
Dissertation

New Techniques for Polynomial
System Solving

Ehsan Ullah

Eingereicht an der Fakultät für Informatik und Mathematik
der Universität Passau als Dissertation zur Erlangung des

Grades eines Doktors der Naturwissenschaften

Submitted to the Department of Informatics and Mathematics
of the Universität Passau in Partial Fulfilment of the Requirements

for the Degree of a Doctor in the Domain of Science

Betreuer / Advisor:
Prof. Dr. Martin Kreuzer

Universität Passau

Februar 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS - Volltextserver Universität Passau

https://core.ac.uk/display/35075228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




New Techniques for Polynomial
System Solving

Ehsan Ullah

Erstgutachter: Prof. Dr. Martin Kreuzer
Zweitgutachter: Prof. Dr. Lorenzo Robbiano

Mündliche Prüfer: Prof. Dr. Franz Brandenburg
Prof. Dr. Tobias Kaiser

Der Fakultät für Informatik und Mathematik
der Universität Passau

vorgelegt im Februar 2012





For my family, who supported me all the way since the beginning of my studies

and

for those, who always offered me unconditional love, support and prayers.



ii



Acknowledgement

It is a pleasure to thank those who have helped and encouraged me throughout the

long and difficult process of completing this thesis. First and foremost I am heartily

thankful to my supervisor, Prof. Dr. Martin Kreuzer, whose very good supervision,

encouragement, guidance and support from the initial to the final level enabled me to

develop an understanding of the subject. I appreciate all his contributions of time,

ideas, and suggestions to make my Ph.D. experience productive and stimulating. He

is the one who can be blamed for creating a wonderful working environment in our

research group of Symbolic Computations.

It is an honor for me to have a very experienced professor, Prof. Dr. Lorenzo

Robbiano, as a second reviewer of this thesis. I appreciate his contribution of time,

ideas, and suggestions. I am thankful to Prof. Dr. Schwartz for giving me a chance

for completing my Ph.D. at Faculty of Informatics and Mathematics of the Universität

Passau. I would like to thank Prof. Dr. Franz Brandenburg and Prof. Dr. Tobias

Kaiser for extending my knowledge about complexity theory and commutative algebra.

It is an honor for me to be a doctoral student in the research group of Symbolic

Computation and obtain a Ph.D. degree from Universität Passau.

The generous support from Higher Education Commission (HEC) of Pakistan is

greatly appreciated. Without their support, my ambition to study abroad can hardly

be realized. Besides, I would like to acknowledge Deutsche Akademische Austausch

Dienst (DAAD) for organizing my research program in Germany. I gratefully thank

Prof. Dr. Tobias Kaiser, Prof. Dr. Gerhard Rosenberger and Dr. Andreas Dolzmann

for recommending my applications for the further financial support. I am also very

thankful to IBM and AMPL teams for providing their commercial softwares CPLEX

and AMPL free of charge for academic research.

I am indebted to all my colleagues who have shared their expertise with me. In



iv

particular, I would like to thank Stefan Kasper, Jan Limbek, Xingqiang Xiu and Stefan

Schuster for their advise and fruitful discussions during the development of the packages

for ApCoCoA and proof reading this thesis.

Lastly, I would like to thank my whole family for all their prayers, love, encourage-

ment and supporting me spiritually. I owe my deepest gratitude to my parents who

raised me with a love of knowledge and supported me in all my pursuits. I have no

suitable word that can fully describe their everlasting love to me.

Finally, I offer my regards and blessings to all of those who supported me in any

respect during the completion of my studies.

Ehsan Ullah

February 2012,

Universität Passau, Germany



Contents

Acknowledgement iii

List of Tables vii

Abbreviations xi

1 Introduction 1

2 Preliminaries 17

2.1 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Solving Systems of Polynomial Equations Over Finite Fields . . . . . . 22

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Algebraic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Cryptographic Polynomial Systems . . . . . . . . . . . . . . . . 29

2.3.3 NP-Completeness of Polynomial System Solving Over Finite Fields 31

3 Techniques From Linear Algebra 33

3.1 Proving Combinatorial Infeasibility . . . . . . . . . . . . . . . . . . . . 34

3.2 The LA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Experimental Results for the LA Algorithm . . . . . . . . . . . . . . . 53

3.3.1 Experimental Results for HFE . . . . . . . . . . . . . . . . . . . 55

3.3.2 Experimental Results for CTC . . . . . . . . . . . . . . . . . . . 56

3.4 The Mutant LA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 The Improved Mutant LA Algorithm . . . . . . . . . . . . . . . . . . . 69

3.6 Experimental Results for Mutant Variants of the LA Algorithm . . . . 73

3.6.1 Experimental Results for HFE . . . . . . . . . . . . . . . . . . . 74



vi CONTENTS

3.6.2 Experimental Results for CTC . . . . . . . . . . . . . . . . . . . 75

4 Techniques From the Theory of Border Bases 77

4.1 Computing Border Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Computing Border Bases With Mutant Strategies . . . . . . . . . . . . 84

4.2.1 The Mutant Border Basis Algorithm . . . . . . . . . . . . . . . 85

4.2.2 The Improved Mutant Border Basis Algorithm . . . . . . . . . . 92

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Experimental Results for CTC . . . . . . . . . . . . . . . . . . . 97

4.3.2 Experimental Results for HFE . . . . . . . . . . . . . . . . . . . 99

5 Techniques Using Mixed Integer Linear Programming 101

5.1 Mixed Integer Linear Programming (MILP) . . . . . . . . . . . . . . . 101

5.1.1 Mixed Integer Linear Programming Problems . . . . . . . . . . 102

5.1.2 Conversion Methods . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.3 Transformation to R or Z . . . . . . . . . . . . . . . . . . . . . 104

5.1.4 Modeling a MILP Problem . . . . . . . . . . . . . . . . . . . . . 105

5.1.5 IP Solver and Inverse Transformation . . . . . . . . . . . . . . . 107

5.2 Techniques for Polynomial Conversion . . . . . . . . . . . . . . . . . . 109

5.2.1 Integer Polynomial Conversion (IPC) . . . . . . . . . . . . . . . 111

5.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.3 Real Polynomial Conversion (RPC) . . . . . . . . . . . . . . . . 117

5.2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Some Strategies for Polynomial Conversion . . . . . . . . . . . . . . . . 127

5.3.1 Polynomial Conversion Strategies . . . . . . . . . . . . . . . . . 128

5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 New Techniques for Polynomial Conversion . . . . . . . . . . . . . . . . 140

5.4.1 Logical Polynomial Conversion (LPC) . . . . . . . . . . . . . . . 141

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Hybrid Techniques for Polynomial Conversion . . . . . . . . . . . . . . 147

5.5.1 Hybrid Integer Polynomial Conversion (HIC) . . . . . . . . . . . 147

5.5.2 Hybrid Real Polynomial Conversion (HRC) . . . . . . . . . . . 150

5.6 Comparison Using Plots and Tables . . . . . . . . . . . . . . . . . . . . 153

5.6.1 The Courtois Toy Cipher (CTC) . . . . . . . . . . . . . . . . . 153

5.6.2 Small Scale AES . . . . . . . . . . . . . . . . . . . . . . . . . . 159



CONTENTS vii

6 Techniques Using MINLP and Linear Diophantine Equations 161

6.1 Techniques Using Mixed Integer Nonlinear Programming . . . . . . . . 162

6.1.1 Mixed Integer Nonlinear Programming (MINLP) . . . . . . . . 162

6.1.2 Techniques for Polynomial Conversion . . . . . . . . . . . . . . 165

6.1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 171

6.2 Techniques Using Linear Diophantine Equations . . . . . . . . . . . . . 174

6.2.1 Solving Systems of Linear Diophantine Equations . . . . . . . . 174

6.2.2 Techniques for Polynomial Conversion . . . . . . . . . . . . . . 178

6.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Techniques Using Numerical Analysis 187

7.1 Newton Methods for Nonlinear Systems . . . . . . . . . . . . . . . . . . 187

7.2 Homotopy Continuation Methods . . . . . . . . . . . . . . . . . . . . . 190

7.3 Techniques for Polynomial Conversion . . . . . . . . . . . . . . . . . . 194

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4.1 Experimental Results for Continuation Methods . . . . . . . . . 198

7.4.2 Experimental Results for Newton Methods . . . . . . . . . . . . 200

A Packages Bertini and HOM4PS 207

A.1 Available Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B Implementations of Linear Algebra Techniques 217

B.1 Available Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

C Implementations of Techniques Using MILP 223

C.1 Available Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D Some Miscellaneous Implementations 229

D.1 Implementations of Techniques Using MINLP . . . . . . . . . . . . . . 229

D.2 Implementations of Techniques Using Linear Diophantine Equations . . 231

D.3 Implementations of Techniques Using Numerical Analysis . . . . . . . . 233

Bibliography 235



viii CONTENTS



List of Tables

3.1 HFE size and time comparison using the LA Algorithm . . . . . . . . . 55

3.2 CTC instances used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 CTC(B,N)2 time comparison using the LA Algorithm . . . . . . . . . . 58

3.4 CTC(B,N)1 time comparison using the LA Algorithm . . . . . . . . . . 59

3.5 CTC(B,N)0 time comparison using the LA Algorithm . . . . . . . . . . 60

3.6 HFE size comparison using LA, MLA and MLA2 algorithms . . . . . . 74

3.7 HFE time comparison using LA, MLA and MLA2 algorithms . . . . . . 75

3.8 CTC(B,N)2 size comparison using LA, MLA and MLA2 algorithms . . 75

3.9 CTC(B,N)2 time comparison using LA, MLA and MLA2 algorithms . . 76

4.1 CTC size comparison using BBA, MBBA and MBBA2 . . . . . . . . . 98

4.2 CTC time comparison using BBA, MBBA and MBBA2 . . . . . . . . . 98

4.3 HFE size comparison using BBA, MBBA and MBBA2 . . . . . . . . . 99

4.4 HFE time comparison using BBA, MBBA and MBBA2 . . . . . . . . . 100

5.1 Some important CPLEX parameters . . . . . . . . . . . . . . . . . . . 108

5.2 GLPK time comparison for optimization direction using IPC . . . . . . 115

5.3 CPLEX time comparison for optimization direction using IPC . . . . . 115

5.4 GLPK time comparison for restrictions on variables using IPC . . . . . 115

5.5 CPLEX time comparison for restrictions on variables using IPC . . . . 116

5.6 GLPK time comparison for objective function using IPC . . . . . . . . 116

5.7 CPLEX time comparison for objective function using IPC . . . . . . . 117

5.8 GLPK time comparison for optimization direction using RPC . . . . . 124

5.9 CPLEX time comparison for optimization direction using RPC . . . . . 124

5.10 GLPK time comparison for restrictions on variables using RPC . . . . 125



x

5.11 CPLEX time comparison for restrictions on variables using RPC . . . . 125

5.12 GLPK time comparison for objective function using RPC . . . . . . . . 126

5.13 CPLEX time comparison for objective function using RPC . . . . . . . 127

5.14 IPC time comparison using different strategies . . . . . . . . . . . . . . 138

5.15 IPC time comparison using different strategies . . . . . . . . . . . . . . 139

5.16 RPC time comparison using different strategies . . . . . . . . . . . . . 139

5.17 RPC time comparison using different strategies . . . . . . . . . . . . . 140

5.18 GLPK time comparison using LPC . . . . . . . . . . . . . . . . . . . . 146

5.19 CPLEX time comparison using LPC . . . . . . . . . . . . . . . . . . . 147

5.20 GLPK time comparison using HIC . . . . . . . . . . . . . . . . . . . . 149

5.21 CPLEX time comparison using HIC . . . . . . . . . . . . . . . . . . . . 149

5.22 GLPK time comparison using HRC . . . . . . . . . . . . . . . . . . . . 152

5.23 CPLEX time comparison using HRC . . . . . . . . . . . . . . . . . . . 152

5.24 size of CTC instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.25 CLPEX time comparison for different conversions . . . . . . . . . . . . 154

5.26 Effect of different conversions on small scale AES . . . . . . . . . . . . 159

6.1 COUENNE time comparison for Sbox using IPC . . . . . . . . . . . . . 171

6.2 COUENNE time comparison for objective function using IPC . . . . . 172

6.3 IPC time comparison for different base fields . . . . . . . . . . . . . . . 172

6.4 COUENNE time comparison using RPC . . . . . . . . . . . . . . . . . 172

6.5 Timings for solving systems of linear Diophantine equations . . . . . . 183

7.1 Path Following Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2 trust-region-dogleg algorithm . . . . . . . . . . . . . . . . . . . . . . . 202

7.3 Levenberg-Marquardt algorithm using Fourier representation . . . . . . 203

7.4 Levenberg-Marquardt algorithm using standard representation . . . . . 203

7.5 Levenberg-Marquardt algorithm using splitting standard representation 204

7.6 interior-reflective Newton method . . . . . . . . . . . . . . . . . . . . . 204



Abbreviations

CTC Courtois Toy Cipher

HFE Hidden Fields Equations

NulLA Nullstellensatz Linear Algebra

LA Linear Algebra

EF Echelon Form

SEF Sparse Echelon Form

SGE Structured Gaußian Elimination

MLA Mutant Linear Algebra

MLA2 Improved Mutant Linear Algebra

BBA Border Basis Algorithm

MBBA Mutant Border Basis Algorithm

MBBA2 Improved Mutant Border Basis Algorithm

IP Integer Programming

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming

IPC Integer Polynomial Conversion

RPC Real Polynomial Conversion

LPC Logical Polynomial Conversion

CNF Conjunctive Normal Form

SS Standard Strategy

LPS Linear Partner Strategy

DPS Double Partner Strategy



xii

QPS Quadratic Partner Strategy

CPS Cubic Partner Strategy

HIC Hybrid Integer Conversion

HRC Hybrid Real Conversion

SNF Smith Normal Form

RSC Real Standard Conversion

RFC Real Fourier Conversion



Chapter 1
Introduction

Solving systems of polynomial equations over finite fields is one of the most important

research problems which gives rise to applications in many areas such as cryptography,

coding theory, robotics, computational geometry, etc. For instance, the intractability

of solving this problem assesses the security of a type of public-key cryptosystems

called multivariate algebraic cryptosystems [69]. Multivariate algebraic cryptosystems

are believed to be secure against attacks with quantum computers, thus giving rise to

one of the candidates for post-quantum cryptography [25]. Moreover, the security of

asymmetric as well as symmetric cryptosystems is connected to the problem of solving

systems of polynomial equations over finite fields. This was firstly noticed by Claude

Shannon who remarked in his seminal paper [160]:

Thus, if we could show that solving a certain system requires at least as

much work as solving a system of simultaneous equations in a large number

of unknowns, of a complex type, then we would have a lower bound of sorts

for the work characteristic.

It is well-known that any encryption map between finite dimensional vector spaces

over a finite field is polynomial. Thus, it is natural to represent the task of breaking a

cryptosystem by the problem of solving a multivariate polynomial system of equations

over a finite field. This type of attacks is known as algebraic attacks and is studied

in algebraic cryptanalysis. It has been shown that the main task for carrying out a

successful algebraic attack on a cipher (or for examining the security of a cipher) is to

solve a multivariate polynomial system over a finite field. Therefore, in this thesis we

study new techniques that can be used in the context of polynomial systems derived

from algebraic attacks to examine the security of different ciphers.
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In particular, the topic of this thesis is to solve the following well-known problem.

Let p be a prime number, let q = pe for some e > 0, let K = Fq be the finite field

with q elements, and let f1, . . . , f` ∈ K[x1, . . . , xn] be non-zero polynomials. Find the

K-rational solutions of the system of polynomial equations:

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0

There are several algorithms which solve systems of multivariate polynomial equa-

tions over finite fields. Our work focuses mainly on two aspects. Firstly, we investigate

linear algebra techniques for polynomial system solving. The reason for choosing linear

algebra as a solving tool is that the most efficient and effective algorithms for polyno-

mial system solving, by computing a Gröbner basis, use linear algebra. Furthermore,

we can benefit from the full potential of the linear algebra techniques developed in the

last fifty years. This motivates further investigations in the field of linear algebra tech-

niques for polynomial system solving. Our intention is to look for new linear algebra

techniques and to study the impact of various strategies for improving these techniques.

In particular, we study techniques coming from combinatorial optimization and border

basis theory. Furthermore, we develop variants of these techniques which look for new

low degree polynomials in the ideal generated by the original polynomials.

Secondly, we focus on using highly developed techniques from several other areas

such as discrete optimization and numerical analysis. It is well-known that the problem

of solving a system of multivariate polynomial equations, even over a finite field, is

NP-hard. On the other hand, the mixed integer programming problem (a problem

from discrete optimization), solving a system of polynomial equations numerically (a

numerical analysis problem), and solving a system of linear Diophantine equations for

non-negative integer solutions (a number theory problem) are also NP-hard problems.

Inspired by the possibility that solution of either one of them could be used for solving

the others, since all NP-complete problems are polynomially equivalent, we began this

investigation.

The reasons for choosing discrete optimization, numerical analysis and linear Dio-

phantine system solving as the basis of solving tools are as follows. Research efforts of

the past fifty years have led to the development of discrete optimization and numerical

analysis as mature disciplines of applied mathematics. After formulating the solution

of a system of polynomial equations as a discrete optimization problem or a numerical
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analysis problem, we can apply standard IP and numerical solvers inside our algebraic

techniques. In this way we can get the full advantage of several algorithms available

in highly developed mature disciplines of applied mathematics for solving our main

problem of finding K-rational solutions for polynomial systems.

The solution process can be separated into two steps. Firstly, we apply a conversion

algorithm (and later the inverse conversion) at formulation level. Secondly, we employ

a solver for the solution of the reformulated problem. Our main work focuses on the

first step. We developed conversion algorithms which suggest that a clever formulation

may accelerate the performance of a solver dramatically, especially by exploiting the

structural properties of the system. The following figure illustrates our approach.

As we have seen above, we have techniques from different disciplines at our disposal

for solving systems of polynomial equations. One advantage of using these techniques

is that they will be automatically improved with developments in their respective dis-

ciplines. We have implemented all these techniques in C++ and CoCoAL. A part

of these implementations is also available online in packages CharP (see Appendix B)

and glpk (see Appendix C) of the computer algebra system ApCoCoA [12]. To study

techniques using numerical analysis, we have developed Bertini [21] and HOM4PS [127]

interfaces to ApCoCoA (see Appendix A). Finally, the efficiency of the developed tech-

niques is examined using standard cryptographic examples such as Small Scale AES,

CTC and HFE. Our experimental results show that all solving techniques we present

are highly competitive to state-of-the-art algebraic techniques. In the following we

consider these disciplines one by one and describe previous work as well as our contri-

bution and proposals for future research. This thesis can be divided into the following

four main parts.
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Techniques From Linear Algebra

One of the most useful applications of Gröbner bases is to compute the solution set of

a system of polynomial equations. Buchberger’s Algorithm [34] was the first algorithm

for computing Gröbner bases. Due to complexity issues of the standard Buchberger

algorithm, several variants of this algorithm such as F4 [73], F5 [74] and XL (extended

linearization) [59] have been proposed. Furthermore, several optimized versions of these

variants make them even more powerful. Actually, these variants reduce a polynomial

system solving problem to a linear algebra problem. The success achieved by these

algorithms motivates further investigations in the field of linear algebra techniques for

polynomial system solving.

Unfortunately, Gröbner bases are not always well suited for solving systems of

polynomial equations. Border bases are a natural generalization of Gröbner bases that

are known to deform smoothly with the input and provide a more flexible concept than

Gröbner bases (see [117]). One of the most useful applications of border bases is to

solve zero-dimensional systems of polynomial equations (see, e.g., [13, 139, 145, 117]).

The preference of border bases over Gröbner bases partly arises from the iterative

generation of linear syzygies, inherent in the Border Basis Algorithm, which allows

for successively approximating the basis degree by degree (see [111]). Moreover, the

Border Basis Algorithm is a linear algebra algorithm.

We focus mainly on linear algebra algorithms which use the multivariate polynomi-

als to “enlarge” the system by generating additional equations having the same set of

solutions. The enlarged system can be thought of as a large system of linear equations.

Using linear algebra techniques, such as Gaussian elimination, on the matrix represen-

tation of this linear system, a solution can be obtained. For this purpose we study

some techniques from combinatorial optimization, algorithms for computing border

basis and J. Ding’s [67] concept of mutants.

In [67], J. Ding observed that during the linear algebra step (Gaußian elimination)

some special polynomials of degree lower than expected appear and he called them

mutants. The mutant strategy aims to distinguish mutants from the other polynomials

and give them priority in the process of generating new equations. Later on, the mu-

tant strategy was further optimized and become the improved mutant strategy in [142].

The improved mutant strategy is based on the mutant concept and a new enlargement

method called partial enlargement strategy. It introduces a heuristic strategy of only

choosing the minimum number of mutants, which is called necessary mutants. The mu-

tant strategy, along with its improvements, can be used to improve various algorithms
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for solving systems of polynomial equations which use linear algebra.

In [68, 142, 140, 143], J. Ding et al. proposed the MutantXL, the MXL2 and MXL3

algorithms as variants of the XL Algorithm which are based on the mutant strategy.

Note that the XL Algorithm is the first algorithm that is equipped with the mutant

strategy. Therefore, there is a natural need to develop mutant variants of other linear

algebra algorithms such as the Border Basis Algorithm for polynomial system solving.

In combinatorial optimization, systems of polynomial equations have been used to

model combinatorial problems. This well-known method, which Alon referred to as

“the polynomial method” (see [7, 8]) recently regained strong interest. In [61, 63, 64]

infeasibility of certain combinatorial problems is established using Hilbert’s (complex)

Nullstellensatz and the authors provide an algorithm NulLA to establish infeasibility

by using a linear relaxation. Furthermore, in [64] J.A. De Loera et al. reviewed a

methodology to solve systems of polynomial equations and inequalities. They discussed

techniques that use the algebra of multivariate polynomials with coefficients over a field

to create large-scale linear algebra or semidefinite programming relaxations of many

kinds of feasibility or optimization questions.

Our contribution in developing linear algebra techniques consists mainly on the

following two points.

Techniques From Combinatorial Optimization: We study some techniques from

combinatorial optimization to transform a polynomial system solving problem

into a (sparse) linear algebra problem. In particular, we study the concept of

transforming infeasibility proofs to large systems of linear equations and extend

the ideas of J.A. De Loera et al. [64] to develop an algorithm called the Linear

Algebra (LA) Algorithm aimed at solving systems of polynomial equations over

finite fields.

Optimizations Using Mutants: We use J. Ding’s concept of mutants [68] to op-

timize the LA Algorithm and the Border Basis Algorithm [111], in terms of

memory and time consumption. We believe that the mutant variants of the LA

Algorithm and especially the Border Basis Algorithm are highly competitive to

state-of-the-art algorithms for solving systems of polynomials equations.

The Linear Algebra (LA) Algorithm is a specialization of prior algorithms from

combinatorial optimization used by J.A. De Loera et al. [61, 63, 64] and based on

fast large-scale (sparse) linear algebra computations over a finite field. Although such

techniques have been known in combinatorial optimization, they have not been used
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widely for polynomial system solving over finite fields. The key issue that we investigate

here is the use of the so-called “polynomial method” for solving over finite fields. We

are particularly interested in whether this can be accomplished in practice for large

systems of polynomial equations over finite fields. We explicitly formulate and explain

the LA Algorithm. The calculations reduce to (sparse) matrix manipulations, mostly

rank computations. It turns out that such techniques are particularly effective when

the number of solutions is finite, when the under lying field is a finite field, or when

the system is well structured.

The main drawback of the LA Algorithm is that it can solve only systems having a

unique solution. In order to solve systems with a finite number of solutions, we study

another linear algebra algorithm, namely the Border Basis Algorithm (BBA) [111].

The core of the LA algorithm is identical to the L-stable span (or the U -stable span)

procedure used in the BBA, which intimately links both algorithms. The difference is

of a technical nature: whereas the LA Algorithm establishes infeasibility, the classical

BBA, as presented in [111], computes the actual border bases of the ideal. The most

time consuming part of the BBA is computing a stable span. Moreover, the complexity

of the BBA relies on this step.

Although the LA Algorithm and the BBA can be used for solving systems of poly-

nomial equations over finite fields [59, 58, 73, 74, 117, 150], theoretical complexity

estimates have shown that this kind of algorithms is infeasible for many realistic appli-

cations. This is due to the fact that, in many practical cases, the computations made

by these algorithms lead to constructing a huge system of polynomial equations, and

consequently a huge matrix, which requires a lot of time and memory resources.

A big challenge is to improve these algorithms in a way which uses only limited

available memory and time resources for solving a multivariate polynomial system

with as large number of equations and variables as possible. Actually, these algorithms

find additional polynomials of not much larger degree in the ideal generated by the

polynomials of the system by multiplying them by terms. They apply linear algebra

(Gaußian elimination) after linearizing the system. One of the strategies to improve

the efficiency of these algorithms is to find better linear algebra techniques. This

mainly reduces the time consumption. On the other hand, strategies improving the

enlargement step of the polynomial system, by reducing the matrix size, will affect

both time and memory consumption.

We improve the enlargement step of the LA Algorithm and the BBA. This leads us

developing two kinds of hybrid techniques. The first kind of hybrid techniques combines



7

ideas studied by De Loera et al. [61, 64] for transforming combinatorial infeasibility

proofs to large systems of linear equations and ideas of J. Ding et al. [67, 140, 142, 143]

involving the concept of mutants. The second kind of hybrid techniques uses the

concept of mutants to optimize the BBA for solving systems of polynomial equations

over finite fields.

We modify the LA algorithm such that, instead of enlarging the system blindly

and increasing the degree, we first use the mutants, if any, at the lowest possible

degree to enlarge the system. We call this new algorithm the Mutant Linear Algebra

(MLA) Algorithm. Furthermore, we modify the LA Algorithm using improved mutant

strategy. This results in solving systems with fewer number of enlarged polynomials

than the MLA Algorithm. We called this new algorithm the Improved Mutant LA

(MLA2) Algorithm.

We also use the mutant strategies to improve the BBA. In particular, we explicitly

explain a way to compute a stable span using the mutant strategy and the improved

mutant strategy. We call the versions of the BBA using the mutant strategy and the

improved mutant strategy respectively the MBBA and the MBBA2. Our experimental

results show that the mutant variants of the LA Algorithm and the BBA can indeed

outperform their original versions and can solve multivariate systems at a relatively

lower degree. They provide improvements in terms of time and memory consumption.

The MXL3 is an algorithm for computing a Gröbner basis in order to solve systems

with finite number of solutions. It uses mutant strategies in the setting of the XL

Algorithm for computing a Gröbner basis. The results in [143] show that in both

classical cryptographic challenges as well as randomly generated polynomial systems,

MXL3 performs better than the Magma’s implementation of F4 in terms of memory

and time consumption. Since the preference of border bases over Gröbner bases partly

arises from the iterative generation of linear syzygies, inherent in the BBA, which allows

for successively approximating the basis degree by degree, we believe that the MBBA2

can be at least as good as the MXL3. The linear algebra step of the LA Algorithm and

the computation of a stable span can be found with the help of all the sparse linear

algebra techniques. In this sense, the mutant variants of the BBA could outperform

the best known solution algorithms for polynomial systems and deserve further efficient

implementation and experimentation. Furthermore, the flexible partial enlargement

strategy introduced in [36] can further improve the MBBA2. Therefore, in the spirit of

the developed techniques, it is obviously possible to launch research projects for further

investigation, experimentation, and to benchmark the implementation.
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Techniques Using Discrete Optimization

From now on, we restrict our attention to solving polynomial systems defined over F2.

Although the generalization to other finite base fields is straightforward, we want to

concentrate on the fundamental principles in the most important case. We address

techniques using Mixed Integer Linear Programming (MILP) and Mixed Integer Non-

linear Programming (MINLP). After formulating the solution of a system of polynomial

equations as an integer programming problem, we can apply standard IP solvers inside

our algebraic techniques. In this sense, the process of solving consists of the following

two steps.

• Applying a conversion algorithm for transferring (formulating) the problem of

solving a system of polynomial equations into a MILP or MINLP problem.

• Using an IP solver to solve the transformed (formulated) MILP or MINLP prob-

lem.

A conversion algorithm can be further separated into the following two steps.

• Transformation to R or Z: Transform a system of polynomial equations over

F2 into a system of polynomial equations over R (resp. Z).

• Modeling a MILP (or MINLP) Problem: Model the transformed system

as a MILP or MINLP problem.

Some methods for representing polynomials over F2 as polynomials over R can be

found in the literature, but they have not been used for our purpose. In [24], an

overview of possible representations is listed. Later, this study was extended slightly

in [124], but the main idea behind the representation methods was basically unaltered.

Very recently, some methods have been proposed for transferring the problem of solving

a system of polynomial equations over F2 into a MILP problem. In [117], M. Kreuzer

provided a conversion algorithm based on converting polynomial equations over F2 into

polynomial equations over Z. In [31], J. Borghoff et al. provided another conversion

method based on converting polynomial equations over F2 into polynomial equations

over R. J. Borghoff et al. studied their method for systems of polynomial equations

coming from Bivium Cipher, but an algorithm for general systems of polynomial equa-

tions is missing.

Recently, solving a system of polynomial equations over F2 by converting it to a

set of propositional logic clauses achieved a lot of success. The first study of efficient
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methods for converting boolean polynomial systems to CNF clauses was presented in

[18]. Later this study was extended slightly in [19, 48] and [166] but the procedure was

basically unaltered. The latest effort is due to P. Jovanovic and M. Kreuzer [106]. They

examined different conversion strategies, i.e. different ways to convert the polynomial

system into a satisfiability problem.

Our contribution in this thesis focuses on developing and improving the conversion

algorithms. In the following we elaborate our contribution in detail. First of all, we

review the algorithm provided by M. Kreuzer in [117] and the suggestions by J. Borghoff

et al. in [31]. We provide an algorithm for solving general systems of polynomial

equations over F2 according to the suggestions of J. Borghoff et al. [31]. Furthermore,

we compare both methods with the help of experimental results and suggest the settings

(while modeling a MILP problem) for the best performance of these algorithms.

As explained above, a conversion algorithm consists of two steps, namely trans-

formation to a set of equations over R or Z and modeling a MILP problem. While

modeling a MILP problem we need to replace certain nonlinear terms with new 0-1

variables. The idea is to introduce new 0-1 variables to take the place of the nonlinear

terms, simultaneously introducing auxiliary constraints to insure that the new variables

will assume the appropriate values. A big challenge is to improve the above conversion

algorithms such that they provide better MILP models by replacing nonlinear terms

with new 0-1 variables in a more economical way.

To develop several strategies for modeling a MILP problem, we use the so called

transformed linear approach (see [17, 171, 175]) which involves some standard proce-

dures for linearizing nonlinear 0-1 polynomial functions into linear 0-1 polynomials.

We study these standard approaches to achieve more economical constraints while re-

placing nonlinear terms with new 0-1 variables. Thus the purpose is to give procedures

for achieving improved linear representations of nonlinearities occurring in the above

described conversion algorithms. The experimental results show that the conversion

algorithms equipped with new developed strategies perform better than their standard

versions in many cases.

Next we present a new conversion method based on propositional logic and pseudo-

boolean optimization. In particular, first we review some concepts from propositional

logic and then exploit the connection between propositional clauses and 0-1 inequal-

ities to model the polynomial system over F2 as a MILP problem. This enables us

to export several strategies from propositional logic for modeling a MILP problem.

Therefore, the new conversion method also has the ability to exploit several strategies
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for formulating more economical MILP models. The experiments show that our new

polynomial conversion technique is at least as good as the previously known techniques

and provides better results in most cases.

The connection between propositional clauses and linear 0-1 inequalities not only

provides a new conversion method, but also provides strategies to optimize the methods

proposed by M. Kreuzer [117] and J. Borghoff et al. [31]. As described above such

strategies can be used to achieve more economical constraints while replacing nonlinear

terms with new 0-1 variables. This leads us towards the development of new hybrid

conversion methods which seem to outperform their original versions proposed by M.

Kreuzer [117] and J. Borghoff et al. [31].

Finally, to conclude our discussion of techniques using MILP, we present a com-

parison of all techniques. We present experimental results which show that our newly

developed techniques and strategies result in a substantial speed up of IP solvers. In

extreme cases the gain resulting from our techniques and strategies can be striking.

Furthermore, we note that some IP solvers like CPLEX can be parallelized. Thus we

can benefit from parallelization capabilities of IP solvers to solve systems of polynomial

equations. In this sense we have developed a number of techniques and strategies for

solving systems of polynomial equations that can be parallelized. In addition to this,

internal parameters of CPLEX can be fine-tuned to reach the optimum in different

way.

We also highlight a new technique, using non-convex MINLP, for solving systems of

polynomial equations which was never used before. This technique should mark a first

step and offers several future research directions. Based on the above-mentioned con-

version algorithms, we develop two approaches for transferring the problem of solving

a system of polynomial equations over F2 into a non-convex MINLP problem. The first

approach, which is based on converting polynomial equations over F2 into polynomial

equations over R, does not seem to be effective. But the second approach, which is

based on converting polynomial equations over F2 into polynomial equations over Z,

seems to be rather efficient and deserves to be the subject of further investigations.

Moreover, we also generalize this approach to an arbitrary finite field. Using concrete

examples, we illustrate the performance of these techniques. Furthermore, we suggest

settings (while modeling a non-convex MINLP problem) for the optimal performance

of these techniques.

In the spirit of the techniques studied above, it is obviously possible to generate a

number of further variations of the conversion algorithms which have the potential to
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speed up IP solvers. We have realized that there is a strong need to consult literature

available on transformation of 0-1 programs into 0-1 linear programs to make the

conversion methods more effective and take advantage of the full potential of fifty

years research on MILP. Thus the conversion methods deserve further investigation and

experimentation. Furthermore, MILP and MINLP are very fast developing disciplines

of mathematics and the conversion methods we present can take full advantage of any

new development.

Techniques Using Linear Diophantine System Solving

This part of our work presents a new technique, based on linear Diophantine system

solving, for solving systems of polynomial equations over F2. While studying tech-

niques using discrete optimization, we have seen different conversion techniques for

formulating the problem of solving a system of polynomial equations over F2 into a

system of linear equalities and inequalities over Z. This formulation suggests to apply a

linear Diophantine system solving algorithm for finding a non-negative integer solution

satisfying the system of linear equalities and inequalities.

After formulating the task, we apply the straightforward approach for solving sys-

tems of linear Diophantine equations for non-negative integer solutions. First we find

a general integer solution using the Smith normal form. Then we obtain a (unique)

minimal non-negative integer solution from general integer solution using MILP. We

illustrate the performance of this technique using some concrete examples. Although

solving systems of linear Diophantine equations for non-negative integer solutions is

an NP-hard problem, our experimental results show that this technique seems to be

rather efficient and deserves to be the subject of further investigations. We believe

that the latest developments for solving systems of linear Diophantine equations such

as the ones in [83, 71] can perform even better. Furthermore, we highlight some ideas

to spark further research in this direction. Finally, we remark that the resulting linear

Diophantine systems are highly sparse and motivate developing sparse linear Diophan-

tine system solving algorithms.

Techniques Using Numerical Analysis

Next we address approaches based on numerical methods for solving systems of poly-

nomial equations over F2. Since numerical methods operate on the set of real numbers,

we first convert the system over F2 into a system over R using different conversion

techniques and then we apply a numerical solver. We develop conversion techniques



12 1. Introduction

such that we can use numerical solvers, for instance, homotopy continuation methods

and variants of Newton’s method.

Recently, in [124] Lamberger et al. used the ideas mentioned in [24] for representing

a system of polynomial equations over F2 as a system of polynomial equations over R.

Then they apply two numerical algorithms: the DIRECT algorithm by D.R. Jones et

al. [105] and interior-reflective Newton method by Coleman and Li [52, 53]. They

used these two algorithms to attack a reduced version of the stream cipher Trivium

called Bivium A. Their experimental results show that the DIRECT algorithm does

not yield any success, whereas the interior-reflective Newton method needs 75% of the

original solution for choosing a good starting point. Therefore, both methods do not

really seem to be practical. But the authors believe that we can do better if we use

the available knowledge in the field of numerical analysis.

Unfortunately, the known conversion techniques result in an increase in the size of

the system over R in terms of the number of equations, the number of terms, and the

number of variables. Therefore, one of the strategies to improve solving using numerical

methods is to find better conversion algorithms. Another strategy is to search for a

suitable numerical solver. Several algorithms such as variants of Newton’s method

and homotopy continuation methods are available as numerical solvers which have not

been used for our purpose. Finally, the performance of a numerical solver may vary

depending on the polynomial system to be solved.

In the spirit of the above observations, we realize that there is a strong need to

launch further investigations in this direction. First we study suggestions by Lamberger

et al. [124]. Then we investigate the combination of several conversion techniques and

numerical solvers for solving systems of polynomial equations. Finally, we generalize

the approach in [24, 124] and extend this work further. In particular, we present a

proposal for choosing starting points and some ad-hoc tricks to obtain better results.

As for numerical solvers, we investigate the use of homotopy continuation methods

and variants of Newton’s method. The reason for choosing homotopy continuation

methods is their powerful feature of path-following which achieved a lot of success

recently. Furthermore, parallel capabilities of continuation methods make them even

more powerful. Newton’s method and its variants are well-known tools in the nu-

merical analysis community for approximating real solutions of systems of polynomial

equations. Since we may assume that our special system of polynomial equations has

a unique real solution or only few real solutions, we may hope for the convergence of

Newton’s method to a real solution, when using path-following techniques, we may



13

hope to get a real solution by tracking only one or a few paths.

We present experimental results which show that our new refinements of the tech-

niques suggested by Lamberger et al. [124] result in a substantial better performance

of Newton methods. For instance, according to our new starting point selection pro-

posal, the interior-reflective Newton method needs 50% of the original solution for

choosing a good starting point, whereas Lamberger et al. [124] suggested to choose

75% of the original solution. Starting points has a high influence on the convergence of

Newton methods, especially if the dimension of the system is high. Since we have used

Newton methods which are locally convergent and locally convergent methods require

a good starting point, we are not able to solve large systems, i.e. systems involving

many equations and indeterminates without providing much information as a part of

starting point.

Homotopy continuation methods do not need any initial starting point but they are

computationally infeasible for large systems. Actually, to find real solutions, homotopy

continuation offers only the option of finding all roots, real and complex, and then

casting out the complex ones. Unfortunately, there is no other way for finding all real

solutions directly. Furthermore, the theory underlying homotopy continuation depends

on working over the complex projective spaces and the real solutions of the start system

may lead to complex solutions of the target system and vice versa. One more hurdle

that we need to face is that homotopy continuation deals only square systems. In our

case, the so-called process of randomization for obtaining a square system from an

overdetermined system makes the system even more difficult for solving.

All numerical techniques investigated provide more or less the same results. The

methods examined in this part of our work were not able to produce a powerful tech-

nique. However, they will be certainly help to get a better understanding of using

numerical methods for solving systems over finite fields.

Organization of the Thesis

This section presents an outline of the thesis. Throughout this thesis we follow the no-

tation and terminology introduced in the books [120, 121] unless mentioned otherwise.

This thesis consists of seven chapters and four appendices. Chapter 1, the present

chapter, consists of the introduction and an outline of the thesis.

In Chapter 2 we introduce some basic concepts and notation useful for the re-

mainder of this thesis. In particular, we recall the mathematical tools necessary for

understanding polynomial system solving over finite fields. The readers familiar with
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this topic can skip this chapter and continue with Chapter 3. We start by introducing

finite fields in Section 2.1. After having a short look on their existence and unique-

ness properties we recall the representation of elements in finite fields. In Section 2.2

we move on to the problem of solving a system of multivariate polynomial equations

over finite fields. The main task for a successful algebraic attack on a cipher (or for

examining the security of a cipher) is to solve a multivariate polynomial system over a

finite field. This is the topic in Section 2.3 which addresses applications of polynomial

system solving over finite fields in cryptography and cryptanalysis.

After Chapter 2, the reader should be sufficiently warmed up to enter the hunt for

new techniques for polynomial system solving over finite fields. Our journey through

the land of new techniques starts in Chapter 3 which addresses linear algebra techniques

to solve polynomial systems having a unique K-rational solution. The concept of

transforming infeasibility proofs to large systems of linear equations, recently studied

by De Loera et al. [61, 64] to resolve the combinatorial feasibility problem, is reviewed

in Section 3.1. In particular, we recall an algorithm aimed at proving combinatorial

infeasibility based on the observed low degree of Hilbert’s Nullstellensatz certificates

for polynomial systems arising in combinatorics, and based on fast large-scale linear

algebra computations over a finite field. Based on the ideas reviewed in Section 3.1,

we explicitly formulate and explain the Linear Algebra (LA) Algorithm, which is an

algorithm for solving systems of polynomial equations over finite fields, in Section 3.2.

Section 3.3 reports on experiments with the LA Algorithm using different linear algebra

libraries and some self implemented code. Then it is time to think about optimizations

and variants of the LA Algorithm. In Section 3.4 we first recall the concept of mutants

by J. Ding et al. [67, 140, 142, 143], and then highlight our first hybrid algorithm, called

the MLA Algorithm, that uses the mutant strategy to improve the LA Algorithm. The

second hybrid algorithm, called the MLA2 Algorithm, is presented in Section 3.5. It

uses the improved mutant strategy to speed up the LA Algorithm. Section 3.6 reports

on experiments with the mutant variants of the LA Algorithm.

The main drawback of the LA Algorithm and its mutant variants is that they can

solve only systems having a unique solution. In order to solve systems with a finite

number of solutions, we investigate some linear algebra technique from border basis

theory in Chapter 4. To this end we review the main technique for computing border

bases in Section 4.1. In particular, we recall a version of the Border Basis Algorithm

which is actually called the Improved Border Basis Algorithm in [111]. In Section 4.2

we propose two hybrid algorithms, called MBBA and MBBA2, which combine border
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basis theory and the concept of mutants to accelerate the computation of border bases

over finite fields. These two hybrid algorithms use the mutant strategy and the improve

mutant strategy respectively. The efficiency of these newly developed hybrid techniques

is examined using standard cryptographic examples in Section 4.3.

Chapter 5 starts the second leg of our journey. After formulating the solution

of a system of polynomial equations as an integer programming problem, we apply

standard IP solvers inside our algebraic techniques. Several techniques and strategies

are developed and their efficiency is examined using standard cryptographic examples

at the end of each section. Section 5.1 serves as a foundation for coming sections. We

discuss our approach to use techniques from integer linear programming, review some

necessary theoretical concepts, and discuss some standard techniques used for modeling

and solving mixed integer linear problems. We study recent suggestions, by M. Kreuzer

[117] and J. Borghoff et al. [31], of transferring the problem of solving a system

of polynomial equations over F2 into a mixed integer linear programming problem in

Section 5.2. Section 5.3 is devoted to studying strategies that enable the transformation

of a 0-1 polynomial programming problem into a 0-1 linear programming problem to

be effected with a reduced number of constraints. In particular, we investigate more

economic ways of transferring 0-1 programs into 0-1 linear programs and generalize the

approach in Section 5.2. We present a new conversion method based on propositional

logic and pseudo-boolean optimization in Section 5.4. This new method also enables

us to export several strategies from propositional logic to model our MILP problem.

In Section 5.5 we develop new hybrid techniques for modeling a MILP problem. These

hybrid conversion techniques combine the ideas studied in the previous sections and

can be equipped with several strategies to achieve efficiency. To conclude this chapter,

we give a brief conclusion and present a comparison, using plots and tables, of all

techniques studied in this chapter in Section 5.6. The experimental results are presented

for polynomial systems coming from the CTC and the small scale AES cipher.

Chapter 6 marks a first step towards developing techniques using MINLP and linear

Diophantine system solving, and offers several future research directions. In Section

6.1 we review some necessary concepts from the theory of MINLP with a focus on

non-convex MINLP. Afterwards, we reformulate the polynomial conversion methods

presented in Chapter 5 to transfer the problem of solving a system of polynomial

equations over Fq into a non-convex MINLP problem. We try to see what can be

achieved if we employ a MINLP solver instead of a MILP solver. Towards the end of

this section, we present experimental results using the open-source solver COUENNE
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[56] which solves non-convex MINLP problems. In Section 6.2 first we review some

necessary concepts from number theory with focus on methods for solving systems of

linear Diophantine equations. Afterwards, we reformulate the polynomial conversion

methods presented in Chapter 5 to transfer a system of polynomial equations over

F2 into a system of linear Diophantine equations. After reformulation, we apply the

straightforward approach for solving systems of linear Diophantine equations for finding

non-negative integer solutions. Furthermore, we highlight some ideas to spark further

research in this direction. Finally, we illustrate the performance of this technique using

some concrete examples.

We address some approaches to apply numerical methods for solving systems of

polynomial equations over F2 in Chapter 7. Section 7.1 presents a quick overview of

various Newton methods used in this chapter. We use iterative (Newton) methods

which need an initial starting guess. Section 7.2 presents a quick overview of homo-

topy continuation methods used later in this chapter. In particular, we focus on path

following techniques for finding the unique isolated solution of a system of nonlinear

polynomial equations given that we know that such a solution exists. In Section 7.3, we

reconsider the conversion techniques of Chapter 5 to obtain a system of nonlinear poly-

nomial equations over R which can be solved using different algorithms from numerical

analysis. In particular, we investigate the use of homotopy continuation methods and

Newton’s method. We generalize the approach in [24, 124] and extend this work fur-

ther. Furthermore, we present some ad-hoc tricks. Finally, the performance of the

techniques is investigated using some concrete examples.

For using homotopy continuation methods in our algebraic settings, we have devel-

oped two ApCoCoA interfaces bertini and hom4ps. These interfaces are introduced

in Appendix A. They are able to call the full functionality of Bertini [21] and HOM4PS

[127] for computations with homotopy continuation methods inside ApCoCoA. Ap-

pendix B introduces the functions which implement the linear algebra techniques of

Chapters 3 and 4. These functions are available as a part of the package CharP of

ApCoCoA. The functions which implement the conversion algorithms of Chapter 5

are introduced in Appendix C. These functions are available as a part of ApCoCoA

package glpk. Finally, Appendix C is provided to give a brief description about the

implementations of the conversion algorithms of Chapters 6 and 7. Each function in

the above packages is explained with its syntax and an example describing its usage.



Chapter 2
Preliminaries

In this chapter we introduce some basic concepts and notations useful for the remainder

of this thesis. In particular, we develop the mathematical tools necessary for under-

standing polynomial system solving over finite fields. We start with introducing finite

fields, then concentrating on the general problem of systems of multivariate polynomial

equations over finite fields. Furthermore, we discuss complexity of polynomial system

solving over finite fields and its applications to cryptography and cryptanalysis.

2.1 Finite Fields

As finite fields are a very basic building block for many cryptographic protocols that

play an essential role in modern life, we start with introducing them. Loosely speaking,

a (finite) field consists of a (finite) set of elements, and two operations, namely addition

(denoted “+”) and multiplication (denoted “·”). These operations need to fulfil certain

criteria. Details can be found in any book of algebra such as [130].

Definition 2.1.1. A ring (R,+, ·) is a set R, together with two binary operations,

denoted by + and ·, such that (R,+) is an abelian group. · is associative and the

distributive laws hold.

Recall that a ring is called a ring with identity if the ring has a multiplicative

identity. A ring is called commutative if · is commutative. In this thesis by a ring we

shall always mean a commutative ring with identity element. An ideal I of a ring R is

a subring of R such that for all a ∈ I and r ∈ R we have ar ∈ I and ra ∈ I.
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Definition 2.1.2. A field (K,+, ·) is a ring such that (K \ {0}, ·) is a group. If a

field (K,+, ·) contains only finitely many elements, it is called a finite field.

Note that for brevity, we usually write xy instead of x.y. If it is clear from the

context which addition and multiplication we use with the field, we also write K instead

of (K,+, ·). Our first examples of finite fields are the residue class fields Z/〈p〉, where

〈p〉 is a principal ideal generated by a prime p.

Definition 2.1.3. Let p be a prime number, let Fp be the set {0, . . . , p−1} of integers

and let ϕ : Z/〈p〉 −→ Fp be the map defined by ϕ(ā) = a for a ∈ {0, . . . , p− 1}. Then

Fp, equipped with the field structure induced by ϕ, is a finite field, called the Galois

field of order p.

Note that computing with elements of Fp means ordinary arithmetic of integers

with reduction modulo p. We also know that every finite field has prime characteristic

and the prime subfield of a finite field K is isomorphic to Fp.
Before going into further details of finite fields. We need to recall a few results

from field theory. Let K ⊆ L be a field extension. The extension (field) K(α) of

K obtained by adjoining the element α ∈ L is called a simple extension of K and

α is called a defining element of K(α) over K. If α is algebraic over K then there

exists a uniquely determined monic polynomial f ∈ K[x] such that f(α) = 0, where

K[x] is the polynomial ring over K in one indeterminate. The uniquely determined

monic polynomial f ∈ K[x] is called the minimal polynomial (or defining polynomial,

or irreducible polynomial) of α over K. By the degree of α over K we mean the degree

of f .

Proposition 2.1.4. Let α ∈ L be algebraic of degree e over K and let f be the minimal

polynomial of α over K.

a) The extension field K(α) is isomorphic to K[x]/(f), where K[x] is the polynomial

ring over K in one indeterminate.

b) The set {1, α, . . . , αe−1} is a basis of K(α) over K.

c) Every β ∈ K(α) is algebraic over K and its degree over K is a divisor of e.

Proof. See [130], Theorem 1.86.

Due to the proposition above any element of K(α) can be uniquely represented in

the form a0 + a1α + · · · + ae−1α
e−1 with ai ∈ K for 0 ≤ i ≤ e − 1. The construction
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of a simple algebraic extension without reference to a previously given larger field L is

given by the following theorem.

Proposition 2.1.5. Let K be a field, K[x] be the polynomial ring in one indeterminate

and let f ∈ K[x] be an irreducible polynomial. Then there exists a simple algebraic

extension of K with a root of f as a defining element.

Proof. See [130], Theorem 1.87.

The construction of a simple algebraic extension as given by above proposition is

some times refereed as root adjunction. By adjoining different roots of the polynomial

f we can get the same simple algebraic extension as given by the following result.

Proposition 2.1.6. Let K be a field and let K[x] be the polynomial ring in one in-

determinate. Let α and β be two roots of the polynomial f ∈ K[x] that is irreducible

over K. Then K(α) and K(β) are isomorphic under an isomorphism mapping α to β

and keeping the elements of K fixed.

Proof. See [130], Theorem 1.89.

Now the splitting field is the extension field to which all roots of the polynomial f

belong.

Theorem 2.1.7. Let K be a field, K[x] be the polynomial ring in one indeterminate,

and let f be a polynomial of positive degree in K[x]. Then there exists a splitting field of

f over K. Any two splitting fields of f over K are isomorphic under an isomorphism

which keeps the elements of K fixed and maps roots of f into each other.

Proof. See [130], Theorem 1.91.

The splitting fields are obtained from K by adjoining finitely many algebraic ele-

ments over K, and the splitting field of f over K is a finite extension of K. We can

identify isomorphic field due to Theorem 2.1.7. Therefore, we can speak of the splitting

field of f over K. Recall that any finite field with characteristic p has q = pe elements

for some positive integer e and if Fq is a finite field with q elements and Fp is a subfield

of Fq, then Fq is a splitting field of xq − x over Fp. The following characterization

theorem for finite fields tells us more about finite fields.

Theorem 2.1.8. (Existence and Uniqueness of Finite Fields)

Let p be a prime and let e be a positive integer.
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a) There exists a finite field with pe elements.

b) There exists a unique (up to isomorphism) field having pe elements.

Proof. See [130], Theorem 2.5.

Uniqueness in Theorem 2.1.8 is a consequence of the uniqueness (up to isomorphism)

of splitting fields. The uniqueness provides the justification for speaking of the finite

field (or Galois filed) with q = pe elements, or of the finite field (or the Galois field) of

order q. From now on, we shall denote this field by Fq. Now we know that all finite

fields of same size are isomorphic, and so we have constructed the finite field of size

pe which is isomorphic to Fp[x]/〈f(x)〉 where f(x) ∈ Fp[x] is an irreducible polynomial

of degree e. Since finite fields are of central importance in this thesis, we briefly recall

some useful results for finite fields.

Lemma 2.1.9. Let Fq be a finite field with q elements, then every element a ∈ Fq
satisfies aq = a.

Proof. If a is zero, then 0q = 0 is trivial. If a is non-zero, then the nonzero elements of

Fq form a group of order q− 1 under multiplication. Thus aq−1 = 1 for all a ∈ Fq with

a 6= 0, and multiplication by a yields the required result.

A useful property of the multiplicative group F×q of Fq is given by the following

result.

Lemma 2.1.10. Let Fq be a finite field. The multiplicative group F×q of non-zero

elements of Fq is cyclic.

Proof. See [130], Theorem 2.8.

Lemmas 2.1.9 and 2.1.10 will prove particularly useful in the context of systems

of polynomial equations defined over extension fields and in the context of polynomial

maps. Recall that the pth root of an element a ∈ Fq is uniquely determined. For

instance, if we have b, c ∈ Fq such that bp = cp = a, then we have bp− cp = (b− c)p = 0,

which implies b = c.

Definition 2.1.11. The map ϕ : Fq −→ Fq defined by ϕ(a) = ap is called the Frobe-

nius map.
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Note that Frobenius map is a field homomorphism, since for all a, b ∈ Fq we have

(a+ b)p = ap + bp,

(ab)p = apbp.

Since Fq is a finite field, ϕ is bijective. In the field Fp every element is its own pth root.

This can be generalized to an arbitrary finite field Fq as follows. For all a ∈ Fq we have

the map a 7→ ap
e−1

such that ap
e−1

= aq = a. Thus this map provides pth roots.

Representing Elements of Finite Fields

From now on, let p be a prime number, let q = pe for some e > 0, and let Fq be

the finite field with q elements. Recall that there are three ways of representing the

elements of the finite field Fq with q = pn elements. For details we refer to [130],

Chapter 2. Here we recall the way which is based on the fact that Fq is a simple

algebraic extension of Fp. Let f(x) ∈ Fp[x] be an irreducible polynomial of degree e,

then f(x) has a root α in Fq according to Proposition 2.1.4. So we have Fq = Fp(α).

In this way we may view Fq as the residue class ring Fp[x]/〈f(x)〉 and every element of

Fq can be uniquely expressed as a polynomial in α over Fp of degree less than e. Note

that this representation is unique (up to isomorphism). Therefore it does not matter

which irreducible polynomial f(x) ∈ Fp[x] we choose. In other words, all finite fields

of the same size are isomorphic.

Example 2.1.12. We can represent elements of the field F4 as follows. The field

F4 is a simple algebraic extension of the field F2 of degree 2. The extension F4 is

obtained by adjunction of a root α of an irreducible polynomial of degree 2 over F2,

say f(x) = x2 +x+1 ∈ F2[x]. We have f(α) = α2 +α+1 = 0 ∈ F4. The multiplicative

group for the non-zero elements of F4 is generated by the field element α which satisfies

α2 + α+ 1 = 0. The elements of F4 can be represented as {0, 1, α, α2}. The operation

tables for F4 can be easily constructed with α playing the role of the residue class

x̄ ∈ Fp[x]/〈f(x)〉.

For the other two ways of expressing the elements of Fq we refer to [130], Chapter 2.
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2.2 Solving Systems of Polynomial Equations Over

Finite Fields

After having a short look at finite fields, we move on to the problem of solving a

system of multivariate polynomial equations over finite fields. From now on, let p

be a prime number, let q = pe for some e > 0, and let K = Fq be the finite field

with q elements, and let K[x1, . . . , xn] be the ring of polynomials over the field K. Let

f1, . . . , f` ∈ K[x1, . . . , xn] be a set of non-zero polynomials. Let I be the ideal generated

by the polynomials f1, . . . , f`. We are interested in finding K-rational solutions of the

following system of polynomial equations.

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0

Definition 2.2.1. Let K ⊆ L be a field extension, and let S ⊆ Ln. Consider the

set of all polynomials f ∈ K[x1, . . . , xn] such that f(a1, . . . , an) = 0 for all points

(a1, . . . , an) ∈ S. This set forms an ideal of the polynomial ring K[x1, . . . , xn]. This

ideal is called the vanishing ideal of S in K[x1, . . . , xn] and is denoted by I(S).

Considering Kn as a finite point set, the polynomials f1, . . . , f` can be modified by

adding elements of the vanishing ideal

I(Kn) = {g ∈ K[x1, . . . , xn] | g(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ Kn}.

Definition 2.2.2. Let K be the field as above and let K[x1, . . . , xn] be the ring of

polynomials over the field K. Then the field polynomials of the ring K[x1, . . . , xn]

are defined as the set

{xq1 − x1, . . . , xqn − xn}.

The vanishing ideal of Kn in K[x1, . . . , xn] is I(Kn) = 〈xq1 − x1, . . . , xqn − xn〉. From

now on, we shall call this ideal the field ideal of the ring K[x1, . . . , xn].

If we look for solutions in Kn, we may include equations of the field ideal while

solving the system of polynomial equations f1 = 0, . . . , f` = 0. This gives us the
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following system of equations.

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0

xq1 − x1 = 0
...

xqn − xn = 0

Recall that by condition d) of the finiteness criterion (see [120], Proposition 3.7.1),

an ideal J of the ring K[x1, . . . , xn] is called zero-dimensional if the K-vector space

K[x1, . . . , xn]/J is finite dimensional. Now consider the ideal J = I+〈xq1−x1, . . . , xqn−
xn〉. TheK-vector spaceK[x1, . . . , xn]/J is generated by the finite set {x̄α1

1 . . . x̄α1
n | αi <

q}, where x̄i is the residue class of xi in K[x1, . . . , xn]/〈xq1−x1, . . . , xqn−xn〉. Therefore

appending the field polynomials to the ideal I will assure that the ideal I is zero-

dimensional. Next we see that the ideal J is a radical ideal. One way of proving

the ideal J a radical ideal is using Seidenberg’s Lemma which we quote from [120],

Proposition 3.7.15.

Let K be a field, let P = K[x1, . . . , xn], and let I ⊆ P be a zero-dimensional

ideal. Suppose that, for every i ∈ {1, . . . , n}, there exists a non-zero poly-

nomial gi ∈ I ∩K[xi] such that gcd(gi, g
′
i) = 1. Then I is a radical ideal.

Note that after appending field polynomials, by Seidenberg’s Lemma the ideal I

becomes radical ideal because for every i ∈ {1, . . . , n} we have a field polynomial gi =

xqi−xi ∈ J∩K[xi] such that gcd(gi, g
′
i) = gcd(xqi−xi, qx

q−1
i −1) = gcd(xqi−xi,−1) = 1.

Another way of proving the ideal J to be radical is the following.

Lemma 2.2.3. Let f1, . . . , f` ∈ K[x1, . . . , xn] be a set of polynomials. Let I = 〈f1, . . . , f`〉
and J = I + 〈xq1 − x1, . . . , xqn − xn〉. Then J is a radical ideal.

Proof. To show that the ideal J is a radical ideal. We need to show
√
J = J . Since

by definition, any ideal is contained in its radical, we only need to prove
√
J ⊆ J . Let

f ∈
√
J . By definition of radical ideal, for some integer s ≥ 0, f s ∈ J . Let ϕ be the

Frobenius homomorphism. Thus we have ϕ(f s) = ϕ(f)s ∈ ϕ(I). Now to show that

f ∈ J we only need to show that ϕ(f) ∈ ϕ(I).

Since ϕ is the Frobenius homomorphism therefore for any g ∈ K[x1, . . . , xn], we
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have ϕ(g)q = ϕ(g). Now without loss of generality we can assume s < q in ϕ(f)s.

Since ϕ(f)s ∈ ϕ(I), therefore ϕ(f)sϕ(f)q−s = ϕ(f)q = ϕ(f) ∈ ϕ(I).

In this way, the ideal J becomes a zero-dimensional radical ideal. Now we can

translate strong version of Hilbert’s Nullstellensatz over finite fields as follows.

Theorem 2.2.4. (Hilbert’s Nullstellensatz in Finite Fields)

Let f1, . . . , f` ∈ K[x1, . . . , xn] be a set of polynomials. Let I = 〈f1, . . . , f`〉 and J =

I + 〈xq1 − x1, . . . , xqn − xn〉 be ideals of K[x1, . . . , xn], then

I(Z(I)) = J

Proof. Applying Hilbert’s Nullstellensatz (see [120], Theorem 2.6.16) to J and using

Lemma 2.2.3, we have I(Z(J)) = J . Since Z(〈xq1 − x1, . . . , xqn − xn〉) = Kn, therefore

Z(J) = Z(I) ∩Kn. Thus, we have I(Z(I)) = J .

Let R be the following residue class ring

K[x1, . . . , xn]/〈xq1 − x1, . . . , xqn − xn〉,

where we reduce everything modulo the field polynomials. So far we have discussed

polynomial ideals in the polynomial ring K[x1, . . . , xn]. Another representation can

be achieved by defining them in the residue class ring R. Using this representation

we can represent polynomials in a more convenient way in computer and benefit from

specialized algorithms or implementations over the ring R. Furthermore, for our pur-

pose, some times it is convenient to work in the ring R as we see in Chapters 3 and 4.

The elements of R are residue classes. We can represent residue classes by polynomials

using Macaulay’s Basis Theorem (see [120], Theorem 1.5.7). We let Tn denote the set

of terms of K[x1, . . . , xn].

Remark 2.2.5. (Representing Elements of R by Polynomials)

Macaulay’s Basis Theorem tells us how to compute effectively in R. Let σ be a (degree

compatible) term ordering, then for the field ideal we have LTσ(〈xq1 − x1, . . . , x
q
n −

xn〉) = 〈xq1, . . . , xqn〉. Hence we can represent every element uniquely as a finite linear

combination of the residue classes of the elements of Tn\LTσ{〈xq1−x1, . . . , xqn−xn〉} =

{x̄α1
1 . . . x̄α1

n | αi < q}, where x̄i is the residue class of xi.

So the elements of R are residue classes where each residue class will be represented

by a polynomial in the following way. We assume that t = xα1
1 . . . xαn

n ∈ Tn is a term
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in R, then αi < q, 1 ≤ i ≤ n. The residue class ring R is a finite dimensional K-vector

space and its dimension is equal to the cardinality of the set of all terms in R. For

simplicity, we will call R a polynomial ring in n indeterminates x1, . . . , xn where each

term is reduced modulo the so-called field polynomials xq1−x1, . . . , xqn−xn. In view of

this, we can uniquely represent a residue class (an element of R) by a polynomial, where

each xi, 1 ≤ i ≤ n, has a power less than q. In particular, every residue class of R has a

unique polynomial representation of the form f =
∑

α∈Nn cαtα where tα = xα1
1 . . . xαn

n ,

such that αi < q, 1 ≤ i ≤ n, and only finitely many elements cα ∈ K are different from

zero. Since each element (residue class) in R is represented by a polynomial, we can

define the degree, leading term, and leading variable of this polynomial in the natural

way.

Our goal in this thesis is to find the zero set of the zero-dimensional radial ideal

J = I + 〈xq1 − x1, . . . , x
q
n − xn〉. Moreover, we are interested in finding only one

zero of the ideal J , since usually we may assume that it has only one zero. Solving

systems of polynomial equations over the finite field F2 has special importance due to

its applications in cryptography and cryptanalysis, and due to the fact that it can be

generalized to any finite field. Especially, to the finite field F2e , for some integer e > 0.

For instance, for a novel way of transforming a polynomial system over F2e to a (larger)

system over F2 we refer to [106], Section 3.

2.3 Applications

In this section, we see some applications of polynomial system solving over finite fields

in cryptography and cryptanalysis. The two branches of cryptography are Asymmetric

Cryptography (or Public Key Cryptography) and Symmetric Key Cryptography. Cur-

rently, the security of most algorithms that we know in Asymmetric Cryptography

for encryption or signatures rely on the (not proved) intractability of the factorization

(IFP) or discrete log problem (DLP). Due to the improvements in algorithms for solv-

ing IFP and DLP, parameters of these cryptosystems are required to be modified in

order to achieve a reasonable level of security. For instance, 156 and 200-digit RSA

numbers have already been factorized. In 1999, Peter Shor discovered polynomial time

algorithms to solve the IFP and DLP on a ‘hypothetical’ quantum computer. Once

quantum computers have been developed, cryptosystems based on these problems will

not remain secure any more.

So today one of the problems of Asymmetric Cryptography is to find new and effi-
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cient algorithms for encryption or signatures that are as secure on quantum computers

as well as on conventional computers. Multivariate cryptography is one of the main

fields of research for the development of multivariate algebraic cryptosystems which are

believed to be secure against attacks with quantum computers. Furthermore, the de-

velopment of Gröbner Basis cryptosystems is an active area of research in the Gröbner

Basis community. It is believed that if such cryptosystems are developed successfully,

they will not be threatened by the development of quantum computers. Thus, the

security of future cryptosystems seems to be related to the problem of solving systems

of multivariate quadratic equations over a finite field.

2.3.1 Algebraic Attacks

Cryptography is the study of methods of sending messages in disguised form so that

only the intended recipients can remove the disguise and read the message. The message

we want to sent is called the plaintext, and the disguised message is called the ciphertext.

The process of converting a plaintext to a ciphertext is called enciphering or encryption,

and the reverse process is called deciphering or decryption. The plaintext and ciphertext

are broken up into message units. We refer to [114] for a detailed study of the subject.

In the following, we follow [117] to describe some important applications.

Definition 2.3.1. A cryptosystem, also called as cipher or encryption scheme, has

the following basic components:

1. A set of plaintext units P which is also called the message space.

2. A set of ciphertext units C which is also called the ciphertext space.

3. A set K called the key space.

4. An encryption map, εk : P −→ C, for every element k ∈ K.

5. A decryption map, δk : C −→ P , for every element k ∈ K.

6. Finally a map η : K −→ K such that δη(k) ◦ εk = idK for every element k ∈ K.

For every element k ∈ K the pair (k, η(k)) is called a key pair.

As we know, the two major cryptosystems that have been used in modern cryp-

tography are known as symmetric cryptosystems and asymmetric cryptosystems. In

other words, if we can compute ηk efficiently using the knowledge of the key k and the
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encryption map εk, the cryptosystem is called symmetric. Otherwise, the system is

called asymmetric. If the cryptosystem is asymmetric the knowledge of the key k is

used depending on weather the cipher is a block cipher such as AES or a stream cipher

such as DES. In a block cipher, after breaking the plaintext into plaintext units, the

encryption is done using a fixed key k. In a stream cipher, we generate a sequence

k1, k2, . . . of keys called the key stream. The key steam is generated using some chosen

function and then k1, k2, . . . are used for the encryption of the individual plaintext

units.

Many cryptographic protocols that play an essential role in modern life are build

on cryptosystems. In his seminal paper [160], C.E. Shannon, who is also known as the

father of information theory, remarked:

Thus, if we could show that solving a certain system requires at least as

much work as solving a system of simultaneous equations in a large number

of unknowns, of a complex type, then we would have a lower bound of sorts

for the work characteristic.

In the following, let p be a prime number, let q = pe for some e > 0, and let K = Fq
be the finite field with q elements.

Definition 2.3.2. A polynomial map is a map f : Kn −→ Km such that for all

points (x1, . . . , xn) ∈ Kn,

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

for suitable polynomials f1, . . . , fm ∈ K[x1, . . . , xn].

The set of all zero of f is precisely the set of all solutions of the simultaneous

equations f1 = · · · = fm = 0. Polynomial maps can be defined on any non-empty

subset of Kn. We consider the sets P and C are (subsets of) finite dimensional vector

spaces over a finite fields, usually of characteristic 2.

Remark 2.3.3. Over the field K, for every map f : Kn −→ Km there exist polyno-

mials f1, . . . , fm ∈ K[x1, . . . , xn] such that

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

for all (x1, . . . , xn) ∈ Kn. The polynomials fi are not uniquely determined. In other

words, the map f is a polynomial map. Since we are interested in finding K-rational
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solutions, we consider Kn as finite point set and modify the polynomials fi by adding

elements of the field ideal (vanishing ideal I(Kn)). The vanishing ideal is generated

by the field polynomials. Every time we represent an encryption map (or a family of

encryption maps) via polynomials f1, . . . , fm, we modify them using field polynomials.

In [117], we have the following example which gives us a non-standard look at the

RSA cryptosystem.

Example 2.3.4. Consider the RSA cryptosystem. Choose two prime numbers p = 3

and q = 5 such that n = 15 = p.q. Knowing the factorization of n, we can eas-

ily compute ϕ(n) = (p − 1)(q − 1) = n + 1 − p − q. Next we randomly choose

an integer e = 5 known as public exponent between 1 and ϕ(n) which is prime to

ϕ(n). The secret exponent is d = 5 such that de ≡ 1( mod 8) with 8 = ϕ(n).

We represent the plaintest and ciphertext units as tuples (a0, a1, a2, a3) ∈ F4
2 cor-

responding to elements a0 + 2a1 + 4a2 + 8a3 ∈ Z/(15). By a straightforward cal-

culation we can represent ε5(a0, a1, a2, a3) = (a0 + 2a1 + 4a2 + 8a3)
5 by the tuple

(c0(a0, a1, a2, a3), . . . , c3(a0, a1, a2, a3)) ∈ F4
2 where

c0 = a0a1a3a3 + a0a1a2 + a0a2 + a0a3 + a2a3 + a0 + a3

c1 = a0a1a2a3 + a0a1a2 + a0a1a3 + a0a2a3 + a0a1 + a1 + a2 + a3

c2 = a1a2a3 + a0a1 + a1a2 + a1a3 + a1 + a2

c3 = a0a1a2a3 + a0a1a2 + a1a2a3 + a0a1 + a0a2 + a0a3 + a2a3 + a3

Now consider the ciphertext (1, 1, 0, 0). We can recover the plaintext from this cipher

by solving the polynomial system c0 − 1 = 0, c1 − 1 = 0, c2 = 0, c3 = 0 for F2-rational

solutions. The most obvious way to solve this system is to compute a Gröbner basis.

The reduced Gröbner basis of the ideal I = 〈c0 − 1, c1 − 1, c2, c3, a
2
0 − a0, . . . a23 − a3〉

is {a0 − 1, a1 − 1, a2, a3}, therefore plaintext unit was (1, 1, 0, 0) which agrees with

35 ≡ 3(mod 15).

Remark 2.3.5. We do not know a standard way to express the RSA cryptosystem

and many others as a systems of polynomial equations. Therefore, a natural question

is to ask about the construction of the polynomials f1, . . . , fm which represent the

encryption map εk. The encryption map εk carry some specific information with it

which is exploited while construction the polynomials f1, . . . , fm. This suggests that

the polynomials f1, . . . , fm are constructed on case-by-case basis. For instance, for the
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construction of polynomials f1, . . . , fm from the so-called Courtois Toy Cipher (CTC)

see [57].

A partial answer to the above question is to use the Buchberger-Möller Algorithm

(see [121], Theorem 6.3.10 and Corollary 6.3.11 for general setting and [117], Proposi-

tion 3.1 for cryptanalysis setting) that yields all polynomials which model the encryp-

tion map εk for the given plaintext units and keys. But this is possible in practice if

the space of plaintext units P (and possibly the key space) is not too large. For large

real-world cryptosystems, we can generate polynomial relations between the plaintext

and key bits tuples, and the ciphertext tuple.

Furthermore, for more details and a description of several attack scenarios using

the algebraic representation of the encryption εk and decryption δk maps we refer to

the article titled “Algebraic Attacks Galore!” [117] by M. Kreuzer. We can summarize

the discussion above as follows. The main task for a successful algebraic attack on a

cipher (or for examining the security of a cipher) is to solve a multivariate polynomial

system over a finite field. Therefore, in this thesis we develop new techniques that can

be used in the context of polynomial systems derived from algebraic attacks to examine

the security of different ciphers.

2.3.2 Cryptographic Polynomial Systems

To test the performance of the developed techniques we consider systems of polynomial

equations coming from applications in cryptography and cryptanalysis. In his diploma

thesis [131] J. Limbeck implemented the polynomials representing the encryption func-

tions of a number of important cryptosystems, e.g. DES, AES, CTC, Serpent, Keeloq,

HFE and a number of variations of these. These implementations in ApCoCoA [12]

are available from the author upon request. We use some of these implementations

to generate systems of polynomial equations. The systems used for experiments are

available at http://apcocoa.org/polynomialsystems/. In particular, we consider

the following cryptosystems.

Courtois Toy Cipher (CTC)

In May 2006, Nicolas Courtois published in [57] the specifications of the so-called

Courtois Toy Cipher (CTC) along with a way to express this cipher as a multivariate

equation system over F2. He claims to have broken this cipher by solving the associated

equation system faster than exhaustive key search. In particular, he claims to have
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broken a 255-bit block size and six round instance of CTC in under one hour on

his notebook computer. Nicolas Courtois calls his attack “fast algebraic attack against

block ciphers”. However he did not publish the details of his attack as he was afraid his

attack could be extended to break AES quite quickly: “In order to protect the United

States government, the financial institutions, mobile phone operators, and hundreds of

millions of other people that use AES, from attackers”. Our assumption is that CTC

can be broken with algebraic attacks effectively as it was designed for that purpose. But

as the actual attack of Nicolas Courtois is unpublished the second purpose is to attack

CTC and report the results of observations on these experiments. This will also serve

our purpose to examine the performance of the developed techniques. Furthermore,

this will contribute to a better understanding of CTC and thus algebraic attacks on

block ciphers.

Given the CTC (Courtois Toy Cipher) cryptosystem and a plaintext-ciphertext

pair, we can construct an overdetermined algebraic system of equations in terms of

the indeterminates representing key bits and certain intermediate quantities (see [57]

for the construction of polynomials). Then the task is to solve the system for the key

bits. The size of the system depends mainly on two parameters: the number B of

simultaneous S-boxes and the number N of encryption rounds used. Throughout this

thesis we denote a particular instance of CTC by CTC(B,N). The polynomial systems

used for experiments are available at http://apcocoa.org/polynomialsystems/.

Hidden Field Equations (HFE)

Hidden Fields Equations (HFE) [150] is a public key cryptosystem which was intro-

duced at Eurocrypt in 1996 and proposed by J. Patarin following the idea of the Mat-

sumoto and Imai system. HFE is also known as HFE trapdoor function. It is based on

polynomials over finite fields Fq of different size to disguise the relationship between

the private key and public key. HFE is in fact a family which consists of basic HFE and

combinatorial versions of HFE. The HFE family of cryptosystems is based on the hard-

ness of the problem of finding solutions to a system of multivariate quadratic equations

(the so-called MQ problem) since it uses private affine transformations to hide the ex-

tension field and the private polynomials. Hidden Field Equations also have been used

to construct digital signature schemes, e.g. Quartz and Sflash. The polynomial systems

used for experiments are available at http://apcocoa.org/polynomialsystems/.
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Small Scale AES

In [50], C. Cid et al. defined small scale variants of the AES. These variants inherit the

design features of the AES and provide a suitable framework for comparing different

cryptanalytic methods. In particular, they provide some preliminary results and in-

sights when using off-the-shelf computational algebra techniques to solve the systems

of equations arising from these small scale variants. Without going into details, let us

recall the arguments of possible configurations of the small scale AES cryptosystem

presented in [50]. By AES(n,r,c,e) we denote the system such that

- n ∈ {1, . . . , 10} is the number of (encryption) rounds,

- r is the number of rows in the rectangular arrangement of the input,

- c is the number of columns in the rectangular arrangement of the input,

- e is the size (in bits) of a word.

The word size e describes the field F2e over which the equations are defined. For

instance, e = 4 corresponds to F16 and e = 8 to F256. If we choose the parameters

r = 4, c = 4 and w = 8, we get a block size of 4 · 4 · 8 = 128 bits, and small AES

becomes equivalent to full AES. For more details and a way to express this cipher as

a multivariate equation system over F2 we refer to [50, 106]. The polynomial systems

used for experiments are available at http://apcocoa.org/polynomialsystems/.

2.3.3 NP-Completeness of Polynomial System Solving Over

Finite Fields

As we saw, solving a system of polynomial equations is a quite general problem which

can be used for signing and encrypting. Actually, solving a system of polynomial

equations even over finite fields is an NP-complete problem. Recall that NP is the

complexity class of decision problems that can be solved on a non-deterministic Turing

machine in polynomial time. In other words, it is the class of decision problems that

can be solved by a deterministic algorithm with running time bounded by 2f(x), where

f(x) is some polynomial in x. A decision problem in NP is said to be NP-complete if

every other problem in NP can be reduced to it in polynomial time. Also recall that

all NP-complete problems are polynomially equivalent i.e. one NP-complete problem

can be reduced to another NP-complete problem and such reductions are polynomial

time algorithms.
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Typically, completeness is a sign that the problem cannot be solved satisfacto-

rily. Solving a problem that is NP-complete in polynomial time, would mean that

all problems in NP are solvable in polynomial time, i.e. P=NP. Deciding if a ran-

dom system of multivariate polynomial equations even over finite fields has a solution

is NP-complete. In particular, the NP-completeness of deciding whether systems of

quadratic equations have a solution over finite fields is proven in [94, 151, 79]. For a

generalization of this result to any domain we refer to [151]. Recall that every finite

domain is also a finite field. For further reading about the completeness we refer to

[82] and [128] summarizing important results in this field.

NP-completeness is a definition for a class of problems that are hard to solve on

average. Cryptosystems are usually disguised as such problems, like the knapsack

problem. In general, being NP-complete does not imply that a cryptosystem using

this problem is automatically secure. For a counterexample see cryptosystems using the

knapsack problem. Although the knapsack problem is NP-complete [82], most of these

cryptosystems were broken, see [137] for an overview. Therefore, decryption necessarily

demands that there has to be a trapdoor. This makes structure inevitable and these

instances with additional structure within the class of NP-complete problems might be

easier to solve than they seem. In general, solving a system of multivariate equations

over a finite field is NP-complete. This means that it will be very unlikely that every

system is solvable in polynomial time. Therefore for the cryptosystems whose security

rely on solving a system of polynomial equations over finite fields, there is strong

empirical and theoretical evidence, e.g. [59, 58], that it is also hard on average (even

with embedded trapdoor) and hence can be used as a basis for a secure cryptosystems.

One objective of our study is to develop techniques to examine the security of these

cryptosystems.



Chapter 3
Techniques From Linear Algebra

In this chapter we study techniques coming from linear algebra to solve algebraic sys-

tems of equations over finite fields. One of the most useful applications of Gröbner

bases is to compute the solution set of a system of polynomial equations. Buchberger’s

Algorithm [34] was the first algorithm for computing Gröbner bases. Due to complexity

issues of the standard Buchberger algorithm, several variants of this algorithm such as

F4 [73], F5 [74] and XL (extended linearization) [59] have been proposed. Furthermore,

several optimized versions of these variants make them even more powerful. Actually,

these algorithms reduce a polynomial system solving problem to a linear algebra prob-

lem. The success achieved by these algorithms motivates further investigations in the

field of linear algebra techniques for polynomial system solving.

We study some techniques from combinatorial optimization to transform a polyno-

mial system solving problem into a linear algebra problem. In particular, we study the

concept of transforming infeasibility proofs to large systems of linear equations. This

enables us to use linear algebra techniques of last fifty years for polynomial system

solving. We consider the possibility of accelerating these techniques by using sparse

linear algebra. Furthermore, we highlight some new hybrid techniques that combine

ideas studied by De Loera et al. [61, 64] for transforming combinatorial infeasibility

proofs to large systems of linear equations and ideas of J. Ding et al. [67, 140, 142, 143]

involving the concept of mutants. In each case, algorithms have been developed, im-

plemented and their performance is examined. Finally, the efficiency of the developed

techniques is studied using standard cryptographic examples.
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3.1 Proving Combinatorial Infeasibility

In combinatorial optimization, systems of polynomial equations have been used to

model combinatorial problems such as the matching problem, the graph coloring prob-

lem and the stable set problem (see [63] for an extensive list of references). Therefore,

we can use polynomial systems to decide whether a graph, or other combinatorial struc-

ture, has a property captured by the polynomial system and its associated ideal. We

call this the combinatorial feasibility problem.

In this section we review the concept of transforming infeasibility proofs to large

systems of linear equations. Instead of formulating combinatorial problems by systems

of polynomial equations, we focus on techniques for solving systems of polynomial

equations that formulate combinatorial problems. In particular, we review an algo-

rithm aimed at proving combinatorial infeasibility based on the observed low degree of

Hilbert’s Nullstellensatz certificates for polynomial systems arising in combinatorics,

and based on fast large-scale linear algebra computations over a finite field. The idea is

to use Hilbert’s Nullstellensatz to generate a finite sequence of linear algebra systems,

of increasing size, which will eventually become feasible if and only if the system of

polynomial equations has no solution. Note that a combinatorial problem is feasible

(e.g. a graph is 3-colorable, hamiltonian, etc.) if and only if the related system of

polynomial equations has a solution. We conclude this section with some observations

and remarks.

It was first mentioned by D. Bayer that the 3-colorability of graphs can be modeled

via a system of polynomial equations [23]. Research efforts on encoding combinatorial

properties by systems of polynomial equations includes colorings [9, 62, 72, 98, 133,

134, 135, 138], stable sets [62, 129, 133, 163], matchings [76], and flows [9, 138, 148]. N.

Alon [7, 8, 9] first time used the term polynomial method to refer to the use of systems of

non-linear polynomial equations for solving combinatorial problems. This well-known

method, which Alon referred to as the polynomial method (see [7, 8]) recently regained

strong interest. In [61, 63, 64] infeasibility of certain combinatorial problems is estab-

lished using Hilbert’s (complex) Nullstellensatz and the authors provide an algorithm

NulLA to establish infeasibility by using a linear relaxation. Furthermore, in [64] J.A.

De Loera et al. reviewed a methodology to solve systems of polynomial equations

and inequalities. They discussed techniques that use the algebra of multivariate non-

linear polynomials with coefficients over a field to create large-scale linear algebra or

semidefinite programming relaxations of many kinds of feasibility or optimization ques-

tions. Actually, feasibility and optimization problems translate, either directly or via
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branching, into the problem of finding a solution of a system of equations and inequal-

ities. They have also suggested a way to use the “Fredholm Alternative Theorem” and

“Farkas’ Lemma” [159] to manipulate systems of polynomial equations and inequalities

for finding solutions or proving that they do not exist.

Let K be an algebraically closed field, and let f1, . . . , fs ∈ K[x1, . . . , xn] be non-

zero polynomials. The monoid of terms is Tn = {xα1
1 . . . xαn

n | α1, . . . , αn ∈ N} and for

d ∈ N, we let Tn≤d denote the set of terms with total degree at most d. We consider

the following system S of polynomial equations.

S :


f1(x1, . . . , xn) = 0

...

fs(x1, . . . , xn) = 0

We assume that the system S encodes some combinatorial problem and we study the

set of solutions of the system of polynomial equations S. The system S has either

a (feasible) solution over K or no solution. Note that a combinatorial problem is

infeasible if a related system of polynomial equations has no solution. Since we are

interested in establishing infeasibility proofs, we are more interested in the case when

the system of polynomial equations S has no solution. To study the solution set of S
we first need some ingredients which are as follows. Recall that K is an algebraically

closed field and for simplicity we denote the set of zeros ZK(I) of an ideal I ⊆ P in

Kn by Z(I).

Theorem 3.1.1. (Weak Nullstellensatz)

Let K be a field, and let K be the algebraic closure of K. Let I be a proper ideal of

K[x1, . . . , xn]. Then ZK(I) 6= ∅.

Proof. See [120], Theorem 2.6.13.

Corollary 3.1.2. Let K be an algebraically closed field and let I be an ideal of K[x1, . . . , xn].

Then the following conditions are equivalent.

a) Z(I) = ∅.

b) 1 ∈ I i.e. there exist polynomials g1, . . . , gs ∈ K[x1, . . . , xn] such that

1 =
s∑
i=1

gifi.
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Proof. See [120], Corollary 2.6.14.

We will use a slightly stronger form of the statement given in Corollary 3.1.2.b that

is more useful for our purposes and can easily be deduced using the following lemma.

This stronger form allows us to perform calculations over any field K even if K is not

algebraically closed.

Lemma 3.1.3. Let σ be a term ordering, let K ′ ⊆ K be a field extension, let P ′ =

K ′[x1, . . . , xn], let I ′ ⊆ P ′ be an ideal of P ′, and let I be the ideal of P = K[x1, . . . , xn]

generated by the elements of I ′. Then a σ-Gröbner basis of I ′ is also a σ-Gröbner basis

of I. In particular, we have LTσ{I ′} = LTσ{I}. Furthermore, the reduced σ-Gröbner

basis of I ′ is also the reduced σ-Gröbner basis of I.

Proof. See [120], Lemma 2.4.16.

Definition 3.1.4. Let K be a field and let K be the algebraic closure of K. Let

f1, . . . , fs ∈ K[x1, . . . , xn] be such that the system of polynomial equations f1 = · · · =
fs = 0 has no solution in K

n
. Then there exist polynomials g1, . . . , gs ∈ K[x1, . . . , xn]

such that

1 =
s∑
i=1

gifi. (3.1)

The polynomial identity 3.1 is called a Nullstellensatz certificate. We say a Null-

stellensatz certificate has degree d if max{deg(gi) | i ∈ {1, . . . , s}} = d.

A natural question is to ask about the degree of a Nullstellensatz certificate. There

are well-known upper bounds on the degrees of Nullstellensatz certificates (see Kollár

[116] and the references therein). The upper bounds for the degrees of the polynomials

gi in the Nullstellensatz certificates for general systems of polynomials are doubly-

exponential in the number of input polynomials and their degrees. The upper bounds

provided by Kollár [116] are known to be sharp for some specially constructed systems.

Theorem 3.1.5. Let K be an algebraically closed field and let f1, . . . , fs ∈ K[x1, . . . , xn].

Let d = max{deg(fi) | i ∈ {1, . . . , s}}. If f1, . . . , fs have no common zeros, then

there exist polynomials g1, . . . , gs ∈ K[x1, . . . , xn] such that 1 =
∑s

i=1 gifi, where

deg(gifi) ≤ max{3, d}n.

Proof. This follows directly from Definitions 1.3 and 1.4 and Theorem 1.5 of [116].
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Beyond the very general (and sharp) bounds of Kollár for Nullstellensatz certifi-

cates, we can still hope for subexponential bounds as suggested by J.A. De Loera et al.

[61]. Actually, we can profit here from the following fundamental result by D. Lazard

[125] that provides a linear bound.

Lemma 3.1.6. Let K be a field and let f1, . . . , fs ∈ K[x0, . . . , xn] be homogeneous

polynomials. Let I = 〈f1, . . . , fs〉. Let deg(fi) = di such that d1 ≥ d2 ≥ · · · ≥ ds ≥ 1

and s ≥ n+ 1. Then the following conditions are equivalent:

a) The s projective hypersurfaces defined by f1, . . . , fs have no point in common

over the algebraic closure of K (in particular, they have no point in common at

infinity).

b) The ideal I contains a power of the maximal ideal M = 〈x0, . . . , xn〉; namely, for

some power p, xpi ∈ I for all xi.

c) Mp ⊂ I with

p = d1 + d2 + · · ·+ dn+1 − n ≤ (n+ 1)(max{di | i ∈ {1, . . . , n+ 1}} − 1) + 1.

d) The map φ : (g1, . . . , gs) →
∑
gifi is surjective among all polynomials of degree

p, when for all i, gi is a homogeneous polynomial of degree p− di.

Proof. See [125], page 169.

Remark 3.1.7. J.A. De Loera et al. [61] observed that the polynomial systems that

encode combinatorial problems belong to the case given by Lemma 3.1.6 in the following

sense. Consider the homogenization f̄i of the polynomial fi ∈ K[x1, . . . , xn], using an

extra indeterminate x0. If we find a “projective” Nullstellensatz certificate xp0 =
∑
gif̄i,

we obtain the Nullstellensatz certificate 1 =
∑
g′ifi by substituting x0 = 1. Moreover,

deg(g′i) ≤ deg(gi). J.A. De Loera et al. summarized Lemma 3.1.6 for their use as the

following corollary which also agrees with Brownawell [33], Proposition 9.

Corollary 3.1.8. Let K be an algebraically closed field and let f1, . . . , fs ∈ K[x1, . . . , xn].

Let d = max{deg(fi) | i ∈ {1, . . . , s}}. If f1, . . . , fs have no common zeros over K and

f1, . . . , fs have no common zeros at infinity, then there exist polynomials g1, . . . , gs ∈
K[x1, . . . , xn] such that 1 =

∑s
i=1 gifi, where deg(gi) ≤ n(d− 1).
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Remark 3.1.9. The above corollary says, the degree of a Nullstellensatz certificate for

polynomial systems which encode combinatorial problems has a linear bound, which is

a considerable improvement on the exponential bound predicted by Kollár. Although

this linear bound is an improvement, it is still far from being computationally practi-

cal. However, in [61, 63] it is claimed that in practice the degree growth of polynomial

systems for combinatorial problems is often very slow. From a computational point of

view this sounds to be good news. Furthermore, for the Nullstellensatz certificates, the

degrees of the polynomials gi cannot be larger than the known bounds. Thus we can

design a finite (but potentially long) procedure to decide whether a system of polyno-

mial equations has a feasible solution or no solution. Furthermore, we know bounds

on the degrees of Nullstellensatz certificates for some concrete families of polynomial

systems. For example, every Nullstellensatz certificate of a non-3-colorable graph has

degree at least four and for every graph Γ there exists a Nullstellensatz certificate of

degree equal to the stability number of Γ , certifying that Γ has no stable set of size

greater than its stability number (see [63]). But it is still a challenge to derive degree

bounds for other combinatorial problems.

The algorithm provided by J. De Loera et al. [61, 63] for establishing infeasibility

certificates is called Nullstellensatz Linear Algebra (NulLA) Algorithm. The NulLA

Algorithm takes as input a system of polynomial equations and outputs either a YES

answer, if the system of polynomial equations has a solution, or a NO answer, along

with a Nullstellensatz infeasibility certificate, if the system has no solution.

Theorem 3.1.10. (Nullstellensatz Linear Algebra (NulLA) Algorithm)

Let K be a field and let F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] be a set of polynomials.

Consider the following sequence of instructions.

1) Let dc = 1 and let D be a known upper bound for the degree of a Nullstellensatz

certificate for F .

2) If dc > D, return YES.

3) Let µ = |Tn≤dc |, and d = dc + max{deg(fi) | i ∈ {1, . . . , s}}. Let E denote the

equality 1 =
∑s

i=1 gifi, where gi =
∑µ

j=1 cijtj, are polynomials of degree dc with

unknown coefficients cij ∈ K and terms tj ∈ Tn≤dc.

4) For each t ∈ Tn≤d, combine the terms in E, i.e. by comparing the coefficients

of each term t ∈ Tn≤d on both sides of the equality E, extract a system of linear
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equations L with columns corresponding to the unknown coefficients cij and rows

corresponding to the terms in Tn≤d.

5) If the linear system L has no solution then increase dc by one and continue with

step 2).

6) Replace the unknown coefficients in E with the values of a solution of the linear

system L and return E with a NO answer.

This is an algorithm which returns either a NO answer, if the system f1 = 0, . . . , fs = 0

has a solution, or a YES answer, along with a Nullstellensatz infeasibility certificate, if

the system f1 = 0, . . . , fs = 0 has no solution.

Proof. Consider the system of polynomial equations f1 = 0, . . . , fs = 0. By Corollary

3.1.2 this system has no solution if and only if there exist polynomials g1, . . . , gs ∈
K[x1, . . . , xn] such that

1 =
s∑
i=1

gifi. (3.2)

Furthermore, by Lemma 3.1.3 we have g1, . . . , gs ∈ K[x1, . . . , xn]. Therefore the cor-

rectness follows from Corollary 3.1.2 and Lemma 3.1.3. To make sure that the process

terminates even if the system f1 = 0, . . . , fs = 0 has a solution, we use the known upper

bound on the degree of Nullstellensatz certificate for F . The process is guaranteed to

terminate because, if a Nullstellensatz certificate exists, we must find at least one set

of certificate polynomials gi before reaching the known degree bound D.

The algorithm works as follows. A tentative degree dc on the polynomials gi for

i = 1, . . . , s is fixed. Then step 3) writes an equality E. This equality results in a linear

system L in step 4). If the linear system L has a solution then a certificate is constructed

by replacing the indeterminate coefficients in E with the values of a solution of the

linear system. Otherwise, dc is increased by one. This process is continued until we

have a linear system which has a solution or we exceed the degree bound D. In this

way the process terminates after finitely many iterations.

Remark 3.1.11. In the following, we collect some remarks about the NulLA Algo-

rithm.

a) It is natural to ask about lower bounds on the degree of the Nullstellensatz

certificates. Only little is known on this topic. Recently such a bound was

given in [63] for those combinatorial problems where we need to decide whether
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a given graph has an independent set of a given size. Recall that a stable set

or independent set in a given graph Γ is a subset of vertices such that no two

vertices in the subset are adjacent. For polynomial systems coming from logic

there has also been an effort to show degree growth in related polynomial systems

(see [40, 103] and the references therein). Another question is to provide tighter,

more realistic upper bounds for concrete systems of polynomials. It is a challenge

to derive such bounds for any concrete family of polynomial systems.

b) Since we are interested in practical computational problems, it makes sense to ex-

plore refinements and variations that make NulLA robust and faster for concrete

challenges. The main computational component of NulLA is to construct and

solve linear systems for finding Nullstellensatz certificates of increasing degree.

Furthermore, the size of the linear systems increases dramatically with the degree

of the certificate. A big challenge is to improve NulLA in a way allowing it to use

only the limited available memory and time resources for solving a combinatorial

feasibility problem with as large number of equations and variables as possible.

One of the strategies to improve the efficiency of NulLA could be to find better

linear algebra techniques. This mainly reduces the time consumption. On the

other hand, strategies improving the enlargement step of NulLA, constructing

linear systems for finding Nullstellensatz certificates of increasing degree, will

affect both time and memory consumption.

Example 3.1.12. Let K = R, and let F = {f1, f2, f3, f4} ⊆ K[x1, x2, x3], be a set of

polynomials, where f1 = x21 − 1, f2 = x1 + x2, f3 = x1 − x3 and f4 = x2 − x3. Clearly

the system f1 = f2 = f3 = f4 = 0 has no solution even over C, and we will see that

it has a Nullstellensatz certificate of degree one by following the steps of the NulLA

algorithm.

1) Let dc = 1.

3) Let T3
≤dc = {1, x1, x2, x3}, µ = 4 and d = 3. Write down the tentative certificate

E : 1 =
∑4

i=1 gifi, where gi = ci1x1 + ci2x2 + ci3x3 + ci3 for i = 1, . . . , 4.

4) For each t ∈ T3
≤d, combine the terms in E containing t. We have

1 = (c11x
3
1 + c12x

2
1x2 + c13x

2
1x3)+(c13 + c14 + c31)x

2
1 +(c22 + c42)x

2
2 +(c33 + c43)x

2
3 +

(c21 + c22 + c32 + c41)x1x2 +(c23 + c31 + c33 + c41)x1x3 +(c23 + c32 + c42 + c43)x1x3 +

(c24 + c34 − c11)x1 + (c24 + c44 − c12)x2 + (c34 + c15 − c13)x3 − c14.
By comparing coefficients of each term t ∈ T3

≤d, on both sides of the equality E,
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we have the following system of linear equations.

L : c11 = 0, c12 = 0, . . . , c13 + c21 + c31 = 0, c34 + c44 − c13 = 1, c31 = 0,−c14 = 0

6) The linear system L has a solution, therefore we construct the Nullstellensatz

certificate from the solution of L by replacing cij with the solution values of L as

follows.

1 = (−1)(x21 − 1) + 1
2
x1(x1 + x2)− 1

2
x1(x1 − x3) + 1

2
x1(x2 − x3)

There could be two approaches to make NulLA faster. The first one is by decreasing

the size of the linear system for a given degree, and the second one is by decreasing the

degree of the Nullstellensatz certificate for infeasible polynomial systems. This signif-

icantly reduces the size of the largest linear system that we need to solve for proving

infeasibility. Note that these approaches to reduce the degree of the Nullstellensatz cer-

tificates do not decrease the available upper bounds on the degree of the Nullstellensatz

certificate required for proving feasibility, but they work only in particular instances.

The systems of polynomial equations that encode combinatorial problems are very spe-

cial. To exploit the special properties of these polynomial systems some optimizations

are proposed by J. De Loera et al. in [61, 64]. To apply them to arbitrary polynomial

systems one has to look for certain structures in the polynomials.

Remark 3.1.13. (Optimizations of the NulLA Algorithm)

In the following we have a short look on some optimizations proposed by J. De Loera

et al. in [61, 64].

a) For some combinatorial problems such as 3-colorability, we can carry out calcu-

lations over finite fields, especially over F2, instead of relying on their algebraic

closures. (see [61], Section 3). Finally, the degree of Nullstellensatz certificates

necessary to prove infeasibility can be lower over F2 than over R. For example,

over R, every odd-wheel has a minimum non-3-colorability certificate of degree

six [63]. However, over F2, every odd-wheel has a Nullstellensatz certificate of

degree three. Therefore, not only are the mathematical computations more effi-

cient over F2 as compared to R, but the algebraic properties of the certificates

themselves are sometimes more favorable for computations as well.

b) By appending certain valid but redundant polynomial equations to the system

S, we can decrease the degree of the Nullstellensatz certificate necessary to prove

infeasibility. Let I be the ideal generated by the polynomials f1, . . . , fs. A valid

but redundant polynomial equation is any polynomial equation g = 0 that is
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true for all the zeros of the polynomial system S i.e. g ∈
√
I. A redundant

polynomial equation appended to the system S, is refereed as a degree-cutter.

Note that appending an equation could never increase the necessary degree of a

Nullstellensatz certificate.

c) The size of the linear system in step 4) of the algorithm in Theorem 3.1.10 can

also be reduced by using a group action on the variables, e.g., using symmetries or

automorphisms in a graph. Suppose we have a finite permutation group Sn acting

on the variables x1, . . . , xn. The group Sn induces an action on the set of terms

of degree d with variables x1, . . . , xn. Such kind of optimizations are very special

and they are only applicable to polynomial systems which encode combinatorial

problems. We refer to [61], Section 3 for an explanation how symmetries can be

used to reduce the size of the linear system.

d) Another approach is to decrease the minimal degree of the Nullstellensatz cer-

tificate by using the Alternative Nullstellensatz. By Alternative Nullstellen-

satz we mean the following. Let K be an algebraically closed field and let

f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials. The system of polynomial equations

F : f1 = 0, . . . , fs = 0 has no solution in Kn if and only if there exist polynomials

g1, . . . , gs ∈ K[x1, . . . , xn] and h ∈ K[x1, . . . , xn] such that

h =
s∑
i=1

gifi, (3.3)

and the system f1 = 0, . . . , fs = 0 and h = 0 has no solution. The Nullstellensatz

certificate of Definition 3.1.4 is a special case of this Alternative Nullstellensatz

3.3, where h = 1. In practice, some times the minimal degree of the Alternative

Nullstellensatz certificate is smaller than the minimal degree of the ordinary

Nullstellensatz certificate. Some more ideas to improve NulLA involve branching,

deleting equations and exploiting linear dependencies (see [61], Section 3).

In [61], the process of iterations of NulLA is claimed to terminate correctly due to

the following argument.

The process is guaranteed to terminate because, for a Nullstellensatz cer-

tificate to exist, the degrees of the certificate polynomials gi cannot be more

than known bounds.
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This does not seem to be exactly the case because of the following example. A better

argument could be the following. The process is guaranteed to terminate because, if a

Nullstellensatz certificate exists, we must find at least one set of certificate polynomials

gi before reaching the known degree bound D.

Example 3.1.14. Let K = R, and let F = {f1, f2, f3} ⊆ K[x1, x2], be a set of

polynomials, where f1 = x21 − 1, f2 = x1 + x2 and f3 = x1 − x2. Clearly the sys-

tem f1 = f2 = f3 = 0 has no solution even over C. The upper bound given by

Lemma 3.1.8 is n(d − 1) = 2, where n = 2 is the number of indeterminates and

d = max({deg(f1), deg(f2), deg(f3)}) = 2. Now consider the following certificate for

F .

1 = (45203
2
x21 + 21066x1x2 + 54959

2
x22 + 11611x1 − 51184x2 − 1)(x21 − 1) + (247

2
x31

−67921
2
x21x2 − 78495

2
x1x

2
2 + 37511x32 − 63726x21 + 87094x1x2 − 7163

2
x22 + 37811x1

−2237x2− 39573
2

)(x1+x2)+(−22725x31−9954x21x2+ 71549
2
x1x

2
2+37511x32+52115x21

+79931x1x2 − 7163
2
x22 − 30417

2
x1 − 59433

2
x2 + 62795

2
)(x1 − x2).

The degree of the above certificate is 3 which is larger than 2, the bound given by

Lemma 3.1.8. Similarly we can also establish certificates of degree larger than 3. Note

that the system F also has a certificate of degree less than the bound given by Lemma

3.1.8, which is as follows.

1 = (−1)(x21 − 1) + (
1

2
x1)(x1 + x2) + (

1

2
x1)(x1 + x2)

The following remark gives us a more clear view of the aforementioned fact.

Remark 3.1.15. Assume that the system S has no solution and D is the upper

bound given by Lemma 3.1.5 or Lemma 3.1.8. Then there must exist at least one

Nullstellensatz certificate of degree less than or equal to D. But there may exist

certificates of degree greater than D. And if the system S has a solution then the

process will terminate exactly at degree D. This means that the bound D ensures that

if there does not exist a certificate of degree less than or equal to D then there does

not exists a certificate of degree greater than D. In view of this fact the termination is

guaranteed due to two reasons. Firstly, if the system S has no solution then we must

find a linear system which has a solution. Secondly, if the system S has a solution then

we stop exactly at degree D. See the proof of Theorem 3.1.10 for more details about

correctness and termination of NulLA.
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We end this section with a final remark.

Remark 3.1.16. In [61], it is stated that the iterations of the steps 2)−4) of the NulLA

algorithm determine the running time of NulLA. But in our opinion the running time

depends on the size of the linear systems in step 4). A smaller system of polynomial

equations (having small sized linear systems) may need more iterations than a larger

system of polynomial equations (having very large sized linear systems). We will see

such examples in Section 3.3. Therefore, it is the size of the linear systems that

determines the running time of NulLA. Furthermore, the difficulty of solving a linear

system also matters. Some very well structured and sparse linear systems could be

much easier to solve (see Remark 3.1.13.c).

3.2 The LA Algorithm

In this section we investigate an algorithm aimed at solving systems of polynomial

equations over finite fields. This algorithm is based on the ideas reviewed in Section

3.1 and on fast large-scale (sparse) linear algebra computations over a finite field.

Although such techniques have been known in combinatorial optimization, they have

not been used for polynomial system solving over finite fields. The key issue that we

investigate here is the use of techniques from Section 3.1 for solving over finite fields.

We are particularly interested in whether this can be accomplished in practice for large

systems of polynomial equations over finite fields.

In Section 3.1 we saw a method that generates a finite sequence of linear algebra

systems to decide whether a system of polynomial equations has a solution or no so-

lution. In particular, we saw an algorithm called the Nullstellensatz Linear Algebra

(NulLA) algorithm that takes as input a system of polynomial equations and outputs

either a YES answer, if the system of polynomial equations has a solution, or a NO an-

swer, along with a Nullstellensatz infeasibility certificate, if the system has no solution.

Building on this foundation we study solving systems of polynomial equations over

finite fields, especially over F2. We explicitly formulate and explain the Linear Alge-

bra (LA) Algorithm which is an algorithm for solving systems of polynomial equations

over finite fields. The calculations reduce to (sparse) matrix manipulations, mostly

rank computations. The techniques we use are a specialization of prior techniques

from computational algebra (see [145, 59, 111]). It turns out this technique is partic-

ularly effective when the number of solutions is finite, when the under laying field is

a finite field, or when the system is very well structured. Throughout this section, we
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use the following notation and terminology unless mentioned otherwise.

Let p be a prime number, let q = pe for some e > 0, let K = Fq be the finite

field with q elements, and let f1, . . . , f` ∈ K[x1, . . . , xn] be non-zero polynomials. The

monoid of terms is Tn = {xα1
1 . . . xαn

n | α1, . . . , αn ∈ N} and for d ∈ N, we let Tn≤d
denote the set of terms with total degree at most d. Let I be the ideal generated

by the polynomials f1, . . . , f`. We are interested in finding K-rational solutions of a

system of polynomial equations.

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0

As we saw in Section 2.2, it is safe to include equations of the field ideal while solving

the system of polynomial equations f1 = 0, . . . , f` = 0, since we are looking for K-

rational solutions. From now on we let the set F = {f1, . . . , f`, f`+1, . . . , fm} including

the polynomials f1, . . . , f` and the polynomials f`+1 = xq1−x1, . . . , fm = xqn−xn, where

xqi − xi, for i = 1, . . . , n are the elements of the field ideal. In particular, we assume

that the system of polynomial equations f1 = 0, . . . , fm = 0 has a unique K-rational

solution, say (a1, . . . , an). So the ideal I = 〈F 〉 is a zero-dimensional radical ideal (see

Section 2.2). With this terminology in mind, we have the following lemma.

Lemma 3.2.1. Let I = 〈F 〉. Then there exist elements a1, . . . , an in K such that

I = 〈x1 − a1, . . . , xn − an〉.

Proof. The claim follows from Theorem 2.2.4 and [120], Proposition 2.6.11.

The following definition plays an important role to formulate the LA Algorithm.

Definition 3.2.2. Let xi ∈ {x1, . . . , xn}.

a) An element k ∈ K is called an ith solution coordinate if there are polynomials

gj ∈ K[x1, . . . , xn] such that

xi − k =
m∑
j=1

gjfj, (3.4)

where fj ∈ F . The identity 3.4 is called a certificate for the ith solution coordi-

nate k.
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b) We say a certificate has degree d if d = max{deg(gj) | j = 1, . . . ,m}.

Remark 3.2.3. In the above setting, the ideal I is of the form 〈x1− a1, . . . , xn− an〉.
Then every reduced Gröbner basis of I is of the form {x1 − a1, . . . , xn − an}. So to

check whether an element k ∈ K is an ith solution coordinate is equivalent to check the

membership xi − k ∈ I. The idea is then to find the certificate, i.e. the polynomials

gj for xi. Such a certificate can be found by generating a sequence of linear algebra

systems of increasing size. This sequence eventually produces a linear system which

has a solution.

The ideas described above provide us with the following algorithm which we call

the Linear Algebra Algorithm (LA Algorithm).

Theorem 3.2.4. (The LA Algorithm)

Let F = {f1, . . . , fm} ⊆ K[x1, . . . , xn] be non-zero polynomials containing the elements

of the field ideal such that the system of polynomial equations f1 = 0, . . . , fm = 0 has a

unique solution (a1, . . . , an) ∈ Kn. Consider the following sequence of instructions.

1) Let S = ∅, X = {x1, . . . , xn}, and let H = F .

2) If X = ∅, return S. Otherwise, choose an indeterminate xs ∈ X and delete it

from X. Let dc = 0, Q = K and r = |H|.

3) If Q 6= ∅, then choose an element k ∈ Q and delete it from Q. Otherwise, increase

dc by one, let Q = K and choose an element k ∈ Q and delete it from Q.

4) Let ν = |Tn≤dc|, and d = dc + max{deg(h) | h ∈ H}. Let Ek denote the equality

xs− k =
∑r

i=1 gihi, with hi ∈ H and gi =
∑ν

j=1 cijtj, where cij ∈ K are unknown

coefficients and tj ∈ Tn≤dc.

5) For each t ∈ Tn≤d, combine the terms in Ek, i.e. by comparing the coefficients

of each term t ∈ Tn≤d on both sides of the equality Ek, extract a system of linear

equations Lk with columns corresponding to the unknown coefficients cij and rows

corresponding to the terms in Tn≤d.

6) Solve the linear system Lk.

7) If the linear system Lk has no solution then continue with step 3).

8) Append the corresponding k to S, substitute xs = k in H. Then continue with

step 2), applied to polynomials in a smaller ring.
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This is an algorithm which returns the unique solution (a1, . . . , an) of the system of

polynomial equations f1 = 0, . . . , fm = 0.

Proof. Let I = 〈F 〉 be the ideal generated by F . The ideal I is a zero-dimensional

radical ideal having a unique solution (a1, . . . , an) which is rational over K. Therefore,

Hilbert’s Nullstellensatz implies that the vanishing ideal of the point (a1, . . . , an) in Kn

is I = 〈x1 − a1, . . . , xn − an〉. Thus, for each xs ∈ X there exists a set of polynomials

gi ∈ K[x1, . . . , xn], i = 1, . . . ,m such that

xs − as =
m∑
i=1

gifi, (3.5)

where as ∈ K is the corresponding solution coordinate. To check the correctness, it

suffices to observe the following. From steps 4)−5), the equation 3.5 holds if and only if

there exists a linear system which has a solution. Since Hilbert’s Nullstellensatz implies

that 3.5 holds, there exists a linear system which has a solution. The only thing left

to see is how to find such a linear system. For this we generate the ideal gradually

degree by degree in the following way. A tentative degree dc on the polynomials gi

for i = 1, . . . ,m is fixed. Then step 4) writes an equality Ek as a tentative certificate.

This equality results in a linear system Lk in step 5). If the linear system Lk has

no solution and there are no more elements in Q then dc is increased by one. This

process is continued until we find a linear system which has a solution. Now replacing

the indeterminate coefficients in Ek with the values of a solution of the linear system

provides the corresponding certificate. Thus, the corresponding k ∈ Q is a solution

coordinate and the process terminates after finitely many iterations.

Remark 3.2.5. In step 2) of the algorithm, one can choose variables randomly or

depending on which variable to find first. The process of solving linear systems in step

3) takes advantage of fast linear algebra techniques. The size of linear systems deter-

mines the running time of this algorithm. The LA Algorithm has some useful features

for solving systems of polynomial equations over finite fields. It can be parallelized

very easily due to two reasons. Firstly, the system can be solved for an individual

indeterminate. Secondly, the process of solving linear systems can be parallelized.

Furthermore, it takes advantage of fast linear algebra techniques, possible sparseness

and the structure of the polynomial system F as well as the linear system.

There could be two approaches to make the LA Algorithm faster. The first one is
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by decreasing the size of the linear system for a given degree, and the second one is by

decreasing the degree of the certificate for an ith solution coordinate. Thus significantly

reducing the size of the largest linear system that we need to solve to find an ith solution

coordinate. Note that these approaches to reduce the degree of a certificate do not

decrease the available upper bounds on the degree of the Nullstellensatz certificate

required to find an ith solution coordinate, but they work only in particular instances.

Also to apply such approaches to arbitrary polynomial systems one has to look for

certain structures in the polynomials.

A closer look at this algorithm shows that different variants and optimizations of

the LA Algorithm are possible. Some of the most effective ones will be discussed in

Sections 3.4 and 3.5. Here we limit ourselves to pointing out some obvious opportunities

for improvement.

Remark 3.2.6. (First Optimizations of the LA Algorithm)

a) Deleting Equations: The LA Algorithm spends most of its time on solving

linear systems. One way of reducing the size of these linear systems is to remove

all fi ∈ F for which there exists h1, . . . , hi−1, hi+1, . . . , hh ∈ K[x1, . . . , xn], such

that fi = Σj 6=ihjfj and deg(hjfj) ≤ deg(fi) for all j 6= i. This means that

fi is in the ideal generated by F \ {fi}. Thus, fi is a redundant polynomial.

Since replacing fi with
∑

j 6=i hjfj in a given certificate gives another certificate

of the same degree but without fi, removing fi can never increase the degree of

a certificate.

b) Exploiting Linear Dependencies: In step 5) of the theorem, there are often

many columns in the coefficient matrix of the linear system Lk that are linear

combinations of other columns. If we could avoid creating these columns then

solving the linear system Lk would be more efficient. Actually, each column of

this matrix corresponds to the polynomial t′hi for some term t′ ∈ Tn≤dc and some

polynomial hi ∈ H where deg(t′hi) ≤ d. The column t′hi is thus a linear combi-

nation of the other columns of the matrix if there exists β1, . . . , βl ∈ K[x1, . . . , xn]

such that t′hi =
∑l

j=1 βjhj where deg(βjhj) ≤ d and the term t′ does not appear

in the polynomial βi.

To understand Theorem 3.2.4 better, we now apply the LA Algorithm in a con-

crete case.
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Example 3.2.7. Let n = 2, let q = 2, and let F = {f1, f2, f3, f4} ⊆ F2[x, y], be the

following set of polynomials f1 = xy+ y+ 1, f2 = xy+ x, f3 = x2− x and f4 = y2− y.

The system of polynomial equations f1 = f2 = f3 = f4 = 0 has a unique solution over

F2. We are looking for the unique solution and follow the steps of the LA Algorithm.

1) Let S = ∅, X = {x, y}, and H = F .

2) Choose x ∈ X and set X = {y}. Let dc = 0, Q = {0, 1} and r = 4.

3) Choose 0 ∈ Q and set Q = {1}.

4) Let d = 2, T2
≤dc = {1}, and ν = 1. Write down the equality E0 : x =

∑4
i=1 gihi

where hi = ci1.

5) The corresponding linear system is L0 = {c11 + c21 = 0, c11 + c41 = 0, c11 =

0, c21 + c31 = 1, c31 = 0, c41 = 0}

6) Solve the linear system L0.

7) The linear system L0 has no solution therefore return to step 3).

3) Choose 1 ∈ Q and set Q = ∅.

4) Let d = 2, T2
≤dc = {1}, and ν = 1. Write down the equality E1 : x−1 =

∑4
i=1 gihi

where hi = ci1.

5) The corresponding linear system is L1 = {c11 + c21 = 0, c11 + c41 = 0, c11 =

1, c21 + c31 = 1, c31 = 0, c41 = 0}.

6) The linear system L1 has no solution.

7) The linear system L1 has no solution therefore return to step 3).

3) Set dc = 1 and Q = {0, 1}. Choose 0 ∈ Q and set Q = {1}.

4) Let d = 3, T2
≤dc = {x, y, 1} and ν = 3. Write down the equality E0 : x =∑4

i=1 gihi where hi = ci1 + ci2x+ ci3y.

5) The corresponding linear system is L0 = {c12 + c22 + c33 = 0, c13 + c23 + c42 =

0, c11 + c12 + c21 + c23 + c33 + c42 = 0, c13 + c43 + c41 = 0, c22 + c31 + c32 = 0, c32 =

0, c43 = 0, c11 + c13 + c41 = 0, c12 + c21 + c31 = 1, c11 = 0}.
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6) The linear system L0 has a solution. Therefore we found the first solution coor-

dinate which gives the value of x.

8) Let S = {0}. Substitute x = 0 in all the polynomials of H which gives H =

{y + 1, y2 − y}. Then return to step 2).

2) Choose y ∈ X and set X = ∅. Let ds = 0 and r = 2.

3) Choose 1 ∈ Q and set Q = {0}.

4) Let d = 2, T2
≤dc = {1}, and ν = 1. Write down the equality E1 : x =

∑2
i=1 higi

where hi = ci1.

5) The corresponding linear system is L1 = {c11 + c21 = 1, c11 = 1, c21 = 0}

6) The linear system L1 has a solution.

8) Let S = {0, 1}, and let H = ∅. Then return to step 2).

2) Since X = ∅, we return the solution {0, 1}.

Remark 3.2.8. (The Degree Bounds of the Nullstellensatz Certificates)

We have the following observations on the degree bound of a Nullstellensatz certificate.

a) A natural question could be to ask about the degree of the Nullstellensatz cer-

tificates for finding an ith solution coordinate. A first answer to this question is

straightforward. The well-known upper bounds on the degrees of Nullstellensatz

certificates discussed in Section 3.1 (see Lemma 3.1.5) are also valid in our case.

But these upper bounds for the degrees of the gi in the Nullstellensatz certifi-

cates for general systems of polynomials are doubly-exponential in the number of

input polynomials and their degree. Lemma 3.1.8 provides a linear bound which

is a considerable improvement but it is only valid for those polynomial systems

which encode combinatorial problems. Since we are working over (small) finite

fields, we can hope for less extreme (e.g., exponential or subexponential) bounds.

The solution of linear systems of equations with polynomial coefficients is an

important topic that has received attention by algebraic geometers, computer al-

gebraists and cryptographers. The techniques we use are a specialization of prior

techniques from computational algebra like Gröbner bases and border bases (see

[145, 59, 111, 126, 120]). There have been several attempts on finding bounds for

Gröbner bases algorithms. Recently, some bounds for the generic complexity of
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Gröbner bases algorithms over the finite field F2 for semi-regular overdetermined

systems were provided in [20]. Since the techniques we use are a specialization of

Gröbner bases, the bounds for our techniques seem equal to the bounds in [20].

But it is still a challenge to settle specially for any concrete family of polynomial

systems.

b) In combinatorial optimization, we know bounds on the degrees of the Nullstellen-

satz certificates for some concrete families of polynomial systems. For example,

every Nullstellensatz certificate of a non-3-colorable graph has degree at least four

and for every graph Γ there exists a Nullstellensatz certificate of degree equal to

the stability number of Γ , certifying that Γ has no stable set of size greater than

its stability number (see [63]). Recall that a stable set in a given graph Γ is a

subset of vertices such that no two vertices in the subset are adjacent and the

size of the largest stable set in Γ is called the stability number of Γ . But it is

still a challenge to settle for other combinatorial problems. In a similar way we

can also ask about upper bounds on the degrees of the Nullstellensatz certificates

for finding an ith solution coordinate for some concrete families of systems of

polynomial equations over finite fields. Again it is still a challenge to settle. Note

that combinatorial problems have very special structures on them which support

such kind of bounds. The polynomial systems coming from other areas may not

have such special properties.

Remark 3.2.9. As described, the LA Algorithm reduces a polynomial system solving

problem to a linear algebra problem. This enables us to use linear algebra techniques

of last fifty years for polynomial system solving. M4RI is a library for fast arithmetic

with dense matrices over F2 and it has good performances. For general finite fields

the best linear algebra packages are ATLAS, LinBox, FFLAS-FFPACK and Sage which are

very efficient for dense linear algebra, but not tuned for dealing special structures in

matrices. In [75], J.-C. Faugère and S. Lachartre presented, a linear algebra package

for computing Gaussian elimination of Gröbner bases matrices. The package works

for any finite field and contains specific algorithms to compute Gaußian elimination

as well as specific internal representation of matrices (sparse triangular blocks, sparse

rectangular blocks and hybrid rectangular blocks). For matrices coming from Gröbner

bases applications this package seems to be the fastest one. In the following we discuss

some more methods available for linear system solving.
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• Sparse Linear Algebra: The systems generated by the LA Algorithm are ob-

viously sparse. A respected textbook on sparse matrices [70] remarks that in

not using matrix algorithms more tailored for the situation “you would just be

pushing milliards of zeros around”. Moving around gigabytes full of zeros not

only slows down the computation directly, but increases the amount of memory

required. Instead of using näıve Gaußian elimination for sparse matrices, a better

procedure is to find block structures with graph-coloring analysis (see [70]). The

elimination cost is then dominated by the elimination cost for the largest block.

Since we are working over finite fields, Lanczos, Conjugate Gradient (GC), or

Block Wiedemann algorithms [55] could be a good choice for solving linear sys-

tems. The Wiedemann algorithm can be used to find vectors in the null space

of a matrix but to solve a linear system one can simply make a “dummy vari-

able”, and replace the constant 1 with this dummy variable. Solutions with the

dummy variable equal to one are valid solutions. Lanczos, Conjugate Gradient

and Wiedmann methods all have comparable speeds. The Wiedemann algorithm

looks slower but more reliable (see [38, 123, 172]). But there are also some

reservations on these methods. Lanczos (or Conjugate Gradient) is known to

terminate sometimes incorrectly over a finite field. The Wiedemann algorithm

is not known to terminate always correctly for non-square matrices. Proper op-

erating conditions are not fully understood. However, such methods are used in

practice.

• Structured Gaußian Elimination: This algorithm is also called Pomerance-

Smith Algorithm or the Created Catastrophes Algorithm but neither of these

names is very descriptive (see [123, 153]). This method looks more convincing

for sparse matrices. But to apply this method the matrix should also have the

right structure. Mainly, this algorithm is used during factoring methods like

the Quadratic Sieve and those matrices are over F2. But it can also work over

arbitrary finite fields with small adjustments. The use of this method for lin-

ear systems other than those coming from integer factorization problems is not

known. Therefore, it could be interesting to see whether this method is applica-

ble for linear systems coming from the LA Algorithm. We present more details

and our observations along with computational evidences in Section 3.3.
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3.3 Experimental Results for the LA Algorithm

In this section we report on some experiments with the LA Algorithm. First we try

to see what can be achieved using a straightforward, non-optimized implementation

of the LA Algorithm. Then we present some ideas for exploiting possible sparsity

and the structure of a polynomial system. Moreover, we compare some of the timings

we obtained to the straightforward Gröbner basis approach. Since the LA Algorithm

reduces a polynomial system solving problem to a linear algebra problem, it highly

depends on methods from linear algebra used for rank computations. We also report

on experimental results using different methods and implementations of linear algebra.

A linear system can be viewed as a matrix. Therefore, we frequently switch between

matrices and linear systems to discuss experimental results. As described, the LA

Algorithm reduces a polynomial system solving problem to a linear algebra problem.

This brings to bear the full artillery of fifty years of linear algebra research on the

difficulty of the problem. Since the calculations reduce mostly to rank computations,

we focus on calculating echelon forms, instead of solving linear systems for values of

variables. In particular, we use the following libraries and some self implemented codes

for calculating echelon forms.

• LinBox: The C++ library LinBox available as ApCoCoA [12] package linbox.

Mostly we use this library to calculate an echelon form of a relatively dense

matrix.

• Echelon Form (EF): A self implemented code for calculating an echelon form

of a dense matrix over F2 using “Näıve Gaußian Elimination”. Consider a matrix

M. At iteration i, the i − 1 columns at the left have been processed. Now in

column i, one must find a 1 at position Mii or swap one into place, using row

swaps. Thus the pivoting strategy could be said to be to ensure a non-zero entry

atMii. This implementation can be found in the ApCoCoA [12] package linalg.

• Sparse Echelon Form (SEF): If the matrix is sparse then we encode the

matrix by considering the positions of non-zero elements. Then we apply näıve

Gaußian elimination. For sparse matrices over finite fields, at iteration i, the

obvious approach is to take the lowest weight row that happens to have a non-zero

element in column i. Recall that the weight of a row is the number of non-zero

entries in it. We call this “Näıve Sparse Gaußian Elimination”. At iteration i,

after choosing a lowest weight row r one can scan through the row to see which
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column c has lowest weight, but Mrc non-zero. Then pivot by swapping column

i and column c as well as row r and row i. Obviously, choosing the lowest weight

row and then the lowest weight column can reduce the fill-in. We have observed

that we do not need to choose the lowest weight column for matrices which come

from the LA Algorithm. Thus we can avoid some unnecessary computations.

Actually, the idea is to preprocess a matrix to arrange it in a particular form

before computing SEF. The SEF algorithm is implemented in collaboration with

X. Xiu and is available in the ApCoCoA [12] package slinalg.

• Structured Gaußian Elimination (SGE): An implementation of the method

known as “structured Gaußian elimination” [123, 153] to calculate an echelon

form of a matrix. The main idea of structured Gaußian elimination is to work on

preserving sparsity of light part by declaring some columns (with largest weight)

as heavy. The set of heavy columns is allowed to grow as the algorithm progresses.

The variant of this algorithm that we have implemented is composed of the

following four steps.

1) Delete all columns that have a single non-zero entry and the rows in which

those columns have non-zero coefficients.

2) Declare some additional light columns to be heavy by choosing the heaviest

ones.

3) Delete some of the rows, selecting those which have the largest number of

non-zero elements in the light columns.

4) For any row which has only a single non-zero entry equal to 1 in the light

column, subtract appropriate multiples of that row from all other rows that

have non-zero coefficients on that column so as to make those coefficients

zero.

Finally, näıve Gaußian elimination is applied on the dense part of the matrix.

For more details we refer to [123]. We focus on calculating an echelon form using

structured Gaußian elimination. It is implemented in collaboration with X. Xiu

and is available in the ApCoCoA [12] package slinalg.

The cryptosystems considered to construct algebraic systems of equations are HFE

(Hidden Field Equations) and CTC (Courtois Toy Cipher). For more details about

these cryptosystems and related algebraic systems of equations see Section 2.3. For

the cryptosystems under consideration, we used the ApCoCoA implementations by
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J. Limbeck (see [131]). The systems used for experiments are provided in the CD

attached to the thesis. Finally, note that the only time consuming step in the LA

Algorithm is solving a linear system. Throughout this section we consider the timings

only for calculating echelon forms. The timings for forming certificates and extracting

linear systems are ignored, since they were not implemented efficiently and should be

seen as a preprocessing step. Throughout this section, time is given in seconds unless

mentioned otherwise. All timings were obtained on a computer with a 2.1 GHz AMD

Opteron 6172 processor and 64GB RAM. The implementation of the LA Algorithm is

also available online as a part of the ApCoCoA [12] package charP. For more details

about implementation see Appendix B.

3.3.1 Experimental Results for HFE

Consider algebraic systems of equations constructed from the HFE cryptosystem. Since

these systems are determined, we represent the size of each system by using the number

of variables in the system. For instance, HFE(6) means an instance of HFE with six

equations and six variables. The systems were constructed to have a unique solution.

In Table 3.1, we collect the sizes of the resulting polynomial systems from HFE cryp-

tosystem over F2 and compare the timings for their solution with the straightforward

computation of a Gröbner basis in CoCoA [51].

System Equations Variables d Matrix Size LinBox EF GBasis

HFE(6) 6 6 2 57×133 0.02 0 0.01
HFE(7) 7 7 2 99×204 0.06 0 0.02
HFE(8) 8 8 2 163×297 0.13 0 0.13
HFE(9) 9 9 2 256×441 0.19 0 0.26
HFE(10) 10 10 2 386×595 0.4 0.05 0.8
HFE(11) 11 11 2 562×781 0.6 0.3 3.15
HFE(12) 12 12 2 794×1002 1.9 0.6 31.24
HFE(13) 13 13 3 2380×4915 86 15 349

Table 3.1: HFE size and time comparison using the LA Algorithm

See the results in Table 3.1. Each timing represents the total time taken by LinBox

or EF to calculate echelon forms of all the matrices during the process of solving a

particular instance of HFE. The sixth and seventh columns give the time taken by

LinBox and EF respectively. The last column shows the time taken by the computation

of a Lex Gröbner basis in CoCoA [51]. The fifth column shows the size of biggest matrix
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that was formed during the process by the LA Algorithm. Note that the biggest matrix

is formed when we attempt to find the first solution coordinate. For instance, the total

time taken by LinBox for calculating echelon forms of all the matrices to solve HFE(13)

is 86 seconds and the size of biggest matrix is 2380×4915. In fourth column we have

degrees d of the certificate polynomials.

As one can see from Table 3.1, in practice, the degree d of the certificate polynomials

is much lower than the known upper bounds (see Theorem 3.1.5 and Corollary 3.1.8)

and degree growth seem to be very slow. Even for very small instances of HFE the

running time of the LA Algorithm compare favorably to the running times of a Gröbner

basis computation. We can also see the dependence of the running time on the linear

algebra technique used. A sophisticated use of linear algebra can improve the running

time a lot.

3.3.2 Experimental Results for CTC

Given the CTC cryptosystem and a plaintext-ciphertext pair, we construct an overde-

termined algebraic system of equations in terms of the indeterminates representing key

bits and certain intermediate quantities. The task is to solve the system for the key

bits. The size of the system depends mainly on two parameters: the number B of

simultaneous S-boxes and the number N of encryption rounds used. For more details

see Section 2.3. From now on we denote a particular instance of CTC by CTC(B,N).

In [146], S. Murphey and M. Robshow remarked:

We can, of course, immediately reduce the sizes of these multivariate quadratic

systems by using the linear equations to substitute for state and key vari-

ables, though the resulting system is slightly less sparse.

As we know, for systems of polynomial equations like CTC, there are three possible

levels of substitution. They are as follows.

1) No Substitution: The first possibility is to consider a system without any

substitution. We denote such an instance by CTC(B,N)0.

2) Substitution Using Linear Equations: The second possibility is to use linear

equations for substituting state and key variables. For any linear polynomial in

the system CTC(B,N) one can consider the term xi as:

xi = x1 + · · ·+ xi−1 + xi+1, . . . , xn + 1,
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System Equations Variables System Equations Variables

CTC(1,3)0 72 39 CTC(3,3)0 216 117
CTC(2,2)0 98 54 CTC(3,4)0 285 253
CTC(2,3)0 144 78 CTC(4,3)0 288 156
CTC(3,2)0 147 81 CTC(4,4)0 380 204

CTC(1,3)1 42 9 CTC(3,3)1 126 27
CTC(2,2)1 56 12 CTC(3,4)1 168 36
CTC(2,3)1 84 18 CTC(4,3)1 168 36
CTC(3,2)1 84 18 CTC(4,4)1 224 48

CTC(1,3)2 0 0 CTC(3,3)2 42 9
CTC(2,2)2 13 3 CTC(3,4)2 42 9
CTC(2,3)2 28 6 CTC(4,3)2 53 11
CTC(3,2)2 44 7 CTC(4,4)2 56 12

Table 3.2: CTC instances used

where the term 1 is optional and any number of xj on right hand side could

be zero. This is, in a sense, a re-definition of xi, and so we add this equation

to every polynomial in the system where xi appears. Afterward, xi will appear

nowhere in the system of equations, except in its definition. Note that after the

substitution the maximum degree of polynomials remains quadratic. We denote

such an instance by CTC(B,N)1.

3) Substitution Using Linear and Quadratic Equations: The third possibility

is to use linear and quadratic equations for substituting key variables. For any

specific polynomial one can reorder the terms as follows.

xi = x1 + · · ·+ xi−1 + xi+1, . . . , xs + (quadratic terms not containing xi) + 1,

where the term 1 is optional and any number of xj on right hand side could

be zero. This is, in a sense, a re-definition of xi, and so we add this equation

to every polynomial in the system where xi appears. Afterward, xi will appear

nowhere in the system of equations, except in its definition. Note that after the

substitution the maximum degree of polynomials is greater than two. We denote

such an instance by CTC(B,N)2.

In Table 3.2, we collect the sizes of some resulting polynomial systems for three

possible levels of substitution. These systems are such that each of them has a unique

solution over F2. These systems will be used to report on experimental results in
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this section.

Substitution Using Linear and Quadratic Equations

If algorithms are employed which do not exploit possible sparseness of a system this

substitution level may provide a slight improvement. This substitution results in an

equation system in the key variables only. However, as S-box equations are substituted,

it is not guaranteed that solutions found also solve the original system of equations.

This is because there are fewer constrains on the variables than in the original system.

So correctness is not guaranteed with this substitution. In this case we have a system

of equations with much less equations and variables. Although this system is not sparse

anymore, it gives us much better results as compared to other substitution levels as

reported by Table 3.3.

System SEF LinBox EF GBasis d Matrix Size

CTC(2,2)2 0 0 0 0 0 8×14
CTC(2,3)2 0.04 0.08 0 0.09 0 64×197
CTC(3,2)2 0.4 0.24 0 0.14 0 128×352
CTC(3,3)2 23 3.5 1 0.83 0 512×1933
CTC(3,4)2 45 5 0.7 2.99 0 512×1933
CTC(4,3)2 820 33 12 128 1 2048×3551

Table 3.3: CTC(B,N)2 time comparison using the LA Algorithm

In Table 3.3, each timing represents the total time taken by SEF, LinBox or EF to

calculate echelon forms of all the matrices during the process of solving a particular

instance of CTC. The fifth column shows the time taken by the computation of a Lex

Gröbner basis in CoCoA [51]. In sixth column we have degrees d of the certificate

polynomials. Note that, in practice, the degree growth of the certificate polynomials

is very slow. The last column shows the size of biggest matrix that was formed during

the process by the LA Algorithm.

Substitution Using Linear Equations

After this substitution the system is less sparse. For instance, the order of biggest

matrix to solve CTC(2,2)1 is 299×729 and it has 21.8 non-zero elements per row.

Whereas the size of biggest matrix to solve CTC(2,2)0 is 96520×145605 and it has 5.7

non-zero elements per row. Further experimental results are reported in Table 3.4.
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System SEF SEFLex GBasis d Matrix Size

CTC(2,2)1 0.11 0.11 0.12 1 299×729
CTC(2,3)1 2 1.5 1.69 1 988×1597
CTC(3,2)1 6 4 1.8 1 988×1597
CTC(3,3)1 14506 7549 7315 2 20854×47753
CTC(3,4)1 > 100h 81h > 100h 2 66699×112723

Table 3.4: CTC(B,N)1 time comparison using the LA Algorithm

Each timing in Table 3.4 represents the total time taken by SEF or EF to calculate

echelon forms of all the matrices during the process of solving a particular instance of

CTC except CTC(3,4), where we have considered timing in hours only for the biggest

matrix. The fifth column shows the time taken by the computation of a Lex Gröbner

basis in CoCoA [51]. In sixth column we have degrees d of the certificate polynomials.

Again note that, in practice, the degree growth of the certificate polynomials is very

slow. The last column shows the size of the biggest matrix that was formed during the

process by the LA Algorithm.

Figure 3.1: Structure of CTC(1,2)1

Note that both second and third columns represent the time taken by SEF. The

timings in column three represented by SEFLex are taken after processing the system

as follows. Order the polynomials in a system CTC(B,N) such that a polynomial with

less number of terms comes first. In the algorithm of Theorem 3.2.4 linear equations

correspond to terms. Arrange these linear equations using Lex order on terms. Fur-
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thermore, consider the matrix of the linear system in step 6) of the LA Algorithm.

A column of this matrix represents tfi for some term t. Arrange these columns as

follows. The polynomial t′fi proceeds the polynomial t′fi if we have deg(t′) < deg(t),

or if we have deg(t′) = deg(t) and t′ ≥Lex t. After preprocessing the matrix carries a

particular structure on it which is very helpful to calculate an echelon form. Actually,

in this matrix a big portion below the principal diagonal contains only zero entries.

For instance, a degree one certificate matrix for CTC(1,2)1 looks like the one in Figure

3.1, where the diagonal straight line represents principal diagonal.

In column three of Table 3.4 the main idea is to exploit the portion under the

principal diagonal. This technique worked effectively for us in solving matrices as large

as 91219 × 136069 and with almost 23 elements per row in almost 492004 seconds on

a small PC with 2.2 GHz processor and 20 GB of RAM. The actual memory used

during the whole process was only about 1.8 GB. Note that SEF is implemented in

a straightforward way to calculate an echelon form without using any sophisticated

data structures. Also note that LinBox cannot solve linear systems of this size with

time and space requirements as described above. The structural information described

above is also valid for CTC(B,N)0.

No Substitution

If linear and quadratic equations are not substituted and algorithms are employed which

do not exploit possible sparseness of given system then time and memory requirements

are much higher. Since there are more variables in the system, the degree of a certificate

could also be higher. A natural interpretation of this fact is that the degree of a

certificate is exponential in the number of variables and the total degree of the system.

System Non-Zero SEFLex d Matrix Size

CTC(1,2)2 5.0 0.3 1 1049×1373
CTC(1,3)2 6.1 26 1 35030×56214
CTC(2,2)2 5.7 337 2 96520×145605

Table 3.5: CTC(B,N)0 time comparison using the LA Algorithm

Since matrix is quite sparse another natural idea could be to apply the so called

structured Gaussian elimination [123]. We have also implemented and tried structured

Gaussian elimination. But it does not seem to perform in an expected way. The non-

zero elements are scattered throughout the matrix so that it is difficult to distinguish

between light and heavy parts. Furthermore, consider the matrix of the linear system
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in step 6) of the LA Algorithm. A column of this matrix represents tfi for some

term t. Thus the number of non-zero entries in a column is equal to number of terms

in the polynomial tfi. The reason for this is that there are almost no columns in

the matrix with only one non-zero entry. So we conclude that this method can work

only for matrices which have a specific structure such as matrices coming from integer

factorization problems. The usefulness of its application to matrices which come from

the LA Algorithm is not clear.

3.4 The Mutant LA Algorithm

In this section we highlight a hybrid method that combines ideas studied by De Loera

et al. [61, 64] for transforming combinatorial infeasibility proofs to large systems of

linear equations and ideas of J. Ding et al. [67, 140, 142, 143] involving the concept

of mutants. The concept of mutants was first discovered by J. Ding [67] and has the

potential to improve various algorithms for solving systems of polynomial equations

which use linear algebra. We review the concept of mutants and explore the potential

of their application to improve the LA Algorithm studied in Section 3.2.

One of the most useful applications of Gröbner bases is to compute the solution set

of a system of polynomial equations. The Buchberger’s algorithm [34] was the first al-

gorithm for computing Gröbner bases. It is based on the computation of Gröbner bases

using S-polynomials. Due to complexity issues of the standard Buchberger algorithm,

several algorithms such as F4 [73], F5 [74] and XL (extended linearization) [59] have

been proposed. The F4 [73] is an algorithm that uses linear algebra and Buchberger’s

S-polynomial techniques to compute Gröbner bases. It takes advantage of fast linear

algebra techniques and possible sparseness of the linear system. The F5 algorithm

was introduced in [74] to avoid reductions to zero. The F4 and F5 algorithms rose to

popularity after they were successfully used to break the “HFE 80 Challenge”. Recent

improvements made them even more powerful.

The XL Algorithm was proposed in [59] as an efficient algorithm which in turn is

based on a technique called relinearization. It was proposed for solving multivariate

polynomial systems in case only a single solution exists. Contrary to some initial hopes,

it does not solve the problem in subexponential time and, worse, it suffers from a rapid

increase in memory consumption. To overcome this difficulty, several optimizations

have been proposed. Actually, these algorithms find additional polynomials of not

much larger degree in the ideal generated by the polynomials of the system F by
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multiplying them by terms. They apply Gaußian elimination after linearizing the

system by replacing terms with variables.

In [67], J. Ding observed that during Gaußian elimination some special polynomials

of degree lower than what they normally should be appear and he named them as

mutants. The idea is that in the process of generating new equations, polynomials of

small degree should be treated preferentially. Mutant strategy can be used to improve

various algorithms for solving systems of polynomial equations which use linear algebra.

In [68], J. Ding et al. proposed the MutantXL algorithm as a variant of the XL

Algorithm that is based on the mutant strategy. Note that the XL Algorithm is the

first algorithm that is equipped with the mutant strategy until now. Therefore, there

is a need to design mutant variants of other linear algebra algorithms such as the LA

Algorithm and the Border basis algorithm for polynomial system solving.

In the following, we explore the potential of the mutant strategy to improve the LA

Algorithm. This leads to a hybrid method that combines the ideas of De Loera et al.

[61, 64] and J. Ding et al. [67, 140, 142, 143]. Before digging deep into further details,

let us first define a bit of terminology to use in this section.

Let p be a prime number, let q = pe for some e > 0, let K = Fq be the finite

field with q elements, and let F = {f1, . . . , fm} be a set of polynomials over K, i.e.

f1, . . . , fm ∈ P = K[x1, . . . , xn]. Let I = 〈F 〉 be the ideal generated by F . As we are

interested in finding K-rational solutions of the system of polynomial equations defined

by F , we will be working over the ring

R = K[x1, . . . , xn]/〈xq1 − x1, . . . , xqn − xn〉,

where we reduce everything modulo the field polynomials. In the process of solving

the system, we are typically generating further elements of the ideal I in R. Recall

from Section 2.2 that R is the residue class ring of K[x1, . . . , xn] whose every element

(residue class) is represented as a polynomial. Since each element (residue class) in

R is represented by a polynomial, we can define the degree, leading term and leading

variable of this polynomial in the natural way.

In particular, we assume that the polynomial system defined by F has a unique

K-rational solution. Furthermore, let σ be a degree compatible term ordering on the

terms of P . The monoid of terms is Tn and for d ∈ N, we let Tn≤d denote the set of

terms of R with total degree at most d. In this setting we define mutants as follows.

Definition 3.4.1. Let g ∈ I. Let g = h1f1 + · · · + hmfm be a representation of g,
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where hi ∈ R.

a) The number l = max{deg(hifi) | i ∈ {1, . . . ,m}, hi 6= 0} is called the level of

the representation g = h1f1 + · · ·+ hmfm.

b) The minimal level of any representation of g is called the level of g with respect

to F .

c) We say that g is a mutant with respect to F if deg(g) is smaller than the level

of g.

In Definition 3.4.1, the polynomial g = h1f1+· · ·+hmfm ∈ I is called a mutant if one

of the hifi, i = 1, . . . ,m has degree greater than the degree of g. Therefore, a mutant

of degree d is a polynomial which cannot be found by forming linear combinations of

the products tfi, where t ∈ Tn is a term such that deg(tfi) ≤ d and i ∈ {1, . . . ,m}.
However, such mutants could help in solving the system F if we can find them efficiently

while implementing polynomial system solving algorithms. The mutants are identified

and used during the process of applying Gaußian elimination. Before giving another

important definition for mutants we need some ingredients which are given in the

following.

Definition 3.4.2. Let F be a vector subspace of R. We define

F+ := F +
n∑
i=1

xiF

where xiF := {xif | f ∈ F}.

Note that F+ is also a vector subspace of R. Then F+ is precisely the linear span

of F and xiF for all i ∈ {1, . . . , n}.

Definition 3.4.3. Let F ⊆ L be vector subspaces of R. Define inductively the vector

subspaces

F0 = F and Fk+1 = F+
k ∩ L for k = 0, 1, 2, . . .

The union FL =
⋃
k≥0 Fk of ascending chain F0 ⊆ F1 ⊆ F2 ⊆ . . . is called the L-stable

span of F .

To keep things computable and to define mutants, we prefer finite-dimensional

vector space L. In particular, we consider L = 〈Tn≤d〉K . Now we are ready to give an
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alternate definition for mutants that explains how mutants can be distinguished during

the computations from the rest of polynomials.

Definition 3.4.4. Let F be the set of polynomials as above, let L = 〈Tn≤d〉K , and let

U = 〈Tn≤d−1〉K . Let

Fd = {tfi | t ∈ Tn, fi ∈ F, deg(tfi) ≤ d}.

A polynomial m is called a mutant if LT(m) ∈ LT(FL) \LT(FU) and its degree is less

than d.

The following example illustrates how we can generate mutants and how we can

use them to solve systems.

Example 3.4.5. Let F = {f1, . . . , f4} ⊆ R = F2[x1, . . . , x4]/〈x21 − x1, . . . , x
2
4 − x4〉.

Consider the system of equations f1 = f2 = f3 = f4 = 0, where

f1 = x1x2 + x2x3 + x2x4 + x3x4 + x1 + x3 + 1 = 0,

f2 = x1x2 + x1x3 + x1x4 + x3x4 + x2 + x3 + 1 = 0,

f3 = x1x2 + x1x3 + x2x3 + x3x4 + x1 + x4 + 1 = 0,

f4 = x1x3 + x1x4 + x2x3 + x2x4 + 1 = 0.

Considering terms as indeterminates, Gaussian elimination yields the following system.

f̃1 = x1x2 + x2x3 + x2x4 + x3x4 + x1 + x3 + 1 = 0

f̃2 = x1x3 + x1x4 + x2x3 + x2x4 + x1 + x2 = 0

f̃3 = x1x4 + x2x3 + x1 + x2 + x3 + x4 = 0

f̃4 = x1 + x2 + 1 = 0

The polynomial f̃4 is mutant with respect to F .

Definition 3.4.6. Let F = {f1, . . . , fm} ⊆ K[x1, . . . , xn] be a set of polynomials.

Let d = max{deg(fi) | i ∈ {1, . . . ,m}} and let Tn≤d = {t1, . . . , tµ}. Let σ be a term

ordering. Then the term vector of F with respect to σ is denoted by L and is defined

as L = (t1, . . . , tµ), where t1 >σ t2 >σ · · · >σ tµ.

Note that L is nothing but the set Tn≤d ordered by σ.
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Definition 3.4.7. Let f ∈ P = K[x1, . . . , xn] be a polynomial and let σ be a term

ordering. Let L = (t1, . . . , tµ) be the term vector of f . Write f as

f =

µ∑
i=1

citi with ci ∈ K.

Then the vector representation ψL : P −→ Kµ of f with respect to L is defined as

follows

ψL(f) = (c1, . . . , cµ).

Definition 3.4.8. Let F = {f1, . . . , fm} ⊆ P = K[x1, . . . , xn] be a set of polynomials

and let σ be a term ordering. Let L = (t1, . . . , tµ) be the term vector of F . Then the

matrix representation (also called as coefficient matrix) of F with respect to L
is defined by the map

ψL(F ) : Pm −→ Matm,µ(K)

such that

(f1, . . . , fm) 7−→

ψL(f1)
...

ψL(fm)

 = (cij).

We denote it by F = (cij) ∈ Matm,µ(K).

Note that the vector representation of a polynomial f ∈ K[x1, . . . , xn] is the matrix

representation of the set {f}.

Definition 3.4.9. Let F = {f1, . . . , fm} ⊆ K[x1, . . . , xn] be a set of polynomials

and let σ be a term ordering. Let L = (t1, . . . , tµ) be the term vector of F . Let

xi ∈ {x1, . . . , xn} and let k ∈ K. Then the constant vector of F is given by C =

(c1, . . . , cµ) such that

cj =


1 if tj = xi,

−k if tj = 1,

0 otherwise.

Example 3.4.10. Let F = {f1, f2} ⊆ F2[x, y], be a set of polynomials, where f1 =

xy + y + 1 and f2 = xy + x. Let σ = DegLex.

1) The term vector is L = (xy, x, y, 1).
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2) The coefficient matrix is given as follows

F =

(
1 0 1 1

1 1 0 0

)

such that

FL =

(
1 0 1 1

1 1 0 0

)
xy

x

y

1

 =

(
xy + y + 1

xy + x

)
.

In this way if we consider terms as indeterminates then we can view F represented

by a linear system of equations.

3) For k = 1 and xi = x ∈ {x, y}, the constant vector is C = (0, 1, 0, 1).

Definition 3.4.11. Let F = {f1, . . . , fm} ⊆ K[x1, . . . , xn] be a set of polynomials.

Let F be the coefficient matrix of F .

a) The row echelon form of F will be denoted by F̃ .

b) The set of polynomials corresponding to the row echelon form F̃ will be denoted

by F̃ .

Remark 3.4.12. Let F = {f1, . . . , fm} ⊆ R be a set of polynomials and let dm =

max{deg(fj) | j ∈ {1, . . . ,m}}. Let dc be the degree of a certificate for an ith solution

coordinate k ∈ K. Let Tn≤dc = {t1, . . . , tν} and let µ = |Tn≤dm+dc
|. Thus, the certificate

is

xi − k =
m∑
j=1

gjfj (3.6)

where gj =
∑µ

k=1 cjktk ∈ R with indeterminate coefficients cjk ∈ K. Let

(F | B) (3.7)

be the augmented matrix of the linear system obtained by comparing the coefficients

of each term t ∈ Tn≤dm+dc
on both sides of the certificate 3.6. The matrix F has one

column corresponding to each indeterminate coefficient cjk and one row corresponding

to each term in Tn≤dm+dc
. The vector B = (b1, . . . , bµ) has one entry for each term
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t ∈ Tn≤dm+dc
such that

bj =


1 if tj = xi,

−k if tj = 1,

0 otherwise.

Now consider H = {tf | f ∈ F and t ∈ Tn≤ds}. Let H be the coefficient matrix of H

and let C be the constant vector of H. Form the following augmented matrix

(Htr | C) (3.8)

A closer look at the augmented matrices 3.7 and 3.8 shows that they are the same.

Note that this is a very important observation to formulate the Mutant LA Algorithm.

This will help us to extract linear systems without writing certificates.

The main idea that we discuss is to generate the ideal I gradually until we have a

linear system which has a solution. In view of Remark 3.4.12, we slightly change the way

of extracting a linear system. We extract the associated linear system by generating

new polynomials tfj ∈ I, where t ∈ Tn≤dc , instead of writing down a certificate. After

fixing a tentative degree equal to deg(F ), we will be working in the vector space

bounded by this degree. The basic idea behind the Mutant LA Algorithm is that, if we

have not found a linear system which has a solution, then instead of replacing F with

F+ and thereby increasing the degree bound, we check whether there are any mutants

in F . If there are some mutants found then we use them and try to find a linear system

which has a solution.

Due to ideas discussed above, the LA Algorithm can be extended to the Mutant

LA Algorithm (MLA), a modification of the LA Algorithm that uses mutants. These

ideas provide us with the following algorithm.

Theorem 3.4.13. (The Mutant LA Algorithm)

Let F = {f1, . . . , fm} ⊆ R be a set of non-zero polynomials such that the system of

polynomial equations f1 = 0, . . . , fm = 0 has a unique solution (a1, . . . , an) ∈ Kn.

Let σ be a degree compatible term ordering on Tn. Consider the following sequence of

instructions.

1) Interreduce F , let S := ∅, X := {x1, . . . , xn}, and let H := F .

2) If X := ∅, return S. Otherwise, choose an indeterminate xs ∈ X and delete it

from X. Let Pmutant := ∅, Q := K and dmin := delim := min{deg(h) | h ∈ H}.
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3) If Q 6= ∅, then choose an element k ∈ Q, delete it from Q and continue with step

8). Otherwise, let Q := K.

4) Form the coefficient matrix H of H. Use Gaußian elimination to bring H into

row echelon form H̃ and let H := H̃.

5) Form the set M of all polynomials of degree less than delim in H. (The polynomials

in the set M \ Pmutant are mutants with respect to F .)

6) If M \ Pmutant 6= ∅, then for each m ∈ M \ Pmutant add m to Pmutant and all

possible products xαm with α ∈ {1, . . . , n} to H. Let delim := min{deg(m) | m ∈
M \ Pmutant}+ 1. Then continue with step 3).

7) For each h ∈ H \Pmutant of degree dmin add h to Pmutant and all possible products

xαh with α ∈ {1, . . . , n} to H. Increase dmin by one, and let delim := dmin. Then

continue with step 3).

8) Form the coefficient matrix H of H. Form the constant vector C of H.

9) Solve the linear system given by the augmented matrix (Htr | C).

10) If the linear system in step 9) has no solution then continue with step 3).

11) Append the corresponding k to S, substitute xs = k in H. Then continue with

step 2), applied to polynomials in a smaller ring.

This is an algorithm which returns the solution (a1, . . . , an) of the system of polynomial

equations f1 = 0, . . . , fm = 0.

Proof. If we exclude the steps 4)−6) then we obtain the algorithm in Theorem 3.2.4.

In these steps mutants are found and used to extend the set H. This implies that the

linear systems in Theorem 3.2.4 are subsystems of the linear systems in step 9). So the

algorithm terminates since the algorithm in Theorem 3.2.4 terminates.

If we exclude steps 4)−6), the correctness follows from Theorem 3.2.4. Therefore,

to see the correctness it suffices to show that the polynomials found in steps 4)−6) are,

in fact, mutants with respect to the current set of polynomials F . For this consider

the elimination degree delim in step 5) of the algorithm. Let L := 〈Tn≤delim〉K and

U := 〈Tn≤delim−1〉K . Let m ∈ M \ Pmutant as in step 6) of the algorithm. Then from

steps 5)−6) it is easy to see that LT(m) ∈ LT(FL) \ LT(FU) and deg(m) < dmin.

Therefore, m is a mutant.



3.5. The Improved Mutant LA Algorithm 69

Remark 3.4.14. We have the following remarks for the MLA Algorithm.

a) The Mutant LA Algorithm inherits all useful properties of the LA Algorithm like

parallelization, taking advantage of fast linear algebra and exploiting the possible

sparseness and the structure of the system. In addition it uses mutant strategy

to guide and improve the performance of the LA Algorithm. The experimental

results reported in Section 3.6 clearly show that running time of the Mutant LA

Algorithm compares favorably to the running times of the LA Algorithm. This

is possible due to smaller sized linear systems in step 9).

b) Another issue in steps 6)−7) is to control the redundancy produced while mul-

tiplying polynomials with indeterminates. This can be achieved by using some

“selection strategy” while multiplying polynomials with indeterminates. For in-

stance, if we are working over the field F2, redundancy can be avoided as follows.

During the multiplication process we keep the multiplier indeterminate that gave

rise to every newly produced polynomial and we keep one for the original poly-

nomials. When we extend the system, we multiply the polynomial h by all

indeterminates smaller than its previous multiplier indeterminate. In case of the

previous multiplier of h is one, we multiply by all indeterminates. The aim of

this selection method is to speed up the extension process of the system. We only

multiply by terms of degree one (indeterminates) without any trivial redundancy.

3.5 The Improved Mutant LA Algorithm

In [142], M.S.E. Mohamed et al. introduced an improvement to the mutant strategy

called the improved mutant strategy. In this section, we review the improved mutant

strategy and employ this strategy to improve the LA Algorithm. This strategy allows

us to solve systems of polynomial equations with small sized linear systems.

In Section 3.4 we saw how mutant strategy achieves to enlarge the system F without

increasing the degree of the coefficient polynomials in a certificate. The experiments

with mutant strategy [142] show that there are two issues. The first arises when the

number of lower degree mutants is very large, this produces many reductions to zero.

The second arises when an iteration does not produce mutants at all or produces only

an insufficient number of mutants at a lower degree. In this case, the mutant strategy

makes no improvement. To handle both problems an improved mutant strategy was

introduced in [142]. This strategy is based on the mutant concept. It introduces a
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heuristic strategy of only choosing the minimum number of mutants, which is called

necessary mutants.

Although the LA Algorithm can be used for solving big system of polynomial equa-

tions but we can not ignore the fact that it can be infeasible for many realistic ap-

plications. This is due to the fact that, in many practical cases, the computations

made by these algorithms lead to constructing a huge system of polynomial equations,

and consequently a huge matrix, which requires a lot of time and memory resources.

Therefore, a big challenge is to improve this algorithms in a way allowing it to use only

the limited available memory and time resources for solving a multivariate polynomial

system with as large number of equations and variables as possible.

One of the strategies to improve the efficiency of this algorithms is to find bet-

ter linear algebra techniques. This mainly reduces the time consumption. On the

other hand, strategies improving the enlargement step of the polynomial system, by

reducing the matrix size, will affect both time and memory consumption. This section

proposes to use improved mutant strategy along with the LA Algorithm to improve

the enlargement step of the LA algorithm. In Section 3.6 we show with the help of

experiments that combining the improved mutant strategy with LA Algorithm gives

both time and memory efficiency. We use the notation and terminology from Section

3.4. Let X = {x1, . . . , xn} be the set of indeterminates, upon which we impose the

following order:

x1 > x2 > · · · > xn

Our first goal is to recall a few definitions to be able to formulate the algorithm.

Definition 3.5.1. Let p ∈ R. Then the leading variable of p is the largest indeter-

minate, according to the order defined on the indeterminates, in the leading term of p

and denoted by LV(p).

Definition 3.5.2. Let Fd = {f ∈ F | deg(f) = d} and let xi ∈ X. We define F xi
d as

follows

F xi
d = {f ∈ Fd | LV(f) = xi}.

Remark 3.5.3. As in Section 3.4, let F = {f1, . . . , fm} ⊆ R be a system of polyno-

mials. For d ∈ N, we let Tn≤d denote the set of terms of R with total degree at most d.

The two issues described above can be handled as follows.

a) Partitioned Enlargement Strategy: In the process of enlargement step, the

improved mutant strategy deals with the polynomials of Fd in a different way.
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We divide the set Fd into a set of subsets depending on the leading variable of

each polynomial. In other words, we view Fd as Fd =
⋃n
i=1 F

xi
d . The improved

mutant strategy enlarges F by incrementing d and multiplying the elements of

Fd as follows. Let x be the smallest variable, according to the order defined on

the variables, that has F x
d 6= ∅. Improved mutant strategy successively multiplies

each polynomial of F x
d by indeterminates such that each variable is multiplied

only once. This process is repeated for the next larger indeterminate x with

F x
d 6= ∅ until the solution is obtained, otherwise the system enlarges to the next

d. Therefore the improved mutant strategy may solve the system by enlarging

only subsets of Fd, while the mutant strategy solves the system by enlarging

all the elements of Fd. This technique is helpful if we have a system with not

enough mutants at a certain degree. In this case the Mutant LA Algorithm

increases the degree of a certificate. In most cases only a small number of the

extended polynomials produced are needed to solve the system. By using this

strategy, we can solve the system F with small size linear systems.

b) Necessary Mutants: If the number of lower degree mutants is very large then

we can select mutants which are necessary to solve the system using some selection

criteria. For instance, if we are working over the field F2, the following notation

helps. Using combinatorics we can compute the number of elements of the set

Tn≤d as

|Tn≤d| =
d∑
i=1

(
n

i

)
, 1 ≤ d ≤ n.

Let k be the degree of the lowest degree mutant occurring and let N be the

number of the linearly independent polynomials of total degree at most k + 1.

Then the smallest number of mutants that are needed to generate |Tn≤k+1| linearly

independent equations of total degree at most k + 1 is

d(|Tn≤k+1| −N)/ne.

By using only the necessary number of mutants, the system can be solved by a

smaller number of polynomials and a minimum number of multiplication.

The following theorem turns above ideas into an effective algorithm.

Theorem 3.5.4. (The Improved Mutant LA (MLA2) Algorithm)

Let F = {f1, . . . , fm} ⊆ R be a set of non-zero polynomials such that the system of
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polynomial equations f1 = 0, . . . , fm = 0 has a unique solution (a1, . . . , an) ∈ Kn.

Let σ be a degree compatible term ordering on Tn. Consider the following sequence of

instructions.

1) Interreduce F , let S := ∅, X := {x1, . . . , xn}, and let H := F .

2) If X := ∅, return S. Otherwise, choose an indeterminate xs ∈ X and delete it

from X. Let Pmutant := ∅, Q := K, dmin := delim := min{deg(h) | h ∈ H} and

let X ′ := {LV(h) | h ∈ H} be the set of leading variables.

3) If Q 6= ∅, then choose an element k ∈ Q, delete it from Q and continue with step

9). Otherwise, let Q := K.

4) Form the coefficient matrix H of H. Use Gaußian elimination to bring H into

row echelon form H̃ and let H := H̃.

5) Form the set M of all polynomials of degree less than delim in H. (The polynomials

in the set M \ Pmutant are mutants with respect to F .)

6) If M \ Pmutant 6= ∅, then let ν := min{deg(m) | m ∈ M \ Pmutant} and let

M=ν := {m ∈ M \ Pmutant | deg(m) = ν} be the set of necessary mutants. For

each m ∈M=ν add m to Pmutant and all possible products xαm with α ∈ {1, . . . , n}
to G. Let delim := ν + 1. Then continue with step 3).

7) If X ′ := ∅ then let X ′ := {LV(h) | h ∈ H} be the set of leading variables, increase

dmin by one, and let delim := dmin.

8) Choose the smallest leading variable xl ∈ X ′ and delete it from X ′. Form the

set PG of polynomials which belong to H \ Pmutant and Hxl
dmin

. For each h ∈ PG
add h to Pmutant and all possible products xαh with α ∈ {1, . . . , n} to H. Then

continue with step 3).

9) Form the coefficient matrix H of H. Form the constant vector C of H.

10) Solve the linear system given by the augmented matrix (Htr | C).

11) If the linear system in step 10) has no solution then continue with step 3).

12) Append the corresponding k to S, and substitute xs = k in H. Then continue

with step 2), applied to polynomials in a smaller ring.
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This is an algorithm which returns the unique solution (a1, . . . , an) of the system of

polynomial equations f1 = 0, . . . , fm = 0.

Proof. To show that the procedure terminates and that the algorithm is correct, we

consider its steps which differ from the algorithm in Theorem 3.4.13. The steps 6)−8)

compute the necessary mutants. The additional mutants, if any, produce reductions

to zero. They do not play any role in finding the respective solution coordinate. If the

number of mutants produced in step 6) is less than the number of necessary mutants

then the mutants are used to extend the system H and we move on to the next steps,

otherwise we found the respective solution coordinate. Step 8) extends the system H

using a partitioned enlargement strategy. This strategy does not increase the total

degree of the system H. This shows that the associated linear systems are subsystems

of the linear systems in Theorem 3.4.13. This covers all changes in the algorithm and

concludes the proof.

Remark 3.5.5. Future work on this topic could involve to see how to build these

algorithms using a sparse matrix representation instead of the dense one and the use

of techniques from linear algebra such as multiple right hand side [155]. Furthermore,

the very recent adjustments in partitioned enlargement strategy [36] can make mutant

variants of the LA Algorithm faster.

3.6 Experimental Results for Mutant Variants of

the LA Algorithm

In this section, we report on some experiments with the mutant variants of the LA

Algorithm. This section is a continuation of Section 3.3. We follow the notation and

terminology defined in Section 3.3 to report on experimental results. We try to see

what can be improved using mutant strategy without exploiting possible sparseness

of a system. In particular, we restrict ourself to dense matrix computations. More-

over, we compare some of the timings we obtained to the straightforward Gröbner

basis approach. We report experimental results using EF (see Section 3.3) for rank

computations.

As in Section 3.3, the cryptosystems considered to construct algebraic systems of

equations are HFE (Hidden Field Equations) and CTC (Courtois Toy Cipher). For

more details about these cryptosystems and related algebraic systems of equations see



74 3. Techniques From Linear Algebra

Section 2.3. Finally, note that the only time consuming step in the LA Algorithm

is to solve linear systems. Throughout this section, we consider the timings only for

calculating echelon forms. The timings for extracting linear systems are ignored, since

they were not implemented efficiently and should be seen as a preprocessing step.

Throughout this section we measure time in seconds unless otherwise mentioned. All

timings were obtained on a computer with a 2.1 GHz AMD Opteron 6172 processor

and 64GB RAM. The implementations of the algorithms of Propositions 3.4.13 and

3.5.4 are available online as a part of the ApCoCoA [12] package charP. For more

details about implementations see Appendix B.

3.6.1 Experimental Results for HFE

Consider algebraic systems of equations constructed from the HFE cryptosystem. Since

these systems are determined, we represent the size of each system by using the number

of variables in the system. For instance, HFE(6) means an instance of HFE with 6

equations and six variables. The systems were constructed to have a unique solution.

In Table 3.6 we compare the sizes of the resulting linear systems from three variations

of the LA Algorithm. Note that Table 3.6 shows the size of the biggest linear system

that was formed to solve a particular instance of HFE. The “∗” in the first column for

a system means that there are some mutants in this system.

System Equations Variables LA MLA MLA2

HFE(6)∗ 6 6 57×169 42×93 42×48
HFE(7)∗ 7 7 99×253 64×98 64×69
HFE(8)∗ 8 8 163×361 93×128 93×97
HFE(9) 9 9 256×496 256×441 130×333
HFE(10) 10 10 386×661 386×595 325×387
HFE(11) 11 11 562×859 562×781 562×756
HFE(12) 12 12 794×1093 794×1002 794×989
HFE(13)∗ 13 13 2380×4915 1093×2886 1093×1247

Table 3.6: HFE size comparison using LA, MLA and MLA2 algorithms

In Table 3.7, we collect the sizes of the resulting polynomial systems from the

HFE cryptosystem over F2 and compare the timings for their solution with different

approaches. See the results in Table 3.7. Each timing represents the total time taken

by EF to calculate echelon forms of all the matrices during the process of solving a

particular instance of HFE. The fifth column shows the time taken by the computation
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System LA MLA MLA2 GBasis

HFE(6)∗ 0 0 0 0.01
HFE(7)∗ 0 0 0 0.02
HFE(8)∗ 0 0 0 0.13
HFE(9) 0 0 0 0.26
HFE(10) 0.05 0.06 0.04 0.8
HFE(11) 0.3 0.35 0.33 3.15
HFE(12) 0.6 0.6 0.7 31.24
HFE(13)∗ 15 10 2 349

Table 3.7: HFE time comparison using LA, MLA and MLA2 algorithms

of a Lex Gröbner basis in CoCoA [51].

3.6.2 Experimental Results for CTC

Given the CTC cryptosystem and a plaintext-ciphertex pair, we construct an overde-

termined algebraic system of equations in terms of the indeterminates representing key

bits and certain intermediate quantities. The task is to solve the system for the key

bits. As we saw in Section 3.3, substitution of linear and quadratic equations results in

an equation system in the key variables only. We present our experimental results with

this level of substitution as it is more suitable for computation with dense matrices.

System Equations Variables LA MLA MLA2

CTC(2,2)2 13 3 8×14 8×8 8×8
CTC(2,3)∗2 28 6 64×197 64×91 42×61
CTC(3,2)∗2 44 7 128×352 128×133 100×128
CTC(3,3)∗2 42 9 512×1933 485×903 485×384
CTC(3,4)∗2 42 9 512×1933 512×2663 256×309

Table 3.8: CTC(B,N)2 size comparison using LA, MLA and MLA2 algorithms

In Table 3.8, we compare the sizes of the resulting linear systems from three vari-

ations of the LA Algorithm. As usual Table 3.8 shows the size of the biggest linear

system that was formed to solve CTC(B,N)2. The “∗” in the first column for a system

means that there are some mutants in this system. The order of the biggest matrix

to solve CTC(3,4)∗2 by MLA is 512×2663. Whereas the order of the biggest matrix to

solve CTC(3,4)∗2 by LA is 512×1933. This is due to the reason that there are lots of

mutants in this system. This issue is adjusted by MLA2.
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System LA MLA MLA2 GBasis

CTC(2,2)2 0 0 0 0
CTC(2,3)∗2 0 0 0 0.09
CTC(3,2)∗2 0 0 0 0.14
CTC(3,3)∗2 1 1 0.11 0.83
CTC(3,4)∗2 0.7 1.5 0.3 2.99

Table 3.9: CTC(B,N)2 time comparison using LA, MLA and MLA2 algorithms

Each timing in Table 3.9 represents the total time taken by EF to calculate echelon

forms of all the matrices during the process of solving CTC(B,N)2. The fifth column

shows the time taken by the computation of a Lex Gröbner basis in CoCoA [51]. We

see that in practice the improved mutant LA is an improvement for memory efficiency

over the original mutant LA. For systems for which mutants are produced during the

computation, the mutant LA is better than the LA. If no mutants occur, the mutant

LA behaves identically to the LA. The improved mutant LA Algorithm is the most

efficient even if there are no mutants.

Experimentally, we can conclude that the MLA2 algorithm is an improvement over

the MLA algorithm. Not only can MLA2 solve multivariate systems at a lower degree

than the usual LA but also can solve these systems using a smaller number of polyno-

mials than the MLA algorithm, since we produce all possible new equations without

enlarging the number of the terms. Therefore, the size of the matrix constructed by

MLA2 is much smaller than the matrix constructed by MLA. This demonstrates the

great potential of the mutant strategy to improve the LA Algorithm.



Chapter 4
Techniques From the Theory of

Border Bases

One of the most useful applications of border bases is to solve zero-dimensional systems

of polynomial equations (see, e.g., [13, 139, 145, 117]), thus giving rise to applications

in cryptography and coding theory in a natural way. Some attempts illustrating the use

of border bases in cryptography and coding theory can be found in [30, 117]. Another

application of border bases is the modeling of dynamic systems from measured data

(see [1, 95, 119]) where the better numerical stability can be advantageous.

In this chapter we study techniques from the theory of border bases in order to

solve systems of polynomial equations over finite fields. In Chapter 3, we saw some

techniques to solve systems of polynomial equations over finite fields. Such techniques

are used for solving systems of polynomial equations in case only a single solution

exists. Although the cryptographic systems of polynomial equations have a unique

solution most of the time, uniqueness is a very strong condition for general systems of

polynomial equations. In the traditional literature, for systems which do not have a

unique solution we are left with the theory of Gröbner bases and the theory of border

bases. One advantage of border bases over Gröbner bases is that the algorithm to

compute them is a linear algebra algorithm with a tiny exception, the final step, which

does not contribute to the inherent complexity though as its running time is polynomial

in the input size. This enables us to use linear algebra techniques of last fifty years

for computing border bases. This brings to bear the full artillery of fifty years of

linear algebra research on the difficulty of the problem. We consider the possibility

of accelerating the Border Basis Algorithm by using techniques from linear algebra.
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The theory of border bases is not as well-known as that of Gröbner bases. Border

bases provide a more flexible concept than Gröbner bases and deserve further efficient

implementation and experimentation for solving cryptographic systems of polynomial

equations. A very recent attempt to use border bases for this purpose is done by M.

Kreuzer in [117]. We build this chapter on this foundation.

In this chapter we first review the idea of computing border bases. In particular,

we review the Border Basis Algorithm which is actually called the Improved Border

Basis Algorithm in [111]. Then we propose some hybrid algorithms that combine the

theory of border bases and the concept of mutants to accelerate the computation of

border bases over finite fields. This enables us to exploit the use of linear algebra

to accelerate the computation of border bases. On one side it enables us to study

F4 [73], F5 [74] and MXL3 [143] type algorithms in the theory of border bases and

on other side it provides us an accelerated way of finding solutions for those systems

of polynomial equations which do not have a unique solution. Moreover, by using

mutant strategies the algorithms to compute border bases can compete with the linear

algebra algorithms like F4 [73] and MXL3 [143]. Finally, the efficiency of the developed

techniques is examined using standard cryptographic examples.

4.1 Computing Border Bases

In this section we give a brief introduction to the theory of border bases and algorithms

to compute them. For details and proofs we refer to the book (see [121], Section 6.4)

by M. Kreuzer and L. Robbiano. For an extensive coverage of border bases we refer

to [110, 111, 112]. Our exposition here follows that of [111, 117]. We are mainly

interested in the case when a polynomial system is defined over a finite field K and

contains the field polynomials. Hence the ideal I generated by the polynomial system

is a zero-dimensional radical ideal.

Border bases represent a convenient way to characterize the solutions of a system

of polynomial equations and can be considered as a generalization of the well-known

Gröbner bases. In fact, every Gröbner basis (with respect to a degree compatible term

ordering) can be extended to a border basis (see [111]) but not every border basis is an

extension of a Gröbner basis. Moreover, not every order ideal supports a border basis

even if it has the right cardinality. An example illustrating these two cases is presented

in [111], Example 6.

While the Border Basis Algorithm in [111], which is a specification of Mourrain’s
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generic algorithm [145], enables us to compute border bases of zero-dimensional ideals

for order ideals supported by a degree-compatible term ordering, it falls short to provide

a border basis for more general order ideals: The computed border basis is supported by

a reduced Gröbner basis but in certain cases it may perform better than Buchberger’s

algorithm (see [111], Examples 19 and 20). The alternative algorithm presented in

[111], Proposition 5, which can potentially compute arbitrary border bases requires a

prior knowledge of the order ideal that might support a border basis so that the order

ideal has to be guessed in advance. As we cannot expect this prior knowledge, the

algorithm does not solve the problem of characterizing those order ideals for which

a border basis does exist. Further, as pointed out in [111], the basis transformation

approach of this algorithm is unsatisfactory as it significantly relies on Gröbner basis

computations.

Let p be a prime number, let q = pe for some e > 0, and let K = Fq be the finite field

with q elements and let f1, . . . , f` ∈ P = K[x1, . . . , xn] be a set of non-zero polynomials.

We are interested in finding K-rational solutions of a system of polynomial equations.

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0

Let F = {f1, . . . , f`, f`+1, . . . , fm}, where f1, . . . , f`, f`+1 = xq1 − x1, . . . , fm = xqn −
xn ∈ P . Then the ideal I = 〈F 〉 is a zero-dimensional radical ideal (see Section 3.2).

Definition 4.1.1. Let O = {t1, . . . , tµ} be a finite set of terms in Tn.

1) The set O is called an order ideal if t ∈ O and t′|t imply t′ ∈ O, i.e. if O is

closed under forming divisors.

2) The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is called the border of O.

3) Let ∂O = {b1, . . . , bν}. A set of polynomials G = {g1, . . . , gν} ⊂ P is called an

O-border prebasis if its elements are of the form gj = bj −
∑µ

i=1 cijtj with

cij ∈ K.

4) An O-border prebasis is called an O-border basis if the residue classes of the

elements of O form a K-vector space basis of the ring P/〈g1, . . . , gν〉.

In the following we let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν}.
Of course, we shall say that G is an O-border (pre-) basis of I if G is an O-border
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(pre-) basis and G generates I. Let us collect some basic properties of O-border (pre-)

bases.

Proposition 4.1.2. Let G = {g1, . . . , gν} be an O-border prebasis of I.

1) Using the Border Division Algorithm (see [121], Proposition 6.4.11), we can rep-

resent every f ∈ P in the form f = h1g1 + · · · + hνgν + c1t1 + · · · + cµtµ with

hi ∈ P and cj ∈ K.

2) The residue classes of the elements of O generate the K-vector space P/I.

3) If O = Tn \ LTσ(I) for some term ordering σ, then I has an O-border basis

G̃. The elements of G̃ corresponding to the corners of LTσ(I) (i.e. the minimal

generators of this monomial ideal) form the reduced σ-Gröbner basis of I .

4) If I has an O-border basis, it is uniquely determined.

Proof. See [121], Propositions 6.4.11 and 6.4.17.

In general, the ideal I has many more border bases than reduced Gröbner bases

(see [117], Example 7.3). We will now formulate the Border Basis Algorithm (BBA),

which enables us for computing border bases of zero-dimensional ideals, i.e, P/I is

finite dimensional with respect to an order ideal O induced by a degree compatible

term ordering σ.

Given a system of generators {f1, . . . , fm} of I, the Border Basis Algorithm com-

putes an order ideal O and an O-border basis of I. All the computations performed by

the BBA take place in a finite dimensional K-vector subspace U of P called the com-

putational universe. At certain points of the algorithm the space U has to be enlarged,

and exactly these enlargements enable us to control the “direction” and the “speed” of

the spacial growth of the computation. The next important ingredient is the following

method to approximate the intersection I ∩ U .

Definition 4.1.3. Let F ⊆ U be two finite dimensional K-vector subspaces of P .

Inductively, we define the vector subspaces F0 := F and Fi+1 = F+∩U for i = 0, 1, . . . ,

where F+
i = Fi+x1Fi+ · · ·+xnFi. Then the union FU =

⋃
i≥0 Fi is called the U-stable

span of F .

From now on we denote the set of polynomials f1, . . . , fm by F and the K-vector

space spanned by the polynomials f1, . . . , fm, which should be viewed as the part of

I ∩ U , by 〈F 〉K . In the following, we explain how the U -stable span can be computed
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explicitly for U . For this computation we use Gaußian elimination in the following

form.

Lemma 4.1.4. (Gaußian Elimination for Polynomials)

Let σ be a degree compatible term ordering and V = {f1, . . . , fr} ⊂ P \ {0} be a finite

set of polynomials with pairwise distinct leading terms and leading coefficients equal to

1. Let G = {g1, . . . , gs} ⊂ P be a finite set of polynomials. The following algorithm

computes a finite set W ⊂ P with leading coefficients equal to 1 and such that V ∪W
has pairwise distinct leading terms and 〈V ∪W 〉K = 〈V ∪G〉K (The set V or W may

be empty.)

1) Let H := G and % := 0.

2) If H = ∅ then return W := {vr+1, . . . , vr+%} and stop.

3) Choose f ∈ H and remove it from H. Let i := 1.

4) If f = 0 or i > r + % then go to step 7).

5) If LTσ(f) = LTσ(vi) then replace f with f − LCσ(f) · vi , reset i := 1 and go to

step 4).

6) Increase i by 1, and go to step 4).

7) If f 6= 0 then increase % by 1, and put vr+% := f/LCσ(f). Continue with step 2).

Proof. See [111], Lemma 12.

We can now compute the U -stable span using the following lemma.

Lemma 4.1.5. Let F := {f1, . . . , fr} ∈ P and U =
⋃r
i=1 Supp(fi). Let σ be a degree

compatible term ordering. The following algorithm computes a vector basis V of the

stable span FU , together with an updated K-vector subspace U of P called the compu-

tational universe. Moreover, the basis vectors have pairwise distinct leading terms.

1) Compute a vector basis V of 〈F 〉K with pairwise distinct leading terms. (Apply

Lemma 4.1.4 to V = ∅ and G := F .)

2) Compute a basis extension V ∪W ′ of V such that the elements of V ∪W ′ have

pairwise different leading terms. (Apply Lemma 4.1.4 to V and G := V + \ V .)

3) Let W = {w ∈ W ′ | LTσ(w) ∈ U}.
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4) If
⋃
w∈W Supp(w) * U , enlarge U by the terms in the order ideal generated by

this set and continue with step 3).

5) If W 6= ∅, append W to V , replace F by F+, and continue with step 2).

6) Return (V,U).

Proof. See [111], Proposition 21.

In our case the vector space F in Definition 4.1.3 is actually 〈F 〉K which should be

viewed as the part of I ∩ U that we know already. By computing FU , we enlarge it to

produce a kind of “approximation” of I ∩ U . The following criterion is then the key

point of the BBA.

Proposition 4.1.6. Let U be a vector subspace of P , let 〈F 〉K be a vector subspace

of I which generates I and satisfies F+ ∩ U = 〈F 〉K, and let O be an order ideal such

that U = 〈F 〉K ⊕〈O〉K and ∂O ⊆ U . Then I has an O-border basis which is contained

in U .

Proof. See [111], Proposition 16.

The last ingredient that we need in order to formulate the border basis algorithm

is the Final Reduction Algorithm. This algorithm applies linear algebra to interreduce

the elements so that they only have support in the leading term and O, as required by

Definition 4.1.1.

Proposition 4.1.7. Let F = {f1, . . . , fm} be a system of generators of a zero-dimensional

ideal I. Let σ be a degree compatible term ordering. Let U be an order ideal. Let V

be a vector space basis of the span FU with pairwise different leading terms, and let

O := U \ LTσ(V ) such that

U = FU ⊕ 〈O〉K and ∂O ⊆ U.

Then the following algorithm computes the O-border basis g1, . . . , gν of I.

1) Let VR := ∅.

2) If V = ∅ then go to step 8).

3) Determine in V the element v with minimal leading term. Remove it from V .
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4) Let H := Supp(v) \ ({LTσ(v)} ∪ O).

5) If H = ∅ then append v/LCσ(v) to VR and go to step 2).

6) For each h ∈ H determine wh ∈ VR and ch ∈ K such that LTσ(w) = h and

h /∈ Supp(v − ch.wh).

7) Replace v with v −
∑

h ch.wh, append v/LCσ(v) to VR and go step 2).

8) Let ∂O = {b1, . . . , bν}. Determine for each bj ∈ ∂O the polynomial gj ∈ VR with

bj = LTσ(gj). Return g1, . . . , gν.

Proof. See [111], Proposition 17.

Finally, we are ready to formulate the Border Basis Algorithm which is actually

called the Improved Border Basis Algorithm in [111], Proposition 21.

Proposition 4.1.8. (The Border Basis Algorithm (BBA))

Let I = 〈f1, . . . , fm〉 be a zero-dimensional ideal in P and let σ be a degree compatible

term ordering. Consider the following sequence of instructions.

1) Let F := {f1, . . . , fm} and let U be the order ideal generated by
⋃m
i=1 Supp(fi).

2) By using Lemma 4.1.5, compute a K-basis V of the stable span FU , together with

the updated order ideal U .

3) Let O = U \ LTσ(V ). If ∂O * U , replace U by U+ and continue with step 2).

4) Apply the Final Reduction Algorithm 4.1.7 and return the set G = {g1, . . . , gν}
it computes.

This is an algorithm which computes an order ideal O and the O-border basis of I.

Proof. See [111], Proposition 21.

Remark 4.1.9. In our specified setting, where the border bases are derived from a

degree-compatible term ordering σ, the border basis of a finite set of polynomials F

that generates a zero-dimensional ideal I = 〈F 〉 contains a reduced Gröbner basis

of the ideal I. If G is the O-border basis of I, then G̃ := {g ∈ G | for all t ∈
Tn with t|LTσ(g) we have t ∈ O} is a reduced σ-Gröbner basis [111]. The term

ordering σ in this algorithm can be replaced by some other rules. It is merely used

to guide the computation and to make sure that step 3) yields an order ideal. It is
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possible to replace it by other rules guiding the computation. However, we note that

in this case one has to either prove that the new rule produces an order ideal O or

modify the computation so that it backtracks some steps if necessary.

4.2 Computing Border Bases With Mutant Strate-

gies

The Border Basis Algorithm is based on the construction of further polynomials in

the ideal I generated by the original system. In [67, 140, 142, 143], J. Ding et al.

suggested a new strategy, which is based on the concept of mutants, to speed up the

construction of polynomials in the ideal I. The idea is that in the process of generating

new polynomials, polynomials of small degree should be treated preferentially. The

concept of mutants has the potential to improve various algorithms. In this section we

explore the potential of their application to improve the computation of border bases.

In particular, we use the concept of mutants to speed up the computation of a vector

space basis which is the most time consuming part of a border basis computation.

Furthermore, we see how to avoid redundancy during the computation of a vector

space basis. This leads us to some hybrid techniques that combine the computation of

border bases and the concept of mutants.

The Border Basis Algorithm reviewed in Section 4.1 enables us to compute border

bases of zero-dimensional ideals for order ideals supported by a degree compatible term

ordering. The restriction to degree compatible order ideals is due to the design of the

algorithm to proceed degree-wise. The preference of border bases over Gröbner bases

partly arises from the iterative generation of linear syzygies, inherent in the border basis

algorithm, which enables us for successively approximating the basis degree by degree.

We exploit this fact to generate some new polynomials (mutants) of lower degree in

the ideal I generated by the original system while avoiding a quick exhaustion of the

available memory and removing redundancy. We follow the notation and terminology

as standard in Section 4.1 unless mentioned otherwise.

Let p be a prime number, let q = pe for some e > 0. Let K = Fq be the finite field

and let F = {f1, . . . , fm} be a set of polynomials overK, i.e. f1, . . . , fm ∈ K[x1, . . . , xn].

Let I = 〈F 〉 be the ideal generated by F . In the following we will be working over the

ring

R = K[x1, . . . , xn]/〈xq1 − x1, . . . , xqn − xn〉,



4.2. Computing Border Bases With Mutant Strategies 85

where we reduce everything modulo the field polynomials. We typically generate fur-

ther elements of the ideal I in R. Recall from Section 2.2 that R is the residue class

ring of K[x1, . . . , xn] whose every element (residue class) is represented as a polyno-

mial. Since each element (residue class) in R is represented by a polynomial, we can

define the degree, leading term and leading variable of this polynomial in the natural

way. From now on we let Tn denote the set of terms of K[x1, . . . , xn]. For d ∈ N, we

let Tn≤d denote the set of terms of R with total degree at most d. Let σ be a degree

compatible term ordering on the terms of R. In this setting, mutants are defined as

follows.

Definition 4.2.1. Let g ∈ I, i.e. g = h1f1 + · · · + hmfm, where hi ∈ R. The level of

this representation is the number l = max{deg(hifi) | i ∈ {1, . . . ,m}, hi 6= 0}. Then

the level of g with respect to F is defined to be the minimal level of any representation

of g and we say that g is a mutant with respect to F if deg(g) is smaller than the

level of g.

For details about the concept of mutants we refer to Section 3.4.

4.2.1 The Mutant Border Basis Algorithm

In [67, 140], J. Ding et al. suggested a new strategy to speed up the XL Algorithm

which is based on the concept of mutants. We are going to employ the mutant strategy

to speed up the Border Basis Algorithm. Consider the algorithm to compute border

bases in Proposition 4.1.8. Step 2) of this algorithm computes a U -stable span which

is the most time consuming part of the algorithm. Moreover, the complexity of the

Border Basis Algorithm relies on this step. In the following proposition we explicitly

explain a way to compute a U -stable span using the mutant strategy while avoiding a

quick exhaustion of the available memory and removing redundancy.

Proposition 4.2.2. Let F := {f1, . . . , fr} ⊆ R and U =
⋃r
i=1 Supp(fi). Let V be

a K-basis of 〈F 〉K with pairwise distinct leading terms. Let σ be a degree compatible

term ordering. Consider the following sequence of instructions.

S1) Let dmax := max{deg(v) | v ∈ V }, dmin := min{deg(v) | v ∈ V }, Pmutant := ∅,
and let G := V .

S2) Let H := ∅, and for each g ∈ G \ Pmutant of degree dmin append g to Pmutant and

all possible products xαg with α ∈ {1, . . . , n} to H. Let delim := dmin + 1.
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S3) Apply Lemma 4.1.4 to G and H to compute a basis extension H ′ for 〈G≤dmin
〉K ⊆

〈G+
≤dmin

〉K so that the elements of H ′ ∪ G have pairwise distinct leading terms.

Then replace G with G ∪H ′.

S4) Form the set M of all polynomials of degree less than delim in G. (The polynomials

in the set M \ Pmutant are mutants with respect to V .)

S5) Let H := ∅. If M \ Pmutant 6= ∅, then for each m ∈ M \ Pmutant append m to

Pmutant and all possible products xαm with α ∈ {1, . . . , n} to H. Let delim :=

min{deg(m) | m ∈M \ Pmutant}+ 1. Then continue with step S3).

S6) If delim ≤ dmin, then increase delim by one and continue with step S3).

S7) Let W ′ := G\V . ( W ′ is a basis extension of V such that the elements of V ∪W ′

have pairwise distinct leading terms.)

S8) Let W := {w ∈ W ′ | LTσ(w) ∈ U}.

S9) If
⋃
w∈W Supp(w) * U , enlarge U by the terms in the order ideal generated by

this set and continue with step 7).

S10) If W 6= ∅, append W to V .

S11) If dmin < dmax then increase dmin by one and continue with step S2).

S12) Return the result (G, V, U, Pmutant).

This is an algorithm which returns a vector basis V of the stable span FU , together with

the order ideal U , a K-basis G that contains V of 〈F 〉K and the set Pmutant to keep

record of mutants. Furthermore, the basis vectors of V have pairwise distinct leading

terms.

Proof. Let L′ = Tn≤dmin
and L = Tn≤dmax

. Starting from the minimum possible dmin,

each iteration of the loop of steps S2)−S11) computes a L′-stable span of G≤dmin
in

the following way.

Step S2) starts with a set G with pairwise different leading terms. So the loop is

correctly initialized. Then step S2) computes a set H by multiplying all polynomials of

degree dmin in G with indeterminates. Note that H = G+
≤dmin

\G≤dmin
and it helps to

get rid of redundant polynomials. Now consider the loop of steps S3)−S5). By Lemma
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4.1.4, step S3) computes a finite set H ′ such that G∪H ′ has pairwise different leading

terms and

〈G≤dmin
〉K ⊆ 〈G≤dmin

∪H ′≤dmin
〉K = 〈G+

≤dmin
〉K ∩ L′ ⊆ L′.

In particular, G≤dmin
∪H ′≤dmin

is a vector basis of 〈G+
≤dmin

〉K ∩L′. Then steps S4) and

S5) compute a set H using mutants (new polynomials of degree less than or equal to

delim = dmin + 1). Again note that H = G+
≤dmin

\ G≤dmin
and it helps to get rid of

redundant polynomials. In this way the loop of steps S3)−S5) is repeated until there

are no more mutants. The loop of steps S3)−S6) serves as a safeguard to ensure that

the elimination degree delim is equal to dmin + 1 when the process of finding mutants

terminates.

Another iteration is called in step S11) if and only if dmin < dmax. If dmin ≥
dmax, the loop of steps S2)−S11) terminates. After termination we have 〈G≤dmax〉K =

〈G≤dmax〉+K ∩ L which is exactly the L-stable span of G. This proves the correctness of

computing a L-stable span. The loop of steps S7)−S9) along with step S10) computes

a U -stable span of V from the L-stable span of G. The correctness of this part follows

from [111], Proposition 21.

Remark 4.2.3. Assume that we are in the setting of the algorithm of Proposition

4.2.2. If we skip the loop of steps S7)−S9) and step S10), the algorithm computes

the L-stable span of G. The L-stable span of G can be used to accelerate the initial

version of the Border Basis Algorithm given in [111], Proposition 18. The algorithm

in its original form computes a U -stable span of V from the L-stable span of G. This

leads us to the following question. Can there be an algorithm that computes a U -stable

span of V without considering the L-stable span of G?

The answer is positive but it will require computing the same polynomials in the

ideal I again and again. This restriction is due to the design of the Border Basis

Algorithm to proceed degree-wise. Furthermore, mutants can be found effectively if

we generate the ideal I degree-wise. Actually, using G we reduce the work for the next

iterations by saving the polynomials in H ′ because it is quite likely that they can be

reused in the next iterations. If the polynomials in G are wasted, we may need to do

the same work in the next iterations again.

Remark 4.2.4. During the computation of a U -stable span we create a multiplication

history to get rid of redundancy. For instance, if we are working over the field F2,
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redundancy can be avoided as follows. During the multiplication process we keep the

multiplier variable that gives rise to every new produced polynomial and we keep one

for the original polynomials. While computing F+
i , we multiply the polynomial f ∈ Fi

by all variables smaller than its previous multiplier variable. In case of the previous

multiplier of f is one, we multiply by all variables. The target of this selection method

is to speed up the extension process of a U -stable span. We multiply by terms of degree

one (variables or indeterminates) only without any trivial redundancy.

Now we are ready to assemble a variant of the Border Basis Algorithm that uses

mutant strategy to accelerate the computation of a U -stable span. In the setting of the

following proposition we apply Proposition 4.2.2 without step S1) because this step is

settled by the proposition itself.

Proposition 4.2.5. (The Mutant Border Basis Algorithm (MBBA))

Let F = {f1, . . . , fm} ⊂ R be a set of polynomials that generates a zero-dimensional

ideal I = 〈F 〉 in R. Let σ be a degree compatible term ordering. Consider the following

sequence of instructions.

1) Let U be the order ideal generated by
⋃m
i=1 Supp(fi).

2) Interreduce F to get a K-basis V of 〈F 〉K with pairwise distinct leading terms.

3) Let dmax := max{deg(v) | v ∈ V }, dmin := min{deg(v) | v ∈ V }, G := V and let

Pmutant := ∅.

4) Apply Proposition 4.2.2 to compute a K-basis V of the stable span FU , the updated

K-basis G, the updated order ideal U and the updated set Pmutant.

5) Let O = U \ LTσ(V ).

6) If ∂O * U , replace U by U+ and let dmin := dmax := max{deg(u) | u ∈ U}.
Then continue with step 4).

7) Apply the Final Reduction Algorithm 4.1.7.

This is an algorithm which computes an order ideal O and the O-border basis of I.

Proof. To show that the procedure terminates and that the algorithm is correct, we

consider its steps which differ from the algorithm in [111], Proposition 21. Step 1)

initializes U so that F ⊆ U . Step 2) computes a vector basis V of 〈F 〉K with pairwise
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different leading terms. Since we plan to proceed degree-wise, step 3) initializes the

degree bound dmax on the degrees of the polynomials in V , and the minimum degree

dmin of a polynomial (not processed) in G. To find mutants and reduce redundancy

dmax is initialized to be empty.

Now consider step 4). Each new iteration in step 4) starts with a universe U , a

vector basis V with pairwise different leading terms of the stable span FU , a vector

basis G of F bounded by the degree dmax and the set Pmutant. Note that G serves to

reduce the work for the next iterations by saving all the polynomials produced during

the computation of the universe in step 4) because it is quite likely that they can be

reused in the next iterations. Applying Proposition 4.2.2, we see that step 4) computes

an updated vector basis V of FU and an updated universe U . This covers all changes

in the algorithm and concludes the proof.

The set of polynomials Pmutant is used to recognize mutants. It can be replaced by

some other method that can recognize mutants. An alternate way could be to use a

flag with each polynomial. After checking a polynomial to be a mutant this flag will

be turned off. To understand Proposition 4.2.5 better, we now apply it in a concrete

case.

Example 4.2.6. Over the field K = F2, consider the ideal I = 〈f1, f2, f3〉 in K[x, y, z],

where f1 = xy + xz + 1, f2 = xz + yz + z, and f3 = xy + xz + y + 1. Let σ = DegLex.

To get rid of redundancy we store each polynomial fi as a tuple (m, fi), where m is a

variable multiplier. We will we working over the ring K[x, y, z]/〈x2−x, y2− y, z2− z〉.
Let us follow the steps of the MBBA.

1) We have U = {xy, xz, yz, y, z, 1}.

2) Interreduction yields the basis V = {(1, xy + xz + 1), (1, xz + yz + z), (1, y)}.

3) Let dmax := 2, dmin := 1, G := V , and Pmutant := ∅.

4) Consider the following steps to compute a U -stable span due to Proposition 4.2.2.

S2) Let Pmutant := {(1, y)}, delim := 2, and H := {(x, xy), (y, y), (z, yz)}.

S3) We have H ′ = {(x, yz+ z+ 1), (z, z+ 1)} and G = {(1, xy+xz+ 1), (1, xz+

yz + z), (1, y), (x, yz + z + 1), (z, z + 1)}.

S4) M = {y, z + 1}.
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S5) We have M \ Pmutant = {z + 1}. Let Pmutant := {y, z + 1}, H := {(x, xz +

x), (y, yz + y)}, and delim := 2.

S3) We have H ′ = {(x, x + 1)} and G = {(1, xy + xz + 1), (1, xz + yz +

z), (1, y), (x, yz + z + 1), (z, z + 1), (x, x+ 1)}.

S4) M = {y, z + 1, x+ 1}.

S5) We have M \ Pmutant = {x + 1}. Let Pmutant := {y, z + 1, x + 1}, H :=

{(y, xy + y), (z, xz + z)}, and delim := 2.

S3) H ′ = ∅.

S4) M = {y, z + 1, x+ 1}.

S5) M \ Pmutant = ∅

S6) delim = 2 = dmin + 1.

S7) W ′ = {(x, yz + z + 1), (z, z + 1), (x, x+ 1)}.

S8) W = {(x, yz + z + 1), (z, z + 1)}.

S9) We have
⋃
w∈W Supp(w) ⊆ U .

S10) V = {(1, xy + xz + 1), (1, xz + yz + z), (1, y), (x, yz + z + 1), (z, z + 1)}.

S11) Since dmin = 1 < dmax = 2, increase dmin by one and continue with step 2).

S2) Let Pmutant := {(1, xy+xz+ 1), (1, xz+ yz+ z), (1, y), (x, yz+ z+ 1), (z, z+

1), (x, x+1)}, delim := 3, andH := {(x, xy+xz+x), (y, xyz+xy+y), (z, xyz+

xz + z), (x, xyz), (y, xyz), (z, xz + yz + z), (y, y), (z, yz)}.

S3) We have H ′ = {(y, xyz + xy + y)} and G = {(1, xy + xz + 1), (1, xz + yz +

z), (1, y), (x, yz + z + 1), (z, z + 1), (x, x+ 1), (y, xyz + xy + y)}.

S4) M = {xy + xz + 1, xz + yz + z, y, yz + z + 1, z + 1, x+ 1}.

S5) M \ Pmutant = ∅

S6) delim = 3 = dmin + 1.

S7) W ′ = {(y, xyz + xy + y)}.

S8) W = ∅.

S9) We have
⋃
w∈W Supp(w) ⊆ U .

S10) V = {(1, xy + xz + 1), (1, xz + yz + z), (1, y), (x, yz + z + 1), (z, z + 1)}.

S11) dmin = 2 = dmax.
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S12) Return (G, V, U, dmax).

5) O = {1}.

6) Since ∂O = {x, y, z} * U , let U = {xyz, xy, xz, yz, x, y, z, 1} and continue with

step 4).

4) Consider the following steps to compute a U -stable span due to Proposition 4.2.2.

S2) Let Pmutant := {(1, xy+xz+ 1), (1, xz+ yz+ z), (1, y), (x, yz+ z+ 1), (z, z+

1), (x, x+ 1), (y, xyz + xy + y)}, delim := 4, and H := {(z, yz)}.

S3) H ′ = ∅.

S4) M = {(1, xy+xz+1), (1, xz+yz+z), (1, y), (x, yz+z+1), (z, z+1), (x, x+

1), (y, xyz + xy + y)}.

S5) M \ Pmutant = ∅.

S6) delim = 4 = dmin + 1.

S7) W ′ = {(y, xyz + xy + y)}.

S8) W = {(y, xyz + xy + y)}.

S9) We have
⋃
w∈W Supp(w) ⊆ U .

S10) V = {(1, xy+xz+1), (1, xz+yz+z), (1, y), (x, yz+z+1), (z, z+1), (y, xyz+

xy + y)}.

S11) dmin = 3 = dmax.

S12) Return (G, V, U, dmax).

5) O = {1}.

6) ∂O = {x, y, z} ⊆ U .

7) The Final Reduction Algorithm 4.1.7 returns {x+ 1, y, z + 1}.

Thus we see that (1, 0, 1) is the only zero of I.

Remark 4.2.7. Note that in Example 4.2.6 the maximum degree of a term in the

universe U is 3 and we need to compute with polynomials of maximum degree 4. In

this example we have extended U by considering the support of polynomials in W as

given in Proposition 4.2.5. But if we choose U = T2
≤dmax

as given by the basic version

of the Border Basis Algorithm (see [111], Proposition 18), we can end with a universe
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in which the maximum degree of a term is 2 and we need to compute with polynomials

of maximum degree 3.

4.2.2 The Improved Mutant Border Basis Algorithm

The experiments with the mutant strategy [142] show that there are two issues. The

first arises when the number of lower degree mutants is very large, as this produces

many reductions to zero. The second arises when an iteration does not produce mutants

at all or produces only an insufficient number of mutants at a lower degree. In later case

the mutant strategy makes no improvement. To handle both problems an improved

mutant strategy was introduced in [142]. This strategy is based on the mutant concept,

however it introduces a heuristic strategy of only choosing the minimum number of

mutants, which is called necessary mutants. For details about the improved mutant

strategy we refer to Section 3.5. In the following we employ the improved mutant

strategy to speed up the Border Basis Algorithm.

Let X = {x1, . . . , xn} be the set of variables, upon which we impose the following

order:

x1 > x2 > · · · > xn

Our first goal is to recall a few definitions and concepts to be used later. Recall from

Section 2.2, the ring R is the residue class ring of K[x1, . . . , xn]. The elements of R are

residue classes where each residue class has a unique polynomial representation. Every

element f ∈ R \ {0} has a unique representation as a linear combination of terms

f =
s∑
i=0

citi

where ci ∈ K, ti ∈ Tn is a term in R, i.e. ti = xα1
1 . . . xαn

n , such that αi < q, 1 ≤ i ≤ n,

and where t1 >σ t2 >σ · · · >σ ts. Considering this representation we can define the

degree, leading term and leading coefficient in the natural way.

Definition 4.2.8. Let p ∈ R. Then the leading variable of p is the largest variable,

according to the order defined on the variables, in the leading term of p and denoted

by LV(p).

Definition 4.2.9. Let Fd = {f ∈ F | deg(f) = d} and let xi ∈ X. We define F xi
d as

follows.

F xi
d = {f ∈ Fd | LV(f) = xi}
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As described above the complexity of the Border Basis Algorithm relies on the

computation of a U -stable span. We employ the improved mutant strategy to improve

its computation.

Remark 4.2.10. The computation of the U -stable span in Proposition 4.2.2 using the

improved mutant strategy can be achieved as follows. Replace step 1) in the algorithm

of Proposition 4.2.2 by the following instruction.

1’) Let dmax := max{deg(v) | v ∈ V }, dmin := min{deg(v) | v ∈ V }, Pmutant := ∅,
G := V , and let X ′ := ∅.

Replace step 2) in the algorithm of Proposition 4.2.2 by the following two instructions.

2a) If X ′ 6= ∅ then choose the smallest variable xl ∈ X ′ and delete it from X ′.

Otherwise, let X ′ := {LV(g) | g ∈ G and deg(g) = dmin}, and let delim := dmin+1.

Choose the smallest variable xl ∈ X ′ and delete it from X ′.

2b) Let H := ∅. For each g ∈ {g | g ∈ G\Pmutant and g ∈ Gxl
dmin
} append g to Pmutant

and all possible products xαg with α ∈ {1, . . . , n} to H.

Replace step 5) in the algorithm of Proposition 4.2.2 by the following instruction.

5’) Let H := ∅. If M \Pmutant 6= ∅, then for each necessary mutant m ∈M \Pmutant
append m to Pmutant and all possible products xαm with α ∈ {1, . . . , n} to G.

Let delim := min{deg(m) | m ∈M \ Pmutant}+ 1. Then continue with step 3).

The resulting algorithm still computes a vector basis V of the stable span FU , together

with the order ideal U and a K-basis G that contains V of 〈F 〉K . In general, it keeps the

size of the computational universe U even smaller than the algorithm in Proposition

4.2.2, but it may require more iterations. In other words, we are sacrificing time

efficiency for gaining space efficiency. But experiments with the improved mutant

strategy show that it provides space efficiency as well as time efficiency (see [142] and

Section 4.3).

Proposition 4.2.11. (The Improved Mutant BBA (MBBA2))

Let F = {f1, . . . , fm} ⊂ R be a set of polynomials that generates a zero-dimensional

ideal I = 〈F 〉 in R. Let σ be a degree-compatible term ordering. Consider the following

sequence of instructions.

1) Let U be the order ideal generated by
⋃m
i=1 Supp(fi).
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2) Interreduce F to get a K-basis V of 〈F 〉K with pairwise distinct leading terms.

3) Let dmax := max{deg(v) | v ∈ V }, dmin := min{deg(v) | v ∈ V }, X ′ := ∅,
G := V and let Pmutant := ∅.

4) Apply Proposition 4.2.2 along with the modifications given by Remark 4.2.10 to

compute a K-basis V of the stable span FU , the updated K-basis G, the updated

order ideal U and the updated sets Pmutant and X ′.

5) Let O = U \ LTσ(V ).

6) If X ′ 6= ∅ and ∂O * U , then continue with step 4).

7) If ∂O * U , replace U by U+, and let dmin := dmax := max{deg(u) | u ∈ U}.
Then continue with step 4).

8) Apply the Final Reduction Algorithm 4.1.7.

This is an algorithm which computes an order ideal O and the O-border basis of I.

Proof. The proof follows from Proposition 4.2.5. The only exception is that in step 4)

we compute a K-basis V of FU in parts. But this does not affect the correctness of the

algorithm.

Remark 4.2.12. Assume that we are in the setting of the algorithm in Proposition

4.2.11. Since G, Pmutant, dmin, X ′ and dmax are initialized by the algorithm itself, we

skip step 1’) of the algorithm of Remark 4.2.10 each time it is called to compute a

U -stable span. The set of polynomials Pmutant is used to recognize mutants.

Since we are mostly looking for K-rational solutions and our ideal I is a zero-

dimensional radical ideal, we can take advantage of the following proposition and theo-

rem to choose necessary mutants and to reduce some iterations that produce reductions

to zero.

Proposition 4.2.13. Let f1, . . . , fm ∈ P be polynomials which generate a zero-dimensional

ideal I = 〈f1, . . . , fm〉. Then the system of equations

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0

has at most dimK(P/I) solutions in K
n
.
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Proof. See [120], Proposition 3.7.5.

The following theorem tells us the exact number of solutions in case the ideal I in

Proposition 4.2.13 is a zero-dimensional radical ideal.

Theorem 4.2.14. Let f1, . . . , fm ∈ P be polynomials which generate a zero-dimensional

radical ideal I = 〈f1, . . . , fm〉. Let K be the algebraic closure of K, and let P =

K[x1, . . . , xn]. If K is a perfect field, the number of solutions of the system of equa-

tions

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0

is equal to the number of maximal ideals of P containing IP , and this number is

precisely dimK(P/I).

Proof. See [120], Theorem 3.7.19.

In most of the cases we may know the exact number of K-rational solutions, thus

we know dimK(P/I).

Remark 4.2.15. Assume that we are in the setting of Proposition 4.2.11. Since U is

a vector space and V ⊆ U is a vector subspace we can form the vector space quotient

U/V and we know that

dimK(U/V ) = dimKU − dimKV.

In our case the ideal is a zero-dimensional radical ideal and we may know the exact

number of solutions, especially when the system defined by F has a unique solution.

This means that we know dimK(U/V ). Thus in practice, we can check dimKU−dimKV

during the course of the algorithm. If at a certain stage the difference dimKU−dimKV

equals dimK(U/V ), the U -stable span has been reached and further iterations are

producing reductions to zero. This also helps to choose necessary mutants.

Effectiveness of Mutant Strategies for Computing a U-stable span

The complexity of the Border Basis Algorithm relies on the computation of a vector

space basis. In Proposition 4.2.2 and Remark 4.2.10 we employed the mutant strategy

and the improved mutant strategy respectively to speed up its computation. A natural

question could be to ask about the effectiveness of the mutant strategies to compute a

vector space basis.
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Surprisingly, it turns out that there are deep connections to other mathematical

disciplines, and border bases that represent the combinatorial structure of the ideal

under consideration in a canonical way. In fact the XL Algorithm (see [59, 117]),

which is based on relinearization methods, in its classical form is actually identical to

a L-stable span and therefore it is a border basis computation at its core. Recently

developed MutantXL [140], MXL2 [142] and MXL3 [143] algorithms are improved

versions of the XL Algorithm. This leads us to the following observation.

Assume that we are working over the finite field F2 and using an adapted version of

M4RI [4], a library for dense matrix linear algebra over F2. An algorithm to compute

a vector space basis using mutant strategies can perform substantially better than the

F4 algorithm [73] implemented in Magma [32], currently the best publicly available

implementation of F4. This can be observed from experimental results for the Mutan-

tXL, the MXL2 and the MXL3 algorithms presented in [37, 142, 143]. Furthermore, a

complexity analysis of these algorithms is given in [141], which suggests a new upper

bound for the complexity of computing Gröbner bases. This complexity analysis also

supports our arguments.

Future Work

In the spirit of the algorithms developed in this section, it is obviously possible to

generate a number of further variations of the Border Basis Algorithm. Such variations

may have the potential to speed up the computation of border bases considerably while

at the same time avoiding a quick exhaustion of the available memory. In this sense,

the flexible partial enlargement strategy introduced in [36] can definitely improve the

computation of a U -stable span. The flexible partial enlargement strategy is a very

recent idea and surpasses old boundaries set by mutant strategies.

As a final remark, we point out that by using mutant strategies the algorithms to

compute a border basis can compete with the linear algebra algorithms such as F4

[73] and MXL3 [143] which are used for the computation of Gröbner bases. Actually,

the idea of mutants is more suitable for border bases as compared to Gröbner bases.

The preference arises from the iterative generation of linear syzygies, inherent in the

border basis algorithm, which allows for successively approximating the basis degree by

degree. We point out that the computation of a U -stable span can be found with the

help of all the sparse linear algebra techniques which lie at the heart of linear algebra.

Therefore, the Border Basis Algorithm is able to absorb several techniques for speed

up and deserves further efficient implementation and experimentation.
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4.3 Experimental Results

In this section we report on some experiments with the mutant variants of the Improved

Border Basis Algorithm. These experimental results show that even for small instances

of systems of polynomial equations we can sufficiently reduce the size of the problem

using mutant strategies. The mutant strategies provide us space efficiency as well as

time efficiency. We restrict ourself to dense matrix computations. We compare some of

the timings we obtained to the straightforward Gröbner basis approach. A preliminary

implementation of the Border Basis Algorithm is available in the ApCoCoA [12] library

for general zero-dimensional ideals. We also consider this implementation to compare

some of the timings we obtained.

To fulfil the needs of Lemma 4.1.4 we use a self implemented code to perform

Gaußian elimination over F2. This implementation is denoted by EF in Section 3.3. It

is also available in the ApCoCoA [12] package linalg. Using this implementation we

compare the timings and sizes we obtained with the BBA, the MBBA and the MBBA2.

We consider the HFE (Hidden Field Equations) and the CTC (Courtois Toy Cipher)

to construct algebraic systems of equations. For more details about these cryptosystems

and related algebraic systems of equations see Section 2.3. Throughout this section

we consider the timings only for Gaußian elimination. The timings for preparing ma-

trices, computing order ideals and their borders and the Final Reduction Algorithm

are ignored, since they were not implemented efficiently and should be seen as a pre-

processing step. Throughout this section we measure time in seconds unless otherwise

mentioned. All timings were obtained on a computer with a 2.1 GHz AMD Opteron

6172 processor and 64GB RAM.

4.3.1 Experimental Results for CTC

Given the CTC cryptosystem and a plaintext-ciphertex pair, we construct an overde-

termined algebraic system of equations in terms of the indeterminates representing key

bits and certain intermediate quantities. The task is to solve the system for the key

bits. As we saw in Section 3.3, substitution of linear and quadratic equations results in

an equation system in the key variables only. We present our experimental results with

this level of substitution as it is more suitable for computations with dense matrices.

These systems are such that each of them has a unique solution over F2.
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Universe BBA MBBA MBBA2

System O V Matrix G Matrix G Matrix

CTC(2,2)∗2 8 7 25×8 7 15×8 7 13×8

CTC(2,3)∗2 64 63 436×64 63 230×64 63 79×64

CTC(3,2)∗2 128 127 1013×128 127 433×128 127 242×128

CTC(3,3)∗2 492 491 4908×511 501 1757×485 510 1428×488

CTC(3,4)∗2 512 511 5107×512 511 2662×512 511 564×512

CTC(4,3)∗2 512 511 - 2046 3603×2036 1984 1984×2046

Table 4.1: CTC size comparison using BBA, MBBA and MBBA2

System Equations Variables BBA MBBA MBBA2 BBasis GBasis

CTC(2,2)∗2 13 3 0 0 0 0 0

CTC(2,3)∗2 28 6 0 0 0 0.29 0.09

CTC(3,2)∗2 44 7 0.02 0 0 3.14 0.14

CTC(3,3)∗2 42 9 1.7 0.75 0.5 - 0.83

CTC(3,4)∗2 42 9 1.8 0.9 0.1 - 2.99

CTC(4,3)∗2 53 11 - 20 7 - 128

Table 4.2: CTC time comparison using BBA, MBBA and MBBA2

The “∗” in the first column for a system means that there are some mutants in this

system. In Table 4.1 we collect the sizes of universes and the biggest sizes of matrices

formed by Lemma 4.1.4. We can see the results in Table 4.3 agree with the results in

Table 4.1. In Table 4.2 we compare the timings for the solutions of CTC instances.

Each timing represents the total time taken by Lemma 4.1.4. The last two columns

show the time taken by the computation of a Lex Gröbner basis and a DegLex border

basis in ApCoCoA [12] respectively.
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4.3.2 Experimental Results for HFE

Consider algebraic systems of equations constructed from the HFE cryptosystem. Since

these systems are determined, we represent the size of each system by using the number

of variables in the system. The “∗” in the first column for a system means that there

are some mutants in this system.

Universe BBA MBBA MBBA2

System O V Matrix G Matrix G Matrix Sol.

HFE(6)∗
22 21 143×42 41 92×42 41 47×42 1

22 20 140×42 40 95×42 40 51×42 2

HFE(7)∗
29 28 223×64 63 97×64 63 68×64 1

29 25 200×64 60 116×64 59 71×64 4

HFE(8)∗
36 35 314×93 92 259×93 92 95×93 1

37 34 305×93 90 191×93 90 95×93 3

HFE(9)
130 129 1290×256 255 695×256 199 402×200 1

130 128 1277×254 254 685×256 184 185×241 2

HFE(10)
176 175 1925×386 385 1144×386 315 386×325 1

176 174 1913×386 384 1133×386 314 386×325 2

HFE(11)
232 231 2771×562 561 1781×562 561 677×562 1

232 229 2746×562 559 1408×562 559 935×562 3

HFE(12)
299 298 3873×794 793 2652×794 793 879×794 1

299 297 3861×794 792 2640×794 792 879×794 2

HFE(13)∗
378 377 5276×1093 1092 2885×1093 1092 1195×1093 1

378 372 5276×1093 1087 2885×1093 1087 1195×1093 6

HFE(14)∗ 470 469 7035×1471 1470 4032×1471 1471 1483×1471 1

Table 4.3: HFE size comparison using BBA, MBBA and MBBA2

In Table 4.3 we collect the sizes of universes and the biggest sizes of matrices formed

by Lemma 4.1.4. In all the three cases the size of a universe remains the same. The

MBBA is an improvement of the BBA if there are mutants in the system HFE(N).

Since we are also getting rid of redundancy in the MBBA, we see some improvement

in sizes even for those systems which do not have mutants. If no mutants occur and

we do not get rid of redundancy, the MBBA behaves identically to the BBA.
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System Equations Variables BBA MBBA MBBA2 BBasis GBasis

HFE(6)∗
6 6 0 0 0 0.04 0.01

6 6 0 0 0 0.04 0

HFE(7)∗
7 7 0 0 0 0.09 0.02

7 7 0 0 0 0.1 0.01

HFE(8)∗
8 8 0 0 0 0.26 0.13

8 8 0 0 0 0.28 0.04

HFE(9)
9 9 0.1 0.03 0 5.11 0.26

9 9 0.1 0.03 0 4.74 0.12

HFE(10)
10 10 0.28 0.11 0.02 13.45 0.8

10 10 0.28 0.12 0.02 13.54 0.81

HFE(11)
11 11 0.77 0.35 0.02 36 3.15

11 11 1.1 0.33 0.06 59.15 5.3

HFE(12)
12 12 1.4 0.8 0.26 96 31

12 12 1.4 0.8 0.26 98 28

HFE(13)∗
13 13 4.9 2.5 0.6 449 349

13 13 5 2 0.6 441 287

HFE(14)∗ 14 14 10 4.2 1.2 885 2313

Table 4.4: HFE time comparison using BBA, MBBA and MBBA2

In Table 4.4 we compare the timings for the solution of HFE(N). Each timing

represents the total time taken by Lemma 4.1.4 during the process of solving HFE(N).

The last two columns show the time taken by the computation of a Lex Gröbner basis

and a DegLex border basis in ApCoCoA [12] respectively. Finally, we conclude that

the MBBA2 is the most efficient version even if there are no mutants.



Chapter 5
Techniques Using Mixed Integer

Linear Programming

In this chapter we will restrict our attention to solving polynomial systems defined

over F2. Although the generalization to other finite base fields is straightforward, we

want to concentrate on the fundamental principles in the most important case. We

study recent suggestions of transferring the problem of solving a system of polynomial

equations over F2 into a mixed integer linear programming problem. In particular, we

develop several strategies for converting the polynomial system over F2 to a polyno-

mial system over R (respectively over Z). Furthermore, we present a new conversion

method based on propositional logic and pseudo-boolean optimization. Towards the

end of this chapter we develop new hybrid conversion methods to accelerate the per-

formance of an IP solver. This enables us to make use of several algorithms in the field

of discrete optimization. Several algorithms have been developed (or optimized) and

implemented. The experimental results are presented and compared which show that

our newly developed techniques result in substantial speed up of IP solvers. Further-

more, note that some IP solvers like CPLEX can be parallelized. Thus we can benefit

from parallelization capabilities of IP solvers to solve systems of polynomial equations.

To conclude this chapter we present a comparison of all techniques in plots and tables.

5.1 Mixed Integer Linear Programming (MILP)

This section serves as a foundation for coming sections. We discuss our approach

to use techniques from integer linear programming for finding a 0-1 valued solution
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of a system of polynomial equations over F2. Furthermore, we review some necessary

concepts from the theory of integer linear programming. In particular, we discuss some

standard techniques used for modeling and solving mixed integer linear problems.

5.1.1 Mixed Integer Linear Programming Problems

Integer optimization deals with the problem of minimizing (or maximizing) a function

of several variables subject to equality and inequality constraints and integrality re-

strictions on some or all of the variables. A Mixed Integer Linear Programming (MILP)

problem is a problem of the form

Minimize z = cx+ dy

Subject to Ax+ By ≤ b

x ≥ 0 integral

y ≥ 0

(5.1)

where the data are the row vectors c ∈ Qn, d ∈ Qp, the matrices A ∈ Qm×n, B ∈ Qm×p

and the column vector b ∈ Qm; and the variables are the column vectors x ∈ Zn+
and y ∈ Rp

+. The set S of all (x, y) ∈ Zn+ × Rp
+ which satisfies the linear constraints

Ax+ By ≤ b, i.e.

S = {(x, y) ∈ Zn+ × Rp
+ | Ax+ By ≤ b}

is called a feasible set. An element (x, y) ∈ S is called a feasible point. A MILP problem

is called feasible if S 6= ∅ and infeasible if S = ∅. The function z = cx + dy is the

Objective Function (OF) that we want to minimize (or maximize).

A MILP problem has either an optimal solution, is unbounded, or is infeasible. If

there exists for any w ∈ R an (x′, y′) ∈ S such that cx′+dy′ < w, the MILP problem is

unbounded. A solution for a MILP problem is optimal if a feasible point (x′′, y′′) ∈ S
exists with cx′′ + dy′′ ≤ cx+ dy for all (x, y) ∈ S.

Special cases of MILP problems are the Linear Programming (LP) problems, where

all variables are continuous, i.e. when c = 0, and the pure Integer Programming (IP)

problems, where all variables are integer valued, i.e. when d = 0. In first case the set

S of feasible solutions to 5.1 is called a mixed integer linear set and in second case it is

called a pure integer linear set. We are mainly interested in two other special cases of

MILP problems. The first one is called 0-1 MILP problem where the integer variables

are replaced by binary variables. The second one is the case where the majority of the

variables (but not all) are replaced by binary variables.
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Cutting Plane Methods

Solving a MILP problem such as 5.1 is NP-hard (see Cook [54]). The polyhedral ap-

proach is a powerful tool for solving MILP problems 5.1. One approach that has been

quite successful in practice is based on an idea that is commonly used in computational

mathematics: Find a relaxation that is easier to compute and gives a tight approxi-

mation. We focus on linear programming relaxations. Given a mixed integer linear

set

S = {(x, y) ∈ Zn+ × Rp
+ | Ax+ By ≤ b},

a linear programming relaxation of S is a set

{(x, y) ∈ Rn
+ × Rp

+ | A′x+ B′y ≤ b′}

that contains S. Why LP relaxations? Mainly for two reasons: there are efficient

practical algorithms for solving linear programs. Second, one can generate a sequence

of linear programming relaxations that provides increasingly tight approximations of

the set S. For a mixed integer set S, there is a natural linear programming relaxation:

{(x, y) ∈ Rn
+ × Rp

+ | Ax+ By ≤ b}

which is obtained from the system that defines S by discarding the integrality require-

ment on the vector x. Starting from a linear programming relaxation cutting plane

methods aim at finding an optimal solution of the MILP problem 5.1. For details and

an extensive coverage of the subject we refer to [107], Chapter 11. In this chapter we

focus on conversion methods of the following type.

5.1.2 Conversion Methods

The main idea that we address is to transform the problem of solving a system of

polynomial equations over F2 (boolean system) into a MILP problem. We convert the

boolean equation system into an equation system over R (resp. Z) and model the

problem of finding a 0-1 valued solution for the boolean system as a MILP problem.

In this sense the process of solving consists of the following four steps.

S1) Transformation to R or Z: Transform a system of polynomial equations over

F2 into a system of polynomial equations over R (resp. Z).
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S2) Modeling a MILP Problem: Model the transformed system as a MILP prob-

lem.

S3) IP Solver: Use an IP solver to solve the modeled MILP problem.

S4) Inverse Transformation: Use inverse transformation to obtain a solution of

the original system from the solution of the MILP problem.

Note that, depending on the chosen conversion method, the first two steps can also be

performed as a single step. For instance, this is the case for the method developed in

Section 5.4. Figure 5.1 gives a visible explanation of these steps.

Figure 5.1: Solving Process

In the following we discuss these four steps one by one.

5.1.3 Transformation to R or Z

Let f1 = . . . = fm = 0, where f1, . . . , fm ∈ F2[x1, . . . , xn], be a polynomial equation

system. We consider the problem of solving the system f1 = · · · = fm = 0 for F2-

rational solutions. Let X = {X1, . . . , Xn} be a set of real variables (respectively

integer variables), i.e. variables over R (respectively over Z). The task of solving
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the polynomial equation system f1 = · · · = fm = 0 can be rephrased as follows: Find

a tuple (a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)
...

Fm(a1, . . . , an) ≡ 0 (mod 2)

(5.2)

where Fi ∈ R[X1, . . . , Xn] (respectively Fi ∈ Z[X1, . . . , Xn]) is the standard (respec-

tively a lifting) representative (see Definition 5.2.5) of fi. Thus we are looking for an

integer solution (a1, . . . , an) of the system 5.2 which satisfies 0 ≤ ai ≤ 1. Note that at

this stage the polynomials F1, . . . , Fm are nonlinear.

There could be different methods to perform step S1). Most probably such methods

exist in the literature but they have not been used for our purpose. For instance, the

method used by J. Borghoff et al. [31] and M. Lamberger et al. [124], is frequently

used in operations research (see [24]). Also the transformation method used in [117] is

based on a basic understanding of operations in polynomial rings and their quotients.

Last but not least, there are methods developed by us in Sections 5.4 and 5.5, which

perform substantially better than the methods in [117, 31]. It is possible that further

investigations in this direction could lead towards even more efficient transformation

methods.

5.1.4 Modeling a MILP Problem

Usually there is more than one way to model a MILP problem or an IP problem. In in-

teger programming, formulating a “good” model is of crucial importance for solving the

MILP problem (see [173], Chapter 1). A first question in formulating a model is usually

defining variables but in the case of a system of polynomial equations which results

from step S1) the obvious choice is to take the variables involved (initial variables). We

will also introduce some additional variables depending on the transformation model

we use.

The second question is finding a good objective function. As we will see later we are

interested in a feasible point and not in an optimal solution for our problem. Hence,

we have a lot of freedom to choose the objective function. The main problem is to find

a good formulation for

S = {(x, y) ∈ Zn+ × Rp
+ | Ax+ By ≤ b}.
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Here it is often easy to find A, B, and b which yield a valid formulation for S but

this description of the feasible set might not be the best one for actually solving the

problem. The reason is that integer optimization algorithms such as branch-and-cut

need a lower bound on the objective function and they determine this bound often by

using relaxations. One possible relaxation of the problem is to solve the corresponding

LP problem, i.e. by assuming c = 0 (see Problem 5.1). The feasible set S of the MILP

problem is a subset of the feasible set of the LP problem. The smaller the feasible set

of the LP problem is, the more precise are the bounds for the MILP problem and the

efficiency of most algorithms depends on these bounds. To formulate S, we consider

the available literature on MILP which is mentioned in the following.

One branch of integer programming deals with optimizing a nonlinear objective

function subject to nonlinear constraints. In particular, the most interesting is the

case of the 0-1 quadratic programming problem. The 0-1 quadratic programming prob-

lem seeks to optimize a quadratic objective function subject to several quadratic con-

straints, along with the condition that each variable is restricted to take on a value of

either 0 or 1. Such problems arise in a host of contemporary application areas such

as telecommunications [15, 97, 113], manufacturing and scheduling [5, 170], epileptic

seizure warning [45, 99], subsume unconstrained 0-1 quadratic programs, 0-1 quadratic

knapsack problems, and quadratic assignment problems.

Due to such huge applications of the 0-1 quadratic programming problems, several

methods and algorithms have been proposed for solving them. Because of its NP-

hardness, many of these are heuristic in nature (see [39, 115]). But we will consider

exact optimization approaches only. Therefore, we are in luck: we can profit from some

of the approaches to solve 0-1 quadratic programming problems which are given in the

following.

Convex Reformulations

The various approaches to solve 0-1 quadratic programming problems also include the

0-1 convex quadratic reformulations (see [14, 26, 44, 91, 136, 152]). Although 0-1

linear reformulations of 0-1 quadratic programming problems are the most common

approaches, other methods have been proposed. Let us cite, for example, algebraic

and dynamic programming methods ([60, 92]), reformulation to a continuous concave

minimization problem ([108]) and enumerative methods based on different types of

relaxations such as Lagrangian relaxation, semidefinite relaxation or convex quadratic

relaxation ([11, 29, 43, 47, 77, 96]). To perform step S2) we can benefit from such
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relaxation techniques. But it is still a challenge to find the best ones. In this chapter, we

do not consider relaxation techniques. Instead we focus on reformulation-linearization

techniques given in the following.

Reformulation-Linearization Techniques

Several linearization strategies have been proposed in the literature for reformulating

0-1 quadratic programs as equivalent MILP problems, starting with Fortet [78], and

evolving into more concise formulations that either require additional binary variables

as in Glover and Woolsey [86], or that introduce only additional continuous variables

and constraints as in Glover [85] and Glover and Woolsey [87]. A significantly tighter

reformulation was proposed by Adams and Sherali [2], which was demonstrated to

dramatically improve the computational performance in comparison with the preceding

strategies. This approach was subsequently generalized and enhanced to design the

Reformulation-Linearization Technique (RLT) in Sherali and Adams [161].

Further improvement is due to the work of Chaovalitwongse et al. [46], who provide

a novel transformation of the 0-1 quadratic program into a linear 0-1 mixed integer

program, which requires the introduction of only a linear number of additional variables

and constraints. Later it was demonstrated by Sherali and Smith in [162], that by re-

stating the problem as an equivalent mixed integer bilinear program and using a series

of variable transformations, a similarly structured but tighter equivalent linearized 0-1

mixed integer programming problem can be derived. They provide both theoretical

as well as computational comparisons between this resulting problem and alternative

traditional linearizations based on substituting a new (continuous) variable for each

distinct quadratic term in the problem. The latest development in this direction is

due to H. Xiaozheng et al. [174] who propose a computational enhancement for a

linearization technique to make the linearized model much faster to solve. We consider

all these developments to perform step S2). This enables us to benefit from the research

on reformulation-linearization to perform step S2). Note that in most of the cases we

need to make adjustments to the linearization techniques described above to make

them applicable for our needs.

5.1.5 IP Solver and Inverse Transformation

After step S2) we need an IP solver to solve the MILP problem. We use the following

solvers to solve MILP problems.
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1) CPLEX: The commercial linear optimization tool CPLEX by ILOG [102]. CPLEX

parameters reference manual provides several useful features for solving MILP

problems. Parameters, accessible and manageable by users, control the behav-

ior of CPLEX. Using these parameters we can choose different optimal solution

search strategies. For instance, some very useful parameters for our purpose are

given in the following table. For each MILP problem first we need to learn from

Parameter Functionality

MIP emphasis switch
Controls trade-offs between speed, feasibility,
optimality, and moving bounds in MIP.

MIP variable selection strategy
Sets the rule for selecting the branching vari-
able at the node which has been selected for
branching.

Feasibility pump switch
Turns on or off the feasibility pump heuristic for
mixed integer programming (MIP) models.

MIP integer solution limit
Sets the number of MIP solutions to be found
before stopping.

Parallel mode switch
Sets the parallel optimization mode. Possible
modes are automatic, deterministic, and oppor-
tunistic.

Global default thread count
Sets the default maximal number of parallel
threads that will be invoked by any CPLEX
parallel optimizer.

Table 5.1: Some important CPLEX parameters

our experiments that under which parameter settings it can be solved efficiently,

i.e. by using less time and memory. Different MILP problems behave differently

under same parameter settings. There are MILP problems whose timings are af-

fected by the change of parameters dramatically. So we need to be careful while

choosing CPLEX parameters for our problem. As given by Table 5.1, CPLEX

has a users choice for emphasis on feasibility or optimality. We choose emphasis

on feasibility for our experimental results because we are not interested in opti-

mality and stop after we found the first solution because we assume that there is

only one solution (in most of the cases). We use CPLEX version 12.2. Moreover,

CPLEX can be parallelized. We run CPLEX in parallel on a laptop with a 2.13

GHz Intel Pentium P6200 Dual Core processor and 4GB RAM.

2) GLPK: The GLPK (GNU Linear Programming Kit) package is intended for

solving large-scale linear programming (LP), mixed integer programming (MIP),
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and other related problems. It is a set of routines written in ANSI C and organized

in the form of a callable library. GLPK does not provide the facility of parallel

computing. We run GLPK on a laptop with a 2.13 GHz Intel Pentium P6200

Dual Core processor and 4GB RAM, but we are using only a single thread out

of two.

After solving the MILP problem, the last step S4) is to obtain the 0-1 valued solution

of the original system of polynomial equations from the solution of the MILP problem.

This step returns the values of the initial variables, i.e. the variables in the original

system by ignoring the values for the newly introduced variables.

Experimental results are presented on cryptographic examples coming from the

CTC cipher and the small scale AES cipher. For details about the CTC cipher, we refer

to Section 2.3. For an extensive coverage of the subject, we refer to [57]. Furthermore,

we model S-boxes of the CTC cipher in the following three ways.

1) Full-Sbox (F-Sbox): Using all 14 equations.

2) Half-Sbox (H-Sbox): Using first 7 equations out of 14.

3) Min-Sbox (M-Sbox): Using minimum number of equations out of 14. To this

end we can choose last three equations of the S-Box.

For details about the small scale AES cipher, we refer to Section 2.3. The conver-

sion algorithms are implemented in C++. In all experimental results presented, the

timings for the conversion algorithms were ignored, since they do not contribute to the

complexity of solving and take very little time. For instance, all conversion algorithms,

for the conversion of CTC(7,7), take less than 10 seconds. Finally, we note that all

timings can be reproduced, if we do not permute the set of input linear equalities

and inequalities. The reason for this is that IP solvers also implement randomized

algorithms which rely heavily on heuristical methods. The implementations of conver-

sion techniques developed in this chapter are available online in the package glpk (see

Appendix C) of the computer algebra system ApCoCoA [12].

5.2 Techniques for Polynomial Conversion

In this section we review very recent suggestions (see [31] and [117]) of transferring

the problem of solving a system of polynomial equations over F2 into a mixed integer
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linear programming problem and generalize the approach. Furthermore, we investigate

restrictions on variables introduced by a conversion method and the choice of a suitable

objective function. The experimental results are presented and compared. Based on

our experimental results, we conclude which conversion method provides better results.

In [24], an overview of possible representations of polynomials over F2 as polynomi-

als over R is listed. Later this study was extended slightly in [124] but the main idea

behind the representation methods was basically unaltered. Recently, some methods

have been proposed for transferring the problem of solving a system of polynomial

equations over F2 into a MILP problem. In [117], M. Kreuzer provided an algorithm

based on converting polynomial equations over F2 into polynomial equations over Z.

We call this method Integer Polynomial Conversion (IPC). In [31], J. Borghoff et

al. provided another method based on converting polynomial equations over F2 into

polynomial equations over R. We reformulate the algorithm for IPC and provide an al-

gorithm based on the ideas of J. Borghoff et al. to solve general systems of polynomial

equations.

Let F2 be the finite field with two elements and let f1, . . . , fm ∈ P = F2[x1, . . . , xn]

be non-zero polynomials. We are interested in finding F2-rational solutions of the

following system of polynomial equations.

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

We convert the polynomial equations defined over F2 into polynomial equations which

hold over the reals (respectively over the integers). We denote by Tn the monoid of

terms for F2[x1, . . . , xn]. An element of the monoid of terms Tn will be denoted by t.

Definition 5.2.1. Let n ≥ 1.

a) A polynomial f ∈ F2[x1, . . . , xn] of the form f = xi1 · · ·xis , where 1 ≤ i1 < i2 <

· · · < is ≤ n is called a squarefree term.

b) For a squarefree term tj = xi1 · · ·xis ∈ Tn, where 1 ≤ i1 < i2 < · · · < is ≤ n, we

let Nj = {i1, . . . , is}.

Note that in Definition 5.2.1 the set Nj is a kind of indexing set. For a squarefree

term tj, the number of elements in the set Nj is the degree of tj. From now on fi will

be a squarefree polynomial (boolean polynomial), i.e. all terms in the support of fi will
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be squarefree. Let X = {X1, . . . , Xn} be a set of real variables (respectively integer

variables), i.e. variables over R (respectively over Z). A conversion method should at

least guarantee that a solution for fi results in a solution for the associated polynomial

(or polynomials) over R (respectively over Z).

We are looking for an integer solution (a1, . . . , an) of the system 5.2 which satisfies

0 ≤ ai ≤ 1. This formulation suggests to linearize the system and to apply a mixed in-

teger linear programming algorithm for finding a solution satisfying the stated bounds.

In the following we turn these ideas into effective algorithms.

5.2.1 Integer Polynomial Conversion (IPC)

The first conversion method we discuss was proposed by M. Kreuzer in [117]. It is based

on converting polynomial equations over F2 into polynomial equalities and inequalities

over Z. The idea behind it is to convert each equation as a whole to preserve the

structure of equation. Since we want to use the resulting system of equalities and

inequalities in an integer programming problem, this means that we can restrict some

(or all) variables to be integers. The task of solving the polynomial equation system

f1 = · · · = fm = 0 can be rephrased as follows: Find a tuple (a1, . . . , an) ∈ {0, 1}n such

that
F1(a1, . . . , an) ≡ 0 (mod 2)

...

Fm(a1, . . . , an) ≡ 0 (mod 2)

(5.3)

where Fi ∈ Z[X1, . . . , Xn] are lifting’s of the polynomials fi. Thus we are looking for

an integer solution (a1, . . . , an) of the system 5.3 which satisfies 0 ≤ ai ≤ 1. So the idea

is to formulate these congruences 5.3 as a system of linear equalities and inequalities

over Z and solve it using an IP-solver.

Proposition 5.2.2. (Integer Polynomial Conversion (IPC))

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their supports squarefree.

For i = 1, . . . ,m let Si be the set of terms of degree ≥ 2 in fi, si = #Supp(fi)

and S =
⋃m
i=1 Si.

2) For i = 1, . . . ,m, introduce a new integer indeterminate Ki and write down the
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linear inequality Ii : Ki ≤ bsi/2c.

3) For every tj ∈ S, introduce a new integer indeterminate Xn+j. For i = 1, . . . ,m,

write fi =
∑

j tj + `i where the sum extends over all j such that tj ∈ Si and

where `i ∈ P≤1. Form the equation Fi :
∑

j Xn+j + Li − 2Ki = 0, where

Li ∈ Z[X1, . . . , Xn]≤1 is a lifting of `i over Z.

4) For tj ∈ S, write tj =
∏

α∈Nj
xα. Form the linear inequalities

In+j :
∑

α∈Nj
Xα −Xn+j ≤ |Nj| − 1,

and

Ijα : Xα ≥ Xn+j for all α ∈ Nj.

5) For all α ∈ {1, . . . , n}, let I ′α : Xα ≤ 1.

6) Choose a linear polynomial C ∈ Z[Xα, Xn+j, Ki] and use an IP solver to find the

tuple of natural numbers (aα, an+j, ci) which solves the system of equations and

inequalities {Ii, Fi, In+j, Ijα, I ′α} and minimizes (or maximizes) C.

7) Return (a1, . . . , an) and stop.

Proof. For α = 1, . . . , n, we are looking for natural numbers aα for which I ′α holds,

so we have aα ∈ {0, 1}. Similarly, we have an+j ∈ {0, 1} by I ′α and Ijα. Moreover, if

tj =
∏

α∈Nj
xα ∈ S and if one of the numbers aα for α ∈ Nj is zero then Ijα implies

an+j = 0. On the other hand, if aα = 1 for all α ∈ Nj then In+j implies an+j ≥ 1.

Altogether, this means that an+j equals
∏

α∈Nj
aα, the value of tj at (a1, . . . , an).

Next it follows from Fi that Fi(a1, . . . , an) = 2Ki is an even number, and Ii is

nothing but the trivial bound for Ki implied by the size of the support of fi. In this way

the solutions of the IP problem correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n

which satisfy the above reformulation of the given polynomial system.

Remark 5.2.3. Assume that we are in the setting of the algorithm in Proposition

5.2.2. If we can find a feasible binary/integer-valued solution for the MILP for an

arbitrary objective function, this solution can be converted into a solution for the

original system. Hence it is not important to find a minimal (or maximum) solution

but a feasible point. But we have three natural questions. Which linear function

might be a good objective function? Which variables should be restricted to be binary
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or integers? Which optimization direction (maximize or minimize) could be a better

choice?

We do not have a final answer for the first question at this stage but we remark

that a good choice of an objective function can affect the running time of an IP solver

strongly. We try to study it with the help of computation experiences in Section 5.2.2.

A partial answer to the second question could be the following. The difficulty of solving

a mixed integer program depends more on the number of integer variables than on the

number of continuous variables (see [87]). Therefore our intuition tells us to keep as

many variables continuous as we can. As proposed by F. Glover and E. Woolsey in [87],

the linear inequalities in step 4) of the algorithm keep the variables Xn+j continuous.

It is however necessary to keep upper bounds of 1 on these variables, as noted by A.J.

Goldman [88].

In view of these remarks we fix variables as follows. The initial state variables

X1, . . . , Xn will be forced to take on binary values. The variables K1, . . . , Km will be

forced to take on integer values in the interval [0, bsi/2c]. The variables Xn+j will be

kept continuous in the interval [0, 1]. The variables Xn+j depend on the initial state

variables. This means that we do not have to restrict them to be integer or binary. In

Section 5.2.2 we confirm our intuition by experiments.

Again we do not have an answer for the third question at this stage but we remark

that it can affect the running time of an IP solver in certain cases. We try to study it

with the help of computation experiences in Section 5.2.2.

To understand Proposition 5.2.2 better, we now apply it in a concrete case.

Example 5.2.4. Over the field K = F2, consider f1, f2, f3 ∈ K[x1, x2, x3], where

f1 = x1x2 + x1x3 + 1, f2 = x1x3 + x2x3 + x1 + x3 + 1, and f3 = x1x2 + x1x3 + x2 + 1.

Let us follow the steps of the algorithm in Proposition 5.2.2.

1) Let S1 = {x1x2, x1x3}, S2 = {x1x3, x2x3} and S3 = {x1x2, x1x3}. Let s1 = 3,

s2 = 5, s3 = 4 and S = {x1x2, x1x3, x2x3}.

2) Introduce new integer indeterminates K1, K2, K3 and write down the linear in-

equalities I1 : K1 ≤ 1, I2 : K2 ≤ 2 and I3 : K3 ≤ 2.

3) Introduce new integer indeterminates X4, X5, X6 and form the following equa-
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tions.
F1 : X4 +X5 + 1− 2K1 = 0

F2 : X5 +X6 +X1 +X3 + 1− 2K2 = 0

F3 : X4 +X5 +X2 + 1− 2K3 = 0

4) Form the linear inequalities

I4 : X1 +X2 −X4 ≤ 1, I11 : X1 ≥ X4, I12 : X2 ≥ X4,

I5 : X1 +X3 −X5 ≤ 1, I21 : X1 ≥ X5, I23 : X3 ≥ X5,

I6 : X2 +X3 −X6 ≤ 1, I32 : X2 ≥ X6, I33 : X3 ≥ X6.

5) Let I ′1 : X1 ≤ 1, I ′2 : X2 ≤ 1 and I ′3 : X3 ≤ 1.

6) Let C = X1 +X2 +X3. Now use an IP solver to minimize C subject to

{I1, . . . , I6, F1, F2, F3, I11, I12, I21, I23, I32, I33, I
′
1, I
′
2, I
′
3}.

7) Choose values for X1, X2 and X3 from the solution provided by an IP solver.

This will return (1, 0, 1).

5.2.2 Experimental Results

Now we present our observations and results from experiments with the algorithm in

Proposition 5.2.2. We try to find a good objective function and variables which should

be restricted to be binary. Furthermore, we try to see which optimization direction

(minimize or maximize) is a better choice. From now on we assume that we are in the

setting of the conversion algorithm in Proposition 5.2.2.

Optimization Direction

Assume that we choose the objective function as the sum over all the initial variables

X1, . . . , Xn and assume that we impose restrictions on variables as given in Remark

5.2.3. Then Tables 5.2 and 5.3 show the experimental results for the two optimization

directions. We run a number of experiments which show that more or less the same

observations can be obtained for different choices of objective functions. After observ-

ing the timings in Tables 5.2 and 5.3, we are still not able to give a concrete answer

to this question but we are on the safe side if we choose maximization as optimization

direction. Furthermore, if we model S-boxes using first 7 equations out of 14, we can

obtain better timings.



5.2. Techniques for Polynomial Conversion 115

F-SBox H-SBox M-SBox
System Max Min Max Min Max Min

CTC(3,3) 16.8 14.7 9.2 6.6 10.8 14
CTC(3,4) 121 236 29 129 20 >1000
CTC(4,3) 73 174 48 72 86 540
CTC(4,4) 4539 4831 1225 2177 >14000 >16000

Table 5.2: GLPK time comparison for optimization direction using IPC

F-SBox H-SBox M-SBox
System Max Min Max Min Max Min

CTC(3,3) 3 3.9 4 3.6 4.5 2.4
CTC(3,4) 6.5 44 2.6 35 3.9 31
CTC(4,3) 3.4 45 20 21 4 31
CTC(4,4) 90 58 107 152 85 73
CTC(4,5) 847 205 218 1018 484 272
CTC(5,4) 408 1224 742 650 1264 1295

Table 5.3: CPLEX time comparison for optimization direction using IPC

Restrictions on Variables

Assume that we choose the objective function as the sum over all the initial variables

X1, . . . , Xn and maximization as optimization direction. Since we are looking for a 0-1

solution, the initial variables X1, . . . , Xn must be forced to take on binary values. The

integer variables K1, . . . , Km must take on integer values in the interval [0, bsi/2c]. The

remaining variables Xn+j can be restricted in the following ways.

F-SBox H-SBox M-SBox
System R1 R2 R3 R1 R2 R3 R1 R2 R3

CTC(3,3) 18 16.8 16.4 10.1 9.2 9 10.7 10.8 10.2
CTC(3,4) 214 121 117 31 29 28 23 20 20
CTC(4,3) 89 73 71 61 48 47 99 86 84
CTC(4,4) 6750 4539 4351 2623 1225 5520 >10000 >14000 >5000

Table 5.4: GLPK time comparison for restrictions on variables using IPC

R1: Force the variables Xn+j to take on binary values.

R2: Keep the variables Xn+j continuous in the interval [0, 1].

R3: Keep the variables Xn+j continuous without any bounds.
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F-SBox H-SBox M-SBox
System R1 R2 R3 R1 R2 R3 R1 R2 R3

CTC(3,3) 3.68 3.04 3.03 1.6 4 4 4.5 4.48 4.6
CTC(3,4) 2.7 6.5 6.3 1.6 2.65 2.6 3.8 3.9 3.9
CTC(4,3) 3.8 3.4 3.6 8.3 20 20 3.9 4 3.9
CTC(4,4) 127 90 89 53 107 106 85 85 85
CTC(4,5) 172 847 841 85 218 218 483 484 483
CTC(5,4) 274 408 406 690 742 742 1250 1264 1250

Table 5.5: CPLEX time comparison for restrictions on variables using IPC

Tables 5.4 and 5.5 show that R1 is a better choice for CPLEX and R2 is a better

choice for GLPK.

Objective Function

The objective function is not important to get the correct solution of the problem, it

is important for the performance of many mixed integer programming algorithms. In

branch and bound algorithms the boundary function estimates the best value of the

objective function obtainable by growing the search tree one node further. This value

is an important factor in the process of choosing the next node in the search tree.

The closer the value of the bounding function to the objective function the better.

Assume that we choose maximization as optimization direction and the variables Xn+j

are restricted according to R1. The only restriction for the objective function we have

is that it must be linear. Natural choices are as follows.

F-SBox H-SBox M-SBox
System O1 O2 O3 O1 O2 O3 O1 O2 O3

CTC(3,3) 18 20 22 10 5 5.7 10 13 20
CTC(3,4) 214 305 281 21 38 32 23 132 93
CTC(4,3) 89 221 170 61 30 26 99 80 127
CTC(4,4) 6750 1853 3168 2536 480 480 >10000 >10000 >10000

Table 5.6: GLPK time comparison for objective function using IPC

O1: The sum over all the initial variables X1, . . . , Xn.

O2: The sum over all variables.

O3: The sum over all new variables Xn+j and K1, . . . , Kn introduced by the conversion

algorithm.
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F-SBox H-SBox M-SBox
System O1 O2 O3 O1 O2 O3 O1 O2 O3

CTC(3,3) 3.68 5.3 4.9 1.6 2.2 1.8 4.5 0.3 3.4
CTC(3,4) 2.7 23 11 1.6 10 20 3.8 4.8 0.9
CTC(4,3) 3.8 20 20 8.3 0.8 15 3.9 8 14
CTC(4,4) 127 105 433 53 78 120 85 82 19
CTC(4,5) 172 301 8.5 85 971 307 483 94 129
CTC(5,4) 274 1472 1915 690 1320 818 1250 501 1134

Table 5.7: CPLEX time comparison for objective function using IPC

Tables 5.6 and 5.7 show that O1 is a better choice if we use full S-Box or half S-Box.

Furthermore, O3 can provide surprising results as in case of CTC(3,4) and CTC(4,5).

5.2.3 Real Polynomial Conversion (RPC)

In [31], J. Borghoff et al. provided a method based on converting polynomial equations

over F2 into polynomial equations over R. We call this method Real Polynomial Con-

version (RPC). They studied their method for systems of polynomial equations due

to the Bivium Cipher but an algorithm for general systems of polynomial equations is

still missing. We provide an algorithm for RPC to solve general systems of polynomial

equations. The first ingredient that we need is the following definition.

Definition 5.2.5. The standard conversion is given by the map φ : F2 = {0, 1} →
{0, 1} ⊂ R defined by φ(0) = 0 and φ(1) = 1. The map φ can be extended to a map

Φ : F2[x1, . . . , xn] −→ R[X1, . . . , Xn] defined by

c 7→ φ(c)

xi 7→ Xi

where c ∈ F2. Then the standard representation of a polynomial f ∈ F2[x1, . . . , xn]

is Φ(f).

So the task of solving the polynomial equation system f1 = · · · = fm = 0 can be

rephrased as follows: Find a tuple (a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)
...

Fm(a1, . . . , an) ≡ 0 (mod 2)

(5.4)
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where Fi ∈ R[X1, . . . , Xn] are standard representations of the polynomials fi. Thus

we are looking for an integer solution (a1, . . . , an) of the system 5.4 which satisfies

0 ≤ ai ≤ 1. So the idea is to formulate this system as a system of linear equalities and

inequalities over R and solve it using an IP-solver.

Example 5.2.6. Consider the polynomial f = x1x2+x3x4+x5+x6+1 ∈ F2[x1, . . . , x6].

In the following we explicitly explain how to lift this polynomial over R using standard

representation in such a way that the residue class of a zero of Φ(f) in F2 represent a

zero of f . We use the following conversion rules for addition and multiplication.

Φ(xixj) = XiXj

Φ(xi + xj) = Xi +Xj − 2XiXj

Considering each term as a node we apply the map Φ once for each pair of nodes. This

results in the following conversion steps.

1) f = (x1x2 + x3x4) + (x5 + x6) + 1.

2) Taking standard representation we have

(X1X2 +X3X4 − 2X1X2X3X4) + (X5 +X6 − 2X5X6) + 1.

3) Let f ′ = X1X2 + X3X4 − 2X1X2X3X4, and f ′′ = X5 + X6 − 2X5X6. Now the

polynomial in step 2) becomes (f ′) + (f ′′) + 1.

4) Taking standard representation we have f ′ + f ′′ − 2f ′f ′′ + 1.

5) Let f ′′′ = f ′ + f ′′ − 2f ′f ′′. Now the polynomial in step 4) becomes f ′′′ + 1

6) Finally, taking standard representation we have f ′′′ + 1− 2f ′′′ = 1− f ′′′.

By substituting the values of f ′, f ′′ and f ′′′ we have the polynomial

F = 8X1X2X3X4X5X6 − 4X1X2X3X4X5 − 4X1X2X3X4X6 + 2X1X2X3X4

−4X1X2X5X6 − 4X3X4X5X6 + 2X1X2X5 + 2X3X4X5 + 2X1X2X6 + 2X3X4X6

−X1X2 −X3X4 + 2X5X6 −X5 −X6 + 1 ∈ R[X1, . . . , X6]

(5.5)

The polynomial F has 16 terms in its support and degree 6.
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The effect of standard representation is that every tuple (a1, . . . , an) ∈ {0, 1}n at

which F is satisfied corresponds uniquely to a zero of f in Fn2 , that is, the residue class

of (a1, . . . , an) in Fn2 represent a zero of f . To see this it suffices to observe the standard

conversion rule for addition which is given by the following table.

x1 x2 x1 + x2 X1 +X2 − 2 ·X1 ·X2

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

The standard representation results in increasing degree and increasing number of

terms over the real domain.

Remark 5.2.7. (Splitting)

To keep the degrees of converted polynomials low, we introduce some new auxiliary

variables. This will split a long polynomial into smaller polynomials, then we take

its standard representations. The maximum number of terms in a polynomial over

F2 could be four to keep the real polynomial quadratic. For instance, the equation

x1x2 + x3x4 + x5 + x6 + 1 = 0 can be split up into two equations y1 + x1x2 = x3x4 + x5

and y1 = x6 + 1 having at most four terms. The variable y1 is the splitting variable.

To keep the degree of real polynomial two we introduce two more variables y2 and y3

as follows:

y1 + y2 = y3 + x5

y1 = x6 + 1

y2 = x1x2

y3 = x3x4

Now the standard representation results in the following four quadratic equations which

hold over reals.

Y1 + Y2 − 2Y1Y2 = Y3 +X5 − 2Y3X5

Y1 = 1−X6

Y2 −X1X2 = 0

Y3 −X3X4 = 0
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While converting a boolean equation, we ensure that the new equations are defined

over R. The only requirement we have is that the solution of the system over F2 is also

a solution of the real system. The additional non-binary solutions of the real system

can be ignored.

In the following we abuse the notation Tn. Since the monoid of terms Tn does not

depend on the ring of coefficients, we consider Tn as monoid of terms of F2[x1, . . . , xn]

and R[X1, . . . , Xn]. The only distinction we make is the following. An element of the

monoid of terms for F2[x1, . . . , xn] will be denoted by t and an element of the monoid of

terms for R[X1, . . . , Xn] will be denoted by T . The following proposition turns above

ideas into an effective algorithm.

Proposition 5.2.8. (Real Polynomial Conversion (RPC) )

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

For i = 1, . . . ,m, let Si be the set of terms of degree ≥ 2 in fi. Let S =
⋃m
i=1 Si

and s = |S|.

2) For every tj ∈ S, introduce a new indeterminate xn+j and form the equation

f ′m+j : xn+j = tj. For i = 1, . . . ,m, write fi =
∑

j tj + `i where the sum

extends over all j such that tj ∈ Si and where `i ∈ P≤1. Form the equation

f ′i :
∑

j xn+j + `i = 0.

3) For i = 1, . . . ,m + s, let Fi be the equation which is the standard representation

of f ′i . Let S ′i be the set of terms of degree ≥ 2 in Fi and let S ′ =
⋃m+s
i=1 S ′i.

4) For every Tk ∈ S ′, introduce a new real indeterminate Xn+s+k. For i = 1, . . . ,m+

s, replace Tk ∈ S ′i by Xn+s+k in the support of Fi. This makes Fi linear.

5) For Tk ∈ S ′, write Tk =
∏

α∈Nk
Xα. Form the linear inequalities

In+s+k :
∑

α∈Nk
Xα −Xn+s+k ≤ |Nk| − 1,

and

Ikα : Xα ≥ Xn+s+k for all α ∈ Nk.
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.

6) For all α ∈ {1, . . . , n}, let Iα : Xα ≤ 1.

7) Choose a linear polynomial C ∈ Q[Xα, Xn+j, Xn+s+k] and use an IP solver to

find the tuple of natural numbers (aα, an+j, an+s+k) which solves the system of

equations and inequalities {Fi, In+s+k, Ikα, Iα} and minimizes (or maximizes) C.

8) Return (a1, . . . , an) and stop.

Proof. For α = 1, . . . , n, we are looking for natural numbers aα for which Iα holds,

therefore we have aα ∈ {0, 1}. Similarly, we have an+j ∈ {0, 1} by Iα and Fm+j

where j = 1, . . . , s. Also we have an+s+k ∈ {0, 1} by Iα, Fm+j and Ikα. Moreover,

if Tk =
∏

α∈Nk
Xα ∈ S ′ and if one of the numbers aα for α ∈ Nk is zero then Ikα

implies an+s+k = 0. On the other hand, if aα = 1 for all α ∈ Nk then In+s+k implies

an+s+k ≥ 1. Altogether, this means that an+s+k equals
∏

α∈Nk
aα, the value of Tk at

(a1, . . . , an, an+1, . . . , an+s).

Next it follows from standard representation 5.2.5 that Fi ∈ {0, 1}. In this way the

solutions of the IP problem correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n

which satisfy the above reformulation of the given polynomial system.

Assume that we are in the setting of the algorithm in Proposition 5.2.8. Note that

if max{deg(fi) | i ∈ {1, . . . ,m}} ≤ 2 and for i = 1, . . . ,m, the maximum number

of terms in the support of fi does not exceed 4, the algorithm works with quadratic

polynomials in all of its iterations.

Remark 5.2.9. Assume that we are in the setting of the algorithm in Proposition

5.2.8. As in Remark 5.2.3, if we can find a feasible binary/integer-valued solution

for the MILP for an arbitrary objective function, this solution can be converted into

a solution for the original system. Hence it is not important to find a minimal (or

maximum) solution but a feasible point. But we have three natural questions again.

Which linear function might be a good objective function? Which variables should

be restricted to be binary or integers? Which optimization direction (maximize or

minimize) should we choose?

An objective function can affect the running time of an IP solver strongly. We

try to study it with the help of computation experiences in Section 5.2.4. A partial

answer to the second question could be the following. The difficulty of solving a mixed

integer program depends more on the number of integer variables than on the number
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of continuous variables (see [87]). Therefore our intuition tells us to keep as many

variables continues as we can. As proposed by F. Glover and E. Woolsey in [87], the

linear inequalities in step 4) of the algorithm keep the variables Xn+s+k continuous. It

is however necessary to keep upper bounds of 1 on these variables, as noted by A.J.

Goldman [88].

In view of these remarks we fix variables as follows. The initial state variables

X1, . . . , Xn will be forced to take on binary values. All other newly introduced variables

will be kept continuous in the interval [0, 1]. These variables depend on the initial state

variables. This means that we do not have to restrict them to be integer or binary. In

Section 5.2.4 we confirm our intuition by experiments.

Again we do not have an answer for the third question at this stage but we remark

that it can affect the running time of an IP solver in certain cases. We try to study it

with the help of computation experiences in Section 5.2.4.

To understand Proposition 5.2.8 better, we now apply it in a concrete case.

Example 5.2.10. Over the field K = F2, consider f1, f2, f3 ∈ K[x1, x2, x3], where

f1 = x1x2 + x1x3 + 1, f2 = x1x3 + x2x3 + x1, and f3 = x1x2 + x1x3 + x2 + 1. Let us

follow the steps of the algorithm in Proposition 5.2.8.

1) Let S1 = {x1x2, x1x3}, S2 = {x1x3, x2x3}, and S3 = {x1x2, x1x3}. Let S =

{x1x2, x1x3, x2x3} and s = 3.

2) Introduce new indeterminates x1, x2, x3. Form the equations f ′4 : x4 = x1x2,

f ′5 : x5 = x1x3 and f ′6 : x6 = x2x3. Form the equations f ′1 : x4 = x5 + 1,

f ′2 : x5 = x6 + x1 and f ′3 : x4 + x5 = x2 + 1.

3) The standard representations of the equations f ′1, . . . , f
′
6 are:

F1 : X4 +X5 − 1 = 0, F2 : X5 −X6 −X1 + 2X1X6 = 0,

F3 : X4 +X5 − 2X4X5 +X2 − 1 = 0, F4 : X4 −X1X2 = 0,

F5 : X5 −X1X3 = 0, F6 : X6 −X2X3 = 0.

Let S ′1 = ∅, S ′2 = {X1X6}, S ′3 = {X4X5}, S ′4 = {X1X2}, S ′5 = {X1X3} and

S ′6 = {X2X3}. Let S ′ = {X1X2, X1X3, X1X6, X2X3, X4X5}.

4) Introduce new real indeterminatesX7, . . . , X11 forX1X2, X1X3, X1X6, X2X3, X4X5
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respectively. Using new real indeterminates linearize Fi as follows

F1 : X4 +X5 − 1 = 0, F2 : X5 −X6 −X1 + 2X9 = 0,

F3 : X4 +X5 − 2X11 +X2 − 1 = 0, F4 : X4 −X7 = 0,

F5 : X5 −X8 = 0, F6 : X6 −X10 = 0.

5) Form the linear inequalities

I7 : X1 +X2 −X7 ≤ 1, I11 : X1 ≥ X7, I12 : X2 ≥ X7,

I8 : X1 +X3 −X8 ≤ 1, I21 : X1 ≥ X8, I23 : X3 ≥ X8,

I9 : X1 +X6 −X9 ≤ 1, I31 : X1 ≥ X9, I36 : X6 ≥ X9.

I10 : X2 +X3 −X10 ≤ 1, I42 : X2 ≥ X10, I43 : X3 ≥ X10,

I11 : X4 +X5 −X11 ≤ 1, I54 : X4 ≥ X11, I45 : X5 ≥ X11.

6) Let I1 : X1 ≤ 1, I2 : X2 ≤ 1 and I3 : X3 ≤ 1.

7) Let C = X1 +X2 +X3. Now use an IP solver to minimize C subject to

{F1, . . . , F6, I7, . . . , I11, I11, I12, I21, I23, I31, I36, I42, I43, I54, I55, I1, I2, I3}.

8) Choose values for X1, X2 and X3 from the solution provided by an IP solver.

This will return (1, 0, 1).

Remark 5.2.11. Integer Polynomial Conversion (IPC) introduces one new integer

variable per term and per equation. In hope of getting more and stronger constraints

one can do the following. Apply RPC to equations with no more than three terms.

In this case the number of terms per equation and the number of new variables is the

same as when using the IPC. But by replacing a quadratic term by a new variable

we get three constraints instead of only the restriction that the variable is binary. It

looks like that we get stronger constraints by using RPC in these cases. For equations

with more than three terms we use the IPC. We call this strategy Mixed Polynomial

Conversion (MPC) and is omitted. But computational experiences shows that MPC

does not provide any improvement.

5.2.4 Experimental results

Now we present our observations and results from experiments with the algorithm in

Proposition 5.2.8. We try to find a good objective function and variables which should

be restricted to be binary. Furthermore, we try to see which optimization direction
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(minimize or maximize) is a better choice. From now on we assume that we are in

the setting of the conversion algorithm in Proposition 5.2.8. Furthermore, we assume

that max{deg(fi) | i ∈ {1, . . . ,m}} ≤ 2. Before applying the conversion algorithm

we use Remark 5.2.7 to split the polynomials f1, . . . , fm into polynomials which have

maximum number of terms in their supports less than or equal to 4. The new variables

introduced due to splitting will be called auxiliary variables. This enables us to work

with quadratic polynomials during all iterations of the algorithm. Recall that splitting

is used to keep the degree of converted polynomials quadratic.

Optimization Direction

Assume that we choose the objective function as the sum over all the initial variables

X1, . . . , Xn. We impose restrictions on variables as given in Remark 5.2.9, the initial

variables will be forced to take binary values.

F-SBox H-SBox M-SBox
System Max Min Max Min Max Min

CTC(3,3) 48 39 19 21 16 15
CTC(3,4) 64 878 104 793 28 734
CTC(4,3) 133 612 92 487 66 386
CTC(4,4) 3737 >5000 2599 5377 1266 15781

Table 5.8: GLPK time comparison for optimization direction using RPC

F-SBox H-SBox M-SBox
System Max Min Max Min Max Min

CTC(3,3) 3.7 3 3 3.2 5 4.4
CTC(3,4) 3 29 1.3 3.6 9 6.2
CTC(4,3) 5.8 32 9.5 17 11 21
CTC(4,4) 109 129 55 22 38 21
CTC(4,5) 229 390 99 174 270 391
CTC(5,4) 1458 516 245 425 158 1715

Table 5.9: CPLEX time comparison for optimization direction using RPC

Tables 5.8 and 5.9 show the experimental results for the two optimization directions.

We run a number of experiments which show that more or less same observations can

be obtained for different choices of objective functions. After observing the timings in

Tables 5.8 and 5.9, we are still not able to give a concrete answer to this question but we

are on the safe side if we choose maximization as optimization direction. Furthermore,
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if we model S-boxes using first 7 equations out of 14, we can obtain better timings. Note

that CPLEX provides best results if we use minimization as optimization direction and

use minimum number of S-box equations.

Restrictions on Variables

Assume that we choose the objective function as the sum over all the initial variables

X1, . . . , Xn. We choose maximization as optimization direction. Since we are looking

for a 0-1 valued solution, the initial variables X1, . . . , Xn must be forced to take binary

values. The variables Xn+j and Xn+s+k, introduced by the conversion algorithm and

the auxiliary variables depend on the initial variables. These variables can be restricted

in the following ways.

F-SBox H-SBox M-SBox
System R1 R2 R3 R1 R2 R3 R1 R2 R3

CTC(3,3) 99 48 99 132 19 29 41 16 18
CTC(3,4) 427 64 152 464 104 80 68 28 53
CTC(4,3) 427 133 179 447 92 97 219 66 101
CTC(4,4) >6000 3737 >6000 >6000 2599 3325 5427 1266 1231

Table 5.10: GLPK time comparison for restrictions on variables using RPC

F-SBox H-SBox M-SBox
System R1 R2 R3 R1 R2 R3 R1 R2 R3

CTC(3,3) 4.2 3.7 6 4.2 3 2 12 5 2
CTC(3,4) 8.8 3 3.7 4 1.3 7.3 3.5 9 8
CTC(4,3) 25 5.8 4 12 9.5 14 6 11 11
CTC(4,4) 120 109 87 49 55 47 19 38 27
CTC(4,5) 429 229 516 120 99 111 36 270 49
CTC(5,4) 504 1458 1626 193 245 87 225 158 373

Table 5.11: CPLEX time comparison for restrictions on variables using RPC

R1: Force the variables Xn+j and Xn+s+k to take on binary values.

R2: Keep the variables Xn+j and Xn+s+k continuous in the interval [0, 1].

R3: Force the auxiliary variables to take on binary values and keep the variables Xn+j

and Xn+s+k continuous in the interval [0, 1].

Tables 5.10 and 5.11 show that R3 is a better choice for CPLEX if we model S-boxes

using first 7 equations out of 14 and R2 is a better choice for GLPK in all cases.
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Objective Function

Assume that we choose maximization as optimization direction and variables are re-

stricted according to R3. The only restriction for the objective function is that it must

be linear. Natural choices are as follows.

Obj. CTC(3,3) CTC(3,4) CTC(4,3)

F-SBox

O1 100 159 179
O2 132 2254 7374
O3 165 >1000 >1000
O4 196 1461 2147
O5 111 >1000 1517

H-SBox

O1 29 80 97
O2 148 4134 2255
O3 91 >1000 >1000
O4 40 732 237
O5 79 >1000 >1000

M-SBox

O1 18 53 101
O2 96 5395 3058
O3 62 >1000 >1000
O4 53 898 >1000
O5 67 >1000 >1000

Table 5.12: GLPK time comparison for objective function using RPC

O1: The sum over all the initial variables X1, . . . , Xn.

O2: The sum over all variables.

O3: The sum over all variables except the initial variables.

O4: The sum over the initial variables and the auxiliary variables.

O5: The sum over all variables except the initial variables and the auxiliary variables.

Tables 5.12 and 5.13 show that O1 and O2 are better choices.
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Obj. CTC(3,3) CTC(3,4) CTC(4,3) CTC(4,4) CTC(4,5) CTC(5,4)

F-SBox

O1 1.3 3.7 22 73 358 603

O2 14 2.3 32 79 987 2778

O3 16.7 2.4 34 192 380 1018

O4 18 11 35 104 655 1104

O5 10 11.4 34 139 535 491

H-SBox

O1 3 5.8 17 6.3 243 658

O2 10 16 21 39 175 540

O3 3.7 21 19 103 81 564

O4 2.7 1.2 12.5 46 52 83

O5 9.8 2.2 21 95 131 420

M-SBox

O1 6 8 10 26 17 525

O2 6.6 16 35 66 314 692

O3 6.7 15 27 105 566 901

O4 5.8 3.25 15 13 132 569

O5 6.6 14.6 28 75 1153 370

Table 5.13: CPLEX time comparison for objective function using RPC

5.3 Some Strategies for Polynomial Conversion

In this section we study strategies that enable the transformation of a 0-1 polynomial

programming problem into a 0-1 linear programming problem to be effected with a

reduced number of constraints. We review and investigate the field of MILP in search

of more economic ways of transferring 0-1 programs into 0-1 linear programs. Towards

the end of this section we spell out the generalized versions of IPC and RPC. This

enables us to use several strategies and generalizes the approach in Section 5.2. At the

end of this section experimental results are presented and compared.

Non-linearities in integer programming are also handled by involving the transfor-

mation of a nonlinear function into a polynomial function of 0-1 variables [92, 17],

and then transforming the polynomial function into a linear function of 0-1 variables

[17, 171, 175]. This approach is some times called transformed linear approach. The

transformed linear approach involves some standard procedures for linearizing nonlin-

ear integer problems. We study these standard approaches to achieve more economical

linear representations of 0-1 polynomial programming problems. Thus the purpose is
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to give procedures for achieving improved linear representations of nonlinearities by

giving special attention to problems described in Section 5.2. The idea is to introduce

new 0-1 variables to take the place of the nonlinear terms, simultaneously introduc-

ing auxiliary constraints to insure that the new variables will assume the appropriate

values. Using this idea a quadratic polynomial of n binary variables can be linearized

using O(n) additional variables and constraints.

5.3.1 Polynomial Conversion Strategies

Let R[X1, . . . , Xn] be the polynomial ring over R. Recall Definition 5.2.1, for a square-

free term Tj ∈ Tn the number of elements in the indexing set Nj is the degree of Tj.

From now on, we will be working with polynomials F of the form F =
∑s

j=1 Tj +L ∈
P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn and Xi ∈ {0, 1} for i = 1, . . . , n. In

particular, F will be a squarefree polynomial. Recall that by a squarefree polynomial

we mean a polynomial which has all terms squarefree in its support.

Definition 5.3.1. Let F =
∑s

j=1 Tj + L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1 and

Tj ∈ Tn, be a squarefree polynomial.

a) We denote the set of all nonlinear terms in the support of F by T = {T1, . . . , Ts}.

b) The index set of all nonlinear terms in the support of F is N = {N1, . . . , Ns}.

Definition 5.3.2. Let F ∈ R[X1, . . . , Xn] be a polynomial. A system of linear equa-

tions and inequalities Ax ≤ b, where x ∈ Zn+, b is a vector over R and A is a matrix

over R, is called a linearization of F if every tuple (a1, . . . , an) ∈ Zn+ such that

F (a1, . . . , an) = 0 corresponds uniquely to a non-negative integer solution of the sys-

tem Ax ≤ b.

Our objective is to study different strategies for formulating the polynomial F as

a system of linear equalities and inequalities. The following example will be used time

and again to give an explicit application of the strategies studied in this section.
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Example 5.3.3. Consider the following mixed integer nonlinear programming prob-

lem.
Minimize Z = X1 +X2 +X3 +X4

Subject to X1X2X3X4 −X1X2X3 +X1X2 ≤ 17

X1X2X3X5 +X1X2X4 −X1X3 + 25 ≤ 73

X1X2X4X5 −X1X2X5 +X1X4 − 43 ≤ 135

0 ≤ X1, . . . , X5 ≤ 1 and X1, . . . , X5 ∈ R+

(5.6)

In the above nonlinear model we have T = {X1X2X3X4, X1X2X3, X1X2, X1X2X4X5,

X1X2X5, X1X4, X1X2X4X5, X1X2X5, X1X4} and N = {{1, 2, 3, 4}, {1, 2, 3}, {1, 2},
{1, 2, 4, 5}, {1, 2, 5}, {1, 4}, {1, 2, 4, 5}, {1, 2, 5}, {1, 4}}.

The study of the transformation of a 0-1 polynomial programming problem into a

0-1 linear programming problem was initiated by E. Balas [17], W.I. Zangwill [175] and

L.J. Watters [171]. They addressed the problem of accommodating nonlinear terms in

the support of a polynomial F ∈ K[X1, . . . , Xn] by introducing new constraints and

variables as given by the following lemma. The objective is to replace the terms Tj in

the support of F with new variables simultaneously introducing new inequalities.

Lemma 5.3.4. Let F =
∑s

j=1 Tj +L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn,

and Xi ∈ {0, 1} for i = 1, . . . , n. For j = 1, . . . , s, let

In+j :
∑
k∈Nj

Xk −Xn+j ≤ |Nj| − 1, (5.7)

Jn+j : −
∑
k∈Nj

Xk + |Nj|Xn+j ≤ 0. (5.8)

Then the solutions of the IP problem defined by the system {
∑s

j=1Xn+j +L, In+j, Jn+j}
of equalities and inequalities correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n

which satisfy F .

Proof. First note that for i = 1 . . . , n, we have Xi ∈ {0, 1}. Let Tj = X1 . . . Xµ ∈ T . If

at least one of X1, . . . , Xµ is zero then 5.7 is nonrestrictive and 5.8 becomes Xn+j < 1.

Therefore Xn+j = 0. On the other hand if X1 = . . . = Xn = 1 then 5.7 becomes

1 ≤ Xn+j and 5.8 becomes Xn+j ≤ 1. Therefore equality holds, i.e Xn+j = 1. Hence

we have Xn+j = 0 or 1.

Several papers have been devoted to obtaining smaller sets of constraints logically

equivalent to the constraints in Lemma 5.3.4. In [86], Glover and Woolsey showed that
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certain sets of nonlinear terms can be accommodated by introducing fewer additional

constraints than proposed in [17, 175, 171]. They provide certain rules that, under

certain conditions, make it possible to replace constraints 5.7 and 5.8 by some other

equivalent constraints. For the substitution to be valid, either constraints of type

5.7 or of type 5.8 may be replaced but not both simultaneously. We discus in detail

both cases one by one. Let us first fix constraints of type 5.8 and try to see equivalent

constraints for the constraints of type 5.7. The explicit justification for the equivalences

is elementary, but tedious.

Lemma 5.3.5. Let F =
∑s

j=1 Tj +L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn,

and Xi ∈ {0, 1} for i = 1, . . . , n. Let S = {Nj | Nj = Q ∪ {k}, k ∈ Q′} ⊆ T , where

Q ⊂ {1, . . . , n} and Q′ ⊂ {1, . . . , n} \ Q. In Lemma 5.3.4 replace the constraints 5.7

for all Nj belonging to S by the constraints

I ′n+j : |S|
∑
k∈Q

Xk +
∑
k∈Q′

Xk −
∑
j|Nj∈S

Xn+j ≤ |S| · |Q|. (5.9)

Then the solutions of the IP problem defined by the system {
∑s

j=1Xn+j +L, I ′n+j, Jn+j}
of equalities and inequalities correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n

which satisfy F .

Proof. We want to show that the conjunction of 5.9 and 5.8 achieves the same result

as the conjunction of 5.7 and 5.8. Notice that inequalities of type 5.9 are obtained

by summing inequalities of type 5.7. Further justification rests on the fact that the

constraint that replaces the corresponding constraints of 5.7 compels the sum of the

terms of these latter constraints to be greater than or equal to the number of such

terms that equal unity. Since the constraints of type 5.8 are not replaced, the terms

that should be 0 will in fact attain this value, and thus the new constraint forces all

remaining terms to 1, as desired.

Example 5.3.6. (Continued) Consider Example 5.3.3 again. The quadratic and cubic

terms can be accommodated as follows.

a) To replace the constraints 5.7 of Lemma 5.3.4 with a single constraint 5.9, as in

Lemma 5.3.5 that will accommodate the three terms X1X2, X1X3, and X1X4,

let Q = {1} and Q′ = {2, 3, 4}. Then S = {{1, 2}, {1, 3}, {1, 4}} and 5.6 becomes

3X1 +X2 +X3 +X4 −X5 −X6 −X7 ≤ 3, where the new variables X5, X6, and

X7 correspond to the terms X1X2, X1X3, and X1X4 respectively.
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b) To replace the constraints 5.7 of Lemma 5.3.4 with a single constraint 5.9, as

in Lemma 5.3.5 that will accommodate the three terms X1X2X3, X1X2X4, and

X1X2X5, letQ = {1, 2} andQ′ = {3, 4, 5}. Then S = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}
and 5.6 becomes 3X1+X2+X3+X4+X5−X6−X7−X8 ≤ 6, where the new vari-

ables X6, X7, and X8 correspond to the terms X1X2X3, X1X2X4, and X1X2X5

respectively.

Lemma 5.3.7. Let F =
∑s

j=1 Tj +L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn,

and Xi ∈ {0, 1} for i = 1, . . . , n. Consider index sets Q ⊂ {1, . . . , n} and Q′ ⊂
{1, . . . , n} \ Q. Let R = {W | |W | = |Q′| − 1,W ⊂ Q′}. Let S = {Nj | Nj =

W ∪Q, W ∈ R} ⊆ T . In Lemma 5.3.4 replace the constraints 5.7 for all Nj belonging

to S by the constraint:

I ′′n+j : |S|
∑
k∈Q

Xk + (|S| − 1)
∑
k∈Q′

Xk −
∑
j|Nj∈S

Xn+j ≤ |S|(|S|+ |Q| − 2). (5.10)

Then the solutions of the IP problem defined by the system {
∑s

j=1Xn+j +L, I ′′n+j, Jn+j}
of equalities and inequalities correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n

which satisfy F .

Proof. We want to show that the conjunction of 5.10 and 5.8 achieves the same result as

the conjunction of 5.7 and 5.8. Again notice that inequalities of type 5.10 are obtained

by summing inequalities of type 5.7. Further justification rests on the fact that the

constraint that replaces the corresponding constraints of 5.7 compels the sum of the

terms of these latter constraints to be greater than or equal to the number of such

terms that equal unity. Since the constraints of type 5.8 are not replaced, the terms

that should be 0 will in fact attain this value, and thus the new constraint forces all

remaining terms to 1, as desired.

Note that if the terms with index sets Q and Q′ do not appear in Lemmas 5.3.5

and 5.3.7, constraints of type 5.4 associated with them must be added.

Example 5.3.8. (Continued) Consider Example 5.3.3 again. The terms of degree

three and four can be accommodated as follows.

a) To replace the constraints 5.7 of Lemma 5.3.4 with a single constraint 5.10 as

in Lemma 5.3.7 that will accommodate the three terms X1X2X3, X1X2X4, and

X1X3X4, let Q = {1} and Q′ = {2, 3, 4}. Then R = {{2, 3}, {2, 4}, {3, 4}},
S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, and 5.7 becomes 3X1 + 2X2 + 2X3 + 2X4 −
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X5 − X6 − X7 ≤ 6, where the new variables X5, X6, and X7 correspond to the

terms X1X2X3, X1X2X4 and X1X3X4 respectively.

b) To replace the constraints 5.7 of Lemma 5.3.4 with a single constraint 5.10 as in

Lemma 5.3.5 that will accommodate the three termsX1X2X3X4, X1X2X3X5, and

X1X2X4X5, let Q = {1, 2} and Q′ = {3, 4, 5}. Then R = {{3, 4}, {3, 5}, {4, 5}},
S = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}}, and 5.7 becomes 3X1+3X2+2X3+2X4+

2X5 − X6 − X7 − X8 ≤ 9, where the new variables X6, X7, and X8 correspond

to the terms X1X2X3X4, X1X2X3X5, and X1X2X4X5 respectively.

Let us start the next part of our journey. Now we fix constraints of type 5.7 and

try to see equivalent constraints for the constraints of type 5.8.

Lemma 5.3.9. Let F =
∑s

j=1 Tj +L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn,

and Xi ∈ {0, 1} for i = 1, . . . , n. Let S = {Nj | Nj = Q ∪ {k}, k ∈ Q′} ⊆ T , where

Q ⊂ {1, . . . , n} and Q′ ⊂ {1, . . . , n} \ Q. In Lemma 5.3.4 replace the constraints 5.8

for all Nj belonging to S by the constraints

J ′n+j : −
∑
k∈Q′

Xk +
∑
j|Nj∈S

Xn+j ≤ 0, (5.11)

J ′n+j : −|S|XQ +
∑
j|Nj∈S

Xn+j ≤ 0, (5.12)

where XQ is the variable associated with
∏

k∈QXk. Then the solutions of the IP prob-

lem defined by the system {
∑s

j=1Xn+j + L, In+j, J
′
n+j} of equalities and inequalities

correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy F .

Proof. Notice that a single inequality of type 5.8 is obtained by summing an inequality

of type 5.11 and an inequality of type 5.12. Further justification is the same as in

Lemma 5.3.5.

Example 5.3.10. (Continued) Consider Example 5.3.3 again. To replace the con-

straints 5.8 of Lemma 5.3.4 with the constraints of Lemma 5.3.9, that will accommo-

date the three terms X1X2, X1X3, and X1X4, let Q = {1} and Q′ = {2, 3, 4}. We have

S = {{1, 2}, {1, 3}, {1, 4}}. Then constraints 5.8 and 5.9 become −X2 − X3 − X4 +

X5 +X6 +X7 ≤ 0, and −3X1 +X5 +X6 +X7 ≤ 0 respectively. The new variables X5,

X6, and X7 correspond to the terms X1X2, X1X3, and X1X4 respectively.
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Lemma 5.3.11. Let F =
∑s

j=1 Tj + L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1,

Tj ∈ Tn, and Xi ∈ {0, 1} for i = 1, . . . , n. Consider index sets Q ⊂ {1, . . . , n} and

Q′ ⊂ {1, . . . , n} \ Q. Let R = {W | |W | = |Q′| − 1,W ⊂ Q′}. Let S = {Nj | Nj =

W ∪Q, W ∈ R} ⊆ T . In Lemma 5.3.4 replace the constraints 5.8 for all Nj belonging

to S by the constraints:

J ′′n+j : −|S|Xq +
∑
j|Nj∈S

Xn+j ≤ 0, (5.13)

J ′′n+j :
∑
k∈Q′

Xk − |S|XQ′ + (|S| − 1)
∑
j|Nj∈S

Xn+j ≤ 0, (5.14)

where XQ (XQ′) is the variable associated with
∏

k∈QXk (
∏

k∈Q′ Xk). Then the solu-

tions of the IP problem defined by the system {
∑s

j=1Xn+j +L, In+j, J
′′
n+j} of equalities

and inequalities correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy

F .

Proof. Same as the proof of Lemma 5.3.9.

Again note that if the terms with index sets Q and Q′ do not appear in the Lemmas

5.3.9 and 5.3.11, constraints of type 5.8 associated with them must be added. The

Lemmas 5.3.5 and 5.3.7 can be viewed as a counterpart of Lemmas 5.3.9 and 5.3.11

respectively.

Example 5.3.12. (Continued) Consider Example 5.3.3 again. To replace the con-

straints 5.5 of Lemma 5.3.4 with the constraints of Lemma 5.3.11, that will accommo-

date the three terms X1X2X3, X1X2X4, and X1X3X4, let Q = {1} and Q′ = {2, 3, 4}.
We have R = {{2, 3}, {2, 4}, {3, 4}} and S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. Then 5.12

and 5.13 become −3X1 + X5 + X6 + X7 ≤ 0 and −X2 −X3 −X4 − 3XQ′ + 2X1 ≤ 6

respectively. The new variables X5, X6, and X7 correspond to the terms X1X2X3,

X1X2X4, and X1X3X4 respectively. The variable XQ′ is the variable associated with

X2X3X4.

In another paper, Glover and Woolsey [87] propose to linearize the problem by

adding new continuous variables, in view of the fact that the difficulty of solving a

mixed-integer program depends more on the number of integer variables than on the

number of continuous ones. First note that if we allow the use of more constraints

than in Lemma 5.3.4, then it is easy to change each variable Xn+j to a continuous

variable that is automatically 0-1 when the original variables are 0-1. As given by the
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following lemma.

Lemma 5.3.13. Let F =
∑s

j=1 Tj+L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn,

and Xi ∈ {0, 1} for i = 1, . . . , n. For j = 1, . . . , s, let

In+j :
∑
k∈Nj

Xk −Xn+j ≤ |Nj| − 1, (5.15)

Jjk : Xk ≥ Xn+j, for all k ∈ Nj, (5.16)

where Xn+j is continuous in [0, 1]. Then the solutions of the IP problem defined by the

system {
∑s

j=1Xn+j +L, In+j, Jjk} of equalities and inequalities correspond uniquely to

the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy F .

Proof. First note that for i = 1 . . . , n, we have Xi ∈ {0, 1}. Let Tj = X1 . . . Xµ ∈ T . If

at least one of X1, . . . , Xµ is zero then 5.15 is nonrestrictive and 5.16 implies Xn+j = 0.

On the other hand if X1 = · · · = Xn = 1 then 5.15 implies 1 ≤ Xn+j. Therefore

equality holds i.e Xn+j = 1. Hence we have Xn+j ∈ [0, 1] and it takes on a value 0

or 1.

Note that Lemma 5.3.13 has been used in Propositions 5.2.2 and 5.2.8. It is also

possible to give eachXn+j the status of a continuous variable in a much more economical

fashion due to the following lemma.

Lemma 5.3.14. Let F =
∑s

j=1 Tj+L ∈ P = R[X1, . . . , Xn], where L ∈ P≤1, Tj ∈ Tn,

and Xi ∈ {0, 1} for i = 1, . . . , n. For i = 1, . . . , n, let Si = {Nj ∈ N | i ∈ Nj} ⊆ T
and in Lemma 5.3.13 replace the constraints 5.16 by the constraints

Ji : |Si|Xi ≥
∑

j|Nj∈Si

Xn+j, (5.17)

where Xn+j is continuous in [0, 1]. Then the solutions of the IP problem defined by the

system {
∑s

j=1Xn+j + L, In+j, Jj} of equalities and inequalities correspond uniquely to

the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy F .

Proof. We want to show that the conjunction of 5.15 and 5.17 achieves the same result

as the conjunction of 5.15 and 5.16. For this we need to show that 5.17 plays the role

of 5.16. Let Tj = X1 . . . Xµ ∈ T . If one of Xi = 0 then 5.17 compels Xn+j = 0 for all

j such that Nj ∈ Si and is redundant otherwise.
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Example 5.3.15. Let T = {X1X2, X1X3, X1X4, X2X3, X2X4, X1X2X4, X2X3X4}.
Then we have

N = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 4}, {2, 3, 4}},
S1 = {{1, 2}, {1, 3}, {1, 4}, {1, 2, 4}},
S2 = {{1, 2}, {2, 3}, {2, 4}, {1, 2, 4}, {2, 3, 4}},
S3 = {{1, 3}, {2, 3}, {2, 3, 4}}
S4 = {{1, 4}, {2, 4}, {1, 2, 4}, {2, 3, 4}}.

Thus, 5.14 becomes

4X1 ≥ X5 +X6 +X7 +X10, 5X2 ≥ X5 +X8 +X9 +X10 +X11,

3X3 ≥ X6 +X8 +X11, 4X4 ≥ X7 +X8 +X10 +X11.

The new variables X5, X6, X7, X8, X9, X10 and X11 correspond to the terms in T
respectively.

In the following we abuse the notation Tn. We consider Tn as monoid of terms of

F2[x1, . . . , xn] and R[X1, . . . , Xn]. The only distinction we make is the following. An

element of the monoid of terms for F2[x1, . . . , xn] will be denoted by t and an element

of the monoid of terms for R[X1, . . . , Xn] will be denoted by T . To end this section,

we combine the choice of a standard approach with the other steps of IPC and RPC.

This generalizes the approach in Section 5.2. In the following we spell out the versions

which we implemented and used for application and timings.

Proposition 5.3.16. (Integer Polynomial Conversion (IPC))

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

For i = 1, . . . ,m let Si be the set of terms of degree ≥ 2 in fi, si = #Supp(fi)

and let T =
⋃m
i=1 Si.

2) For i = 1, . . . ,m, introduce a new indeterminate Ki and write down the linear

inequality Ii : Ki ≤ bsi/2c.

3) For every tj ∈ S, introduce a new integer indeterminate Xn+j. For i = 1, . . . ,m,

write fi =
∑

j tj + `i where the sum extends over all j such that tj ∈ Si and
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where `i ∈ P≤1. Form the equation Fi :
∑

j Xn+j + Li − 2Ki = 0, where

Li ∈ Z[X1, . . . , Xn]≤1.

4) The new indeterminate Xn+j takes the place of the nonlinear term tj ∈ T . Choose

a suitable linearization strategy (use one of the Lemmas 5.3.4, 5.3.5, 5.3.7, 5.3.9,

5.3.11, 5.3.13 or 5.3.14) and introduce auxiliary inequalities (constraints) Ijk to

insure that the new indeterminate assumes the appropriate value.

5) For all α ∈ {1, . . . , n}, let I ′α : Xα ≤ 1.

6) Choose a linear polynomial C ∈ Z[Xα, Xn+j, Ki] and use an IP solver to find the

tuple of natural numbers (aα, an+j, ci) which solves the system of equations and

inequalities {Ii, Fi, Ijk, I ′α} and minimizes (or maximizes) C.

7) Return (a1, . . . , an) and stop.

Proof. For α = 1, . . . , n, we are looking for natural numbers aα for which I ′α holds,

so we have aα ∈ {0, 1}. Moreover, an+j ∈ {0, 1} by step 4), which is based on Lem-

mas 5.3.4, 5.3.5, 5.3.7, 5.3.9, 5.3.11, 5.3.13, and 5.3.14. Next it follows from Fi that

Fi(a1, . . . , an) = 2Ki is an even number, and Ii is nothing but the trivial bound for

Ki implied by the size of the support of fi. In this way the solutions of the IP prob-

lem correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy the above

reformulation of the given polynomial system.

Proposition 5.3.17. (Real Polynomial Conversion (RPC))

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

For i = 1, . . . ,m, let Si be the set of terms of degree ≥ 2 in fi. Let S =
⋃m
i=1 Si

and s = |S|.

2) For every tj ∈ S, introduce a new indeterminate xn+j and form the equation

f ′m+j : xn+j = tj. For i = 1, . . . ,m, write fi =
∑

j tj + `i where the sum

extends over all j such that tj ∈ Si and where `i ∈ P≤1. Form the equation

f ′i :
∑

j xn+j + `i = 0.

3) For i = 1, . . . ,m + s, let Fi be the equation which is the standard representation

of f ′i . Let S ′i be the set of terms of degree ≥ 2 in Fi and let T =
⋃m+s
i=1 S ′i.
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4) For every Tk ∈ T , introduce a new indeterminate Xn+s+k. For i = 1, . . . ,m+ s,

replace Tk ∈ S ′i by Xn+s+k in the support of Fi. This makes Fi linear.

5) The new indeterminate Xn+s+k takes the place of the nonlinear term Tk ∈ T .

Choose a suitable linearization strategy (use one of the Lemmas 5.3.4, 5.3.5,

5.3.7, 5.3.9, 5.3.11, 5.3.13 or 5.3.14) and introduce auxiliary inequalities (con-

straints) Ikα to insure that the indeterminate Xn+s+k assumes the appropriate

value.

6) For all α ∈ {1, . . . , n}, let Iα : Xα ≤ 1.

7) Choose a linear polynomial C ∈ Q[Xα, Xn+j, Xn+s+k] and use an IP solver to

find the tuple of natural numbers (aα, an+j, an+s+k) which solves the system of

equations and inequalities {Fi, Ikα, Iα} and minimizes (or maximizes) C.

8) Return (a1, . . . , an) and stop.

Proof. For α = 1, . . . , n, we are looking for natural numbers aα for which Iα holds,

therefore we have aα ∈ {0, 1}. Similarly, we have an+j ∈ {0, 1} by Iα and Fm+j where

j = 1, . . . , s. Moreover, an+s+k ∈ {0, 1} by step 5). Step 5) is based on Lemmas 5.3.4,

5.3.5, 5.3.7, 5.3.9, 5.3.11, 5.3.13 and 5.3.14. Next it follows from standard represen-

tation 5.2.5 that Fi ∈ {0, 1}. In this way the solutions of the IP problem correspond

uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy the above reformulation of

the given polynomial system.

Note that restrictions on new variables in Propositions 5.3.16 and 5.3.17 are chosen

according to the lemma used.

5.3.2 Experimental Results

Now we present our observations and results from experiments with the algorithms in

Propositions 5.3.16 and 5.3.17. In this section we choose the objective function as the

sum over all the initial variables X1, . . . , Xn, maximization as optimization direction.

Restrictions on variables will be imposed according to the strategy used. Note that

constraints given by Lemmas 5.3.4, 5.3.5, 5.3.7, 5.3.9, and 5.3.11 hold if new variables

take on binary values. Whereas constraints given by Lemmas 5.3.13 and 5.3.14 hold if

the new variables take on values in the interval [0, 1]. If we attempt to solve systems of

quadratic polynomial equations, possible strategies that can be used in the setting of the

algorithms in Propositions 5.3.16 and 5.3.17 are given by the following combinations.
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S1 : (In+j, Jn+j), S2 : (I ′n+j, Jn+j),

S3 : (In+j, J
′
n+j), S4 : (In+j, Jjk),

S5 : (In+j, Ji), S6 : (I ′n+j, Jjk),

S7 : (I ′n+j, Ji)

We have not considered S1, S2 and S3 for values in the interval [0, 1], since they hold

only for binary values. The “∗” in the first column for a strategy means that new

variables are continuous in the interval [0, 1]. As usual we present experimental results

for the CTC cipher and model S-boxes using 7 equations out of 14.

Experiments With IPC

Obj. CTC(3,3) CTC(3,4) CTC(4,3) CTC(4,4) CTC(4,5) CTC(5,4)

GLPK

S4 10 31 61 2536 - -
S5 10.3 33 45 3047 - -
S6 11 63 73 1948 - -
S7 21 144 78 4262 - -
S4∗ 7.5 21 52 1225 - -
S5∗ 10 32 53 8016 - -
S6∗ 9.6 64 57 1233 - -
S7∗ 16 100 70 5700 - -

CPLEX

S4 1.6 1.6 8.3 53 85 690
S5 6 4 9.4 83 169 593
S6 6 2.2 11 128 209 560
S7 1.5 5 15 84 272 42
S4∗ 8.8 1.3 17 171 348 781
S5∗ 5.6 1.8 9.5 170 391 918
S6∗ 4.5 2.4 9.3 33 118 955
S7∗ 7 6 9 171 414 1026

Table 5.14: IPC time comparison using different strategies

Consider the algorithm in Proposition 5.3.16. Table 5.14 shows the timings for the

strategies S4, S5, S6, and S7. Table 5.15 shows the timings for the strategies S1, S2, and

S3. The results in Tables 5.14 and 5.15 show that all strategies are comparable but no

one seem to have a clear advantage over the others. Therefore, it could be interesting to

study the performance of these strategies on systems of polynomial equations coming

from ciphers other than CTC.
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GLPK CPLEX
System S1 S2 S3 S1 S2 S3

CTC(3,3) 10 33 42 1.7 9.6 6
CTC(3,4) 32 68 123 1.76 5.9 0.3
CTC(4,3) 61 84 206 8.4 13 13
CTC(4,4) 1785 2052 >20000 13 82 153
CTC(4,5) - - - 238 262 286
CTC(5,4) - - - 1030 635 1891

Table 5.15: IPC time comparison using different strategies

Experiments With RPC

Obj. CTC(3,3) CTC(3,4) CTC(4,3) CTC(4,4) CTC(4,5) CTC(5,4)

GLPK

S4 164 1773 473 > 6000 - -
S5 79 225 208 > 6000 - -
S6 302 1973 2310 > 6000 - -
S7 85 367 719 > 6000 - -
S4∗ 19 104 92 2599 - -
S5∗ 26 92 68 4817 - -
S6∗ 144 1646 732 > 10000 - -
S7∗ 81 645 730 > 5000 - -

CPLEX

S4 35 5.6 7.5 35 186 169
S5 3.8 1.3 4.4 144 107 273
S6 14.8 5.6 22 251 213 619
S7 5.8 6.8 20 155 386 1372
S4∗ 3 1.3 9.5 55 99 244
S5∗ 2.7 1.5 13 30 102 899
S6∗ 10 15 16 23 242 901
S7∗ 15 24 28 67 498 3203

Table 5.16: RPC time comparison using different strategies

Now consider the algorithm in Proposition 5.3.17. Table 5.16 shows the timings

for the strategies S4, S5, S6, and S7. Table 5.17 shows the timings for the strategies

S1, S2, and S3. From Tables 5.16 and 5.17 once again we see that all strategies are

comparable but no one seem to have a clear advantage over the others.
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GLPK CPLEX
System S1 S2 S3 S1 S2 S3

CTC(3,3) 35 112 133 3.5 7.8 14
CTC(3,4) 116 260 387 0.4 4 7
CTC(4,3) 270 1026 632 16 5.7 15
CTC(4,4) > 8000 > 6000 > 5000 71 375 269
CTC(4,5) - - - 243 987 217
CTC(5,4) - - - 351 5969 1614

Table 5.17: RPC time comparison using different strategies

5.4 New Techniques for Polynomial Conversion

In the previous sections we have seen that conversion methods strongly affect the per-

formance of an integer programming algorithm. This section is devoted to develop new

conversion methods. We present a new conversion method based on propositional logic

and pseudo-boolean optimization. In particular, first we review some concepts from

propositional logic and then exploit the connection between propositional clauses and

0-1 inequalities to model the polynomial system over F2 (boolean polynomial system)

as a MILP problem. This enables us to export several strategies from propositional

logic to integer programming. Experimental results are presented and compared. These

experiments show that our new polynomial conversion technique is at least as good as

the techniques in Sections 5.2 and 5.3 and provides better results in most of the cases.

Let us first note that problems of propositional logic can be readily expressed as

nonlinear 0-1 programs by associating the values 0 and 1 to false and true and using

the following relations between boolean and usual product and sum: x ∧ y = x · y,

x ∨ y = x + y − xy (see [92]). At first sight it seems to result in huge increase in

nonlinearity. Since any 0-1 nonlinear problem can be transformed into a 0-1 linear

problem, it is interesting to see what we can achieve by such conversions. Leaving this

question open we address some techniques that result directly in a linear problem.

We study a recent suggestion, namely to convert the system to a set of propositional

logic clauses. Then we show how to model a MILP problem from a set of propositional

clauses and use an IP solver to solve this problem. The first study of efficient methods

for converting boolean polynomial systems to CNF clauses was presented in [18]. Later

this study was extended slightly in [19, 48] and [166] but the procedure was basically

unaltered. The latest effort is due to P. Jovanovic and M. Kreuzer [106]. They examined

different conversion strategies, i.e. different ways to convert the polynomial system into
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a satisfiability problem. Our exposition here follows that of [106].

5.4.1 Logical Polynomial Conversion (LPC)

In this section we let F2 be the field with two elements and f ∈ F2[x1, . . . , xn] a

polynomial. Usually f will be a squarefree polynomial, i.e. all terms in the support of

f will be squarefree, but this is not an essential hypothesis. Let X = {X1, . . . , Xn} be

a set of boolean variables (atomic formulas), and let X̂ be the set of all (propositional)

logical formulas that can be constructed from them, i.e. all formulas involving the

operations ¬, ∧, and ∨.

The conversion procedure as suggested in [18] consists of the following steps.

(1) Linearize the system by introducing a new indeterminate for each term in the

support of one of the polynomials.

(2) Having written a polynomial as a sum of indeterminates, introduce new indeter-

minates to cut it after a certain number of terms.

(3) Convert the reduced sums into their logical equivalents using a XOR-CNF con-

version.

After applying step (1) of the conversion procedure, each polynomial is a sum of

indeterminates, or equivalently a logical XOR. Long XOR’s are known to be hard

problems for SAT solvers. In step (2) of the conversion procedure we introduced new

indeterminates to cut a long XOR into smaller XOR’s having number of terms equal

to some number ` which is called cutting number. The following definition describes

the relation between the zeros of a polynomial and the evaluation of a logical formula.

Definition 5.4.1. Let f ∈ F2[x1, . . . , xn] be a polynomial. A logical representation

of f is a logical formula F ∈ X̂ such that ϕa(F ) = f(a1, . . . , an) + 1 for every a =

(a1, . . . , an) ∈ F2, where ϕa denotes the boolean value of F at the tuple of boolean

values a with 1 = true and 0 = false.

This definition plays a very important role to convert the polynomial F to a set

of propositional logic clauses. Actually, the boolean tuples at which F is satisfied

correspond uniquely to zeros of f in Fn2 . The conversion proceeds by two steps. Firstly,

the system of polynomials will be converted to a linear system and a set of CNF clauses

that render each term (or a suitable combination of terms) equivalent to a variable in

that linear system. Secondly, the linear system will be converted to an equivalent set
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of clauses. For these two purposes the following two lemmas contain useful building

blocks for conversion strategies.

Lemma 5.4.2. Let f ∈ F2[x1, . . . , xn] be a boolean polynomial, let F ∈ X̂ be a logical

representation of f , let y be a further indeterminate, and let Y be a further boolean

variable. Then the logical representation of the polynomial g = f+y is G = (¬F ⇔ Y ).

Proof. See [106], Lemma 2.

The preceding lemma provides a foundation for the conversion algorithm. The next

lemma extends it in a useful way.

Lemma 5.4.3. Let f ∈ F2[x1, . . . , xn, y] be a boolean polynomial of the form f =

`1 · · · `s + y where 1 ≤ s ≤ n and `i ∈ {xi, xi + 1} for i = 1, . . . , s. Define logical

formulas Li = Xi if `i = xi and Li = ¬Xi if `i = xi+1. Then the logical representation

of f is

F = (¬Y ∨ L1) ∧ · · · ∧ (¬Y ∨ Ls) ∧ (Y ∨ ¬L1 ∨ · · · ∨ ¬Ls),

such that the logical formula F is in conjunctive normal form (CNF) and has s + 1

clauses.

Proof. See [106], Lemma 3.

Due to Lemmas 5.4.2 and 5.4.3, we can define three elementary strategies to perform

the first step of the conversion algorithm i.e. for converting systems of polynomials

over F2 into linear systems and a set of CNF clauses.

Definition 5.4.4. Let f ∈ F2[x1, . . . , xn] be a polynomial.

(a) Introduce a new indeterminate y and a new boolean variable Y , for each nonlinear

term t in the support of f . Substitute y for t in f and append the clauses

corresponding to t + y in Lemma 5.4.3 to the set of clauses. This is called the

standard strategy (SS).

(b) Assume deg(f) = 2. Introduce a new indeterminate y and a new boolean variable

Y for each combination of the form xixj+xi (if exists) in the support of f . Replace

xixj + xi in f by y and append the clauses corresponding to xi(xj + 1) + y in

Lemma 5.4.3 to the set of clauses. This is called the linear partner strategy

(LPS).
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(c) Assume deg(f) = 2. Introduce a new indeterminate y and a new boolean variable

Y for each combination of the form xixj + xi + xj + 1 (if exists) in the support

of f . Replace xixj + xi + xj + 1 in f by y and append the clauses corresponding

to (xi + 1)(xj + 1) + y in Lemma 5.4.3 to the set of clauses. This is called the

double partner strategy (DPS).

Note that the standard strategy can be used to convert any system of polynomials

over F2, whereas the linear partner strategy and the double partner strategy can be

used if the polynomials are quadratic. If the combinations of terms required by the

linear partner strategy and the double linear partner strategy do not appear in the

support of polynomial f , the standard strategy is applied. The experimental results

in [106] show that the linear partner and the double linear partner strategies provide

substantial speed up of SAT solvers.

Remark 5.4.5. We have two more strategies for replacing purely quadratic and cubic

terms as given in the following.

Quadratic Partner Substitution: Let f = xixj + xixk + y ∈ F2[x1, . . . , xn, y] be a

polynomial such that i, j, k are pairwise distinct. Then

F =(Xi ∨ ¬Y ) ∧ (Xj ∨Xk ∨ ¬Y ) ∧ (¬Xj ∨ ¬Xk ∨ ¬Y )∧
(¬Xi ∨ ¬Xj ∨Xk ∨ Y ) ∧ (¬Xi ∨Xj ∨ ¬Xk ∨ Y )

is a logical representation of f .

Cubic Partner Substitution: Let f = xixjxk +xixjxl+y ∈ F2[x1, . . . , xn, y], where

i, j, k, l are pairwise distinct. Then

F =(Xi ∨ ¬Y ) ∧ (Xj ∨ ¬Y ) ∧ (Xk ∨Xl ∨ ¬Y ) ∧ (¬Xk ∨ ¬Xl ∨ ¬Y )∧
(¬Xi ∨ ¬Xj ∨ ¬Xk ∨Xl ∨ Y ) ∧ (¬Xi ∨ ¬Xj ∨ ¬Xk ∨ ¬Xl ∨ Y )

is a logical representation of f .

For proofs of the quadratic and cubic partner strategies we refer to [106], Propositions

6 and 8. It is straightforward to formulate a conversion strategy, called the quadratic

partner strategy (QPS) (respectively cubic partner strategy (CPS)), for polynomials

of degree two (respectively of degree three) based on this remark. For cubic terms, it

is also possible to pair them if they have just one indeterminate in common. However,

this strategy apparently does not result in useful speed-ups and is omitted.
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Finally, we are ready to exploit the connection between propositional clauses and

0-1 inequalities to model the polynomial system over F2 (boolean polynomial system)

as a MILP problem. This enables us to use the strategies above to model a MILP

problem.

Lemma 5.4.6. Let C = {X1 ∨ · · · ∨Xr ∨ ¬Y1 ∨ · · · ∨ ¬Ys | 1 ≤ r, s ≤ n} be a set of

clauses. Then the set C is satisfiable if and only if the system of clausal inequalities

Ic = {X1 + · · · + Xr − Y1 − · · · − Ys ≥ 1 − s | 1 ≤ r, s ≤ n} together with the bounds

0 ≤ Xi, Yj ≤ 1 for all i, j ∈ {1, . . . , n}, has an integer solution.

Proof. Let c ∈ C be a clause. If c = X1∨· · ·∨Xr then by the definition of satisfiability

at least one of the Xi is true. In other words at least one of the Xi is 1. This gives

us the clausal inequality X1 + · · · + Xr ≥ 1 together with the bounds 0 ≤ Xi ≤ 1.

If c = ¬Y1 ∨ · · · ∨ ¬Ys then by the definition of satisfiability at least one of the Yj

is false. In other words at least one of the 1 − Yj is 1. This gives us the clausal

inequality (1 − Y1) + · · · + (1 − Ys) ≥ 1 together with the bounds 0 ≤ Yj ≤ 1. If

c = X1 ∨ · · · ∨ Xr ∨ ¬Y1 ∨ · · · ∨ ¬Ys then it follows from the first two cases that

X1 + · · · + Xr + (1 − Y1) + · · · + (1 − Ys) ≥ 1 is the corresponding clausal inequality

together with the bounds 0 ≤ Xi, Yj ≤ 1.

Therefore, the clause

c = X1 ∨ · · · ∨Xr ∨ ¬Y1 ∨ · · · ∨ ¬Ys

can be translated into a clausal inequality

X1 + · · ·+Xr + (1− Y1) + · · ·+ (1− Ys) ≥ 1

or X1 + · · ·+Xr − Y1 − · · · − Ys ≥ 1− s

and the clause set C is satisfiable if and only if the corresponding system of clausal

inequalities Ic together with the bounds 0 ≤ Xi, Yj ≤ 1 has an integer solution. There-

fore, reasoning in propositional logic can be seen as a special case of reasoning with

linear inequalities in integer variables.

To end this section, we combine the choice of a substitution strategy with the other

steps of the conversion algorithm and spell out the version which we implemented and

used for the applications and timings.
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Proposition 5.4.7. (Logical Polynomial Conversion (LPC))

Let f1, . . . , fm ∈ F2[x1, . . . , xn] be a system of polynomial which has at least one zero

in Fn2 . Let ` ≥ 3 be the desired cutting number. Consider the following sequence of

instructions.

1) Let G = ∅. Perform the following steps 2)−5) for i = 1, . . . ,m.

2) Repeat the following step 3) until no polynomial g can be found anymore.

3) Find a subset of Supp(fi) which defines a polynomial g of the type required by

the chosen conversion strategy. Introduce a new indeterminate yj, replace fi by

fi − g + yj, and append g + yj to G.

4) Perform the following step 5) until #Supp(fi) ≤ `. Then append fi to G.

5) If #Supp(fi) > ` then introduce a new indeterminate yj, let g be the sum of the

first `− 1 terms of fi, replace fi by fi − g + yj, and append g + yj to G.

6) For each polynomial in G, compute a logical representation in CNF and form the

set of all clauses C of all these logical representations.

7) For each clause c ∈ C form a clausal inequality Ic.

8) For all α ∈ {1, . . . , n}, let Iα : Xα ≤ 1 and for each j let Ij : Yj ≤ 1.

9) Choose a linear polynomial L ∈ Q[Xi, Yj] and use an IP solver to find the tuple

of natural numbers (ai, bj) which solves the system of equations and inequalities

{Ic, Ij, Iα} and minimizes C.

10) Return (a1, . . . , an) and stop.

This is an algorithm which computes a zero of the 0-dimensional radical ideal I =

〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

Proof. It is clear that steps 2)−3) correspond to the linearization part (1) of the pro-

cedure given in the introduction of this section, and that steps 4−5) are an explicit

version of the cutting part (2) of that procedure. Moreover, step 6) is based on Lemma

5.4.2, Lemma 5.4.3, or Remark 5.4.5 for the polynomials g+yj from step 3), and on the

standard XOR-CNF conversion for the linear polynomials from steps 4)−5). Finally,

step 7) follows from Lemma 5.4.6. The claim follows easily from these observations.
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Remark 5.4.8. Assume that we are in the setting of the algorithm in Proposition

5.4.7. A natural question could be to ask about the nature of the clausal inequalities

in step 7). As claimed by Lemma 5.4.6, the variables Yj are continuous in the interval

[0, 1]. Since the initial variables are forced to be binary, the variables Yj take on integer

values automatically. The good news is the continuity of these variables because the

difficulty of solving a mixed-integer program depends more on the number of integer

variables than on the number of continues variables. Another nice property of these

conversion strategies is the possibility to reduce the number of new variables. The

standard strategies used in Sections 5.2 and 5.3 reduce the number of constraints but

keep the number of newly introduced variables the same. Furthermore, if we look at

the literature available on transferring 0-1 programs into 0-1 linear programs, reducing

the number of newly introduced variables is a hot topic. We can also profit from these

strategies there. In Section 5.4.2 we confirm our observations by experiments.

5.4.2 Experimental Results

Now we present our observations and results from experiments with the algorithm in

Proposition 5.4.7. In steps 4)−5) of the algorithm we used cutting length 6. Note that

cutting length may affect the running time of an IP solver. Actually, the timings seem

to depend on the cutting number in a rather subtle and unpredictable way.

R1 R2
System SS LP DLP QPS SS LP DLP QPS

CTC(3,3) 49 30 26 49 29 22 17 29
CTC(3,4) 207 18 19 207 71 13 12 71
CTC(4,3) 216 36 59 216 135 47 30 135
CTC(4,4) 6421 2566 1623 6422 4920 1663 1172 4920

Table 5.18: GLPK time comparison using LPC

We choose the objective function as the sum over all the initial variables X1, . . . , Xn,

maximization as optimization direction and model S-boxes using 7 equations out of 14.

Note that the inequalities Ic in step 7) of the algorithm hold if the new variables take

on values in the interval [0, 1]. We try to see whether it is an advantage to have binary

restrictions only for the initial variables instead of for all. Therefore, the variables Yj

can be restricted in the following two ways.

R1: Force the variables Yj to take on binary values.
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R1 R2
System SS LP DLP QPS SS LP DLP QPS

CTC(3,3) 4.7 2.4 1 4.7 3.7 3 1 3.7
CTC(3,4) 3.8 3.7 2.8 3.8 4.3 1 3 4.3
CTC(4,3) 6.4 3.5 3.8 6.2 13 3.6 3.7 13
CTC(4,4) 35 56 38 35 34 31 38 34
CTC(4,5) 121 85 74 121 62 85 74 62
CTC(5,4) 195 154 265 195 246 155 264 246

Table 5.19: CPLEX time comparison using LPC

R2: Keep the variables Yj continuous in the interval [0, 1].

By looking at the Tables 5.18 and 5.19 we can see the SS and QPS conversions do

not appear to provide improvements over the algorithms in Sections 5.2 and 5.3. But

the LP and DLP conversions provide substantial improvements over the algorithms in

Sections 5.2 and 5.3.

5.5 Hybrid Techniques for Polynomial Conversion

In this section we develop new hybrid techniques for modeling a MILP problem. These

hybrid techniques combine the ideas studied in the previous sections to achieve effi-

ciency. Experimental results are presented and compared which show that our new

hybrid techniques result in further speed up of IP solvers. As we saw in Sections 5.2,

5.3 and 5.4, there are three types of conversion algorithms namely Integer Polynomial

Conversion (IPC), Real Polynomial Conversion (RPC) and Logical Polynomial Con-

version (LPC). These conversion algorithms can be equipped with different strategies

to achieve efficiency. We saw such examples in Sections 5.3 and 5.4. In this section we

consider the three types of conversion algorithms and equip them with all the strategies

developed in Sections 5.3 and 5.4.

5.5.1 Hybrid Integer Polynomial Conversion (HIC)

First consider the algorithm in Proposition 5.2.2. As we mentioned before it is based on

converting polynomial equations over F2 into polynomial equations over Z. Secondly,

consider the algorithm in Proposition 5.4.7 which is based on propositional logic and

pseudo-boolean optimization. The two algorithms can be combined into one for possible

improvements as follows.
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Proposition 5.5.1. (Hybrid Integer Conversion (HIC) )

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

Let G = ∅.

2) Repeat the following step 3) until no polynomial g can be found anymore.

3) Find a subset of Supp(fi) which defines a polynomial g of the type required by

the chosen conversion strategy. Introduce a new indeterminate xn+j, replace fi

by fi − g + xn+j, and append g + xn+j to G.

4) For each polynomial in G, compute a logical representation in CNF and form the

set of all clauses C of all these logical representations.

5) For each clause c ∈ C form a clausal inequality Ic.

6) For i = 1, . . . ,m, let Si be the set of new indeterminates xn+j in fi, and let

si = #Supp(fi).

7) For i = 1, . . . ,m, introduce a new integer indeterminate Ki and write down the

linear inequality Ii : Ki ≤ bsi/2c.

8) For i = 1, . . . ,m, write fi =
∑

j xn+j + `i where the sum extends over all j such

that xn+j ∈ Si and where `i ∈ P≤1. Form the equation Fi :
∑

j Xn+j+Li−2Ki =

0, where Li ∈ Z[X1, . . . , Xn]≤1.

9) For all α ∈ {1, . . . , n}, let I ′α : Xα ≤ 1.

10) Choose a linear polynomial L ∈ Z[Xα, Xn+j, Ki] and use an IP solver to find the

tuple of natural numbers (aα, an+j, ci) which solves the system of equations and

inequalities {Ii, Fi, Ic, I ′α} and minimizes L.

11) Return (a1, . . . , an) and stop.

Proof. It is clear that steps 2)−3) linearize the polynomials fi by introducing new

indeterminates xn+j. Moreover, step 4) is based on Lemma 5.4.2, Lemma 5.4.3, or

Remark 5.4.5 for the polynomials g+xn+j from step 3), and step 5) follows from Lemma

5.4.6. In step 8) the polynomials fi are linear polynomials in the indeterminates xα
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and xn+j. Next it follows from Fi that Fi(a1, . . . , an) = 2Ki is an even number, and Ii

is nothing but the trivial bound for Ki implied by the size of the support of fi.

For α = 1, . . . , n, we are looking for natural numbers aα for which I ′α holds, so we

have aα ∈ {0, 1}. Moreover, we have an+j ∈ {0, 1} by I ′α and steps 2) − 5). In this way

the solutions of the IP problem correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n

which satisfy the above reformulation of the given polynomial system. The claim follows

easily from these observations.

Note that if we use the standard strategy, the algorithm coincides with the algorithm

in Proposition 5.2.2.

Experimental Results

Now we present our observations and results from experiments with the algorithm in

Proposition 5.5.1.

R1 R2
System SS LP DLP QPS SS LP DLP QPS

CTC(3,3) 10 7.8 4 10 9 7 4 9
CTC(3,4) 31 13 7.6 31 28 13 8 28
CTC(4,3) 61 26 19 65 47 25 16 47
CTC(4,4) 2536 413 489 2534 2021 398 532 2031

Table 5.20: GLPK time comparison using HIC

R1 R2
System SS LP DLP QPS SS LP DLP QPS

CTC(3,3) 1.6 3.4 1 1.6 4 3.3 1 4
CTC(3,4) 1.6 0.3 1.6 1.6 2.6 0.3 1.6 2.7
CTC(4,3) 8.3 6.5 2 8 20 6.5 2 20
CTC(4,4) 53 53 46 53 106 53 46 106
CTC(4,5) 85 46 76 85 219 46 76 219
CTC(5,4) 690 337 308 693 744 337 308 744

Table 5.21: CPLEX time comparison using HIC

We choose the objective function as the sum over all the initial variables X1, . . . , Xn,

maximization as optimization direction and model S-boxes using 7 equations out of 14.

Note that the inequalities Ic in step 5) of the algorithm hold if the new variables take

on values in the interval [0, 1]. We try to see, whether it is an advantage to have binary
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restrictions only for the initial variables instead of for all. Therefore, the variables Xn+j

can be restricted in the following two ways.

R1: Force the variables Xn+j to take on binary values.

R2: Keep the variables Xn+j continuous in the interval [0, 1].

By looking at the Tables 5.18 and 5.19 we can see the new hybrid conversion algorithm

(if we use LP or DLP strategy) completely beats all the previous versions of it.

5.5.2 Hybrid Real Polynomial Conversion (HRC)

First consider the algorithm in Proposition 5.2.8. As we mentioned before it is based on

converting polynomial equations over F2 into polynomial equations over R. Secondly,

consider the algorithm in Proposition 5.4.7 which is based on propositional logic and

pseudo-boolean optimization. The two algorithms can be combined into one along with

strategies from Section 5.3 for possible improvements as follows.

Proposition 5.5.2. (Hybrid Real Conversion (HRC) )

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

Let G = ∅.

2) Repeat the following step 3) until no polynomial g can be found anymore.

3) Find a subset of Supp(fi) which defines a polynomial g of the type required by

the chosen conversion strategy. Introduce a new indeterminate xn+j, replace fi

by fi − g + xn+j, and append g + xn+j to G.

4) For each polynomial in G, compute a logical representation in CNF and form the

set of all clauses C of all these logical representations.

5) For each clause c ∈ C form a clausal inequality Ic.

6) For i = 1, . . . ,m, let Si be the set of new indeterminates xn+j in fi. Let s be the

total number of new variables xn+j introduced.
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7) For i = 1, . . . ,m, write fi =
∑

j xn+j + `i where the sum extends over all j such

that xn+j ∈ Si and where `i ∈ P≤1.

8) For i = 1, . . . ,m, let Fi be the equation which is the standard representation of

fi. Let S ′i be the set of terms of degree ≥ 2 in Fi and let T =
⋃m
i=1 S

′
i.

9) For every Tk ∈ T , introduce a new indeterminate Xn+s+k. For i = 1, . . . ,m,

replace Tk ∈ S ′i by Xn+s+k in the support of Fi, this makes Fi linear.

10) The new indeterminate Xn+s+k takes the place of the nonlinear term Tk ∈ T .

Choose a suitable linearization strategy (use one of the Lemmas 5.3.4, 5.3.5,

5.3.7, 5.3.9, 5.3.11, 5.3.13, or 5.3.14) and introduce auxiliary inequalities (con-

straints) Ikα to insure that the indeterminate Xn+s+k assumes the appropriate

value.

11) For all α ∈ {1, . . . , n}, let Iα : Xα ≤ 1.

12) Choose a linear polynomial L ∈ Q[Xα, Xn+j, Xn+s+k] and use an IP solver to

find the tuple of natural numbers (aα, an+j, an+s+k) which solves the system of

equations and inequalities {Ic, Fi, Ikα} and minimizes L.

11) Return (a1, . . . , an) and stop.

Proof. It is clear that steps 2)−3) linearize the polynomials fi by introducing new

indeterminates xn+j. Moreover, step 4) is based on Lemma 5.4.2, Lemma 5.4.3 or

Remark 5.4.5 for the polynomials g + xn+j from step 3). And step 7) follows from

Lemma 5.4.6. In step 6) the polynomials fi are linear polynomials in the indeterminates

xα and xn+j.

For α = 1, . . . , n, we are looking for natural numbers aα for which Iα holds, therefore

we have aα ∈ {0, 1}. Similarly, we have an+j ∈ {0, 1} by Iα and steps 2) − 5).

Moreover, an+s+k ∈ {0, 1} by step 10), which is based on Lemmas 5.3.4, 5.3.5, 5.3.7,

5.3.9, 5.3.11, 5.3.13, and 5.3.14. Next it follows from the standard representation 5.2.5

that Fi ∈ {0, 1}. In this way the solutions of the IP problem correspond uniquely

to the tuples (a1, . . . , an) ∈ {0, 1}n which satisfy the above reformulation of the given

polynomial system. The claim follows easily from these observations.

Remark 5.5.3. Assume that we are in the setting of the algorithm in Proposition

5.5.2. Note that if max{deg(fi) | i ∈ {1, . . . ,m}} ≤ 2 and for i = 1, . . . ,m, the

maximum number of terms in the support of fi does not exceed 4, the algorithm
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works with quadratic polynomials in all of its iterations. Therefore, before applying

the conversion algorithm we can use Remark 5.2.7 to split the polynomials f1, . . . , fm

into polynomials which have maximum number of terms in their supports less than or

equal to 4. But this can reduce the effectiveness of step 3). Thus it would be better

if we use Remark 5.2.7 after steps 1)−5). Furthermore, we remark that in some cases

HRPC seems to provide infeasible MILP model. The exact reason is not known but it

turns out that the new auxiliary variables introduced while splitting should be forced

to take on binary values to avoid infeasibility.

Experimental Results

Now we present our observations and results from experiments with the algorithm in

Proposition 5.5.2. From now on we assume that we are in the setting of the conversion

algorithm in Proposition 5.2.8. Furthermore, we split polynomials after steps 1)−5) as

explained in Remark 5.5.3. This enables us to work with quadratic polynomials in all

iterations of the algorithm. Furthermore, we force the auxiliary variables introduced

while splitting to take binary values. Since the effect of strategies in step 10) of the

algorithm is already studied in Section 5.3.2, we only consider the strategies in step 3)

of the algorithm. In step 10) we use the strategy S4 (see Section 5.3.2).

R1 R2
System SS LP DLP QPS SS LP DLP QPS

CTC(3,3) 125 64 48 125 21 16 19 21
CTC(3,4) 321 74 51 321 76 10 15 76
CTC(4,3) 380 153 107 381 51 21 32 51
CTC(4,4) > 15000 11537 10976 > 15000 3375 1830 1094 3375

Table 5.22: GLPK time comparison using HRC

R1 R2
System SS LP DLP QPS SS LP DLP QPS

CTC(3,3) 3.5 2.8 3 3.5 2.2 6.2 4.8 2.2
CTC(3,4) 0.84 0.8 3.6 0.8 3.6 4.9 5.3 3.7
CTC(4,3) 18 14 6.3 18 10 15 4.3 10
CTC(4,4) 74 51 27 74 64 26 1.6 64
CTC(4,5) 91 111 367 91 128 59 50 128
CTC(5,4) 509 205 51 509 215 241 225 215

Table 5.23: CPLEX time comparison using HRC
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We choose the objective function as the sum over all the initial variables X1, . . . , Xn,

maximization as optimization direction and model S-boxes using 7 equations out of 14.

Note that the inequalities Ic in step 5) of the algorithm hold if the new variables take

on values in the interval [0, 1] and the inequalities Ikα in step 10) of the algorithm hold

if the new variables take on values as given by the lemma used. We try to see whether

it is an advantage to have binary restrictions only for the initial variables instead of for

all. We force the initial variables X1, . . . , Xn to take on binary values. The remaining

new variables Xn+j and Xn+s+k can be restricted in the following two ways.

R1: Force the variables Xn+j and Xn+s+k to take on binary values.

R2: Keep the variables Xn+j and Xn+s+k continuous in the interval [0, 1].

By looking at the Tables 5.22 and 5.23 we can see the new hybrid conversion algorithm

(if we use LP or DLP strategy) surpass old boundaries set by RPC.

5.6 Comparison Using Plots and Tables

To conclude this chapter, we present a comparison using plots and tables of all tech-

niques studied in this chapter. In the following we consider the CTC and the small

scale AES cipher one by one and illustrate our experimental results.

5.6.1 The Courtois Toy Cipher (CTC)

First of all recall Tables 5.7, 5.14, and 5.23. From the tables we can see under specified

choice of objective function and restrictions on variables, CTC(4,4) takes 1.6 seconds,

CTC(4,5) takes 8.5 seconds and CTC(5,4) takes 42 seconds. This means that if we

try all possible strategies for a particular instance of polynomial system, it could be

easier to solve. In fact the idea is to attack the required corner (that gives a solution

of the original system) of the polyhedron. Different strategies can lead to different

consequences. The strategies which work well for one instance may not work well for

the other instance. Furthermore, some times change of an objective function along

with restrictions on variables dramatically decrease the running time of an IP solver.

Finally, we see for sparse systems the running time of the MILP technique compare

favorably to the running times of the Gröbner basis technique and the linear algebra

technique in Chapter 3. Even for examples involving many indeterminates, such as
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System CTC(5,5) CTC(5,6) CTC(6,5) CTC(6,6) CTC(6,7) CTC(7,6)

Equations 605 705 708 864 984 987
Variables 330 375 378 468 522 525

Table 5.24: size of CTC instances

IPC RPC LPC HIC HRC
Strategy SS LP DLP LP DLP SS
CTC(5,5) 2708 1356 6222 691 679 1798 552 480
CTC(5,6) 3088 1227 3104 270 1875 9332 2421 1041
CTC(6,5) 15656 7743 20452 15540 16407 14661 11621 10723
CTC(6,6) 45272 25978 23841 16941 12264 10716 16757 11572
CTC(6,7) 26209 9224 258661 30868 18660 2285 11031 7716
CTC(7,6) 221986 11904 55766 91358 97985 68146 9436 73090

Table 5.25: CLPEX time comparison for different conversions

given in Table 5.25, the above timings completely beat individually tailored Gröbner

basis methods, such as the ones reported in [3].

In all plots we choose objective function as the sum over all the initial variables,

maximization as optimization direction and model S-boxes using 7 equations out of

14. We plot CTC(3,3), CTC(3,4), CTC(4,3), CTC(4,4), CTC(4,5) and CTC(5,4) on

horizontal axis and timings in seconds on vertical axis. Figures 5.2 and 5.3 represent

the timings for IPC with binary and continues restrictions respectively. Figures 5.4 and

5.5 represent the timings for RPC with binary and continuous restrictions respectively.

Furthermore, we have considered only those strategies which fit well in plots to compare

results. In all plots the solid black curve represents the timings for standard versions

of IPC and RPC as given in Section 5.1. All other curves and marks represent our

contribution in this chapter. Furthermore, note that some IP solvers like CPLEX can

be parallelized. Thus we can benefit from parallelization capabilities of IP solvers to

solve systems of polynomial equations. For instance, on a computer with 48 processors,

each one of 2.1 GHz (AMD Opteron 6172 processor), CTC(7,7) can be solved for one

solution in 34 hours using RPC.
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Figure 5.2: IPC with binary restrictions on variables
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Figure 5.3: IPC with continues restrictions on variables
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5.6.2 Small Scale AES

As we know AES is one of the important ciphers because it has been adopted by the

U.S. government and is now used worldwide. In Section 2.3, we have briefly recalled

the arguments of possible configurations of the small scale AES cryptosystem presented

in [50]. For more details and a way to express this cipher as a multivariate equation

system over F2 we refer to [50, 106]. Now we present experimental results for polynomial

systems coming from this cipher.

Due to the structural properties of small scale AES, the LP and DLP strategies

are not effective. Therefore, we are left with the SS and QPS strategies. We choose

objective function as the sum over all the initial variables, and maximization as op-

timization direction. In all conversion techniques, if possible, the restrictions on the

variables will be kept continues. For the cutting numbers in LPC, we use numbers 3, 4,

5, and 6. Each timing for the LPC, in the following table, is the best of four runs using

these four cutting numbers. In Table 5.26, m and n denote the number of equations

and variables respectively. All timings are obtained on a computer with a 2.1 GHz

AMD Opteron 6172 processor having 48 cores and 64GB RAM. For each timing, we

run CPLEX in parallel on two cores. From this table, we can see, the new conversion

techniques and strategies usually yield a sizeable speed-up. In extreme cases the gain

resulting from our strategies can be striking.

m n LPC HRC HIC RPC IPC
Strategy SS QPS SS QPS QPS SS SS

AES(2,1,1,4) 288 144 3 3 3 3 3 3 2
AES(4,1,1,4) 544 272 23 25 13 25 21 10 14
AES(6,1,1,4) 800 400 67 119 419 170 6 553 44
AES(8,1,1,4) 1056 528 1975 3908 21921 298 226 8351 1986
AES(9,1,1,4) 1184 592 527 26406 2493 814 236 2493 417
AES(10,1,1,4) 1312 656 14298 6994 9521 13211 1982 9521 2655
AES(4,2,1,4) 1088 544 7416 1377 6391 62338 3147 6391 789
AES(1,2,2,4) 576 288 51 42 14 75 20 14 13
AES(2,2,2,4) 1024 512 21735 19970 19243 74982 81014 19243 7830
AES(1,1,1,8) 640 320 56815 42354 2043 207180 9323 10370 4684

Table 5.26: Effect of different conversions on small scale AES

In the spirit of techniques studied above, it is obviously possible to generate a num-

ber of further variations of the conversion algorithms which have the potential to speed

up IP solvers. Clearly, the use of IP solvers in polynomial system solving opens up
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a wealth of new possibilities. We have realized that there is a strong need to consult

literature available on transformation of 0-1 programs into 0-1 linear programs to make

the conversion methods more effective and take advantage of the full potential of MILP.

Thus the conversion methods deserve further investigation and experimentation. Fi-

nally, we invite the reader to solve his favorite systems of polynomial equations with

the techniques developed in this chapter.



Chapter 6
Techniques Using MINLP and

Linear Diophantine Equations

In this chapter we address techniques using mixed integer nonlinear programming and

linear Diophantine equations. This chapter should mark a first step and offers sev-

eral future research directions. Research efforts of the past fifty years have led to

the development of linear integer programming as a mature discipline of mathemati-

cal optimization. Such a level of maturity has not been reached when one considers

nonlinear systems subject to integrality requirements for the variables. But nonlinear

integer programming is a very active area of research. So it is with this viewpoint that

we present techniques coming from mixed integer nonlinear programming for solving

systems of polynomial equations over F2. After formulating the solution of a system

of polynomial equations as a mixed integer nonlinear programming problem, we can

apply standard nonlinear IP solvers inside our algebraic techniques.

The second approach that we address is to transform a system of polynomial equa-

tions over F2 into a system of linear Diophantine equations. This enables us to use

the algorithms for solving systems of linear Diophantine equations for polynomial sys-

tem solving. After transformation, we apply the straightforward approach for solving

systems of linear Diophantine equations for non-negative solutions. Even the straight-

forward approach seems to provide satisfactory results. We believe that the latest

developments (which are mentioned in Section 6.2.1) can perform even better. This

gives us an application of solving systems of linear Diophantine equations to crypt-

analysis and a motivation for further research.
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6.1 Techniques Using Mixed Integer Nonlinear Pro-

gramming

In this section first we review some necessary concepts from the theory of mixed integer

nonlinear programming. Then we focus on non-convex Mixed Integer Nonlinear Pro-

gramming (MINLP) problems. Afterwards, we reformulate the polynomial conversion

methods presented in Chapter 5 to transfer the problem of solving a system of polyno-

mial equations over F2 into a MINLP problem. We try to see what can be achieved if

we employ a MINLP solver instead of a MILP solver. We present experimental results

using the open-source solver COUENNE [56] which solves non-convex MINLP prob-

lems. Using some concrete examples, we show that this technique seems to be rather

efficient and deserves to be the subject of further investigations.

6.1.1 Mixed Integer Nonlinear Programming (MINLP)

In the past decade, nonlinear integer programming has gained huge research activity.

Many important real life applications involve MINLP. Traditionally, nonlinear mixed

integer programs have been handled in the context of the field of global optimization,

where the main focus is on numerical algorithms to solve nonlinear continuous optimiza-

tion problems and where integrality constraints were considered as an afterthought,

using branch-and-bound over the integer variables. This is generally considered a very

young field, and most of the problems and methods are not as well-understood or stable

as in the case of linear mixed integer programs.

Several important practical problems are most naturally modelled as non-convex

MINLP problems. Applications of such problems arise in areas like telecommunications

[15, 97, 113], manufacturing and scheduling [5, 170], and epileptic seizure warning

[45, 99], and subsume unconstrained 0-1 quadratic programs, 0-1 quadratic knapsack

problems, and quadratic assignment problems. We study an application of MINLP to

cryptanalysis. Reformulation of the conversion methods in Section 5.1 provides us a

non-convex MINLP problem, therefore we are mainly interested in non-convex MINLP

problems.

In particular, we focus on approaches for solving polynomial 0-1 programs directly.

Such approaches were initially studied in [93, 168]. A computer study by Taha indicates

that neither the direct nonlinear nor the transformed linear approach can invariably

claim superiority over the other, but that the effectiveness of each depends upon the

specific problem to be solved (see [168]). In practice, linear 0-1 codes are typically
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easier to program and refine, and can take advantage of a larger store of developed

theory than the nonlinear approaches as we saw in Chapter 5. For an overview of the

subject, we refer to [107], Chapter 15. The two main types of MINLP problems are

convex MINLP problems and non-convex MINLP problems. Let us first recall what

we mean by a convex function.

Definition 6.1.1. Let A ⊂ Rn be a convex set. A function f : A −→ R is called

convex if for all θ ∈ [0, 1] and for all x, y ∈ A we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

The Second order differentiability condition says that if f is twice differentiable on

a convex domain A, then it is convex if and only if the Hessian matrix is positive

semi-definite (∇2f(x) � 0 for all x ∈ A).

A general model of the MINLP problem can be written as

Minimize f(x1, . . . , xn)

Subject to g1(x1, . . . , xn) ≤ 0
...

gm(x1, . . . , xn) ≤ 0

(6.1)

where n = n1 +n2, (x1, . . . , xn) ∈ Rn1×Zn2 , and f, g1, . . . , gm : Rn −→ R are arbitrary

nonlinear functions. However, we are interested in a rather restricted model of nonlinear

programming. We focus on instances of polynomial programming where the functions

are all quadratic. The specific form of the quadratically constrained mixed integer

programming problem that we consider is

Minimize f(x1, . . . , xn)

Subject to g1(x1, . . . , xn) ≤ 0
...

gm(x1, . . . , xn) ≤ 0

li ≤ xi ≤ ui, for i = 1, . . . , n,

xi ∈ R, for i = 1, . . . , k,

xi ∈ Z, for i = k + 1, . . . , n,

(6.2)

where f, g1, . . . , gm : Rn −→ R are quadratic polynomials, li, ui ∈ Z, and li ≤ ui.

The MINLP problem (6.2) is convex if all of the functions f, g1, . . . , gm are convex;
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otherwise it is non-convex. Note that when all of f, g1, . . . , gm are linear, we have

a MILP problem, for which practical methods have been successfully developed in

Chapter 5. We are mainly interested in non-convex MINLP, as this is the demand of

the problem we are studying in this chapter. Non-convex MINLP problems are typically

much harder to solve than convex ones. Indeed, given a convex MINLP problem, one

can compute an initial lower bound simply by solving the continuous relaxation of the

problem. This relaxation will be a convex nonlinear problem, which is likely to be

relatively easy to solve. The continuous relaxation of a non-convex MINLP problem,

on the other hand, is a non-convex nonlinear problem. Non-convex nonlinear problems

(sometimes called global optimization problems) are themselves NP-hard (see [80] and

references therein). In fact, non-convex MINLP problems are worse than NP-hard

because they remind us Hilbert’s Tenth Problem which states: Given a Diophantine

equation f(x1, . . . , xn) = 0, determine if it possesses a solution in integers. We know

that there cannot be an algorithm for solving Hilbert’s Tenth Problem. In other words

this problem is not solvable by a Turing machine. If, however, each variable is lower-

and upper-bounded explicitly, then non-convex MINLP problems become ‘merely’ NP-

hard (see [104]) such that the search for the optimum can be limited to finite number

of possibilities, then certainly the purely enumerative algorithm is available.

Moreover, it is not easy to devise effective heuristics for non-convex MINLP prob-

lems. Some exact methods for convex MINLP problems can be converted into heuristics

for non-convex MINLP problems. We concentrate primarily on exact approaches. The

linearization approach of Chapter 5 has been generalized to a non-convex MINLP prob-

lem by A. Billionnet et al. [28, 27] and L. Galli [80]. Finally, Saxena et al. [158], L.

Burer and Galli et al. [80] have derived strong cutting planes for general non-convex

MINLP problems. Saxena et al. do this using disjunctive programming techniques.

Burer directly studies the convex hull of feasible solutions directly, using a combina-

tion of polyhedral theory and convex analysis. Galli et al. show how to adapt the ‘gap

inequalities’, originally defined for the max-cut problems, to non-convex problems.

The most successful methodology to solve rather general MINLP problems having

non-convex relaxations is known as Spatial Branch-and-Bound technique, which is also

referred to as Branch-and-Reduce (see [157] and references therein). This technique has

many similarities with the ordinary branch-and-bound technique. It is an elegant exact

technique for both global optimization and non-convex MINLP problems. Branch-and-

Reduce is the only available approach for the general case. The adaptation of MILP

techniques to solve instances of MINLP is a challenging research area. The present
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work lies squarely in this area, as we pursue the implementation of a general-purpose

algorithm for solving MINLP based on existing software tools for MILP. We will not

attempt to make any kind of details. Rather we refer to [107], Chapter 15 and the

references therein. Some approaches also involve solving non-convex MINLP problems

by converting them to convex MINLP problems.

There are three software packages that can solve non-convex MINLP problems to

proven optimality, using branch-and-reduce techniques, namely: BARON, Alpha-BB

[81] and COUENNE [56]. Some packages for convex MINLP problem can be used to

find heuristic solutions for non-convex MINLP, namely BONMIN, DICOPT and LaGO

[81]. Finally, GloptiPoly [81] can solve general polynomial optimization problems.

Note that solvers for convex MINLP problems can be used on non-convex problems as

heuristics, as they may provide a feasible solution.

For solving MINLP problems, we use the open-source solver COUENNE [56] (Con-

vex Over and Under ENvelopes for Nonlinear Estimation). It is a spatial branch-and-

bound algorithm to solve MINLP problems. COUENNE aims at finding global optima

of non-convex MINLP problems. It implements linearization, bound reduction, and

branching methods within a branch-and-bound framework.

6.1.2 Techniques for Polynomial Conversion

We reformulate the polynomial conversion methods presented in Chapter 5 to transfer

the problem of solving a system of polynomial equations over F2 into a MINLP problem.

We try to see what can be achieved if we employ a MINLP solver instead of a MILP

solver. Furthermore, we investigate the choice of a suitable objective function.

Let F2 be the finite field with two elements and let f1, . . . , fm ∈ P = F2[x1, . . . , xn]

be non-zero polynomials. We are interested in finding F2-rational solutions of the

following system of polynomial equations.

f1(x1, . . . , xn) = 0
...

fm(xn, . . . , xn) = 0

We convert the polynomial equations defined over F2 into polynomial equations which

hold over the reals (respectively over the integers). Usually fi will be a boolean poly-

nomial (squarefree polynomial), i.e. all terms in the support of fi will be squarefree,

but this is not an essential hypothesis. Let X = {X1, . . . , Xn} be a set of real vari-
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ables (respectively integer variables), i.e. variables over R (respectively over Z). A

conversion method should at least guarantee that a solution for fi results in a solution

for associated polynomial (or polynomials) over R (respectively over Z). The task of

solving the polynomial equation system f1 = . . . = fm = 0 can be rephrased as follows:

Find a tuple (a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)
...

Fm(a1, . . . , an) ≡ 0 (mod 2)

(6.3)

where Fi ∈ R[X1, . . . , Xn] (respectively Fi ∈ Z[X1, . . . , Xn]) is the standard repre-

sentative (respectively a lifting) of fi. Thus we are looking for an integer solution

(a1, . . . , an) of the system (6.3) which satisfies 0 ≤ ai ≤ 1. This formulation suggests

to apply a MINLP algorithm for finding a solution satisfying the stated bounds. For

details about the process of conversion, we refer to Section 5.1. Moreover, note that

the MINLP problem given by the conversion methods in this section is a non-convex

MINLP problem. This can be seen easily by Hessian matrix of the polynomials Fi.

In the following, we turn these ideas into effective algorithms. We denote by Tn

the monoid of terms for F2[x1, . . . , xn]. An element of the monoid of terms Tn will

be denoted by t. Our first conversion method is a reformulation of Proposition 5.2.2

which uses Lemma ?? to convert a boolean equation to an equation over the integers.

But here we use the fact that we want to use the resulting system of equalities and

inequalities in an integer programming problem. This means that we can restrict some

(or all) variables to be integers. Consequently while converting a Boolean equation we

do not have to ensure that the equation holds over the reals but over the integers.

Proposition 6.1.2. (Integer Polynomial Conversion (IPC))

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the zero-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

For i = 1, . . . ,m, let si = #Supp(fi).

2) For i = 1, . . . ,m, let F̄i represent the polynomial fi in Z[x1, . . . , xn] such that the

coefficients of F̄i are in {0, 1}.

3) For i = 1, . . . ,m, introduce a new integer indeterminate Ki and write down the
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linear inequality Ii : Ki ≤ bsi/2c.

4) For i = 1, . . . ,m, form the equation Fi : F̄i − 2Ki = 0.

5) For all α ∈ {1, . . . , n}, let I ′α : Xα ≤ 1.

6) Choose a linear polynomial C ∈ Q[Xi, Ki] and use a nonlinear IP solver to find

the tuple of natural numbers (ai, bi) which solves the system of equations and

inequalities {Ii, Fi, Iα} and minimizes (or maximizes) C.

7) Return (a1, . . . , an) and stop.

Proof. Since we are looking for natural numbers ai for which Iα holds, we have ai ∈
{0, 1}. Next if follows from Fi that fi(a1, . . . , an) = 2Ki is an even number, and Ii is

nothing but the trivial bound for Ki implied by the size of the support of fi. In this way

the solution of the IP problem corresponds uniquely to the tuple (a1, . . . , an) ∈ {0, 1}n

which satisfies the above reformulation of the given polynomial system.

Remark 6.1.3. Note that the algorithm in Proposition 6.1.2 can be extended to a

prime finite field Fp in the straightforward way as follows. Let p be a prime number

and let Fp be the finite field with p elements. Let f1, . . . , fm ∈ P = Fp[x1, . . . , xn]

be a set of polynomials. Then the following instructions define an algorithm which

computes a tuple (a1, . . . , an) ∈ Fnp whose residue class in Fn2 represent a zero of the

zero-dimensional radical ideal I = 〈f1, . . . , fm, xp1 − x1, . . . , xpn − xn〉.

1) Reduce f1, . . . , fm modulo the field equations.

2) For i = 1, . . . ,m, let F̄i represent the polynomial fi in Z[x1, . . . , xn] such that the

coefficients of F̄i are in Fp.

3) For i = 1, . . . ,m, let si = eval(F̄i, (b1, . . . , bn)), where bj = p for all j ∈ {1, . . . , n}.

4) For i = 1, . . . ,m, introduce a new integer indeterminate Ki and write down the

linear inequality Ii : Ki ≤ bsi/pc.

5) Form the equation Fi : F̄i − pKi = 0.

6) For all α ∈ {1, . . . , n}, let I ′α : Xα ≤ p.

7) Choose a linear polynomial C ∈ Q[Xi, Ki] and use an IP solver to find the tuple

of natural numbers (ai, ci) which solves the system of equations and inequalities

{Ii, Fi, I ′α} and minimizes C.



168 6. Techniques Using MINLP and Linear Diophantine Equations

8) Return (a1, . . . , an) and stop.

The proof for the algorithm given by the above sequence of instructions is an analog

of the proof of Proposition 6.1.2.

Remark 6.1.4. Assume that we are in the setting of the algorithm in Proposition

6.1.2. If we can find a feasible binary/integer-valued solution for the MINLP for an

arbitrary objective function, this solution can be converted into a solution for the

original system. Furthermore, note that the initial state variables X1, . . . , Xn will be

forced to take on binary values. The variables K1, . . . , Km will be forced to take on

integer values in the interval [0, bsi/2c].

To understand Proposition 6.1.2 better, we now apply it in a concrete case.

Example 6.1.5. Over the field K = F2, consider f1, f2, f3 ∈ K[x1, x2, x3], where

f1 = x1x2 + x1x3 + 1, f2 = x1x3 + x2x3 + x1 + x3 + 1, and f3 = x1x2 + x1x3 + x2 + 1.

Let us follow the steps of the algorithm in Proposition 6.1.2.

1) Let s1 = 3, s2 = 5, and s3 = 4.

2) Let F̄1 = X1X2 + X1X3 + 1, F̄2 = X1X3 + X2X3 + X1 + X3 + 1, and F̄3 =

X1X2 +X1X3 +X2 + 1.

3) Introduce new integer indeterminates K1, K2, K3 and write down the linear in-

equalities I1 : K1 ≤ 1, I2 : K2 ≤ 2 and I3 : K3 ≤ 2.

4) Form the following equations.

F1 : X1X2 +X1X3 + 1− 2K1 = 0

F2 : X1X3 +X2X3 +X1 +X3 + 1− 2K2 = 0

F3 : X1X2 +X1X3 +X2 + 1− 2K3 = 0

5) Let I ′1 : X1 ≤ 1, I ′2 : X2 ≤ 1 and I ′3 : X3 ≤ 1.

6) Let C = X1 +X2 +X3. Now use an IP solver to minimize C subject to

{I1, . . . , I3, F1, F2, F3, I
′
1, I
′
2, I
′
3}.

7) Choose values for X1, X2 and X3 from the solution provided by an IP solver.

This will return (1, 0, 1).
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Remark 6.1.6. As claimed above the polynomials Fi given by the conversion algo-

rithm in Proposition 6.1.2 are actually non-convex polynomial functions. To see this

consider the polynomial F1 in step 3) of Example 6.1.5. It can be easily seen that the

Hessian matrix of the polynomial F1 is not positive semi-definite. This shows that F1

is a non-convex polynomial function.

Our second conversion method is a reformulation of Proposition 5.2.8 which uses

the standard representation (see Definition 5.2.5) to convert a boolean equation to an

equation (or equations) over the reals. Real that the standard representation results

in increasing degree and increasing number of terms over the real domain. To control

increasing degree and increasing number of variables we introduce new variables while

conversion process. Furthermore, while converting a Boolean equation we have to

ensure that the equation holds over the reals. The only requirement we have is that

the solution of the system over F2 is also a solution of the real system. The additional

non-binary solutions of the real system can be ignored.

Proposition 6.1.7. (Real Polynomial Conversion (RPC))

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the zero-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉.

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

For i = 1, . . . ,m, let Si be the set of terms of degree ≥ 2 in fi. Let S =
⋃m
i=1 Si

and s = |S|.

2) For every tj ∈ S, introduce a new indeterminate xn+j and form the equation

f ′m+j : xn+j = tj. For i = 1, . . . ,m, write fi =
∑

j tj + `i where the sum

extends over all j such that tj ∈ Si and where `i ∈ P≤1. Form the equation

f ′i :
∑

j xn+j + `i = 0.

3) For i = 1, . . . ,m + s, let Fi be the equation which is the standard representation

of f ′i .

4) For all α ∈ {1, . . . , n}, let Iα : Xα ≤ 1.

5) Choose a linear polynomial C ∈ Q[Xα, Xn+j] and use an IP solver to find the tuple

of natural numbers (aα, an+j) which solves the system of equations and inequalities

{Fi, Iα} and minimizes (or maximizes) C.
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6) Return (a1, . . . , an) and stop.

Proof. We are looking for natural numbers aα for which Iα holds, therefore we have

aα ∈ {0, 1}. Similarly, we have an+j ∈ {0, 1} by Iα and Fm+j. Next it follows from

the standard representation that Fi ∈ {0, 1}. In this way the solution of the IP prob-

lem corresponds uniquely to the tuple (a1, . . . , an) ∈ {0, 1}n which satisfy the above

reformulation of the given polynomial system.

Assume that we are in the setting of the algorithm in Proposition 6.1.7. Note that if

max{deg(fi) | i ∈ {1, . . . ,m}} ≤ 2 and for i = 1, . . . ,m, the maximum number of terms

in the support of fi does not exceed 4, the algorithm works with quadratic polynomials

in all of its iterations. Furthermore, note that all variables in the algorithm take on

binary values. To understand Proposition 6.1.7 better, we now apply it in a concrete

case.

Example 6.1.8. Over the field K = F2, consider f1, f2, f3 ∈ K[x1, x2, x3], where

f1 = x1x2 + x1x3 + 1, f2 = x1x3 + x2x3 + x1, and f3 = x1x2 + x1x3 + x2 + 1. Let us

follow the steps of the algorithm in Proposition 6.1.7.

1) Let S1 = {x1x2, x1x3}, S2 = {x1x3, x2x3}, and S3 = {x1x2, x1x3}. Let S =

{x1x2, x1x3, x2x3} and s = 3.

2) Introduce new indeterminates x1, x2, x3. Form the equations f ′4 : x4 = x1x2,

f ′5 : x5 = x1x3 and f ′6 : x6 = x2x3. Form the equations f ′1 : x4 = x5 + 1,

f ′2 : x5 = x6 + x1 and f ′3 : x4 + x5 = x2 + 1.

3) The standard representations of the equations f ′1, . . . , f
′
6 are:

F1 : X4 +X5 − 1 = 0, F2 : X5 −X6 −X1 + 2X1X6 = 0,

F3 : X4 +X5 − 2X4X5 +X2 − 1 = 0, F4 : X4 −X1X2 = 0,

F5 : X5 −X1X3 = 0, F6 : X6 −X2X3 = 0.

4) Let I1 : X1 ≤ 1, I2 : X2 ≤ 1 and I3 : X3 ≤ 1.

5) Let C = X1 +X2 +X3. Now use an IP solver to minimize C subject to

{F1, . . . , F6, I1, I2, I3}.

6) Choose values for X1, X2 and X3 from the solution provided by an IP solver.

This will return (1, 0, 1).
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6.1.3 Experimental Results

Now we present our observations and results from experiments with the algorithms in

Propositions 6.1.2 and 6.1.7. We run COUENNE on a laptop with a 2.13 GHz Intel

Pentium P6200 Dual Core processor and 4GB RAM, but we are using only a single

thread out of two. See Section 5.1 for some abbreviations we have used in the following.

Furthermore, the timings for the conversion algorithms were ignored, since they were

not implemented efficiently and should be seen as a preprocessing step. Finally, we note

that all timings can be reproduced i.e, if we run a single experiment on a particular

machine n times, every time we will get the same timing.

First Experiment

Assume that we choose the objective function as the sum over all the initial variables

X1, . . . , Xn and maximization as optimization direction. Then Table 6.1 gives the

timings for the conversion algorithm in Proposition 6.1.2.

Sbox CTC(2,2) CTC(3,3) CTC(3,4) CTC(4,3) CTC(4,4)

Equations 98 216 285 288 380
Variables 54 117 153 156 204
F-Sbox 2 25 213 166 1465
H-Sbox 1 15 250 198 2763
M-Sbox 1 37 666 526 >4000

Table 6.1: COUENNE time comparison for Sbox using IPC

Moreover, we remark that we run a number of experiments which show that opti-

mization direction seems to have no effect on the timings.

Second Experiment

As we saw in Chapter 5 the objective function strongly affects the running time of an

IP solver. To see the role of the objective function in MINLP models, natural choices

are as follows.

O1: The sum over all the initial variables X1, . . . , Xn.

O2: The sum over all variables.

O3: The sum over all new variables K1, . . . , Kn introduced by the conversion algo-

rithm.
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H-SBox F-SBox
System O1 O2 O3 O1 O2 O3

CTC(2,2) 1 1 1.7 2 2.4 1.7
CTC(3,3) 15 19 38 25 45 39
CTC(3,4) 250 144 270 213 217 269
CTC(4,3) 198 209 229 166 292 230
CTC(4,4) 2763 2151 2020 1465 2088 2020

Table 6.2: COUENNE time comparison for objective function using IPC

Third Experiment

The Techniques we are studying are used to solve sparse systems of polynomial equa-

tions. Most of the polynomial systems that we have considered in all experiments are

defined over the field F2. To give you an overview how such techniques perform over

Fp, we consider some instances of polynomial systems arising the HFE cryptosystem

which are relatively dense. We consider the polynomial systems defined over F2, F3,

F5, and F7. We use the algorithm in Corollary 6.1.3 for polynomial conversion.

Base Field HFE(6) HFE(7) HFE(8) HFE(9)

F2 0.1 0.3 0.9 0.4
F3 1.4 1.8 14 58
F5 1 238 1297 2916
F7 276 680 765 >19000

Table 6.3: IPC time comparison for different base fields

Fourth Experiment

Now assume that we are in the setting of the conversion algorithm in Proposition 6.1.7.

We choose the objective function as the sum over all the initial variables X1, . . . , Xn

and maximization as optimization direction, and force all variables (initial, auxiliary,

and introduced by the conversion algorithm) to take on binary values. This conversion

algorithm seems to solve only small instances of systems of polynomial equations as

given by Table 6.4.

System CTC(2,2) CTC(3,3) CTC(3,4) CTC(4,3) CTC(4,4)

Time 3 182 >4000 >4000 >4000

Table 6.4: COUENNE time comparison using RPC
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As one can see from Tables 6.1 and 6.2, for very sparse systems the running time

of the nonlinear IP technique compares favorably to the running times of the Gröbner

basis techniques in Chapter 3. Even for examples involving many indeterminates,

such as CTC(4,4), the above timings compete with individually tailored Gröbner basis

methods, such as the ones reported in [3]. In the spirit of the techniques studied above,

it is obviously possible to generate a number of further variations of the conversion

algorithms which have the potential to speed up IP solvers. Thus the conversion

methods deserve further investigation and experimentation. Furthermore, it could be

interesting to use other software packages that can solve non-convex MINLP problems

such as BARON and Alpha-BB [81].

By studying special cases of MINLP problems, one can do better. Our problem

i.e. the problem discussed in experimental results is a special case that provides a lot

of information about the model and the structure of the model. We believe that the

development of techniques for this special case could be a promising direction for future

research. Furthermore, there is still a clear need for improved theory, algorithms, and

software for MINLP. Any improvement will also be beneficial for our special case.

The study of algorithms for solving MINLP problems is a very young and a fast

developing area, we believe that the conversion methods presented in this section can

take full advantage of any new development. Furthermore, note that in the modern

computation world, a good IP solver is supposed to have parallelization capabilities.

Thus we can think of getting benefit from parallelization capabilities of IP solvers.

Therefore, we believe that if effective conversion methods are developed they can be

able to solve sparse systems of polynomial equations involving a large number of in-

determinates. Finally, we invite the reader to solve his favorite systems of polynomial

equations using the techniques developed in this section.
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6.2 Techniques Using Linear Diophantine Equations

First we review some necessary concepts from number theory. In particular, we fo-

cus on methods for solving systems of linear Diophantine equations. Afterwards, we

reformulate the polynomial conversion methods presented in Chapter 5 to transfer a

system of polynomial equations over F2 into a system of linear Diophantine equations.

This enables us to to use the algorithms for solving systems of linear Diophantine

equations for polynomial system solving. After reformulation i.e. after applying a con-

version algorithm we apply the straightforward approach for solving systems of linear

Diophantine equations for finding non-negative integer solutions. Even the straightfor-

ward approach seems to provide satisfactory results. Furthermore, we highlight some

ideas to spark further research in this direction. We believe that the highlighted tech-

niques can perform even better. Towards the end we show the performance of these

techniques using some concrete examples.

6.2.1 Solving Systems of Linear Diophantine Equations

Let us recall that a Diophantine equation is an equation of the form f(x1, . . . , xn) = 0,

where f is a polynomial with integer coefficients and the indeterminates x1, . . . , xn take

integer values. If the polynomial f has degree one then f(x1, . . . , xn) = 0 is called a

linear Diophantine equation. Solving systems of linear Diophantine equations (in par-

ticular for non-negative solutions) is of both of theoretical and practical importance. In

particular, methods of solving such systems are used in systems of artificial intelligence

and logic programming [132], computer algebra [35], automation of theorem proving

with unification [16], in parallelizing programs, in Petri nets [6], etc. Furthermore, we

present an application to cryptanalysis.

We are interested in algorithms which solve linear systems of Diophantine equa-

tions for non-negative solutions. A well-known approach to find non-negative integer

solutions consists of two steps. First find all integer solutions and then obtain the

non-negative integer solutions from the integer solutions. In other works, first step is

to find a general integer solution and second step is to find a non-negative (particular)

integer solution from general integer solution. We address both of these steps one by

one in the following.

Let A = (aij) ∈ Matm,n(Z) be a matrix having m rows, n columns, and integer

entries. Furthermore, let (b1, . . . , bm) ∈ Zm be a vector having m integer entries, and

let x1, . . . , xn be indeterminates. Our goal in this section is to study the set of non-
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negative integer solutions of the following system of linear Diophantine equalities and

inequalities.

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

...
...

ar1x1 + ar2x2 + · · ·+ arnxn ≤ br

a(r+1)1x1 + a(r+1)2x2 + · · ·+ a(r+1)nxn = br+1

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(6.4)

We can convert the above system of equalities and inequalities into a system of equa-

tions in the following way. We introduce new indeterminates xn+1, . . . , xn+r and con-

sider the associated system of Diophantine equations.

a11x1 + a12x2 + · · ·+ a1nxn + xn+1 = b1

a21x1 + a22x2 + · · ·+ a2nxn + xn+2 = b2
...

...
...

ar1x1 + ar2x2 + · · ·+ arnxn + xn+r = br

a(r+1)1x1 + a(r+1)2x2 + · · ·+ a(r+1)nxn = br+1

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(6.5)

As we have seen above the first step is to obtain a general integer solution which

can be resolved by the Hermite normal form, the Smith normal form, by computing

the Kernel or by the LLL-Algorithm. We use the Smith normal form to resolve the first

step. The Smith normal form is a canonical diagonal form for equivalence of matrices

over a principal ideal ring as given by the following proposition.

Proposition 6.2.1. If A is any integer matrix, there exist invertible integer matrices

P and Q, whose inverses are also integer matrices, such that

PAQ = D,

where D is a diagonal matrix of integers with the property that

D = diag{d11, . . . , drr, 0, . . . , 0}
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with dii a factor of djj for i < j and for which dii 6= 0 for i ≤ r. The matrix D is

called the Smith normal form of the matrix A and the matrices P and Q are called

transforming matrices.

Proof. See [89], Theorem 1.

The Smith normal form was first proven to exist by Smith [164] for matrices over

the integers. Once we have the Smith normal form the general integer solution can be

easily obtained from it. Now there is a natural question. Is the Smith normal form

the best way to solve the first step? We do not have a final answer but we choose the

Smith normal form due to the following reasons.

There are polynomial time algorithms for computing the Smith normal form. The

classical Smith normal form algorithms perform an elimination process with some gcd

computations over the integers or modulo large primes. The first classical polynomial

time algorithm for computing Smith normal forms over Z was given by Kannan and

Bachem [109], and later improved by Chou and Collins [49]. Few years later an al-

gorithm was given in [100] that performs all arithmetic modulo the determinant of a

square nonsingular input matrix. The modular approach, which effectively controls

intermediate swell, was extended to singular input matrices in [100, 90]. A further

improvement of this approach is given in [167]. Last but not least, for sparse matrices

one should expect to accelerate the solution by exploiting the sparsity. A theoretical

study [83] shows that methods for sparse integer matrices perform substantially better

than the classical methods. A most recent attempt to design a probabilistic algorithm

for computing Smith normal forms using efficient sparse integer matrix computations

is given in [71]. The systems of linear Diophantine equations arising from Subsections

6.2.2 and 6.2.3 are sparse and structured. Thus we can get full advantage of the re-

cently developed probabilistic algorithms which exploit sparsity. Thus these algorithms

deserve further investigation and experimentation. Therefore, we believe that if such

algorithms are developed they can be able to solve sparse systems of linear Diophantine

equations involving a large number of indeterminates in little time.

Now we come to the second step, i.e. how to obtain a non-negative integer solution

from the general integer solution. The indeterminates xn+1, . . . , xn+r are usually known

in the literature as slack variables (see [159]). It is trivial to see that that the element

(s1, . . . , sn) ∈ Nn is a solution of (6.4) if and only if there exist sn+1, . . . , sn+r ∈ N such

that (s1, . . . , sn, sn+1, . . . , sn+r) is solution of (6.5) (see for instance [156], Lemma 1).

In view of this result, we shall from now on assume that our original system is in fact
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a system of linear Diophantine equations, i.e. that we want to find the non-negative

integer solutions (s1, . . . , sn) ∈ Nn of the following system.

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(6.6)

Unfortunately, restricting the domain to the natural numbers makes the problem much

more difficult. Actually, this is an NP-hard problem. We know that N is a monoid.

We are looking for the set of solutions S of the system (6.6) with componentwise non-

negative coordinates i.e. solutions in Nn. One way of finding the set of non-negative

integer solutions S of the system (6.6) is to solve the following homogenous system of

Diophantine equations for non-negative integer solutions.

a11x1 + a12x2 + . . . + a1nxn − b1xn+1 = 0

a21x1 + a22x2 + . . . + a2nxn − b2xn+1 = 0
...

...
...

am1x1 + am2x2 + · · ·+ amnxn − bmxn+1 = 0

(6.7)

The set of non-negative integer solutions S ′ of the system (6.7) is a submonoid of Nn+1.

Note that there is a partial order (componentwise divisibility) on S ′ in a natural way.

Since there is a partial ordering on S ′, we can speak about the minimal elements in

S ′. In fact the submonoid S ′ is generated by its set of non-zero minimal elements M′

with respect to the natural partial order. The set M′ is also known as the basis of S ′

in the literature (see for instance [156], Lemma 2).

Note that the set of non-negative integer solutions S of the system (6.6) has a

minimal set of generators M with respect to natural partial order which provides

a finite and complete representation of the set S: any solution in S is an N-linear

combination of the elements in M.

As explained above, the second step is to get non-negative integer solutions from

the general integer solution. The second step is equivalent to finding the feasible region

for an integer programming problem. Now there are two natural question. Now we

have a natural question. Why is integer programming sufficient enough to solve the

secondary problem?

A first answer to the second question is the following. We are interested in finding
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only one non-negative integer solution of a given system of linear Diophantine equa-

tions. Our system of linear Diophantine equations has only a few minimal non-negative

integer solutions. In particular, it has a unique minimal non-negative solution. Several

efficient algorithms are available in the field of discrete optimization for solving integer

programs. IP solvers are very fast in practice and they can handle large scale integer

programming models. Furthermore, note that some IP solvers like CPLEX can be

parallelized. Thus we can benefit from parallelization capabilities of IP solvers to solve

systems of polynomial equations. Thus in our opinion integer programming is the right

tool for this purpose. We support this argument with the help of examples in Section

6.2.3. Furthermore, research efforts of the past fifty years have led to a development

of linear integer programming as a mature discipline of mathematical optimization.

Several IP solvers have been developed. Note that some IP solvers like CPLEX can be

parallelized. Thus we can benefit from the parallelization capabilities of the IP solvers

to solve systems of linear Diophantine equations.

6.2.2 Techniques for Polynomial Conversion

As usual let F2 be the finite field with two elements and let f1, . . . , fm ∈ P =

F2[x1, . . . , xn] be non-zero polynomials. We are interested in finding F2-rational so-

lutions of the following system of polynomial equations.

f1(x1, . . . , xn) = 0
...

fm(xn, . . . , xn) = 0

Recall that in Chapter 5 we studied ways of transferring the problem of solving a

system of polynomial equations over F2 into a system of linear equalities and inequali-

ties. In particular, the Integer Polynomial Conversion (IPC) (see Section 5.5) gives us

a system of linear Diophantine equalities and inequalities. This formulation suggests

to apply a linear Diophantine system solving algorithm for finding a solution satisfy-

ing the system of linear Diophantine inequalities and equalities. For details about the

process of conversion we refer to Section 5.1.

Recall that in Section 5.5 we have developed several strategies that can be used

in the settings of a conversion algorithm. In particular, we saw the standard strategy

(SS), the linear partner strategy (LP), the double linear partner strategy (DLP) and

quadratic partner strategy (QP). In Section 5.5 we have used these strategies to model a
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system of linear Diophantine equalities and inequalities. Now we move one step further

and obtain a system of linear Diophantine equations by introducing slack variables. The

following proposition which uses the full potential of Sections 5.4 and 5.5 turns this idea

into an effective algorithm. The notation and terminology are as defined in Sections

5.4 and 5.5.

Proposition 6.2.2. (Hybrid Integer Conversion (HIC))

Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an algo-

rithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in Fn2 represent

a zero of the zero-dimensional radical ideal I = 〈f1, . . . , fm, x21 + x1, . . . , x
2
n + xn〉 of P .

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support squarefree.

Let G = ∅.

2) Repeat the following step 3) until no polynomial g can be found anymore.

3) Find a subset of Supp(fi) which defines a polynomial g of the type required by

the chosen conversion strategy. Introduce a new indeterminate xn+j, replace fi

by fi − g + xn+j, and append g + xn+j to G.

4) For each polynomial in G, compute a logical representation in CNF and form the

set of all clauses C of all these logical representations.

5) For each clause c ∈ C form a clausal inequality Ic.

6) For i = 1, . . . ,m, let Si be the set of new indeterminates xn+j in fi, and let

si = #Supp(fi).

7) For i = 1, . . . ,m, introduce a new integer indeterminate Ki and write down the

linear inequality Ii : Ki ≤ bsi/2c.

8) For i = 1, . . . ,m, write fi =
∑

j xn+j + `i where the sum extends over all j such

that xn+j ∈ Si and where `i ∈ P≤1. Form the equation Fi :
∑

j Xn+j+Li−2Ki =

0, where Li ∈ Z[X1, . . . , Xn]≤1 is a lifting of `i.

9) Convert the inequalities Ii, Ic respectively into the equations Ei, Ec by introducing

new indeterminates (slack variables) Zk.

10) Solve the system of linear Diophantine equations {Ei, Fi, Ec} over Z for a general

integer solution (Aα, An+j, Ci, Dk), where Aα, An+j, Ci, Dk are linear Diophantine

polynomials in free indeterminates.
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11) For all α ∈ {1, . . . , n}, let Xα ≤ 1. For each j, let Xn+j ≤ 1.

12) Consider the bounds given by steps 7) and 11) for the general integer solution

(Aα, An+j, Ci, Dk) and formulate an IP problem. Use an IP solver to find a

minimal non-negative integer solution (aα, an+j, ci, dk) which solves the system of

linear Diophantine equations {Ei, Fi, Ec}.

13) Return (a1, . . . , an) and stop.

Proof. It is clear that steps 2)−3) linearize the polynomials fi by introducing new

indeterminates xn+j. Moreover, step 4) is based on Lemma 5.4.2, Lemma 5.4.3, Propo-

sition 5.4.5, or Remark 5.4.5 for the polynomials g + xn+j from step 3), and step 7)

follows from Lemma 5.4.6. In step 6) the polynomials fi are linear polynomials in the

indeterminates xα and xn+j. Next it follows from Fi that Fi(a1, . . . , an) = 2Ki is an

even number, and Ii is nothing but the trivial bound for Ki implied by the size of the

support of fi.

Step 10) gives a general solution of the system of linear Diophantine equations

{Ei, Fi, Ec}. Step 12) finds a minimal non-negative integer solution by considering the

feasible region for the integer programming problem given by the general solution and

the bounds of steps 7) and 11). In this way the minimal solutions of the system of linear

Diophantine equations correspond uniquely to the tuples (a1, . . . , an) ∈ {0, 1}n which

satisfy the given polynomial system. The claim follows easily from these observations.

To understand Proposition 6.2.2 better, we now apply it in a concrete case.

Example 6.2.3. Over the field K = F2, consider f1, f2 ∈ K[x1, x2], where f1 =

x1x2+x2, and f2 = x1x2+x1+1. Let us follow the steps of the algorithm in Proposition

6.2.2.

1) Let G = ∅.

3) If we choose the standard strategy, we have to introduce one new indeterminate

x3. The updated polynomials are f1 = x3 + x2 and f2 = x3 + x1 + 1. Let

G = {x1x2 + x3}.

4) Let C = {X1 ∨ ¬X3, X2 ∨ ¬X3, ¬X1 ∨ ¬X2 ∨X3}.

5) The corresponding clausal inequalities Ic are −X1 +X3 ≤ 0, −X2 +X3 ≤ 0, and

X1 +X2 −X3 − 1 ≤ 0.
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6) Let S1 = {x3}, and S2 = {x3}. Let s1 = 2, and s2 = 3.

7) Introduce new integer indeterminates K1, K2 and write down the linear inequal-

ities I1 : K1 ≤ 1, and I2 : K2 ≤ 1.

8) Form the following equations.

F1 : X2 +X3 − 2K1 = 0

F2 : X1 +X3 + 1− 2K2 = 0

9) Introduce slack variables 0 ≤ Z1, . . . , Z5 ≤ ∞ to form the linear equations from

linear inequalities.

E1 : −X1 +X3 + Z1 = 0, E2 : −X2 +X3 + Z2 = 0,

E3 : X1 +X2 −X3 + Z3 − 1 = 0,

Ec : K1 + Z4 = 1, Ec : K2 + Z5 = 1

10) The system of linear Diophantine equations {Ei, Fi, Ec} is given by

F1 : X2 +X3 − 2K1 = 0, F2 : X1 +X3 − 2K2 + 1 = 0,

E1 : −X1 +X3 + Z1 = 0, E2 : −X2 +X3 + Z2 = 0,

E3 : X1 +X2 −X3 + Z3 − 1 = 0,

Ec : K1 + Z4 = 1, Ec : K2 + Z5 = 1

The matrix equation of this system is AX = B, where

A =



0 1 1 −2 0 0 0 0 0 0

1 0 1 0 −2 0 0 0 0 0

−1 0 1 0 0 1 0 0 0 0

0 −1 1 0 0 0 1 0 0 0

1 1 −1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1


,X =



X1

X2

X3

K1

K2

Z1

Z2

Z3

Z4

Z5



,B =



0

−1

0

0

1

1

1
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The Smith normal form of the matrix A is D = PAQ, where

P =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0


,D =



0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


,

Q =



−1 1 −1 0 0 1 −1 0 0 0

−1 −1 1 1 −1 −1 1 0 0 0

1 −1 −1 0 1 1 1 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 −1 0 0 1 0 0 0 0

2 2 0 0 −1 0 −2 1 0 0

−2 0 2 1 −2 −2 0 0 1 0

3 −1 −1 −1 2 1 1 0 0 1

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0



.

The general solution given by the above decomposition is X1 = −t1+t2−t3, X2 =

−t1 − t2 + t3 + 1, X3 = t1 − t2 − t3 + 1, K1 = −t2 + 1, K2 = −t3 + 1, Z1 =

−2t1 + 2t2 − 1, Z2 = −2t1 + 2t3, Z3 = 3t1 − t2 − t3 + 1, Z4 = t2, Z5 = t3, where

t1, t2, t3 ∈ Z.

11) Let X1 ≤ 1, X2 ≤ 1 and X3 ≤ 1.

12) Let C = t1 + t2 + t3. Now use an IP solver to minimize C subject to the feasible

region for the integer programming problem given by the general solution and

the bounds of steps 7), 9) and 11).

13) Choose values for X1 and X2 from the solution provided by an IP solver. This

will return (1, 0).
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6.2.3 Experimental Results

Now we present our observations and results from experiments with the algorithms

in Proposition 6.2.2. The algorithm operates in two steps. Firstly, it finds a general

integer solution. Secondly, it solves a mixed integer linear programming problem to

find a non-negative solution. As described in Section 6.1.1 we use the Smith normal

form for resolving the primary step. We use the computer algebra system PARI/GP

[149] which is designed for fast computations in number theory, for computing the

Smith normal form. For resolving the secondary step we use the commercial linear

optimization tool CPLEX by ILOG [102]. CPLEX has a users choice for emphasis

on feasibility or optimality. We choose emphasis on feasibility because we are not

interested in optimality and stop after we found the first solution because we assume

that there is only one solution (in most of the cases). We use CPLEX version 12.2. We

run PARI/GP and CPLEX on a laptop with a 2.13 GHz Intel Pentium P6200 Dual

Core processor and 4GB RAM. Moreover, CPLEX can be parallelized. We run CPLEX

in parallel using two threads whereas PARI/GP is using only a single thread. Since we

are using the full potential of Section 5.5, we use the notation and terminology from

that section. Furthermore, the timings for the conversion algorithms were ignored,

since they were not implemented efficiently and should be seen as a preprocessing step.

In the following table we use the standard strategy and collect the timings in seconds

for the solution of polynomial systems with the matsnf(...) command of computer

algebra system PARI/GP (see [149]) and with the CPLEX optimization tool. The

S-boxes were modelled using the full set of 14 equations each.

System Equations Variables Matrix Size NZPR SNF CPLEX

CTC(2,2) 98 54 376×490 3.3138 2 0.6
CTC(2,3) 144 78 558×726 3.3279 6 8
CTC(3,2) 147 81 564×735 3.3156 7 2.8
CTC(3,3) 216 117 837×1089 3.3297 23 23
CTC(3,4) 285 153 1110×1443 3.3369 60 594
CTC(4,3) 288 156 1116×1452 3.3306 60 605
CTC(4,4) 380 204 1480×1924 3.3378 150 4486

Table 6.5: Timings for solving systems of linear Diophantine equations

In Table 6.5, NZPR denotes the average number of non-zero elements per row and

SNF denotes the timings for computing Smith normal forms. As one can see from

the algorithm in Proposition 6.2.2, it is also possible to use the LP, QLP and DLP
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strategies. However, these strategies apparently do not result in useful speed-ups and

are omitted.

As one can see from the table that the Smith normal form seems to take little time,

the hard part is to solve the IP problem. We are solving standard cryptographic systems

which carry additional useful information and the conversion algorithm also preserves

this information. For instance, the resulting system of linear Diophantine equations

from the conversion algorithm has only few (or a unique) minimal non-negative integer

solutions. Furthermore, each coordinate of the minimal non-negative integer solution

is 0, 1 or takes a small non-negative integer value with in the bounds given by steps 7)

and 11). Furthermore, the integer of maximum magnitude in the Smith normal form

is reasonably small. For instance, in case of CTC(3,3) it is 41. These observations lead

us to the following remarks.

a) As we know the classical Smith normal form algorithms perform an elimination

process with some gcd computations over the integers or modulo large primes

(see [100, 167]). Instead of performing computations modulo large primes we

can restrict ourself to small primes for our special systems of linear Diophantine

equations. Therefore, the modular approach [100, 90], which has the ability to

effectively control intermediate swell, could be more effective.

b) As one can see from the table the hard part is to solve the IP problem. There are

several different approaches for computing the general solution, e.g. by Hermite

normal forms, by computing the Kernel or by the LLL-Algorithm. A different

approach for computing the general solution may provide easier IP problem.

The last thing that we would like to point out is the sparsity and structure of the

resulting system of linear Diophantine equations. Sparsity and structure can be seen by

Table 6.5 and Figure 6.1 respectively. Some attempts for designing algorithms for com-

puting the Smith normal form using efficient sparse integer matrix computations can

be found in [71]. For a precise determination of its pros and cons, further experiments

are needed.

As one can see from Table 6.5, for very sparse systems the running time of these

techniques compare favorably to the running time of the Gröbner basis techniques in

Chapter 3. In the spirit of the techniques studied above, it is obviously possible to

generate a number of further variations of the conversion algorithms which have the

potential to speed up the computation of the Smith normal form and IP solvers. Thus

these techniques deserve further investigation and experimentation. Therefore, we
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Figure 6.1: Structure and sparsity of linear Diophantine System for CTC(1,1)

believe that if such techniques are developed they can be able to solve sparse systems

of polynomial equations involving a large number of indeterminates.
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Chapter 7
Techniques Using Numerical

Analysis

In this chapter we address some approaches to apply numerical methods for solving

systems of polynomial equations over F2. We study recent suggestions of transferring

polynomial equations over F2 into polynomial equations over R. We reconsider these

transformation techniques to obtain a system of nonlinear polynomial equations over R
which can be solved using different algorithms from numerical analysis. In particular,

this enables us to investigate the use of numerical analysis techniques such as the

homotopy continuation methods and Newton’s method. We use the full potential

of Newton methods and path tracking techniques of homotopy continuation methods

for polynomial system solving over F2. We generalize the approach in [24, 124] and

extend this work further. Furthermore, we present some ad-hoc tricks for improving

the performance of the above described methods.

7.1 Newton Methods for Nonlinear Systems

This section presents a quick overview of various Newton methods used in this chap-

ter. We use Newton methods for approximating solutions of systems of polynomial

equations. We are interested in the special case, as described in Section 7.3, of solving

nonlinear polynomial systems of equations. For this problem we use iterative (New-

ton) methods which need an initial starting guess. We do not describe the methods in

detail, but we explain the reasons for the choice of the specific methods. For details

and proofs we refer to the books [65, 147]. For an extensive coverage of the Newton
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methods and their convergence analysis we refer to [53, 52, 144, 41, 42].

Let R[X1, . . . , Xn] be the polynomial ring over the field of real numbers. Let

F1, . . . , F` be polynomials in the polynomial ring R[X1, . . . , Xn]. We are interested in

Newton methods for solving the following nonlinear polynomial systems of equations:

F1(X1, . . . , Xn) = 0
...

F`(X1, . . . , Xn) = 0

(7.1)

Global and Local Convergence

There are two very important terms which are used in numerical analysis. The first

one is locally convergent. It refers to the situation that sufficiently good initial guesses

(starting values) of the solution are assumed for convergence of the solving algorithm to

the solution. Finding such a starting point is obviously a non-trivial task. Especially,

if the dimension of the problem is high. Also note that in high dimensions, the rate of

convergence of such methods tends to be slow and they perform poorly if the problem

has non-isolated solutions (see [165], Chapter 6). The second globally convergent means

that a rather general initial guess can be used for convergence. Efficient iterative

methods should be able to cope with bad initial guesses. They represent a large and

difficult topic in numerical analysis. In general, a numerical (Newton’s) method can

solve the system (7.1) in the following two ways. One advantage of using the following

techniques is that well studied and efficient implementations in mathematical software

packages like MatLabTM are available.

Solving Square Systems of Nonlinear Equations

If the system (7.1) is square, i.e. ` = n, then Newton’s method can be applied directly

to it. The classical method to solve such a system is the Newton-Raphson method [65],

which needs several properties of the system to be able to converge to the solution.

The method without extensions (modifications) is locally convergent. Other Newton

based methods include techniques for global convergence with specific prerequisites

(see [65]). The major drawback of such methods in our special case (see Section 7.3) is

that the system of equations (7.1) is not square. We make the system square by using

some ad-hoc tricks as explained in Section 7.4. To solve such problems we use the

trust-region Newton’s method (see [52] for details). A detailed convergence analysis of

this method is given in [53]. This method is available via the fsolve(. . . ) command
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of MatLabTM.

Solving Overdetermined Systems of Equations

If the system (7.1) is overdetermined, i.e. ` > n, then it can be solved by transferring it

to an optimization problem. Most modern and efficient algorithms for solving nonlinear

systems of equations (7.1) proceed by minimizing a sum of squares. We investigate the

following two solution approaches for solving the system (7.1).

Model 1

The system of equations (7.1) can be modeled as a least square problem as follows.

Minimize
∑`

i=1 F
2
i (X1, . . . , Xn) (7.2)

Starting from an initial guess we attempt to find a global minimum. First of all note

that the classical Gauss-Newton method used for this purpose is known to have poor

performance. Therefore, we use an advanced variant of it called Levenberg-Marquardt

algorithm [144]. This method is also available via the fsolve(. . . ) command of

MatLabTM.

Model 2

The system of equations (7.1) can be modeled as a least squares problem with upper

and lower bounds as follows.

Minimize
∑`

i=1 F
2
i (X1, . . . , Xn)

Subject to li ≤ Xi ≤ ui, for i = 1, . . . , n,
(7.3)

where l = (l1, . . . , ln), u = (u1, . . . , un) ∈ Rn. Such a model is called box-bounded

optimization problem. We use the interior reflective Newton method [52] to solve this

model. One advantage of this method is the detailed convergence analysis [53], which

is very valuable for a better understanding of the algorithm. In the interior reflective

Newton method, all iterates stay between the bounds. This method is available via

the lsqnonlin(. . . ) command of MatLabTM.

In all approaches above, the global optimum is 0, since in the solution all equations

are equal to zero, and so is their norm. Global and local convergence in optimization

problems have a slightly different meaning. Globally convergent optimization methods
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do not guarantee to find the global optimum, but it is ensured that for a general initial

guess the algorithm converges at least to a local optimum. These methods get into

trouble if more that one local minimum exists. Another drawback of these methods

is that they find only a local optimum which may not be a solution. Furthermore,

they are known to have poor performance for high dimensions and depend highly on

starting points.

7.2 Homotopy Continuation Methods

This section presents a quick overview of homotopy continuation methods used in this

chapter. We use homotopy continuation methods for finding solutions for systems of

polynomial equations. We focus on path following techniques for finding the unique

isolated solution of a system of nonlinear polynomial equations. So we are interested

in a special case of solving problem of nonlinear polynomial systems of equations. We

do not describe the used methods in detail, but we explain the reasons for the choice

of specific methods. For details and proofs we refer to the book [165] and Chapter 8

(and references therein) in the book [66].

To approximate all isolated solutions of systems of polynomial equations, numerical

path following techniques have been proven reliable and efficient. Initially homotopy

methods were developed to solve dense systems of polynomial equations. Later on,

homotopy methods were developed to exploit special structures of the polynomial sys-

tems, in particular their sparsity. To solve sparse systems, the roots are counted by the

mixed volume of the Newton polytopes and computed by means of polyhedral homo-

topies. In a 1996 paper, Andrew Sommese and Charles Wampler began developing a

new area, Numerical Algebraic Geometry [165], which applies and integrates homotopy

continuation methods to describe solution components of polynomial systems. These

methods can be considered as symbolic-numeric, or as numeric-symbolic.

Let R[X1, . . . , Xn] be the polynomial ring over the field of real numbers. Let

F1, . . . , F` ∈ R[X1, . . . , Xn] be polynomials which generate a zero-dimensional ideal.

To solve the polynomial system F1 = 0, . . . , F` = 0, homotopy continuation methods

operate in the following steps.

1) Exploit the structure of the system F : F1 = 0, . . . , F` = 0 to find a root count.

2) Construct a suitable start systemG : G1 = 0, . . . , G` = 0 withGi ∈ C[X1, . . . , Xn]

(or possibly in R[x1, . . . , xn]) which has exactly as many regular solutions as the
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root count.

3) The start system is embedded in the homotopy

Hi(X1, . . . , Xn, t) = tGi + γ(1− t)Fi, t ∈ [0, 1],

where i = 1, . . . , ` and γ ∈ C is a random number (possibly of magnitude one).

4) As t moves from 1 to 0, numerical continuation methods trace the paths that

originate at the (known) solutions of the start system G towards the solutions of

the target system F .

We say that a homotopy is optimal if every path leads to one solution. The good

properties we expect from a homotopy are:

1) Triviality: The solutions for t = 0 are trivial to find.

2) Smoothness: No singularities along the solution paths occur (because of γ).

3) Accessibility: An isolated solution of multiplicity m is reached by exactly m

paths.

Now we sketch the standard approaches used for tracking paths. For definitions

and details we refer to the book [165]. The continuation or path-following techniques

lie at the heart of standard numerical techniques. The solution paths defined by the

homotopy are traced using predictor-corrector methods. A big issue, while tracking

paths, is to control diverging paths, path crossings, singularities in paths and preventing

paths from turning back. Nice techniques have been developed in the theory to remove

these obstacles. The smoothness of paths is achieved by working over the complex

projective spaces. The paths never turn back due to the smoothness property of complex

polynomial homotopies. The step length is determined by adaptive step size control

while enforcing quadratic convergence in Newton’s method to avoid path crossing. For

a generic choice of γ, singularities do not occur for t < 1. Finally, the diverging paths

and the paths leading to singular roots are dealt with end games.

The earliest applications of homotopies for solving polynomial systems belong to

the dense class, where the number of paths equals the product of the degrees in the

system such as multi-homogeneous homotopies, the random product homotopies, meth-

ods to construct linear-product start systems and some general approaches to exploit

product structures. In practice, as well as in our special case all systems have fewer



192 7. Techniques Using Numerical Analysis

Figure 7.1: A hierarchy of homotopies.

terms than allowed by their degrees. Most interesting are the cases where we have

only few (real) solutions. Polyhedral homotopies were introduced to solve such sys-

tems more efficiently. Polyhedral homotopies further specialize to cheater’s homotopies

and special instances of coefficient-parameter polynomial continuation. The root count

requires the calculation of the mixed volume. The solving of the start system for spe-

cial instances of polyhedral homotopy, cheater’s and coefficient-parameter polynomial

continuation may involve more work, but we may expect the homotopy to be more ef-

ficient. Schematically, a hierarchy of homotopies (and root counting methods) is given

in Figure 7.1.

Motivation for Solving Special Systems

We are interested in the special case of solving a system of polynomial equations which

is derived from a system of polynomial equations over the field F2. We may assume

that our system of polynomial equations has only few real solutions. In particular, it

has a unique real solution. This leads us to focus on the following useful features of

homotopy continuation methods to attack the unique solution.

1) For polynomial systems defined over R, computation of a Lex-Gröbner basis is

much slower than the homotopy continuation methods. Furthermore, parallel

capabilities of continuation methods make them more powerful.

2) Since we are interested in techniques for finding the unique isolated solution

of a system of nonlinear polynomial equations, why bother about all solutions.
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Path-following techniques seem to be a promising idea for this purpose.

3) Using path-following techniques one may hope to get a solution of F by tracking

one or few paths only, especially when there is a unique solution.

4) A further promising option is the application of a user-defined homotopy. Given

a parameterized family of polynomial systems, i.e. a set of polynomial systems

which vary in their coefficients but not their monomials, one may first find all

finite solutions of one instance from the family. Now to find all solutions for

another system in the family, one need to follow only those finite solutions, and

those sorts of paths tend to be very fast.

The State of Homotopy Continuation Methods

To find real solutions homotopy continuation offers only the option of finding all roots,

real and complex, and then casting out the complex ones. Unfortunately, there is no

other way for finding all real solutions directly. One might hope to use continuation

to follow just the real roots from the start system to the target system. As explained

in [165], Section 2.2, this is doomed to fail as a general approach. The reason is

that surprising things can happen during path following. Even if the start and target

systems have the same number of real solutions. The real solutions of the start system

may lead to complex solutions of the target system and vice versa (see [165], Examples

2.2.1 and 2.2.2). But if this open problem is resolved successfully, we can hope to

attack the unique real solution by tracking a real path.

Since we may assume that our special system of polynomial equations has a unique

real solution, we may ask about tracking one real path to get a real solution. In a

private communication with C. Wampler and D. Bates, we came to know that this

is one of the big open questions of the day. Suppose we have a polynomial system

with total degree 1000000 but only 5 real, isolated solutions. How do we find them?

So far nobody has any ideas using homotopy continuation alone. Actually, the theory

underlying homotopy continuation depends on working over the complex projective

spaces, and as described above real starting points of paths might lead to complex

ending points and vice versa.

One more hurdle that we need to face is that homotopy continuation deals only

square systems, i.e. the system should have the same number of equations as unknowns.

There is a natural procedure called randomization for obtaining a square system from

an overdetermined system (see [165], Section 13.5). The new square system has all the
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properties we need to compute isolated solutions using homotopy continuation. But the

new square system may have more solutions than the original overdetermined system

which have to be removed afterwards. Furthermore, randomization also introduces

new complex coefficients possibly of magnitude one which makes the paths smooth at

the cost of working over complex projective spaces. Definitely, this does not seem to

be economical.

There are three software packages that are mainly used by researchers for polyno-

mial continuation, namely: Bertini [21], PHC [169] and HOM4PS [127]. We use Bertini

for solving systems using the straightforward approach and the user-defined homotopy,

and HOM4PS using polyhedral homotopies.

7.3 Techniques for Polynomial Conversion

In Chapters 5 and 6 we saw different conversion techniques for transferring polynomial

equations over F2 into polynomial equations over R. In this section we reconsider these

conversion techniques to obtain as system of nonlinear polynomial equations over R
which can be solved using different algorithms from numerical analysis. In particular,

this helps us to investigate the use of numerical analysis techniques such as homotopy

continuation methods and Newton’s method.

As described in previous chapters, some methods for representing polynomials over

F2 as polynomials over R can be found in the classical literature, but they have not

been used for solving systems of polynomial equations over F2. In [24], an overview of

possible representations is listed. Later, this study was extended slightly in [124] but

the main idea behind the representation methods was basically unaltered. Recently,

in [124] Lamberger et al. used the ideas mentioned in [24] for representing polynomial

equations over F2 by polynomial equations over R. We consider all these representation

methods for formulating our conversion algorithms.

Let F2 be the finite field with two elements and let f1, . . . , f` ∈ F2[x1, . . . , xn] be a

set of non-zero polynomials. Let X = {X1, . . . , Xn} be a set of real indeterminates,

i.e. indeterminates over R. We are interested in finding F2-rational solutions of the

following system of polynomial equations:

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0
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As usual the task of solving the polynomial equation system f1 = · · · = f` = 0 can be

rephrased as follows. Find a tuple (a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)
...

F`(a1, . . . , an) ≡ 0 (mod 2)

(7.4)

where Fi ∈ R[X1, . . . , Xn] is a lifting of fi under standard representation. Thus we

are looking for real solutions (a1, . . . , an) of the system (7.4) which satisfy the bounds

0 ≤ aj ≤ 1. Recall Definition 5.2.5 which gives us a standard way of representing

polynomials over F2 as polynomials over R. Our first conversion technique in the

following lemma is based on this definition.

Proposition 7.3.1. (Real Standard Conversion (RSC))

Let f1, . . . , f` ∈ F2[x1, . . . , xn] be polynomials. Then the following instructions define

an algorithm which computes the standard representation of the system f1, . . . , f` of

polynomials such that the residue class of a zero (a1, . . . , an) of the standard repre-

sentation represents a zero of the zero-dimensional radical ideal I = 〈f1, . . . , f`, x21 +

x1, . . . , x
2
n + xn〉 of F2[x1, . . . , xn].

1) Reduce f1, . . . , f` modulo the field equations, i.e. make their support squarefree.

2) For i = 1, . . . , `, represent fi by a polynomial F̄i in R[X1, . . . , Xn] such that the

coefficients of F̄i are in {0, 1}.

3) Perform the following steps 4)-6) for i = 1, . . . , `.

4) Let Si = Supp(F̄i). Choose a term T ∈ Si, delete it from Si, and let Fi = T .

5) Repeat the following step 5) until Si = ∅.

6) Choose a term T ∈ Si, delete it from Si, and replace Fi by Fi + T − 2FiT .

7) Interreduce the system {F1, . . . , F`, X
2
1 −X1, . . . , X

2
n −Xn}.

8) Return the resulting system.

Proof. Since we are lifting polynomials over R by iteratively replacing each sum T1+T2

of terms by T1 + T2 − 2T1T2 in step 6), we have Fi(a1, . . . , an) = 0 if and only if the

residue class of (a1, . . . , an) in Fn2 represent a zero of the ideal I.
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Remark 7.3.2. As we saw in Section 5.2.3, the standard representation results in

increasing degree and increasing number of terms over the real domain. To keep the

degrees of the converted polynomials low, we can use the splitting introduced in Remark

5.2.7. Given a system of polynomials f1, . . . , f` over F2, where the degree of each fi

is 2. First split these polynomials into polynomials having at most 4 terms in their

support. Then consider the standard representations of the new polynomials. We shall

refer it as Splitting Real Conversion (SRC). Recall from Remark 5.2.7 that SRC results

into a quadratic system of equations over R.

To formulate our next conversion technique, we need to recall the following defini-

tion due to [124].

Definition 7.3.3. The Fourier conversion is given by the map φ : F2 = {0, 1} →
{1,−1} ⊂ R defined by φ(0) = 1 and φ(1) = −1. The map φ can be extended to a

map Φ : F2[x1, . . . , xn] −→ R[X1, . . . , Xn] defined by

c 7→ φ(c)

xi 7→ Xi

where c ∈ F2. Then the Fourier representation of a polynomial f ∈ F2[x1, . . . , xn]

is Φ(f).

Note that we use the following conversion rules for addition and multiplication for

Fourier representation.

Xi ·Xj =
1

2
(1 +Xi +Xj −Xi ·Xj)

Xi +Xj = XiXj

The effect of this definition is that the Fourier representation F has a solution (a1, . . . , an) ∈
{1,−1}n if and only if the tuple (b1, . . . , bn) with bi = (1− ai)/2 solves f . The Fourier

representation also results in increasing degree and increasing amount of terms over the

real domain. But it has an additional advantage since variables can cancel out during

the transformation, because X2
i = 1 holds. This can happen if one variable occurs in

different terms in the same polynomial. The following proposition turns the idea of

Fourier representation into an effective algorithm.

Proposition 7.3.4. (Real Fourier Conversion (RFC))
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Let f1, . . . , f` ∈ F2[x1, . . . , xn] be polynomials. Then the following instructions define

an algorithm which computes the Fourier representation F of the system f1, . . . , f` of

polynomials such that the tuple (a1, . . . , an) ∈ {−1, 1}n is a zero of Fourier representa-

tion if and only if the residue class of (b1, . . . , bn) with bi = (1− ai)/2, in Fn2 represent

a zero of the zero-dimensional radical ideal of F2[x1, . . . , xn].

1) Reduce f1, . . . , f` modulo the field equations, i.e. make their support squarefree.

2) For i = 1, . . . , `, represent fi by a polynomial F̄i in R[X1, . . . , Xn] such that the

coefficients of F̄i are in {0, 1}.

3) Let F = ∅. Perform the following steps 4)-5) for i = 1, . . . , `.

4) Let Si = Supp(F̄i) and let si = #Si.

5) For j = 1, . . . , si, replace every product XrXs by 1
2
(1 + Xr + Xs − XrXs) in

Tj ∈ Si. Now let Fi =
∑si

j=1 Tj.

6) For i = 1, . . . , `, append Fi − 1 to F .

7) For α = 1, . . . , n, append X2
α − 1 to F .

8) Return the resulting system F .

Proof. Since we are lifting polynomials over R by iteratively replacing every product

XrXs by 1
2
(1 + Xr + Xs − XrXs) in step 5), we have Fi(a1, . . . , an) = 0 if and only

if the residue class of (b1, . . . , bn) with bi = (1 − ai)/2, in Fn2 represent a zero of the

zero-dimensional radical ideal I.

Since we know the exact bounds on indeterminates for our problem, this property

may be very useful. On the one hand it makes the analysis of the system easier, since

we only have to consider the hypercube {0, 1}n (or {−1, 1}n), and on the other hand

it is ensured that bad properties outside the cube do not influence the convergence of

algorithms.

7.4 Experimental Results

In this section we discuss observations and results from experiments with Newton

methods and homotopy continuation methods. The softwares used for the total degree

homotopy, the polyhedral homotopy and Newton’s method computations are Bertini
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[21], HOM4PS [127] and MatLabTM respectively. We run all computations on a laptop

with a 2.13 GHz Intel Pentium P6200 Dual Core processor and 4GB RAM but we

are using only a single thread out of two. The timings for the conversion algorithms

were ignored, since they were not implemented efficiently and should be seen as a

preprocessing step.

Given a system of polynomials f1, . . . , f` ∈ F2[x1, . . . , xn]. Using Propositions 7.3.1

and 7.3.4, we can compute the real (standard or Fourier) representations F1, . . . , F` of

the polynomials f1, . . . , f`. In particular, we have the following system of polynomial

equations over R.

F1 = 0, . . . , F` = 0 (7.5)

As given by Propositions 7.3.1 and 7.3.4, to exclude complex solutions we need to

modify the system of equations (7.5) by including the equations X2
1−X1 = 0, . . . , X2

n−
Xn = 0 or X2

1 − 1 = 0, . . . , X2
n − 1 = 0 depending on which type (standard or Fourier)

of representation is used. Now the modified system can be solved using numerical

methods for real solutions. From now on in this section, by F we denote the system

F1 = 0, . . . , F` = 0, F`+1 = 0, . . . , Fm = 0, (7.6)

where the polynomials F1, . . . , F` are the real (standard or fourier) representations of

the polynomials f1, . . . , f`, and F`+1, . . . , Fm are the polynomials X2
1−X1, . . . , X

2
n−Xn

if standard representation is used or the polynomials X2
1 − 1, . . . , X2

n − 1 if Fourier

representation is used.

7.4.1 Experimental Results for Continuation Methods

Now we employ homotopy continuation methods for solving the system F . First note

that we will not consider SRC (see Remark 7.3.2) for solving with homotopy meth-

ods because the number of paths tracked strongly depend on the number of variables

involved. Therefore, increasing the number of variables to keep the degree of the poly-

nomials Fi low does not help to reduce the difficulty of solving. In the following table

we use homotopy continuation methods for solving some small instances of the HFE

cipher. Since we are not splitting the polynomial fi before applying the conversion

algorithms, the degree of the polynomial Fi is not quadratic. To perform our experi-

ments we have developed two ApCoCoA packages called bertini and hom4ps. These

packages call the full artillery of Bertini [21] and HOM4PS [127] for computations with

homotopy continuation methods inside ApCoCoA [12].
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Fourier Standard
Total Degree Polyhedral Total Degree Polyhedral

System Paths Time Paths Time Paths Time Paths Time
HFE(4) 16 0.5 16 0.07 16 0.07 16 0.06
HFE(5) 243 3 123 2 1024 50 234 5.7
HFE(6) 5120 250 1269 58 15625 1800 1433 144
HFE(7) 93312 - 10044 1540 93312 - 10068 2057

Table 7.1: Path Following Techniques

Obviously, we can not hope to solve large systems of polynomial equations with ho-

motopy continuation methods as Table 7.1 shows. The reasons are very clear. Firstly,

the homotopy continuation methods are very slow in high dimensions. Secondly, the

system F of equations is overdetermined, therefore it needs to be randomized before

embedding it into the homotopy for tracking paths. Recall that randomization intro-

duces a lot of junk and complexity to work smoothly over complex projective spaces.

The polyhedral homotopies involve the computation of the mixed volume of Newton

polytopes for finding a root count. Obviously, computing mixed volumes is a very hard

problem.

The only thing that we can add here is the following. Since we are tracking paths

one by one and the process of tracking paths can be parallelized, we can stop just after

finding one successful path (real solution). But this will not contribute much to the

difficulty of solving. The only hope left is the Coefficient-Parameter homotopy (or the

user defined homotopy) which works as follows.

Given an overdetermined system of polynomials f1, . . . , f` ∈ F2[x1, . . . , xn] having

unique real zero. Using Propositions 7.3.1 and 7.3.4, obtain a system of polynomials

F : F1, . . . , Fm over R having a unique real zero. Now construct a start system G :

G1, . . . , Gm which varies in coefficients but not in terms with the target system F .

Furthermore, the start system has a unique real zero. Now track the path which

originates at the zero of the start system G and terminates at the zero of the target

system F . There are three issues with this approach.

Firstly, the system is overdetermined which forces us to randomize. This destroys

the uniqueness of the zero very badly. Secondly, the construction of a start system G

which differs in coefficients but not in terms with the target system is a very hard job.

The construction of start systems, especially of the type mentioned above, is a non-

trivial task. There is no general method to do that. It is done on case-by-case basis.

Furthermore, we also have the restriction of having a unique solution. So this is an
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open problem with applications in cryptanalysis. Thirdly, tracking the paths starting

at real solutions and terminating at real solutions is a big open problem in itself and

nobody knows anything. One attempt for constructing start systems for a very special

class of polynomial systems can be found in [22].

7.4.2 Experimental Results for Newton Methods

Now we investigate the use of Newton methods described in Section 7.1 and discuss

some ad-hoc tricks to apply them. A first attempt to use Newton’s method for our

special systems can be found in [124], where Lamberger et al. discussed the approach of

Section 7.3 to apply numerical methods. In particular, they apply the interior reflective

Newton method by Coleman and Li [53] to attack a reduced version of Trivium called

Bivium A. This approach is not really practical because we need to know 75% of the

original solution for choosing a good starting point. But they believe that we can do

better if we use the available knowledge in the field of numerical analysis. Therefore

we realize that there is a strong need to launch further investigations in this direction.

We investigate several approaches for modeling and solving our special systems. A

proposal for choosing starting points and some ad-hoc tricks are given to overcome

the difficulty of solving. To apply Newton methods first we need to agree on some

terms and concepts that are going to be used in this section time and again. In all the

following tables we use the following terms to record our observations.

• Sol. indicates that the solver has found the solution successfully. Opt. indicates

that the solver has found only a local optimum. All local optima are near by a

corner of the hypercube where a large part of the values are either 0 or 1 (or -1,1

for Fourier representation).

• In case the solver found an optimum, WSol represents the number of variables

whose wrong solution value is given by the optimum.

• In case the solver found an optimum, UEq represents the number of unsatisfied

equations at the optimum.

• SP is the percentage of the original solution used in a random starting point.

Upper and Lower Bounds

In our special case we can restrict the variables X1, . . . , Xn to the interval [0, 1] (or

[−1, 1] for the Fourier representation). Using this fact we can define upper and lower
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bounds for our problem. The lower bound is (0, . . . , 0) (respectively (−1, . . . ,−1) for

the Fourier representation) and the upper bound is (1, . . . , 1) for both standard and

Fourier representations. Later on, in this section we see that these restrictions to the

starting point for our problem are not sufficient for solving the system. What we need

really is a good starting point.

Starting Guess

Finding a good starting point is not an easy job, especially if the dimension of the

problem is high. Finding a good starting point depends on the amount of available

information. As mentioned in Section 7.1, locally convergent methods require a good

starting point. The starting point has a high influence on the convergence. In our case

we know that the variables X1, . . . , Xn belong to {0, 1} (respectively {−1, 1}), so we

can restrict the search area to this domain. The first thing that we have observed in

our experiments is that a randomly chosen starting point in [0, 1] (respectively [−1, 1])

provides us a local minimum which is not the solution of the system (7.7). This also

confirms the results in [124]. Therefore the only possibility left is to use a part of the

original solution in the starting point which is a common approach in cryptanalysis. So

we use the following strategy for a good starting point. We use a part of the original

solution in the starting point, say x%, and the remaining (100 − x)% of the solution

will be fixed in the middle of the interval [0, 1] (respectively [−1, 1]). We performed

a number of experiments with different approaches (discussed in the following) that

show that this strategy has better performance than any other. Therefore we focus on

this strategy for choosing a starting point.

Solving Square Systems of Nonlinear Equations

Once again consider the overdetermined system of equations F : F1 = 0, . . . , F` =

0, F`+1 = 0, . . . , Fm = 0. This system can be modeled into the following square system.∑`
i=1 F

2
i + F 2

m = 0

F`+1 = 0, . . . , Fm−1 = 0
(7.7)

The polynomials F`+1, . . . , Fm−1 force the variables X1, . . . , Xn−1 to be 0-1 (respectively

−1-1) if standard (respectively Fourier) representation is used. The square system (7.7)

can be solved using the fsolve(. . . ) command of MatLab. We use the trust-region-

dogleg algorithm implemented in the fsolve(. . . ) command. Note that this is the only
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algorithm in MatLab that is specially designed to solve nonlinear systems of equations.

All other algorithms attempt to minimize the sum of squares which we discuss later in

this section.

System Equations Variables SP Time UEq WSol status

CTC(2,2) 98 54 25% 3 0 0 successful
CTC(3,3) 216 117 50% 5 0 0 successful
CTC(4,4) 380 204 50% 20 0 0 successful
CTC(5,5) 605 330 50% 230 4 4 premature
CTC(6,6) 864 468 50% 329 16 16 premature

Table 7.2: trust-region-dogleg algorithm

Table 7.2 lists the results for the Fourier representation. If we use a part of the

original solution in the starting point, we need at least 50% of all variables in the

system to obtain the complete solution. This percentage seems to grow with the size

of the system. A little good news is that we can recover key variables even if the solver

stops prematurely. Premature solutions of CTC(5,5) and CTC(6,6) contain 4 and 16

wrong solution coordinates respectively, and result in 4 and 16 unsatisfying equations

respectively. The unsatisfying equations are linear ones. One can hope to perform more

iterations to find the complete solution from a premature solution. But this does not

help. After exceeding the default limits of parameters of the command fsolve(. . . ),

the solver does not progress anymore. It seems to stuck at a premature solution.

The standard representation does not provide satisfactory results and is therefore not

discussed in details. For instance, consider the standard representation of CTC(2,2).

After fixing 50% of the starting point the solver stops prematurely after 90 seconds

and the premature solutions contain 14 wrong solution coordinates which result in 24

unsatisfying equations.

Solving Overdetermined Systems of Nonlinear Equations

Consider the system of equations F1 = 0, . . . , F` = 0 which is a real (standard or

Fourier) representation of the system f1 = 0, . . . , f` = 0. Most modern and efficient

algorithms for solving nonlinear systems of equations proceed by minimizing the sum

of squares
∑`

i=1 F
2
i . The drawback of such techniques is that they try to find a local

optimum which may not be a solution of the system. But if lower and upper bounds

are given explicitly (as in our case) one may hope to find the local minimum which

is also a solution of the system. In the following we investigate the two optimization
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models described in Section 7.1.

Model 1

We model the system of equations F1 = 0, . . . , F` = 0 as a least squares problem as

follows.

Minimize
∑`

i=1 F
2
i (X1, . . . , Xn) (7.8)

Staring from a starting point we attempt to find a global minimum. Actually, the

global minimum in this case is zero, since in the solution all equations are equal to

zero and so is their norm. As we know, globally convergent optimization methods

do not guarantee to find a global optimum but they ensure that for a general initial

guess the algorithm converges at least to a local optimum. Since the classical Gauss-

Newton method is known to have poor performance, we use its advanced variant called

Levenberg-Marquardt algorithm which is implemented in the fsolve(. . . ) command

of MatLab.

System SP Time UEq WSol status

CTC(2,2) 25% 2 0 0 sol.
CTC(3,3) 50% 7 0 0 sol.
CTC(4,4) 50% 30 0 0 sol.
CTC(5,5) 50% 291 4 4 opt.
CTC(6,6) 50% 740 29 22 opt.

Table 7.3: Levenberg-Marquardt algorithm using Fourier representation

System SP Time UEq WSol status

CTC(2,2) 25% 12 0 0 sol.
CTC(3,3) 50% 90 0 0 sol.
CTC(4,4) 50% 189 0 0 sol.
CTC(5,5) 50% 3930 4 6 opt.
CTC(6,6) 50% 6112 23 25 opt.

Table 7.4: Levenberg-Marquardt algorithm using standard representation

Tables 7.3 and 7.4 list the results for the Fourier representation and the standard

representation respectively. The SRC (see Remark 7.3.2) seems to perform a little

better as given by Table 7.5 but only up to a certain limit. For instance, any conversion

technique applied to CTC(7,7) provides an optimum which does not even help to

recover the key variables.
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System SP Time UEq WSol status

CTC(2,2) 40% 29 0 0 sol.
CTC(3,3) 50% 90 0 0 sol.
CTC(4,4) 50% 494 0 0 sol.
CTC(5,5) 50% 1483 0 0 sol.
CTC(6,6) 50% 3027 0 0 sol.

Table 7.5: Levenberg-Marquardt algorithm using splitting standard representation

Model 2

We model the system of equations F1 = 0, . . . , F` = 0 as a least squares problem with

upper and lower bounds as follows.

Minimize
∑`

i=1 F
2
i (X1, . . . , Xn)

Subject to li ≤ Xi ≤ ui, for i = 1, . . . , n,
(7.9)

where l = (l1, . . . , ln), u = (u1, . . . , un) ∈ Rn. This model was also studied by Lam-

berger et al. in [124]. For Bivium A (a reduced version of Trivium) they have observed

that we need at least 75% of all variables in the system to obtain the complete so-

lution. In the following we list results for CTC. Table 7.6 lists the results for the

Fourier representation, the standard representation also provides more or less the same

statistics.

System SP Time UEq WSol status

CTC(2,2) 25% 2 0 0 sol.
CTC(3,3) 50% 3 0 0 sol.
CTC(4,4) 50% 5 0 0 sol.
CTC(5,5) 50% 40 0 0 sol.
CTC(6,6) 50% 88 0 0 sol.

Table 7.6: interior-reflective Newton method

We can summarize the numerical techniques as follows. All the techniques inves-

tigated in this section provide more or less the same results. We need at least 50%

of all variables in the system to obtain the complete solution of CTC instances up to

CTC(6,6). We ran a number of experiments for CTC(7,7) using 50% part of the orig-

inal solution in the starting point but we were not able to solve it. This shows clearly

that as the dimension grows, numerical solvers start to perform poorly. By starting

at a random starting point, without using a part of original solution, we can achieve
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optima but not the solution. We are not able to solve big instances of the CTC with

the above methods without providing much information. The failure of continuous

optimization algorithms for finding the solution of a nonlinear system compels us for

developing mixed integer nonlinear programming algorithms. As we saw in Section 6.1,

mixed integer nonlinear programming algorithms seem to be rather efficient and desire

to be the subject of further investigations.

We hope that the investigation in this chapter will help for a better understanding

of using numerical methods for solving systems over finite fields. Since we are inter-

ested in finding real solutions, there are a few other methods for finding real solutions

numerically. Such as cellular exclusion, SDP methods, Cylindrical algebraic decompo-

sition and Khovanskii-Rolle continuation (see for instance [22] and [165], Section 2.2).

But none of them works in full generality or on large problems.
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Appendix A
Packages Bertini and HOM4PS

The CAS ApCoCoA, an acronym of Applied Computations in Commutative Algebra is

based on the CAS CoCoA. It is primarily designed for working with real-problems by

using the symbolic computations methods of CoCoA and by developing new libraries for

related computations. The CAS ApCoCoA is available free of charge via the internet

and can be downloaded from the WWW page

http://www.apcocoa.org/

For a short introduction to CoCoA and for the help on getting started with it we

refer to [120], Appendix A. The ApCoCoA works exactly in the same way as explained

there.

Bertini [21] is a general-purpose solver, written in C, that was created for research

on polynomial continuation. The purpose of Bertini is the numerical solution of sys-

tems of polynomial equations. HOM4PS [127] is a software package which implements

the polyhedral homotopy continuation method for solving polynomial systems. The

polyhedral homotopies are established to approximate all the isolated zeros of a poly-

nomial system using the continuation method [165]. Due to fewer homotopy paths,

it yields a drastic improvement over the classical linear homotopies for solving sparse

polynomial systems.

In Chapter 7 we talked about techniques using numerical analysis. In Section 7.1

we have discussed homotopy methods and in Section 7.4 we have used these methods

for solving systems of polynomial equations over the finite field F2. For using homo-

topy continuation methods in our algebraic settings we have developed two ApCoCoA

packages bertini and hom4ps. These packages call the full artillery of Bertini and

HOM4PS for computations with homotopy continuation methods inside ApCoCoA.

http://www.apcocoa.org/
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A.1 Available Functions

In the following we give a short description of the functions available in the packages

bertini and hom4ps for working with the homotopy continuation methods. This

description is also available as a part of the documentation of these packages and can be

seen from the help menu of ApCoCoA. First we describe functions which are available

in the package bertini. All the following functions are using the ApCoCoAServer.

You will have to start the ApCoCoAServer in order to use them.

BSolve(P,SysTyp)

Purpose: Solves a zero-dimensional homogeneous or non-homogeneous polynomial

system of equations with default configurations.

Syntax Bertini.BSolve(P:LIST, SysTyp:STRING):LIST

Input 1st parameter P, a list of polynomials. 2nd parameter SysTyp, type of the

system P.

Output A list of lists where each list contains a finite (or real) solution of the system

P.

Example Consider the polynomial ring Q[x, y]. To solve the polynomial system of

equations x2 + y2 − 5 = 0, xy− 2 = 0, one has to run the following commands in

ApCoCoA interactive window:

Use QQ[x,y];

P := [x^2+y^2-5, xy-2];

SysTyp := "Nhom";

Bertini.BSolve(P, SysTyp);

The output of above commands is the following list of lists where each list gives

a finite solution of the polynomial system x2 + y2 − 5 = 0, xy − 2 = 0.

[ [ Vector(400000000000003/200000000000000, -3416759775755413/50000

0000000000000000000000000), Vector(9999999999999927/100000000000000

00, 8966048861359829/1000000000000000000000000000000) ], [ Vector(2

499999999999963/2500000000000000, 5007041073746771/1000000000000000

00000000000000), Vector(249999999999999/125000000000000, -108918318
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4148021/25000000000000000000000000000) ], [ Vector(-999999999999996

9/10000000000000000, 191792591213411/125000000000000000000000000000

), Vector(-1999999999999999/1000000000000000, 2443331461729629/2500

000000000000000000000000000) ], [ Vector(-250000000000001/125000000

000000, 4347064850996171/1000000000000000000000000000000), Vector(-

9999999999999943/10000000000000000, -2154842536286333/5000000000000

00000000000000000) ]]

Note:

In the previous example and in all examples onward each vector in a list represents

a complex number with its first coordinate as real part and second coordinate as

imaginary part.

BZCSolve(P, SysTyp, ConfigSet)

Purpose: Solves a zero-dimensional homogeneous or non-homogeneous polynomial

system of equations using configurations provided by the user.

Syntax Bertini.BZCSolve(P:LIST, SysTyp:STRING, ConfigSet:LIST):LIST

Input 1st parameter P, a list of polynomials. 2nd parameter SysTyp, type of the

system P, 3rd parameter ConfigSet, a list of configuration settings.

Output A list of lists where each list contains a finite (or real) solution of the system

P.

Example Consider the polynomial ring Q[x, y]. To solve the polynomial system of

equations x2 + y2 − 5 = 0, xy− 2 = 0, one has to run the following commands in

ApCoCoA interactive window:

Use QQ[x,y];

P := [x^2+y^2-5, xy-2];

SysTyp := "Nhom";

ConfigSet := ["MPTYPE: 1", "PRECISION: 128"];

Bertini.BSolve(P, SysTyp, ConfigSet);

The output of the above commands is the following list of lists where each list

gives a finite solution of the polynomial system x2 + y2 − 5 = 0, xy − 2 = 0.
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[ [ Vector(500000000000000870080079571456753631209/5000000000000000

00000000000000000000000, 412433360461649656238602945339173594181/20

0000000000000000000000000000000000000000000000000000), Vector(19999

9999999999920289038441185562687901/10000000000000000000000000000000

0000000, -4918613303067726249865351347506841944303/5000000000000000

000000000000000000000000000000000000000) ], [ Vector(99999999999999

6907691691548150283767063/500000000000000000000000000000000000000,

4026821783991733021565024336088959292491/10000000000000000000000000

00000000000000000000000000000), Vector(1000000000000008119524837615

406734621127/1000000000000000000000000000000000000000, -92028283750

00265851232972557923998357683/1000000000000000000000000000000000000

000000000000000000)], [ Vector(-19999999999999814706219551220586458

54307/1000000000000000000000000000000000000000, -221929688059643722

0953595963738223862847/10000000000000000000000000000000000000000000

0000000000), Vector(-1000000000000016429280952166817619195409/10000

00000000000000000000000000000000000, 224689523325138460154911334581

0086172711/100000000000000000000000000000000000000000000000000000)]

, [ Vector(-9999999999999986714415752390569533003343/10000000000000

000000000000000000000000000, 23763311504509275614227639972243274983

41/1000000000000000000000000000000000000000000000000000000), Vector

(-200000000000000126515279556718539177417/1000000000000000000000000

00000000000000, -409661331378413177493500945204322606473/2500000000

00000000000000000000000000000000000000000000) ] ]

Note:

For details about configuration settings please refer to Bertini manual [21].

BMSolve(P)

Purpose: Solves a zero-dimensional non-homogeneous system using multi-homogenization

and default configurations.

Syntax Bertini.BMSolve(P:LIST):LIST

Input A list of polynomials P.

Output A list of lists where each list contains a finite solution of the system P.
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Example Consider the polynomial ring Q[x, y]. To solve the polynomial system of

equations x2 + y2 − 5 = 0, xy− 2 = 0, one has to run the following commands in

ApCoCoA interactive window:

Use QQ[x,y];

P := [x^2+y^2-5, xy-2];

Bertini.BMSolve(P);

The output of above commands is the following list of lists where each list gives

a finite solution of the polynomial system x2 + y2 − 5 = 0, xy − 2 = 0.

[ [ Vector(1000000000000001/1000000000000000, -2305082859180703/10

0000000000000000000000000000), Vector(1999999999999971/10000000000

00000, 4135565953005217/100000000000000000000000000000) ], [ Vecto

r(1000000000000003/500000000000000, 2604577577014449/5000000000000

0000000000000000), Vector(500000000000001/500000000000000, -619892

334722183/25000000000000000000000000000) ], [ Vector(-2, 172481033

3092189/1000000000000000000000000000000), Vector(-500000000000001/

500000000000000, -355984244774691/200000000000000000000000000000)],

[ Vector(-9999999999999971/10000000000000000, -4053926086793577/1

000000000000000000000000000000), Vector(-1999999999999999/10000000

00000000, -3669041992638223/5000000000000000000000000000000) ] ]

BCMSolve(P, ConfigSet)

Purpose: Solves a zero-dimensional non-homogeneous polynomial system of equations

using multi-homogenization and user configurations.

Syntax Bertini.BCMSolve(P:LIST, ConfigSet:LIST):LIST

Input 1st parameter P, a list of polynomials. 2nd parameter ConfigSet, list of con-

figuration settings.

Output A list of lists where each list contains a finite solution of the system P.

Example Consider the polynomial ring Q[x, y]. To solve the polynomial system of

equations x2 + y2 − 5 = 0, xy− 2 = 0, one has to run the following commands in

ApCoCoA interactive window:
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Use QQ[x,y];

P := [x^2+y^2-5, xy-2];

SysTyp := "Nhom";

ConfigSet := ["MPTYPE: 2"];

Bertini.BCMSolve(P, ConfigSet);

The output of above commands is the following list of lists where each list gives

a finite solution of the polynomial system x2 + y2 − 5 = 0, xy − 2 = 0.

[ [ Vector(9999999999999999/10000000000000000, -643977180168769/125

0000000000000000000000000000), Vector(2, 1660674691787513/500000000

0000000000000000000000) ], [ Vector(-2000000000000001/1000000000000

000, 584020313856301/500000000000000000000000000000), Vector(-99999

99999999999/10000000000000000, 45486167963413/125000000000000000000

000000000) ], [ Vector(2, 2989952880295369/100000000000000000000000

0000000), Vector(9999999999999993/10000000000000000, 73225803422749

7/5000000000000000000000000000000) ], [ Vector(-1, -879366755419571

/5000000000000000000000000000000), Vector(-2, 4460430333228999/1000

0000000000000000000000000000) ] ]

BUHSolve(P, SSys, Gamma, SSol, ConfigSet)

Purpose: Solves a zero-dimensional non-homogeneous polynomial system of equations

by user defined homotopy.

Syntax Bertini.BUHSolve(P:LIST, SSys:LIST, Gamma:STRING, SSol:LIST,

ConfigSet:LIST):LIST

Input 1st parameter P, a list of polynomials. 2nd parameter SSys, a list of polynomials

which will be used as start system. 3rd parameter Gamma, a complex number

possibly of magnitude one. 4th parameter SSol, a list of solutions of the start

system SSys. 5th parameter ConfigSet, a list of configuration settings.

Output A list of lists where each list contains a real solution of the system P.

Example Consider the polynomial ring Q[x, y]. To solve the polynomial system of

equations x2 − 1 = 0, y2 − 1 = 0, one has to run the following commands in

ApCoCoA interactive window:
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Use QQ[x,y];

P := [x^2-1, y^2-1];

SSys := [x^2, y^2];

Gamma := "1";

SSol:=[[["-1.0","0.0"],["-1.0","0.0"]],[["1.0","0.0"],["1.0","0.0"]]];

ConfigSet := ["USERHOMOTOPY: 1"];

Bertini.BUHSolve(P, SSys, Gamma, SSol, ConfigSet);

The output of above commands is the following.

[[-250000000000021/250000000000000, -250000000000021/250000000000000],

[250000000000021/250000000000000, 250000000000021/250000000000000]]

Bertini.BPCSolve(P, SysTyp, ConfigSet)

Purpose: Computes numerical irreducible decomposition by finding witness point su-

persets of a positive dimensional homogeneous or non-homogeneous polynomial

systems of equations.

Syntax Bertini.BPCSolve(P:LIST, SysTyp:STRING , ConfigSet:LIST):LIST

Input 1st parameter P, a list of polynomials. 2nd parameter SysTyp, type of system

P. 3rd parameter ConfigSet, a list of configuration settings.

Output A list of lists containing witness point supersets of the system P.

Example Consider the polynomial ring Q[x, y]. We want to find the numerical irre-

ducible decomposition of the curve (29/16)x3 − 2xy, y − x2. We need to run the

following commands in ApCoCoA interactive window:

Use QQ[x,y];

P := [(29/16)x^3-2xy, y-x^2];

ConfigSet := ["TRACKTYPE: 1", "SHARPENDIGITS: 30"];

Bertini.BPCSolve(P, SysTyp, ConfigSet);

The output of above commands is the following.

[ [ Vector(-144037547051541/25000000000000000000000000000000000000,

1194673810665003/1250000000000000000000000000000000000000), Vector(
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3960923778190771/10000000000000000000000000000000000000000, 2427766

741188941/1000000000000000000000000000000000000000) ] ]

Now we describe functions which are available in the package hom4ps.

HSolve(P,HomTyp)

Purpose: Solves a zero-dimensional square homogeneous or non-homogeneous poly-

nomial system of equations.

Syntax Hom.HSolve(P:LIST,HomTyp:INT):LIST

Input 1st parameter P, a list of polynomials P. 2nd parameter HomTyp, set it to 1 for

polyhedral homotopy and to 2 for classical linear homotopy.

Output A list of lists where each list contains a finite solution.

Example Consider the polynomial ring Q[x, y]. We want to solve the system x2 +

y2− 5, xy− 2. We run the following commands in ApCoCoA interactive window:

Use QQ[x,y];

P := [x^2+y^2-5, xy-2];

HomTyp:=1;

Hom.HSolve(P,HomTyp);

The output of above commands is the following.

[ [ [2, 0], [1, 0]], [[-1, 0], [-2, 0]], [[-2, 0], [-1, 0]],

[[1, 0], [2, 0] ] ]

LRSolve(P,HomTyp)

Purpose: Solves a non-square zero-dimensional homogeneous or non-homogeneous

polynomial system of equations.

Syntax Hom.LRSolve(P:LIST, HomTyp:INT):LIST

Input 1st parameter P, a list of polynomials P. 2nd parameter HomTyp, set it to 1 for

polyhedral homotopy and to 2 for classical linear homotopy.

Output A list of lists where each list contains a finite solution.
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Example Consider the polynomial ring Q[x1, x2]. We want to solve the system x21−1 =

0, x1x2 − 1 = 0, x21 − x1 = 0. We run the following commands in ApCoCoA

interactive window:

Use QQ[x[1..2]];

P := [x[1]^2-1, x[1]x[2]-1,x[1]^2-x[1]];

HomType:= 1;

Hom.LRSolve(P,HomTyp);

The output of above commands is the following.

[ [ [-9143436298249491/20000000000000000, 9937657539108147/50000000

000000000], [-24282046571107613/50000000000000000, 1864146148586522

9/100000000000000000] ], [ [1, 0], [1, 0] ] ]

The following function also does the same job as the function but with a different

kind of randomization. For more details we refer to ApCoCoA manual.

SRSolve(P,HomTyp)

Purpose: Solves a non-square zero-dimensional homogeneous or non-homogeneous

polynomial system of equations.

Syntax Hom.SRSolve(P:LIST, HomTyp:INT):LIST

Input 1st parameter P, a list of polynomials P. 2nd parameter HomTyp, set it to 1 for

polyhedral homotopy and to 2 for classical linear homotopy.

Output A list of lists where each list contains a finite solution.

Example Consider the polynomial ring Q[x1, x2]. We want to solve the system x21−1 =

0, x1x2 − 1 = 0, x21 − x1 = 0. We run the following commands in ApCoCoA

interactive window:

Use QQ[x[1..2]];

P := [x[1]^2-1, x[1]x[2]-1,x[1]^2-x[1]];

HomType:= 1;

Hom.SRSolve(P,HomTyp);
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The output of above commands is the following.

[[[-51917361941691031/100000000000000000, -1846796377886887/400000000

0000000], [-14765467180940843/10000000000000000, 23807586810196137/10

000000000000000]], [[1, 0], [1, 0]]]



Appendix B
Implementations of Linear Algebra

Techniques

In Chapters 3 and 4 we have developed linear algebra algorithms for finding Fq-rational

solution of a system of polynomial equations. For experimental results we have imple-

mented these algorithms in CoCoAL. This implementation is available in the package

charP of ApCoCoA [12]. In the following we provide details about the available func-

tions and explain how to use them.

B.1 Available Functions

In the following we give a short description of the functions available in the package

charP for working with the linear algebra algorithms of chapters 3 and 4. This de-

scription is also available as a part of the documentation of these functions and can

be seen from the help menu of ApCoCoA. Consider the polynomial ring F2[x1, . . . , x4].

Let f1 = 0, . . . , f4 = 0 be a set of polynomials, where

f1 = x1x2 + x2x3 + x2x4 + x3x4 + x1 + x3 + 1,

f2 = x1x2 + x1x3 + x1x4 + x3x4 + x2 + x3 + 1,

f3 = x1x2 + x1x3 + x2x3 + x3x4 + x1 + x4 + 1,

f4 = x1x3 + x2x3 + x1x4 + x2x4 + 1.

In the following we solve this system for F2-rational solutions using different techniques

of Chapter 3 which are available through the package charP. First we consider functions
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which implement the linear algebra techniques of Chapter 3.

NLASolve(F, Sparse)

This function provides an implementation of the algorithm of Theorem 3.2.4. It pro-

vides the option of choosing between sparse and dense implementations depending on

the given system.

Purpose: Computes a unique F2-rational zero of a given polynomial system over F2.

Syntax CharP.NLASolve(F:LIST, Sparse:BOOL):LIST

Input 1st parameter F, a list of polynomials over the field F2. 2nd parameter Sparse,

set it to True if the system F is sparse and to False if the system is dense.

Output The unique solution of the system F in Fn2 .

Example Consider the polynomial ring F2[x1, . . . , x4]. To solve a polynomial system

of equations one has to run the following commands in ApCoCoA interactive

window:

Use ZZ/(2)[x[1..4]];

F:=[

x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1,

x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1

];

Sparse:=True;

CharP.NLASolve(F,Sparse);

The output of above commands is the following list containing the unique F2-

rational solution of the above system. Along with the solution, some useful

information (such as matrix sizes and the time taken to solve the matrix) will

also be displayed on the screen.

[0, 1, 0, 1]

The working of all the following functions is the same. The only difference between

them is that they use different algorithms.
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MNLASolve(F)

This function provides an implementation of the algorithm of Theorem 3.4.13.

Purpose: Computes a unique F2-rational zero of a given polynomial system over F2.

Syntax CharP.MNLASolve(F:LIST):LIST

Input A list of polynomials F over the field F2.

Output The unique solution of the system F in Fn2 .

Example Consider the polynomial ring F2[x1, . . . , x4]. To solve a polynomial system

of equations, one has to run the following commands in ApCoCoA interactive

window:

Use ZZ/(2)[x[1..4]];

F:=[

x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1,

x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1

];

CharP.MNLASolve(F);

The output of above commands is the following list containing the unique F2-

rational solution of the above system. Along with the solution, some useful

information (such as matrix sizes and time taken to solve the matrix) will also

be displayed on the screen.

[0, 1, 0, 1]

IMNLASolve(F)

This function provides an implementation of the algorithm of Theorem 3.5.4.

Purpose: Computes a unique F2-rational zero of a given polynomial system over F2.

Syntax CharP.IMNLASolve(F:LIST):LIST

Input A list of polynomials F over the field F2.
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Output The unique solution of the system F in Fn2 .

Example Consider the polynomial ring F2[x1, . . . , x4]. To solve a polynomial system

of equations, one has to run the following commands in ApCoCoA interactive

window:

Use ZZ/(2)[x[1..4]];

F:=[

x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1,

x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1

];

CharP.IMNLASolve(F);

The output of above commands is the following list containing the unique F2-

rational solution of the above system. Along with the solution, some useful

information (such as matrix sizes and time taken to solve the matrix) will also

be displayed on the screen.

[0, 1, 0, 1]

Now we consider functions which implement the algorithms of Chapter 4. The

algorithms of Chapter 3 find a unique Fq-rational solution of a system of polynomial

equations whereas the algorithms of Chapter 4 computes a Border basis of the given

system of polynomial equations. Therefore, the following functions not only find a

unique Fq-rational solution but also solve a system of polynomial equations having any

number of Fq-rational solutions.

MBBasisF2(F, NSol)

This function provides an implementation of the algorithm of Theorem 4.2.5 for com-

puting a Border basis.

Purpose: Computes a Border basis of the given system of polynomials.

Syntax CharP.MBBasisF2(F:LIST, NSol:INT):LIST
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Input 1st parameter F, a list of polynomials over the field F2. 2nd parameter NSol,

the number of F2-rational zeros of the system F. If not known in advance then

use only first parameter.

Output A Border basis of the system F.

Example Consider the polynomial ring F2[x1, . . . , x4]. To compute a Border basis

of a polynomial system of equations, one has to run the following commands in

ApCoCoA interactive window:

Use ZZ/(2)[x[1..4]];

F:=[

x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1,

x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1,

x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1

];

NSol:=1;

CharP.MBBasisF2(F,NSol);

The output of above commands is the following list that gives a Border basis of

the system F. Along with a Border basis, some useful information (such as matrix

sizes and time taken to solve the matrix) will also be displayed on the screen.

[ x[4] + 1, x[3], x[2] + 1, x[1] ]

IMBBasisF2(F, NSol)

This function provides an implementation of the algorithm of Theorem 4.2.11 for com-

puting a Border basis.

Purpose: Computes a Border basis of the given system of polynomials.

Syntax CharP.IMBBasisF2(F:LIST, NSol:INT):LIST

Input 1st parameter F, a list of polynomials over the field F2. 2nd parameter NSol,

the number of F2-rational zeros of the system F. If not known in advance then

use only first parameter.
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Output A Border basis of the system F.

Example Consider the polynomial ring F2[x1, . . . , x4]. To compute a Border basis

of a polynomial system of equations, one has to run the following commands in

ApCoCoA interactive window:

Use Z/(2)[x[1..4]];

F:=[

x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4],

x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4],

x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2],

x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2]

];

NSol:=3;

CharP.IMBBasisF2(F,NSol);

The output of above commands is the following list that gives a Border basis of

the system F. Along with a Border basis, some useful information (such as matrix

sizes and time taken to solve the matrix) will also be displayed on the screen.

[x[3]x[4] + x[4], x[1]x[4] + x[1], x[1]x[3] + x[1], x[1]x[2] + x[1],

x[2]x[3]x[4] + x[4], x[1]x[2]x[4] + x[1]]
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Using MILP

The GLPK (GNU Linear Programming Kit) package is intended for solving large-

scale linear programming (LP), mixed integer programming (MIP), and other related

problems. It is a set of routines written in ANSI C and organized in the form of a

callable library. CPLEX by ILOG [102] is the commercial linear optimization tool. We

use CPLEX version 12.2. Moreover, note that CPLEX can be parallelized.

Recall that in Chapter 5 we have studied recent suggestions of transferring the

problem of solving a system of polynomial equations over F2 into a mixed integer linear

programming problem. In particular, we have developed several conversion algorithms

and strategies for converting the polynomial system over F2 to a polynomial system

over R (respectively over Z). The conversion algorithms are implemented in CoCoAL

and these implementations are available in the package glpk of ApCoCoA [12]. The

solution process of Chapter 5 consists of two stages: applying a conversion algorithm to

prepare a MILP problem and then using an IP solver to solve the MILP problem. Our

research is focused on conversion algorithms and conversion strategies. After applying

a conversion algorithm, the problem can be solved using any IP solver. We have used

GLPK and CPLEX to solve the IP problems. Due to the reason that CPLEX is a

commercial solver, the conversion algorithms are equipped with GLPK solver only.

But the code in the package glpk can be easily adjusted for using CPLEX as an IP

solver and is available from author on request. In the following we provide details

about the available functions and explain how to use them.
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C.1 Available Functions

In the following we give a short description of the functions available in the package

glpk for conversion algorithms and using GLPK as IP solver. This description is also

available as a part of the documentation of this package and can be seen from the help

menu of ApCoCoA.

IPCSolve(F, QStrategy, CStrategy, MinMax)

This function provides an implementation of the conversion algorithms of Proposi-

tions 5.2.2 and 5.5.1. It provides the option of choosing between different conversion

strategies studied in Chapter 5.

Purpose: Solves a system of polynomial equations for one solution in Fn2 .

Syntax GLPK.IPCSolve(F:LIST,QStrategy:INT,CStrategy:INT,MinMax:STRING):LIST

Input 1st parameter F, a list of polynomials over the field F2. 2nd parameter QStrategy,

strategy for quadratic substitution: 0 − Standard, 1 − Linear Partner, 2 −
Double Linear Partner and 3 − Quadratic Partner. 3rd parameter CStrategy,

strategy for cubic substitution: 0 − Standard, and 1 − Quadratic Partner. 4th

parameter MinMax, optimization direction, i.e. minimization ("Min") or maxi-

mization ("Max").

Output A solution of the system F in Fn2 .

Example Consider the polynomial ring F2[x1, . . . , x3]. To solve a given polynomial

system of equations one has to run the following commands in ApCoCoA inter-

active window:

Use ZZ/(2)[x[1..3]];

F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1,

x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2],

x[1]x[2] + x[2]x[3] + x[2]

];

QStrategy:=0;

CStrategy:=1;

MinMax:="Max";

GLPK.IPCSolve(F, QStrategy, CStrategy, MinMax);
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The result will be the following, where the return value is the list which provides

a solution.

Modelling the system as a mixed integer programming problem.

QStrategy: Standard, CStrategy: CubicParnterDegree2.

Model is ready to solve with GLPK...

Solution Status: INTEGER OPTIMAL

Value of objective function: 1

[0, 0, 1]

Note that QStrategy and CStrategy deal with quadratic and cubic terms respec-

tively. For instance, if there are no cubic terms in the support of polynomials, the

CStrategy will have no effect on timings. The working of all the following functions is

the same. The only thing we to ensure is the choice of a strategy. Different strategies

lead to different timings as reported in Chapter 5

RPCSolve(F, QStrategy, CStrategy, MinMax)

This function provides an implementation of the conversion algorithms of Proposi-

tions 5.2.8 and 5.5.2. It provides the option of choosing between different conversion

strategies studied in Chapter 5.

Purpose: Solves a system of polynomial equations for one solution in Fn2 .

Syntax GLPK.RPCSolve(F:LIST,QStrategy:INT,CStrategy:INT,MinMax:STRING):LIST

Input 1st parameter F, a list of polynomials over the field F2. 2nd parameter QStrategy,

strategy for quadratic substitution: 0 − Standard, 1 − Linear Partner, 2 −
Double Linear Partner and 3 − Quadratic Partner. 3rd parameter CStrategy,

strategy for cubic substitution: 0 − Standard, and 1 − Quadratic Partner. 4th

parameter MinMax, optimization direction, i.e. minimization ("Min") or maxi-

mization ("Max").

Output A solution of the system F in Fn2 .

Example Consider the polynomial ring F2[x1, . . . , x3]. To solve a given polynomial

system of equations one has to run the following commands in ApCoCoA inter-

active window:
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Use ZZ/(2)[x[1..3]];

F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1,

x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2],

x[1]x[2] + x[2]x[3] + x[2]

];

QStrategy:=1;

CStrategy:=0;

MinMax:="Max";

GLPK.RPCSolve(F, QStrategy, CStrategy, MinMax);

The result will be the following, where the return value is a list which provides a

solution.

Modelling the system as a mixed integer programming problem.

QStrategy: Standard, CStrategy: CubicParnterDegree2.

Model is ready to solve with GLPK...

Solution Status: INTEGER OPTIMAL

Value of objective function: 1

[0, 0, 1]

L01PSolve(F, QStrategy, CStrategy, MinMax)

This function provides an implementation of the conversion algorithm of Proposition

5.4.7. It provides the option of choosing between different conversion strategies devel-

oped in Section 5.4.1.

Purpose: Solves a system of polynomial equations over F2 for one solution in Fn2 .

Syntax GLPK.L01PSolve(F:LIST,QStrategy:INT,CStrategy:INT,MinMax:STRING):LIST

Input 1st parameter F, a list of polynomials over the field F2. 2nd parameter QStrategy,

strategy for quadratic substitution: 0 − Standard, 1 − Linear Partner, 2 −
Double Linear Partner and 3 − Quadratic Partner. 3rd parameter CStrategy,

strategy for cubic substitution: 0 − Standard, and 1 − Quadratic Partner. 4th

parameter MinMax, optimization direction, i.e. minimization ("Min") or maxi-

mization ("Max").

Output A solution of the system F in Fn2 .



C.1. Available Functions 227

Example Consider the polynomial ring F2[x1, . . . , x3]. To solve a given polynomial

system of equations one has to run the following commands in ApCoCoA inter-

active window:

Use ZZ/(2)[x[1..3]];

F := [ x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[3] +1,

x[1]x[2]x[3] + x[1]x[2] + x[2]x[3] + x[1] + x[2],

x[1]x[2] + x[2]x[3] + x[2]

];

QStrategy:=1;

CStrategy:=0;

MinMax:="Max";

GLPK.L01PSolve(F, QStrategy, CStrategy, MinMax);

The result will be the following, where the return value is a list which provides a

solution.

Modelling the system as a mixed integer programming problem.

QStrategy: Standard, CStrategy: CubicParnterDegree2.

Model is ready to solve with GLPK...

Solution Status: INTEGER OPTIMAL

Value of objective function: 1

[0, 0, 1]

implementation of rules for IPC and RPC is still left to document
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Appendix D
Some Miscellaneous

Implementations

Recall that in Chapters 6 and 7 we have studied techniques using MINLP, number

theory and numerical analysis. Essentially, we studied techniques of transferring the

problem of solving a system of polynomial equations over F2 into a MINLP problem,

a number theory problem or a numerical analysis problem. In the above-mentioned

chapters we developed several conversion algorithms which are implemented in CoCoAL

and are available from the author upon request. Unfortunately, we could not make them

available as packages of ApCoCoA [12]. The reasons are given later in this appendix.

The solution processes of Chapters 6 and 7 consist of two stages: applying a conver-

sion algorithm to model a MINLP problem, a number theory problem or a numerical

analysis problem, and then using an IP solver, a number theory package or a numer-

ical solver for solving the modeled problem. Our research is focused on conversion

algorithms and conversion strategies. In the following we explain how we achieved the

implementation of these tasks one by one.

D.1 Implementations of Techniques Using MINLP

In Section 6.1 we developed techniques using MINLP. The conversion algorithms of

this section are implemented in CoCoAL and are available from author upon request.

Given a system of polynomial equations F over F2. After applying the conversion

algorithm, the next stage is to use a nonlinear IP solver for the solution of the modeled

MINLP problem as explained in Section 6.1.
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Our modeled MINLP problem is a non-convex problem. There are three soft-

ware packages that can solve non-convex MINLP problems to proven optimality, us-

ing branch-and-reduce techniques, namely: BARON, Alpha-BB [81] and COUENNE

[56]. Unfortunately, the first two are the commercial softwares. Therefore, for solving

MINLP problems we use the open-source solver COUENNE [56]. COUENNE (Convex

Over and Under ENvelopes for Nonlinear Estimation) is a spatial branch-and-bound

algorithm to solve MINLP problems. COUENNE aims at finding global optima of non-

convex MINLP problems. It implements linearization, bound reduction, and branching

methods within a branch-and-bound framework. Note that some packages for convex

MINLP problem can be used to find heuristic solutions for non-convex MINLP, namely

BONMIN, DICOPT and LaGO [81]. Finally, GloptiPoly [81] can solve general poly-

nomial optimization problems. Note that solvers for convex MINLP problems can be

used on non-convex problems as heuristics, as they may provide a feasible solution.

COUENNE is a software package that can be used only in combination with a

modeling language software package such as AMPL [10]. AMPL is a comprehensive and

powerful algebraic modeling language for linear and nonlinear optimization problems,

in discrete or continuous variables. COUENNE is a software package for which interface

to AMPL is available. To the best of authors knowledge this is the only way to use

COUENNE because it accepts as input only AMPL stub (.nl) file. Such files can be

generated from AMPL with the command “write gfilename;” and then used as input

files for COUENNE. Further information on using COUENNE and AMPL can be found

at the web sites [56, 10]. A more convenient way to use COUENNE is to install an

interface to AMPL as described at AMPL web page [10].

Given a system of polynomial equations F over F2. We can solve this system as

follows. Apply the conversion algorithm and prepare an input file for AMPL containing

the modeled MINLP problem. Now use the COUENNE interface to AMPL to solve

the nonlinear problem. Now the solution of MINLP problem provided by AMPL can

be easily translated into a solution of the given system of polynomial equations F over

F2. If COUENNE interface to AMPL is not installed then the process of solving the

system may consist of the following steps.

1) Use CoCoAL code (which implements the conversion algorithm and prepares an

input file) to generate an input file say Finpu.mod for AMPL which models F as

a MINLP problem.

2) Use AMPL to prepare a stub (.nl) file Finput.nl which is used as an input file

for COUENNE. If you are running AMPL at the command line then you need
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to execute the following commands for this purpose.

model Finput.mod

write gFinput;

This will create a file Finput.nl which can be used as a input file for COUENNE.

3) Use COUENNE to solve the MINLP model given by the input file Finput.nl. If

you are in the directory where COUENNE.exe resides then you need to execute

the command

./couenne Finput.nl

at the command line. This will solve the model and create a solution file called

Finput.sol in the same directory.

4) Use AMPL to read the solution file Finput.sol. If you are running AMPL at the

command line then you need to execute the following commands for this purpose.

model Finput.mod

solution Finput.sol;

Now by issuing the command display the values of the indeterminates (optimal

solution) can be obtained. For instance, display x1; will display the value of

the indeterminate x1 to the screen.

The solution process explained above and the (commercial) availability of software

packages clearly shows that why it was not possible making these implementations

available as a package of ApCoCoA. As a final remark note that the commercial non-

linear IP solvers such as BARON, Alpha-BB [81] can provide a sufficient speed up to

our technique.

D.2 Implementations of Techniques Using Linear

Diophantine Equations

In Section 6.1 we developed techniques using number theory. The conversion algorithms

of this section are implemented in CoCoAL and are available from author upon request.
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Given a system of polynomial equations F over F2. After applying the conversion

algorithm, the next stage is to solve a system of linear Diophantine equations for a

(unique) positive solution.

The positive solution of a system of linear Diophantine equations is achieved in

two steps. Firstly, a general integer solution is obtained. Secondly, a mixed integer

linear programming problem is solved for finding a non-negative integer solution. As

described in Section 6.1.1 we use the Smith normal form for resolving the first step.

We use the computer algebra system PARI/GP [149] which is designed for fast compu-

tations in number theory, for computing the Smith normal form. To resolve the second

step we use the commercial linear optimization tool CPLEX by ILOG [102].

Given a system of polynomial equations F over F2, and assume that PARI/GP and

CPLEX are installed on your computer. Then the implementation of the process of

solving, given by the algorithm of Proposition 6.2.2 consists of the following steps.

1) Use CoCoAL code (which implements the conversion algorithm and prepares an

input file) to generate an input file say Finput.gp for PARI/GP. This input file

must contain the matrixM of the homogeneous part of the system of linear Dio-

phantine equations and a PARI/GP command to compute the Smith normal form

ofM. For the matrixM the contents of this file will look like matsnf(M,flag

=1);. For more details about calculating the Smith normal form using PARI/GP

we refer to PARI/GP manual [149].

2) Use PARI/GP to compute and obtain the Smith normal form on a file say

Foutput. The output on the file Foutput will consist of three matrices [U ,V ,D],

where U and V are two unimodular matrices such that UMV is the diagonal

matrix D. Since M is not a square matrix, D will be a square diagonal matrix

padded with zeros on the left or the top. If you are running PARI/GP at the

command line then you need to execute the following commands for this purpose.

\r Finput.gp

\w Foutput;

The first command reads the file Finput.gp. The second command writes the

Smith normal form into a file named Foutput. Note that if the size of the matrix

M is big then you may need to adjust the stack memory of PARI/GP. This

can be achieved by the command allocatemem();. For more details refer to

PARI/GP manual.
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3) Use CoCoAL code (which implements the conversion algorithm, prepares an input

file and reads the Smith normal form from the file Foutput), and perform the

remaining steps of the algorithm of Proposition 6.2.2.

4) Now the algorithm finds a general solution of the system of linear Diophantine

equations and formulates a MILP problem having a (unique) positive (minimal)

solution of the system of linear Diophantine equations.

5) Finally, the MILP problem can be solved as explained in Appendix A. The opti-

mal solution of the MILP problem is actually a (unique minimal) solution of the

system of linear Diophantine equations which can be easily translated into the

solution of the system F .

D.3 Implementations of Techniques Using Numer-

ical Analysis

In Chapter 7 we developed techniques using numerical analysis. The conversion al-

gorithms of this chapter are implemented in CoCoAL and are available from author

upon request. Given a system of polynomial equations F over F2. After applying

the conversion algorithm, the next stage is to solve a system of nonlinear polynomial

equations for a real solution.

Mainly we used two numerical approaches for solving a system of nonlinear poly-

nomial equations for a real solution. The first one is based on homotopy continuation

methods and the second one is based on variants of Newton’s method. For using homo-

topy continuation methods in our algebraic settings we have developed two ApCoCoA

packages bertini and hom4ps. These packages call the full artillery of Bertini and

HOM4PS for computations with homotopy continuation methods inside ApCoCoA.

Using these packages we can write a CoCoAL code, which implements the conversion

algorithms of Chapter 7 and solves the resulted system.

One advantage of using Newton methods is that their well-studied and efficient

implementations in mathematical software MatLab are available. Therefore, we de-

cided to use MatLab for solving a system of nonlinear polynomial equations for a real

solution. The implementations of these techniques consist of two steps. Firstly, use

CoCoAL code which implements the conversion algorithm and writes the resulting sys-

tem of nonlinear equations on a file called mfile. Recall that a mfile is used as an

input file for MatLab. For details refer to MatLab manual. Secondly, use MatLab to
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solve the system on mfile using a variant of Newton’s method. The algorithms that we

have used are available via the lsqnonlin(...) and the fsolve(...) commands of

MatLab.
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