1–583. Springer Berlin Heidelberg,
2009.

[Def77] D. Defays. An efficient algorithm for a complete link method. The
Computer Journal, 20(4):364–366, 1977.

[DLSA03] Marco Degemmis, Pasquale Lops, Giovanni Semeraro, and Fabio
Abbattista. Extraction of user profiles by discovering preferences
through machine learning. In Intelligent Information Processing
and Web Mining, IIS’03, volume 22 of Advances in Soft Comput-
ing, pages 69–78. Springer Berlin Heidelberg, 2003.

[EKSX96] Martin Ester, Hans-peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Second International Conference on Knowl-
edge Discovery and Data Mining, pages 226–231. AAAI Press, 1996.

[FH93] J. Fink and M. Herrmann. KN-PART: ein verwaltungssystem zur be-
nutzermodellierung mit prädikatenlogischer wissensrepräsentation:

145

Bibliography

Konzeptionelle grundlagen. Technical report, Departement of infor-
mation science, University of Konstanz, Germany, 1993.

[Fis01] Gerhard Fischer. User modeling in Human-Computer interaction.
User Modeling and User-Adapted Interaction, 11(1-2):65–86, March
2001.

[FK02] Josef Fink and Alfred Kobsa. User modeling for personalized city
tours. Artif. Intell. Rev., 18(1):33–74, September 2002.

[FM98] Christine Fellbaum and George Miller. WordNet: An Electronic
Lexical Database. The MIT Press, May 1998.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algo-
rithms for minimum spanning trees and shortest paths. J. Comput.
Syst. Sci., 48(3):533–551, June 1994.

[GA06] D. Godoy and A. Amandi. Modeling user interests by conceptual
clustering. Information Systems, 31(4):247–265, 2006.

[GBL98] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an
automatic citation indexing system. In International Conference on
Digital Libraries, pages 89–98. ACM Press, 1998.

[GF64] Bernard A. Galler and Michael J. Fisher. An improved equivalence
algorithm. Commun. ACM, 7(5):301–303, May 1964.

[GR11] John Gantz and David Reinsel. Extracting value from chaos. Tech-
nical report, June 2011.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an effi-
cient clustering algorithm for large databases. In Proceedings of the
1998 ACM SIGMOD international conference on Management of
data, SIGMOD ’98, pages 73–84, New York, NY, USA, 1998. ACM.

[GSCM07] Susan Gauch, Mirco Speretta, Aravind Chandramouli, and Alessan-
dro Micarelli. User profiles for personalized information access. In
Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The
adaptive web, volume 4321, pages 54–89. Springer-Verlag, Berlin,
Heidelberg, 2007.

[HDSB03] Younes Hafri, Chabane Djeraba, Peter Stanchev, and Bruno Bachi-
mont. A markovian approach for web user profiling and clustering.

146 146

Bibliography

In Proceedings of the 7th Pacific-Asia conference on Advances in
knowledge discovery and data mining, PAKDD’03, pages 191–202,
Berlin, Heidelberg, 2003. Springer-Verlag.

[HGM+10] Jian Huang, Jianfeng Gao, Jiangbo Miao, Xiaolong Li, Kuansan
Wang, Fritz Behr, and C. Lee Giles. Exploring web scale language
models for search query processing. In Proceedings of the 19th inter-
national conference on World wide web, WWW ’10, pages 451–460,
New York, NY, USA, 2010. ACM.

[HHK98] Alexander Hinneburg, Er Hinneburg, and Daniel A. Keim. An ef-
ficient approach to clustering in large multimedia databases with
noise. pages 58–65. AAAI Press, 1998.

[HJ97] Pierre Hansen and Brigitte Jaumard. Cluster analysis and mathe-
matical programming. Mathematical Programming, 79(1-3):191–215,
October 1997.

[HSO98] Graeme Hirst and David St-Onge. Lexical Chains as Representa-
tions of Context for the Detection and Correction of Malapropisms.
In Christiane Fellbaum, editor, WordNet: An electronic lexical
database., chapter 13, pages 305–332. MIT Press, 1998.

[HW79] JA Hartigan and MA Wong. Algorithm AS 136: A k-means cluster-
ing algorithm. Applied Statistics, 28(1):100–108, 1979.

[Jan06] Bernard J. Jansen. Search log analysis: What it is, what’s been done,
how to do it. Library & Information Science Research, 28(3):407–
432, 2006.

[Jan07] Bernard J. Jansen. Investigating the relevance of sponsored results
for web ecommerce queries. In Proceedings of the 30th annual in-
ternational ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’07, pages 857–858, New York, NY,
USA, 2007. ACM.

[JC97] Jay J. Jiang and David W. Conrath. An information-theoretic defi-
nition of similarity. In Proceedings of International Conference Re-
search on Computational Linguistics, Taiwan, 1997.

[JCECWtC00] Wu Jon C.S., Hsi Eric C.N., Kate Warner ten, and Pe-

147

Bibliography

ter M.C. Chen. A framework for web content adaptation.
http://www.w3.org/2000/09/Papers/Philips-v2.html, 2000.

[JCG10] Bernard J. Jansen, Gerry Campbell, and Matthew Gregg. Real time
search user behavior. In CHI ’10 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’10, pages 3961–3966, New
York, NY, USA, 2010. ACM.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[JFM97] Thorsten Joachims, Dayne Freitag, and Tom Mitchell. WebWatcher:
a tour guide for the world wide web. In Proceedings of the fifteenth
International joint Conference on Artificial Intelligence, pages 770–
775. Morgan Kaufmann, 1997.

[JST08] Bernard J. Jansen, Amanda Spink, and Isak Taksa, editors. Hand-
book of Research on Web Log Analysis. IGI Global, October 2008.

[KC03] Hyoung R. Kim and Philip K. Chan. Learning implicit user interest
hierarchy for context in personalization. In Proceedings of the 8th
international conference on Intelligent user interfaces, IUI ’03, pages
101–108, New York, NY, USA, 2003. ACM.

[KHK99] G. Karypis, Eui-Hong Han, and V. Kumar. CHAMELEON: a hier-
archical clustering using dynamic modeling. Computer, 32(8):68–75,
1999.

[Kob01] Alfred Kobsa. Generic user modeling systems. User Modeling and
User-Adapted Interaction, 11(1-2):49–63, March 2001.

[KP94] Alfred Kobsa and Wolfgang Pohl. The user modeling shell system
BGP-MS. User Modeling and User-Adapted Interaction, 4(2):59–106,
1994.

[KR87] Leonard Kaufman and Peter Rousseeuw. Clustering by means of
medoids. In Statistical Data Analysis Based on the L1-Norm and
Related Methods, pages 405–416. Y. Dodge, North-Holland, 1987.

[KT06] Jon Kleinberg and Éva Tardos. Algorithm design. Pearson/Addison-
Wesley, Boston, 2006.

[Kur93] Martin Kurth. The limits and limitations of transaction log analysis.
Library Hi Tech, 11(2):98–104, 1993.

148 148

Bibliography

[LBB81] Gilbert N. Lewis, Nancy J. Boynton, and F. Warren Burton. Ex-
pected complexity of fast search with uniformly distributed data.
Information Processing Letters, pages 4–7, 1981.

[LBCK08] Lyes Limam, Lionel Brunie, David Coquil, and Harald Kosch. Query
Log Analysis for User-Centric Multimedia Databases. In the 8th
International Conference on New Media Technology (I-Media’08),
pages 441–444, Graz, Austria, September 2008.

[LC98] Claudia Leacock and Martin Chodorow. Combining Local Context
and WordNet Similarity for Word Sense Identification. In Chris-
tiane Fellbaum, editor, WordNet: An electronic lexical database.,
chapter 13, pages 265–283. MIT Press, 1998.

[LCKB10] Lyes Limam, David Coquil, Harald Kosch, and Lionel Brunie. Ex-
tracting user interests from search query logs: A clustering approach.
In IEEE, editor, the 7th International Workshop on Text-based In-
formation Retrieval (TIR ’10) in conjunction with the 21st Inter-
national Conference on Database and Expert Systems Applications
(DEXA ’10), Bilbao, Spain, September 2010.

[Lee93] Geoffrey Leech. 100 million words of english. English Today, 9(01):9–
15, 1993.

[Lin98] Dekang Lin. An information-theoretic definition of similarity. In
Proceedings of the 15th International Conference on Machine Learn-
ing, ICML ’98, pages 296–304, San Francisco, CA, USA, 1998. Mor-
gan Kaufmann Publishers Inc.

[Log13] Visuwords tm online. visual dictionary, visual thesaurus.
http://www.visuwords.com/?word=paper, 2013.

[LOPS07] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio
Silvestri. Mining query logs to optimize index partitioning in paral-
lel web search engines. In Proceedings of the 2nd international con-
ference on Scalable information systems, InfoScale’07, pages 43:1–
43:9, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications En-
gineering).

[Lux04] Ulrike von Luxburg. Statistical learning with similarity and dissim-

149

Bibliography

ilarity functions. PhD thesis, Technische Universität Berlin, Berlin,
2004.

[MCL+10] Tobias Mayer, David Coquil, Lyes Limam, Florian Stegmaier, Mario
Döller, and Harald Kosch. Live-Ticker Supported Sports-Video An-
notation Enabling Tactic Analysis. In 11th International Workshop
of the Multimedia Metadata Community, pages 53–56, Barcelona,
Spain, May 2010.

[MS04] Bernardo Magnini and Carlo Strapparava. User modelling for news
web sites with word sense based techniques. User Modeling and
User-Adapted Interaction, 14(2-3):239–257, June 2004.

[MSDR04] Stuart E Middleton, N. R Shadbolt, and D. C De Roure. Ontolog-
ical user profiling in recommender systems. ACM Transactions on
Information Systems (TOIS), 22(1):54–88, January 2004.

[Nav09] Roberto Navigli. Word sense disambiguation: A survey. ACM Com-
puting Surveys, 41(2):10:1–10:69, February 2009.

[PA80] C. Raymond Perrault and James F. Allen. A plan-based analysis of
indirect speech acts. Comput. Linguist., 6(3-4):167–182, July 1980.

[PAC78] C. Raymond Perrault, James F. Allen, and Philip R. Cohen. Speech
acts as a basis for understanding dialogue coherence. In Proceedings
of the 1978 workshop on Theoretical issues in natural language pro-
cessing, TINLAP ’78, pages 125–132, Stroudsburg, PA, USA, 1978.
Association for Computational Linguistics.

[PBMW97] Michael Pazzani, Daniel Billsus, S. Michalski, and Janusz Wnek.
Learning and revising user profiles: The identification of interesting
web sites. Machine Learning, 27(3):313–331, 1997.

[PCT06] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of
search. In Proceedings of the 1st international conference on Scal-
able information systems, InfoScale ’06, New York, NY, USA, 2006.
ACM.

[Pir09] Giuseppe Pirró. A semantic similarity metric combining features and
intrinsic information content. Data Knowl. Eng., 68(11):1289–1308,
November 2009.

150 150

Bibliography

[Por80] M. F. Porter. An algorithm for suffix stripping. Program: electronic
library and information systems, 14(3):130–137, December 1980.

[pri12] Synsets ranking using the british national corpus.
http://wordnet.princeton.edu/wordnet/download/standoff/, Au-
gust 2012.

[PSF04] A. Phippen, L. Sheppard, and S. Furnell. A practical evaluation of
web analytics. Internet Research, 14(4):284–293, 2004.

[Rat96] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech
tagging. In Eric Brill and Kenneth Church, editors, Proceedings of
the Empirical Methods in Natural Language Processing, pages 133–
142, 1996.

[Res95] Philip Resnik. Using information content to evaluate semantic simi-
larity in a taxonomy. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, IJCAI’95, pages 448–453, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[Ric79a] Elaine Rich. User modeling via stereotypes. Cognitive Science,
3(4):329–354, October 1979.

[Ric79b] Elaine Alice Rich. Building and exploiting user models. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 1979.

[RT99] E.M. Royer and Chai-Keong Toh. A review of current routing proto-
cols for ad hoc mobile wireless networks. Personal Communications,
IEEE, 6(2):46–55, Apr 1999.

[SAR10] K. Saruladha, G. Aghila, and S. Raj. A survey of semantic similar-
ity methods for ontology based information retrieval. In 2010 Sec-
ond International Conference on Machine Learning and Computing
(ICMLC), pages 297–301, 2010.

[SDW06] Michael Shepherd Singh, Sarabdeep and, Jack Duffy, and Carolyn
Watters. An adaptive user profile for filtering news based on a user
interest hierarchy. Proceedings of the American Society for Informa-
tion Science and Technology, 43(1):1–21, 2006.

[Sei89] Hamid K. Seifoddini. Single linkage versus average linkage clustering
in machine cells formation applications. Computers & Industrial
Engineering, 16(3):419–426, 1989.

151

Bibliography

[SEKX98] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.
Density-based clustering in spatial databases: The algorithm GDB-
SCAN and its applications. Data Mining and Knowledge Discovery,
2(2):169–194, June 1998.

[sev09] British national corpus. http://www.natcorp.ox.ac.uk/, January
2009.

[SGD+02] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D.
Gribble, and Henry M. Levy. An analysis of internet content delivery
systems. SIGOPS Oper. Syst. Rev., 36(SI):315–327, December 2002.

[Sib73] R. Sibson. SLINK: an optimally efficient algorithm for the single-
link cluster method. The Computer Journal, 16(1):30–34, January
1973.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago:
a core of semantic knowledge. In Proceedings of the 16th interna-
tional conference on World Wide Web, WWW ’07, pages 697–706,
New York, NY, USA, 2007. ACM.

[Sle85] D. Sleeman. UMFE: a user modelling front-end subsystem. Inter-
national Journal of Man-Machine Studies, 23(1):71–88, July 1985.

[SMB07] Ahu Sieg, Bamshad Mobasher, and Robin D. Burke. Learning
ontology-based user profiles: A semantic approach to personalized
web search. IEEE Intelligent Informatics Bulletin, pages 7–18, 2007.

[SMHM99] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael
Moricz. Analysis of a very large web search engine query log. ACM
SIGIR Forum, 33(1):6–12, September 1999.

[SN09] Sofia Stamou and Alexandros Ntoulas. Search personalization
through query and page topical analysis. User Modeling and User-
Adapted Interaction, 19(1-2):5–33, February 2009.

[Sti89] Stephen M. Stigler. Francis galton’s account of the invention of
correlation. Statistical Science, 4(2):73–79, 1989.

[STZ05] Xuehua Shen, Bin Tan, and Chengxiang Zhai. Implicit user modeling
for personalized search. In Proceedings of CIKM, 2005.

152 152

Bibliography

[SWJS01] Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko
Saracevic. Searching the web: The public and their queries. J. Am.
Soc. Inf. Sci. Technol., 52(3):226–234, February 2001.

[SZF07] Vincent Schickel-Zuber and Boi Faltings. Oss: A semantic similarity
function based on hierarchical ontologies. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, IJCAI’07,
pages 551–556, San Francisco, CA, USA, 2007. Morgan Kaufmann
Publishers Inc.

[TKMS03] Kristina Toutanova, Dan Klein, Christopher D. Manning, and
Yoram Singer. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Lin-
guistics on Human Language Technology - Volume 1, NAACL ’03,
pages 173–180, Stroudsburg, PA, USA, 2003. Association for Com-
putational Linguistics.

[Tor12] Zeina Torbey. Increasing Data Availability in Mobile Ad-hoc Net-
works: A Community-Centric and Resource-Aware Replication Ap-
proach. Phd thesis, INSA DE LYON, September 2012.

[Tve77] Amos Tversky. Features of similarity. Psychological Reviews,
84(4):327–352, 1977.

[TZ14] Thanh Tran and Lei Zhang. Keyword query routing. IEEE Transac-
tions on Knowledge and Data Engineering, 26(2):363–375, Feb 2014.

[VCJ10] David Vallet, Iván Cantador, and Joemon M. Jose. Personalizing
web search with folksonomy-based user and document profiles. In
Proceedings of the 32nd European conference on Advances in In-
formation Retrieval, ECIR’2010, pages 420–431, Berlin, Heidelberg,
2010. Springer-Verlag.

[VLB+12] M. Viviani, L. Limam, N. Bennani, E. Egyed-Zsigmond, and D. Co-
quil. Multi-application personalization: Data propagation evalua-
tion on real-life query log. In 6th IEEE International Conference
on Digital Ecosystems Technologies (DEST), pages 1–6, Campione,
Italy, 2012.

153

Bibliography

[w3c01] How to diff RDF - semantic web standards.
http://www.w3.org/2001/sw/wiki/How_to_diff_RDF, 2001.

[WGB12] Ingmar Weber, Venkata Rama Kiran Garimella, and Erik Borra.
Mining web query logs to analyze political issues. In Proceedings of
the 3rd Annual ACM Web Science Conference, WebSci ’12, pages
330–334, New York, NY, USA, 2012. ACM.

[WNZ02] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Query clus-
tering using user logs. ACM Transactions on Information Systems,
20(1):59–81, January 2002.

[WP94] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selec-
tion. In Proceedings of the 32nd Annual Meeting on Association for
Computational Linguistics, ACL ’94, pages 133–138, Stroudsburg,
PA, USA, 1994. Association for Computational Linguistics.

[XW05] Rui Xu and D. Wunsch,II. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, May 2005.

[YCB13] Yulian Yang, Sylvie Calabretto, and Lionel Brunie. Centrality-based
peer rewiring in semantic overlay networks (S). In IEEE Interna-
tional Conference on Research Challenges in Information Science,
pages 1–6, May 2013.

[ZN08] Zhiyong Zhang and Olfa Nasraoui. Mining search engine query logs
for social filtering-based query recommendation. Applied Soft Com-
puting, 8(4):1326–1334, September 2008.

[ZS04] H. Zargayouna and S. Salotti. Mesure de similarité sémantique
pour l’indexation de documents semi-structurés. In 12ème Atelier
de Raisonnement à Partir de Cas, Villetaneuse, France, 2004.

154 154

	Contents
	Abstract
	Résumé
	Zusammenfassung
	I Introduction
	1 Introduction and Motivations
	1.1 General Context
	1.2 Research Questions
	1.3 Contribution
	1.4 Thesis Organization

	II State of the Art
	2 User Modeling
	2.1 Introduction
	2.2 Profiling Model Approaches
	2.2.1 Kobsa et al.
	2.2.2 Armstrong et al.
	2.2.3 Bollackar et Al.
	2.2.4 Kim et al.
	2.2.5 Middleton et al.
	2.2.6 Shen et al.
	2.2.7 Vallet et al.
	2.2.8 Abel et al.
	2.2.9 Synthesis

	2.3 Search Query Log Analysis and Positioning of the Thesis
	2.3.1 Search Query Log Analysis and its Challenges
	2.3.2 Search Query Log and Semantics
	2.3.3 Usage Analysis in Search Query Logs

	3 Overview on Similarity Functions and Clustering Algorithms
	3.1 Introduction
	3.2 Distance and Similarity Functions
	3.2.1 Similarity and Distance Functions Based on Vector of Features
	3.2.2 Semantic Similarity Functions
	3.2.3 Thesis Positioning

	3.3 Baseline Clustering Algorithms
	3.3.1 Hierarchical Algorithms
	3.3.2 Partition-Based Algorithms
	3.3.3 Density-Based Algorithms
	3.3.4 Thesis Positioning

	3.4 Summary

	III A Framework for Usage Analysis in Information Retrieval Systems
	4 Overview of a Framework for Usage Analysis in IR systems
	4.1 Introduction
	4.2 Data Gathering and Query Log Preprocessing
	4.2.1 Preprocessing Statistics
	4.2.2 Lexical Analysis
	4.2.3 Semantic Analysis

	4.3 Taxonomy Construction : a Support for Analysis
	4.4 Usage-Based User Profile and Data Source Profile Modeling
	4.4.1 Extracting User Interests : a Pruning Algorithm
	4.4.2 A Two-Face Model of User Profile and Data Source Profile

	4.5 Usage of the Model
	4.6 Summary

	5 Keyword-Based Query Log Analysis
	5.1 Introduction
	5.2 Keyword Taxonomy Construction: A Global Semantic Representation
	5.2.1 Keywords Disambiguation by Using External Source of Semantics:
	5.2.2 Basic Hypernymy Structure
	5.2.3 Semantic Distance Function

	5.3 The Computational Complexity of the Taxonomy Construction
	5.3.1 Tokenization:
	5.3.2 Stemming
	5.3.3 Lemmatization
	5.3.4 Disambiguation
	5.3.5 Hypernymy Structure
	5.3.6 Overall Complexity

	5.4 Using the Taxonomy for Analysis
	5.4.1 Structure Analysis
	5.4.2 User Interests Analysis

	5.5 Experimental Results
	5.5.1 Consistency of the Disambiguation Method
	5.5.2 Characterization of the Semantic Distance
	5.5.3 Results From the AOL Keywords Taxonomy

	5.6 Summary

	6 Usage-Based Profile Modeling
	6.1 Introduction
	6.2 Extracting User Interests
	6.2.1 Query Terms Clustering
	6.2.2 A Model of General Interests

	6.3 Implicit User Profile and Data Source Profile Modeling
	6.4 Community Discovery and Data Source Categorization
	6.4.1 User Community Discovery
	6.4.2 Data Source Categorization
	6.4.3 Mapping the Users to the Data Sources

	6.5 Experimental Results
	6.5.1 Clustering Evaluation
	6.5.2 Semantic clustering of the AOL search keywords
	6.5.3 Structure-Based Clustering Evaluation

	6.6 Summary

	IV Conclusion
	7 Conclusion and Futures Perspectives
	Bibliography

