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Chapter

Introduction

In this thesis we devote ourselves to the study of non-commutative Grobner bases in
free monoid rings over fields and in free bimodules over free monoid rings, and de-
velop applications based on Grobner bases in these settings. In the past few decades,
Grobner bases have had great success in computational commutative algebra and its
applications. Moreover, Grobner bases and the Buchberger procedure for Grébner basis
computations have been extended successfully to various non-commutative algebras,
and then found their ways into applications in those non-commutative settings. The
computation of Grobner bases is a crucial point, both in theory and in practice. Con-
sequently, one of the essential aims of this thesis is to develop efficient (enumerating)

procedures for Grobner basis computations.

Motivation

In 1965, B. Buchberger introduced Grobner basis theory for ideals in commutative
polynomial rings over fields (see [11]). He constructed special bases, named Gréobner
bases, of ideals. A Grobner basis G of an ideal is a set of polynomials such that
every polynomial in the polynomial ring has a unique remainder when it is divided
by the polynomials in G. In particular, the remainder of each polynomial in the
ideal generated by G is zero. Buchberger developed a terminating procedure, called
Buchberger’s Algorithm, to transform a finite generating set of an ideal into a finite
Grobner basis of the same ideal. In a natural way, Grobner bases enable us to solve
the membership problem for ideals, that is, to decide whether a given polynomial lies
in a given ideal. Grobner bases also solve many other algebraic problems related to

ideals in a computational fashion (see [14] 16}, [18]).
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Since it is outstandingly important for polynomial rings, Grobner basis theory has
been generalized to several algebraic structures. For instance, in their books [43] 44],
M. Kreuzer and L. Robbiano describe a more general version of Grobner basis theory
for free modules over commutative polynomial rings, and provide numerous character-

izations and applications of Grobner bases.

A concept of Grébner bases for non-commutative polynomial rings (free monoid
rings) over fields was first proposed by F. Mora [53], who formulated Buchberger’s
Algorithm to compute Grobner bases of ideals in non-commutative polynomial rings.
The most important difference is that, non-commutative polynomial rings are no longer
Noetherian if they are generated by more then one indeterminate. Hence the procedure
for Grobner basis computations may not terminate. Further, T. Mora [55] unified

Grobner basis theory for both commutative and non-commutative algebras.

Originally, Grébner basis theory was established by a rewriting approach, which
uses polynomials as rewriting rules (see [11]). K. Madlener et al. adopted this method
and defined the theory of the prefix Grébner bases in monoid and group rings (see
[52, 57, 58], 63]).

Aided by the development of computer algebra systems, Buchberger’s Algorithm for
computing Grobner bases in commutative algebras has been improved and refined over
several decades (see [4, 12, 13, 17, 28] 33, B34]). Today there is an implementation of
Buchberger’s Algorithm in virtually every computer algebra system, including CoCoA
[20], GAP [3I], Magma [51], SINGULAR [65], et cetera. However, there are only
a few computer algebra systems providing a user with the possibility of performing
computations in the non-commutative case. Besides ApCoCoA [2], we refer to [67],

Section 5 for an exhaustive list of such systems.

In this thesis we start by following the approach of [43] to characterize Grobner bases
in free monoid rings over fields using the notions given by Mora [53], 55] (see Chapter
3). In full detail, we formulate an enumerating procedure, namely the Buchberger
Procedure, for Grobner basis computations and present several Improved Buchberger
Procedures (see Chapter [4). Then, using the same approach, we investigate Grobner
basis theory in free bimodules over free monoid rings (see Chapter |5). Finally, in
the last chapter (Chapter @ we list a rich collection of useful applications of Grobner
bases. We want to mention that throughout the thesis we are adopting the notation
and terminology of the books [43] and [44].

We have implemented all algorithms and procedures in this thesis in the package

gbmr (the abbreviation for Grébner bases in monoid rings) of the computer algebra



system ApCoCoA. All examples provided in this thesis have been computed with this
package gbmr. We refer to the ApCoCoA wiki page for more information on ApCoCoA
and the package gbmr. Moreover, we refer to the Symbolic Data Project [68] for more

examples of the applications of Grobner bases contributed by us.

Outline

This section presents an outline of the remainder of this thesis and our contributions to
the topic at hand. Since every chapter starts with an explanation of its organization,
we omit such descriptions here.

Chapter [2] briefly introduces several basic algebraic categories. We need a number
of definitions and notions from monoids and groups (see Section [2.1), rings (see Sec-
tion and modules (see Section . These are the basic algebraic objects in this
thesis. Some important properties of these algebraic categories are reviewed. Moreover,
the word problem, the membership problem and the conjugacy problem are defined.

Chapter [3|introduces Grobner bases of ideals in free monoid rings and characterizes
Grobner bases of ideals in detail. Grobner bases of ideals are defined with respect to
a given admissible ordering o as follows: given a two-sided ideal I, a subset G C [
of non-zero polynomials is a o-Grébner basis of [ if the leading term set LT, {G} =
{LT,(g9) | g € G} generates the leading term set LT, {I} = {LT,(f) | f € I} as
a monoid ideal. Following the approach of M. Kreuzer and L. Robbiano in [43], we
characterize Grobner bases via leading term sets and leading term ideals, Grobner
representations, and syzygy modules in great detail. In addition, Grobner bases of
one-sided ideals are defined and characterized in the last section of Chapter

Chapter {4| focuses on techniques for Grobner basis computations in free monoid
rings. We check whether a set G of non-zero polynomials is a Grobner basis via the set
of obstructions of G: the set G is a Grobner basis of the (two-sided) ideal it generates
if the normal remainders with respect to G of all S-polynomials of obstructions are
zero. Based on the idea of T. Mora [53] 55], we formulate a Buchberger Procedure to
enumerate Grobner bases. However, in general there exist infinitely many obstructions
for a given finite set of non-zero polynomials. This fact makes Buchberger’s Procedure
infeasible in practice. We get rid of a large number of trivial obstructions and for-
mulate an improved version of the Buchberger Procedure which enumerates Grobner
bases for finitely generated ideals. Later, by investigating the set of non-trivial ob-
structions carefully, we propose further improvements of the Buchberger Procedure

by detecting unnecessary obstructions and by deleting redundant generators, respec-
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tively. In order to detect as many unnecessary obstructions as possible, we present
an Interreduction Algorithm on non-trivial obstructions and propose generalizations of
the Gebauer-Miller Installation (see [33]) in free monoid rings. The effectiveness and
efficiency of our improvements are shown in examples. Moreover, given a homogenous
system of generators, we tune the Buchberger Procedure carefully and propose a ho-
mogeneous version of the Buchberger Procedure to enumerate Grobner bases degree
by degree. Since every finitely generated one-sided ideal has a finite Grobner basis,
two algorithms are given for computing Grobner bases of finitely generated one-sided
ideals in the last section of Chapter [4]

Chapter |5| generalizes the notions of Grobner basis theory from the previous two
chapters to free bimodules over free monoid rings. This chapter is inspired by the
suggestions of H. Bluhm and M. Kreuzer [8, 9]. Firstly, we define Grobner bases
(see Definition of (two-sided) submodules with respect to a given module term
ordering (see Deﬁnition in the same style as Grobner bases of ideals in free monoid
rings. Then we explore the characterizations of Grobner bases of submodules and
formulate a Buchberger Procedure for enumerating Grobner bases in free bimodules.
By generalizing our methods in Chapter [4 we improve the Buchberger Procedure by
detecting unnecessary obstructions and by deleting redundant generators. We show the
effectiveness and efficiency of our improvements in examples. Finally, we generalize J .-
C. Faugere’s F4 Algorithm (see [26]) to the non-commutative case and formulate an

F4 Procedure for enumerating Grobner bases in our setting.

Chapter [6] collects many interesting applications of Grobner bases. Even though
some applications assume that there exist finite Grobner bases, these applications are
quite useful. In Section [6.1] we develop the theory of Grobner bases in residue class
rings and in free bimodule over residue class rings. Note that residue class rings contain
monoid and group rings as special cases. Hence the theory developed in this section
is compatible with prefix Grébner basis theory introduced by K. Madlener et al (see
[52, 57, 58, ©63]). In Section , we list applications related to elimination orderings.
These applications include ideal (resp. module) operations, exploring K-algebra ho-
momorphisms, checking if an element of a residue class ring is algebraic and computing
its minimal polynomial if the answer is positive, checking if a monoid element has finite
order, formulating enumerating procedures to possibly solve the subalgebra member-
ship problem and the generalized word problem, syzygy computations, and solving
the decomposition search problem and the factorization problem. In Section [6.3] we
exploit the K-dimension of K-algebra K(X)/I with the aid of the Ufnarovski graph



[69]. Under the assumption that the ideal I has a finite Grobner basis, we formulate
the Hilbert series of the K-algebra K(X)/I at the end of the section.
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Chapter

Preliminaries

The main tasks of this thesis are to introduce Grobner basis theories in free monoid
rings as well as in free modules over free monoid rings and to explore applications
of Grobner bases. Hence in this chapter we shall introduce several basic algebraic
categories: monoids and groups (see Section , rings (see Section and modules
(see Section [2.3]) which are the most fundamental objects in the thesis.

We shall review each algebraic category by following the same approach. Each
algebraic category is defined as a set of elements together with operations that are
closed on the set (see Definitions [2.1.1} [2.2.1| and [2.3.1). Then we define substruc-
tures of each algebraic category and their systems of generators (see Definitions m,

2.2.6/ and [2.3.4) and introduce maps (homomorphisms) that preserve algebraic struc-
tures (see Definitions [2.1.7, [2.2.7| and [2.3.6). Moreover, in Section we introduce
monoid presentations (see Definition and monoid ideals (see Definition [2.1.23)).
Monomial ideals and monomial modules are studied in Sections and respec-
tively. Finally, graded rings (see Definition and graded modules (see Definition
are introduced in Sections and , respectively. We refer to [40, [46] as
standard textbooks for intensive study of algebraic categories, refer to [38, [66] for fur-

ther information on finitely presented groups, and refer to [43], Section 1.7 and [48] for

information on gradings.

2.1 Monoids and Groups

Definition 2.1.1. A monoid is a non-empty set M together with a binary operation
M x M — M (called multiplication) such that there exists an identity element,
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i.e. an element 1,5, € M satisfying 1, -a =a -1, = a for all a € M, and such that

the associative law is satisfied, i.e. a- (b-c) = (a-b) - c for all a,b,c € M.

It can be shown that the identity element 1, is unique. When it is clear which
monoid is considered, we simply write 1 instead of 1,,. We will write ab instead of a-b
if no confusion is likely to arise. The product g -a---a with n € N is called the n-th

—

n times

power of a and denoted by a”, where a’ = 1.

Let M be a monoid. An element a € M is called a unit if there exists an element
b € M such that ab = ba = 1. The element b is called the inverse of a and denoted
by a~!. Furthermore, M is called a group if every element of M is a unit. M is
called commutative (or abelian) if ab = ba for all a,b € M. Otherwise it is called
non-commutative (or non-abelian). The order of M is the cardinal number | M|.
We say M is finite (resp. infinite) if |[M]| is finite (resp. infinite). The order of
a € M, denoted by |al, is the cardinal number of the set {a" | n € N}. Now let G be
a group. It is easy to verify that a™" = (a™!)" for all @ € G and n € Z. The order of a
is equal to the smallest n € N such that " = 1. We say G is torsion-free if every

non-identity element of G has infinite order.

Example 2.1.2. The set N of natural numbers with addition is a commutative monoid
with the identity element 0. Only 0 is a unit. The set N with multiplication is a

commutative monoid with the identity element 1. Only 1 is a unit.

Example 2.1.3. The set Z of integers with addition is a commutative group with
the identity element 0. The inverse of n is —n. The set Z with multiplication is a

commutative monoid with the identity element 1. Only 1 and —1 are units.
The most important monoid and group for our needs are as follows.

Definition 2.1.4. Let X be a set. A word over X is an element of the form w =
x1---xg with s € N and z1,...,2, € X. We denote the empty word, i.e. the
word with s = 0, by 1 and denote the set of all words over X by (X). Let w' =
x -+ x, € (X) be another word. The multiplication of w and w’ is defined by ww' =
xy---xsx) - - - x, which is the concatenation of w and w’. With this multiplication the
set (X) becomes a monoid with the identity element 1 and is called the free monoid
generated by X.

For a word w = x; - - - s € (X)), the number s is called the length of w and denoted

by len(w). Every word of the form v’ = x;x,41---2; with 1 < i < j < s is called a
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subword of w. In particular, w’ is called a prefix of w if ¢ = 1; it is called a suffix
of w if j = s. For two words w,w’ € (X), we say w and w’ are coprime is neither w

is a subword of w’ nor w' is a subword of w.

Definition 2.1.5. Let X be a set. A reduced word over X is an element of the

form w = z}* ---a) with s € Nand @1,...,2, € X, A1,..., A\, € {1, —1} such that w
contains no subword of the form z;z; Lor x; Ly, where z; € X. We denote the set

of all reduced words over X by F(X). Let w' = yi*---¢y? € F(X) be another

word. The multiplication of w and w’ is defined as follows. Let k& = max{l | xijl =

yl_f:ll“, 0 <! <min{s,t}}. Then we define

r : ;
AR ,xi\i—kkyi'fll cey if 0 <1 < min{s,t},
/ xi\l"'l':\i}k if k=1t<s,
ww' =, 5 .
yk’j:ll...ytt lfk):S<t,
1 it k=s=t.

\

With this multiplication the set F(X) becomes a group with the identity element 1
and is called the free group generated by X.

The free monoid (X) and free group F(X) are free objects on the set X which
satisfy the universal properties in the corresponding algebraic structures. We refer to
[40], [46] for more details. Clearly, neither the free monoid (X') nor the free group F(X)
is commutative if | X| > 2. Moreover, the free group F(X) is torsion-free.

Now we consider substructures of monoids and groups that are closed under multi-

plication.

Definition 2.1.6. Let M be a monoid.

a) A non-empty subset N C M is called a submonoid of M if 1 € N and ab € N
for all a,b € N.

b) Let Y C M be a subset. A submonoid N C M is said to be generated
by Y if N is the smallest submonoid in M containing Y. In this case we have
N={y!" -y | y1,...,ys € Y,nq,...,ns € N} and write N = (V).

Now let G be a group instead.

c¢) A non-empty subset H C G is called a subgoup of G if ab™' € H for all a,b € H.
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d) Let Y C G be a subset. A subgroup H C G is said to be generated by Y
if H is the smallest subgroup in G containing Y. In this case we have H =
{yi* -y | y1, ..., ys € Y,ny,...,ns € Z} and write H = (V).

By definition, every monoid has two trivial submonoids: the monoid itself and {1}.
The same is true for every group. In Definitions [2.1.6]b and [2.1.6]d the set Y is called
a system of generators of N and H, respectively. A monoid or a group is said to
be finitely generated if it has a finite system of generators. A monoid or a group is
said to be cyclic if it has a system of generators consisting of only one element.

We introduce the functions that preserve the structures of monoids and groups in

the following sense.

Definition 2.1.7. Let M and N be two monoids (or groups). A map ¢ : M — N is
called a homomorphism from M to NV if ¢(1) = 1x and p(ab) = p(a)p(b) for all
a,be M.

It is easy to check that in case M and AN are groups we have ¢(a™!) = ¢(a)™!
for all @ € M. A homomorphism is called a monomorphism if it is injective, an
epimorphism if it is surjective, and an isomorphism if it is a bijection. If ¢ :
M — N is an isomorphism, then M and N are said to be isomorphic and denoted
by M = N. A homomorphism M — M is called an endomorphism of M. An
isorphism M — M is called an automorphism of M.

Definition 2.1.8. Let ¢ : M — N be a monoid (or group) homomorphism. The
kernel of ¢ is the set {a € M | p(a) = 1y} and is denoted by ker(yp). The image
of ¢ is the set {¢(a) | a € M} and is denoted by im(yp).

If M, N are monoids (resp. groups) and ¢ : M — N is a monoid (resp. group)
homomorphism, then ker(p) C M and im(¢) C N are submonoids (resp. subgroups).

Let G be a group, and let H C G be a subgroup. For a € G we define the left coset
aH = {ah | h € H} and the right coset Ha = {ha | h € H}. Observe that aH = bH
(resp. Ha = Hb) if and only if a™'b € H (resp. ba™' € H) for a,b € G. In this case we
say a is left congruent (resp. right congruent) to b modulo H. Clearly left (resp.
right) congruence modulo H is an equivalence relation on G. It can be shown that the
set of all left cosets of H in G is isomorphic to the set of all right cosets of H in G.
Their cardinality is called the index of H in G and is denoted by |G : H|.

Definition 2.1.9. Let G be a group. A subgroup N of G is called a normal subgroup
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in G if aN = Na for all a € G. In this case we write N < G.

Theorem 2.1.10. Let G be a group, let N <G be a normal subgroup, and let G/N be
the set of all cosets of N in G. Furthermore, for two cosets aN,bN € G/N we define
the multiplication by aN - bN = abN. With this multiplication the set G/N is a group
with the identity element N.

Proof. See [40], Theorem 5.4 of Chapter 1. O

The group G/N constructed as in the theorem is called the quotient group (or
factor group) of G modulo N. It is easy to verify that for a group homomorphism
¢ : G — H we have ker(¢) < G. Conversely, for a normal subgroup N < G the map
7m:G — G/N given by a — aN is an epimorphism with kernel N. The map 7 is called
the canonical epimorphism. The following homomorphism theorem induces a series

of important isomorphism theorems of groups (see [40], Section 5 of Chapter I).

Theorem 2.1.11. Let v : G — H be a group homomorphism, and let N<G be a normal
subgroup contained in ker(yp). Then there is a unique homomorphism ¢ : G/N — H
such that (aN) = ¢(a) for all a € G, im(p) = im(p) and ker(p) = ker(¢)/N. The

map @ is an isomorphism if and only if ¢ is an epimorphism and N = ker(yp).

Proof. See [40], Theorem 5.6 of Chapter 1. O

We define a general form of congruence relation on monoids and groups as follows.

Definition 2.1.12. Let M be a monoid. A congruence relation R on M is an
equivalence relation ~ on M such that a ~ b implies ca ~ ¢b and ac ~ bc for all
a,b,c € M. For all a € M we define the equivalence class a = {a’ € M | d’ ~ a}.
Let M /R be the set of all equivalence classes in M. Furthermore, for two equivalence
classes @,b € M /R we define the multiplication by ab = ab. With this multiplication
the set M /R becomes a monoid with identity element 1. The monoid M /R is called
the quotient monoid of M modulo R.

Obviously if M is a group then the quotient monoid M /R is also a group. It is
easy to see that if N <G is a normal subgroup then the congruence modulo N satisfies
the condition in Definion [2.1.12] and hence is a congruence relation on G. We are more

interested in congruence relations generated by subsets R C M x M.
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Definition 2.1.13. Let M be a monoid (or group), and let R be a subset of M x M.
If R is the smallest congruence relation on M containing R, then R is called the

congruence relation generated by R.
The congruence relation R generated by R C M x M has the following property.

Proposition 2.1.14. Let M be a monoid, let R be a subset of M x M, and let R
be the congruence relation generated by R. Moreover, let N be another monoid, and
let o : M — N be a monoid homomorphism such that ¢(a) = p(b) for all (a,b) € R.
Then there exists a unique homomorphism 1 : M/R — N such that o = 7 where 7
is the canonical epimorphism m: M — M /R defined by a — a.

Proof. See [66], Proposition 4.3 of Chapter 1. ]

We are now at the point of defining monoid presentations, which is a crucial subject
of rewriting systems and group presentation theory. We refer to [38] [66] as standard

textbooks for more details.

Definition 2.1.15. Let X be a set, and let R be a subset of (X) x (X). We define the
monoid M to be the quotient monoid of (X') modulo the congruence relation generated
by R. The pair (X, R) is called a monoid presentation for M and denoted by
M = (X | R). The presentation is finite if both X and R are finite. A monoid is said

to be finitely presented if it has a finite presentation.

For a finitely presented monoid M = (X | R) with X = {xy,...,2,} and R =
{(wy,w)), ..., (ws,w)} we will usually write M = (z1,...,2, | w; = w),...,ws = wl).
Here are some examples of monoid presentations. A rich collection of finitely presented

monoids and groups are freely available at Symbolic Data [6§].

Example 2.1.16. Let X be a set. We have (X) = (X | §)). Moreover, let X! =
{z7' |2 € X}, and let R ={zz™' =27'2 =1 |2z € X}. Then we have F(X) =
(X UX~!| R). If the set X is finite, then (X) and F(X) are finitely presented.

Example 2.1.17. Let X = {zy,...,2,}, and let R = {z;z; = x;2; | 1 <i < j <n}.
Then the monoid (X | R) is isomorphic to {z{*--- 28" | ay,...,a, € N}.

Example 2.1.18. Here are some finitely presented groups.
a) Let n > 1. Then (x | 2" = 1) is a cyclic group.

b) Let n > 3. Then (z,y | " = y* = (zy)? = 1) is the dihedral group of order 2n.
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¢) Let G = (z,y | 2P = y? = W"(x,y) = 1) withp,q,r > 2, W (x,y) = 22195 .. . g% y5x
such that £ > 1land 1 < oy < p,1 < B < qforalli e {l,... k}. Then G is a
generalized triangle group (see [29] [64]).

d) Let X = {zy,...,2,}, let X' = {a7", ... 27!}, let R = {xa;! = o)'n; =
1li=1,...,n}, and let S = {@Z(i4m) mod n = T(i+k) modn | ¢ = 1,...,n} with
m,k € {1,...,n} such that m # k. Then (X UX ™! | RUS) is a (Cavicchioli-

Hegenbarth-Repovs) generalized Fibonacci group (see [15, [75]).
Remark 2.1.19. We make some remarks on monoid presentations.

a) Many algebraic problems for monoids and groups are related to finite presenta-
tions, for instance the word, conjugacy, and isomorphism problems for finitely
present groups (see [22]). Below, we list some undecidable problems that will be
investigated in later chapters. Note that, given a finite presentation M = (X | R),
it is generally undecidable whether or not M is a group (see [59]). In this thesis,

given a group presentation, we shall always assume that it is indeed a group.

b) Given a finite presentation M = (X | R), the Knuth-Bendiz Procedure (see [41])
generates a complete rewriting system from R which is indeed a congruence rela-
tion generated by R. The Knuth-Bendix Procedure makes the undecidable word
problem into a semi-decidable problem. Some useful heuristics for implementing
the Knuth-Bendix Procedure are discussed in [66]. In next section we convert
the word problem to the membership problem (see Remark [2.2.12|b) and use
Buchberger’s Procedure (see Theorem to make the word problem semi-
decidable. Actually the Knuth-Bendix Procedure and Buchberger’s Procedure
are very similar (see [74]) and we can even consider Buchberger’s Procedure as a

generalization of the Knuth-Bendix Procedure.

Definition 2.1.20. (The Word Problem) Let X be a finite set, and let M =
(X | R) a finitely presented monoid. Given two words w,u € (X), decide whether or
not w and u define the same element in M.

Definition 2.1.21. (The Membership Problem) Let X be a finite set, let G =
(X | R) be a finitely presented monoid, and let H = (U) C G be the submonoid
generated by the set U = {wy,...,ws} C (X). Given a word w € (X), decide whether

or not w is in H.

The membership problem is also called the generalized word problem.
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Definition 2.1.22. (The Conjugacy Problem) Let X be a finite set, and let
G = (X | R) be a finitely presented group. Given two words w,u € (X), decide

whether or not there is a word a € (X) such that aw and ua define the same element

in G.
To end this section we introduce another substructure of monoids as follows.
Definition 2.1.23. Let M be a monoid.

a) A non-empty subset I C M is called a (two-sided) monoid ideal of M if we
have M -1 - M C 1.

b) A subset B C M is called a system of generators of monoid ideal I C M
if I is the smallest monoid ideal in M containing B. In this case we have I =

{apb| B € B,a,b e M}.

c) A system of generators B of a monoid ideal [ is called irredundant if B does
not properly contain any other system of generators of I. It is called minimal if

the number of elements in B is minimal among all systems of generators of I.

By definition, M is a monoid ideal of itself and it has a system of generators {1}.
In general, it is undecidable if a system of generators of a monoid ideal is irredundant.
A monoid ideal may have many irredundent systems of generators. However, in the
free monoid (X), every monoid ideal has a unique irredundent system of generators,

which coincides with minimal system of generators.

Proposition 2.1.24. Let I be a monoid ideal of (X), and let B be the set of all
elements of I which do not contain elements of I as a proper subwords. Then B is the

unique minimal system of generators of I.

Proof. First we prove that B generates I. Let w be an element of I, and let w’ be a
subword of w with minimal length such that w’ is still in /. By the definition of B we
have w’ € B. Thus B is a system of generators of I. Then we prove that B is minimal.
Suppose that there exists B’ C B such that B’ generates I. Let w € B\ B’. Then
there exist 8" € B',a,b € (X) such that w = af’b. By the definition of B we must
have w = 8/ which is a contradiction. Therefore B is minimal. Finally, we prove the
uniqueness. Suppose that there are two minimal systems of generators B and B’ of I.
By symmetry we may assume that there exists an element ' € B'\ B. With the same

process as before, we obtain the same contradiction that 5’ € B. O
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Remark 2.1.25. We make some remarks on Proposition [2.1.24]

a) The proposition shows that if there is a finite system of generators of the monoid
ideal then we can obtain the minimal system of generators by deleting in this set
all elements which contain another elements as proper subwords and removing

all repetitions of an element.

b) Note that a monoid ideal of (X) need not have finite systems of generators. For
instance the monoid ideal I C (z, y) generated by the set B = {zy‘z | i € N} hasa
infinite system of generators B which is minimal. Thus Dickson’s lemma (see [43],
Corollary 1.3.6) which plays an important role in computational commutative

algebra does not hold in free monoids.

2.2 Rings

Definition 2.2.1. A ring is a non-empty set R together with two binary operations
+,-: R x R — R such that R together with the operation + (called addition) is a
commutative group with the identity element Og, and such that R together with the
operation - (called multiplication) is a monoid with the identity element 1z, and
such that the distributive laws are satisfied, i.e. 73 - (r; +19) = r3-ry + 73 - 12 and

(r14mre) -rg=ry-r3+ry-r3 for all r1,re,r3 € R.

Note that a ring does not necessarily have the multiplicative identity element. For
our purposes in this thesis we shall always assume that a ring contains the identity
element under multiplication. If no ambiguity is likely to arise, we write rr’ instead
of r -1, 0 instead of Or, and 1 instead of 1z. R is called commutative if ' = r'r
for all 7" € R. An element r € R\ {0} is called a zero divisor if there exists an
element " € R\ {0} such that rr’ = 0 or 7’r = 0. More precisely, r is called a left zero
divisor if 7" = 0 and a right zero divisor if v'r = 0. An integral domain R is a
commutative ring with no zero divisor and 1z # 0. A division ring R is a ring such
that 1z # 0 and the set R\ {0} together with multiplication is a group. A commutative

division ring is called a field.

Example 2.2.2. Let n > 1. The set Z/(n) = {0,1,...,n — 1} of integers modulo n
together with addition and multiplication forms a ring. If p is prime, then non-zero
elements of Z/(p) form a multiplicative group of order p — 1 and Z/(p) is a field. In

this case we usually denote it by F,,.
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Definition 2.2.3. Let K be a field, and let M be a monoid. The monoid ring
of M over K is the set K (M) of all elements of the form ) ., c,w with ¢, € K
and ¢, # 0 for only finitely many w € M, together with the addition + defined by
Y owert Co® + e Co®W = D e mlCw + ¢, )w and the multiplication - defined by
Y e Cull D e CoU = D e (Do CuCo)w. The elements in K (M) are called the
polynomials. If G is a group, then K(G) is called the group ring of G over K.

Let K be a field, and let X be a set. The monoid ring of (X) over K is called the
free monoid ring (or non-commutative polynomial ring or free associative
algebra) generated by X over K and is denoted by K (X).

Definition 2.2.4. Let K(X) be the free monoid ring generated by X over K, and
let f =3 ,cx) Cow € K(X) be a polynomial. The element ¢, € K is called the
coefficient of w in f. The set {w € (X) | ¢, # 0} is called the support of f and
denoted by Supp(f). In particular, the free monoid (X) contains all terms in K (X).

It is easy to check that K (X) is an integral domain. The following is an example

of a monoid ring with zero divisors.

Example 2.2.5. Let K be a field, let n > 3, and let D,, = (a, bla™ = b*> = abab = 1) be
the dihedral group of order 2n. Then K(D,,) is the group ring of D,, over K. Note that
b+1,b—1 € K(D,)\{0} are zero divisors since (b+1)(b—1) = (b—1)(b+1) = *—1 = 0.

Definition 2.2.6. Let R be a ring.

a) A non-empty subset S C R is called a subring of R if S is closed under the
addition and multiplication operations of R and S is itself a ring under these

operations.

b) A non-empty subset I C R is called a left ideal (resp. right ideal) of R if I is
a subring in R and R-1 C [ (resp. I-R C I). The set [ is called a two-sided
ideal (or simply an ideal) of R if it is both a left and a right ideal.

c) A subset B C R is called a system of generators of left (resp. right, two-
sided) ideal I C R if I is the smallest left (resp. right, two-sided) ideal in R
containing B. In this case we have I = {> " 6, | 8; € B,r; € R} (resp.
I ={>" B | Bie Brie R}y, I={>," ,rfr|p € B,r,r, e R}) and
write [ =y (B) (resp. I = (B),,I = (B)).
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By definition, every ring has two trivial ideals which are the ring itself and {0}.
An ideal I is said to be finitely generated if it has a finite system of generators. It
is called principal if it has a system of generators consisting of a single element. A
system of generators B of I is called irredundant if / cannot be generated by any
proper subset of B. It is called minimal if the number of elements in B is minimal
among all systems of generators of I.

Let R be a ring, and let I C R be an ideal. Since R is commutative additive
group, I is a normal subgroup of the additive group R. Consequently, by Theorem
there is a well-defined quotient group R/I where the addition is defined by
(r+1)+(r'+1) = (r+r")+1I for all ,r" € R. Furthermore, we define the multiplication
by (r+1)(r'+1I) =rr'+1 for all r,7" € R. Then the quotient group R/I is a ring called
the residue class ring (or quotient ring) of R modulo /. The elements of R/I are
called residue classes. In particular, if R is commutative then so is R/I.

We define the functions that preserve the structures of rings as follows.

Definition 2.2.7. Let R and S be two rings. A map ¢ : R — S is called a homo-
morphism of rings from R to S if p(1g) = 1g and p(r + 1) = p(r) + (1), p(rr') =
o(r)p(r') for all r,r" € R.

A homomorphism of rings is a monomorphism (resp. epimorphism, isomor-
phism) if it is an injective (resp. surjective, bijective) map. A monomorphism of rings
R — S is also called an embedding of R to S. A homorphism R — R is called an

endomorphism of R. An isomorphism R — R is called an automorphism of R.

Example 2.2.8. Let ¢ : M — N be a homomorphism of monoids, and let K be a
field. Define a map on the monoid rings ¢ : K(M) — K(N) by @(>°,c o) =
Y wer Cop(w). Then @ is a ring homomorphism induced by .

Definition 2.2.9. Let ¢ : R — S be a ring homomorphism. The kernel of ¢ is
the set {r € R | ¢(r) = Os} and is denoted by ker(y). The image of ¢ is the set
{¢(r) | » € R} and is denoted by im(¢p).

It is easy to check that for a ring homomorphism ¢ : R — S the kernel ker(yp)
is an ideal in R. Conversely, if I is an ideal in R then the map = : R — R/I given
by r — r + I is an epimorphism with kernel /. The map 7 is called the canonical
epimorphism. We have the following homomorphism theorem for rings which plays
an analogous role to Theorem for groups (see [40], Section 2 of Chapter III).
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Theorem 2.2.10. Let ¢ : R — S be a ring homomorphism, and let I C R be an ideal
contained in ker(y). Then there is a unique homomorphism ¢ : R/I — S such that
o(r+1)=(r) forallr € R, im(¢) = im(p) and ker(¢) = ker(y)/I. The map ¢ is
an isomorphism if and only if ¢ is an epimorphism and I = ker(yp).

Proof. See [40], Theorem 2.9 of Chapter III. O

An immediate and useful application of Theorem [2.2.10] is the following corollary,

which connects a monoid presentation with a ring.

Corollary 2.2.11. Let X be a set, and let M = (X | R) be a monoid presentation.
Moreover, let K be a field, and let I C K(X) be the ideal generated by the set {w —
w' | (w,w') € R} C K(X). Then we have K(M) = K(X)/I.

Proof. Let R be the congruence relation generated by R. By Definition it
suffices to prove K{((X)/R) = K(X)/I. Let ¢ : (X) — (X)/R be the canonical
epimorphism of monoids defined by ¢(w) = w, and let ¢ : K(X) — K((X)/R) be the
canonical epimorphism of rings induced by ¢, i.e. (3, ¢ x) Cwl) = D2 ,c(x) CwW for
all 3-,c(x) cww € K(X). Obviously we have ker(¢) C I. By the definition of I we have
I C ker(p). Thus we have I = ker(). The claim follows from Theorem [2.2.10] O

Remark 2.2.12. Let us make some observations about Corollary [2.2.11]

a) Let K be a field, and let M = (X | R) be a monoid presentation. Corollary [2.2.11]
reveals that the monoid ring K (M) is nothing but the quotient ring K(X)/I
where I C K(X) is the ideal generated by the set {w —w' | (w,w’) € R}. Thus
the computations for the monoid ring K (M) can be done for the free monoid
ring K (X) through the embedding K (M) — K(X). For this reason in this thesis
we can focus on the computations in free monoid rings (see Chapters [3| and .

In Chapter [6] we will investigate the computations in quotient rings.

b) Using Corollary [2.2.11] we convert the word problem (see Definition [2.1.20)) to
the membership problem in the free monoid ring as follows. Let X be a finite
set, let M = (X | R) be a finitely presented monoid, and let u,v € (X) be two
words. Moreover, let K be a field, and let I C K(X) be the ideal generated by
the set {w — w' | (w,w') € R}. Then w and v define the same element in M if
and only if u — v € I.

Now we shall investigate further into free monoid rings which is a major object for

our computations later on. In the rest of this section, we let K be a field, let X be a



2.2. Rings 19

set, and let K(X) be the free monoid ring generated by X over K. The simplest ideals
in K(X) are monomial ideals which are generated by sets of words. Monomial ideals

have the following nice property.

Proposition 2.2.13. Let S C (X) be a set of words which generates an ideal I =
(S) C K(X). Then I has a unique irredundant system of generators consisting entirely
of words. In particular, for every word w € I there exists a word w' € S such that w

is a multiple of w'.

Proof. The first claim follows from Definition [2.2.6/.c and Proposition [2.1.24] We write
w =Y. piwp, with w; € S,p;,p; € K(X) for all i = 1,...,s. Then there must
exist an index i € {1,...,s} such that w € Supp(p;w;p}). Therefore the second claim
holds. O

Note that a ring R is said to be Noetherian if it satisfies the ascending chain
condition on ideals. That is, given any chain Iy C I, C --- of ideals, there exists a
positive integer n such that I,, = I,,1 = ---. Note that the ascending chain condition
defines a finiteness property, i.e. if R is a Noetherian ring then every ideal of R is

finitely generated.

Remark 2.2.14. Unfortunately, K (X) is non-Noetherian if | X| > 2. The most famous
example in the literature is as follows. Consider the free monoid ring K (x,y) and the
infinite chain of ideals I; C I, C --- where I; = (xyx,zy*z, ..., zvy'r). Clearly the
chain is strictly increasing. Hence K (x,y) is non-Noetherian. Consequently, it brings
difficulties to Grobner basis computations in free monoid rings, i.e. we cannot guarantee
the termination of Buchberger’s Procedures and have to compromise with ourselves on

enumerating procedures (see Chapter [4)).

To end this section we introduce gradings to free monoid rings. Graded rings are

defined as follows.

Definition 2.2.15. Let (I',+) be a monoid. A ring R is called a I'-graded ring
if there exists a family of additive subgroups {R,},er such that R = @, R, and
R, R, C R, forall v,v eT.

Let R be a I'-graded ring. If r € R, then we say r is homogeneous of degree
and write deg(r) = 7. By Definition [2.2.15| zero is a homogeneous element of every
ry with 7, € R,.

degree. For every r € R we can uniquely decompose r as r = ZWEF
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We call r, the homogeneous component of degree ~ of r.
The following examples define two important gradings of K (X) which we will use
later.

Example 2.2.16. Let K(X), = Kw for w € (X). Clearly we have K(X) =
GuwexyKw and Kw - Kw' = Kww' for all w,w" € (X). Thus K(X) is a (X)-graded

ring.

Example 2.2.17. Let K(X); = {f € K(X) | len(w) = d for all w € Supp(f)} for
d € N. Then we make K(X) into an N-graded ring. This grading is called the
standard grading of K(X). Let f € K(X) \ {0} be a polynomial. We write the
decomposition of f as f = Zf:o fi where f; € K(X); for i = 0,...,d and f; # 0.
Then the number d is called the standard degree (or simple the degree) of f and
is denoted by deg(f). Clearly for w € (X) we have deg(w) = len(w). In particular,
we have deg(z) = 1 for z € X and deg(c) = 0 for ¢ € K \ {0}. Moreover, using the

convention for zero polynomial we define deg(0) = —oc.

Definition 2.2.18. An ideal I of the I'-graded ring R is said to be I'-graded (or

homogeneous) if we have I = @.er(I N R,).
The following proposition characterizes graded rings nicely.

Proposition 2.2.19. Let I be an ideal of I'-graded ring R. Then the following condi-

tions are equivalent.
a) I is a I'-graded ideal.

b) If re€l andr = Zwel“ ry 15 the decomposition of r into its homogeneous compo-
nents, then r, € I for all v € T.

c) There is a system of generators of I which consists entirely of homogeneous ele-

ments.

Proof. Analogous to [43], Proposition 1.7.10. O

Corollary 2.2.20. Let I C K(X) be an N-graded ideal generated by a homogeneous
system of generators G. Moreover, let d € N, let G<,4 be the set of elements in G with
degree < d, and let (I<4) be the ideal generated by the homogeneous element in I with
degree < d. Then G<4 generates (I<g).
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Proof. This follows from Proposition [2.2.19| directly. [

Corollary 2.2.21. If I C R be a I'-graded ideal, then the quotient ring R/I is also
I'-graded.

Proof. Let (R/I)y = R,/(I N R,) for v € I'. Then the claim follows from Proposition
22.19b. O

2.3 Modules

Definition 2.3.1. Let R be a ring. A left R-module M is an additive commutative
group (M, +) together with an operation - : R x M — M (called scalar multiplica-
tion) such that 1g-m = m for all m € M, and such that the associative and distributive
laws are satisfied, i.e. - (r'-m) = (rr')-mand r-(m+m') =r-m+r"-m/, (r+1')-m =

r-m-+r"-mforall r,r € R,m,m' € M.

The scalar multiplication is usually written by juxtaposition as rm for r € R and
m € M. A right R-module M is defined symmetrically via a scalar multiplication of
the form - : M x R — M. Consequently, all theorems about left R-modules also hold,
mutatis mutandis, for right R-modules.

If R is a division ring, then left R-module is called a left R-vector space. If K
be a commutative ring, then a K-algebra A is a ring such that A is a left K-module
and k(ab) = (ka)b = a(kb) for all k € K,a,b € A.

Definition 2.3.2. Let R and S be two rings. An R-S-bimodule M is an additive
commutative group (M, +) such that M is a left R-module and a right S-module,
and such that two scalar multiplications are compatible, i.e. (rm)s = r(ms) for all
r€ R,s €S and m € M. An R-R-bimodule is called a two-sided R-module (or an
R-bimodule).

Example 2.3.3. Let R be aring. If I C R is a left ideal, then [ is a left R-module. If
I C Ris an ideal, then [ and R/I are R-bimodules. In particular, R is a left R-module

and an R-bimodule.

In this section we focus mainly on two-sided modules for our purposes. We refer to

[40], Chapter IV for an intensive study of (one-sided) modules.

Definition 2.3.4. Let R be a ring, and let M be an R-bimodule.
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a) Let N C M be an additive subgroup. N is called a (two-sided) R-submodule
of Mit R-N-RCN.

b) A subset B C M is called a system of generators of R-submodule N C M
if N is the smallest R-submodule in M containing B. In this case we have
N={>" mpr| b€ B,r,r; € R} and write N = (B).

A module is said to be finitely generated if it has a finite system of generators.
Clearly the empty set () generates the zero module (0). A system of generators B of M
is called irredundant if M cannot be generated by any proper subset of B. It is called
minimal if the number of elements in B is minimal among all systems of generators
of M.

A subset B of an R-bimodule M is said to be linearly independent if for distinct
Bi,...,Bn € B and distinct pairs (rg,77;), ..., (P, Tip,) € R x R fori =1,...,n we
have "% | 251:1 rijBiri; = 0 implies 7;; = 0 or 7; = 0 for each pair (ry,};) with
ie{l,...,n},j € {l,...,k;}. A linearly independent subset of R-bimodule M that
generates M is called a basis of M. In this case M is called a free R-bimodule. Ob-
serve that the empty set ) is linearly independent and is a basis of the zero module (0).

We construct a non-trivial free bimodule as follows.

Example 2.3.5. Let K be a field, and let R be a K-algebra. Consider R as a Lie
algebra in the natural way, its universal enveloping algebra U(R) = R @k R (see [23])
becomes an R-bimodule. Furthermore, let s > 1. Then the R-bimodule ®;_,U(R) is a
free R-bimodule with the canonical basis {ey, ..., e}, i.e. e, =(0,...,0,1®1,0,...,0)

with 1 ® 1 occurring in the i*® position for i = 1,...,s.
The functions that preserve the structures of bimodules are defined as follows.

Definition 2.3.6. Let R be a ring, and let M, N be two R-bimodules. An R-
bimodule homomorphism is a map ¢ : M — N satisfying p(m +m’) = ¢(m) +
e(m’), p(rm) = re(m) and p(mr) = @(m)r for all r,r" € R,m,m' € M.

An R-bimodule homomorphism ¢ : M — N is called a monomorphism (resp.
epimorphism, isomorphism) if it is injective (resp. surjective, bijective). The ker-
nel of ¢ is the set ker(p) = {m € M | ¢(m) = 0} which is an R-submodule of M. The
image of ¢ is the set im(y) = {p(m) | m € M} which is an R-submodule of N. Now
let K be a commutative commutative ring, and let A, B be two K-algebras. A map

¢ : A — Bis called a K-algebra homomorphism if ¢ is both a ring homomorphism
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and a K-module homomorphism.

Let N be an R-submodule of R-bimodule M. Then the quotient group M/N is
an R-bimodule with scalar multiplications given by r(m + N) =rm+ N, (m + N)r =
mr + N for all r € Rm € M. The map 7 : M — M/N given by m — m + N
is an epimorphism with kernel N and is called the canonical epimorphism. The
following homomorphism theorem induces isomorphism theorems for R-bimodules (see
[40], Section 1 of Chapter IV).

Theorem 2.3.7. Let ¢ : M — N be an R-bimodule homomorphism, and let K C M
be an R-submodule contained in ker(yp). Then there is a unique R-bimodule homomor-
phism ¢ : M/K — N such that o(m + K) = f(m) for allm € M, im(p) = im(p) and
ker(p) = ker(¢)/K. The map ¢ is an isomorphism if and only if ¢ is an epimorphism
and K = ker(yp).

Proof. See [40], Theorem 1.7 of Chapter IV. O

The following universal property shows that free R-bimodules are free objects in
the category of R-modules.

Proposition 2.3.8. Let F' be a free R-bimodule with a basis B, and let v : B — F' be
an injective map. Given an R-bimodule M and a map ¢ : B — M, there is a unique

R-bimodule homomorphism ¢ : F' — M such that pv = .

Proof. See [40], Theorem 2.1 of Chapter IV. O

It is straightforward to check that the R-bimodule & ,U(R) constructed in Exam-
ple is a free object. In the rest of this section we study one specific instance of
free bimodules which forms another major object for our computations later on. In the
following, we let K be a field, let X be a set, and let K(X) be the free monoid ring
generated by X over K.

Definition 2.3.9. Let r > 1. The K (X)-bimodule (K(X)®x K(X))*, denoted by Fj,

is called the free bimodule over K (X) of rank s with the canonical basis {ey, ..., es},
ie. ¢ = (0,...,0,1®1,0,...,0) with 1 ® 1 occurring in the i*® position for i =
1,...,s and ¢; is called the i*" standard basis vector in F,. The set {we;w’ | i €

{1,...,s}hw,w" € (X)} is called the set of terms in F; and denoted by T(Fy). We
write element m € Fy asm = Y 7| > .y cijwiieiw; with ¢i; € K, wij, wi; € (X) for all

i €{l,...,s},7 € Nwhere all but finitely many of the ¢;; are zero. The element ¢;; € K
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is called the coefficient of the term w;;e;w;; in m. The set {w;je;w;; € T(F) | ¢ij # 0}

is called the support of m and denoted by Supp(m).

Remark 2.3.10. Let I C K(X) be an ideal, and let F, = (K(X)/I @ K(X)/I)*
be the free bimodule over the quotient ring K (X)/I. Using the embeding K (X)/I —
K(X), we are able to consider each element m € F as an element in F, and perform
computations for F, on Fj. For this reason in this thesis we can focus on the computa-
tions for free bimodules over free monoid rings (see Chapter . In Chapter |§] we will
investigate the computations for free bimodules over quotient rings. Note that, given
a monoid presentation M = (X | R), the free K(M)-bimodule (K (M) @k K(M))?
is nothing but a specific instance of F, by Corollary .

Note that an Noetherian module is a module that satisfies the ascending chain
condition on submodules, i.e. every ascending chain of submodules becomes eventually
stationary. Note that a Noetherian module has a very nice property that all of its sub-
modules are finitely generated. However, F is non-Noetherian if |X| > 2 since K (X)
is non-Noetherian (see Remark 2.2.14). As a result Grobner basis computations in F
might not terminate and we have to content ourselves with enumerating procedures
(see Chapter |5).

The simplest K (X )-submodules in F are monomial modules which are generated
by subsets of T(Fy). Monomial modules have similar nice property as monomial ideals
in K(X) (see Proposition . To present this property for monomial modules the

following definition and lemma prove useful.
Definition 2.3.11. Let (I', o) be a monoid.

a) A left '-monomodule is a set 3 together with an operation * : I' x ¥ — %
such that 1p *s = s and (73 07,) *x s = 71 * (72 * §). A right ['-monomodule is
defined symmetrically. A I'-bimonomodule is both a left I'-monomodule and a

right I'-monomodule.

b) Let ¥ be a I'-bimonomodule. A non-empty subset 3’ C ¥ is called a (two-sided)
I'-submonomodule of ¥ if we have '« X/ x " C Y.

c) Let ¥ be a I'-bimonomodule. A subset B C X is called a system of genera-
tors of I'-submonomodule ¥’ C ¥ if ¥’ is the smallest I'-submonomodule in ¥
containing B. In this case we have ¥ = {~; * s x v, | 71,72 € I',;s € B}. The

set B is called irredundant if B does not properly contain any other system of
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generators of >'. It is called minimal if the number of elements in B is minimal

among all systems of generators of >'.

Clearly T(F) is a (X)-bimonomodule. Moreover, we have the following lemma.

Lemma 2.3.12. Fvery (X)-submonomodule of T(F) has a unique minimal system of

generators.
Proof. Analogous to Proposition [2.1.24 O

Proposition 2.3.13. Every monomial module in Fs has a unique irredundant system

of generators consisting entirely of terms in T(Fj).

Proof. Analogous to Proposition [2.2.13 ]

We end this section with a brief introduction of gradings of bimodules.

Definition 2.3.14. Let (I',0) be a monoid, let R be a I'-graded ring, and let (X, *)
be a I'-bimonomodule. An R-bimodule M is called a ¥-graded R-bimodule if there
exists a family of subgroups {M; }sex such that M = @yex M and Ry - M- Ry C M.ypgury
for all v,7 € I',s € 3.

Let M be a Y-graded R-bimodule. If m € M, then we say m is homogeneous of
degree s and write deg(m) = s. By Definition zero is a homogeneous element
of every degree. For every m € M we can uniquely decompose m as m = ) s m;
with m, € M,. We call m, the homogeneous component of degree s of m. In the

following example we define an important grading of F§ for our needs.

Example 2.3.15. Consider K(X) as a K(X)-bimodule. Let (t1,...,ts) € (X)® be
a tuple of words. We define a K(X)-bimodule homomorphism ¢ : Fy — K(X) by
e; — tifori =1,...,s. Let Fs(w) = {m € Fs | ¥(m) € Kw} for w € (X). Recall
that K(X) is (X)-graded. It is easy to check that Fy, = @,¢c(x)Fs(w) and for all words
w,wy,ws € (X) we have Kwy - Fy(w) - Kwy C Fy(wjwws). Thus we make Fy into a
(X)-graded K (X)-bimodule. This grading is called the grading defined by the tuple
(t1,. .., ts).

Definition 2.3.16. An R-submodule of the Y-graded R-bimodule M is said to be
Y-graded (or homogeneous) if we have N = @ex(N N My).

Proposition [2.2.19 for ideals of graded rings is also valid, mutatis mutandis, for
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submodules of graded bimodules.

Proposition 2.3.17. Let N be an R-submodule of ¥-graded R-bimodule M. Then the

following conditions are equivalent.
a) N is a ¥-graded R-submodule.

b) If m € N and m = ) .5, mg is the decomposition of m into its homogeneous
components, then ms € N for all s € 3.

c) There is a system of generators of N which consists entirely of homogeneous
elements.

Proof. Analogous to [43], Proposition 1.7.10. O

Corollary 2.3.18. If N C M be a ¥-graded R-submodule, then the quotient group M /N
18 a X-graded R-module.

Proof. Let (M/N)s = Ms/(NNM;) for s € 3. Then the claim follows from Proposition
R3.T0b. O



Chapter

Grobner Bases in K(X)

In this chapter we shall introduce Grobner bases of ideals in free monoid rings and study
the characterizations of Grébner bases. In [53], F. Mora proposed a generalization
of Grobner bases and Buchberger’s Algorithm to non-commutative polynomial rings,
which was mainly built upon the work of G. Bergman [5] and B. Buchberger [13]. Few
years later, T. Mora [55] unified Grobner basis theory for both commutative and non-
commutative algebras through a generalization of the Gauflian elimination algorithm.
Non-commutative Grobner basis theory was further considered by E. Green [36, 37], H.
Li [48], V. Levandovskyy [47], et al. In this and next chapters we shall present Grébner
basis theory in free monoid rings: in this chapter we shall characterize Grébner bases
of ideals in great detail, and in next chapter we will study techniques for Grobner basis

computations.

Two main ingredients of Grobner basis theory, namely admissible orderings (see
Definition and the Division Algorithm (see Theorem [3.2.1)), are introduced in
the first two sections. Section |3.1] we define admissible orderings followed by concrete
examples that are implemented in the package gbmr of the computer algebra system
ApCoCoA [2]. Further we present Macaulay’s Basis Theorem (see Theorem
and introduce the normal form (see Definition as a byproduct of Macaulay’s
Basis Theorem. In Section [3.2) we discuss the Division Algorithm in detail and present
the Interreduction Algorithm (see Theorem [3.2.8)) as an application of the Division
Algorithm. Section [3.3| begins with a definition of Grobner bases for two-sided ideals
(see Definition . Then we shall characterize Grobner bases through leading term
sets and leading term ideals (see Propositions and , and Grobner repre-
sentations (see Proposition , and study the existence and uniqueness of reduced
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Grobner bases (see Definition [3.3.16] and Proposition [3.3.17)). In Section we shall

explore the characterizations of Grobner bases through syzygy modules (see Definition
3.4.1| and Proposition . In Section we shall have a short investigation of
Grobner bases of one-sided ideals.

Throughout this chapter, we let K be a field, X = {x1,...,2,} a finite alphabet
(or set of indeterminates), and K (X) the free monoid ring generated by X over K. We
shall also consider the free monoid (X) generated by X as the set of terms in K(X).

By an ideal I we mean a two-sided ideal in K (X) unless specified otherwise.

3.1 Admissible Orderings

Note that a relation o on a set S is a subset of S x S. Henceforth, we shall write a >, b
or b <, a instead of (a,b) € 0. If a >, b and a # b, we shall write a >, b or b <, a.

Definition 3.1.1. An admissible ordering ¢ on (X) is a relation on (X) satisfying

the following conditions for all wy, we, w3, wy € (X).
a) wy >, we Or Wy >, Wy, i.e. ¢ is complete.
b) wy >, wy, i.e. o is reflexive.
c) wy >, wy and wy >, wy imply w; = we, i.e. ¢ is antisymmetric.
d) wy; >, we and wy >, ws imply wy >, ws, i.e. o is transitive
e) wy >, wy implies wzw wy >, wawswy, i.e. o is compatible with multiplication.

f) Every descending chain of words w; >, wy >, --+ in (X) becomes eventually

stationary, i.e. o is a well-ordering.

If o is an admissible ordering on (X), then we must have w >, 1 for all w € (X).
Otherwise, we assume that 1 >, w for some word w € (X). By condition [3.1.1]e, for
all i € N, we have w! = w'-1 >, w’-w = w™*'. Then by condition [3.1.1ld we obtain an
infinite strictly descending chain 1 >, w >, w? >, ---, which is a contradiction with
condition B.I1Lf.

Before presenting concrete admissible orderings on (X) which are available in the

ApCoCoA package gbmr, we define the following lexicographic ordering.
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Definition 3.1.2. The lexicographic ordering on (X), denoted by Lex, is defined
as follows. For two words wi,wy € (X), we say wy >pex we if we have w; = wyw
for some word w € (X), or if we have wy = wz;w',wy = wr,w” for some words

w,w',w” € (X) and some letters x;,, x;, € X such that iy < is.

Remark 3.1.3. We add some remarks on the lexicographic ordering.

a) Lex is a complete, reflexive, antisymmetric and transitive relation on (X). But
it is not an admissible ordering, because Lex does not satisfy condition [3.1.1le
or condition .f. For example, consider the free monoid (1, xs). Since we
have 12 >1ex @2 and z3x; = 13 - T1 <pex To - T1 = Toxp, Lex is not compatible
with multiplication. Moreover, since we have an infinite strictly descending chain

ToT] >Lex ToT] >Lex Tol] >Lex - * *, Lex is not a well-ordering.

b) Though it is not an admissible ordering, Lex is still quite helpful because it usually
acts as a “tie-breaker” during constructing a series of admissible orderings (see
Definitions [3.1.4} |3.1.6 and [3.1.8). In the literature of rewriting theory, Lex as

in Definition [3.1.2|is called the dictionary ordering, or self-explanatorily, the left-

to-right lexicographic ordering. The right-to-left lexicographic ordering is defined
symmetrically (see [66], Section 2.1).

In the following we shall introduce admissible orderings that are implemented in
the ApCoCoA package gbmr.

Definition 3.1.4. The length-lexicographic ordering on (X), denoted by LLex,
is defined as follows. For two words wy,wy € (X), we say w; >prex wo if we have

len(wy) > len(ws), or if we have len(w;) = len(ws) and w; >pex wo.

Example 3.1.5. Consider the free monoid (xy, z2).
a) We have 1 >p1ex T9, since len(z1) = 1 = len(xs) and z1 >pex 2.

b) We have 3 >11ex T2 and T3x; >11ex 2271, since len(z3) = 2 > 1 = len(xy) and

len(x3z1) = 3 > 2 = len(xox1), respectively.
c) We have 7123 >11ex 7521, since len(x 22) = 3 = len(x3z;) and z,23 >0, T37;.

Let a = (a1,...,a,) € R, (called a weight tuple) be a tuple of non-negative
real numbers. Given a word w = z;, -+~ 2;, € (X), the number Y ;_, a, is called the
weight of w defined by « and is denoted by W, (w). Then LLex becomes a specific
instance of the following weight-lexicographic ordering by letting o = (1,...,1).
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Definition 3.1.6. The weight-lexicographic ordering defined by a on (X), de-
noted by WLex, is defined as follows. For two words w,ws € (X), we say wy >yrex W2
if we have W, (w;) > W, (wy), or if we have W, (w;) = Wy (we) and wy >pex wo.

Definition 3.1.7. The length-reverse-lexicographic ordering on (X), denoted by
LRLex, is defined as follows. For two words wy,wy € (X), we say wy >rprex wo if we
have len(w;) > len(ws), or if we have len(w;) = len(ws) and w; < ws by right-to-left

lexicographic ordering.

Given a word w € (X) and a letter z; € X, the number of occurrences of z; in w is
called the degree of x; in w and is denoted by deg, (w). For example, consider the free
monoid (z1, s, z3). We have deg,, (23x1) = 1, deg,, (23z1) = 2 and deg,, (x321) = 0.

Now we are going to introduce an elimination ordering, denoted by Elim, on (X)
that eliminates letters in the alphabet X in the following sense. Let j € {1,...,n},
and let L = {x,...,2;} € X be a subset. Then w € (xj41,...,2,) and w >g1ip W’
imply v’ € (zj41,...,2,) for all w,w’ € (X). In other words, if the letters in L do not
occur in a word w € (X), then for every word w’ € (X) which is not larger than w

with respect to Elim the letters in L do not occur in w’ either.

Definition 3.1.8. We define an elimination ordering Elim on (X) as follows. For
two words wy,wy € (X), we say w1 >p1in wp if we have deg, (w;) > deg, (w) for
some i € {1,...,n} and deng(wl) = deg,, (wy) for all j € {1,...,i— 1}, or if we have
deg,. (w1) = deg,, (wy) for all i € {1,...,n} and w; >prex wo.

Note that Elim is just a member of a large class of elimination orderings, which

play a crucial role on many Grobner bases applications (see Section .
Example 3.1.9. Consider the free monoid (xy, z2).
a) We have 1 >g1iq 23, since deg, (z1) =1 > 0 = deg, (z3).

b) We have 2123 <giin 2521, since deg, (z123) = 1 = deg,, (z3x1) and deg,, (z123) =
2 < 3 =deg,, (¥3z1).

¢) We have 2123 >g11n 2571, since deg, (z123) = 1 = deg, (232;) and deg,, (z123) =

_ 2 2 2
2 = deg,, (r371) and 2125 >rex 371

Definition 3.1.10. An admissible ordering o on (X) is called length compatible if

len(w;) > len(ws) implies wy >, wsy for all wy, wy € (X).
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For instance, LLex and LRLex are length compatible admissible orderings while E1im

is not.
Assumption 3.1.11. From now on, we let o be an admissible ordering on (X).

Definition 3.1.12. Every polynomial f € K(X)\ {0} can be uniquely represented as
f=cw+ -+ cowy

with ¢1,...,¢s € K\ {0}, wq,...,ws € (X) such that wy >, wy >, -+ >, ws. The
word LT,(f) = wy € (X) is called the leading term of f with respect to . The
element LC,(f) = ¢; € K \ {0} is called the leading coefficient of f with respect
to 0. Moreover, we let LM, (f) = LC,(f) - LT,(f) = ciw;. The polynomial f is called
monic if LC,(f) = 1.

The leading term LT,(0) and leading coefficient LC,(0) of zero polynomial are
undefined. Some elementary properties of leading terms are collected in the following

remark.
Remark 3.1.13. Let f, f1, fo € K(X) \ {0} be polynomials.

a) Suppose that f; + fo # 0. We have LT, (f; + fo) <, max,{LT,(f1), LT,(f2)}-
Moreover, LT,(f1 + f2) = max,{LT,(f1),LT,(f2)} if and only if LT,(f1) #
LT,(f2) or LC,(f1) + LC,(f2) # 0.

b) For all w,w’ € (X), we have LT, (wfw') = wLT,(f)w'.
¢) We have LT, (f1f2) = LT, (f1)LT,(f2).
Definition 3.1.14. Let I C K(X) be an ideal.

a) The (monomial) ideal LT,(I) = (LT,(f) | f € I\ {0}) € K(X) is called the
leading term ideal of I with respect to o.

b) The set LT, {I} = {LT,(f) | f € I\ {0}} C (X) is called the leading term set
of I with respect to o.

¢) The set O,(I) = (X) \ LT,{I} is called the order ideal of I with respect to o.

By definition, we have LT, ((0)) = (0) and LT,{(0)} = (. It is easy to check that
LT,{I} is actually a monoid ideal of (X). In the sequel for the sake of simplicity, given
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a set of polynomials G C K(X) \ {0}, we let LT, {G} = {LT,(g9) | g € G} C (X) be
the leading term set and LT, (G) C K(X) the monomial ideal generated by LT,{G}.
In the literature of computational algebra, a non-empty set O C (X) is called an
order ideal if w € O and w = wywe imply w; € O and wy € O for all w, wy,ws € (X)
(see [44], Section 6.4). Observe that O, () satisfies the order ideal condition.
Let I C K(X) be an ideal. Then the residue class ring K(X)/I is also a K-vector
space. Given an admissible ordering, we can explicitly describe a K-basis of K(X)/I

as follows.

Theorem 3.1.15. (Macaulay’s Basis Theorem) Let I C K(X) be an ideal. The
residue classes of the elements of O, (I) form a basis of the K -vector space K(X)/I.

Proof. Let N = Spang{w € K(X)/I | w € O,(I)}. Obviously N C K(X)/I. We
prove that N = K(X)/I. For the sake of contradiction, we suppose that N C K(X)/I.
Since o is a well-ordering, there exists a polynomial f € K(X) \ {0} satisfying f ¢ I,
f ¢ N and having minimal leading term LT, (f) with respect to o. If LT, (f) € LT,{I},
then there exists a polynomial g € I such that LT,(f) = LT,(g). Thus we obtain a
polynomial f' = f — %((’;))g satisfying f’ ¢ I, f' = f ¢ N and having a smaller leading
term than f, in contradiction with our choice of f. Therefore we have LT, (f) € O, ().
However, we obtain a polynomial f” = f — LC,(f)LT,(f) satisfying f” ¢ I, f" ¢ N
and having a smaller leading term than f, in contradiction with our choice of f again.

To prove linear independence, suppose that there exists a polynomial f =37, c;w;
€ I\ {0} with ¢; € K\ {0},w; € O,(I) for all © € {1,...,s}. Without loss of
generality, we may assume that w; >, ws >, + -+ >, ws. Then we have LT, (f) = w; €
LT, {I} N O,(I) = 0 which contradicts our assumption. O

For a constructive proof of the theorem, refer to [55], Theorem 1.1 and see also the

proof of Theorem [5.1.9|
Corollary 3.1.16. Let I C K(X) be an ideal.
a) We have K(X) = I @ SpaniO,(I).

b) For every polynomial f € K(X), there exists a unique polynomial f € Span; O, (1)
such that f — f € I.

Proof. Claim a) is only another formulation of Theorem [3.1.15 For the proof of
claim b), it suffices, by Theorem [3.1.15] to prove the uniqueness. Suppose that there
exist two polynomials fi, f» € Span; O, (I) satisfying f — fi,f — fo € I. Then
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we have (f — fi) = (f — f2) = fo — fi € I N SpangO,(I). By claim a) we have
I N SpanO,(I) = {0}, and hence f, = f,. O

Definition 3.1.17. Let I C K(X) be an ideal. Given a polynomial f € K(X), the
unique polynomial f € Spani O, (I) as in Corollary(3.1.16/b is called the normal form
of f modulo I with respect to o and is denoted by NF, ;(f).

A polynomial f € K(X) is said to be a normal polynomial (or in normal form)
modulo [ with respect to o if f = NF, ;(f). Similarly a word w € (X) is said to be a
normal word (or in normal form) modulo [ with respect to ¢ if w = NF, ;(w). Note
that a polynomial f € K(X) is a normal polynomial if and only if f € Span,O,(I),
and a word w € (X) is a normal word if and only if w € O,(I). Let’s collect some

rules for computing with normal forms.
Remark 3.1.18. Let I C K(X) be an ideal.
a) For f € K(X), we have NF, ;(NF, ;(f)) = NF, ;(f).
b) For fi, fo € K(X), we have NF, ;(fi — f2) = NF, ;(f1) — NF, 1(f2).

c) For fi, fo € K(X), we have NF, ;(f1) = NF, ;(f2) if and only if f; — fo € I. In
particular, a polynomial f € K(X) satisfies f € I if and only if NF, ;(f) = 0.

d) For fi, fo € K(X), we have NF, 1(f1f2) = NFo 1(NF, r(f1)NFo 1(f2))-

Remark 3.1.19. The uniqueness property of the normal form reveals an algorithmic
approach to possibly solve the word problem (see Definition as follows. Let
M = (X | R) be a finitely presented monoid, and let u,v € (X) be two words.
Moreover, let I C K(X) be the ideal generated by the set {w — v’ | (w,w’") € R}.
Then by Remark[2.2.12|b, u and v define the same element in M if and only if u—v € I.
Choose an admissible ordering o on (X). Then by Remark [3.1.18c, u and v define
the same element in M if and only if NF, ;(u — v) = 0. Hence we convert the word

problem into the computation of the normal form.

In this section we have introduced some notions related to some admissible order-
ing o and some ideal I, for instance, for a polynomial f we have defined the leading
term of f with respect to o, the normal form of f modulo I with respect to o, et
cetera. If it is clear which admissible ordering and which ideal we are considering, we
will simply call them, respectively, the leading term of f, the normal form of f, et

cetera.
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3.2 The Division Algorithm

Intuitively the normal form can be computed using the Division Algorithm. Just as
division in commutative polynomial rings (see [43], Section 1.6), the Division Algorithm
divides a polynomial f € K(X) \ {0} by a tuple of polynomials G = (gs,...,gs) €
(K(X)\ {0})* and gives a representation

s k;
= Z Z CijWij§iWi; + p

i=1 j=1
with ¢;; € K\ {0}, wi;, wj; € (X) foralli € {1,...,s},j € {1,...,k}, and p € K(X)
such that LT,(f) >, LT,(wigawi;) for all i € {1,...,s},5 € {1,...,k;}, and such
that LT, (f) >, LT,(p) if p # 0, and such that no element of Supp(p) is contained
in (LT,(g1),...,LT,(gs)). These properties of the representation make the Division
Algorithm a powerful tool and an essential ingredient of Grobner basis theory. We now

present the Division Algorithm in free monoid rings more precisely.

Theorem 3.2.1. (The Division Algorithm) Let s > 1, and let f,g1,...,9s €
K(X)\ {0}. Consider the following sequence of instructions.

1) Letky=---=ks=0,p=0, and v = f.
2) Find the smallesti € {1,...,s} such that LT ,(v) = wLT,(g;)w’ for some w,w’ €
(X). If such an i ezists, increase k; by 1, set ¢y, = %,wiki = w,wy, = w,

and replace v by v — cikiwikigiwgki.

3) Repeat step 2) until there is no more i € {1,...,s} such that LT, (v) is a multiple
of LT,(g:;). If now v # 0, then replace p by p + LM, (v) and v by v — LM, (v),
continue with step 2).

4) Return the tuples (c11, wir, wyy), .. ., (Coky, Wek,, Wiy, ) and the polynomial p € K(X).

This is an algorithm which returns the tuples (ci1,wir, wyy),. .., (Cor,, Wek,, Wy, ) and
the polynomial p € K(X) such that

s k;
/
f= E E CijWijgiW;; + P
i=1 j=1

and such that the following conditions are satisfied.

a) No element of Supp(p) is contained in (LT,(g1),...,LT,(gs)).
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b) Foralli € {1,...,s} and all j € {1,..., k;i}, we have LT, (wigiw;;) <o LT (f).
If p # 0, we have LT, (p) <, LT,(f).

c¢) Foralli € {l,...,s} and all j € {1,...,k;}, we have LT, (w;;g;wi;) ¢ (LT4(g1),
ooy LTo(gi-1))-

Proof. Analogous to [43], Theorem 1.6.4. O

In contrast to the Division Algorithm in commutative polynomial rings, the fol-
lowing example shows that the resulting tuples (ci1, w11, W), -.., (Cory, Weky, Wiy, )
and polynomial p € K(X) satisfying conditions [3.2.1]a, [3.2.1]b, and [3.2.1]¢ are not
uniquely determined by the admissible term ordering o and the tuple (f, g1,...,9s) €
(K(X)\ {0})*™ (compare with [43], Theorem 1.6.4). This phenomenon is due to the
fact that in step 2) of Theorem there might exist more than one pairs (w,w’)
satisfying LT, (v) = wLT,(g;)w’.

Example 3.2.2. Consider the free monoid ring Q(x, y, z) equipped with the admissible
ordering o = LLex such that z >,> y >, 2. Divide f = zz?yx by the tuple (g1, g2)
where g, = 2y + x and g, = 2% + xz. We have LT, (¢g1) = zy and LT,(g2) = 2% The

Division Algorithm gives

1) ki =ky=0,p=0, and v = f = z2%yx.

LCo(v) _

2) Since LT, (v) = zayx = 22LT,(g1)x, we set ki = 1,¢1y = To) = 1,wy; =
zr,wy, = x, and v = v — cpywy Wy, = —21.
2*) Since LT, (v) = z2® = 2LT,(g2)x, we set ko = 1,¢91 = fg:((g?) = —1,wy =

Z,Why = o, and v = U — Co1Wa1 JoWh, = ZT2X.

3) Since LT,(v) = zzzz is not a multiple of LT,(g;) or LT,(g2), we set p = p +
LM, (v) = zaxzz and v = v — LM, (v) = 0.

4) Since v = 0, return the tuples (i1, w1, why), (co1, war, wh;) and the polynomial

p = zxzT.

Therefore we get a representation f = zxgix — zgex + zxzx. Observe that there is

another choice for (ws,wh;) in step 2%), i.e. (war,wh) = (zz,1). In this case, the

Division Algorithm gives f = zxg1x — 22gs + 2g22 — 2127,
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To get rid of this uncertainty, we shall fix a strategy in step 2) of Theorem to
choose a pair (w,w') from all pairs that satisfy LT, (v) = wLT,(g;)w’. Note that differ-
ent strategies will end with different division algorithms. For instance, if the strategy
is to choose the pair (w,w’) with minimal len(w), i.e. LT, (g;) is the leftmost subword
of LT,(v), then we obtain the Leftmost Division Algorithm. Symmetrically, by
choosing the pair (w,w’) with minimal len(w’), i.e. LT,(g;) is the rightmost subword
of LT, (v), we obtain the Rightmost Division Algorithm. If we require that w = 1,
then we obtain the Right Division Algorithm (see Theorem or the Prefix-
reduction Algorithm (see [52], 57, 58, [63]). We shall prove that once the strat-
egy is fixed, the resulting tuples (ci1, w1, wy), -.., (Csk,, Wsk,, Wy, ) and polynomial
p € K(X) satisfying conditions .a, b, and .C are uniquely determined by
the admissible term ordering o and the tuple (f,g1,...,9s) € (K(X)\ {0})**!. In the
ApCoCoA package gbmr, we apply the Leftmost Division Algorithm.

Corollary 3.2.3. In the setting of Theorem if we fiz a strategy to choose the

pair (w,w') in step 2), then the resulting tuples (c11, w1y, W), - .., (Cokyr Wek,, Wy, ) and

polynomial p € K(X) satisfying conditions |3.2.1.a, [3.2.1.b, and |3.2.1.c are uniquely

determined by the admissible term ordering o and the tuple (f, g1,...,9s) € (K(X) \

{O})s+1'

Proof. Suppose that there exist another tuples (di1, w1y, uy,), ..., (dg,, ug,, vy ) and a

polynomial p’ € K (X) satisfying conditions [3.2.1la,|3.2.1lb, and [3.2.1]c. Then we have

k1 I ks ls
0 = (Z Cljwljglwllj - Z dljuljglullj) et (Z Csjwsjgsw;j - Z dsjusjgsulsj)
j=1 j=1 j=1 j=1
+(p —p).

We first show LT, (wixgiwl,) = LT, (uygiul,) implies wy, = wy,w), = ul,. By Re-
mark [3.1.13]b, we have w;, LT, (¢;)w},, = LT, (wirgiwly) = LT, (uygiuly) = uy LT, (g;)ul,.
Then we have w;, = uy, w;, = ul, using the fixed strategy in step 2). Now let’s consider

the summand
ks ls
_ / /
Gy = E CsjWsjGsWsj — 5 dsjusjgsusj.
j=1 j=1

Since LT, (v) strictly decreases in Steps 2) and 3) of Theorem [3.2.1] it follows from
Remark (3.1.13\b that LT,(wagsw}) >o LT,(wggswl;) for all j € {2,... k}, and
that LTy (us1gsuly) >0 LTo(uggsuy;) for all j € {2,...,1;}. By condition [3.2.1}c, we
have LT, (ws1gswhy) ¢ (LT,(91), ..., LTs(gs—1)) and LT (wugsuly) ¢ (LTo(q1), - -,
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LT,(gs—1)). Condition 3.2.1la implies that LT, (p—p') ¢ (LT4(g1),...,LT4(gs)). Alto-

gether, we conclude that LT, (wsgswl,) and LT, (usgsul,) cancel each other in G,
ie. ¢y = dg and LT, (wggswl) = LT,(usigsul,), and hence wgLT,(gs)wl, =

us1 LT 5 (gs)uly. Therefore (cgp, wst, wly) = (ds1, ust, uly) and

Repeatedly applying this argument, we can show that k; = [; for all i € {1,...,s},
and (cij, wij, wi;) = (dij, ugg, uy;) for alli € {1,... s} and all j € {1,...,k;}, and hence
p=7p. ]

From now on, by the Division Algorithm we mean the Leftmost Division Algorithm

unless stated otherwise.

Definition 3.2.4. Let s > 1, let f,¢1,...,9s € K(X) \ {0}, and let G be the tuple
(91,--.,9s). Then the polynomial p € K(X) obtained in Theorem is called the
normal remainder of f with respect to G and is denoted by NR, g(f).

Note that we have NR,g(0) = 0 and NR,¢(f) = f for all f € (X) using this
definition. Also note that the normal remainder of f with respect to G is not yet the
normal form of f modulo the ideal (G) with respect to o. The normal remainder of f

also depends on the order of polynomials in the tuple G.

Example 3.2.5. (continued) Consider Example again. Recall that in the
example we have f = za?yr,q1 = 2y + x,9o = 2? + 22, and 0 = LLex such that
T >,y >, 2. Now we let g] = go,95 = ¢1 and divide f by (g, ¢5). Then the Division
Algorithm gives

1) ky =ky=0,p=0, and v = f = zx?yx.

LCq(v)
LCos(g})

2) Since LT, (v) = zz’yx = 2LT,(g))yx, we set ky = 1,¢1y = = l,w; =

z,wy; =yz, and v =V — cl W1 GIW], = —2TZYL.

3) Since LT,(v) = zzzyz is not a multiple of LT,(g;) or LT,(g5), we set p =
p+ LM, (v) = —zzxzyr and v = v — LM, (v) = 0.

4) Since v = 0, return the tuple (¢11, w1, w};) and the polynomial p = —zzzyz.

Therefore we get another representation f = zgjyr — zrzyr = zgoyx — zxzyzx, and

another normal remainder which differs from the normal remainders in Example [3.2.2]
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In order to compute the normal form using the Division Algorithm, we need G
to fulfill some additional properties that make G into a Grobner basis (see Definition
. Grobner bases are the subject matter of this thesis, which we shall study in the
next section and the coming chapters in great detail.

To close this section, we would like to introduce a very useful algorithm, named the

Interreduction Algorithm, which is an important application of the Division Algorithm.

Definition 3.2.6. Let G C K(X)\ {0} be a set of polynomials. We say G is interre-
duced with respect to o if no element of Supp(g) is contained in LT, (G \ {g}) for all
ge€aq.

The following lemma, which is an immediate consequence of Theorem |3.2.1] shows
implicitly that we can compute an interreduced system of generators of an ideal with
the help of the Division Algorithm.

Lemma 3.2.7. Let G C K(X)\{0} be a set of polynomials which generates an ideal I.
Moreover, let g € G, and let g’ be the normal remainder of g with respect to G\ {g}.
If ¢ #0, then (G\ {g}) U{g'} is still a system of generators of I.

Now we present the Interreduction Algorithm which computes an interreduced sys-

tem of generators of an ideal from a given system of generators.

Theorem 3.2.8. (Interreduction Algorithm) Let G C K(X) \ {0} be a finite set
of polynomials which generates an ideal I = (G). Consider the following sequence of

mstructions.
1) Leti=1 and s = |G|.

2) Compute the normal remainder g, of g; with respect to G\ {0, ¢;} using the Di-
viston Algorithm given in Theorem |5.2. 1.

3) If g; = 0, then replace g; by 0, increase i by one, and continue with step 2).
4) If g. # gi, then replace g; by g., replace i by 1, and continue with step 2).

5) If i = s, return the set {g | g € G and g # 0}; otherwise, increase i by one and

continue with step 2).

This is an algorithm which computes an interreduced system of generators of I.



3.2. The Division Algorithm 39

Proof. We prove the termination by showing that the index ¢ is eventually equal to s in
step 5). Observe that the index 7 is reset to 1 in step 4) under the condition that g; # 0
and ¢g; # g;. The latter inequality implies that g; is actually divided by G\ {0, g; }, and
LT,(g}) <o LT, (g;) by Theorem [3.2.1]b. We consider the following two cases.

Case 1) LT,(g}) = LT,(g;). Denote i by K. We observe that the index ¢ increases by one
either in step 3) under the condition that g; = 0 or in step 5) under the condition
that g; cannot be divided by G \ {0, ¢;}. Thus for all j € {1,..., K — 1} and
g; # 0, g; cannot be divided by G \ {0,g;}, and by assumption, g; cannot be
divided by G'\ {0, g;, g } U { g } either. Thus after replacing gx by g% and i by
1, the index 7 will increase to K without changing g; for all j € {1,..., K —1}.
Obviously g} cannot be divided by G \ {0, g% }. Hence the index i increases to

K + 1. Therefore the index ¢ will keep on increasing.

Case 2) LT,(¢;) <, LT, (gi). Since o is a well-ordering, for each ¢ the leading term of g;
can only strictly decrease finitely many times. Thus there are only finitely many
times that the index i can be reset to 1 caused by LT, (g!) <, LT,(g;). Therefore

the index ¢ will eventually increase.

The procedure terminates as the index i will eventually be equal to s in step 5) after
finitely many steps. The correctness follows from Theorem [3.2.1}and Lemma(3.2.7, [

Remark 3.2.9. We make some remarks on interreduced systems of generators.

a) An ideal may have many interreduced systems of generators. For instance, con-
sider Example again. We have f = z2%yx, g1 = 2y +z, g» = 2% + 22,
and o = LLex such that x >, y >, z. Now we let I C Q(x,y, z) be the ideal
generated by the set {f, g1, 92}. Then by Example and Lemma the
sets {zxzz, vy + 1,22 + 22} and {z22% vy +x, 2% + x2} are systems of generators

of I. Tt is easy to check that they are both interreduced.

b) An interreduced system of generators G has the property that the elements in the
leading term set LT,{G} are coprime (see Definition [2.1.4). Many optimizations
of Grébner basis computations take advantage of this property (see Section .
In the ApCoCoA package gbmr, the Interreduction Algorithm is deployed as a
standard preprocessing step in many functions related to Grébner basis compu-
tations. Moreover, if a set GG is a o-Grobner basis of an ideal I, we can obtain

the unique reduced o-Grébner basis of I by applying interreduction on G (see

Corollary |3.3.18)).
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3.3 Grobner Bases

Definition 3.3.1. Let G C K(X) \ {0} be a set of polynomials which generates an
ideal I = (G). We say G is a 0-Grobner basis of [ if

LT, {I} = {wLT,(g)w' | g € G,w,w" € (X)}.

In other words, GG is a o-Grobner basis of [ if the set G generates the ideal I and
the set LT,{G} generates the leading term LT,{/} as a monoid ideal of (X). By
definition, I \ {0} is a o-Grébner basis of I and the empty set ) is a o-Grébner basis
of the zero ideal (0).

In contrast to the case of commutative polynomial ring, for a polynomial g €
K(X)\{0} the set {g} need not be a o-Grébner basis of the principal ideal (g) C K(X).

The following example is borrowed from [35] as a case in point.

Example 3.3.2. Consider the free monoid ring Q(x,y) equipped with the admissible
ordering o = LLex such that x >, y and the ideal (g) where g = z*> — xy. Obviously
we have f = g(z —y) — g = —xyz + zy* € (g) and LT,(f) = zyx is not a multiple of
LT,(g) = . Thus the set {g} is not a o-Grébner basis of the ideal (g). Actually, the
ideal (g) has the infinite (reduced) o-Grobner basis {zy'z — xy'™' | i € N} (see [35],
Proposition 0.3.1).

The following proposition follows from Definition immediately.

Proposition 3.3.3. If G is a o-Grébner basis of an ideal I, then the set LT, {G}
generates the leading term ideal LT, (I).

The converse of Proposition is also true.

Proposition 3.3.4. Let G C K(X) \ {0} be a set of polynomials which generates an
ideal I = (G). If the set LT, {G} generates the leading term ideal LT, (I), then G is a

o-Grobner basis of I.

Proof. By assumption, we have wgw’ € I for all w,w" € (X),g € G. Then by Remark
B.1.13b we have wLT,(g)w = LT (wgw’) € LTo{I}, and hence {wLT,(g)w' | g €
G,w,w'" € (X)} C LT,{I}. Conversely, assume LT,(f) € LT,{I} for some f €
I\ {0}. Clearly LT,(f) € LT,(I). Since LT,{G} generates LT, (), it follows from
Propostion that there exists g € G such that LT,(f) is a multiple of LT,(g).
Thus LT, (f) € {wLT,(g)w' | g € G,w,w’ € (X)}. Hence LT, {I/} C {wLT,(g)w’ | g €
G,w,w" € (X)}. O
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Corollary 3.3.5. Let S C (X) be a set of words which generates an ideal (S) C K(X).

Then S is a Grébner basis of (S) with respect to every admissible ordering.
Proof. This follows directly from Proposition [3.3.4] O
One of the most frequently used properties of Grobner bases is as follows.

Proposition 3.3.6. Let G C K(X) \ {0} be a set of polynomials. Then the following

conditions are equivalent.
a) The set G is a o-Grébner basis of I.

b) For every polynomial f € I\ {0}, there exists a representation

f= Z CW;giw;
i=1
with ¢; € K\ {0}, w;, w} € (X), and g; € G such that LT, (f) >, LT, (w;g;w}) for
alli € {1,...,s}.

Proof. To prove condition a) implies condition b), consider the following sequence of

mstructions.
1) Let s=0and v = f.

2) Choose g € G such that LT, (v) = wLT,(g)w" for some w,w" € (X). Increase s
LCs(v)
LCs(g)’

by one, set ¢, = gs = g, ws = w,w, = w', and replace v by v — c,wsgsw.

3) If now v = 0, return the tuples (c1,wy, g1, w}), ..., (cs, ws, gs, ws). If v # 0, start

again with step 2).

Clearly we have v € I at each point of the procedure. Since G is a o-Grébner basis
of I, there always exists g € G such that LT, (v) = wLT,(g)w’ for some w,w’ € (X) in
step 2). Before replacing v by v — c;w,gsw’, we have LT, (cswsgsw?) = wsLT, (gs)w!, =
wLT,(g)w’ = LT, (v) by Remark [3.1.13|b, and LC, (c;wsgsw’) = ¢;LCy(gs) = LCo(v).
If v—cswsgsw!, # 0, then by Remark a we have LT, (v—cswsgswl) <, LT,(v), i.e.
LT, (v) strictly decreases with respect to o. Since o is a well-ordering, step 2) can be
executed only finitely many times. Hence the procedure stops after finitely many steps.
When the procedure stops, we have f = > "7 | c;w;g;w; and LT, (f) >, LT, (w;g;w}) for

all 7 =1,...,s. Therefore we obtain a representation of f as claimed.
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We prove condition b) implies condition a). Obviously the set G generates the
ideal I. Note that LT,(f) >, LT, (w;g;w}) for all i € {1,...,s} implies LT,(f) =
LT, (w;g;w}]) for some i € {1,...,s}. Then condition a) follows from Remark [3.1.13]b
and Definition [3.3.1] O

Definition 3.3.7. Let f € K(X) \ {0} be a polynomial, and let G C K(X) \ {0} be
a set of polynomials. We say that f has a Grobner representation in terms of G if
there exist ¢1,...,¢s € K\ {0}, wq,...,w, € (X), and g1, ..., gs € G such that

f= Z Ciwigz"w;
i=1
and LT, (f) >, LT, (w;g;w}) for all i =1,...,s.

Now Proposition can be rephrased as follows. Let G C K(X) \ {0} be a set
of polynomials which generates an ideal I = (G). Then G is a o-Grébner basis of I if

and only if every polynomial f € I\ {0} has a Grobner representation in terms of G.

Remark 3.3.8. We observe again the instructions in the proof of Proposition [3.3.6|
Since in step 2) the leading term LT, (v) of v strictly decreases with respect to o, the
Grobner representation of f that we obtain during the proof of Proposition [3.3.6] also

satisfies the condition
LT,(f) = LT, (wig1w)) >4 LT, (wagows) >, - -+ >, LT (wsgswy,).

In [55], T. Mora called a representation that also satisfies this additional condition a

Grobner representation of f in terms of G, which slightly differs from Definition [3.3.7}

The instructions in the proof of Proposition |3.3.6|inspire the following Weak Divi-
sion Algorithm. The proof of the Weak Division Algorithm is straightforward.

Corollary 3.3.9. (The Weak Division Algorithm) Let f € K(X) \ {0} be a
polynomial, and let G C K(X) \ {0} be a set of polynomials. Consider the following

sequence of instructions.
1) Let s=0 andv = f.

2) If there is g € G such that LT, (v) = wLT,(g)w’ for some w,w’ € (X), increase s

_ LC,(v) o ; o ’
by one, set c; = 15 o) Ws = W, W, = W, gs = g, and replace v by v — cswWsg Wy,

3) Repeat step 2) until there is no more g € G such that LT, (v) is a multiple of
LT, (g).
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') and the polynomialv € K(X).

4) Return the tuples (c1,wq, g1, w)), . .., (Cs, Ws, gs, W,

This is an algorithm which returns tuples (c1, w1, g1, w}), ..., (¢s, ws, gs, wh) and a poly-
nomial v € K(X) such that

f= Z ciw; giw; + v
i=1
and such that the following conditions are satisfied.
a) If v # 0, we have LT, (v) <, LT, (f) and LT,(v) ¢ LT,(G).

b) We have LT, (f) = LT, (w1g1w)) >, LT, (wagowh) >, -+ >4 LT, (wsgsw?).

In the literature, the Weak Division Algorithm is also called the top-reduction
algorithm in the sense that it reduces only the leading terms of dividends (compare
with Theorem [3.2.1). A polynomial v € K(X) obtained in Corollary is called
a weak normal remainder of f with respect to G and is denoted by WNR, & (f).
Observe that in step 2) the algorithm chooses ¢ from G arbitrarily. Examples
and indicate that weak normal remainder WNR, ¢(f) is not unique. If G is a
o-Grobner basis of an ideal I, then by Proposition the Weak Division Algorithm
gives a Grobner representation of f in terms of G for all f € I\ {0}. On the other
hand, if there exists some f € I\ {0} such that WNR, ¢(f) # 0, then G is not a
o-Grobner basis of 1. In Section we will use the Weak Division Algorithm to check
whether or not a (finite) set of polynomials is a Grébner basis (see Corollary [£.1.18)).

As we promised in last section, now we shall make a connection between the normal

remainder and the normal form using Grobner bases as follows.

Proposition 3.3.10. Let G C K(X)\ {0} be a set of polynomials which generates an
ideal I = (G). Moreover, let G be a o-Grébner basis of I, and let G be an associated
tulpe of G, i.e. G consists of all polynomials in G. Then we have NR,g(f) = NF, (f)
for all f € K(X).

Proof. By Theorem [3.2.1]a, no element of Supp(NR4g(f)) is contained in LT,(G). By
assumption and Definition we have LT,{I} C LT,(I) = LT,(G). Consequently,
no element of Supp(NR, g(f)) is contained in LT,{I}. Hence NR, g(f) € Span,O,(I).
Then NR,g(f) = NF,(f) follows from the fact f — NR,g(f) € I and Corollary
B.LI6D. O
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Remark 3.3.11. Recall that the normal remainder of f with respect to the tuple G
relies on the order of polynomials in G, while the normal form of f with respect to the
ideal (G) is unique. Proposition indicates that if G is a o-Grébner basis of (G),
then the normal remainder of f does not depend on the order of polynomials in G
any longer. Moreover, if G is a o-Grobner basis of (G), then the Division Algorithm
(Theorem gives the same normal remainder no matter which strategy is applied

to choose the pair (w,w’) in step 2).

Remark 3.3.12. If G is a o-Grébner basis of the ideal I = (X), Proposition
says that for f € K(X) the normal form NF, ;(f) can be achieved by computing the
normal remainder NR,g(f). Consequently, as an important application of Grébner
bases, we may solve the word problem (see Definition as follows.

1) Let M = (X | R) be a finitely presented monoid, and let u,v € (X) be two words.
Moreover, let I C K(X) be the ideal generated by the set {w—w' | (w,w’) € R}.

2) Choose an admissible ordering o on (X) and compute a o-Grobner basis G of 1.

3) Compute the normal remainder NR, g(u—v). By Remark|3.1.19[and Proposition
3.3.10| v and v define the same element in M if and only if NR, g(u —v) = 0.

However, the fact that the word problem is undecidable indicates that there can be no

algorithm to compute Grobner bases.

Generally, an ideal I C K(X) has many o-Grébner bases. For example, let G
be a o-Grobner basis of an ideal I C K(X) \ {0}, and let f € I\ G be a non-zero
polynomial. Clearly we have I = (G U {f}). By Definition LT,{G} generates
LT,{I}. Thus LT,{GU{f}} = LT, {G} U{LT,(f)} also generates LT,{/}. Hence
again by Definition G U{f} is a 0-Grobner basis of I.

Definition 3.3.13. Let I C K(X) \ {0} be an ideal, and let G be a o-Grobner basis
of I. A polynomial f € G is called redundant if G \ {f} is also a o-Grdbner basis
of I.

Contrarily, a polynomial f € G is called irredundant if it is not redundant. Re-

dundant polynomials can be detected easily by the following proposition.

Proposition 3.3.14. Let I C K(X)\ {0} be an ideal, and let G be a o-Gribner basis
of I. A polynomial f € G is redundant if LT,(f) is a multiple of LT,(g) for some

g€ G\{s}
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To prove the proposition we need the following lemma.

Lemma 3.3.15. Let I C K(X) \ {0} be an ideal, and let G C I\ {0} be a subset. If
the set LT,{G} generates the leading term set LT, {I}, then G is a o-Grébner basis
of I.

Proof. By Definition it suffices to prove that I = (G). For the sake of contradic-
tion, we suppose that (G) C I. Since o is a well-ordering, there exists a polynomial
f € I\ (G) having minimal leading term LT, (f) with respect to o among all poly-
nomials in I\ (G). Since LT,(f) € LT,{I} and LT,{G} generates LT,{I}, there
exist ¢ € K \ {0}, w,w’ € (X), and g € G such that LM,(f) = LM, (cwgw’) and
f—cwgw’ € I'\ (G). Then by Remark [3.1.13]a we have LT, (f — cwgw’) <, LT, (f),
contradicting our choice of f. m

Proof. (Proof of Proposition (3.3.14) By Definition G C I and LT,{G} generates
LT,{I}. By assumption, LT, {G\ {f}} also generates LT,{/}. Then the claim follows

from G\ {f} C I, Lemma 3.3.15 and Definition [3.3.13] O

By removing redundant elements we reduce the size of a Grobner basis. Moreover,

for every ideal we define a unique Grobner basis as follows.

Definition 3.3.16. Let I C K(X) \ {0} be an ideal, and let G be a o-Grébner basis
of I. The set G is called the reduced o-Grobner basis of [ if GG is interreduced and

every polynomial in G is monic.

Proposition 3.3.17. For every ideal I C K(X) \ {0}, there exists a unique reduced

o-Grobner basis.

Proof. We first prove the existence. Note that the leading term set LT,{} is a monoid
ideal of (X). By Proposition there exists a unique minimal system of generators
of LT,{I}. We assume that the minimal system of generators of LT,{/} is LT,{G} C
(X) with the associated set of polynomials G C K(X) \ {0}. Now we let G' =
{LT,(9) — NF,;(LT,(9)) | ¢ € G}. We prove that G’ is actually the reduced o-
Grébner basis of 1. By Corollary 3.1.16]b we have LT,(g) — NF,;(LT,(g)) € I for
all ¢ € G, and hence G’ C I. Clearly LT, {G'} = LT,{G} generates LT,{I}. Thus
by Lemma G’ is a o-Grobner basis of I. By the definition of G’ and Corollary
G’ is interreduced and polynomials in G' are monic. Hence G’ is the reduced

o-Grobner basis of 1.
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To prove the uniqueness, we assume that G and H are two reduced o-Grobner bases
of I. Clearly LT,{G} and LT,{H} are the minimal systems of generators of LT,{I}.
Then by Proposition we must have LT, {G} = LT, {H}. Let g€ G and h € H
such that LT,(g) = LT,(h). Then we have g—h € I. Since G and H are interreduced,
we have g — h C SpanyO,(I). Finally, we have g — h = 0 by Corollary 3.1.16la. O

Note that the reduced Grobner basis need not be finite. Given a finite Grobner

basis, we can compute the reduced Groébner basis by interreduction.

Corollary 3.3.18. Let I C K(X) \ {0} be an ideal, and let G be a finite o-Gribner
basis of I. We apply the Interreduction Algorithm as in Theorem|3.2.8 on G and obtain
an interreduced set G'. Then G’ is the reduced o-Grébner basis of 1.

Proof. This follows from Theorem [3.2.8 and Definition (3.3.16| O

Inspired by the proof of Proposition |3.3.17, we can also compute the reduced o-

Grobner basis from a given finite o-Grobner basis as follows.

Corollary 3.3.19. Let I C K(X) \ {0} be an ideal, and let G be a finite o-Grébner

basis of I. Consider the following sequence of instructions.

1) Find a subset G' C G such that the set LT, {G'} is the minimal system of gener-
ators of the leading term set LT, {I}.

2) Return the set G" = {LT,(g9) — NR, ¢/ (LT,(g)) | g € G'}.

This is a algorithm which computes the o-reduced Grobner basis G" of I from a given
finite o-Grobner basis G of I.

Proof. By assumption and Lemma |3.3.15, G’ is a o-Grobner basis of I. Then by
Proposition [3.3.10| we have NF, ;(LT,(g)) = NRyg/(LT,(g)). The claim follows from
the proof of Proposition [3.3.17] O

A set G’ as in step 1) of Corollary [3.3.19|is called a minimal o-Groébner basis of
the ideal I.
3.4 Syzygies

In this section we shall characterize Grobner bases using syzygy modules. In commuta-

tive polynomial rings, Grobner bases can be characterized by systems of generators of
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syzygy modules successfully (see [43], Section 2.3). This approach leads to a sequence
of the most efficient optimizations of Buchberger’s Algorithm (see [17, 27, 33]). Anal-
ogously, we shall use systems of generators of syzygy modules to characterize Grébner
bases in free monoid rings. We will obtain a Buchberger Criterion from syzygy modules
in Section 4.1 and present our optimizations of the Buchberger Procedure in Section [4.2]
In what follows, we let s > 1, ¢1,...,¢9s € K(X)\ {0}, G the tuple (g1, ..., gs), and
LM, (G) the tuple (LM,(¢1),...,LM,(gs)). Moreover, we let F, = (K(X) ® K(X))*
be the free K(X)-bimodule of rank s with the canonical basis {ey, ..., €5}, where ¢; =
0,...,0,1®1,0,...,0) with 1 ® 1 occurring in the i*" position for i =1,...,s.

Definition 3.4.1. Using the notation above, we define syzygy and syzygy module as

follows.

a) An element ) 7, >,y cijwizew;; € Fy is called a two-sided syzygy of G if

s

Z Z cijwijging =0.

i=1 jeN

b) Let Syz(G) be the set of all two-sided syzygies of G. One can remark that Syz(G)
is indeed a two-sided K (X)-module. The set Syz(G) is called the two-sided
syzygy module of G.

Similarly, a two-sided syzygy of LM,(G) is an element » 7| > cjwijewy; € Fy
such that > 7| > ey cijwis LMo (gi)w); = 0; the set of all two-sided syzygies of LM, (G)
also forms a two-sided K (X)-module and is denoted by Syz(LM,(G)). In what follows,
by syzygy and syzygy module we mean two-sided syzygy and two-sided syzygy module,

respectively, unless specified otherwise.

Example 3.4.2. Consider the free monoid ring Q(x, y, z) equipped with the admissible
ordering o = LLex such that x >, y >, 2. Let g; = 222 + yx, go = 2y + 2y, and let G
be the tuple (g1, 92). We have LM, (G) = (LM, (g1),LM,(g2)) = (222, zy). Tt is easy
to check that gae; — €291, €190 — giea € (Q(z, 5y, 2) @ Q(x,y, 2))? are syzygies of G, and
€17y — 27269, €1y — 2763 € (Q(,y,2) ® Q(z, vy, 2))? are syzygies of LM, (G).

Recall that in Example [2.3.15[ we made Fj into a (X)-graded K (X)-bimodule by
a grading defined by a tuple of words. Consider the tulpe (LT, (g1),...,LT(gs)). We

have Fy(w) = {377, > ey cijwieiwy; € Fy | D701 > oy cijwi LTy (g:)wy; € Kw} for
w € (X). The following definition proves very useful.
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Definition 3.4.3. Let m = 7| > .y cjwieawy; € Fs \ {0}
a) The word
mgx{wijLTa(gi)w;j lie{l,...,s},7 €N, ¢; #0} € (X)
is called o-degree of m and is denoted by deg, 5(m).

b) The homogeneous component of degree deg, ;(m) of m is called the o-leading
form of m and is denoted by LF, g(m), i.e. LFyg(m) =3 7 > iy Cijieity; €
F\ {0} with

/ : /A
S, cijwijewy;  if ¢;; # 0 and wijLTU(gi)wij = deg, g(m),
cijwijeiwij =

0 otherwise.

c¢) m is called homogeneous of o-degree deg, g(m) if m € Fi(deg, g(m)).

Example 3.4.4. (continued) Consider Example again. Recall that in the
example we have the tuple (g1, ¢g2) with g1 = 22% + yz,9> = 2y + 2y, and o = LLex
such that x >, y >, z.

a’) Let m = g2€1 — €241 € (Q<Z‘, Y, Z) ® Q<ZL’, Y, Z>)2 We have

deg,g(m) = max{zyLT,(g1), zyLT(g1), LT,(g2)2% LT, (g2)yx}

2729 ' fEany : $2axy ' yCC} - fL‘y{E27

= mgxx{xy -
LF,g(m) = xye; — 2e20° # m.
The element go€; — €27 is not homogeneous of o-degree zyx?.
b) Let m = 1y — 2we; € (Q(x,y, 2) ® Q(z,y, 2))%. We have
deg,g(m) = mgx{LTU(gl)y,mLTU(gg)}
= max{a® y,z 2y} =2y,
LE,g(m) = ey —2xe =m.
The element €,y — 2x¢ey is homogeneous of o-degree z2y.

Now we consider the free monoid ring K(X) as a K(X)-bimodule. Let M C K(X)
be the two-sided K (X )-submodule generated by the set {g1,...,gs}, andlet N C K(X)
be the two-sided K (X )-submodule generated by the set {LM,(¢g1), ...,LM,(gs)}. More-
over, let A\ : Fy — M be the K(X)-bimodule homomorphism given by ¢; — g; for
i=1,...,s,and let A : F;, — N be the K (X)-bimodule homomorphism given by ¢; —
LM, (g;) for i =1,...,s. Then we have Syz(G) = ker(A) and Syz(LM,(G)) = ker(A).
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Lemma 3.4.5. For all m € F,\Syz(G), we have LT,(A(m)) <, deg, g(m). Moreover,
LT,(A(m)) = degmg(m) if and only if LF, g(m) ¢ Syz(LM,(G)).

Proof. Let m = Y7 > .oy cijwieawy;. We have A(m) = 377 D~y cijwijgaws; # 0
by assumption. Then LT, (A(m)) <, deg, 5(m) follows from Proposition a and
Definition [3.4.3}a. To prove the second claim, it suffices to show that LT,(A(m)) <,
deg, g(m) if and only if LF,g(m) € Syz(LM,(G)). Note that LT, (A(m)) <, deg, (m)
if and only if the coefficient of deg, g(m) in > ;_; >~ ey cijwijgiw;; vanishes. The latter
is equivalent to A(LF,g(m)) =0, i.e. LF,g(m) € Syz(LM,(G)). O

Example 3.4.6. (continued) Consider Example again. Recall that in the
example we have the tuple (g1, ¢2) with g1 = 22 + yx,9o = 7y + 2y, and 0 = LLex
such that z >, y >, z. Let M C Q(z,y, z) be the ideal generated by {g1, 92}, and let
N C Q(x,y, z) be the ideal generated by {LM,(g1), LM,(g2)}.

a) Let m = 61y — 2xe; € (Q(z,y, 2) ® Q(z,y,2))%. We have \(m) = g1y — 2290 =
—2zzy + yry # 0. Thus m ¢ Syz(G), LT,(A(m)) = zzy, and LM, (A(m)) =
—2zxzy. From Example .b, we have deg, ;(m) = 2%y and LF,g(m) = e;y —
2xey = m. Therefore deg,s(m) >, LTo(A(m)), A(LFsg(m)) = LMy(g1)y —
22LM,(g2) = 22 -y — 2z - 2y = 0, and hence LF, g(m) € Syz(LM,(G)).

b) Let m = zyeiz — 2xeax? € (Qx,y, 2) @ Q(z, vy, 2))?. We have

deg,g(m) = max{zyLT,(g17), tLT,(g2)2*} = xya?,
LF,g(m) = —2xeya® #m.

The element zye;x — 2xex? is not homogeneous of o-degree x%yx?. We also
have A\(m) = xygir — 2xgox® = —22%yz? + 2zyx® + xy®2? — 2wzyx®. Thus
m ¢ Syz(G), LT,(A\(m)) = z?yz? and LM,(A\(m)) = —2x?yz?. Therefore
deg, g(m) = LT,(A(m)), A(LF,g(m)) = —22LMy(gz)a* = —2x - xy - 2% # 0,
and hence LF, g(m) ¢ Syz(LM,(G)).

In the following we shall introduce another crucial ingredient of Grobner basis
theory, which plays an analogous role to the critical syzygy in commutative polynomial

ring.

Definition 3.4.7. Let i,5 € {1,...,s} and ¢ < j, the element

0; (W, wh;wji, wh) = #w-e-w{ -t
. LCo(g:) " LCol(gy)

i wjejw; e F,\ {0}
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with w;, wi, wj, wj € (X) such that w; LT, (g;)w; = w;LT,(g;)w}, is called an obstruc-
tion of g; and g;. If i = j, it is called a self obstruction of g;. The set of all
obstructions of g; and g; will be denoted by o(i, 7).

Note that for all 4,5 € {1,...,s} and i < j, the set o(i,j) is non-empty since
it contains trivial elements o; ;(LT,(g;)w, 1; 1, wLT;(g;)), 0, j(1, wLT,(g;); LT,(g;)w, 1)
for all w € (X).

Lemma 3.4.8. Leti,je {l,...,s} andi <j.

a) Bvery element o; j(w;, wi; wy, w}) of o(i, j) is a syzygy of LM,(G) and is homoge-

neous of o-degree w;LT,(g;)w; = w;LT,(g;)w;.

b) We have SYZ(LMJ(Q)) = <U1§i§j§so(i7j)>-
Proof. Claim a) follows immediately from Definitions [3.4.3| and [3.4.7] To prove claim
b), it suffices, by a), to prove that Syz(LM,(G)) C (Ui<i<j<s0(7,7)). Let m =
>oim1 2jen Cijwigeawy; € Syz(LMy(G)) \ {0}. We may assume without loss of gen-
erality that m is homogeneous of o-degree deg, s(m) and all terms in the represen-

tation of m are pairwise distinct. We must have |Supp(m)| > 2 since m # 0 and

D im1 2ojen Cijwi LM, (g:)wi; = 0. Thus there exist wy;e;wy;,
that w;; LT, (g;)w;; = wulTs(gr)wy,. We may assume without loss of generality that

. /. Iy 1 / 1
] S k. We deduce that oi,k(wij, ’LUZ-]-7 Wk, wil) = mwijeiwij — m
obstruction in o(i, k). Let m’ = m — c,-jLCU(gi)oM(wij,ng;wkl,wgl). Then we have

|Supp(m/)| < |Supp(m)| — 1. We conclude the proof by induction on [Supp(m)|. O

wrepwy; € Supp(m) such

wlek’w;d is an

Remark 3.4.9. In commutative polynomial rings, Syz(LM,(G)) is finitely generated
by the critical syzygies (see [43], Theorem 2.3.7). We can compute a system of genera-
tors of Syz(G) by lifting a system of generators of Syz(LM,(G)) (see [43], Proposition
3.1.4). However, the issue is quite different in free monoid rings. In [54], I1.3, T. Mora
stated that one cannot hope for the existence of a finite basis of Syz(LM,(G)), due
to the fact that (Uj<;<;j<s0(7,7)) cannot be finitely generated. For instance, consider
Example again. We have LM, (G) = (2z?, ry) and

o(1,1) = {xe; — ez, 67 — 261} U {2*we — qwa?, quwar® — 2*we, | w € (X))},
1 1 1

o(1,2) = {iﬁly —zex b U {Exyweg — ewa?, SEIwTY = 2*wey | w € (X)},

0(2,2) = {zywey — eqwary, uwry — rywes | w € (X)}.

One can verify that for all & € N\ {0} the obstruction e;y*zy — zy**1e; cannot be
generated by Uy<i<j<20(4, 7) \ {€2y* 2y — xy* ey }. Therefore the method for computing
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a system of generators of Syz(G) by lifting is infeasible in free monoid rings. In [§],
H. Bluhm and M. Kreuzer proposed a direct and straightforward approach, which we
will discuss in Section , to compute a system of generators of Syz(G). Even though
it does not apply to compute a system of generators of Syz(G), the lifting still can

characterize Grobner bases in free monoid rings successfully.

Definition 3.4.10. We say an element m € Syz(LM,(G))\ {0} has a lifting in Syz(G)
if there is an element m € Syz(G) such that LF, g(m) = m.

Finally, we have the following proposition from which we will obtain a Buchberger
Criterion in Section .11

Proposition 3.4.11. Let G C K(X)\{0} be a finite set of polynomials which generates
an ideal I = (G). Moreover, let G be an associated tuple of G, and let s = |G|. The

following conditions are equivalent.
a) The set G is a o-Grébner basis of I.
b) Every obstruction in Ui<i<;<s0(%,J) has a lifting in Syz(G).

Proof. We prove condition a) implies condition b). Let m € Uj<i<j<s0(7,7). By Def-
inition we have A(m) = 0 and LF,g(m) = m. If A(m) = 0, then m is a
lifting of itself. Now assume that A(m) # 0. By condition a) and Proposition [3.3.6]
A(m) has a representation A(m) = > %_, cywyg;, w;, with ¢ € K\ {0}, wy, w}, € (X),
and g;, € G such that LT,(A(m)) >, LT,(wrg;,w;) for all & € {1,...,u}. Let
h = >"%_ cjuge,wy, € Fy. We have m — h € Syz(G) and LT,(A(m)) = LT,(A(h)) =
deg,g(h). From LF,g(m) = m € Syz(LMy(G)) and Lemma W, it follows that
deg, g(m) >5 LTo(A(m)). Thus deg, g(m) >, deg, g(h) and LF,g(m —h) = LF,g(m)
= m. We conclude that m — h is a lifting of m in Syz(G).

We prove condition a) follows from condition b). Let f € I. Then f has a rep-
resentation f = Y 4 cpwigiwy, with ¢ € K\ {0}, wy,w), € (X), and g;, € G for
all k € {1,...,u}. Since o is a well-ordering, there exists one among all represen-
tations of f having minimal max,{LT,(wgg;,w;) | & € {1,...,u}}. Suppose that
max, {LT,(wrg;,,wy,) | k € {1,...,u}} >5 LT (f). Let m = >k, cpwpe; wj, € F
such that A(m) = f with minimal o-degree. By assumption, we have deg, s(m) >,
LT,(f) = LT,(A(m)). By Lemma we have LF,g(m) € Syz(LM,(G)). More-
over, by Lemma b Ui<i<j<s0(7,7) is a homogeneous system of generators of
Syz(LMy(G)). Thus there exist ay, . ..,a, € K\{0},wy,...,w, € (X),and my,...,m, €
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Ui<i<j<s0(4,j) such that LF,g(m) = >,_, qqwymyw,. By condition b), we assume
that m; € Syz(G) is a lifting of my, i.e. LF,g(my) = my for all [ € {1,...,v}.
We conclude that LF,g(m) = > /_, qq@,LF, g(m);w; = LF,¢(> ", aywymyw;). Thus
deg, g(m — >, aqyiymyny) <, deg, g(m) and X(m — >, aywymyv;) = A(m), con-
tradicting the minimality of the o-degree of m. Therefore we must have LT, (f) >,
max, { LT, (wrg;,w}) | k € {1,...,u}}. Hence G is a o-Grobner basis of I by Proposi-

tion 3.3.6lb. 0

Observe that Proposition [3.4.11] also holds if G is an infinite set. To prove the
proposition in this case, we first index the elements of G by an ordered set and then
proceed exactly the same as the proof of Proposition [3.4.11]

3.5 Grobner Bases of Right Ideals

In this section we shall investigate Grobner bases of one-sided ideals in free monoid rings
briefly. We only consider right ideals, since the situation of left ideals is completely
symmetric and all theorems about right ideals also hold, mutatis mutandis, for left
ideals. In this section we revise the main ingredients of Grobner basis theory we have
obtained so far in the setting of right ideals. We shall begin with two main ingredients,
namely right-admissible orderings and the Right Division Algorithm.

A right-admissible ordering o on (X) is defined almost the same as in Definition
3.1.1, except that it has to be compatible with right multiplication, i.e. w; >, w9 im-
plies wyjws >, wows for all wy, we, ws € (X). Note that (left-to-right) Lex is compatible
with right multiplication. Since we are only taking into concern the right multiplica-

tion, we introduce the following Right Division Algorithm.

Theorem 3.5.1. (The Right Division Algorithm) let o be a right-admissible
ordering on (X), let s > 1, and let f,g1,...,9: € K(X) \ {0}. Consider the following

sequence of instructions.

1) Let g =---=¢qs=0,p=0, and v = f.
2) Find the smallesti € {1,...,s} such that LT,(v) = LT,(g;)w for some w € (X).
. . LCs(v) LCs(v)
If such an i exists, replace q; by q; + oo W and v by v — TCe g I

3) Repeat step 2) until there is no more i € {1,...,s} such that LT,(g;) is a prefic
of LT,(v). If now v # 0, then replace p by p + LM, (v) and v by v — LM, (v),
continue with step 2). Otherwise, return the tuple (q1,- - ,qs,p)-
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This is an algorithm which returns the tuple (q1,- - ,qs,p) such that

f= Z 9i% + P
i=1
and such that the following conditions are satisfied.
a) No element of Supp(p) is contained in (LT,(g1),...,LT5(gs)),-

b) If gi # 0 for some i € {1,...,s}, we have LT,(g:q;) <, LT,(f). If p # 0, we
have LT, (p) <, LT,(f).

Moreover, the tuple (q1,- - ,qs,p) satisfying the above condition is uniquely determined

by the tuple (f> 915 - -- 798)'

Let s > 1, 1let f,qg1,...,9s € K(X)\ {0}, and let G be the tuple (g1,...,gs). Then
the polynomial p € K(X) obtained in Theorem is called the right normal
remainder of f with respect to G and is denoted by RNR, g(f).

In the spirit of Definition we define Grobner bases of right ideals as follows.

Definition 3.5.2. A set G C K(X)\{0} of polynomials is called a (right) o-Grébner
basis of a right ideal I, C K(X) \ {0} if G generates I, and

LTo{l,} = {LTs(g)w | g € G,w € (X)}.

Remark 3.5.3. One can show that for every polynomial g € K(X) \ {0} the set {g}
is a o-Grobner basis of the right ideal (g), as follows (compare with Example [3.3.2)).
Each element f € (g), \ {0} has a representation f = gp where p € K(X) \ {0}. By
Remark [3.1.13]c¢ we have LT, (f) = LT, (¢9)LT,(p). Thus {g} is a right o-Grébner basis
of (g),. This fact indicates that Grobner bases of right ideals could be simpler than
Grobner bases of two-sided ideals. Indeed in Section [4.4] we will show that every finitely

generated right ideal has a finite right Grobner basis.

Grobner bases of right ideals can be also characterized, mutatis mutandis, by leading

term sets and leading term ideals (see Propositions [3.3.3| and |3.3.4]), Grobner represen-

tations (see Proposition , and syzygy modules. Since we will obtain a Buchberger
Criterion for right ideals from syzygy modules, we shall spend a few words on them.
Let s > 1, and let (K(X))*® be the right K(X)-module of rank s with the canonical
basis {n1,...,ns}, i.e. 3 = (0,...,0,1,0,...,0) whose the i*! element is 1 and all of
whose other elements are 0. Note that (K(X))® is not a free K (X)-bimodule since
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the universal property (see Proposition [2.3.8)) does not hold. We write an element
m € (K(X))* asm = >, mp; with p; € K(X). Once again, we let g1,...,gs €
K(X)\ {0}, G the tuple (g1,...,9s), and LM, (G) the tuple (LM,(¢1),...,LM,(gs))-

Definition 3.5.4. Using the notation above, we define right syzygy and right syzygy
module as follows.

a) A right syzygy of G is an element Y ., mip; € (K(X))® such that > ;_, g;p; = 0.

b) Let Syz(G), be the set of all right syzygies of G. One can verify that Syz(G), is
a right K (X)-module. We call Syz(G), the right syzygy module of G.

Similarly, a right syzygy of LM, (G) is an element Y ;_, n;p; € (K(X))*® such that

> LM, (g:)pi = 0; the set of all right syzygies of LM, (G) forms a right K (X)-module
and is denoted by Syz(LM,(G)),.

Definition 3.5.5. Let 4,5 € {1,...,s} and i < j. If there exists some w € (X) such
that LT,(g;) = LT,(gj)w or LT,(¢g;)w = LT,(g;), then a right obstruction of g,

and g;, denoted by ro; ;, is mni - mnjw or mmw — mnj, respectively.

7

Let O, be the set of all right obstructions of G.

In contrast to two-sided syzygies, for each pair i, j € {1,..., s} there exists none or
only one right obstruction of g; and g; and there is no self right obstruction. Therefore

we have
O, ={ro;; € (K(X))* | 1 <i<j<s, g;and g; have a right obstruction}.

Clearly we have |O,| < co. Moreover, the following lemma holds.
Lemma 3.5.6. The right syzygy module Syz(LM,(G)), is finitely generated by O,.

Proof. The proof that Syz(LM,(G)), is generated by O, is proceeded analogously to
the proof of Lemma [3.4.8/b. The finiteness follows from the fact that O, < oo. O

The following proposition is the counterpart of Proposition |3.4.11}

Proposition 3.5.7. Let G C K(X) \ {0} be a set of polynomials which generates a
right ideal 1, = (G),. Moreover, let G be an associated tuple of G, and let O, be the
set of all right obstructions of G. Then G is a right o-Grobner basis of I, if and only
if every right obstruction in O, has a lifting in Syz(G),.

Proof. Analogous to Proposition [3.4.11 O



Chapter

Grobner Basis Computations in
K(X)

In the last chapter we have taken the first step toward studying Grébner basis theory
in free monoid rings. In the process we investigated many nice properties of Grobner
bases. In this chapter we shall explore techniques for Grobner basis computations in
free monoid rings. It is known that computing Grobner bases is not an easy task in
both the commutative and the non-commutative cases. In the non-commutative case
it bears the extra difficulty that Grobner bases, even reduced Grobner bases, may be
infinite. Since Grobner basis computations are at the heart of many applications of
Grobner bases, efficient algorithms for computing Grobner bases are of considerable
practical interest. In the literature of computational commutative algebra, Grobner
basis computations are based on either the classical Buchberger Algorithm [I1] or J.-
C. Faugere’s F4 Algorithm [26]. In this chapter we shall study a generalization of
Buchberger’s Algorithm in free monoid rings. In Chapter [5| we will generalize the F4

Algorithm to free bimodules over free monoid rings.

With the intention of improving the procedures for computing Grobner bases in
free monoid rings, in Section we shall obtain a Buchberger Criterion from a set of
obstructions and formulate a Buchberger Procedure to enumerate Grobner bases. First,
we obtain prototypes of Buchberger’s Criterion (see Corollary and Buchberger’s
Procedure (see Theorem [4.1.4]). Then we investigate the set of obstructions more
carefully and get rid of a large number of trivial obstructions (see Lemmas and
[£.1.10). We obtain a finite set of non-trivial obstructions for every finite system of

generators (see Definition 4.1.11)and Lemma [4.1.12)). Finally, we get practical versions
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of Buchberger’s Criterion (see Proposition 4.1.13)) and Buchberger’s Procedure (see
Theorem |4.1.14)).

In commutative settings improvements of the classical Buchberger Algorithm have
been well-studied mainly for two approaches, which are to detect unnecessary critical
pairs (see [12, 13|, 17, [33], 43, [44]) and to play with strategies (see [4, 28, 34]). However,
little is known about the improvements of Grobner basis computations in the non-
commutative case. In Section [4.2] we shall be mostly concerned with improving the
Buchberger Procedure by detecting unnecessary obstructions. We investigate the set
of obstructions closely and propose two methods to detect unnecessary obstructions:
by interreducing on non-trivial obstructions (see Theorems and by generaliz-
ing the Gebauer-Moller Installation (see [33]) to free monoid rings (see Propositions
14.2.15] [4.2.17 and [4.2.18). Then we improve the Buchberger Procedure accordingly
(see Theorem . We also study redundant generators and improve the Buch-
berger Procedure by deleting redundant generators (see Theorem [4.2.24]).

Since the Buchberger Procedure behaves very well for a homogenous system of gen-
erators, in Section [£.3|we shall study homogenization and dehomogenization techniques
and explore the connections between N-graded and non-graded ideals. First we define
homogenization and dehomogenization for polynomials (see Definition and ide-
als (see Definition and study related properties (see Lemmas and
. Then we present connections between N-graded and non-graded ideals through

Grobner bases (see Propositions|4.3.10[and [4.3.13]). We describe a homogeneous version

of the Buchberger Procedure to enumerate Grobner bases of ideals that are generated

by homogeneous systems of generators (see Theorems [4.3.16| and 4.3.21]).

In Section [4.4] we shall briefly study Grobner basis computations for right ideals.
Since every finitely generated right ideal has a finite Grobner basis, we present two algo-
rithms for computing Grobner bases of right ideals (see Theorem and Proposition
4.4.4)).

Throughout this chapter, we let K be a field, X = {x1,...,2,} a finite alphabet
(or set of indeterminates), K (X) the free monoid ring generated by X over K, (X)
the free monoid generated by X, and o an admissible ordering on (X). Moreover,
for s > 1, we let F; = (K(X) ® K(X))*® be the free K(X)-bimodule of rank s with
canonical basis {e€1,..., €}, where ¢, = (0,...,0,1 ® 1,0,...,0) with 1 ® 1 occurring
in the i'" position for i = 1,...,s, and we let T(F,) be the set of terms in Fj, i.e.
T(Fs) = {wew' | i € {1,...,s}h,w,w" € (X)}. By an ideal I C K(X) we mean a

two-sided ideal unless specified otherwise.
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4.1 The Buchberger Procedure

Let G C K(X) \ {0} be a finite set of polynomials which generates an ideal I = (G),
let G be an associated tuple of G, and let s = |G|. Recall that U;<;<;<s0(%, ) is the
set of all obstructions of G (see Definition . By Proposition the set G is
a 0-Grobner basis of I if and only if every obstruction in Uj<;<j<s0(4, j) has a lifting
in Syz(G). In this section, we shall obtain a Buchberger Criterion from Proposition
and construct a Buchberger Procedure for enumerating Grobner bases of finitely
generated ideals. We start by defining S-polynomials of obstructions.

Definition 4.1.1. Let i,j € {1,...,s} such that i < j, and let o; ;(w;, wj; w;, w}) €
o(7, j) be an obstruction of ¢g; and g;. We call the polynomial

1 1

/ /
— W gW,;, — ———Ww;g;w; € K(X
L, (g 9"~ L0 (g) s € M)

Sz’,j(wbw;;wjuw;‘) =

the S-polynomial of o; ;(w;, w; w;, w}).

The following proposition shows that we can check whether an obstruction has a

lifting using its S-polynomial and a representation of its S-polynomial.

Proposition 4.1.2. Let G C K(X)\ {0} be a finite set of polynomials which generates
an ideal I = (G), let G be an associated tuple of G, and let s = |G|. Then the following

conditions are equivalent.
a) The set G is a o-Grébner basis of I.

b) The S-polynomial of every obstruction o; ;(w;, wj; wy, w}) € Ui<icj<s0(i, j) has a

representation

i
S (Wi, wis wy, wy) = Z KW g3y, W),
k=1
with ¢, € K,wg,wy, € (X), and g;, € G for all k € {1,...,pu} such that
LTy (wigi,wy,) <o LTo(S;;(wi, wi;wi, w})) if cx # 0 for some k € {1,...,pu}.

c¢) The S-polynomial of every obstruction o; ;(w;, wj; wy, w}) € Ui<icj<s0(i, j) has a
representation
n

/. AN /
Si,j(wiawiijawj) = E CxWkYGi), Wy,
k=1
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with ¢ € K,wg,w, € (X), and g;, € G for all k € {1,...,pu} such that
LT, (wggs, wy,) <o LT (wigsw}) if ek # 0 for some k € {1,..., u}.

Proof. From the fact S, j(w;, w}; w;, wé) € I and Proposition W, it follows that con-
dition a) implies condition b). By Definitions [3.3.7 and [4.1.1] we have LT, (wg;w}) >,

LT (S;,j(w;, wi; wj, w})). Then condition ¢) immediately follows from condition b).

To prove that condition c¢) implies condition a), it suffices, by Proposition [3.4.11}, to
prove that every obstruction o; j(w;, wj; wj, w}) € Ui<i<j<s0(i, j) has a lifting in Syz(G).
If S; j(wi, wi; wy, wj) = 0, then o; ;(w;, wi; w;, w)) is a lifting of itself. Now assume that
Sij(ws, wizwy, wh) # 0. Let S j(wi, wi; wy, wi) = Y _; ckwrgs, wj, be a representation
of S; j(w;, wi; wj, wj) as in condition c). Let m = o5 j(w;, wi; wj, wj) — D1y CkWkes, Wy
Clearly m € F,. Then we have LF,g(m) = o0;;(w;, wj;w;,wi) and m € Syz(G).

. e , ,
Hence m is a lifting of o, j(w;, wj; w;, w}). O

The representations of S; j(w;, wj; wj,w}) as in conditions .b and .c are
called weak Grobner representations of S ;(w;, wj; w;, w}) in terms of G by A.
Cohen [21] and T. Mora [55], respectively. Note that the notion of a weak Groébner
representation as in condition [£.1.2]b coincides with the notion of a Grobner represen-
tation introduced in Definition [3.3.7] Intuitively, weak Grobner representations can be

computed by the Division Algorithm.

Corollary 4.1.3. (Prototype of Buchberger’s Criterion) Let G C K(X) \ {0}
be a finite set of polynomials which generates an ideal I = (G), let G be an associated

tuple of G, and let s = |G|. Then the following conditions are equivalent.
a) The set G is a o-Grébner basis of I.
b) For every obstruction o; j(w;, wi;wj, w’) € Ur<i<j<s0(i, j), we have

NRg g (S;,; (w;, wi; wj,w;-)) =0.
Proof. From the fact S; j(w;, wj; wj,w}) € I, Remark [3.1.18,¢ and Proposition |3.3.10}
it follows that condition a) implies condition b). Conversely, by Theorem and
Proposition we have condition b) implies condition a). O

Just as Proposition |3.4.11, one can verify that Proposition and Corollary
also hold if G is an infinite set. With Buchberger’s Criterion above, we construct Buch-
berger’s Procedure in free monoid rings, which is virtually identical to Buchberger’s

Algorithm in the commutative case. Buchberger’s Procedure can be roughly described
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as follows. Given a system of generators, we construct obstructions for each pair of gen-
erators. For each obstruction we compute the normal remainder of its S-polynomial,
and add non-zero normal remainder to the system of generators and construct new
obstructions. At termination of the procedure, all the S-polynomials of obstructions
have the zero normal remainder and the system of generators forms a Grobner basis.
More precisely we have the following prototype of Buchberger’s Procedure. Note that
in the following procedure as well as in procedures henceforth, by a fair strategy we

mean a selection strategy which ensures every obstruction is eventually selected.

Theorem 4.1.4. (Prototype of Buchberger’s Procedure) Let G C K(X) \ {0}
be a finite set of polynomials which generates an ideal I = (G), let G be an associated

tuple of G, and let s = |G|. Consider the following sequence of instructions.
]) Let s = s and B = U1§i§j§310<i,j).

2) If B =0, return the result G. Otherwise, select an obstruction o; j(w;, w}; wy, w)

€ B using a fair strategy and delete it from B.

8) Compute the S-polynomial S = S; j(w;, wi; w;, w)) and its normal remainder S' =
NR,g(S). If ' =0, continue with step 2).

4) Increase s' by one, append go = S’ to the tuple G, and append the set of obstruc-
tions Ui<;j<x0(i,s") to the set B. Then continue with step 2).

This is a procedure that enumerates a o-Grobner basis G of I.

Proof. To prove correctness, it suffices, by Corollary [4.1.3] to show that for every ob-
struction o, ;(w;, wi; wj, wj) € Ui<i<j<s0(i, j) the normal remainder of S; j(w;, wi; wy, wy)
with respect to G is zero. If in step 3) S’ = 0, then we are done. Otherwise, we ensure
that the normal remainder of S with respect to G is zero by appending S = NR, ¢(.5)

to G in step 4). O

In the literature of computational non-commutative algebra, this procedure for
enumerating Grobner bases is often called Mora’s Algorithm since it was introduced
by F. Mora [53].

Remark 4.1.5. Let us make some remarks on the preceding procedure.

a) Different selection strategies applied in step 2) can affect the behaviour and effi-

ciency of the procedure remarkably (see [10, [34]). The normal selection strategy,
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which selects the obstruction with the minimal o-degree, is the default selec-
tion strategy in the ApCoCoA package gbmr. We also use the normal selection

strategy in examples henceforth in this thesis.

b) Unfortunately, even if the best selection strategy is applied, we can not guarantee
the termination of Buchberger’s Procedure due to the fact that Dickson’s lemma,

which ensures the termination of Buchberger’s Algorithm in the commutative
case, does not hold in free monoid rings (see Remark [2.1.25b).

c¢) Besides the failure of Dickson’s lemma in free monoid rings, there is still one
crucial problem with the prototype of Buchberger’s Procedure: there may exist
infinitely many obstructions. For all 1 < ¢ < j < s, according to Definition
, there are infinitely many obstructions in o(i, j) caused by the following two

sources.

c.1) If o; j(ws, wi; wy, wf) € o(i, j), then o; j(ww;, wiw'; ww;, wiw') € o(i, j) for all
w,w € (X).

c.2) Wehave o, ;(LT,(g;)w, 1;1,wLT ;(g;)), 0:;(1, wLT,(g,); LT, (g:)w, 1) € o(3, )
for all w € (X).

We should carefully handle this problem in order to extract a practical procedure

from the prototype of Buchberger’s Procedure.

Now we shall take care of the sources of infinitely many obstructions mentioned in
Remark c. The following lemma handles case c.1) of Remark |4.1.5]

Lemma 4.1.6. If the S-polynomial of o; j(w;, wi; wy, w}) € o(i, j) has a weak Grébner
representation in terms of G, then so does the S-polynomial of 0; j(ww;, wiw'; ww;, wiw')
for all w,w' € (X).

Proof. By assumption, we write S; ;(w;, wj; wj, wj) = Y3 ckwrgi,wy, with ¢, € K,
wi, wy, € (X), g, € G such that w;LT,(g;)w} >, wiLT,(g;, )w,, for all k € {1,..., u}.
For any w,w’ € (X) we have S; j(ww;, wjw'; ww;, wjw') = Y7 crwwygi, wiw' using
Definition . Since ¢ is compatible with multiplication, we have ww; LT, (g;)wiw’ >,
ww, LT, (g;, Jww' for all k € {1,...,pu}. Thus S ;(ww;, wiw'; ww;, wiw') has a weak

Grobner representation in terms of G. O

For the purposes of computing Grobner bases, by Proposition and Lemma
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4.1.6, we only need to consider in o(i, j) the obstructions of the forms
Oi,j(wiy 17 17 w;)? Oi,j<17 w:7 wj; 1)7 Oi,j<wi7 w'/u 17 1)7 Oi,j(17 17 U)j, w;)
with w;, wj, w;, w; € (X). Observe that 0;;(1, 1;w;, w;) € o(i,7) implies w; = w; = 1.
Clearly 0;,(1,1;1,1) = 0. Moreover, S;;(w;, 1;1,w}) = =S;;(1,w}; w;,1). Thus we only
need to consider in o(7,4) the self obstructions of the form
0i,i(1, wis wy, 1)

with w;, w; € (X) \ {1}.
To get rid of case c¢.2) of Remark [4.1.5] the following definition proves useful.

Definition 4.1.7. Let wy,wy € (X). If there exist w,w’,w” € (X) and w # 1 such
that wy = w'w and wy = ww”, or w; = ww’ and wy = W”w, or wy = w and wy = WwwW”,
or w; = w'ww” and wy = w, then we say w;, and w,y have an overlap at w. Otherwise,
we say w;, and ws have no overlap.

Let o; (wi, wi;wj, wi) € o(i,j) be an obstruction. If LT,(g;) and LT,(g;) have
an overlap at w € (X) \ {1} and if w is a subword of w;LT,(g;)w;, then we say
04,5 (Wi, wi; wy, w}) has an overlap at w. Otherwise, we say o; j(w;, wj; wj,w;) has no

overlap.

Case c.2) of Remark shows that there are infinitely many obstructions without

overlaps in each o(7, j). The following example is inspired by [21], Lemma 1.3.

Example 4.1.8. Consider the free monoid ring Fy(z,y, u,v,t, s) equipped with the
admissible ordering ¢ = LLex such that x >, y >, u >, v >, t >, s. Let I C
Fo(z,y,u,v,t,s) be the ideal generated by the set {g1, ga}, where g; = u(xy)3+v(xy)?+
u+v and gy = (yx)3t+ (yz)?t+t+s. We have LT, (g1) = u(zy)? and LT, (g2) = (yx)3t.
Let G be the tuple (g1, g2). It is easy to check that o(1,1) and o(2,2) contain only
obstructions without overlaps, and
0(1,2) = {o12(1,xt;ux, 1), 012(1, zyat; uzyz, 1), 012(1, (zy)*xt; u(zy)*xt, 1)}
U{o12(1, w(yx)*t; u(zy)*w, 1) | w € (X)}
U{oa((yx)*tw, 1; 1, wu(zy)®) | w e (X)}.
We consider the following obstructions in o(1, 2).
a) 012(1, xt;uz, 1) has an overlap at (zy)?z.
Sia(l,at;ux, 1) = uxs+ovxt
NR,g(S12(1, 2t;uz, 1)) = wuxs+ vat
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We let G = (g1, g2, g3) with g3 = uzs + vzt.
b) 012(1, xyxt; uryx, 1) has an overlap at zyz.
S12(1, zyzt; uryz, 1) = wuzyzrs + vyt
NR, g(S12(1, zyat; uryx,1)) = uxryxs+ vryxt
We let G = (g1, g2, 93, 94) With g4 = uxyxs + varyxt.
¢) o12(1, (zy)?xt; u(zy)®xt, 1) has an overlap at z.
S1o(1, (zy)2at;u(zy) et 1) = u(zy)®vs + v(ay)’at
NR, g(S12(1, (zy)*zt; u(zy)®at, 1)) = u(zy)®xs + v(wy)’at
We let G = (g1, 92, 93, 9, 95) With g5 = u(zy)*xs + v(wy)’at.

d) o012(1, (yz)3t; u(xy)3,1) has no overlap and corresponds to case c.2) of Remark

4.1.5 with w = 1.
Sia(L, (ye)’tu(ey)®, 1) = ulwy)*(y)*t + u(zy)* (y2)*t + uley)*t
+u(zy)®s + u(yz)*t + v(yz)t
By the Division Algorithm we get
S1a2(1, (o)’ ulay)®, 1) = g1(yx)*t + u(zy)®gs + git + ugs + g15 + vge.
Thus NR, ¢(S12(1, (yx)3t; u(zy)?, 1)) = 0.
e) 012(1, z(yx)*t; u(zy)x, 1) has no overlap and corresponds to case c¢.2) of Remark
K18 with w = .
S1o(1, z(yz)’tu(zy)’e, 1) = u(ay)’zs + v(zy) vt
By the Division Algorithm we get
Si2(L a(yz)’tu(vy)’e, 1) = s + uwgs + gs + ga.
Thus NR,g(S12(1, z(yz)3t; u(zy)3x,1)) = 0. Going the other way, we compute
S12(1, z(yz)3t; u(zy)dz, 1) as follows.
S12(1, z(yx)*t; u(zry)*z, 1)
= 912LTs(g2) + LTo(g1)292
= (g2 + ((y2)"t + 1+ 5)) + (g1 + (w(ey)” + v+ v))zgo
= giz((yz)’t +t+s) + ((u(zy)® + u+v))rg
= (q12(y2)*t + u(zy)’zg) + (g1t + urgs) + g1os + vage
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Observe that giat+uxgs and gyz(yx)*t+u(xy)?xgs are S-polynomials in a) and c),
respectively, and that both obstructions in a) and b) have overlaps. Further, by a)
we have g1zt + uxrgy = g3 and LT,(g3) = urs <, u(zy)?ws, where u(zy)3xs is
the leading term of S o(1, z(yx)3t; u(zy)®z, 1), and by ¢) we have giz(yz)?t +
u(zy)?rgs = g5 and LT,(g5) = u(zy)®xrs <, u(zy)®zs. Using substitution, we
get again
S12(1, 2(yx )’ u(zy)’e, 1) = gs + g5 + g1es + vgs

which is a weak Grobner representation of Sy (1, z(yx)3t; u(zy)®z,1) in terms

of GG in the sense of Proposition [4.1.2/b.

012(1, zyz(yz)3t; u(xy)3zryx, 1) has no overlap and corresponds to case c.2) of

Remark with w = zyx.
S1a(L, zya(ye)t u(zy) ey, 1) = ulzy)zs + v(zy) ot
By the Division Algorithm we get
S12(1, zya(yx)’t u(zy) wye, 1) = groyes + veyegs + g1as + vrgs + gs + ga + gs.
Thus NR, ¢(S12(1, zyz(yz)3t; u(xy)3zyz, 1)) = 0. Going the other way, we com-
pute S12(1, zyx(yx)3t; u(zy)®zyr, 1) as follows.
S1o(1, zyz(yr)*t; u(wy) vyr, 1)

= g1zyzLT,(g2) + LT (g1)zyzg0

= queyr(g: + ((y2)"t +t+5) + (91 + (u(@y)’ + u +v))zyzge

= grzyz((yz)*t +t +s) + (u(xy)® +u +v))vysgs

= (qreya(yz)’t + u(zy)’ryzgs) + (eyst + uryzgs) + giryas + vrygs
Observe that gixyzt + uryrgs and gizryz(yzr)*t +u(ry)*ryrgs are S-polynomials
in b) and e), respectively, and that the obstruction in ¢) has an overlap, and that
degmg(ol’g(l, ryz(yx)3t;u(zy)ryz, 1)) >, degmg(ol’g(l, x(yz)*t; u(ry)z, 1)). Fur-
ther, by b) we have gixyzt + uzyzrgs = g4 and LT,(gs) = uzyrs <, u(zy)izs,
where u(xy)*zs is the leading term of Sy o(1, zyx(yx)3t; u(zy)*zyz, 1), and by e)
we have gizyx(yz)?t + u(zy)?zyrge = G125 + urgs + g5 + g3 and LT, (g1rs +
uzrgs + gs + g3) = u(zy)>vs <, u(zy)zs. By substitution we get again
S12(1, zya(yz)’t u(zy) wyr, 1) = g1as + urgs + gs + gs + ga + Greyrs + vryrg,

which is a weak Grobner representation of Spo(1, zyz(yz)3t; u(zy)?zyr,1) in
terms of G in the sense of Proposition {.1.2]b.
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Remark 4.1.9. Let us make some observations about the preceding example.

a)

Examples 4.1.8ld, e, and [4.1.8/f show that the weak Grobner representa-

tions of the S-polynomials of obstructions without overlaps depend on the weak
Grobner representations of the S-polynomials of obstructions with overlaps. Ex-
ample [£.1.8]f also shows that larger o-degree obstruction without overlap can
be “reduced” to smaller o-degree obstruction without overlap. A. Cohen proved
in [21], Lemma 1.3 that if all the S-polynomials of obstructions with overlaps
have weak Grobner representations, then so do the S-polynomials of obstruc-
tions without overlaps. The proof was achieved by induction on the o-degree of
obstructions.

From another point of view, in Example .e we have LT,(g;)x(yz)3t larger
than LT, (g1)x(yz)?, LT,(g1)zt, LT,(g1)xs, u(xy)?xLT,(gs), uxlT,(gz), and
v&LT,(gs). Thus S12(1, z(yx)*t; u(zy)’z, 1) = gre((yz)*t +t + s) + ((u(zy)? +
u + v))xgy is a weak Grobner representation in terms of {g1, g2} in the sense
of Proposition .c. Similarly, in Example f we have LT,(g1)zyx(yx)3t
larger than LT, (g)xyz(yz)*t, LT,(g1)xyxt, LT, (g1)zyxs, u(zy) zyzLT,(gs),
uryzLT,(g2), and vryxLT,(g2). Therefore Sio(1, zyx(yz)3t; u(zy)dzyr,1) =
grryz((yz)*t +t+s) + (u(zy)* + u+v))ryzgs is a weak Grobner representation
in terms of {g1, g»} in the sense of Proposition |4.1.2c.

The following lemma is a generalization of the observations in Remark [£.1.9

Lemma 4.1.10. If o;j(w;, wj; wj, w}) € o(i, j) has no overlap, then the S-polynomial

Si j(wi, wis wy, wj) has a weak Grébner representation in terms of {gi, g;}-

Proof. See [55], Lemma 5.4. O

By Proposition and Lemma [4.1.10] for the purposes of computing Grobner
bases we can safely discard all obstructions without overlaps.

Definition 4.1.11. Let s > 1, let ¢4,...,9s € K(X)\ {0}, and let G = (g1, ..., gs) be
a tuple.

a)

Let 4,5 € {1,...,s} and ¢ < j. An obstruction in o(, j) is called non-trivial
if it has an overlap and is of the form o;;(w;, 1;1,w}), or 0;;(1,wj;w;, 1), or

04,5 (wi, wi; 1,1), or 0;5(1, 1wy, wf) with wy, wi, w;, w) € (X).
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b) Let i € {1,...,s}. A self obstruction in o(¢,7) is called non-trivial if it has an
overlap and is of the form o, ;(1, w}; w;, 1) with w;, w; € (X) \ {1}.

c) Leti,j € {1,...,s} and i < j. The set of all non-trivial obstructions of g;
and g, is denoted by O(, j).

In the literature, a non-trivial obstruction of the form o; ;(w;, 1; 1,w§) is called a

left obstruction, of the form o, ;(1,w};w;, 1) is called a right obstruction, and of

%) is called a center obstruction. Thus

every non-trivial self obstruction is a right obstruction. We picture four obstructions

the form o, ;(w;, w};1,1) or 0;;(1,1;w;, w

1) )

as follows.
/
w; €; €; w;
/
g fwp | [y ] g
left obstruction right obstruction
w; €; w; €;

!
Ej w]- Gj wj

centre obstruction centre obstruction

Lemma 4.1.12. Foralli,j € {1,...,s} and i < j, we have |O(i,7)| < oc.

Proof. For any non-trivial obstruction o; j(w;, w;; w;, w’;) € O(4, j), it follows from Def-
inition that len(w,LT,(¢;)w;) < len(LT,(g;)) + len(LT,(g;)). Thus len(w;w})
< len(LT,(g;)). Since |X| < oo, there are only finitely many choices of w; and w;.
Hence |O(4, j)| < oo. O

Finally, we have the following practical versions of Buchberger’s Criterion and Buch-

berger’s Procedure.

Proposition 4.1.13. (Buchberger Criterion) Let G C K(X) \ {0} be a finite set
of polynomials which generates an ideal I = (G), let G be an associated tuple of G, and

let s =|G|. Then the following conditions are equivalent.
a) The set G is a o-Grébner basis of I.
b) For every obstruction o; ;(w;, wi; wy, w}) € Ur<i<j<sO(i, j), we have

Nng(Si,j(wi, w;, wy, w;)) =0.

Proof. Follows from Corollary and Lemmas [4.1.6| and 4.1.10} [
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Theorem 4.1.14. (Buchberger Procedure) Let G C K(X)\ {0} be a finite set of
polynomials which generates an ideal I = (G), let G be an associated tuple of G, and

let s =|G|. Consider the following sequence of instructions.
1) Let s' =s and B = U1<;<j<5O(4, ).

2) If B =10, return the result G. Otherwise, select an obstruction o; ;(w;, wi; wj, w)

€ B using a fair strategy and delete it from B.

8) Compute the S-polynomial S = S; j(w;, wi; w;, w’) and its normal remainder ' =
NR,g(S). If " =0, continue with step 2).

4) Increase s' by one, append gy = S’ to the tuple G, and append the set of obstruc-
tions U1<;<sO(i, ") to the set B. Then continue with step 2).

This is a procedure that enumerates a o-Grobner basis G of I. If I has a finite o-
Grobner basis, it stops after finitely many steps and the resulting tuple G is a finite

o-Grobner basis of 1.

Proof. The correctness follows from Theorem and Proposition We prove
that the procedure stops after finitely many steps if I has a finite o-Grobner basis.
Suppose that G’ = {g},...,g;} is a finite o-Grébner basis of I. Since the procedure
enumerates a o-Grobner basis G of I, for each polynomial g; € G’ there exists a
polynomial g;; € G such that LT, (g}) is a multiple of LT,(g;;). Let k = max{iy,... 4}
and G = (g1,..-,9r) € G. Then we have LT,{/} = {wLT,(gj)w’ | g; € G',w,w" €
(X)} C{wLT,(g:)w' | g; € G, w,w" € (X)} C LT, {I}. Thus Gj is a o-Grobner basis
of I. Hence all NR,g(S) in step 3) are zero after g being appended to G, and the
procedure terminates after finitely many steps by Proposition [4.1.12 n

Example 4.1.15. (continued) Consider Example again. Recall that the ideal
I C Fylx,y,u,v,t,s) is generated by the set {g1, g2} with g1 = u(zy)® + v(zy)* + u +
v,g0 = (yx)3t + (yx)*t +t + s, and that 0 = LLex with & >, y >, u >, v >, t >, s.
We have O(1,1) = 0(2,2) = 0 and O(1,2) = {o12(1, xt; ux, 1), 012(1, zyat; uxyz, 1),
012(1, (zy)?at; u(zy)?zt, 1)}. After selecting the obstructions in O(1,2), we get g3 =
uzs + vat, gy = uryrs + vayrt, gs = u(xy)?xs + v(zy)*xt and G = (g1, 92, 93, 94, G5
by Example [£.1.8] Since O(1,3) = 0(2,3) = O(3,3) = 0(1,4) = 0(2,4) = 0(3,4) =
0(4,4) = O(1,5) = 0(2,5) = 0(3,5) = O(4,5) = O(5,5) = 0, the set {g1, 92, 93, g1, 95}

is a o-Grobner basis of the ideal /.
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Remark 4.1.16. We observe again the instructions of the Buchberger Procedure.
Note that at every stage of the procedure the tuple G is a system of generators of the
ideal I. We call each such tuple G a partial o-Grobner basis of the ideal 1. Also
note that in general it is undecidable whether a finitely generated ideal has a finite
Grobner basis in free monoid rings (see [58], Theorem 2.4). In some situations we
happen to know ahead of time that a finitely generated ideal has only infinite Grobner
bases or Grobner bases consisting of a very large number of generators. Moreover, for
many applications it is not necessary to compute a Grobner basis completely. Partial
Grobner bases are the gem for these applications. Let us take the word problem (see
Definition as an example. In Remark we converted the word problem
to checking whether the normal form of a polynomial modulo an ideal is zero. We
compute the normal remainder of the polynomial with respect to a partial Grobner
basis of the ideal. If the normal remainder is zero, then we get a positive answer to
the word problem. Otherwise, we carry on with the Buchberger Procedure and obtain
a new partial Grobner basis and try the division again. In this way we make the word

problem into a semi-decidable problem.

We end this section with an application of the Weak Division Algorithm (see Corol-
lary [3.3.9)). Recall that in Section [3.2] we constructed the Division Algorithm (see The-
orem with original intention of computing the normal form. Condition .a,
i.e. no element of the support of the normal remainder is contained in the monomial
ideal generated by the leading terms of divisors, is a strong requirement. Compared
with the Weak Division Algorithm, further reduction steps are needed in order to sat-
isfy condition [3.2.1la. Note that condition [3.2.1la is not necessary for Grobner basis

computations.

Proposition 4.1.17. (Weak Buchberger Criterion) Let G C K(X) \ {0} be a
finite set of polynomials which generates an ideal I = (G), let G be an associated tuple

of G, and let s = |G|. Then the following conditions are equivalent.

a) The set G is a o-Grébner basis of I.
b) For every obstruction o; ;(w;, wj; wj, w}) € Ui<i<j<sO(i, j), we have
WNR,. (S, (wi, wi; wy, w;)) = 0.

Proof. Note that for each S-polynomial the Weak Division Algorithm gives a weak

Grobner representation in terms of G. Then the proof of the proposition is analogous
to the proof of Proposition 4.1.13] O
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Thus WNR, ¢(S) is an alternative to NR, g(5) in the Buchberger Procedure (see
Theorem . According to our experiments the Division Algorithm and the Weak
Division Algorithm have almost the same performance for Grébner basis computations.
It is still unclear which one is superior. A more practical usage of the Weak Division
Algorithm is the following algorithm for checking whether a given finite system of

generators is a Grobner basis.

Corollary 4.1.18. Let G C K(X) \ {0} be a finite set of polynomials, let G be an

associated tuple of G, and let s = |G|. Consider the following sequence of instructions.
]) Let B = UlgingSO(i,j).

2) If B =10, then return “The set G is a o-Grébner basis of the ideal (G)”. Other-

wise, select an obstruction o; j(w;, wi;w;, w;) € B and delete it from B.

3) Compute S = S; ;(w;, w}; wj, w;) and WNRyg(S). If WNR,g(S) = 0, continue

J
with step 2). Otherwise, return “The set G is not a o-Grobner basis of the ideal

(G)”.

This is an algorithm which checks if a finite set of polynomials G is a o-Grébner basis
of the ideal (G).

Proof. The termination follows from Proposition 4.1.12| and the correctness follows
from Proposition [4.1.17] O

4.2 Improved Buchberger Procedures

Let G C K(X) \ {0} be a finite set of polynomials which generates an ideal I = (G),
let G be an associated tuple of G, and let s = |G|. Proposition states that G is
a o-Grobner basis of [ if and only if the normal remainders of all the S-polynomials
of non-trivial obstructions in U;<;<;<sO(4, j) are zero with respect to G. The normal
remainders are computed by the Division Algorithm. Note that the application of
the Division Algorithm is the most time-consuming part in the Buchberger Procedure.
Hence the most efficient optimization of the Buchberger Procedure is to detect as
many unnecessary obstructions, i.e. the obstructions whose S-polynomials have the
zero normal remainder, as possible.

In the commutative case, this problem was first studied by B. Buchberger [12], 13].
Later on, R. Gebrauer and H. Méller [33] used Taylor bases of the module generated
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by the critical syzygies to detect almost all unnecessary critical pairs very efficiently,
and this resulted in the Gebauer-Mdller Installation. In [43], Tutorial 25, M. Kreuzer
and L. Robbiano generalized the Gebauer-Méller Installation to modules. In [17], 144],
M. Kreuzer et al. applied Grobner basis techniques to modules in the homogeneous
case and obtained a minimal system of generators of the module generated by the
critical syzygies. Hence they successfully detected all unnecessary critical pairs. In the
non-commutative case, T. Mora [55] gave a detailed presentation of useless pairs.

In this section we shall explore techniques for detecting unnecessary obstructions
in free monoid rings. To this end we shall first present an Interreduction Algorithm
on non-trivial obstructions, which is based on the assumption that the elements of
the leading term set LT,{G} are coprime. Then, by looking at the interreduction
operations closely, we shall give straightforward generalizations of the Gebauer-Moller
Installation and present improved versions of the Buchberger Procedure. Note that
the method in [17, 44] is strongly related to Grobner basis theory in modules, which
we will study in Chapter [5] In this section we also improve the Buchberger Procedure
by deleting redundant generators.

For our purposes we order the terms in T(Fy) by a relation 7 as follows.

Definition 4.2.1. Let G be the tuple as above, and let ¢ be an admissible order-
ing on (X). For all wyew!, weejwly € T(Fy), we say wiew; >, wee;wh if and only
if wiLTy(g)w] >, wolT,(gj)wsy, or wiLT,(g;)w; = woLT,(gj)wy and ¢ > j, or
w1 LT, (g))w); = wolT,(gj)wy and ¢ = j and wy; >, wy. The relation 7 is called

the module term ordering induced by (o,G) on T(Fj).

In fact, the relation 7 defined above is a module term ordering on T(F}) (see Defi-
nition . It follows from Definitions |3.4.7| and |4.1.11| that w;e;w; <; wje;w) for all

05 j(wy, wi; wi, w;) € Ur<i<j<sO(, j).

4.2.1 Interreduction on Obstructions

To perform interreduction, we make some observations about operations on the set
Ui<i<j<sO(%, j). Recall that two words w,w" € (X) are called coprime if neither w is
a subword of w’ nor w’ is a subword of w. The following proposition is essential for our

purposes.

Proposition 4.2.2. Suppose that the elements of the leading term set LT,{G} are

coprime.  Let 0; j(w;, wi; wy, w}), og 1 (wg, wy; wy, w)) € Ui<i<j<sO(4,7) be two distinct
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non-trivial obstructions.

/

a) Suppose that j =1,i <k, and €W}

= wwguww’ for some w,w' € (X). Then

we have
/. / /. N I, 1o
04,5 (Wi, Wis Wy, Wh) — wop 1 (W, Wy wy, wy)w' = 0 (Wi, Wi Ww, wiw')
/. / / :
and o; ;(w;, wi; wwy, wpw') € O(i, k) has an overlap.

b) Suppose that j =1,i >k, and wje;w} = wwewyw' for some w,w" € (X). Then

we have
/. / /. / ! /. /
—0; j (Wi, wi; wy, W) + wop 1 (Wi, w; wy, wy)w' = o (Wwp, wiw'; wy, w;)
d o s w,wh) € O(k, i) h l
and o ;(wwg, wiw'; w;, wi) € O(k,4) has an overlap.
c¢) Suppose that i =1 and w;e;w; = wwuwpw’ for some w,w' € (X). Then we have
/. / /. N1 /o, /
04,5 (Wi, wi; Wy, W) + wop g (W, wi; wy, wy)w' = o j(wWw, wiw'; wy, w)
/ /. !/ N
and oy j(wwy, wiw'; wy, wi) € O(k, j) has an overlap.

Proof. To prove claim a), by Definition [3.4.7, we have

04,5 (Wi, wis wy, W) — wog (W, w; wy, wy)w'

= (;w-e-w’- - #w-e-w’-) — w(;wkekw’ - ;wlqw’)w’
LCa(gi) e LCO’(gj) 7 Lca(gk) F LCa(gl) !
= (#w-e-w’. — ;wwkekw’ w') — (;w-e-w’- — #wwlelw'w’)
LCo(g:) """ LColgn) . LCo(g5) 777 LColq) :
We have w;LT,(gi))w; = w;LT,(g;)w; = wwLT,(g)wjw" = ww, LT, (gr)w,w’ and

1 1 _ . .
mwjejw; — mwwlqw;w’ = 0 by assumption. Then, by Definition [3.4.7, we

have mwieiw; — mwwkeszw/ = o1 (wi, Wi wwy, wiw') € O(i, k). We show
that o, (w;, w}; wwy, ww') has an overlap. By Definition [4.1.11] and the assumption

that LT, (g;) and LT, (g;) are coprime, we may assume, without loss of generality, that

04,5 (Wi, wi; wy, wh) = Lcj(gi)eiwg—m:(gj)wjej with w}, w; € (X)\{1} and len(LT,(g;)) >

len(w;). From the assumption w,e; = ww;ew,w’, it follows that ww; = w;, ww' = 1
j p €3 1w 5> Wi
and hence w; = w’ = 1. Note that oy ;(wg, w};w;, w;) is also a non-trivial obstruc-

. .- /. N o 1 / 1
tion. By Definition [4.1.11| we must have oy ;(wy, w),; wy, w)) = 0, a0k Wk — T, (g WIE

with wj,w; € (X) \ {1}. Thus o, 1 (w;, w}; wwy, wiw') = W) — o

/
— 11
LCs(gi) LCo(gx) WeRWy, a d



4.2. Improved Buchberger Procedures 71

len(LT,(g;)) > len(w;) = len(ww;) > len(w). Therefore o, ;(w;, w}; wwy, wjw') has an
overlap.

We prove claim b). By Definition we have

/. / /. /
1 1 1 1

I W s r /
I T R TeR T R TR T R ren R
]' !/ / ]' !/ 1 / 1 [,
= (—wwpeuw’ — ———wigw;) + (w6, — ———wwgww’).
S N Ve 7 A TR A TR
We have w;LT,(gi)w; = w;LT,(g;)w; = ww LT, (g)ww’ = ww,LT,(gi)wjw’ and

mwjejw; - mwwlqwfw’ = 0 by assumption. Then, by Definition [3.4.7, we

have 7o (g )wwkekw;w’ o ( T g Wik Wi = o i (wwy, wiw'; w;, wi) € O(k,1). Proceeding

exactly the same as the proof of claim a), one can show that oy ;(wwy, ww'; w;, w}) has

an overlap.

Finally we prove claim c). By Definition [3.4.7] we have

04,5 (s, wi; Wi, wj) 4+ wop g (Wi, wy; wy, wy)w'

( ! wiEW, ! 2+ w( ! w) !
— Wi W], — W — WREW, — —————
Lca(gz') LCo(gj) 7 LCo(gk) R LCo(gl)
( 1 , 1 ,) o 1 , 1
— —WWREWLW — ————— W€ W — W, —
LColge)  F7  LColgy) 777 " LCy(g1) LCo(g1)

wlelw{)w/

wweww'’).

We have w;LT,(g;)w; = w;LT,(g))w; = ww LT, (g))ww' = wwpLT,(gr)wjw" and

7

e W €W — wwww’ = 0 by assumption. Then, by Definition [3.4.7, we

LC, (g ) m

have mwwkekw;w’ — mwjejw; = o j(wwy, wpw';wi, wi) € O(k, j). We show
that oy, ;(wwy, wpw'; wy, w}) has an overlap. By Definition and the assumption
that LT, (g;) and LT, (gj) are Coprime we may assume, without loss of generality, that
05,5 (Wi, Wiz Wi, W) = T ( o ( G, ) Wit with w}, w; € (X)\{1} and len(LT,(g;)) >

len(w}). From the assumption ¢w] = wwewpw’, it follows that ww;, = 1, wjuw' = W,

)elw

and hence w; = w = 1. Note that oy (wg, w}; w;, w)) is also a non-trivial obstruction.

By Definition 4.1.11f we must have oy, ;(wy, wy; wy, w;) = mwkek — LC;(Q)

1 /
TC, (on) WEEKW — T, ( e, (5 Wi€i and

ew; with

wg,w; € (X) \ {1}. Thus okJ(wwk,w;w’;wj,w;) =
len(LT,(g;)) > len(w;) = len(wjw') > len(w’). Therefore oy j(wwy, wiw'; w;, w}) has

an overlap. O

The assumption that the elements of LT,{G} are coprime is crucial to ensure that
the resulting obstructions in the proposition have overlaps. The following example

shows this.
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Example 4.2.3. Consider the free monoid ring K(z,y) and the tuple G = (g1, g2, g3)
with LM, (G) = ((zy)?, vy, zyz?y). We have oy 3(zyz, 1;1,2y) € O(1,3), 023(, 2%y; 1,1)
€ 0(2,3), and o1 3(xyz, 1; 1, 2y) — 093(z, 2%y; 1, 1) zy = 01 2(zyz, 1; 2, 22yzy) € O(1,2).
But oy s(zyx, 1;2,2%yzy) ¢ O(1,2) since LT,(g1) and LT,(g2) have no overlap in
zyrLT,(g1) = wyz(zy)®.

Assumption 4.2.4. In the rest of this subsection, we shall assume that the elements

of the leading term set LT, {G} are coprime.

However, even this assumption is satisfied we still cannot guarantee that the result-

ing obstructions in Proposition are non-trivial.

Example 4.2.5. Consider the free monoid ring K (z,y) and the tuple G = (g1, 92, g3)

with LM, (G) = (2%y?, ?, zyx?y). We have oy 3(zy, 1;1,y) € O(1, 3), 003(zyx?, 1;1,4%) €
0(2,3), and —og3(zyx?, 1;1,y?) + 01 3(xy, 1;1,9)y = 01 2(zy, y; xyz?,1) € O(1,2). Ob-

serve that w; = xy and wy = zyz? have a common prefix xy. Thus by Definition
o12(zy, y; wya®, 1) ¢ O(1,2).

Definition 4.2.6. We define a shrink map Shk on U;<;<;<s0(i, j) as follows.

Shk : U1§i§j§30<i,j) — Ulgigjgso(ivj)

OZ'J‘(lUZ', ’U);, wj, w;) — OZ'J‘(’LZ)i, U~)£, 'lZJj, 111;)

where w; = wi;, w; = Wiy, w; = Wjw', w; = Ww' such that w € (X) is the maximal
common prefix of w; and w;, and such that v’ € (X) is the maximal common suffix of

/ /
w; and wj.

Clearly, if o, ;(w;, wj; w;,w}) € o(i,j) is an obstruction with an overlap, then

Shk(o; j(w;, wi; wj, w})) € O(4,7) is a non-trivial obstruction.

Definition 4.2.7. Let 0;;(wi, wj; wj, w}), og i (wr, wy; wi, w)) € Ui<icj<sO(i, j) be two

distinct non-trivial obstructions.

a) Suppose that j = [,i < k, and wwqujw’ = wje;w); for some w,w’” € (X). Then
we let

/. roonN /. / /. Nt
04,1 (Wi, Wi Wwg, ww') = 04 j(w;, Wi Wi, W) — WO 1 (Wi, W5 Wy, wy)w

and say that o; ;(w;, w}; w;, w’) is reduced to Shk(o; »(w;, wi; wwy, wiw')).

J
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b) Suppose that j = [,i > k, and ww,eujw’ = wje;w); for some w,w’” € (X). Then

we let

I o, AN /. ! /. / /
Opi(Wwy, wpw's wi, wi) = —o; j(wy, wi; wj, wj) + woy, i (W, wy; wy, wy)w

and say that o; j(w;, wj; w;, w}) is reduced to Shk(oy, ;(wwy, wpw'; wi, wy;)).
¢) Suppose that j = [,i = k, and ww,qujw’ = wje;w; for some w,w" € (X). Then
we let

041 (s, wis wwy, wpw') = 055 (w;i, wi; wy, wi) — wo(i, [; wy, wy; wi, wy)w'
and say that o; j(w;, wj; w;, w}) is reduced to Shk(o; ;(w;, wi; wwy, wyw')) if len(w;)

< len(wwy), and to Shk(o; ;(wwg, wiw'; w;, w})) if len(w;) > len(wwy).

d) Suppose that i = [ and ww,ewjw’ = w;e;w} for some w,w’ € (X). Then we let

ro. A /. / /. AV,
Ok j (Wwy, wpw'; wy, W) = 0 j(wy, wi; Wi, W) + wWok (Wi, Wy Wy, W)W

and say that o; ;(w;, wj; w;, w}) is reduced to Shk(oy, ;j(wwg, wjw'; wy, w))).
!/
J
The reduction is called one step obstruction reduction on U;<;<;<;O(7, j) and is

In the cases above, we say o; ;(w;, w}; w;,w’) can be reduced by oy ;(wy, wy; wy, wy).

denoted by —op.

Definition 4.2.8. The reflexive transitive closure of —p is called the obstruc-
tion reduction defined by Uj<;<j<sO(¢,7) and is denoted by Sob. An obstruction
04,5 (Wi, wi; wj, wh) € Ui<i<j<sO(1, j) is called irreducible with respect to S op if there
is no obstruction in Uj<i<j<sO(4,7) that can reduce o;;(w;, wj; wj, w}). A set of non-

trivial obstructions is called interreduced if every obstruction in the set is irreducible.

Before presenting two important properties of the obstruction reduction, we shall
extend the module term ordering 7 to the set of obstructions Uj<;<j<s0(%, j). We shall

commit a slight abuse of notation and use 7 to denote this relation.

Definition 4.2.9. Let 7 be the module term ordering defined as in Definition 4.2.1}

For two obstructions o; j(w;, w; wj, w)), op(wk, wy;wr,wy) € Uicicj<s0(i, j), We say

04,5 (Wi, wi; wy, wh) =5 op (Wi, wy; wy, wy) if we have wje;w’ > wiqwy, or if we have
wjew; = wiqw; and w;ew; >, Wyepw,.
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Remark 4.2.10. We can verify easily that 7 is a complete ordering on U;<;<;j<0(%, j)
and is a well-ordering and compatible with scalar multiplication. Obviously, we have

04,5 (Wi, wi; wy, wh) =5 Shk(0; ;(w;, wi; wy, wf)) for all o; ;(w;, wi; wy, wh) € Ui<icj<s0(i, J)-
Proposition 4.2.11. The obstruction reduction has the following properties.

a) Let 05 ;(wi, wi; wj, w}), op (W, wi; wy, wy) € Ui<icj<sO(i, ) be two distinct non-
trivial obstructions, and let
o1 (wy,wi ;wy,wy)

05 5 (wi, wé; wy, w’»)

j Ob OM,V(w;u w;; Wy, wly) € Ulgigjgso(imj)

be one step obstruction reduction. Then we have

/. / /

04,5 (Ws, Wi Wi, W) >7 0y (W, W3 Wy, W),

Moreover, if the S-polynomials Sy i(wy, wy; wi, w;) and S, (wy,, w,;w,,w,) have

weak Grobner representations in terms of G, then so does the S-polynomial
/. /

Si7j(w,~,wi,wj,wj).

b) The relation ~>oy, is Noetherian.

Proof. Claim a) can be verified case by case according to Definition . We prove
the claim for case a) of Definition “ and one can prove the other cases sumlarly. In
Deﬁnltlonm a), we have i < k,j = I, wwjre;wiw = wyew),; for some w, w' € (X),
and

/

/ / /. /
01 1 (w;j, W, wwkj,wkjw) 0 j(wij, Wi ; Wi, W ) — woy, ; (wy;, Wy wjk,wjk)w )

’L]7 ’Lj’

/ / ’op L A
We have W €pWy; <5 WjK€ Wy and hence Wwyjepwiw' <; wwjkejwjkw = Wji€;W; by
Deﬁnitionm Then, by Definition4.2.9, we have o; ; (w;;, w;

WWj, Wy w') > Shk(otk(ww,ww,wwk],wm w')).

ij> Wi, ;z) > 0; 6 (Wi, ng;
Let o; x(w;, w}; wg, wy,) = Shk(o; x(w;j, w;

(X) such that o, j(w;;, w]

1 Wwig, wiw')), de. there exist w, W' €

15 WWgj, wk]w’) = W0, i (w;, wi; wy, wy, )W'. Thus we have

/ /. / / ~ /. I\~
04,5 (wma wzj ; Wi, wj ) = WO,; (wkj7 wk;j? Wik, wjk;>w + woi,k’(wia w;; Wk, wk)w )

and hence

Si g (wig, wizs wyi, wh;) = w Sk j (Wi, Wy Wik, Wi )w' + WS g (wi, wis w, w),) W'
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/.
75
/. / : /. / .

Sk (wi, wi; wg, wy,) are non-zero. Since Sk, ; (W, W35 Wik, wjk) has a weak Grobner rep-

. . / ! . /
Without loss of generality, we assume .S; ;(wij, wi;; Wi, wj;), Sk j (Wi, w55 Wy, wy) and

resentation in terms of GG, we have
“w
/o / _ !
Sk (wky'? W5 Wik wjk:) = Z AsWsGi, W
s=1

with a, € K\ {0}, ws, wg € (X), g, € G such that LT, (wjrgjw}y,) > LTo(wsgs,wy) for
all s € {1,...,p}. Similarly, since S; x(w;, w}; wy, wj},) has a weak Grobner representa-

tion in terms of G, we have
14
/. AN /
Si (Wi, wi; W, W) = E byw g, w;
t=1

with b, € K\ {0}, w, w; € (X),¢;, € G such that LT, (wrgrw},) >, LT, (wig;,w;) for
all t € {1,...,v}. Therefore we have

7 v
/. ! _ ! ! ~ AV
Si,j(wijawz‘jijiawji) = W(E AW G, Wy )W +w(§ byw, gi, w; )W
s=1 t=1
) v
o /o b ! o~
= AsWWsGi W W + L WW Gy, W W
s=1 t=1
/
Jv

By Remark 3.1.13\b we have LT, (wj;gjw};) = w;LT,(g;)w}; = ww LTy (g;)w)w" =

From wwjrejwiyw’ = wyew’,;, it follows that wwjkLT,,(gj)w;kw’ = w;;LTo(g;)w};.

wLT, (wingjwiy)w' >, wll, (wsgs, wi)w = LT, (wwsg;,wiw'’) for all s € {1,...,u}. It
"
R
wwi; LTy (g )wi ;0w = ww LT, (g )wp'. Then we have LTq(wijg;wi;) = wi LT, (g:)wy;

follows from o;  (wij, wi;; wwy;, wi;w') = Wo; g (wi, wi; W, wy, )" that wy; LT, (gi)wj; =
= Wwwi LT, (gr)wpd = WLT, (wrgrw),)w >, WLT 5 (wig;,wy)w" = LT, (0w, g;,wia’) for all

t € {1,...,v} by Remark 3.1.13\b. Finally, from LT, (wjgw};) = w;LT,(g;)w, =
wi; LT, (gi)wi; = LTo(w;jg:w;;), we conclude that

I v

Sij(wij, wig; wyi, wh;) = Z aswwsg;, wiw' + Z byvw,g;, w’
s=1 t=1

ree

i)

Claim b) directly follows from claim a) and the fact that 7 is a well-ordering on

Ui<i<j<sO(1, 7). O

is a weak Grébner representation of S; j(wy;, wi;; wji, w);) in terms of G.

From Proposition 4.2.11] we construct the following Interreduction Algorithm on

the set of non-trivial obstructions.
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Theorem 4.2.12. (Interreduction Algorithm) Let G C K(X)\{0} be a finite set
of polynomials which generates an ideal I = (G), let G be an associated tuple of G, let
s = |G|, and let Ui<;<j<sO(i, j) be the set of non-trivial obstructions. Moreover, suppose
that Assumption is satisfied. Consider the following sequence of instructions.

1) Let B = Uj<i<j<sO(i,7), and let =qy, be the obstruction reduction defined by B.

2) If there is no obstruction in B that can be reduced by other obstructions in B,
return the set B. Choose an obstruction o;;(w;, wj;w;,w}) € B that can be

reduced by other obstructions in B, and delete it from B.

8) Reduce o;j(w;, wi;wj, w;) by —on as much as possible until it becomes an irre-

/
v

ducible obstruction o, (w,, w,; w,,w,) with respect to S ob.

4) 1f 0 (W, wi;wy,w,,) & B, insert it into B. Then continue with step 2).

This is an algorithm that computes an interreduced set of non-trivial obstructions from

Ur<i<j<sO(4, 7).

Using Theorem [4.2.12] we can delete a large number of unnecessary obstructions
during the Buchberger Procedure and hence avoid many unnecessary division steps.

The following example shows the effectivity of the Interreduction Algorithm.

Example 4.2.13. Consider the free monoid ring Q(a, b) equipped with the admissible
ordering o = LLex on (a, b) such that a >, b. Let I C Q{a, b) be the ideal generated by
the set {g1, g2, g3} with g; = a* — 1,9 = b*> — 1, and g3 = (ababab*ab?*)* — 1. Note that
(a,b | a* = b = (ababab*ab®)? = 1) is a finite generalized triangle group of order 576
(cf. [64], Theorem 2.12). We enumerate a o-Grobner basis of I using the Buchberger
Procedure equipped with the Interreduction Algorihtm given in Theroem [£.2.12] To
satisfy Assumption we equip the Buchberger Procedure with the interreduction
on the system of generators (see Theorem . At termination of the procedure,
we get the reduced o-Grobner basis of I which consists of 35 generators. When the
number of generators changes during the Buchberger Procedure, we plot in Figure
the number of total non-trivial obstructions, the number of obstructions reduced
by the Interreduction Algorithm, the number of obstructions left after applying the
Interreduction Algorithm, and the number of generators. As we have marked in the
figure, the maximal number of non-trivial obstructions is 2298, while the maximal

number of obstructions left after applying the Interreduction Algorithm is 283. And
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the maximal number of generators is 36. The figure shows that the number of total non-
trivial obstructions can be very large even though the number of generators is small.
Note that this is a frequent phenomenon in free monoid rings. Our Interreduction

Algorithm reduces a large number of unnecessary obstructions successfully.

2500 - ——r T —

I (2298) 1

—&—  The total number of non-trivial obstructions i

| —4—  The number of obstructions reduced 3 _

2000 T The number of obstructions left o
| —e—  The number of generators _/\A

8
g I
T
[T
[=]
2
:
2 L -
2
=
500
| (283)
PO . ann i A
: (36)(351
0 1 i i i
0 1000 2000 3000 4000

Loops in Buchberger's procedure

Figure 4.1: Computation of LLex-Grdbner basis of the ideal (g1, g2, g35) € Q(a,b) with
g1=a*>—1,go="0>—1, and g3 = (ababab®ab?®)?* — 1.

4.2.2 Improved Buchberger Procedures

However, the drawbacks of applying the Interreduction Algorithm on the set of non-
trivial obstructions are twofold. First, Assumption 4.2.4] i.e. the elements of LT,{G}
are coprime, is too strict. It could be quite costly to make sure that this assumption is
satisfied throughout the Buchberger Procedure: after appending a new generators, we

must apply the interreduction on the system of generators and reconstruct the set of
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non-trivial obstructions, which is followed by the interreduction on the set of non-trivial
obstructions again. Second, the interreduction on the set of non-trivial obstructions
is intrinstically an interreduction process in the free K (X)-bimodule Fj (see Corollary
together with a shrink map Shk defined on Fj, which can also be quite costly.

Now we shall overcome these drawbacks of applying the Interreduction Algorithm
directly as given in Theorem [£.2.12] First of all, we shall deal with Assumption [£.2.4]
As we have seen in Example 4.2.3] if the system of generators does not satisfy Assump-
tion [4.2.4] the obstruction reduction can end with an obstruction without overlap,
which violates our expectation that the obstruction reduction — ¢, should be closed
on Uj<i<j<sO(4, j). Nonetheless, this should not cause any problem at all. By Lemma
M.1.10, the S-polynomial of obstruction without overlap has a weak Grobner repre-
sentation. Consequently, if a non-trivial obstruction o; ;(w;, wi; w;, W)
another non-trivial obstruction oy ; (wg, wy; wy, wy) to an obstruction oy, (wy, w;,; w,, w;,)
without overlap, then, following the proof of Proposition [£.2.11]a, we can show that
Si.j(wi, wi; wy, w}) has a weak Grobner representation provided that Sy (wy, wy; wy, wy)
has a weak Grobner representation. Henceforth we shall drop Assumption safely.

Now the obstruction reduction reduces a non-trivial obstruction o; ;(w;, w;; w;, w’)

) is reduced by

by another non-trivial obstruction oy ;(wy, w};w;, w]) to an obstruction ouy,,(wu,w;;
w,, w!,), which is either a non-trivial obstruction or an obstruction without overlap.
By Proposition [4.2.11}a, weak Grobner representation of S; j(w;, wj; w;, w}) depends
on weak Grébner representations of Sy (wg, wy,; wy, wy) and S, , (wy,, w;,; w,, w;,). Thus
we are able to abandon ol-J(wi,wg;wj,w;) during the Buchberger Procedure if the
S-polynomials Sy ;(wy, wy; wy, wy) and S, (w,, w,;w,, w,) have weak Grébner repre-
sentations. In the following we shall optimize the Buchberger Procedure according to
different types of obstruction reductions as in Definition [4.2.7]

Remark 4.2.14. Let 0; ¢ (w;, wj; wyi, wy,;), 05 (Wi, Wi wej, Wy;) € Ui<icsO(4, ") be

two distinct non-trivial obstructions with some w, w’ € (X) satisfying wy; = wwy; and

/
s'i

/

_ /
Wy = Wy W'

a) If i < j, then we have
/. roN /. / / /. ’o
0;5 (Wy, Wi Wi, Wy, ) = wO; ¢ (W, W Wy, ws,j)w + 0 j(w;, wi; wwj, wiw ).

Following the proof of Proposition 4.2.11la, we can show that the S-polynomial of

;.5 (Wy, Wi wei, why,) has a weak Grobner representation if the S-polynomials of
/.

0,5 (W, W5 Wy j, W), 0. (wi, wi; wwy, wiw') have weak Grébner representations.

J
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Clearly oi,s/(wi,wg;ws/i,w’/-) > oij(wi,w;;wwj,w’-w’). Further, if ww’ # 1, we

j

have 0; o (Wi, Wi Wi, W) >7 05 (W), W W, w )by W€y Why; = WWg €W, Jw
/

> Wy j€Es Wy ;

b) If i > j, then we have

/. / o /. / / ’o. /
04,5/ (Wi, Wi Wi, Wir;) = W05 ¢ (W, W Werj, Wy Jw' — 054 (wwy, wiw's wy, wy).

The S-polynomial of o; g (w;, w}; wy;, wl,;) has a weak Grobner representation
if the S-polynomials of oj,s/(wj,wj;wslj,w ), ojl(ww],w w'; w;, w;) have weak
Grobner representations. Clearly o; o (w;, wh; weg, wh,) >, oﬂ(wwj,ij Wy, wi).

Moreover, by wyi€swy,; = wwyjegwy;w" we have wiLTU(gi)wi = wy; LT, (gs )W,
= wwy; LT, (gy )wlw' = wijTJ(gj)w;w’. Then, from ¢ > j, it follows that

/. / /
04,5 (Wi, Wi Wiy W) >7 W05 o (W, Wi Werj, W )W > 1 05 o (Wi, Wi Werj, W ).
c) If i = j, then we have
/. roN ’o
04,5 (Wy, W Wi, W) = woijs/(wj,w Wy j, W )w + 044 (w;, wi; wwj, wiw').

The S-polynomial of o; g (w;, w}; wy;, wl,;) has a weak Grobner representation
if the S-polynomials of ojﬁf(wj,wj;ws/j,ws,j),oi,i(wi,wi;wwj,ij) have weak

/‘w/)
')
Moreover, if ww’ # 1 or ww’ = 1 and w; >, wj, it is easy to verify that

Grobner representations. Clearly o; o (w;, w); we, W) >7 04 (w;, wi; ww;, w

/. / /. /
07:,5/ (/LUZ'7 '(,Ui7 wsli’ ws/i) >7— Oi,SI (w], wj, wslj, ws/j).

With the investigations as in Remark [4.2.14] we can remove from U;<;<yO(i, )

some obstructions as follows.

Proposition 4.2.15. Suppose that 0; ¢ (w;, wi; Wy, Wi,;), 05 (Wi, Wi Wej, Wy ;) are two
non-trivial obstructions in Ui<;<yO(i,s") such that there exist some w,w’ € (X) sat-
isfying wy; = wwy,; and wl, = wsjw’. Then 0; ¢ (w;, wi; we, wh,,) can be removed
from Ui<;<sO(i, s') in the execution of the Buchberger Procedure if one of the following

conditions is satisfied.
a) i > 7.
b) i <j and ww' # 1.

c)i=j and ww' =1 and w; >, w;.
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Proof. Note that condition a) corresponds to Remark [4.2.14lb, while conditions b)
and c) correspond to Remarks [4.2.14la and [4.2.14.c. Moreover, according to Remark
4.2.14) 0; ¢ (w;, w}; wey, wh,;) can be represented as

’. / o /. / / ~ /. I\ ~1
04,5/ (Wi, Wi Wi, W) = WO (W, W Werj, W )W + €00y, (W, w),; w,, wy, )W

with ¢ € K,w,w" € (X),p = min{i, j},v = max{i,j}, and o, (w,, w,;w,, w,) is
either a non-trivial obstruction or an obstruction without overlap. If one of the condi-

tions is satisfied, then o; o (w;, wj; wei, wy,;) is strictly larger than o; o (w;, w; wy;, w;,j)

and oy, (w,, w,;w,,w,). Following the proof of Proposition {4.2.11la, we can show

w v
that if S; o (w;, w}; wej, wy;) and S, (wy, wy,; w,, w;,) have weak Grobner representa-

tions then S; ¢ (w;, w}; wy;, wl,;) also has a weak Grobner representation. Moreover, if
Op (Wysy W), Wy, wy,) has no overlap, then, by Lemma , Sy Wy, W w,, w),) has
a weak Grobner representation. The conclusion follows from Proposition and
Theorem E.1.14 O

Remark 4.2.16. Now we consider the obstruction reduction in the case of Defini-
tlon“d Let o j(w;, wi; wj, w;) € Ur<icj<e—10(i, j) and oj ¢ (szf,sz,,ws/,w ) €
Ui<j<sO(j, 8') with some w,w’ € (X) satisfying w;y = ww;; and w, = w}w'. Then
we have

/. / / I /
0,5 (Wjsr, Wy Wy, Wy ) = —w0y (Wi, Wi ws, Wi )w' + 05 o (wwy, wiw's we, wy,).

The S-polynomial of 0 ¢ (wjs, W’ ,; wy, w!,) has a weak Grobner representation if the

]5"
S-polynomials of o; ;(w;, wi; wji, w};), 0; ¢ (Ww;, wiw'; we, wl,) have weak Grobner repre-

sentations, and o; ¢ (szz,sz,,wsf,w ) > 05 (Wwy, wiw'; we,wl,). Moreover, since

WyegWl, >; szfejw», = WWwjiewiw >, wﬂe]wﬂ, we have 0j (Wi, w)y; wy, w)

>r 045 (wg, wis wy, w). Note that o o (ww;, wjw'; wy, w),) is either an obstruction with-
out overlap or a mult1ple of non-trivial obstruction Shk(o; ¢ (ww;, wiw'; wy, w’,)). It suf-
fices for us to consider only the situation that o, y (ww;, wiw'; wy, w!,) is an obstruction
without overlap, since the other situation has been considered in Proposition

Proposition 4.2.17. Suppose that 0j ¢ (w;s, W'y; we, wh,) is a non-trivial obstruction

jis'
in Ui<i<s O(i, 8") and o; j(w;, wi; wii, w);) is a non-trivial obstruction in Ui<i<j<v—10(i, j)
such that there exist some w,w' € (X) satisfying wjy = ww;; and Wi, = wiw'. If ww;

is a multiple of wyLT,(gy) or wiw' is a multiple of LT, (gy )Wy, then o; (sz/,sz,,

ws/j,w;,j) can be removed from Uy<;<sO(i, s') in the execution of the Buchberger Pro-

cedure.
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Proof. Note that if S; j(w;, w; wjs, w};), S« (Ww;, wiw'; we, w),) have weak Grébner rep-

resentations, then so does S;¢(wjy,wy;

ple of wyLT,(gy) or wiw' is a multiplje of LT, (gs)w!, implies that the obstruction
;5 (Ww;, wiw'; wy, wl,) has no overlap. By Lemma Sis (ww;, wiw'; wy, wl,) has
a weak Grobner representation. Then the conclusion follows from Proposition [4.1.2
and Theorem E.1.141 ]

wy,wl). Also note that ww; is a multi-

By now we have reduced non-trivial obstructions in U;<;<¢O(i,s") with the aid
of obstructions in Uj<i<j<y—10(7, 7). We shall also reduce non-trivial obstructions in
Ur<i<j<s—10(1, 7) with the aid of obstructions in Uj<;<yO(7,s’). Intuitively, we are
able to reduce a non-trivial obstruction o; j(w;, wj; wj, w}) € Ur<icj<s—10(i, j) by some
non-trivial obstruction o g (wg, wy; wy, wl,) € Ui<i<yO(i, §') if k = i and w;ew] is a
/

multiple of wie;wy, or k = j and wje;w;

did in Definition we represent o; j(w;, wj; wj, w}) as a linear combination of some

is a multiple of wye;wy,. Then as what we

/.
is’

obstructions o; ¢ (Wisr, Wiy Wi, W), 0.5 (Wisr s Wer; Werj, W) € Ur<ice O(4, 8") with the

/
s'i

property that w;LT,(g;)w; = we;LT,(gs )wl; = we;LTs(gs)wy ;. Actually, the prop-
erty of the representation gives a sufficient condition for this kind of reduction. More
precisely, if w;LT,(g;)w} is a multiple of LT, (g ), i.e. there exist some wy,w}, € (X)
such that w; LT, (g;)w}; = wyLT,(gs)w, then we have

’. N /. / /. /
04,5 (Wi, wi; Wy, wh) = 05 ¢ (W, Wi Wy, Wy ) — 0 (W, W Wy, Wy )

where 0; ¢ (w;, w}; wy,w!,) is either an obstruction without overlap or a multiple of
non-trivial obstruction in Ui<;<¢O(4, s), and similarly o; ¢ (w;, w}; we, wy,) is either an
obstruction without overlap or a multiple of non-trivial obstruction in U;<;<sO(3, s').
Following the proof of Proposition .a, we can show that if S; o (w;, w}; wy, w’,) and
Sjo (wj, wh; we, wy,) have weak Grobner representation then so does .S; j(w;, wj; wy, w}).
Proposition 4.2.18. Suppose that o;j(w;, wj; w;, w;
%) can be removed from Ui<i<j<s10(i, j) in
the execution of the Buchberger Procedure if the following conditions are satisfied.

) is a non-trivial obstruction in

o ,
Ut<i<j<s—10(2, 7). Then o; j(w;, wi; w;, w

a) There are wy,wy, € (X) such that w;LT,(g;)w} = wy LT, (gs )ws,.

b) Under condition a), either o; ¢ (w;, wi; wy,w,) is an obstruction without overlap
or the non-trivial obstruction Shk(o; g (w;, w}; we, w,)) is in Ui<i<sO(i, 8).

/.

7

or the non-trivial obstruction Shk(o; v (w;, w};

¢) Under condition a), either o; ¢ (w;, w’; wy,w,) is an obstruction without overlap

Wy, W) is in Ur<i<gO(i, §).
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Proof. This follows from Lemma |4.1.10, Proposition [4.1.2, and Theorem |4.1.14 O

The following two remarks show that, unlike in Propositions [{.2.15] and [£.2.17],
under the assumption of Proposition 4.2.18 we cannot guarantee that both non-trivial
obstructions Shk(o; o (w;, wj; wy, wl,)) and Shk(o; v (w;, w; wy, w),)) are strictly smaller
than o; j(w;, wj; w;, ;) with respect to 7. We would like to mention that Remark

covers the presentation of useless pairs given by T. Mora [55].

Remark 4.2.19. (Left Obstruction) Let i,5 € {1,...,s' — 1} and ¢ < j. Suppose
that the polynomials g;, g;, g+ € K(X) are monic and w;e; — €;w} € O(4,7) is a non-
trivial obstruction with w;, v} € (X)\ {1}. Let w;LT,(g;) = LT,(g;)w; = wLT,(gs)w’
with w,w’ € (X). We shall illustrate all possibilities for Shk(o; ¢ (w;, w}; w,w")) and
Shk(o;¢ (w;, wi;w,w’)) as follows.

Case 1) Let w =w' =1, i.e. w;LT,(g;) = LT4(g;)w; = LT4(gs). Then we have

wie; — ejw); = (wie; — €g) — (€W — €y)

. .
with wie; — ey € O(i, 8), €]

wi€; — € and w;€; — €W <r W — €y

i — € € O(j,5"). Moreover, we have w;e; — e;w) <,

Ww; LTO- (gz)
LTO’ (g]) ’lUl-

J

LTU (98’)

Case 2) Let w # 1,uw’ =1, i.e. w;LT,(g;) = LT,(g;)w; = wLT,(gs).
Case 2.1) If w; = wA with A € (X)), then we have
wie; — ejw; = w(he; — €g) — (€W — wey)

with Ae; — ey € O(i, 8'), e;w; — wey € O(j,s). Moreover, we have w;e; —

€W >r A6 — €9 and wi€; — €W <; €W — wey.

w; LT, (gz)

LT, (g,) w)
A
| w LT, (gs) |
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Case 2.2)

Case 2.3)

If w=w;A with A € (X) and len(w) < len(LT,(g;)), then we have
W;€; — ij; = wi(ei — )\65/) — (ejw; — ’U)ES/)

with €, — Xey € O(i,5), e;w; — wey € O(4,s"). Moreover, we have w;e; —

j
€W >r € — Aeg and wi€; — €W <, €W — Wey.

W LTG(gi)
| LTolg) | wp |
w LTU(gs’)

If w= w;A with A € (X) and len(w) > len(LT,(g;)), then LT,(g;) and
LT,(gs) have no overlap. We have

W;€; — ij; = U)Z‘(Ei — )\65/> — (ij;- — U)ES/)

with € — Xey € O(i,s'),ejw;- — weg € 0o(j,8"). Moreover, we have w;e; —

€W >1 € — ey

Ww; LTU (gz)
LT,(g;) W)
A
w LT,(gs)

Case 3) Let w = 1,w’ # 1, i.e. wiLT,(g;) = LT,(g;)w} = LT4(gy)w'. Similar to Case 2).

Case 4) Let w # 1,w" # 1, i.e. wLT,(g:) = LT,(g;)wj = wLT,(gs)w'".

Case 4.1)

If w; = wLT,(gs)A with A € (X), i.e. LT,(gy) is a subword of w;, then
LT,(g;) and LT,(gy) have no overlap. Let LT,(g;) and LT,(g;) have an
overlap at p € (X). Then we have

wie; — ejw; = w(LT,(gs) A6 — egw’) — (65 — weg Ap)w)

with LT, (gs)A\e; — egw’ € 0(i,8), €; —weg Ap € O(J, s"). Moreover, we have

W;€; — ij9 >r €5 — UJESI/\p.

Ww; LTU (gz)
LT, (g;) w;
Alp
w | LT, (gs) w'
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Case 4.2) If wj = ALT,(gs)w" with A € (X), i.e. LT,(gs) is a subword of w}, then
LT,(g;) and LT,(gs) have no overlap. Similar to Case 4.1).
Case 4.3) If w; = wA,w' = pwj with A, p € (X), then we have
wie; — ew; = w(he; — egw’) — (¢ — weg p)w)
with Xe; — egw’ € O(1, '), €; — wegp € O(j, s'). Moreover, we have w;e; —
€W >- Ae; — egw’ and wie; — €W >, €5 — Wegp.
w; LT (g:)
| IT() w, |
A P
w | LT, (gs) w'
Case 4.4) If w = w;\, w}; = pw' with A, p € (X), then we have
wie; — ew; = wi(e; — Aegw') — (€;p — weg)w’
with €, — Aegw’ € O(i, '), €;p — wey € O(j,s"). Moreover, we have w;e; —
W >r € — Aegw and wie; — €W >, €50 — Wwey.
Wi LT,(g:)
LTa(gj) w;
A p
w LT,(g9s) | w'
Case 4.5) If w; = wA, wj = pw’ with A, p € (X), then we have
wie; — ;W = w(Ae; — egw’) — (p — weg )w'
with X\e; — egw’ € O(1,8'),€jp — wey € O(j, s"). Moreover, we have w;e; —
ejw;- >_ )\ — eqw' and w;e; — eng > €p — Wey.
w; LT5(g:)
LTO’(.gj) w;
A p
w LT,(gs) w’
Case 4.6) If w = w;\, w' = pwj with A, p € (X), then we have

wie; — ejw; = wi(e; — Aegw') — (€5 — wey p)w;

with ¢ — Aegw’ € O(1,8'),€; — wegp € O(j, s'). Moreover, we have w;e; —

€W >r € — Aegw' and wie; — €W >, €5 — Wegp.
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W; LTJ (gz)
LT, (g;) w)
A p
w LT, (gs) w'

Remark 4.2.20. (Center Obstruction) Leti,j € {1,...,s'—1}andi < j. Suppose
that the polynomials g;, g;, g+ € K(X) are monic and ¢; — wje;wj € O(4,j) is a non-
trivial obstruction with w;, w; € (X). Let LT,(g;) = w;LT,(g;)w; = wLT,(gs)w’
with w,w’ € (X). We shall illustrate all possibilities for Shk(o; ¢ (w;, w}; w,w")) and
Shk(o; ¢ (w;, wi;w,w’)) as follows.

Case 1) Let w =w' =1, i.e. LT, (g;) = w;LT,(g;)wj = LT, (gs). Then we have

€ — wiew; = (6, — €y) — (wjgw) — €y)

with € — e € o(i, 8), wje;w; — es € O(i, ). Moreover, we have ¢; — wje;w); <,

/ /
€ — €y and €; — W;€;W; <r Wi€EjW; — €gr.

LTU(gi)
w; LT, (g;) W

LT, (98’)

Case 2) Let w # 1,w' =1, i.e. LT,(g:) = w;LT,(g5)w; = wLT,(gs).

Case 2.1) If w; = wA with A € (X)), then we have
€ —wic;w; = (6 — wey) — w(Ae;w; — €y)
with € —wey € O(i, 8'), Aew) — e € O(j,s'). Moreover, we have € —
wiew; <, € — wey and €; — WEW; >, AW — €9 € O(j, ).

LTU (gz)
w; LT, (g,) w)
A
w LT, (gs)

Case 2.2) If w = w;A with A € (X), then we have

€ — ’ijj’w; = (Ei — U)Es/> — U)j(EZ‘U);- — )\ES/)

with ¢ — wey € O(i, 8'), g} — Aeg € O(j,s'). Moreover, we have ¢ —

wiews <, € — wey, and €; — WiEW; >, W — Aegy.
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LT,(g;)
Wy LT, (g;) w;
A
w LT, (gs)

Case 2.3) If w = w;LT,(g;)A with A € (X), then LT,(g;) and LT, (gs) have no overlap.
Then we have

€ — wiew; = (6; — weg ) — wy(ew; — LTo(g;) Aey)
with ¢ — wey € O(i, 8"), ;wj — LT, (g;)Aes € 0(j,s"). Moreover, we have
€ — wjejw; <, € — Wegy.
| LT, (g:) |
w; LT, (g,) w

w LTU(gs/)

Case 3) Let w = 1,w" # 1, i.e. LT4(g;) = w;LT,(g5)w’ = LT, (gs)w'. Similar to Case 2).
Case 4) Let w # 1,w" # 1, i.e. LTo(g;) = w;LT,(g5)w) = wLT,(gs )w'.

Case 4.1) If w; = wLT,(gy)A with XA € (X), i.e. LT,(gy) is a subword of w;, then
LT,(g;) and LT, (gs) have no overlap. Then we have

6 —wiegw; = (6; — wegw') — w(LT4(gs)Aej — €9 ALT4(g;))w)

with ¢, — wegw’ € O(i,s), LT, (gs)Ae; — € ALT4(g;) € o(4,s'). Moreover,

we have €; — wje;w; <, ¢ — wegw'.

LTU (92)
w; LT, (g,) W)

w | LT,(gs) w'

Case 4.2) If wj = ALT,(gs)w" with A € (X), i.e. LT,(gs) is a subword of w}, then
LT,(g;) and LT, (gs) have no overlap. Similar to Case 4.1).

Case 4.3) If w; = wA, w" = pwj with A, p € (X), then we have
€ —wiegw; = (6; — wegw') —w(Aej — ey p)w;

with ¢ — wegw’ € O(i,8'), \e; — egsp € O(j,8'). Moreover, we have €; —

!/ / /
WiEW; < € — WeEgW and €; — wjiew; >- A€j — €gp.
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LTU (gz)
w; LT, (g,) w;»
A P
w | LT,(gs) w’

Case 4.4) If w = w;\, w; = pw’ with A, p € (X), then we have
€ —wiew; = (6; —wegw') — wj(ejp — Aeg )w'

with ¢; — wegw' € O(i, s'),e;p — Negy € O(j,s'). Moreover, we have ¢; —

/ / /
WiEW; <; € — WESW and €; — WiEW; >r €5p — A€Egr.

LTU(QZ‘)
w; LT, (g ) w)
A p
w LT,(gx) | v

Case 4.5) If w; = wA, w; = pw’ with A, p € (X), then we have

€ — wiew; = (6; —wegw') — w(Aejp — e )w’

with ¢ — wegw’ € O(i,5), Aejp — ey € O(j,s’). Moreover, we have €; —

/ / /
WiEW; < € — WegW and €; — wjieW; >r AEjp — €.

LT, (gl)
[ w, [LTo(g) [ wj |
A p
w LT,(gs) w’

Case 4.6) If w = w;\, w'" = pw) with A, p € (X)), then we have

, —_—

€ — U}jij]

(6; —wegw') —wj(e; — Aegp)w;

with ¢ — wegw’ € O(i,5"),¢; — Aegp € O(j,s"). Moreover, we have €; —

!/ / /
WiEW; < € — WegW and €; — WiEW; >r €5 — A€y p.

LT, (gz)
Wy LT, (g;) w;
A p
w LT, (gs) w' ‘
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Remark 4.2.21. To apply Propositions 4.2.15] 4.2.17 and |4.2.18| to remove unneces-

sary obstructions, it is crucial to make sure that the S-polynomials of those removed

obstructions have weak Grobner representations.

a) Propositions [4.2.15 and [4.2.17) remove unnecessary non-trivial obstruction, say

0;5 (Wy, Wi wy, wh,), from Uj<;<gO(i,s"). The weak Grobner representation of

S (w;, wi; we, wl,) depends on the weak Grobner representations of the S-polynomials

of two smaller obstructions in Uj<;<j<y0(3, j).

b) Proposition removes unnecessary obstruction, say o; ;(w;, wj; w;, w}), from
Ui<icj<s—10(7, j). The weak Grobner representation of S; j(w;, wi; wj, w}) de-
pends on the weak Grobner representations of the S-polynomials of two obstruc-
tions, say ok ¢ (W, Wi; Wek, Why) and oy ¢ (wy, wi; we, why), in Uy<;<s0(7, s), which
are not necessarily smaller than o, j(w;, wj; w;, w}) according to Examples [4.2.19
and [£.2.20 Hence before applying Proposition [£.2.18] it is important to make
sure the obstructions oy ¢ (W, Wy; Wek, W) and o g (wy, wy; wey, wh,) are still in
Ur<i<s O(4, 8).

Observe that Propositions [4.2.15] [4.2.17] and |4.2.18| are actually generalizations of the
Gebauer-Moller Installation (see [33]) in free monoid rings.

Having Propositions and in hand, we shall improve the Buch-

berger Procedure as follows.

Theorem 4.2.22. (Improved Buchberger Procedure I) In the setting of Theorem
4.1.14), we replace step 4) by the following sequence of instructions.

4a) Increase s’ by one. Append g = S’ to G, and form the set of non-trivial obstruc-
tions O(s") = U1<i<sO(1, §').

4b) Remove from O(s") all obstructions o; g (w;, w}; wy;, w!

s'i

) such that there exists

/.
0j,5 (W, Wi

(X) such that wy; = wwgy;, W, = w,

Wy j, Wy;) in O(s) with the properties that there exist some w,w' €

W', and such that @ > j, ori < j and

ww' # 1, ori=j and ww' =1 and w; >, wj.

4c) Remove from O(s') all obstructions o; ¢ (wjs, w5 wy,wy,) such that there exists
/
ji

such that wjy = wwj;, w;s, = w;

0;j(w;, wi; wj;, W) € B with the properties that there exist some w,w € (X)
W', and such that o; ¢ (ww;, wiw'; wy, wl,) has no

overlap.
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4d) Remove from B all obstructions o; ;(w;, w}; w;,w’;) such that there exist w,w' €

J
(X) satisfying wLT,(gs)w' = w;LT,(gj)w}, and such that the following condi-

tions are satisfied.

(1) either o; ¢ (w;, wi; wy,w.,) has no overlap or Shk(o; ¢ (w;, wi; we, wl,)) is in
O(s).
(i3) either 0« (wj, w}; wy, wy) has no overlap or Shk(o;y (w;, wj; we, wy,)) is in
O(s).
4f) Replace B by BUO(s') and continue with step 2).

Then the resulting set of instructions is a procedure that enumerates a o-Grobner ba-
sis G of I. If I has a finite o-Grober basis, it stops after finitely many steps and the

resulting tuple G is a finite o-Grobner basis of 1.

Proof. This follows from Theorem [.1.14]and Propositions[4.2.15] [£.2.17and [£.2.18, O

Now we shall present another optimization of the Buchberger Procedure related
to redundant generators. Recall that, given a o-Grobner basis G of an ideal I, a
polynomial ¢ € G is called redundant if G \ {g} is still a o-Grobner basis of I.
Proposition says that g € G is redundant if LT, (g) is a multiple of the leading
term of some polynomial in G\ {g}. The following proposition allows us to delete

redundant generators during the execution of the Buchberger Procedure.

Proposition 4.2.23. Suppose that there exists an index i € {1,...,5'} such that
LT,(g;) is a multiple of LT,(gs+1). Then, after constructing the new set of obstruc-
tions, we can delete g; from G in step 4) of the Buchberger Procedure.

Proof. Without loss of generality, we may assume that during the Buchberger Proce-
dure g; is the only redundant generator which is detected by gs;. Then there exist
some w,w’ € (X) such that LT, (g;) = wLT,(gs+1)w’ and 0; ¢41(1, 1; w, w") is appended
to the set of obstructions. Let G be the resulting tuple of the Buchberger Procedure.
Thus ¢g; ¢ G. Firstly, we prove that (¢1,...,6i,...,9s) = (G). By the Buchberger
Procedure, the polynomials in G are generated by {¢1,...,¢:,...,9s} and hence we
have (G) C (g1,.--,Gi,---,gs ). To prove the other inclusion (g1,...,¢;,...,9s) C (G),
it suffices to show that g; € (G). Since the Buchberger Procedure ensures that the
S-polynomial of 0; ¢11(1,1;w,w") has a weak Grobner basis in terms of G, we have

mgi — mwgsurlw’ € (G). Then g; € (G) follows from the assumption
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that gs41 € G. Secondly, we prove that G is indeed a o-Grobner basis. Since the
Buchberger Procedure ensures that all the S-polynomials of non-trivial obstructions in
Ui<k<i<|g|O(k, 1) with k # 4 and [ > s’ 4 1 have weak Grobner representations in terms
of G, it suffices to prove that, for every non-trivial obstruction oy (wy, wy; w;,w;) €
Ur<k<i<sO(k,1) with k& # ¢ and [ # 4, its S-polynomial Sk ;(wyg,w};w;, w)) has a
weak representation in terms of G. Note that the Buchberger Procedure ensures
that Sy (wg, wy; wy, w;) has a weak Grébner basis in terms of G U {g;}. Thus there
exist gi, ..., 0i, € GU{gi},wr,...,w, € (X), and ¢1,...,¢, € K\ {0} such that
Sk (Wi, Wiy w,wy) = > E_ cswggiwl and LT, (wggrwy,) >0 LT, (wsg; wl) for all s €
{1,...,pn}. If g; & {gi,,- -, 9i,}, then we are done. We assume that g; € {gi,,..., 9, }-
Since the Buchberger Procedure ensures that the S-polynomial S; ¢11(1,1; w,w’) has
a weak Grobner basis in terms of G, there exist g;,,..., g, € G,Wy,...,w, € (X), and
1,6, € K\{0} such that LC:(gi)gi — LCU(;S/H)wgS/Hw’ =Y GG, Wy, LT (gi) =
LT, (wgyy1w), and LT,(g;) >, LT, (wg;,w;) for all ¢ € {1,...,v}. By substituting

g = #}%l)w%/“w’ + >0 LCy(9i)E0.gs, 0y in the weak Grobner representation of
AV FUSE

Sk (Wk, wi; wy, wy), we obtain a weak Grobner representation of Sy (wy, wy; w;, w)) in
terms of G. N

We should delete redundant generators cautiously, because we select obstructions
using a fair strategy during the Buchberger Procedure and there may exist unselected
obstructions that are the obstructions of redundant generators. Thus, we delay the
deletion by marking each generator with a tag to indicate whether it is redundant.
Moreover, as a preprocessing step we can apply interreduction on the system of gener-
ators at the beginning of the Buchberger Procedure to avoid redundancy in the system

of generators.

Theorem 4.2.24. (Improved Buchberger Procedure II) Let G C K(X) \ {0}
be a finite set of polynomials which generates an ideal I = (G). Consider the following

sequence of instructions.

1) Interreduce the system of generators G using the Interreduction Algorithm given
in Theorem [3.2.8

2) Let G be an associated tuple of G, let s' = |G|, let T be the tuple (t1,...,ty) with
t; = true for alli € {1,...,5'}, and let B = U1<;<j<¢O(3, j).

3) If B = 0, return the subtuple G of G consisting of all polynomials g; such that

t; = true. If B # 0, select an obstruction o;j(w;, wj; w;,w;) € B using a fair
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strategy and delete it from B.

4) Let G' be the subtuple of G consisting of the polynomials g; such that t; = true.

') and its normal remainder S" =

Compute the S-polynomial S = S; j(w;, wi; w;, W]

NR,.¢/(S). If 8" =0, continue with step 3).

5) Increase s' by one, append gy = S’ to the tuple G, append ty = true to the
tuple T, and append the set of non-trivial obstructions Ui<i<g t,—trueO(7, s') to
the set B.

6) For everyi € {1,...,s" — 1}, let t; = false if LT,(g;) is a multiple of LT, (gs).
Then continue with step 3).

This is a procedure that enumerates a o-Grobner basis of I. If I has a finite o-Gréber
basis, it stops after finitely many steps and the resulting tuple is a finite o-Grobner

basis of I.
Proof. This follows from Theorem 4.1.14] and Proposition |4.2.23| O]

Corollary 4.2.25. In the setting of Theorem[4.2.2]], the Improved Buchberger Proce-

dure II enumerates a minimal o-Grobner basis of the ideal I.

Proof. Let G' be the resulting tuple of the Improved Buchberger Procedure II. We
claim that the set LT,{G'} is the minimal system of generators of the leading term set
LT,{I}. It suffices to prove that LT, (g;) is not a multiple of LT,(g;) for all g;,9; € G’
such that g; # g;. Let g;,9; € G’ be two generators. If g;, g, are contained in the
interreduced system of generators G in step 2) of Theorem , then by Definition
the claim is satisfied. Without loss of generality, we may assume that i < j.
Note that g; is the normal remainder of some S-polynomial with respect to a tuple
of polynomials containing g;. Thus LT, (g;) is not a multiple of LT,(g;) by Theorem
B.2.1]a. Conversely, LT,(g;) is not a multiple of LT, (g;) either. Otherwise, in step 6)
of Theorem we have t; = false and hence g; ¢ G’, contradicting our assumption.
Therefore LT,{G"} is the minimal system of generators of LT,{/} and G’ is a minimal
o-Grobner basis of 1. O

We shall end this section with two examples.

Example 4.2.26. Consider the free monoid ring Q(a, b) equipped with the admissible
ordering ¢ = LLex on (a,b) such that a >, b. We take a list of finite generalized
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triangle groups from [64], Theorem 2.12 and construct a list of ideals as follows. Let
Iy = (Gg) € Q(a,b) be the ideal generated by a set of polynomials Gy C Q(a,b) for
k=1,...,13, where G; = {a* — 1,0® — 1, (ababab*ab?®)* — 1},Gy = {a* — 1,0% — 1,
(ababab®)? — 1}, G = {a® — 1,03 — 1, (abab?®)? — 1}, G4 = {a® — 1,03 — 1, (aba®V?)? — 1},
Gs = {a®>—1,b°—1, (abab®)?—1}, Gg = {a®*—1,b°—1, (ababab*)?*—1}, Gy = {a®—1,6°—1,
(abab*ab?)? =1}, Gg = {a®>—1,b* — 1, (ababab®)? -1}, Gg = {a®—1,b>—1, (abab®)? — 1},
Gio = {a® — 1,6® — 1, (ababab?)* — 1}, G11 = {a® — 1,® — 1, (abababab®)* — 1}, G5 =
{a®> —1,® — 1, (ababab*abab?®)* — 1}, G153 = {a® — 1,b% — 1, (ababababab®ab®)? — 1}. We
compute o-Grobner bases of each ideal by the Improved Buchberger Procedure I and

the Improved Buchberger Procedure II.

k | |Gb| | |SelObs| | |TolObs| | |Rulel| | |Rule2| | |RedGb|
1] 60 247 6592 6122 223 35
2 | 131 530 30771 29752 489 96
31 49 194 2721 2397 130 40
4 | 66 262 2047 4544 241 28
5 | 36 119 1686 1466 101 21
6 | 199 880 51077 48994 1203 164
7 1 199 878 51285 49194 1213 164
8 | 52 190 3602 3216 196 37
9 11 31 150 106 13 5
10 | 22 75 741 624 42 15
11| 30 117 1573 1373 83 21
12| 96 365 16495 15741 389 70
13 | 220 1021 87507 85052 1434 194

Table 4.1: Computing Groébner bases by the Improved Buchberger Procedure I

Table lists the results computed by the Improved Buchberger Procedure I fol-
lowed by the Interreduction Algorithm given in Theorem [3.2.8f Table lists the
results computed by the Improved Buchberger Procedures I and II, that is, a proce-
dure combining Propositions |4.2.15] [4.2.17 [4.2.18] and [4.2.23] In the tables, |Gb| is the

number of generators returned by the procedure, |SelObs| is the number of selected

obstructions which is also the number of obstructions left after removing unnecessary

obstructions, |T0lObs| is the total number of obstructions, |Rulel| is the number of

unnecessary obstructions detected by Propositions [4.2.15) and 4.2.17] |Rule2| is the
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number of unnecessary obstructions detected by Proposition |RedGb| is the
number of generators in the reduced o-Grobner basis, and |ReduG| is the number of
redundant generators detected by Proposition [4.2.23]

The results in the tables show that Propositions [£.2.15] and detect

a large number of unnecessary obstructions. Observe that the numbers in column
|SelObs| of Tables and are mostly the same, while the numbers in columns
|T0lObs| and |Rulel] of Tables[4.1]and [.2 have remarkable differences. This is because

almost all unnecessary obstructions related to redundant generators are detected by

the lemmas, especially by Propositions [4.2.15] and [4.2.17 Also note that the numbers
in column |RedGb| of Table [4.1] are equal to the numbers in column |Gb| of Table [4.1]

This coincidence verifies that for any ideal I the number of generators in the reduced

o-Grobner basis and the number of generators in a minimal o-Grobner basis are equal.

k | |Gb| | |SelObs| | |TolObs| | |Rulel| | |Rule2| | |ReduG|
1] 35 241 3456 3005 210 25
2 | 96 044 23419 22410 465 35
3 | 40 192 2268 1947 129 9
4 | 28 258 2693 2205 230 38
5 | 21 123 987 T 87 15
6 | 164 891 41950 39885 1174 35
7 | 164 884 42032 39953 1195 35
8 | 37 193 2420 2040 187 15
9 ) 32 7 34 11 6
10 | 15 77 449 337 35

11| 21 121 885 697 67

121 70 371 11615 10885 359 26
13 | 194 1023 73541 71130 1388 26

Table 4.2: Computing Grébner bases by the Improved Buchberger Procedures I and 11

As we have seen that Propositions @.2.15] [4.2.17 [4.2.18] and [4.2.23] improve the
Buchberger Procedure significantly, in the ApCoCoA package gbmr and in examples

henceforth in this thesis we shall apply these optimizations wherever it is possible. The
last example is taken from [55], where T. Mora used it to demonstrate that the selection

strategy can affect the Buchberger Procedure in surprising ways. Unfortunately, T.
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Mora made a mistake at the conclusion in the example and many authors cited it

carelessly without noticing the error.

Example 4.2.27. Consider the free monoid ring K{a,b,c,d, e, f) equipped with the
weight-lexicographic ordering ¢ = WLex defined by (3,1,1,1,1,1) € R% and a <p
b <pex € <rex d <trex € <rex f, and the ideal I C K({a,b,c,d,e, f) generated by the set

{f17f27f37f47f57f67f7}7 where fl = ca—ac, f2 = da—ada f3 = ba—b2C, f4 = be_ba f5 =
bf — b, f¢ = ef — b, fr = bcd. We enumerate a o-Grobner basis of I. Note that

LTJ(fl) = CCL,LTU(fQ) = da,LTg<f3) = ba,LTU(f4) = b€,LTJ(f5) = bf, LTO’(f6) = €f,
LT, (f7) = bcd. We found the tuple and the set of non-trivial obstructions as follows.

g = (fl, ey f7), B = {0476(17 f7 b, 1),0277(176, 17 1, CL)}

Now we have two possibilities to proceed with the computation, i.e. first select either
the obstruction o46(1, f;b,1) or the obstruction oy 7(be, 1;1,a). We note that o-degree
of 097(bc,1;1,a) is beda and o-degree of o46(1, f30,1) is bed. In the following we
consider two selection strategies. Firstly, we select the obstructions with maximal

o-degree.
1) Select 0g7(bc, 1;1,a) whose o-degree is beda. We have
Sy7(be, 1;1,a) = —bcad, NR, g(—bcad) = —b*c*d.
Let fg = b*c*d. Append fs to G and {og5(b*c*,1;1,a)} to B. Then we have
G =(fis o fr fs), B ={ous(1, f;b,1),008(b*c*, 1;1,a)}.
2) Select 098(b%c?, 1;1,a) whose o-degree is b*c*da. We have
Sos(b?c?,1:1,a) = —b*c*ad, NR,g(—b*ctad) = —b*c*d.
Let fo = b*c*d. Append fy to G and {029(b*c*,1;1,a)} to B. Then we have
G = (fi,.- s fo. fs, fo), B ={ous(1, f16,1),009(b°¢° 1;1,a)}.
It is easy to check that the procedure goes on forever. At stage k) we have
G=(fr, - fr, fsoo ooy fran)
with fr,; = bc!d for alli € {1,...,k}, and
B = {o46(1, f;0,1), 007, 1(b"TFc ¥ 1:1,a) ).

Secondly, we select the obstructions with minimal o-degree.
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1)

Select 046(1, f;0,1). We have
Sus(L, f;0,1) = —bf +b*, NR,yg(—bf + b?) = b* —b.

Let f8 = b2 —b. Append f8 to g and {0378(b7 1a 17a>a04,8(b7 1a 17€)a05,8(b7 1a 17 f)a
o7s(b,1;1,¢d),088(1,b;b,1)} to B. Then we have

g = (f17"'7f77f8)7
B = {08,8(1717; b71)704,8(b71;176)705,8(b71;17f)707,8<b71;176d>7
0378(b, 1; 1, Cl), 0277(bC, 1; 1, a)}

Note that o-degrees of obstructions in B are b3 <, b%e <, b*°f <, b*cd <,
b*a <, beda, respectively. Select ogg(1,b;0,1). We have Sgg(1,b;b,1) = 0.
Select 045(b,1;1,¢e). We have Syg(b,1;1,e) = be — b* and NR, g(be — b?) = 0.
Select 055(b,1;1, f). We have S5g(b,1;1, f) = bf — b* and NR,g(bf — b?) = 0.
Select o75(b, 1;1, cd). We have S;5(b, 151, cd) = bed and NR, g(bed) = 0. Select
038(b,1;1,a). We have S35(b,1;1,a) = —b*c + ba and NR, g(—b%c + ba) = 0. At
last, select 0g7(bc, 1;1,a). We have

Sy7(be, 1;1,a) = —bead, NRyg(—bead) = —bc*d.

Let fo = bcd. Append fy to G and {029(bc?,1;1,a),089(1, ¢*d; b, 1)} to B. Then

we have
g - (fla s 7f7af87f9>a B = {08,9(1702d; ba 1)a02,9(b027 17 ]_,CL)}.

Note that o-degrees of obstructions in B are b*c’d <, bc*da, respectively. Select
0g9(1,c*d;b,1). We have Sgo(1,c%d;b,1) = —bc*d and NR,g(—bc?d) = 0. At
last, select 099(bc?,1;1,a). We have

Sa9(bc?, 1;1,a) = —bc*ad, NR, g(—bcad) = —bc’d.

Let fip = bc*d. Append fig to G and {og.10(bc?,1;1,a), 08 10(1,*d;b,1)} to B.

Then we have

g - (fl; LI f77 f87 f9a flO)a B = {02,10(b03a ]-a ]-7 CL), 08,10(]—7 C3d; bv 1)}

It can be verified easily that the procedure goes on forever again. At stage k) we have

G=(fr, - fr fos oo frin)
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with fg = 0% — 1 and fr; = bcid for all i € {2,...,k}, and
B = {02,7+k(bck7 1) 17 a)7 08,7+k(17 dev b7 1)}

In [55], T. Mora claimed that {fi,..., fr,b* — b} is a o-Grobner basis of I, which is

not true according to our computation.

4.3 Homogenization and Dehomogenization

Recall that the free monoid ring K(X) is naturally N-graded (see Example [2.2.17).
For a polynomial f € K(X) \ {0}, the standard degree of f is the number deg(f) =
max{len(w) | w € Supp(f)} and f is homogeneous of degree d if deg(f) = d and
f € K(X)4. Note that an ideal I C K(X) is N-graded if and only if I has a system
of generators consisting of homogeneous polynomials (see Proposition . Every
homogeneous polynomial of I can be represented nicely in terms of those homogeneous
generators. As a result, N-graded ideals possess many useful properties, see for instance
Corollary [2.2.20] In this section we shall study homogenization and dehomogenization
techniques and find out the connections between N-graded and non-graded ideals of
free monoid rings.

Throughout this section, we let y be a new indeterminate, K (y, X) the free monoid
ring generated by {y} U X over K, and (y, X) the free monoid generated by {y} U X.
Moreover, let C' C K (y, X') be the ideal generated by the set {yx1—x1y, ..., yx,—x,y}.
Observe that the ideal C' makes the new indeterminate y commute with each word in
(X). In the literature, the ideal C' = (yx; — 21y, ...,yx, — x,y) C K(y, X) is call the

ideal of commutators.
Definition 4.3.1. Let f =Y 7, cow; € K(X)\ {0} and Fe K (y, X) be polynomials.

a) The homogenization of f with respect to y is the polynomial

fhom _ Z Ciwiydeg(f)—len(wi) c K<y7 X>
=1

For the zero polynomial we set 0"°™ = (.

b) The dehomogenization of waith respect to y is the polynomial

Fleb = F(1, 2y, ..., 2,) € K(X).
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Obviously the dehomogenization defines a ring epimorphism deh : K{y, X) —
K(X) given by deh(y) = 1 and deh(x;) = z; for all i = 1,...,n. The following lemma

collects some useful properties of the homogenization and dehomogenization.
Lemma 4.3.2. Let f,g € K(X) and = Ky, X) be polynomials.
a) We have f = (fhom)deh,

b) Letd = max{deg(f),deg(g)}. Then we have (f-+g)romyd-dealf+9) — fhomd—deg(f)
ghomyd—deg(g) )

c) We have (fg)hom — fhomghom < (7,

d) Let ]/C\ be a homogeneous polynomial. Then there exists a number d € N such that
f _ (fdeh)homyd c C.

6) We have (f + ’g\>deh — fdeh +’g\deh and (f/g\)deh — fdeh’g\deh‘

Proof. The proofs of claims a), b), and e) are analogous to the proof of [44], Proposition
4.3.2. We prove claims ¢) and d). To prove claim c), it suffices to prove that yw —wy €
C for all w € (X) . Let ¢ = LLex be the admissible ordering on (y, X) such that
y >z xz; for all i € {1,...,n}. Then we have LTs(yz; — x;y) = yz;. Divide yw by
the tuple (yx1 — 21y, ..., yx, — x,y) using the Division Algorithm. Clearly the normal

remainder of yw with respect to (yx; — 21y, ..., yx, — x,y) is wy. Therefore we have
yw —wy € C.

To prove claim d), we write f= Yo cw; with ¢q,...,¢s € K\ {0},@y,..., 0, €
(y, X), and len(w;) = --- = len(ws). Clearly yx; = x;y + (yr; — zyy) for all ¢ €
{1,...,n}. By recursively replacing yz; = x;y + (yx; — z;y) in all terms of . we obtain

=30 ciindehydi 4 howith h € C and dy, ..., d, € N satisfying len(@;*") +d; = - - =
1e£1(wtdeh) +d,. Let d = min{dy,...,d;}. Then we have f = (325, @dehydi—d)yd 4 h =
(fdeh)homyd + h D

We define the homogenization and dehomogenization of ideals as follows.
Definition 4.3.3. Let I C K(X) and IcC K (y, X) be ideals.

a) The ideal ["m = (fhom | f € ) +C C K(y, X) is called the homogenization
of I with respect to y.

b) The set J9 = {fdh | f e T} C K(X) is called the dehomogenization of T
with respect to y.
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Obviously the ideal "™ C K (y, X) is N-graded. Since the dehomogenization is a
ring epimorphism, the set Jdh C K (X) is also an ideal.

Lemma 4.3.4. Let I C K(X) and I C K{y, X) be ideals.
a) We have (I"°m)deh = J.

b) Suppose that T is a N-graded ideal containing the ideal C'. Let f € 74¢h pe g
polynomial. Then there exists a number d € N such that fromy? € I.

Proof. We prove claim a). By Definition we have I C (I"™)dh Conversely, let
f € (fhem)deh - By Definition ub there exists f € Ihom such that f = fdh, By
Definition [4.3.3la we have f = Y5 ngomA’ + Z] ) (yxlj :cljy)gg with @;,a, €
K(y,X),g; € I for all i € {1,...,s}, and bj,b; € K(y,X) for all j € {1,...,t}. By
Lemmawe have fdeh — 7% Gdeh(ghomydehgideh _ §~8  Gdeh g Gldeh ¢ [ Therefore
f €I and ([hom)deh C [,

We prove claim b). By Definition .b there exists f € I such that f = fdb.
Since 1 is N-graded, without loss of generality, we may assume that ]/C\iS homogeneous.
Then by Lemma .d there exists a number d € N such that f (deh)hom deC.

From the assumption L C I, we conclude that fhomyd — (fdeh)hom decT. O

Let G C K(X)\ {0} be a set of polynomials which generates an ideal I = (G), and
let the set G = {ghom | g € Gy U{yxy — 21y, ..., y2, — Ty} generate an ideal 1= (@>
The following example shows that in general we have the proper inclusion T C Jhom,

Example 4.3.5. Consider the free monoid ring K (z;,x2) and a set of polynomials
G = {23—x+3, 25— 109—11 — 19} C K {11, 22)\ {0} which generates an ideal I = (G)
(cf. [50]). Since (23 —x1 +3)xo — (73 — 2105 — 11 — T2) = 1 + 425, we have z; +4x € I.
Note that x; + 4z, is homogeneous and hence z; + 45 € I™™. However, we can see
easily that xy +4xy & (23 — x1y+ 3y?, 13 — 1129y — 1y* — 22y?, Y21 — 1Y, Y2 — T2Yy) C
Ky, xq,x9).

In order to use homogenization and dehomogenization techniques to compute Grobner

bases we shall extend admissible orderings on (X) to admissible orderings on (y, X).

Definition 4.3.6. We define a relation o on (y, X) as follows. For two terms wy, Wy €
(y, X), we say w; >z Wy if we have len(w;) > len(wy), or if we have len(w;) = len(ws,)

et > wdehor if we have len(@;) = len(w,) and @® = @W3°" and @, >pex Wo

and Wy
where Lex is the lexicographic ordering on (y, X) such that y >pe; x; for all i €

{1,...,n}. We call ¢ the extension of o.
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It is straightforward to check that & is an admissible ordering on (y, X). The

following lemma is crucial for our purposes.

Lemma 4.3.7. Let f € K(X)\ {0} and fe Ky, X) \ {0} be polynomials.
a) If o is length-compatible, then we have LTg( ™) = LT, (f) € (X).

b) [ffis homogeneous and LT;;(]/C\) is not a multiple of yx; for alli € {1,...,n}, then
we have (LT3(f))%" = LT, (f%) and LT5(f) = LT, (f4")y? for some d € N.

Proof. Claim a) follows directly from Definitions [3.1.12] |4.3.1la, and To prove

~

claim b), we note that LT5(f) = wy? with some w € (X),d € N by assumption.
Let f = cywy® + >, cow; with ¢, ..., ¢s € K\ {0}, Wy, ...,Ws € (y,X) such that
len(wy?) = len(wy) = --- = len(w,). By Definition we have w >, @0 for all
i € {2,...,s}. We conclude the proof of claim b) by showing that w >, @%®" for all
i €{2,...,s}. For a contradiction, suppose that there exists an index k € {2,...,s}
such that w = @¢°". Since len(wy?) = len(wy) and w = wW;*", there must be a letter
y at position before len(w) + 1 in wg. Then by Definition we have wy? <iex Wp
and hence wy? <z Wy, which contradicts LT5(f) = wy?. Therefore LT, (foh) = w =

(LT5(f))*" and LT5(f) = wy’ = LT, (f")y". 0
Note that Lemma a does not hold if ¢ is not length-compatible. A counterex-

ample is as follows.

Example 4.3.8. Consider the free monoid ring K (x1, z5) equipped with the admissible
ordering o = Elim on (1, z5) such that z; >, x9, and a polynomial f = —z;+z3+3 €
K{(z1,7). Let & be the extension of . Then we have fi™ = —z,y + 22 + 33 and
LT5(f"m) = a1y # a1 = LT,(f).

Assumption 4.3.9. In the rest of this section, we shall assume that o is a length-

compatible admissible ordering on (X).

Now we are ready to study the relations between N-graded and non-graded ideals.

The following propositions, i.e. Propositions[4.3.10]and |4.3.13] present the connections

between N-graded with non-graded ideals by Grobner bases.

Proposition 4.3.10. Let G C K(X) \ {0} be a set of polynomials which generates
an ideal I = (G). Then G is a o-Grébber basis of I if and only if the set G =

{ghom | g € Gy U {yr1 — 219, ..., y7, — 2oy} is a homogeneous G-Grobner basis of the
ideal I™™ C K {y, X).
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Proof. Assume that G is a o-Grobber basis of I. Clearly G C I"m. To prove that G
is a homogeneous -Grobner basis of "™ by Lemma it suffices to show that
for every polynomial ]?E IPom\ {0} there exists a polynomial g € G such that LTa(f)
is a multiple of LT5(g). Let F € Jhom \ {0}. Since I"™ is N-graded, without loss of
generality, we may assume that ]?iS homogeneous. Note that we have LT3 (yx; —x;y) =
yx; for all ¢ € {1,...,n} by Definition m If LTg(f) is a multiply of yz; for some
i€ {1,...,n}, then we are done. Now we assume that LTa(f) is not a multiply of yx;
for alli € {1,...,n}. Then by Lemma [4.3.7/b we have LT (f) = LT,(f%")y¢ for some
d € N. On the other hand, we have fdeh € I by Lemma .a. Since G is a o-Grobner
basis of I, there exist g € G, w,w’ € (X) such that LT,(f%h) = wLT,(g)w’. By Lemma
.a we have LT,(g) = LTz(g"™). Altogether, we have LTg(f) = LTU(fdeh)yd =
wLT,(g)w'y? = wLTs (g™ )w'ys.

Conversely, assume that Gisa homogeneous o-Grébner basis of 1'°™. To prove G
is a 0-Grobber basis of I, by Lemma [3.3.15]it suffices to show that for every polynomial
f € I\{0} there exists a polynomial g € G such that LT, (f) is a multiple of LT, (g). Let
f € I\{0}. Clearly fhom ¢ [h°m By assumption, there exist g € @, w,w € (y, X) such
that LTz (f™) = wLT5(9)@’. By Lemma a we have LTz(f™) = LT, (f) € (X).
Thus WLT;(g)@w’ € (X). Therefore we must have @, @’ € (X) and § = g"*™ for some
g € G. Again by Lemma [4.3.7la we have LT,(g) = LT5(g"™). Altogether, we have
LT,(f) = wLT,(g)w with o, € (X) and g € G. O

Remark 4.3.11. Let I C K(X) \ {0} be a finitely generated ideal. We compute a
homogeneous g-Grobner basis of the ideal I"™ C K (y, X) via the following approach.

1) Enumerate a o-Grobner basis G C K(X) of I.

2) Then {¢g"™ | g € G} U {yx, — 11y, ...,yx, — Ty} is a homogeneous o-Grobner
basis of I"™ by Proposition |4.3.10]

Example 4.3.12. Consider the free monoid ring K (x1, z5) equipped with the admis-
sible ordering ¢ = LLex on (x1,xs) such that z; >, x2, and a set of polynomials
G = {22 -2 +3,23 — 229 — 11 — 13} C K(x1,79) \ {0} which generates an ideal
I = (G). We compute a o-Grobner basis of I using the ApCoCoA package gbmrand get
aset {z2—x1+3, 11 +425}. Then the set {23 —z1y+3y?, 21 +422, yr1 — 21y, Y2 — T2y }

is a homogeneous 7-Grobner basis of the ideal 1™ C K (y, z1, z2).

K(y,X) \ {0} be an N-graded ideal containing the

Proposition 4.3.13. Let T -
C K(y, X) \ {0} be a homogeneous &-Gribner basis of 1.

1deal C', and let the set G
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Then the set {G%" | G € G} \ {0} is a o-Grébner basis of the ideal 1.

Proof. Obviously {g% | § € G} \ {0} C I for all § € G. By Lemma it
suffices to prove that for every polynomial f € J9h \ {0} there exists a polynomial
§ € G such that LT,(f) is a multiple of LT, (§%"). Let f € 1"\ {0}. By Lemma
.b we have fhomyd ¢ T for some d € N. Since G is a G-Grobner basis of f,
there exist § € G, @, @ € (y, X) such that LTz(f'*my?) = @LT4(3)@'. By Remark
3.1.13|b and Lemma [4.3.7la we have LT5(fhmy?) = LT5(f"°m)y¢ = LT, (f)y?. Thus
LTz (f"my?) is not a multiple of yz; for all i € {1,...,n}. By Lemma §4.3.7b we
have LTz(f"my?) = LT, ((f"my?)dh)y? for some d € N. By Lemmas [4.3.2la and
.e we have LT, ((fhomy?)4") = LT, (f). Hence @LT5(g)@w" = LT,(f)y?. Therefore
LT5(g) must have the form wy?" with w € (X) and d” € N. Again by Lemma §4.3.7,b
we have (LT5(7))%" = LT,(g%"). Altogether, we have LT, (f) = (LT, (f)y? )" =

Remark 4.3.14. Let G C K(X)\{0} be a set of polynomials which generates an ideal

I = (G). Then we can compute a o-Grobner basis of I via the following approach.
1) Consider the N-graded ideal I= (g™ | g € G) + C. (Note that Jdeh — 1)
2) Enumerate a homogeneous o-Grébner basis G € K (y, X) of 1.

3) Then, by Proposition [4.3.13 {g" | § € G} \ {0} C K(X) is a o-Grébner basis
of 1.

Note that the normal remainder of a homogeneous polynomial of degree d € N
with respect to a tuple of homogeneous polynomials is still homogeneous of degree d.
Also note that the S-polynomial S; j(w;, wj; wj, w}) of the obstruction o; ;(w;, wi; w;, w)
of two homogeneous polynomials ¢g; and g; is again homogeneous. Moreover, the S-
polynomial has a degree not less than max{deg(g;), deg(g;)}. With these facts, given
a homogeneous system of generators, we are able to compute Grobner bases degree by

degree. To this end we introduce some basic terminology.

Definition 4.3.15. Let G C K(X) \ {0} be a set of homogeneous polynomials which
generates an ideal I = (G), let G be an associative tuple of G, and let s = |G].

a) Given a degree d € N, let Gy = {9 € G | deg(g) < d} and G4 = {g €
G | deg(g) = d}.

b) The tuple G is said to be degree-ordered if deg(g;) < --- < deg(gs).
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c)

Given a degree d € N, we let G4 be the subtuple of G consisting of all poly-
nomials g; such that deg(g;) < d, and G, the subtuple of G consisting of all
polynomials g; such that deg(g;) = d.

The degree of an obstruction o; j(w;, wj; wj, w}) € Ui<i<j<;O(i, j) is defined to

be the degree of its S-polynomial, i.e. deg(.S; ;(w;, wj; w;, w})).

Let B be a set of obstructions. Given a degree d € N, we let B<4 be the subset
of B containing all obstructions whose degrees are not larger than d, and By the

subset of B containing all obstructions whose degrees are equal to d.

Given a homogeneous system of generators, we compute a homogeneous Grobner

basis degree by degree as follows.

Theorem 4.3.16. (Homogeneous Buchberger Procedure) Let G C K(X)\ {0}

be a set of homogeneous polynomials which generates an ideal I = (G). Consider the

following sequence of instructions.

1)
2)

3)

4)
5)

6)

7)

8)

9)

Let B=0,G =10, and s = 0.

Let d be the smallest degree of a polynomial in G or an obstruction in B. Form the

subsets G4 of G and By of B, and delete their entries from G and B, respectively.

If Gg = 0, continue with step 6). Otherwise, select a polynomial g € G4 and
delete it from Ggq.

Compute ¢ = NRyg(g). If ¢ = 0, continue with step 3).

Increase s by one, append gs = ¢ to the tuple G, and append the set of non-trivial
obstructions Uy <;<sO(i, s) to the set B. Continue with step 3).

If By = 0, continue with step 9). Otherwise, select an obstruction o; j(w;, wj; w;, w})
€ By and delete it from By.

') and its normal remainder S" =

Compute the S-polynomial S = S; j(w;, wi; w;, W)

NR,g(S). If " =0, continue with step 6).

Increase s by one, append gs = S’ to the tuple G, and append the set of non-trivial
obstructions Uy<;<sO(i, ) to the set B. Continue with step 6).

If G =0 and B =0, return the tuple G. Otherwise, continue with step 2).
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This is a procedure that enumerates a degree-ordered homogeneous o-Grobner basis G
of I. If I has a finite homogeneous o-Grobner basis, it stops after finitely many steps

and the resulting degree-ordered tuple G is a homogeneous o-Grobner basis of I.

Proof. Observe that the normal remainder of a homogeneous polynomial with respect
to a tuple of homogeneous polynomials is also homogeneous. Thus the tuple G consists
of entirely homogeneous polynomials. Note that in step 4) deg(¢’) = deg(g) if ¢’ # 0,
and in step 7) deg(S’) = deg(S) if S” # 0, and that the degree of an obstruction of g;
and g; is larger or equal to the degrees of g; and g;. Then the tuple G is degree-ordered
by choosing the smallest degree d in step 2). The proof of the claim that the procedure
enumerates a o-Grobner basis G of I and stops after finitely many steps if I has a finite
o-Grébner basis proceeds exactly the same as the proof of Theorem [4.1.14] O

Remark 4.3.17. Let G be the resulting tuple of Theorem [£.3.16 Obviously G is a
homogeneous system of generators of the N-graded ideal I. Moreover, let d € N, and
let (I<4) be the ideal generated by the homogeneous polynomials in I with degree < d.
By Corollary , the set G<4 is a system of generators of (I<4). We call G4 a
d-truncated o-Grobner basis of 1.

Just like partial Grobner bases (see Remark , truncated Grobner bases are
sufficient to handle many applications. In some situations we happen to know the
maximal degree of generators in a homogeneous Grobner basis beforehand. Thus it
is necessary for us to terminate the Homogeneous Buchberger Procedure properly.
We shall therefore slightly modify the Homogeneous Buchberger Procedure given in
Theorem and make it more flexible for our purposes.

Corollary 4.3.18. In the setting of Theorem [{.3.16 and given a degree dy € N, we
replace steps 2), 5), and 8) by the following instructions.

2’) Let d be the smallest degree of a polynomial in G or an obstruction in B. If
d > dy, return the tuple G. Form the subsets G4 of G and By of B, and delete

their entries from G and B, respectively.
5’) Increase s by one, append gs = S’ to the tuple G, and append the set
{05 (wi, wi ws, wy) € Ui<i<sO(i, 8) | deg(Ss,j(wi, wis ws, wy)) < do}

to the set B. Continue with step 3).
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8’) Increase s by one, append gs = S’ to tuple G, and append the set
{Oi,j(wi,wé;ws,w;) € Ui<i<sO0(1, 5) | deg(Si,j(wi,wQ;ws,w;)) < do}
to the set B. Continue with step 6).

Then the resulting set of instructions defines an algorithm that computes a dy-truncated

o-Grobner basis of 1.

Proof. Note that it is not necessary to consider polynomials and obstructions whose
degrees are larger than dj, since the non-zero normal remainder of a homogeneous
polynomial of degree d with respect to a tuple of homogeneous polynomials is also a
homogeneous polynomial of degree d. The correctness follows from Theorem [4.3.16]
We prove the finiteness. When a polynomial g, is appended to G, the leading term
set LT,{G} is strictly enlarged. Since len(LT,(gs)) is bounded by dy and |(X)<4,| <
00, there are only finitely many g, can be appended to G. Therefore the procedure

terminates after finitely many steps. O]

Given a homogeneous system of generators, well-behaved Homogeneous Buchberger
Procedure allows us to enumerate Grobner bases degree by degree. Given an inhomo-
geneous system of generators G, by Remark we can compute a o-Grobner basis
as follows. First we construct an N-graded ideal T C K(X) generated by a homoge-
neous system of generators G = {ghm | g € Gy U{yx, — 11y, ..., yx, — 2,y }. Then we
apply the Homogeneous Buchberger Procedure given in Theorem to enumerate
a homogeneous o-Grobner basis G of I. Finally, by Proposition we obtain a
o-Grobner basis of the ideal (G) by dehomogenizing generators in G with respect to y.
However, the following example shows that we shall avoid using homogenization and

dehomogenization techniques naively.

Example 4.3.19. (continued) Consider Example again. Recall that in this
example we have the free monoid ring K (xy, z5) equipped with the admissible ordering
o = LLex on (x,x2) such that z; >, x5, and an ideal I = (G) C K(z1,z2) \ {0}
generated by a set of polynomials G = {z3 — 1+ 3, 23 — x129 — 11 — x5 }. We construct
the homogeneous system of generators G = {z% — z1y + 3y2, 23 — 2120y — 219% —
Toy?, YT, — 1Y, YTo — Toy} which generates the ideal T = (@> C K(y,x1,z9). We
enumerate a 5-Grébner basis of T by the Homogeneous Buchberger Procedure given in
Theorem and obtain an infinite set {yzy — 2oy, yr1 — 21y, 25 — 1y + 3y, 11y* +
4xoy?} U {x 1207ty — 202ty | i € N}. Note that 3 — 2120y — 21y% — 22y? is removed

because of redundancy.



4.3. Homogenization and Dehomogenization 105

But Example shows that the ideal I should have a finite o-Grébner basis.
By tracing the enumerating procedure in Example {.3.19, we find out that the new
indeterminate y is the source of the infiniteness. It is a general phenomenon that a
new indeterminate can induce infinite loops in Buchberger’s Procedure (see [67, [72]).
Observe that in Example the polynomial x,y? + 425y has the new indetermi-
nate y on the right side of each term. If we can cancel y in each term of x,y? + 4w,1>
and get z1 + 4x5, then we can remove redundant polynomials yz, — 21y, £1y% + 421>
and 1 Toxly — :@xifly and hence obtain a finite homogeneous o-Grobner basis. Actu-
ally it is valid to do so. We rephrase the cancellation mentioned above in terms of a

dehomogenization.

Definition 4.3.20. Let f € K(y, X) \ {0} be a polynomial, and let k¥ € N be the
maximal number satisfying ]/”\: ]/”\’yk with f/ € K (y, X). The polynomial ' is called
the right dehomogenization of J?With respect to y and is denoted by frdeh.

Theorem 4.3.21. Let G C K(X) \ {0} be a set of polynomials which generates an
ideal I = (G). We construct a homogeneous system of generators {g"°™ | g € G} U
{yr1 — 21y, ..., yx, — oy} C Ky, X) and apply the Buchberger Procedure given in
Theorem with step 4) replaced by the following instruction.

4’) Increase s' by one, append gy = (S")'%" to the tuple G, and append the set of
obstructions Uy<;<yO(i,s") to the set B. Then continue with step 2).

Then we obtain a procedure which enumerates a homogeneous o-Grébner basis of 1™,

Proof. See [72], Theorem 2. O

A modification similar to the one in Theorem applies to the Homogeneous
Buchberger Procedure given in Theorem 4.3.16, We shows it in the following example.

Example 4.3.22. (continued) Consider Example again. Recall that in this
example we have the free monoid ring K (x1, x2) equipped with the admissible ordering
o = LLex on (x1, xo) such that x1 >, x9, and the ideal I = (G) C K (x1, x5) generated
by the set G = {azg — 11 +3, 15— 11790 — 11 —x9}. We construct the homogeneous system
of generators G = {x2 — 21y + 3y2, ¥3 — 2122y — 2192 — T2y?, yT1 — 21y, Y22 — Tay}. We
enumerate a o-Grobner basis of I"™ using the Homogeneous Buchberger Procedure
given in Theorem deployed with right dehomogenization.

1) Let B=0,G =1, and s = 0.
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2)

Let d =2,Gy = {91‘2 — T2y, YT —$1y7$§ —x1y+3y2}, By = Q); é = {$§ —T1T2Y —
11y? — 22y?}, and B = 0).

Select g = yxo — woy and let Gy = {yx1 — 11y, 25 — 11y + 3Y°}.

Compute ¢' = NR5 g(9) = yr2 — T2y.

Let s =1,G = (g1) with g1 = ¢’ = yxs — 22y, and B = (). Continue with step 3).
Select g = yxr; — z1y and let Gy = {23 — 21y + 3y*}.

Compute ¢' = NR5 g(9) = yz1 — 21y

Let s =2,G = (g1, ¢92) with g, = yz; — 21y, and B = (). Continue with step 3).
Select g = 23 — z1y + 3y? and let Gy = (.

Compute ¢’ = NR5¢(g) = 23 — 21y + 3y>.

Let s = 37g = <g17g27g3) with g3 = SC% — 1y + 3y27 and B = {01,3<17x2;y7 1)7

033(1, 29529, 1) }.

Since G = (), continue with step 6).

Since By = (), continue with step 9).

Since G # (), B # (), continue with step 2).

Let d = 3,G3 = {25 —z120y—21y° —22y*}, By = {013(1, 22,9, 1); 03 5(1, 295 22, 1)},
G =10, and B = (.

Select g = a3 — z1w9y — 11y — T2y* and let Gz = 0.
Compute ¢' = NRsg(g) = z1y* + 4wy

Let s = 47 g = (gh 92, 93, g4) with g4 = (g/>rdeh = x1+4x27 and B = {02,4(17 17 Y, 1)}
Note that go = yx; — 1y is redundant since LT3 (g2) = yx1 = yLT5(g4).

Since G = (), continue with step 6).
Select 01 3(1, x9;y,1) and let By = {033(1, x9; x2,1)}.

Compute S = Sy 5(1, 295y, 1) = —xayzs + yr1y — 3y® and S = NR; g(S) = 0.
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6) Select 033(1,z2;22,1) and let By = ().

7) Compute S = S33(1,72;22,1) = —z1yxs + ToT1y + 3y*T9 — 379y and S’ =
NRzg(S) = 0.
6) Since B3 = (), continue with step 9).

Since B # (), continue with step 2).

Let d =2,G3 =0, By = {024(1, 1;9,1)}, G = (), and B = 0.

Select 094(1,1;y,1) and let By = 0.
Compute S = Ss4(1,1;y,1) = —21y — 4dyxe and S’ = NR; g(S) = 0.

)
)
)
3) Since Gy = ), continue with step 6).
)
)
) Since Bz = (), continue with step 9).
)

Since G = ) and B = (), return G = (91,93, 94) With g1 = yxe — 19y,93 =
13 —11y+3y?%, and g4 = 1 +4x5. Note that go is removed because of redundancy.

The set {g1, g3, g4} is a 7-Grobner basis of 1'°™ where g = yzo—x2y, g3 = 23—21y+3y2,
and g4 = x; + 4xy. Thus by Proposition [4.3.13| the set {23 — z; + 3,71 + 4z} is a
o-Grobner basis of I. Note that the results are exactly the same as in Example [4.3.12

except for a removed redundant polynomial.
We end this section with a remark on selection strategies.

Remark 4.3.23. Observe that in Example the degree d is initialized to 2 and
then increases to 3 and then decreases to 2 again. The degree d does not keep increasing
because of right dehomogenization. This jumping back of the degree is called the
rabbit strategy (see [72]). Note that in commutative settings the sugar cube strategy
is widely used in most of the implementations of Buchberger’s Algorithm because of
great practical merits. The sugar cube strategy marks each generator with a phantom
degree and then plays normal selection strategy. We refer to [4], [34] for more details.
In the ApCoCoA package gbmr, we use the sugar cube strategy with non-commutative
flavor for both inhomogeneous and homogeneous system of generators. More precisely,
during the Buchberger Procedure and the Homogeneous Buchberger Procedure, we
first select the obstruction with the minimal degree and then break tie by selecting the
obstruction with the minimal o-degree as mentioned in Remark [£.1.5] Consequenctly,
the rabbit strategy becomes inherent in the ApCoCoA package gbmr.
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4.4 Grobner Basis Computations for Right Ideals

In this section we shall study Grobner basis computations for right ideals in free monoid
rings shortly. It is understood that all results in this section can be applied to left ideals
symmetrically.

Let G C K(X) \ {0} be a finite set of polynomials which generates a right ideal
I, = (G),, let G be an associated tuple of G, and let s = |G|. Moreover, let s > 1, and
let (K(X))® be the right K(X)-module of rank s with the canonical basis {n,...,ns},
i.e. n; =(0,...,0,1,0,...,0) whose the i*" element is 1 and all of whose other elements
are 0. Recall that O, is the set of all right obstructions of G (see Definition [3.5.5)). By
Proposition the set G is a right o-Grobner basis of I, if and only if every right
obstruction in O, has a lifting in Syz(G),. Recall that for each pair i,5 € {1,...,s}
such that ¢ < j there exists none or only one right obstruction of g; and g;. Just
as what we did in Section for two-sided ideals, we define S-polynomials of right

obstructions.

Definition 4.4.1. Let i,j € {1,...,s} and ¢ < j, and let ro;,; € O, be the right

obstruction of g; and g;. The S-polynomial of ro; ; is defined as follows.

1 1 : _ 1 1
S — W@ % ~ W%t 10w = o,y ~ te gy Y
%,

1 1 : o 1 1
LC, (g0 W ~ TC, (g 9 if ro;; = ga gyw — LC, (g, h-

Clearly we have max,{LT,(g;),LT,(g;)} >, LT,(S;;) for all ro;; € O,. Keep in
mind that to compute Grobner bases of right ideals we should apply the Right Division
Algorithm (see Theorem [3.5.1)) as far as the division takes place.

Proposition 4.4.2. (Buchberger Criterion for Right Ideals) Let G C K(X) be
a finite set of non-zero polynomials which generates a right ideal I, = (G),, let G be an

associated tuple of G, and let s = |G|. Then the following conditions are equivalent.
a) The set G is a right o-Grobner basis of I,.
b) For every right obstruction ro; ; € O,, we have RNR, g(S; ;) = 0.

Proof. Analogous to Proposition 4.1.13 m

We have the following Buchberger Algorithm for computing Grébner bases of right

ideals.
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Theorem 4.4.3. (Buchberger Algorithm for Right Ideals) Let G C K(X) be a
finite set of non-zero polynomials which generates a right ideal I, = (G),, let G be an

associated tuple of G, and let s = |G|. Consider the following sequence of instructions.
1) Let ' =s and B = O,,.

2) If B =0, return the result G. Otherwise, select a right obstruction ro;; € B and
delete it from B.

3) Compute the S-polynomial S = S, ; and its normal remainder S’ = RNR, g(5).
If 8" =0, continue with step 2).

4) Increase s by one, append gy = S’ to the tuple G, and append the set of

right obstructions {ro(i,s") = Lcal(gi)m - chl(gs,)ns/w |ie{l,...,s —1},w €
(X),LT5(g9:) = LT5(gs)w} to the set B. Then continue with step 2).

This is an algorithm that computes a right o-Gréobner basis G of I,.

Proof. To prove correctness, by Proposition it suffices to prove that for every
right obstruction ro; ; € O, its S-polynomial S; ; satisfies RNR, g(5; ;) = 0. Assume
that in step 4) g+ # 0. Note that none of {LT,(g1),...,LT(gs-1)} is a prefix of
LT,(gs) by Theorem [3.5.1la. Thus for some i € {1,...,s' — 1} the polynomials g;
and gy have a right obstruction if and only if LT, (g.) is a proper prefix of LT,(g;).
Therefore step 1) together with step 2) ensures that all possible right obstructions of G
are considered by the procedure. If in step 3) we have S’ = 0, then we are done.
Otherwise, RNR, ¢(5; ;) = 0 is guaranteed by appending gy = S’ to G in step 4).

To prove finiteness, we let wy.x = max,{LT,(g;) | ¢; € G}. If in step 3) S’ # 0,
then by Theorem [.5.1]b we have LT, (S) >, LT,(5"). Note that for all ro;; € O, we
have max,{LT,(¢:), LT (g;)} >» LT5(S;;). Thus wmax >, LT,(gs) in step 4). When
a polynomial gy is appended to G, the leading term set LT,{G} is strictly enlarged.
This can happen only finitely many times since ¢ is a well-ordering. Therefore the

procedure terminates after finitely many steps. m

From Theorem we conclude that every finitely generated right ideal in free
monoid rings has a finite Grobner basis. The following proposition shows that Grobner
bases of right ideals can be computed by operating interreduction on systems of gen-

erators.
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Proposition 4.4.4. Let G C K(X) \ {0} be a set of polynomials which generates a
right ideal I, = (G),. We apply the Interreduction Algorithm on G given in Theorem
with the Division Algorithm replaced by the Right Division Algorithm given in
Theorem m Then the resulting interreduced set G' is a right o-Gréobner basis of 1,.

Proof. We have I, = (G"), by Theorem . We prove that every polynomial f €
I, \ {0} has a Grobner representation in terms of G'. Since I, = (G’),, there exist
g1y 9s € G'\p1,...,ps € K(X)\ {0} such that f =37 | g;p;- By Remark .b
we have LT, (g;p;) = LT,(g;)LT,(p;). Since G’ is interreduced, LT, (g;) is not a prefix
of LT,(g;) for all 4,7 € {1,...,s} and i # j. Thus LT,(¢;p;) = LT,(9;)LT,(p;) #
LT,(g;)LT,(p;) = LT,(g;p;) for all 4,5 € {1,...,s} and i # j. By Remark a we
have LT, (f) = max,{LT,(g:p;) | i € {1,...,s}}. Therefore f =>"7 | ¢;p; is a Grobner

representation of f in terms of G'. O



Chapter

Grobner Basis Theory in
(K({X) ® K(X))"

In this chapter we shall extend the notions of Grobner basis theory to free bimodules
over free monoid rings. In [§ O], H. Bluhm and M. Kreuzer generalized Groébner
basis theory to free bimodules over K-algebras in order to compute two-sided syzygies.
Inspired by their ideas, we shall explore the characterizations of Grobner bases of two-
sided submodules in free bimodules over free monid rings, and formulate procedures
for enumerating Grobner bases in this setting. We refer to [1] for Grébner bases of

one-sided submodules in free bimodules over free monoid rings.

We shall study Grobner basis theory in free bimodules over free monoid rings by
following the same approach as in Chapters [3] and [l In Section [5.1] we shall introduce
two main ingredients of Grober basis theory: module term orderings (see Definition
and the Division Algorithm (see Theorem . We present Macaulay’s Ba-
sis Theorem (see Theorem as a consequence of the module term ordering and
introduce the Interreduction Algorithm (see Corollary as an application of the
Division Algorithm.

We shall start Section [5.2] with a definition of Grobner bases of two-sided submod-
ules (see Definition [5.2.1)). Then we shall characterize Grobner bases through Grobner
representations (see Proposition and syzygy modules (see Definition and
Proposition . Using critical pairs and critical syzygies (see Definition ,
we obtain a Buchberger Criterion (see Corollary and formulate a Buchberger
Procedure (see Theorem for enumerating Grobner bases.

In Section [5.3| we shall devote ourselves to improving the Buchberger Procedure.
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We generalize our methods in Section to the setting in this chapter. More precisely,
we shall improve the Buchberger Procedure by detecting unnecessary critical pairs

(see Proposition and Theorem [5.3.5)) and by deleting redundant generators (see
Theorem |5.3.10)).

In Section [5.4] we shall generalize Faugere’s F4 Algorithm by investigating ingre-
dients of the F4 Algorithm. After founding a connection between a set of elements
in a free bimodule and a linear system over K (see Definition and studying
the Reduction Algorithm (see Theorem , we shall propose an F4 Procedure (see
Theorem for enumerating Grobner bases in our setting.

Throughout this chapter, we let K be a field, X = {x,...,x,} a finite alphabet
(or set of indeterminates), K (X) the free monoid ring generated by X over K, (X)
the free monoid generated by X, and ¢ an admissible ordering on (X). Moreover, for
r>1, welet F, = (K(X)® K(X))" be the free K(X)-bimodule of rank r with the
canonical basis {e,...,e.}, where ¢; = (0,...,0,1® 1,0,...,0) with 1 ® 1 occurring
in the i*® position for i = 1,...,r, and we let T(F,) be the set of terms in F,, i.e.
T(F,) = {wew’ | i € {1,...,r},w,w" € (X)}. By a K(X)-submodule M C F, we
mean a two-sided K (X)-submodule unless stated otherwise.

5.1 Module Term Orderings and the Division Al-
gorithm

Definition 5.1.1. A module term ordering 7 on T(F,) is a relation on T(F})
satisfying the following conditions for all sq, $5, 53 € T(F,.) and all w,w’ € (X).

a) S1 >, Sy Or Sg >, S1, i.e. T is complete.

b) s1 >, s1, i.e. T is reflexive.

c) $1 >, S and sg >, s1 imply 51 = s9, i.e. T is antisymmetric.

d) s1 >, sp and sy >, s3 imply s; >, s3, i.e. 7 is transitive.

e) s1 >, So implies wsjw' >, wssw', i.e. T is compatible with scalar multiplication.

f) Every descending chain of terms s; >, so >, --- in T(F},) becomes eventually

stationary, i.e. 7 is a well-ordering.
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If 7 is a module term ordering on T(F,), then we have wsw’ >, s for all s € T(F;.)
and all w,w’ € (X). In particular, we;w’ >, e; foralli € {1,...,r} and all w,w" € (X).
Recall that we introduced the following module term ordering in Definition [4.2.1] which
plays an important role in the optimizations of the Buchberger Procedure in free monoid

rings.

Example 5.1.2. Let G = (g1,...,9,) € (K(X) \ {0})" be a tuple of polynomials.
The module term ordering 7 induced by (¢,G) on T(F,) is defined as follows.
For all wye;w}, wee;why € T(F,) with 4,5 € {1,...,r} and wy,w}, we,w) € (X), we
say that wie,w] >, weejw) if we have wLT,(g;)w] >, woLT,(g;)wh, or if we have
w1 LT, (g;)w] = woLT,(g;)wh and ¢ > j, or if we have w LT, (g;)w| = woLT,(g;)w}) and
i = j and wsy is a prefix of wy.

In Section [5.3| we will follow the same approach to define a module term ordering
which is useful for improving the Buchberger Procedure in F,.. The following are two

very important module term orderings that are related to many applications of Grébner

bases (see Section [6.2).

Example 5.1.3. Let To be an admissible ordering on (X), and let wye;w}, woejw) €
T(F,) with 4,5 € {1,...,r} and wy, w}, wy, wh € (X).

a) The module term ordering ToPos on T(F)) is defined as follows. If we have
wyw] >, wowh, or if we have wyw] = wowh and wy >1, wo, or if we have wy = we

and w) = wh and ¢ < j, then we say that w;e;w] >ropos Waejwh.

b) The module term ordering PosTo on T(F,) is defined as follows. If we have i < j,
or if we have i = j and wyw] >, wowj, or if we have i = j and wyw| = wow}

and wy >, wo, then we say that wie,w] >posto Wae,W).

Definition 5.1.4. Let o be an admissible ordering on (X), and let 7 be a module term
ordering on T(F,). We say that 7 is compatible with o if w >, w’ implies ws >, w's
and sw >, sw' for all s € T(F,) and w,w" € (X).

For instance, the module term ordering 7 induced by (o, G) is compatible with o.

Both ToPos and PosTo are compatible with To.
Assumption 5.1.5. In what follows, we let T be a module term ordering on T(F}.).

Definition 5.1.6. Every element m € F,. \ {0} can be uniquely represented as

/ /
M = ClW1Ey Wy F - -+ F CsWsEqy W
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wither, ..., cs € K\{0},71,...,7 € {L,..., 7}, wy,...,w, € (X) such that wye,, w] >,
Wolqy,Wh > - -+ >, weey wh. The term LT, (m) = wye,, w) € T(F}) is called the leading
term of m with respect to 7. The element LC,(m) = ¢; € K\ {0} is called the leading
coefficient of m with respect to 7. The element m is called monic if LC,(m) = 1.
Moreover, we let LM, (m) = LC.(m) - LT, (m) = ciw;e,, w}.

Note that the leading term LT, (0) and leading coefficient LC,(0) of zero element
are undefined. The following remark lists some useful rules for computing with leading

terms.

Remark 5.1.7. Let m,my,my € F,\ {0} be elements.

a) Suppose that m;+mg # 0. We have LT, (m;+ms) <, max.{LT,(m;), LT (ms)}.
Moreover, LT, (m; + ms) = max,{LT,;(m,), LT, (ms)} if and only if LT, (m;) #
LT, (mg) or LC,(my) + LC,(m2) # 0.

b) For all w,w’" € (X), we have LT, (wmw') = wLT,(m)w'.
Definition 5.1.8. Let M C F, be a K(X)-submodule.

a) The K(X)-submodule LT (M) = (LT, (m) | m € M \ {0}) C F, is called the
leading term module of M with respect to 7.

b) The set LT . {M} = {LT,(m) | m € M\{0}} C T(F,) is called the leading term
set of M with respect to 7.

¢) Theset O.(M) = T(F,)\LT,{M} is called the order module of M with respect

to 7.

We have LT, ((0)) = (0) and LT, {(0)} = 0 using this definition. Observe that
LT, {M} is actually a (X)-submonomodule of T(F}.). We call O, (M) the order module
in the following sense. If s,s" € T(F,) such that s € O.(M) and s is a multiple of ¢,
then we also have s" € O,(M). Now we are able to present Macaulay’s Basis Theorem
in F, as follows.

Theorem 5.1.9. (Macaulay’s Basis Theorem) Let M C F, be a K(X)-submodule.
We have F. = M @& Span;,O,(M). Moreover, for every element m € F,, there exists a
unique element m € Span, O, (M) such that m —1m € M.
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Proof. First we prove that F, = M + Span,O,(M). It suffices to prove F, C M +
Spany O, (M). Given an element m € F,. \ {0}, we consider the following sequence of

instructions.
1) Let s =0,m =0, and v = m.

2) If LT, (v) € LT, (M), then increase s by one, choose an element g € M such that

LT, (v) =LT,(g), set gs = Eg:g;gg, and replace v by v — g,. If LT (v) ¢ LT (M),

replace 1 by m + LM, (v) and v by v — LM, (v).

3) If now v # 0, start again with step 2). If v = 0, return gy, ..., gs and 7.

Observe that the following equation holds at each stage of the procedure.
m=g +---+gs+m+v

Moreover, in step 2) one of two things can happen. If LT, (v) € LT.(M), then LM, (v) =
LC, (v)LT,(v) = LG, (v)LT, (g) = EEEHLCA(9)LT,(9) = LMi(g,). It v — g # 0, then
by Remark [5.1.7la we have LT, (v) >, LT,(v — g5). On the other hand, if LT, (v) ¢
LT, (M), then LM, (v) is subtracted from v. By Remark [p.1.7a we have LT, (v) >,
LT, (v—LM,(v)) if v —LM,(v) # 0. In a word, the leading term of v strictly decreases

in step 2). Since 7 is a well-ordering, the procedure terminates after finitely many

steps. When the procedure returns, we have v = 0 and m = (g1 + - - - + g5) + 71 with
g1, ,9s € M and m € SuppiO,(M). Therefore F, = M + Span;O.(M).

We prove that M N Span,O,(M) = {0}. Suppose that there exists a non-zero
element m € M N Span,O,(M). Then we have LT,(m) € LT, {M} N O,(M), which
contradicts Definition [5.1.8}c. Altogether, we have F, = M @ Span; O, (M).

It is clear that when the procedure returns we have m —m € M. To prove the
uniqueness of 7, we assume that there exist 7y, ms € Span;,O,(M) such that m —
my, m—1y € M. Then we have (m —my) — (m—my) = 1y —my € M NSpan,O,(M).

Therefore m; = ms. O

The unique element m € Span;O,(M) as in Theorem is called the normal
form of m modulo M with respect to ¢ and is denoted by NF, y;(m). The following

corollary follows from Theorem [5.1.9 immediately.

Corollary 5.1.10. We have dimg (F,/M) = dimg (F, /LT, (M)) for any K{X)-submodule
M CFE,.

We have the following rules for computing with normal forms.
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Remark 5.1.11. Let M C F, be a K(X)-submodule.
a) For m € F,, we have NF, ,/(NF, ps(m)) = NF, ps(m).
b) For my,ms € F,, we have NF, ;(m; — mg) = NF, yr(mq) — NF, pr(ma).

c) For my,my € F,, we have NF, ps(my) = NF; ps(m2) if and only if my —mq € M.

In particular, an element m € F, satisfies m € M if and only if NF, 5,(m) = 0.

From the proof of Theorem [5.1.9] we shall now construct the following Division

Algorithm with the intention of computing the normal form algorithmically.

Theorem 5.1.12. (The Division Algorithm) Let m € F,.\ {0} be an element, and

let G C F,. \ {0} be a set elements. Consider the following sequence of instructions.
1) Lett=0,p =0, and v =m.

2) If there exists an element g € G such that LT (v) = wLT,(g)w’ for some w,w" €
LC,(v)

(X), then increase t by 1, set ¢; = LC:(9)

ywg = w,wy, = w', g = g, and replace v
!/
by v — cawgrwy.

3) Repeat step 2) until there is no more element g € G such that LT (v) is a multiple
of LT (g). If v # 0, then replace p by p + LM, (v) and v by v — LM, (v), and
continue with step 2).

4) Return the tuples (c1,wy, Wy, g1), ..., (ct, w, wy, g¢) and the element p € F,.
This is an algorithm which returns tuples (cy, w1, W}, g1), - ., (¢, wy, wy, g;) and an ele-

ment p € F, such that
t

m = Z Ciw;gw; + p
i=1
and such that the following conditions are satisfied.
a) No element of Supp(p) is contained in LT, (G).

b) If t > 0, then we have LT, (m) = LT (wyg1w}) >, -+ >, LT (wigiwy}).

c) If p# 0, then we have LT (m) >, LT (p).
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Proof. We first show that the following equation holds at each stage of the procedure.

t
m = Z ciwigiw; +p+vo

i=1
It is obviously true at the outset. Then we should consider two cases. If in step 2)
there is an element g € G such that LT, (v) = wLT,(g)w’, then c;w;gw; is added to the
summation of the right hand side of the equation and meanwhile subtracted from wv.
Otherwise, in step 2) LM, (v) is added to p and meanwhile subtracted from v. Thus
the equation is preserved in both cases.

Observe that v changes only in steps 2) and 3). In step 2) we have LT, (c;w;grw;) =
wi LT (g¢)w; = LT, (v) using Remark.b, and LC, (qwigrw;) = ¢:LC;(g:) = LC,(v).
If v — cywygyw, # 0, then by Remark .a we have LT, (v — qwigyw;) <, LT, (v). If in
step 3) v — LM, (v) # 0, then by Remark [5.1.7a we have LT, (v — LM, (v)) <, LT, (v).
Therefore LT, (v) strictly decreases. Since 7 is a well-ordering, LT, (v) can decreases
finitely many times and the procedure terminates after finitely many steps. Condi-
tion a) holds because in step 3) LM, (v) is added to p only if LT, (v) is not a multiple
of any terms in LT, {G}. Conditions b) and c¢) hold because LT, (v) is strictly decreas-
ing. O

Definition 5.1.13. Let m € F, \ {0} be an element, and let G C F, \ {0} be a set
of elements. Then an element p € F,. obtained in Theorem [5.1.12 is called a normal

remainder of m with respect to G and is denoted by NR, ¢(m).

Observe that normal remainder NR, (m) is not unique, for in step 2) of the Division
Algorithm there might exist more that one g € G satisfying LT, (v) = wLT,(g)w’ for
some w,w’ € (X) (compare with Corollary B.3.9). Note that we have NR;(0) = 0
and NR, y(m) = m for all m € F, using this definition. Also note that NR, (m) is not
equal to NF. (¢ (m) in general. In Section we will see that if G is a Grobner basis
(see Definition of the K(X)-submodule (G) C F,. then the Division Algorithm
computes normal forms (see Proposition |5.2.2]).

At the end of this section, we present interreduction on a set of elements G C F,.\{0}
as an important application of the Division Algorithm. Note that a set of elements
G C F,. \ {0} is called interreduced with respect to 7 if no element of Supp(m) is
contained in LT, (G \ {m}) for all m € G.

Corollary 5.1.14. (Interreduction Algorithm) Let G C F, \ {0} be a finite set
of elements which generates a K(X)-submodule M = (G). In this setting, we apply
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the Interreduction Algorithm as in Theorem with step 2) replaced by the following

instruction.

2’) Compute the normal remainder g, of g; with respect to G \ {0, g;} using the Di-
wision Algorithm given in Theorem [5.1.14.

Then we obtain an algorithm that computes an interreduced system of generators of M.

Proof. Analogous to Theorem [3.2.8| m

5.2 Grobner Bases and Grobner Basis Computa-
tions
In the spirit of Definition we define Grobner bases of K (X )-submodules as follows.

Definition 5.2.1. Let M C F,. \ {0} be a K(X)-submodule. A subset G C M \ {0}

is called a ™-Grobner basis of M if
LT {M} = {wLT, (9)u' | g € G,w, v’ € (X)}.

Note that M \ {0} is a 7-Grobner basis of M using this definition. In particular,
the empty set () is a 7-Grobner basis of the zero module (0). The most frequently used

properties of Grobner bases are as follows.

Proposition 5.2.2. Let M C F,\ {0} be a K(X)-submodule, and let G C M \ {0} be

a subset. Then the following conditions are equivalent.
a) The set G is a T-Grébner basis of M.
b) For every element m € F,, we have NR, g(m) = NF, p;(m).

c) For every element m € M \ {0}, there exists a Grébner representation in terms
of G, i.e.

S

/

m = g C;W; g; Wy
i=1

with ¢1,...,¢cs € K\ {0}, 91,...,9s € Gwy,...,w, € (X) such that LT (m) =
LT, (wygrwy) >, LT (wegow}) >, « -+ >, LT (wsgsw?).
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Proof. To prove condition a) implies condition b), we let NR; s(m) be a normal re-
mainder of m with respect to G. By Theorem [5.1.12]a, no element of Supp(NR;c(m))
is contained in LT, (G). By Definition we have LT, {M} C LT,(G). Hence no el-
ement of Supp(NR; (m)) is contained in LT, {M}. Thus NR, s(m) € Span,O,(M).
Obviously m — NR,¢(m) € (G) € M. Then condition b) holds by Theorem [5.1.9]
Condition ¢) follows from condition b) by Theorem and Remark [5.1.11]c. By
Remark condition ¢) implies condition a) . O

If a set G C F,. is a Grobner basis of a K(X)-submodule M C F,., then by Propo-
sition [5.2.2lb every element m € F, has a unique normal remainder with respect to G.
By Proposition [5.2.2lc, 7-Grobner basis G of M is also a system of generators of M.

As Grobner bases in free monoid rings, there exist more than one Grobner bases for
every non-zero K (X)-submodule in F,.. The following proposition specifies a unique

Grobner basis for every non-zero K (X)-submodule.

Proposition 5.2.3. For every K(X)-submodule M C F, \ {0}, there exists a unique

T-Grobner basis G satisfying the following conditions.

a) The set LT, (G) is the minimal system of generators of the (X)-submonomodule
LT {M} C T(F,).

b) For all g € G, we have LC,(g) = 1.
¢) For all g € G, we have Supp(g — LT, (g)) NLT {M} = 0.
Proof. Analogous to Proposition [3.3.17 m

The unique 7-Grobner basis G as in Proposition is called the reduced 7-
Grobner basis of M. A 7-Grobner basis satisfying condition [5.2.3la is called a
minimal 7-Grobner basis.

We shall mention that Grébner bases in F,. can be characterized through the leading
term modules and the leading term sets as follows. Given a K (X)-submodule M C
F,.\ {0} and a subset G C M \ {0}, G is a 7-Grobner basis of M if and only if the set
LT {G} generates the leading term module LT, (M). The proof of this characterization
proceeds as the proofs of Propositions [3.3.3] and [3.3.4. We shall also mention that
Grobner bases can be successfully characterized through rewrite rules (see [8, 9]). For

the purposes of computing Grobner bases, we shall now consider Grébner bases from

the point of view of syzygy modules.
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In what follows, we let s > 1,¢1,...,9s € F;.\{0}, and let G be the tuple (g1, ..., gs),
and LM, (G) the tuple (LM, (g1), ..., LM.(gs)). Moreover, we let F; = (K(X)®K(X))*
be the free K (X)-bimodule of rank s with the canonical basis {ej,...,€s}. We define
the K(X)-bimodule homomorphisms A : Fy — F, given by A(¢;) = g; fori =1,...,s,
and A : Fy — F, given by A(¢;) = LM, (g;) fori=1,...,s.

Definition 5.2.4. Using the notation above, we define syzygy and syzygy module as

follows.

a) The kernel of the module homomorphism A : Fy — F,, i.e.
ker()\) = {Z Zcijwijeing € FS ’ Z Z cijwijging = O},
i=1 jeN i=1 jeN
is called the two-sided syzygy module of G and is denoted by Syz(G). An
element in Syz(G) is called a two-sided syzygy of G.

b) Similarly, the kernel of the module homomorphism A : Fy — F,, i.e.
ker(A) = {D D eywienwl; € Fo | )Y cijwi LT, (gi)w; = 03,
=1 jeN i=1 jeN

is called the two-sided syzygy module of LM, (G) and is denoted by Syz(LM,(G)).
An element in Syz(LM,(G)) is called a two-side syzygy of LM, (G).

Recall that K(X) is (X)-graded (see Example 2.2.16). Obviously F,. is a T(F,)-
graded K (X)-bimodule. The tuple G together with the module term ordering 7 induces
a T(F,)-grading on Fj as follows. For t € T(F}), we let

Fy(t) = {zs: Zcijw,-jeiw;j € F, | iZcijwijLTT(gi)ng € Kt}.

i=1 jeN i=1 jeN

Then Fy becomes a T(F,)-graded K (X)-bimodule.
We have the following definitions and lemmas which are similar to the corresponding

definitions and lemmas in Section 3.4
Definition 5.2.5. Let m = 7| > . cijwieawy; € Fs \ {0}
a) The term
mTax{LTT(wijging) |ie{l,...,s},j € N,¢; #0} € T(F))

is called 7-degree of m and is denoted by deg, g(m).
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b) The element » 7| >y Cijwieaw;; € Fi \ {0} given by

/ . A

I cijwieiwy;  if ¢;; #0 and LTT(wijgiwij) = deg, g(m),
cijwijeiwij = )
0 otherwise

is called 7-leading form of m and is denoted by LF, g(m).

c¢) mis called homogeneous of T-degree deg, 5(m) if deg, 5 (ciwijew;;) = deg, g(m)
for all 7 € {1,...,s} and all j € N such that ¢;; # 0.

Lemma 5.2.6. For allm € F,\Syz(G), we have LT (A(m)) <; deg, g(m). Moreover,
LT (A(m)) <, deg, g(m) if and only if LF; g(m) € Syz(LM.(G)).

Proof. Analogous to Lemma [3.4.5] O]

Definition 5.2.7. A pair (i,j) with ¢,5 € {1,...,s} and i < j is called a critical

pair of G if there exist w;, wj, w;, w; € (X) such that w;LT,(g;)w; = w;LT-(g;)wj, and

such that the common prefix of w; and w; is 1, and such that the common suffix of w;

and w’ is 1. The set of all critical pairs of G will be denoted by B. For critical pair
1 1

(i,7) € B, the element o;; = Lc—mwieiw; — w—mwjejw; € I is called the critical
T 1 T ]

syzygy of g; and g;, and the element S;; = Lc;(g,)wigiwg — w;(g)wjgjw;- € F, is called
T 1 T i

the S-element of g; and g;.

It is clear that, for each pair i,j € {1,..., s} satisfying i < j, there exists at most
one critical pair. Thus |B| < oo. By Definitions and , for each critical
pair (i,j) € B the critical syzygy o;; is a syzygy of LM,(G) and is homogeneous of
7-degree deg, ;(0;). Moreover, the following lemma holds.

Lemma 5.2.8. We have Syz(LM,(G)) = (0; | (i,7) € B).
Proof. Analogous to Lemma [3.4.8/b. O

The following is the last ingredient we need for the purpose of characterizing

Grobner bases through syzygy modules.

Definition 5.2.9. An element m € F,\{0} is called a lifting of an element m € F,\{0}
if we have LF, g(m) = m.

Proposition 5.2.10. Let G C F, \ {0} be a finite set of elements which generates a
K(X)-submodule M = (G), let G be an associated tuple of G, and let s = |G|. Then

the following conditions are equivalent.
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a) The set G is a T-Grébner basis of M.

b) There ezists a homogeneous system of generators of Syz(LM,(G)) with the prop-
erty that every generator has a lifting in Syz(G).

Proof. Let B be the set of all critical pairs of G. The set {o;; | (i,j) € B} is a
homogeneous system of generators of Syz(LM,(G)) by Lemma [5.2.8f Then the proof
proceeds exactly as the proof of Proposition 3.4.11] m

Consequently, we obtain the following Buchberger Criterion.

Corollary 5.2.11. (Buchberger Criterion) Let G C F, \ {0} be a finite set of
elements which generates a K(X)-submodule M = (G), let G be an associated tuple
of G, and let s = |G|. Moreover, let B be the set of all critical pairs of G. Then the

following conditions are equivalent.
a) The set G is a T-Grébner basis of M.
b) For all critical pairs (i,j) € B, we have NR; ¢(S;;) = 0.

Proof. To prove condition a) implies condition b), note that by Proposition [5.2.2/b we
have NR, ¢(S;;) = NF, 0(S;;). It is clear that S;; € M. Thus we have NF; 3,(S;;) =0
by Remark .c. Therefore NR, (5;;) = 0.

To prove condition b) implies condition a), it suffices, by Lemma and Propo-
sition [5.2.10}, to prove that the critical syzygy o;; € F has a lifting in Syz(G) for all
critical pairs (i,7) € B . By assumption and Theorem , there exist c1,--- ,¢; €
K\ {0}, i,---,0i, € Gywy,...,w, € (X) such that S;; = >,_, chwggi,w, and
LT, (S;;) = LT (w1gi,,wy) >r LT (wags,wy) >7 -+ >, LT (wg;,wy). Let h = o055 —
22:1 crwpewy, € F,. Since oj; is homogeneous and deg, g(0y;) >» LT,(Sy) =
degT,g(Zzzl crwi€;, wy,), we have LF, g(h) = o0;;. Clearly A(h) = 0. Hence h is a
lifting of o;; in Syz(G). O

One can check easily that Proposition [5.2.10| and Corollary [5.2.11} also hold if G is
an infinite set. We formulate a Buchberger Procedure for enumerating Grobner bases

of finitely generated submodules in F, as follows.

Theorem 5.2.12. (Buchberger Procedure) Let G C F, \ {0} be a finite set of
elements which generates a K(X)-module M = (G), let G be an associated tuple of G,

and let s = |G|. Consider the following sequence of instructions.
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1) Let s = s and let B be the set of all critical pairs.

2) If B =10, return the result G. Otherwise, select a critical pair (i,7) € B using a
fair strategy and delete it from B.

8) Compute the S-element Sy and its normal remainder Si; = NR;g(Sy). If
Si; = 0, continue with step 2).

4) Increase s' by one, append go = Si; to the tuple G, and append the set {(i,s') | i €
{1,...,8 =1}, (3,¢) is a critical pair} to the set B. Then continue with step 2).

This is a procedure that enumerates a T-Grobner basis G of M. If M has a finite
T-Grobner basis, it stops after finitely many steps and the resulting tuple G is a finite
T-Grébner basis of M.

Proof. See [§], Corollary 2.11. O

We shall end this section with an example, which shows that a finitely generated

submodule need not have a finite Grobner basis.

Example 5.2.13. Consider the free Q(z1,x9)-module F; of rank 2 and the module
term ordering 7 = PosLLex on T(F;). Let M C F; be the Q(xy,xs)-submodule
generated by the set G = {g1, g2}, where g1 = Toxie179 + €2,92 = €173 + z16,. We
enumerate a 7-Grobner basis of M using the Buchberger Procedure given in Theorem
0.2, 12)

1) Let G = (g1,92),8 =2, and B = {(1,2)}.
2) Select (1,2) and let B = .

3) Compute Sia = 173 — TaT192 = —Tawie; + eary and S}, = NR,g(S12) =

—Tom3e) + eas.
4) Let s =3,G = (g1, g2, g3) with g3 = —xoxie; + eawq, and B = {(2,3)}.
2) Select (2,3) and let B = ).

3) Compute So3 = Toxigs + g373 = wax3e; + eax3 and Shy = NR, g(S23) = zoxde; +

62.%‘3.

4) Let s’ =4,G = (91792;93794) with g4 = $2$?€1 + 62$§7 and B = {(274)}'
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2) Select (2,4) and let B = .

3) Compute Soy = 22399 — g3 = xToxier — ey and Sy, = NR, g(Sa4) = zozie; —

5.
4) Let s =5,G = (91792793794795) with g5 = 3725511161 — €2x37 and B = {(275)}-

It is easy to check that the procedure goes on forever. We want to show that M
has the infinite reduced 7-Grébner basis G = {g1,92} U {gx | k¥ > 3} with g, =
Toxhley + (—1)Feqxd™5. Tt is clear that M C (G). From g3 = —g17y + 29192 and
gk = Lot 2gs — gr_123 for all k > 4, we conclude that (G) C M. Therefore M = (G).
It is easy to check that the set of all critical pairs of G is B = {(1,2), (2,k) | k > 3}. We
are going to show that NR; ;(S12) = 0 and NR, ¢(S2;) = 0 for all k£ > 3, and then G
is a 7-Grobner basis of M using Corollary The critical syzygy of (1,2) is 012 =
€179 — To1€9 and the S-element Sjo = —z9x?e; + €379 = —g3. Thus NR, ¢(S12) = 0.
For k > 3, the critical syzygy of (2, k) is oo = 222" €5 — €22 and the S-element Sy, =
Tor N e1x? 4 21e0) — (zoxh ey + (—1)Feqaa® ) a3 = woake; + (—1)¥lega2F 3 = gipy.
Thus NR, ¢(S2x) = 0. Finally, G is the infinite reduced 7-Grobner basis of M, because
LT {G} = {myz1e129, €123, 2025 1 | k > 3} C T(F,) and G are interreduced sets and
LT, (g;) =1 for all g; € G.

5.3 Improved Buchberger Procedures

Let G C F, \ {0} be a finite set of elements which generates a K (X)-submodule
M = (G), let G be an associated tuple of G, and let s = |G|. Moreover, let B be the set
of all critical pairs of G, and let ¥ = {oy; | (4,7) € B} be the set of critical syzygies. By
Proposition [5.2.10] G is a 7-Grébner basis of M if and only if there is a homogeneous
system of generators of the syzygy module Syz(LM,(G)) consisting entirely of elements
which have a lifting in the syzygy module Syz(G). By Lemma[5.2.8] ¥ is a homogeneous
system of generators of Syz(LM,(G)). During the Buchberger Procedure (see Theorem
, the existence of a lifting of each element in ¥ is checked by the Division
Algorithm, which tends to be expensive. Our main goal in this section is to improve
the Buchberger Procedure by detecting unnecessary critical pairs, i.e. the critical pairs
whose associated critical syzygies are redundant (see Definition . We shall achieve

this goal by generalizing our methods for improving the Buchberger Procedure in free
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monoid rings (see Section to F,.. We also present an improvement of the Buchberger
Procedure related to redundant generators.

In what follows, we let F, = (K(X)® K(X))*® be the free K (X )-bimodule of rank s
with the canonical basis {€,...,€s}. For our purposes, we shall define the module
term ordering 7 on T(F}) induced by (7,G) as follows (compare with Example [5.1.2)).

Definition 5.3.1. Let 7 be a module term ordering on T(F,), and let G = (g1,...,9s) €
(F. \ {0})® be a tuple of elements. The module term ordering 7 on T(F) induced by
(7,G) as follows. For all wye;w}, wae;wh € T(Fy) withi4,j € {1,..., s} and wq, w], we, w)
€ (X), we say that wiew] >» wee;w) if we have w1 LT, (g;)w] >, woLT,(g;)wh, or if

we have w; LT, (g;)w] = woLT,(g;)w}y and ¢ > j.

By Definitions [5.2.7] and [5.3.1] for each critical pair (i,j) € B the critical syzygy
045 = mwzelw; — mwjejwz- € Fs satisfies LT-,’:(O'Z'J') = ’ijj’w;. Furthermore,

we order critical syzygies in ¥ with respect to 7 as follows. For two critical syzygies

oij = Wi €W, — wje Wy, o = WEELW), — wiqw; € X, we say

that o,; >7 oy if we have wjejw; >z wyqwy, or if we have wje;w; = wew; and
w;ew; >7 wrepwy,. 1t is easy to verify that 7 is a well-ordering on X.

The crucial idea of our method is to detect critical pairs whose associated criti-
cal syzygies can be generated by smaller critical syzygies with respect to 7. Then by
Lemma we get a smaller homogeneous system of generator of Syz(LM,(G)). Fi-
nally, using Proposition [5.2.10| we achieve our desired improvement of the Buchberger

Procedure.
Remark 5.3.2. Let us collect some observations.

a) Let (7,k), (j, k) € B be two distinct critical pairs with associated critical syzygies

= 1 vew — —L1 o ! o= — 1 e — —L o !
Ok — LCT(gi)wzQwi LCT(gk)wklekwki and Ojk = LCT(gj)wﬂejwj LCT(gk)wkﬂekwkj’

respectively. If there exist w,w’ € (X) such that wy; = wwy;, wy; = wyw', then

we have
Oik — Wo »kw’ = Lw-e-w/ - ;ww'e wiw'
g J - [t I
LCT(Qz‘) LCT(gj) ’
1 / 1 / ! . o . . -
where mwlelwl — mU)U)jijjw 1S a multlple of O, where 7' = mm{z,j},

j' = max{i,j}. Obviously oy, ># 0y;,. By the definition of 7 on X, we have

oir > 0j if and only if ¢ > j or i < j and ww' # 1.

b) Let (j,1), (i, k) € B be two distinct critical pairs with associated critical syzygies

— — 1 e — —L e o= 1 e, — —L /
Tji = e WiGiW5 ~ T g Wi €iWi and o, = 0 (o0 Wik€iWik — T gry WkEk W
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respectively. If there exist w, w’ € (X) such that w;, = ww;;, w}, = w;;w’, then

we have
o +wow = L ww,e;whw' ! W ELW)
i Ji T (A JCiWs T T k
LC:(g;) 77 LCr(gk)
1 /oyl 1 /o : . . .
where TG, (o) WWiGWiW' = T (gry WER WY, 1S a multiple of 0. Clearly o ># 0y

and o, ># 0. However, we shall show later that this case is unlikely to happen

after removing unnecessary critical pairs detected by a) (see Proposition [5.3.4)).

c¢) Let (i, j) € B be a critical pair with associated critical syzygy o;; = ﬁwieiwg—

9i)
LC 1(9 ) wje;wy, and let gy € G with k > j. If there exist w,w’ € (X) such that
T\IJ

w; LT, (g;)w; = wLT,(gr)w', then we have

( 1 / 1 N ( 1 / 1 0
Oij = 77 TWiGW; — — = TWEGW ) — (- T W;6W,;, — — T WELW

7 LG (g) LC-(gx) LC-(g;) "77  LCr(ge)

where mwzezw; — mwekw/ and mwjejw; — mwekw/ are multiples

of o, and o, respectively. By the definition of 7 on X, we have 0;; ># 0y, and

0ij >7 0 if and only if we,w’ is a proper multiple of LT#(oy,) and LT#(0j).
Based on these observations we have the following proposition.

Proposition 5.3.3. Let B be the set of all critical pairs of G. Consider the following

sequence of instructions.

a) Remove from B all pairs (i, k) with the property that there exist w,w' € (X) and
a pair (j,k) € B such that LT7(0;) = wLT#(o,,)w" and such that either i > j
ori < j and ww' # 1. Denote the resulting set of critical pairs by B'.

b) Remove from B all pairs (i, j) with associated critical syzygy o;; = mwieiwg—

Tooray 1(9_)wjejw; and with the property that there exist w,w' € (X) and g, € G with
T\IJ
k > j such that w;LT.(g;)w; = wLT(gr)w" and such that weyw' is a proper

multiple of LT#(0y) and LT>(0j;). Denote the resulting set of critical pairs by B .
Then we have Syz(LM.(G)) = (o4 | (i,5) € B").
Proof. This follows immediately from Lemma and Remark [5.3.2] O]

It is clear that, for any two elements o;;, o) of {0y; | (4,7) € B'}, neither LT#(oy;) is
a multiple of LT7(0y;) nor LT>(0y;) is a multiple of LT#(o;;). Moreover, the following
proposition shows that the set {o;; | (7,7) € B’} is actually interreduced.
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Proposition 5.3.4. Let B’ be the set of critical pairs as in Proposition[5.3.3.a, and let

(i,k) € B’ be a critical pair whose critical syzygy is oy = mwikeiwgk—mwkekw;.

Then there is no critical pair (j,i) € B' such that wige;w), is a multiple of LT7(0j;).

Proof. For a contradiction, suppose that there exists a critical pair (j,7) € B’ with

i iti = 1 e ——L oy ear) e =

associated critical syzygy o;; = 6, (o) Wi€i Wi — T gy Wi €iWij such that ww;je;wi;w' =

wige;wy, for some w,w’ € (X). Then we have oy, + wojw = mwwjejw;w’ -
1

T (o) WeekWy,, which is a multiple of o € B. Obviously o, <7 oi. Thus oy is

removed from B in Proposition [5.3.3la due to o;;: a contradiction. O

Note that Proposition |5.3.3 is a generalization of the Gebauer-Moller Installation
(see [33]) in F,.. Using Proposition [5.3.3] we shall improve the Buchberger Procedure

as follows.

Theorem 5.3.5. (Improved Buchberger Procedure 1) In the situation of Theo-
rem we replace step 4) by the following sequence of instructions.

4a) Increase s' by one, append gy = Sj; to the tuple G, and form the set B(s') =
{(5,8) |ie{1,...,s —1},(4,5) is a critical pair}.

4b) Remove from B(s') all pairs (i, s") with the property that there exist w,w’ € (X)
and (j,s") € B(s') such that LT7(0;s) = wLT#(0js)w’ and such that either i > j
ori < j and ww' # 1.

4¢) Remove from B all pairs (i, j) with associated critical syzygy o;; = ﬁ(g)wieiwg—
1

w—mwjejw;, which has the property that there ezxist w,w' € (X) such that
T\JJ
w; LT, (g;)w; = wLT, (g )w" and such that wegyw' is a proper multiple of LT7(0is)

and LT5(0js).
4d) Replace B by BU B(s") and continue with step 2).

Then the resulting set of instructions is a procedure that enumerates a T7-Grobner ba-
sis G of M. If M has a finite T7-Grober basis, it stops after finitely many steps and the
resulting tuple G is a finite T-Gréobner basis of M.

Proof. This follows from Propositions [5.2.10| and [5.3.3| and Theorem [5.2.12 O

The following example shows the effectiveness of our improvement.

Example 5.3.6. Consider the free Q(x1, z5)-module Fy of rank 2 equipped with the
module term ordering 7 = PosLLex on T(F3). Let M C F; be the Q(x1, x2)-submodule
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generated by the set G = {g1, g2}, where g; = xox16129 + €1, g2 = €175 + 1169 (cf. [9]).
We enumerate a 7-Grobner basis of M using the Improved Buchberger Procedure I

given in Theorem [5.3.5]
1) Let G = (g1,92),5 =2, and B = {(1,2)} with 015 = €129 — z27163.
2) Select (1,2) and let B = 0.
3) Compute Sj2 = ejx9 — zax3ey and S}y = NR, g(S12) = €113 — mox?es.

4&) Let 8, = 37g = (g17g2>g3) with g3 = €1y — $2$%€2, and B(?)) = {<173)7 (273)}

with 013 = €1 — Tax1€3, 093 = €9 — €319
4d) Let B ={(1,3),(2,3)}. Note that o135 ># 3.
2) Select (2,3) and let B = {(1,3)}.
3) Compute So3 = zoziears + w15 and Shy = NR, g(S23) = Taxiesws + z169.
4a) Let s =4,G = (g1, g2, g3, g4) With g4 = xox2€09 + 7169, and B(4) = 0.
2) Select (1,3) and let B = 0.
3) Compute Si3 = e; + Toz1227%€9 and Sj3 = NR, g(S13) = €1 + zow1100%€s.

da) Let s = 5,G = (g1,92.93,94,95) with g5 = €1 + @xowi2227es, and B(5) =

{(1, 5), (2,5), (375)} with 015 = €1 — XoX1€5T9,095 — €9 — 65.%%,0’35 — €3 — €5T9.

4b) Remove (1,5),(2,5) from B(5), since LT#(015) = xox1€5T9, LT7(095) = €523 are

proper multiples of LT%(035) = €5xs.
4d) Let B ={(3,5)}.
2) Select (3,5) and let B = ).
3) Compute S35 = —xox1Taesry — Tox3es and Sh = NR, g(S35) = 0.
2) Since B = (), return the tuple G = (g1, 92, g3, g4, g5)-

Hence G = (g1, 92, 93, 91, g5) is a 7-Grobner basis of M. During the computation, the
total number of critical pairs is 6, and 2 unnecessary critical pairs are detected. We

conclude that our method improves the Buchberger Procedure efficiently.
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Our next improvement of the Buchberger Procedure is related to redundant gen-
erators. In Section we defined redundant generators through Grébner bases (see
Definition . In the literature, a more standard and precise meaning of the ad-
jective “redundant” should be as follows.

Definition 5.3.7. Let G C F, \ {0} be a set of elements which generates a K (X)-
submodule M = (G). An element g € G is called redundant if the set G \ {g} still
generates M.

In general it is not a trivial task to determine whether or not a generator is redun-
dant. Given a Grobner basis, the following proposition enables us to detect redundant

generators of some pattern.

Proposition 5.3.8. Let M C F.\{0} be a K(X)-submodule, and let G be a T-Gréibner
basis of M. If g € G has the property that there exists an element ¢' € G\ {g} such
that LT, (g) is a multiple of LT.(¢'), then g is redundant. Furthermore, the set G\ {g}
18 still a T-Grobner basis of M.

Proof. Analogous to Proposition [3.3.14 m

Example 5.3.9. (continued) Consider Example again. In this example we
obtain a 7-Grébner basis G = (g1, g2, 93, g4, g5) of M, where g1 = zaz1€6129 + €1, 92 =
€173 + T1€9, g3 = €1Ty — ToTieg, g = ToTreaTy + X169, and gs = €] + ToT1ToTIey. Since
LT,(g1) = waz1e179, LT, (g2) = €123, LT,(g3) = eyxy are multiples of LT, (g5) = ey, the

generators g1, go, g3 are redundant and the set {g4, g5} is again a 7-Grobner basis of M.

Using Proposition [5.3.8] we have the following straightforward generalization of
Theorem [4.2.24)and Corollary [4.2.25] The proofs of the correctness and the termination
proceed exactly as the proofs of Theorem [4.2.24] and Corollary [4.2.25]

Theorem 5.3.10. (Improved Buchberger Procedure II) Let G C F,. \ {0} be a
set of elements which generates a K{(X)-submodule M = (G). Consider the following

sequence of instructions.

1) Interreduce the system of generators G using the Interreduction Algorithm given

in Corollary|5.1.14).

2) Let G be an associated tuple of G, let s' = |G|, let T be the tuple (t1,...,ty) with
t; = true for alli € {1,...,5'}, and let B be the set of all critical pairs.
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3) If B = 0, return the subtuple G' of G consisting of the elements g; such that
t; = true. Otherwise, select a critical pair (i,7) € B using a fair strategy and
delete it from B.

4) Let G' be the subtuple of G consisting of the elements g; such that t; = true.
Compute the S-element S;; and its normal remainder S;; = NR, g/(Sy;). If Si; =
0, continue with step 3).

5) Increase s' by one, append gy = Si; to the tuple G, append ty = true to the tu-
ple T, and append the set {(i,s") | i € {1,...,s —1},t; = true, (i, 8') is a critical
pair} to the set B.

6) For everyi € {1,...,s" — 1}, let t; = false if LT (g;) is a multiple of LT (g ).
Then continue with step 3).

This is a procedure that enumerates a minimal 7-Grobner basis of M. If M has a
finite T-Grober basis, it stops after finitely many steps and the resulting tuple is a finite
minimal T-Grobner basis of M.

We end this section by applying the Improved Buchberger Procedure II to Example
b.3.6

Example 5.3.11. (continued) Consider Example again. Recall that in the
example we have Q(x1, z5)-submodule M = (g1, go) C Fy with g1 = xez1e129+ €1, g2 =
€172 + z1e5 and the module term ordering 7 = PosLLex. Now we enumerate a 7-

Grobner basis of M using the Improved Buchberger Procedure II given in Theorem

0.0. 10

1) G ={g1, 92} is an interreduced system of generators.

2) Let G = (g1,92),8 =2, T = (t1,t2) with t; =ty = true, and B = {(1,2)} with

012 — €192 — TaX1€9.
3) Select (1,2) and let B = 0.

4) Let G' = (g1,92). Compute S;p = €119 — xozies and Sy = NR, g(S12) =

€19 — ToTies.

5) Let &' =3,G = (g1, 92, 93) With g3 = e1x9 — xoxies, T = (t1, b2, t3) with t3 = true,
and B = {(1,3),(2,3)} with 013 = €; — xox1€3, 023 = €3 — €3T2.
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6) Let t; = ty = false, since LT,(g1) = xoz1e179, LT, (g2) = ey23 are multiples of
LTT(gg) = €1X2.

3) Select (2,3) and let B = {(1,3)}.

4) Let G' = (g3). Compute Sp3 = xaxiesws + T1ey and Shy = NR,g/(S23) =

ToTieaTy + T1€o.

5) Let s =4,G = (g1, g2, g3, g4) With g4 = xox3eqrs + w169, T = (t1, 12,13, t4) with

t4s = true.
3) Select (1,3) and let B = ).

4) Let G" = (g3,94). Compute S13 = e + xax12927es and Sj3 = NR, ¢/(S13) =

€1 + ToT 1 Tow3es.

5) Let s' = 5,G = (g1, 92, 93, ga, g5) With g5 = ey + zozi@oaies, T = (t1,t2, s, ta, t5)
with t5 = true, and B = {(3,5)} with o35 = €3 — e5xa.

6) Let t; = false, since LT, (g3) = ejz is a multiple of LT, (g5) = ;.
3) Select (3,5) and let B = 0.

4) Let G' = (g4, 95). Compute S35 = —zox1 975 €209— 291763 and Shy = NR, g/(S35) =
0.

3) Since B = (), return the tuple G = (g4, g5)-

Hence G = (g4,95) is a minimal 7-Grdbner basis of M. During the computation,
redundant generators gi, g2, g3 are detected. Consequently, unnecessary critical pairs

(1,5) and (2,5) are “removed” because of the redundancy of g; and gs.

5.4 The F4 Procedure

Since the sixties of the past century, great efforts have been made to improve the clas-
sical Buchberger Algorithm (or Procedure) for computing (or enumerating) Grébner
bases effectively and efficiently in both the commutative and the non-commutative
cases. There are mainly two directions. One is to develop powerful criteria to re-

move unnecessary critical pairs (or obstructions). In the commutative case, we refer to
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[12, 13, [17, [33], 43, [44] for more details. In the non-commutative case, we refer to Sec-
tions and of this thesis for details. Another direction is to play with strategies
during Grébner basis computations, for instance, the sugar cube strategy (see [4, 134]),
FGLM techniques (see [3], 28]), et cetera. In [26], J.-C. Faugere described a new effi-
cient algorithm, called the F4 Algorithm, for computing Grobner bases in commutative
polynomial rings. The main idea of the F4 Algorithm is to represent several polyno-
mials in a matrix form by a symbolic preprocessing step, then compute a row echelon
form of the matrix, and hence reduce several polynomials by a list of polynomials si-
multaneously. The F4 Algorithm takes advantage of sophisticated techniques in linear
algebra as well as rapidly developing techniques in parallel computing. As a result, it
is able to handle many previously untractable problems. Later, J.-C. Faugere [27] also
took into account unnecessary critical pairs and proposed the F5 Algorithm.

In this section we shall generalize the F4 Algorithm to the non-commutative case.
Since Grobner bases of submodules may be infinite (see Example , we have to
content ourselves with the F4 Procedure which enumerates Grobner bases. Note that
the main goal of this section is to explicitly show the viability of this generalization.
Hence we shall not concern ourselves with further optimizations of the F4 Procedure
except for the improvements we obtained in the last section.

The fundamental step to formulate an F4 Procedure is to build a connection between
a (finite) set of elements in F, and a linear system of equations over K. We construct
this connection in the following definition and illustrate it through a concrete example.
Recall that we let 7 is a module term ordering on T(F,.) (see Assumption [5.1.5)).

Definition 5.4.1. Let T = (ty,...,t,) € (T(F,))™ be an ordered tuple of terms with
respect to 7, i.e. t; >, -+ >, t,,, and let K™ be the vector space of rank m over K.
We define a bijective linear map ¥ : Span, (7 ) — K™ given by ¥(t;) = n;, where n; is
the i*" canonical basis of K™, i.e. n; = (0,...,0,1,0,...,0) with 1 occurring in the i‘!

position for i =1,...,m.

a) Let G = {g1,...,9s} C F, be a set of elements. Assume that 7 consists of all
terms in US_,Supp(g;). We construct a matrix Mg € Matgy,,(K) whose j* row

vector is W(g;), and we call Mg a matrix form of G with respect to 7.

b) Conversely, let M € Matgsy,,(K) be a matrix. We construct a set Gy C F,
consisting of the elements W~!(m;) where m; is the j™ row vector of M, and we

call G a polynomial form of M with respect to 7.
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Example 5.4.2. Consider the free Q(x1, z5)-module Fy of rank 2 equipped with the
module term ordering 7 = PosLLex on T(F3). Let G = {g1,92} C F3 be a set where
g1 = TaT1e1735 + €179, §o = Tax1e105 + Taxrey, and let T = (zoxie103, €129, ToTies).
The matrix form of G with respect to 7 is as follows.

ToT1e1T3 €19 ToTies
1 1 0
(51 — M,
% 1 0 1

Recall that a matrix is in row echelon form if all non-zero rows are above any rows
of all zeros, and the pivot of a non-zero row is always strictly to the right of the pivot

of the row above it. A row echelon form can be achieved by Gauflian elimination.

Definition 5.4.3. Let G C F,.\ {0} be a finite set of elements, and let M be a matrix
form of GG with respect to 7. Moreover, let Mg be a row echelon form of M. Then a

polynomial form of MG is called a row echelon form of G with respect to 7 and is
denoted by G.

Example 5.4.4. (continued) Consider Example [5.4.2] again. In this example we
have G = {g1, g2} where g, = Tox16175 + €122, g2 = ToT1€173 + ToT3€s, T = PosLLex,
and T = (wyx10173, €129, Tox3€y). The matrix form Mg of G with respect to 7 and a
row echelon form MG of Mg are as follows.

11 0 — 11 0
G<101> G<01—1>

Hence G' = {xox16173 + €179, 179 — Tox3es} is a row echelon form of G with respect

to 7.

The following proposition is a straightforward generalization of [26], Corollary 2.1,

which describes elementary properties of row echelon forms.

Proposition 5.4.5. Let G C F,.\ {0} be a finite set of elements, let G be a row echelon
form of G with respect to T, and let Gt = {g € G | LT,(g) ¢ LT, {G}}. Morcover, let
G- C G be a subset such that LT {G_} = LT, {G} and such that the leading terms of
elements in G_ are pairwise distinct. Then GTUG- is a K-basis of Spang (G), i.e. for
every element m € Spany (G)\{0} there ezxist c1,...,cs € K\{0},91,...,9s € GTUG.
such that m =7 | ¢;g; and LT,;(m) = LT(g1) >, - -+ >, LT, (gs).
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Proof. 1t is clear that the leading terms of elements in GTUG_ are pairwise distinct, thus
the elements in G+ U G- are linearly independent. We prove that SpanK(é+ UG.) =
Spany (G). Obviously Spang(GT U G.) C Spang(G). For a contradiction, suppose
that Spany (GT U G.) C Span,(G). Since 7 is a well-ordering, there exists a non-zero
element m € Spany(G) \ Spany (G* UG.) having a minimal leading term with respect
to 7. If LT,(m) € LT,{G}, then by the definition of G_ there is m’ € G_ C Gt U G-

LT, (m)
LT, (m')

Span (G) \ Spany (G U G.) and has a smaller leading term: a contradiction. Thus
we have to have LT, (m) ¢ LT,{G}. Since G is a row echelon form of G, the leading
terms of elements in G are pairwise distinct and Span (G) = Spang (G). Thus there
exist ¢},....¢, € K\ {0},4,,...,g, € G such that m = 23:1 cig; and LT, (m) =
LT,(g7) >+ -+ > LT, (g;). Therefore LT.(g}) = LT, (m) ¢ LT {G}. By the definition
of G we have ¢ € Gt C G+ UG_. Again we get an element m — ¢,¢} which is still in

m’ which is still in

such that LT,(m') = LT,(m) and we get an element m —

Span (G)\ Span K(é* UG-) and has a smaller leading term: a contradiction again. [

Example 5.4.6. (continued) We consider again Example [5.4.4] In this example we
have G = {g1, g2} where g1 = Tom1€173 + €12, go = Tox1€173 + Tox ey, and G = {51,9}
where g1 = g1 = TaT16175 + €122, §o = €172 — Tax3ey. Thus Gt = {g € G | LT,(g) ¢
LT, {G}} = {3}. Let G_ = {g2}. We show that GT U G_ = {§s, g2} is a K-basis of
Spany (G) and hence verify PrOposition Clearly {2, g2} is a linearly independent
set. From g; = go+go it follows that g; € Spang{gs, g2}. Therefore {gs, g2} is a K-basis
of Span, (G).

In the following we shall introduce the Reduction Algorithm, which is the main
ingredient of the F4 Procedure and is comparable to the Division Algorithm in the

Buchberger Procedure.

Theorem 5.4.7. (The Reduction Algorithm) Let L,G C F, \ {0} be two finite

subsets. Consider the following sequence of instructions.
1) Let F =L and T = UsepSupp(f).

2) If T =0, continue with step 4). Otherwise, select a term t € T and delete it
from T.

3) If there exist w,w' € (X),g € G such that t = wLT,.(g)w’, then append wgw’
to F and append Supp(wgw’) \ {t} to T. Continue with step 2).

4) Compute a row echelon form F of F' with respect to T.
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5) Return the set FT = {f € F\ {0} | LT,(f) ¢ LT, {F}}.
This is an algorithm. When it stops, we have LT,(h) ¢ LT(G) for all h € F*.

Proof. To prove termination, observe that each time step 2) executes one term t is
deleted from 7. The set T is enlarged only in step 3). From ¢ = wLT,(g)w’ and
Remark [5.1.7, we conclude that terms in Supp(wgw’) \ {t} are strictly smaller than
t with respect to 7. Thus in step 3) only those terms which are strictly smaller than
t are appended to 7T'. Since 7 is a well-ordering, this can happen only finitely many
times. Therefore the procedure terminates after finitely many steps.

We show that LT,(h) ¢ LT,(G) for all h € F*. For the sake of contradiction,
suppose that there exists an element h € F* such that LT, (k) € LT,(G). Then there
exist w,w’ € (X), g € G satisfying LT, (h) = wLT,(g)w’. On the other hand, we have
LT,(h) € Supp(h) C Supp(]:;Jr) C Supp(ﬁ) C Supp(F'). Thus wgw' is appended to F
in step 2). By Remark[5.1.7jwe have LT, (h) = LT, (wgw’) € LT,{F} which contradicts
the definition of FT. O

A set F* obtained in Theorem [5.4.7 is called a reduction remainder of I with
respect to G and is denoted by RR; ¢(L). In the literature, steps 1), 2), and 3) form
the so-called symbolic preprocessing (see [26]). Observe that if the set L consists of
only one element, the Reduction Algorithm is compared to the Division Algorithm
as in Theorem [5.1.12] Otherwise, it can be considered as a division algorithm which
simultaneously computes normal remainders of a set of elements and is followed by

some interreduction steps on the normal remainders.

Example 5.4.8. Consider the free Q(x1, z5)-module Fy of rank 2 equipped with the
module term ordering 7 = PosLLex. Let G = {g1, 92, g3} C F> where g; = xox1e1204¢1,
go = elxg + x1€9,03 = €1T9 — 1'2.1'%62, and L = {g122, 21192, g1, T2T193, go, g3T2}. We
compute a reduction remainder of L with respect to GG using the Reduction Algorithm
given in Theorem [5.4.7]

— _ 2 2 2 2 2
1) F=Land T = {$2x1€1I2,$2$1€1$2,€1$2,€1$2,61,$2$1I2$162,itgxlegxg,xz$1€2

Ileg}.

2) Select zowieix3 and let T' = {xox1e109, €173, €19, €1, ToT1 ToT2 €, ToT €T, ToT ey,

xleg}.

3) Since xox1LT,(g3)x2, let F = FU{z2x193%2} = {122, 222192, 91, 22173, g2, g3,
_ 2 _ 2 2
Tow1g3T2} and T = T U{xow120x7€0x0} = {12161, €123, €129, €1, ToT1 T2X €T,
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2 2 2
LoX1X2X1€2, LoX1€2X2, ToT €2, 1'162}.

2) Select xozie179 and let T = {e123, €120, €1, Tox1Tox2€oTs, ToT1Tox2€s, ToTrieTs,

2
Toliey, T1€3}.

3) Since xox1LT,(g3), let F' = F U {zox1935} = {122, 222102, g1, 2173, G2, g3,
_ 2.1 _ 2 2 2
Tow1g3T2} and T = T'U{xyz 1x0x7e0} = {€123, €122, €1, ok 1 ToT ek, ToT1T2x e,

2 2
Toiesly, ToXi€s, T1€a}.
2) Select e1x3 and let T = {e119, €1, o1 ToT3CaTa, Lol 1 ToT ey, Tl eoTy, ToT ey, T1€s ).

3) Since LT-(g3)x2, let F' = FU{gsw2} = {9172, 222192, g1, T271G3, 2, 372, T2T1G3T2 }
_ 2 _ 2 2 2 2
and T = TU{xoxieqrs} = {€1x9, €1, ToT1X0x7€0To, ToX1XoTies, ToXieoTs, ToXies,

17162}.

2) Select ey and let T = {e1, 2om1T205€2T0, ToT1ToTes, ToT 12T, ToT 1o, T1€o ).

3) Since LT, (g3), let F' = FU{g3} = {9122, 22102, g1, T22193, G2, 3T2, T2Z193%2, g3}
_ 2.1 _ 2 2 2 2
and T =T U {xoxies} = {e1, Tox1X0x7€0T0, ToT1ToX €, ToXTEoTo, ToTiea, Ti€a}.

2) Note that no element in 7" is a multiple of the leading term of element in G. Let
T = 0.

— _ 2

4) We have F' = {g129, 27192, 91, 27103, G2, §3T2, TaT193T2, g3} Let T = (zow1e123,
2 2 2 2 2

ToT1€1T2, €1T5, €1X2, €1, LoXL1X2T1€2T2, To2X1T2X1€2, XL 1€2TL2, LoT{1€2, xleg). Then

the matrix form Mp of F' and a row echelon form M, r of My are as follows.

10010 0 0 0 0 O 100100O0O0 O O
10000 0 O O 1 O 010010O0O0 O O
61001 0 0 0 0 O 0010O0O0O0OO0 O 1
601000 0 -1 0 0 O N 000100O0O0-10
600100 0 O 0 0 1 0000101O0 0 O
coo1o00 0 0 -1 0 0 000O0O0OT1TO0OO0O 1 O
10000 -1 0 0 0 O 0000O0OO0OO0O1 O 1
cooo0o1o 0 0 0 —-120 000O0O0OO0OO0OO0O O O

Thus F has a row echelon form F = {zozi1€173 + €179, ToT161T9 + €1, €173 +

2 2 2 2 2
T1€2,€1T9 — XaXi€2, €1 + Tal1XaX €2, LaX1TaL]C2Ta + LaXiC2, TalCaly + X1€2, 0}.

5) FT = {e) + Tow1mox3es, ToT1ToTICaTy + ToTies, ToTieaTs + T1€2}.
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Proposition 5.4.9. In the situation of Theorem we let L C {wgw' | g € G,
w,w" € (X)} be a subset. Then for every element m € Spang (L) \ {0} there exists a

Grobner representation in terms of G U Ft.

Proof. In step 4) of Theorem [5.4.7, we let F~ C F be a subset such that LT, {F_} =
LT, {F} and the leading terms of elements in F'_ are pairwise distinct. Then by Proposi-
tion m the set F* U F_is a K-basis of Spany (F') and the leading terms of elements
in F™ U F_ are pairwise distinct. It is clear that Span (L) C Spany(F). Hence
by Proposition for every element m € Spang (L) \ {0} there exist ci,...,cs €
K\{0}, f1....,f, € FTUF_such that m = Yoo afiand LT (m) = LT (f1) >- - >,
LT,(fs). By the assumption L C {wgw' | w,w" € (X),g € G} and the construction
of F' as in Theorem [5.4.7] for every element f € F_ C F there exist w,w’ € (X),g € G
such that f = wgw’. Hence m =Y ._, ¢;f; is a Grobner representation of m in terms
of GUF™. O

Theorem together with Proposition [5.4.9 enables us to formulate the following

F4 Procedure for enumerating Grobner bases in F,.

Theorem 5.4.10. (F4 Procedure) Let G C F, \ {0} be a finite set of elements
which generates a K(X)-submodule M = (G), let G be an associated tuple of G, and

let s =|G|. Consider the following sequence of instructions.

1) Let s' = s and let B be the set of all critical pairs.

2) If B = 0, return the tuple G. Otherwise, select a subset B C B using a fair

strategy and delete the corresponding entries from B.
8) Let L = U EB’{LC Sy Wigiw Z,LCT( 0. g WidiW wi}. Compute F* =RR,g(L).

4) If F+ =0, continue with step 2). Otherwise, select an element m € Ft and
delete it from F*. Increase s' by one, append gs = m to G, and append the set
{(4,) | ie{l,...,s = 1},(i,s') is a critical pair} to the set B. Continue with
step 4).

This is a procedure that enumerates a T-Grobner basis G of M. If M has a finite
T-Grobner basis, it stops after finitely many steps and the resulting tuple G is a finite
T-Grobner basis of M.

Proof. We prove the correctness. Observe that all critical pairs of G are constructed in

steps 1) and 4). The fair selection strategy in Step 2) makes sure that all critical pairs
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are eventually selected. In step 3) we have S;; € Spang (L). Then by appending FttogG
and by Proposition S;; has a Grobner representation in terms of G, i.e. there exist
e, 0 € K\ {0}, wy,...,w, € (X),4i,-..,9;, € G such that S;; = Z',;:l CLWE i, W},
and LT, (S;;) = LT (wig;,w]) >, LT (wag;,wh) >; -+ >, LT (wig;,w)). We let h =
Oij — 22:1 Ccrwi€;, Wy, which is a lifting of ¢;; in Syz(G). Thus G is a 7-Grdbner basis
of M by Lemma [5.2.8 and Proposition [5.2.10] The proof of the termination proceeds
exactly as the proof of the termination of Theorem [5.2.12] H

Remark 5.4.11. Let us make some observations about this F4 Procedure.

a) Clearly the F4 Procedure turns into the classical Buchberger Procedure if we
select exactly one critical pair in step 2). Note that different selection strategies
can distinctly affect the performance of the F4 Procedure as in commutative
settings (see [20], Section 2.5).

b) We prove the correctness of the F4 Procedure by showing that every critical
syzygy has a lifting in Syz(G). As a result, we can apply our methods for improv-
ing the Buchberger Procedure in the last section to improve the F4 Procedure.
In [26], J.-C. Faugere proposed a Simplify function to improve the F4 Algorithm
in the commutative case. Our experiments show that, after deleting redundant
generators and applying Proposition [5.3.3], the Simplify function is unlikely to be
executed.

c¢) The last observation should influence the Reduction Algorithm in step 3). Let
B" = {(i1,51), .-, (iu,Ju)} C B be the selected subset. Without loss of generality,

we may assume that elements in G are monic. We arrange L as the tuple
. . / . . , . . , . . ,
(wz1911w¢17 sy Wi, Gi, Wy Wi Gy Wy s - - 7w]ugﬂuwju)'

Moreover, we assume that the leading terms LT (w;, g;,w;, ), ..., LT (w;, giuwgu)
are pairwise distinct by a proper selection strategy. Without loss of generality,
we may assume that LT, (w;, g, wj,) > -+ >; LT (w;,g;,w; ). We arrange F' in

step 4) of Theorem as the tuple
/ / / !/ / !/
(wi1gi1wi17 o 7wiugiuwiw Wy Gj; Wy 5 - - - 7wjugjuwju7 Wiy Gk Wiy 5 - - - 7wk1/gkuwky)

where wy, gk, Wy, , . .., Wk, gk, W}, are elements appended to F' during the symbolic
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preprocessing. We divide the matrix form Mg of F' into 3 blocks as follows.

* .. . *
ES *
Mp =
* EE *
%k . . k
*k “ .. %

/

The first block is the matrix form of (wy, gi,wy,, ..., w;,g;,w; ), the second block

is the matrix form of (w;, g;,w ., wj, 95, w; ), and the third block is the matrix

!/

jl7 ..
form of (wp,gr,wy,, ..., Wk, gr,wj, ). Observe that the first and third blocks are
already in row echelon form. To compute the reduction remainder of L it is
sufficient to only eliminate rows in the second and third blocks. In [30], J.-C.

Faugere et al. remarked:

The matrices occurring in the Grobner basis computation have the fol-
lowing common properties: sparse, several rows are monomaial multiples
of the same polynomial, not necessary full rank, and almost block tri-

angular.

In practice, the matrices can be very large during intermediate computations. In-
stead of using naive GauBlian elimination, row echelon forms should be computed
ingeniously. Direct methods for sparse matrices are intensively studied in [25] by
I. S. Duff et al. We refer to [49], Section 5 and [62] for details about GauBian
elimination of huge and sparse matrices over finite fields. Parallel Gauflian elim-

ination for Grobner basis computations in finite fields is studied in [30].
To end this section, we apply the F4 Procedure to Example [5.4.8

Example 5.4.12. (continued) Consider Example again. In this example we
have G = {g1, g2, g3} where g1 = woxie125 + €1, 92 = €123 + T1€2, g5 = €105 — ToxTes
and the module term ordering 7 = PosLLex. Let M C F, be Q(xy,x)-submodule

generated by G. We enumerate a 7-Grobner basis of M using the F4 Procedure given

in Theorem B.4.101
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1) Let G = (g1,92,93),8 =3, and B ={(1,2),(1,3),(2,3)}.
2) Select B" = {(1,2),(1,3),(2,3)} and let B = 0.

3) Let L = {g122, x2w192, g1, T2X193, g2, g3x2}. Observe that L and G are identical
to the corresponding sets in Example . Thus we have F* = RR,¢g(L) =

{e1 + Tom19x3es, ToT1ToTIeo Lo + ToTrey, ToTieoTs + T162}.

4) Let s = 47 g = (gla 392, 93, 94) with g4 = 61—|—.Z‘2£L'1.1'2£U%62, and B = {<17 4)7 (27 4)7 (37
4)} Let s’ =5,G = (91792793794;95) with g5 = $2$1I2$%€2I2 + Izﬂﬁ%e% and B =
{(17 4)a (274)7 (374)} Let SI - 67 g - (91792,9&94795796) with g6 = IQ'I%GQZEQ +
z1e9, and B = {(1,4),(2,4),(3,4), (5,6)}. Since LT>(014) = wow1€4w0, LT7(094) =
€423 are multiples of LT7(034) = €422, we can remove (1,4),(2,4) from B. Thus
B ={(3,4),(5,6)}.

2) Select B' = {(3,4),(5,6)} and let B = ().

3) Let L = {g3, 942, g5, 227196 }. We shall compute F+ = RR.g(L). Now we let
L = (g3, g5, gar2, x2x1gs) be a tuple. Applying steps 1), 2) and 3), we obtain the

tuple F' = (g3, g5, gaT2, 12x19gs) and T = (€12, ToT1Tox3€sTs, Toxes). Then the

matrix form My of F' and a row echelon form of M, r of My are as follows.

€1T2 I‘Q[L’lg’l,’gx%egl'g ZEQI%GQ €19 I2$1$2$%62I2 JIQZL'%@Q
g 1 0 ~1 s 1 0 —1
942 1 1 0 g1x2 — g3 —gs| O 0 0
222196 \ O 1 1 T2T196 — G5 0 0 0

Thus F* = RR, g(L) = 0.
2) Since B = ®ﬂ return the tuple g - (91792793794795796)‘

Hence the set {g1, 92, g3, 94, g5, g6} is a T-Grobner basis of M.



Chapter

Applications

In the previous chapters we have studied Groébner basis theories in free monoid rings
(see Chapters [3| and |4 and in free bimodules over free monoid rings (see Chapter [5)).

In this chapter we explore the applications of Grobner bases in both settings.

Let I C K(X) be a two-sided ideal. We assume that the ideal I has a finite
Grobner basis. Under this assumption, in Section [6.1] we shall exploit Grobner bases
in the residue class rings K(X)/I (see Subsections and and in the free
K(X)/I-bimodule F, = (K(X)/I ® K(X)/I)" with r > 1 (see Subsection [6.1.3)). Due
to Theorem [6.1.3] we define Grébner bases of two-sided and one-sided ideals in K (X)) /1
(see Definitions [6.1.4] and [6.1.8)) in the spirit of the corresponding definitions in K (X).
In Subsection [6.1.1] we present the properties and the computation of Grobner bases
of two-sided ideals in K(X)/I (see Proposition and Remark [6.1.6). In Subsec-
tion we give the Right Division Algorithm in K (X)/I (see Theorem and
present the properties of Grébner bases of right ideals in K(X)/I (see Proposition

6.1.10). Through investigating the representation of elements of right ideals, we ob-
tain a Buchberger Criterion (see Proposition and a Buchberger Procedure (see
Corollary for the computation of Grobner bases of right ideals in K (X)/I. We
use a variant of the Buchberger Procedure to check whether an element of K (X)/I is
invertible, and to compute its inverse if it is invertible (see Corollary . In Sub-
section we review Grobner basis theory in free K (X)/I-bimodule F, introduced
by H. Bluhm and M. Kreuzer [§], and give the Division Algorithm in F, (see Theorem

612)

In Section [6.2| we shall study elimination of variables in the free monoid ring K (X)
(see Subsection [6.2.1) and component elimination in the free K(X)-bimodule F, =
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(K(X) ® K(X))" with r > 1 (see Subsection [6.2.2)). In Subsection we define the
elimination ordering and the elimination ideal in K(X) (see Definition [6.2.1)). Based
on the computation of elimination ideals (see Theorem , we compute the in-
tersection of ideals in K (X) (see Proposition [6.2.4), and investigate the kernels and

images of K-algebra homomorphisms (see Propositions|6.2.7/and [6.2.13]). Furthermore,

we give a condition for an element of K(X)/I to be algebraic over K and compute
its minimal polynomial (see Corollary . In particular, we propose a procedure
to check if a monoid element has finite order (see Remark . We also propose
procedures to possibly solve the subalgebra membership problem and the generalized
word problem in Remarks and [6.2.15] respectively. In Subsection we de-
fine the component elimination ordering and the component elimination module in F,
(see Definition . Based on the computation of component elimination modules
(see Theorem , we present the computation of the intersection of modules (see
Proposition and the computation of syzygy modules (see Proposition ,
Corollaries [6.2.27 and [6.2.28)). The latter evokes further applications, such as solving
the decomposition search problem and the factorization problem (see Remark ,
Bluhm-Kreuzer’s Conjugator Search Algorithm (see Remarks [6.2.32 and [6.2.33)), and
the computation of colon modules (see Definition Corollaries [6.2.35| and |6.2.37)).

In Section [6.3| we shall study the K-dimension of K-algebra K(X)/I with the help
of Grobner bases and the Ufnarovski graph. After introducing N-grading filtration
to K(X)/I, we define affine Hilbert function, Hilbert function and Hilbert series (see
Definition that represent the information about the K-dimension of K(X)/I.
Given a Grobner basis, we restate Macaulay’s Basis Theorem in Lemma [6.3.7] Fur-
ther, given a (finite) Grobner basis of the ideal I with respect to a length compatible
admissible ordering, we compute the values of the affine Hilbert function as well as
Hilbert function of K (X)/I sequentially (see Proposition and Corollary [6.3.11)).
We introduce the Ufnarovski graph in Definition [6.3.21] which was initially used to
check the finiteness and to compute the growth of the K-dimension of a K-algebra
(see Theorem . Through representing the Ufnarovski graph as an adjacency
matrix, we give a superior algorithm to compute the values of affine Hilbert function of
K(X)/I (see Theorem [6.3.27)), which allows to compute the values of Hilbert function
independently. Finally, we formulate the Hilbert series of K (X)/I in Theorem [6.3.29]

Throughout this chapter, we let K be a field, X = {x1,...,2,} a finite alphabet
(or set of indeterminates), K (X) the free monoid ring generated by X over K, (X)

the free monoid generated by X, and ¢ an admissible ordering on (X). Moreover,
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for r > 1, we let F, = (K(X) ®@ K(X))" be the free K(X)-bimodule of rank r with
canonical basis {e1,...,e.}, where ¢; = (0,...,0,1® 1,0,...,0) with 1 ® 1 occurring
in the i'" position for i = 1,...,r, and we let T(F},) be the set of terms in £}, i.e.
T(F,) = {wew' | i € {1,...,r},w,w € (X)}. Unless otherwise specified, by an ideal
I C K(X) we mean a finitely generated two-sided ideal, and by a K(X)-submodule
M C F, we mean a finitely generated two-sided K (X )-submodule.

6.1 Grobner Bases in K(X)/I and (K(X)/IQK(X)/I)

Let I C K(X) be an ideal, and let > 1. In this section we shall generalize Grébner
basis theory to the residue class ring K (X)/I and to the free K{X)/I-bimodule F, =
(K(X)/I ® K(X)/I)" under the assumption that the ideal I has a finite o-Grobner
basis. This section is motivated by the following. Let M = (X | R) be a finitely
presented monoid. K. Madlener and B. Reinert [57] exploited Grébner basis theory
in monoid rings. They established the theory of prefix Grobner bases in monoid and
group rings (see [52, 57, [58, 63]). With the intention of computing two-sided syzygies
over residue class rings, H. Bluhm and M. Kreuzer [8] generalized the prefix Grébner
basis theory to free bimodules over the residue class rings. Recall that the monoid
ring K (M) is isomorphic to the residue class ring K(X)/I where I C K(X) is the
two-sided ideal generated from the set R of relations (see Corollary . Thus we

can consider monoid rings as a specific case of residue class rings.

Assumption 6.1.1. Throughout this section, we shall assume that the ideal I has a
finite o-Grébner basis Gy C K(X).

Remark 6.1.2. Recall that the elements in the residue class ring K (X)/I are equiva-
lence classes. For a polynomial f € K(X), the residue class of f, denoted by f, is the
class of all those polynomials of K (X) that are equivalent to f modulo /. By Proposi-
tion we have NF, ;(f) = NR, ¢, (f) which can be computed using the Division
Algorithm given in Theorem [3.2.1] Thus we let the normal form NF, ;(f) be the repre-
sentative of the equivalence class of f,i.e. f = NF,;(f). By Macaulay’s Basis Theorem
(see Theorem the residue classes of the elements of the order ideal O, (), which
consists of all normal words modulo I with respect to o, form a K-basis of K(X)/I.
We consider the set O, (1) as the set of all words in K(X)/I. Thus we can represent
elements in F, in the form of >/ _ >
alli e {1,...,r},7 €N,

/ : /
jen Cijwijewy; with ¢ € K, wij, wi; € O,(I) for
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Due to Remark [6.1.2] in the following subsections we shall define Grébner bases in
the residue class ring K (X)/I and in the free K(X)/I-bimodule F, with the same style
as Grobner bases in free monoid rings. For our needs we distinguish two multiplications
as follows. Given two polynomials f,g € K(X)/I, we let f - g denote the product of
fand g in K(X), and fg = NF,;(f - g) the product of f and g in K(X)/I. In
particular, for two words wy,ws € Oy (I), the word w; - wy is the concatenation of
wy and wy in (X), while wywy = NF, r(w; - w2) could be a polynomial in K (X)/I.
Moreover, we will denote the identity in (X) by =. Note that the ordering ¢ is not
compatible with multiplication in K(X)/I, since for wq,wq, w3, wy € O,(I) such that

wy >, we we might have LT, (wswiwy) <, LT, (wswawy).

6.1.1 Grobner Bases of Two-Sided Ideals in K(X)/I

The following theorem describes the relation between ideals in the free monoid ring K (X)
and ideals in the residue class ring K(X)/I.

Theorem 6.1.3. Let I C K(X) be a two-sided ideal. Then there is a one-to-one cor-
respondence between the set of all two-sided (or one-sided) ideals in K(X) containing I
and the set of all two-sided (or one-sided) ideals in K(X)/I, given by J — J/I.

Proof. See [40], Chapter III Theorem 2.13. O

Hence every two-sided (or one-sided) ideal in K(X)/I is of the form J/I where
J C K(X) is a two-sided (or one-sided) ideal containing I. We shall investigate
Grobner bases of two-sided ideals in K(X)/I in this subsection and of right-sided
ideals in next subsection.

In this subsection, we let J C K(X) be a two-sided ideal containing /. Then J/I
becomes a two-sided ideal in K(X)/I. Since for every polynomial f € I we have
NF,;(f) = 0 (see Remark [3.1.18/c), to define Grobner bases of the ideal J/T it suffices
to consider the polynomials in J \ I.

Definition 6.1.4. Let J C K(X) be a two-sided ideal containing I, and let G; C J
be a set of non-zero normal polynomials modulo I with respect to . The set G is
called a o-Grébner basis of the two-sided ideal J/I if for every polynomial f € J\ [

there exists a polynomial ¢ € G, such that LT,(g) is a subword of LT,(f) where
f = NFU,I(f)'

Since G is a o-Grobner basis of the ideal I, for every polynomial f € I\ {0} there
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exists a polynomial g € G such that LT,(f) is a multiple of LT,(g). Then we use
Grobner bases to connect the ideal J/I C K(X)/I with the ideal J C K(X) as follows.

Proposition 6.1.5. Let J C K(X) be a two-sided ideal containing I, and let G; C
K(X) be a set of non-zero normal polynomials modulo I with respect to o. Then the

following conditions are equivalent.
a) The set G is a o-Grébner basis of the ideal J/I C K(X)/I.

b) The set G; UGy is o-Grobner basis of the ideal J.

c¢) Every normal polynomial f € J\I modulo I with respect to o has a representation

f = Z cjwjgjw; + h
j=1
with c1,...,¢cs € K\ {0}, wy,...,w, € (X),q1,...,9s € Gj,h € I such that
LT, (f) 2o LT, (wjgjw}) = wj - LT,(g;) - wj for all j € {1,...,s} and such that
LT,(f) >, LT,(h) if h # 0.

Proof. We prove condition a) implies condition b). Let f € J\ {0}. We have f =
NF,:(f) = NR, ¢, (f) where the second equality follows from Assumption and
Proposition . If f=0o0r f#0and LT,(f) #Z LT,(f), then, by Theorem m
and Remark [3.1.13] there exists a polynomial g € G; such that LT, (f) is a multiple
of LT,(g). If f # 0 and LT,(f) = LT,(f), then by Definition there exists
a polynomial g € G such that LT,(f) is a multiple of LT,(g). Therefore the set
G ;UG is a o-Grobner basis of the ideal J.

We prove condtion b) implies condition a). Let f € J\I. Clearly f = NF,;(f) € J.
There exists a polynomial ¢ € G; U Gy such that LT,(f) is a multiple of LT,(g).
Since G is a o-Grobner basis of I and f is a normal polynomial, we must have g ¢ G/.
Thus ¢ € Gy, and hence the set G; is a o-Grobner basis of the ideal J/I. The
equivalence between conditions b) and c) follows from Proposition and Remark
B.II3 O

Proposition shows that Grébner bases of two-sided ideals in K (X)/I share
many of nice properties of Grobner bases of two-sided ideals in K (X) (see Section [3.3)).
Using Proposition we compute Grobner bases in K(X) /I as follows.

Remark 6.1.6. Let G C K(X)\ {0} be a set of polynomials which generates an ideal
J/I C K(X)/I. We compute a o-Grobner basis of J/I via the following procedure.
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1) Enumerate a o-Grobner basis Gy of the ideal (GUGr) C K(X).

2) Let G; = G;\ G;. For each polynomial g € G, compute g = HF, ;(g) using the
Division Algorithm given in Theorem If g # 0, replace g by g. Otherwise,
delete g from G.

3) Return the set G; which is a o-Grobner basis of the ideal J/I.

We shall remark that the procedure above might not terminate since the ideal (GUGy)
in step 1) might not have a finite Grébner basis. As a result the ideal J/I may not have
a finite Grobner basis. Recall that in commutative polynomial rings the existence of
finite Grobner bases is guaranteed by Dickson’s lemma. P. Nordbeck [60] generalized
Dickson’s lemma to K (X)/I, suggested so-called D-property and showed that every
ideal in K (X)/I has a finite Grobner basis if the residue class ring K (X)/I fulfils the
D-property. We refer to [60] for details. Note that in general it is undecidable whether
or not a given ideal J/I C K(X)/I has a finite Grobner basis.

Example 6.1.7. Consider the dihedral group Dg = (a,bla® = b* = (ab)*> = 1) of
order 6 and the group ring Fo(Dg). Note that Fo(Dg) = Fo(a,b)/I where I C Fy(a,b)
is the two-sided ideal generated by the set {a®+1,b%+1, (ab)?+1}. Let J C Fo(Ds) be
the ideal generated by the set {g1, go} where g; = aba+b+a+1 and g = ab+ba+b+a.
Equivalently, J = J/I C Fy(a,b)/I where J C Fy(a,b) is the ideal generated by the
set {g1,92,a>+ 1,0 + 1, (ab)? + 1}. Let 0 = LRLex be the length-reverse-lexicographic
ordering on (a, b) induced by a >, b. We compute a o-Grobner basis of the ideal .J
as follows. Firstly we compute a o-Grobner basis G of the ideal I. We get G; =
{0?*+1,a®>+1, ba®+ab, aba+b, a*b+ba, bab+a?, abab+1}. Then we compute a o-Grobner
basis G ; of the ideal J. We get Gy = {a+1, a®>+a, ba+a?+b+a, ab+b,b*+1, a+1, aba+
b+a+1,abab+1}. Let Gy = G;\G; = {a+1,d*+a, ba+a*+b+a,ab+b, aba+b+a+1}.
We compute the normal forms of elements of G ; modulo I with respect to o and remove
zero normal form. We obtain the set G; = {a+ 1,a* + a,ba + a* + b+ a, ab+ b} which

is a o-Grobner basis of the ideal J.

6.1.2 Grobner Bases of Right Ideals in K(X)/I

Now we shall investigate Grébner bases of right ideals in K (X)/I. It is understood

that all theorems about right ideals also hold, mutatis mutandis, for left ideals. In this
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subsection, we let J C K(X) be a right ideal containing I. Then J/I is a right ideal
in K(X)/I. We define Grébner bases of right ideals in K(X)/I as follows.

Definition 6.1.8. Let J C K(X) be a right ideal containing I, and let G; C J be a
set of non-zero normal polynomials modulo I with respect to 0. We call the set G; a
o0-Grobner basis of the right ideal J/I C K(X)/I if for every polynomial f € J\ I

there exists a polynomial g € G; such that LT, (g) is a prefix of LT, (f).

Grobner bases of right ideals in K (X') /I possess similar properties as in Proposition
[6.1.5] To describe these properties precisely, we first generalize the Right Division
Algorithm (see Theorem to the residue class ring K(X)/I. Recall that we
represent elements of K(X)/I by their normal forms. However, as we mentioned
before, the product of two normal words need not be normal. For the sake of keeping
operands in normal form during all computations we shall add an ingredient, which is
the normal form computation in K(X), to the Right Division Algorithm in K(X)/I.

Theorem 6.1.9. (The Right Division Algorithm) Let f € K(X), let s > 1, and
let g1,...,9s € K(X)\{0} be normal polynomials modulo I with respect to o. Consider

the following sequence of instructions.
1) Let ¢y =---=¢qs =0 and v = NF, /(f).

2) If there exists an index j € {1,...,s} such that LT,(v) = LT,(g;) - w for some

LCs (U) LC, (’U)

word w € (X), then replace q; by q; + LCu(g)) LC, (g JiW

w and v by v —

3) Repeat step 2) until there is no more j € {1,...,s} such that LT,(g;) is a prefix
of LT,(v). Return the tuple (v,qi,...,qs).

This is an algorithm which returns a tuple (v, qq,...,qs) such that
F=0O gig+v) el
j=1

and such that the following conditions are satisfied.

a) The polynomial v is a normal polynomial modulo I with respect to o.

b) Forallj € {1,...,s}, ¢; is in normal form modulo I with respect to o. If g; # 0
for some j € {1,...,s}, then LT,(f) >, LT,(g;q;) = LT,(g;) - LT (g;)-

c) Ifv#0, then LT,(f) >, LT,(v) and there is no j € {1,...,s} such that LT,(g;)
is a prefix of LT, (v).
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Proof. First we show that at each stage of the right division procedure we have

f—(Zgjqurv)EI.

Obviously it is true in step 1). We have g;q; +v = g,(q; + fg:(;i))w) + (v — Eg:&)) gjw)

in step 2). Therefore f — (>2°_, g;¢; +v) € 1.
We prove the termination. In step 1) if NF, ;(v) # 0, then by Theorem b we
have LT, (v) >, LT;(NF, ;(v)). Clearly in step 2) we have LM, (v) = LM, ( Lo () ) ).

LGy (g,) 91"
If v— LLg:((;;)) gjw # 0, then by Remark 3.1.13la we have LT, (v) >, LT, (v— fg;((;)) gjw).

Thus LT, (v) strictly decreases. Since o is a well-ordering, the right division procedure
stops after finitely many steps.

Condition a) holds because v is set to the normal form of f in step 1) and is set to
_ LGCo(v)
LCo(g;)
Since v as an input of step 2) is a normal polynomial, the leading term LT, (v) is

v gjw in step 2), which is again in normal form by Remark [3.1.18 b.

a normal word. Since LT, (v) = LT,(g;) - w, the word w is also a normal word. By
Remark .b ¢; is a normal polynomial for all j € {1,...,s}. The second part of
condition b) follows from the fact that LT, (v) strictly decreases and from Remarks
B.113la and B.1.13lc.

The first part of condition c) follows from the fact that LT, (v) strictly decreases.
The second part of condition c) holds because the right division procedure stops if and
only if v = 0 or there is no j € {1,..., s} such that LT,(g;) is a prefix of LT,(v). O

Let f € K(X), let s > 1, let g1,...,9s € K(X) \ {0} be normal polynomials,
and let G be the tuple (g1,...,9s). We denote a polynomial v € K(X) obtained in
Theorem by RNR,. ;16(f). The following promising proposition follows directly
from Definition [6.1.8 and Theorem [6.1.9.

Proposition 6.1.10. Let J C K(X) be a right ideal containing I, let G C K(X)
be a set of non-zero normal polynomials modulo I with respect to o, and let G be an

assoctated tuple of G. Then the following conditions are equivalent.
a) The set G is a o-Grébner basis of the ideal J/I C K(X)/I.

b) Every normal polynomial f € J\I modulo I with respect to o has a representation

f= Zngj +h
j=1
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with q1,...,qs € K(X) \ {0}, h € I such that LT,(f) >, LT,(g;q;) = LT, (g;) -
LT,(g;) for all j € {1,...,s} and LT,(f) >, LT,(h) if h # 0.

c) A polynomial f € K(X) satisfies f € J if and only if RNR, ;g(f) = 0.

Let G C K(X) be a set of non-zero normal polynomials which generates a right
ideal J/I C K(X)/I. The set G is a o-Grobner basis of the ideal J/I if and only if
every non-zero normal polynomial f € J\I has a representation as given in Proposition
[6.1.10[b, which can be obtained using the Right Division Algorithm given in Theorem
6.1.9) Obviously it is impossible for us to check the above condition for all normal
polynomials. Luckily, just like in free monoid rings it is possible for us to only consider
finitely many pairs of generators whose leading terms have overlaps. We are going to
exploit a Buchberger Criterion for the computation of Grobner bases of right ideals in
K(X)/I.

Remark 6.1.11. Since the set G generates the right ideal J/I and the set G is a

o-Grobner basis of the ideal I, every normal polynomial f € J\ I has a representation

s t
f= Z 9iq; + Z Wi g
j=1 i=1

with g; € G,q; € K(X) \ {0} for all j € {1,...,s}, and with ¢; € K\ {0}, ¢ € G/,
w;,w; € (X) for all ¢ € {1,...,¢}. Observe that the representation does not satisfy
Proposition .b if there exists an index j € {1,...,s} such that LT,(g;) - LT, (q;)
>, LT,(f) or if there exists an index ¢ € {1,...,t} such that w; - LT,(g}) - w, >,
LT,(f). Clearly those terms which are larger than LT,(f) should be cancelled from

the representation. There are three possibilities.

a) There exist j,5' € {1,..., s} such that j # j" and LT,(g;) - LT,(¢;) = LT, (g;) -
LT,(g;7) >, LT,(f). In this case g; and g;» have a right obstruction (see Definition
3.5.5).

b) There exist i,7" € {1,...,t} such that i # i and w; - LT, (¢}) - w; = wy - LT, (gl) -
wl, >, LT,(f). In this case ¢, and g}, have an obstruction (see Definition [3.4.7)).
Indeed it is not necessary to consider this case. Since Gj is a o-Grobner basis

/

of I, we can avoid this case by simply replacing 2221 c;w;giw; with its Grobner
representation in terms of G in the sense of T. Mora [55] (see also Remark [3.3.8)).

c) There exist j € {1,...,s},i € {1,...,t} such that LT,(g;) - LT,(¢;) = w; -
LT,(g;) - w; >, LT,(f). Since g; is a normal polynomial modulo I with respect
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to o and G is a o-Grobner basis of I, there exists some w € (X) \ {1} such that
LT,(g;) - w = w; - LT,(g).

Thus to check if the set G is a o-Grobner basis of the ideal J/I, we only need to take

care of situations a) and c). We let

1 1
{Lca(g)g - LCU(Q’)
1
{LCa(g)gw ~ LC.(g)

SO =

Jwlg,gde€Gg#g we (X) LT,(g9) =LT,(¢) - w},

SO¢q, w'qg |ge G, ¢ € Grw,w' € (X),LT,(g) - w=w-LT,(¢")}
From Remark [6.1.11) we have the following Buchberger Criterion for the computa-
tion of Grobner bases of right ideals in K(X)/I.

Proposition 6.1.12. (Buchberger Criterion) Let G C K(X) be a set of non-zero
normal polynomials modulo I with respect to o, let G be an associated tuple of G, and
let J/I C K(X)/I be the right ideal generated by G. Then G is a o-Grébner basis of
J/1 if and only if RNRy 1 g(f) =0 for all f € SO U SO¢g, -

Proof. If G is a o-Grobner basis of J/I, then RNR, ;g(f) = 0 for all f € SOcUSO¢q,
follows from the fact that f € J and Proposition [6.1.10] Conversely, suppose that
RNR, 1g(f) =0 for all f € SOcUSOgg,. To prove G is a o-Grobner basis of J/I, by
Definition it suffices to prove that for any non-zero normal polynomial f € J\ [
there exists a polynomial g € G such that LT,(g) is a prefix of LT,(f). Note that f
has a representation f = ijl 9iq; + 22:1 cw;giw; with g; € G,q; € K(X) \ {0} for
all 7 € {1,...,s}, and with ¢; € K\ {0},¢} € Gr,w;,w} € (X) for all i € {1,...,t}.
Then it suffices to show that there exists such representation satisfying LT,(f) =

max,{LT,(g;) - LT,(q;) | j € {1,...,s}}. The existence of the representation follows
from Remark B.1.13la and Theorem [6.1.9] O

Now we formulate a Buchberger Procedure to enumerate o-Grobner bases of the
right ideals J/I C K(X)/I as follows.

Corollary 6.1.13. (Buchberger Procedure) Let G C K(X) \ {0} be a set of
normal polynomials modulo I with respect to o, let G be an associated tuple of G, and
let J C K(X) be the right ideal generated by the set G. Consider the following sequence

of instructions.

1) Let S = {9t 9w | 9.9 € G.9 # ¢, w € (X),LT,(g) = LTo(g) - w}U

{teeg v — toow'd | 9€ 9.9 € Grow,w' € (X),LT,(g) - w = w' - LTo(g)}-
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2) If S = 0, return the result G. Otherwise, select a polynomial s € S using a fair

strategy and delete it from S.

3) Compute s = RNR,g(s) by the Right Division Algorithm given in Theorem

[6.1.9 If 5= 0, continue with step 2).

4) Append the set {Lci(g)g — Lci(g)gw | g € G,w € (X),LT,(9) = LT,(5) - w} U

{ﬁ@Ew — mw’g’ | ¢ € Gryw,w" € (X),LT,(f) - w=w-LT,(g')} to the

set S, and append § to G. Then continue with step 2).

This is a procedure that enumerates a o-Grébner basis G of the right ideal J/I C
K(X)/I. If J/I has a finite o-Grobner basis, it stops after finitely many steps and the
resulting tuple G is a finite o-Grébner basis of J/I.

Proof. Analogous to Theorem [4.1.14] O]

Remark 6.1.14. Let us make some observations about this procedure.

a)

The set SO USO¢¢, works similarly to the set of obstructions in that the former
is actually the set of S-polynomials of the corresponding obstructions. Thus
the methods for improving the Buchberger Procedure in free monoid rings (see
Section can also be applied, mutatis mutandis, to the Buchberger Procedure

given in Corollary |6.1.13]

Recall that every finitely generated right ideal of K(X') has a finite Grobner basis
(see Section [£.4). However, a finitely generated right ideal in K(X)/I may not
have a finite Grobner basis. For instance, consider the right ideal (x) /(zy—yx) C
K{(z,y)/{xy —yzx) and the admissible ordering ¢ = LLex such that z >, y. Then
the ideal (x)/(zy —yx) has an infinite (reduced) o-Grébner basis G = {y*z | k €

N}. Therefore we should content ourselves with an enumerating procedure as in

Corollary [6.1.13]

To end this section we present a meaningful application of Grobner bases of right
ideals in K (X)/I which checks for a polynomial f € K(X)\ I whether f € K(X)/I is
invertible. Note that f € K(X)/I is invertible if there exists an element ¢ € K(X)/I
such that fg = 1. Consider the right ideal (f)/I C K(X)/I. Then f is invertible
indicates that 1 € (f)/I, which implies that 1 € (f) \ I. Let G be a o-Grobner basis
of J/I. Then by Definition there exists a polynomial g € G such that LT,(g) is

a prefix of 1. Thus g must be a non-zero constant and hence G contains a constant.



152 6. Applications

Conversely assume that G contains a non-zero constant ¢ € K. Since c is contained in
(f), there exists a polynomial ¢ € K (X) such that fq—c € I. Thus fg = ¢ and hence

f € K{X)/I is invertible. Therefore we can conclude as follows.

Proposition 6.1.15. Let f € K(X)\ I be a polynomial. Then f € K(X)/I is
invertible if and only if every Grobner basis of the right ideal (f)/I C K(X)/I contains
a non-zero constant ¢ € K. In this case the right ideal (f)/I C K(X)/I has finite

Grébner bases.

From another point of view, if the right ideal (f)/I C K(X)/I does not have a
finite Grébner basis, then f € K(X)/I is non-invertible. In the following we present
explicitly a variation of the Buchberger Procedure to check whether f € K(X)/I is

invertible and to compute the inverse of f if it is invertible.

Corollary 6.1.16. Let f C K(X)\I be a polynomial. Consider the following sequence

of instructions.

1) Compute f =HF, (). If f =0, then return “f is not invertible”.

2) Let s = 1,91 = g1 = f,.G = (q1), and S = {mglw - mw/gi | 9i €
Gr,w,w € (X),LT,(g1) - w=w"-LT,(g:)}-

8) If S =0, then return “f is not invertible” and the tuple G. Otherwise, select a
polynomial g € S using a fair strategy and delete it from S.

4) Compute § = RNR, 1g(g) by the Right Division Algorithm given in Theorem
. If g = 0, continue with step 3). If g # 0, increase s by one, let g5 = g.
Assume that we have g — (Zj;} 9iqs; +g) € I. If in step 3) we have g =
chl(gj)gj _ LCgl(gj’)gj’w with g, g € g then let g5 = Zj_} Gi4sj — (mﬁj _
mgﬁw). If g = mgjw - o ( to, W' 9 with g; € G and g; € Gy, then let
G5 = 0521 005 — (e 9 — Ty 9)-

5) If §s = 1, then we apply forward substitution and obtain 1 = f - q+ h with q €
K(X),h €I, compute ¢ = HF, ;(q), append gs to G, and return g and the tuple
G. If g5 # 1, append the set {19 — tong9sW | 95 € G, w € (X),LT4(g)) =
LT,(g) - w} U {LCG G dsw — LC:( wgz | g0 € Gryw,w' € (X),LT,(gs) - w =
w' - LT,(gi)} to the set S, and append gs to G. Then start again with step 3).

This is a procedure that enumerates a o-Grébner basis G of the right ideal (g)/1 C
K(X)/I. If {f)/I has a finite o-Grobner basis, it stops after finitely many steps and
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the resulting tuple G is a finite o-Grébner basis of (f)/I. Moreover, if f € K(X)/I is

invertible, the procedure returns the inverse G of f.

Proof. Observe that g; = g; and the procedure above is nothing but the Buchberger
Procedure given in Corollary [6.1.13| along with extra data g; for tracking the enumer-
ating procedure. The claim follows from Corollary [6.1.13| and Proposition [6.1.15 [J

Example 6.1.17. We consider the dihedral group Dg = {a,bla® = b? = (ab)? = 1) of
order 6 and the residue class ring Fo(a, b)/I where I C Fy(a,b) is the two-sided ideal
generated by the set {a®+1,0*+1, (ab)?+1}. Let 0 = LLex be the length-lexicographic
ordering on (a,b) such that a >, b. The ideal I has the reduced o-Grobner basis
G = {b* + 1,bab + a?, ba* + ab,aba + b,a*b + ba,a® + 1}. We want to compute the
inverse of a2b € Fy(a,b)/I. Applying the procedure given in Cororllary , we have

1) Compute a2b = NF, ;(a%b) = ba.

2) Let s = 1,91 = g1 = ba,G = (q1), and S = {bab — (bab + a?),baa — (ba® +
ab), baba — b(aba + b), baab + b(a®b + ba), baa* — b(a® + 1)}.

3) We select g = bab — (bab + a*) = a? and delete it from S.
4) Compute g = NR, ¢.1(g) = a*. Let s =2, g, = a?, and gy = g1b — (bab + a?).

5*) Append {a%ba — a(aba +b),a*b — (a*b+ ba),a*a — (a* + 1)} to S, and append g»
to G.

3) Select g = baa — (ba® + ab) = ab and delete it from S.
4) Compute g = RNR, ;g(g) = ab. Let s = 3, g3 = ab, and g3 = gi1a — (ba* + ab).

5) Append {abb — a(b? + 1), abab — a(bab + a?), aba® — a(ba® + ab), aba — (aba + b)},
and append g3 to G.

3) Select g = abb — a(b* + 1) and delete it from S.
4) Compute g = RNR, ;¢(g) = a. Let s =4, g, = a, and g4 = g3b — a(b* + 1).

5) Note that g, —aa = 0, g3 —ab = 0. Append {aba— (aba+Db), aab— (a*b+ba), aa® —
(a®*+1)} to S, and append g4 to G.

3) Select g = aba — (aba 4 b) and delete it from S.
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4) Compute g = RNR,;g(g) =b. Let s =5,g95 = b, and §5 = gsa — (aba + b).

5) Note that g; —ba = 0, g3 —ab = 0. Append {bb — (b* + 1), bab — (bab + a*), ba* —
(ba® + ab)} to S, and append gs to G.

3) Select g = bb — (b* + 1) and delete it from S.
4) Compute g = RNR, ;6(g9) = 1. Let s = 6,96 = 1, and g6 = g5b — (b* + 1).

5) Since g5 = 1, we apply forward substitution and obtain 1 = a2ba®b+ h where h =
(ba? +ab)ab+ (aba+b)b+ (b*+1) € I. Return a2b and the tuple G = (g1, ..., gs)-

Therefore a2b is the inverse of itself. It is easy to verify that we have NF, ;(a®b-a%b) = 1.

Remark 6.1.18. Observe that in Example [6.1.17] some polynomials are added to
the set S repeatedly, for instance baa — (ba® + ab) in step 2) and a®ba — a(aba + b)
in step 5*) are both equal to ab. Also observe that some polynomials added to S
are multiples of others and should be removed from S because of redundancy, for
instance in step 2) baba — b(aba + b) = b* baab + b(a®b + ba) = b*a are multiples of
baa* — b(a® + 1) = b. Moreover, in step 5*) we even added 1 to S. These observations
indicate that it could be a good idea to simplify polynomials before adding them to S.
In Corollary if some polynomial is equal to 1 after simplifying, then we can
do forward substitution immediately and get the required inverse. For instance in
Example we obtain 1 = goa — (a® + 1) in step 5*). By forward substitution, we
obtain 1 = a2bba + (bab+ a*)a + (a® +1). Thus ba is the inverse of a2b. Indeed we have
a2b = ba. However, it is still unclear whether this kind of simplification can be used to

improve the Buchberger Procedure in the general case.

6.1.3 Grobner bases of Submodules in (K(X)/I ® K(X)/I)"

In this short subsection we shall quickly revise Grébner basis theory in free K (X)/I-
bimodule F, = (K(X)/I® K(X)/I)" introduced by H. Bluhm and M. Kreuzer [§], and
present the Division Algorithm in F,. Recall that we consider the set O,(I) as the set of
all words in K(X)/I and represent elements in £, in the form of >;_ >~ e
with ci; € K, wij, wi; € O, (1) for alli € {1,...,r},j € N where all but finitely many of

the ¢;; are zero. The following lemma (compared with [§], Lemma 4.2) is the foundation

/
cijwijeiwij

stone of Grébner basis theory in F.
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Lemma 6.1.19. Let 7 be compatible with o, and let m = Y., ZjeN Cijwijeiw;; €
Fo A\ A0} with ¢ € K and wij,wi; € Os(I) for alli € {1,...,7},j € N where all
but finitely many of the c¢;; are zero. Furthermore, let LT.(m) = wiepw, and let
w,w" € Oy(I) such that w - wy,w] - w" € Oy(I). Then we have w - LT (m) - w' =

wLT, (m)w" = LT, (wmuw’).

Proof. The first equivalence follows from w - wy, w} - w' € O,(I). To prove the second
equivalence it suffices to prove wwepwjw’ >, LT, (wws)e, LT, (whw') for all wee;wl €

Supp(m). Since wiexw] >, weeywh and 7 is compatible with multiplication, we have

w - wiepwy - w' >, w - weeqwh - w'. Since w - wy >, LT, (wwy) and 7 is compatible
with o, we have w - wqe; >, LT, (wws)e;. Since 7 is compatible with multiplication,
we have w - wyewyy - w' >, LT, (wws)e;wh - w'. Similarly we have LT, (wws)ewh - w' >
LT, (wws)e, LT, (whw'). Altogether we have wwiepwiw’ >, LT, (wws)e, LT, (whw'). O

Observe that the assumption that 7 is compatible with o, which was not explicitly
mentioned in [§], is crucial to the proof of Lemma [6.1.19

Assumption 6.1.20. In the rest of this subsection, we shall assume that the module

term ordering T 1s compatible with the admissible ordering o.
We shall define Grébner bases in free K(X)/I-bimodule F, as follows.

Definition 6.1.21. Let M C F, be a K{(X)/I-submodule. A subset G C M \ {0} of

elements is called a 7-Grobner basis of M if
LT AM} ={w-LT,(9)-w'| g € G,w,w" € O,(I)}.

Grobner bases defined in this way share many of nice properties of Grobner bases

in other settings. The following is the most promising one.

Proposition 6.1.22. Let M C F, be a K(X)/I-submodule, and let G C M \ {0} be a

subset of elements. Then the following conditions are equivalent.

a) The set G is a T-Grébner basis of M.

b) Every element m € M \ {0} has a representation

S

!/

m = E CiW; Gy W,
i=1

with c1, ..., cs € K\{0},wy,...,w., € O,(I),q1,...,9s € G such that LT (m) >,
w; - LT (g;) - wi > LT (wigiw}) for alli € {1,...,s}.
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Proof. See [§], Proposition 4.3. O

Intuitively, the Division Algorithm should be one of the necessary tools for Grobner
basis computations in F,. By integrating the Division Algorithm in F, (see Theorem
5.1.12)) with the normal form computation in K (X), we present the following division

algorithm in F,.
Theorem 6.1.23. (The Division Algorithm) Let m € F,.\ {0} be an element, and
let G C F,\ {0} be a set elements. Consider the following sequence of instructions.

1) Lett =0 and v =m.

2) If there exists an element g € G such that LT (v) = w - LT,(g) - w' for some
LC,(v)
LC~(9)’

w,w" € Oy(I), then increase t by 1, set ¢; = wy = w,w, =w, g = g, and

replace v by v — cawgyw;.

3) Repeat step 2) until there is no more element g € G such that LT (v) is a multiple
of LT,(g). Return the tuples (c1,wy,w},q1), ..., (ct, wy, w), g¢) and the element
NS Fr.

This is an algorithm which returns tuples (cy, wy, W, g1), - ., (¢, we, wy, g;) and an ele-
ment v € F, such that

m— () cwigiw, +v) € I K(X)/I)" & (K(X)/IoI) &I &I)

and such that the following conditions are satisfied.

a) For alli e {1,...,t}, we have LT, (w;g;w}) = w; - LT (g;) - w;.

b) Ift > 0, then we have LT, (m) = LT (wig1w}) >, -+ >, LT, (wgiw}).

c) If v # 0, then we have LT, (m) >, LT, (v).
Proof. Analogous to Theorem [6.1.9] m

Remark 6.1.24. Unfortunately, we haven’t succeeded in obtaining an effective Buch-
berger Criterion for the computation of Grébner bases in F,. One possible approach is
to follow the previous subsections by embedding the computations in F,. However, as
indicated by the representation obtained in Theorem |6.1.23] we also have to “embed”
the system of generators of I to each component of F,.. Consequently, the system of
generators of the K (X)/I-submodule expands rapidly. It is still unclear which gener-

ators are redundant for Grobner basis computations in Fi.
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6.2 Elimination

In this section we shall work on Grobner bases applications related to two types of
eliminations: elimination of variables in the free monoid ring K(X) and component

elimination in the free K (X)-bimodule F,. = (K(X) ® K(X))".

6.2.1 Elimination of Variables in K(X)

In this subsection we study applications of Grobner bases related to elimination of
variables in the free monoid ring K(X). In particular, we formulate the computation
of the intersection of ideals and investigate the presentations of the kernels and images
of K-algebra homomorphisms. Recall that X = {xy,...,z,} is a finite alphabet (or
set of indeterminates). In the following, we let L C X be a subset, X=X \ L, and
K(X) a free monoid ring generated by X over K. Recall that the free monoid (X)
generated by X is the set of terms in K(X). Similarly, we consider the free monoid
(X) generated by X as the set of terms in K (X).

Definition 6.2.1. Let L C X be a subset of the alphabet.

a) An admissible ordering o on (X) is called an elimination ordering for L if

A~

every polynomial f € K(X)\ {0} such that LT,(f) € (X) is contained in K (X).

-~ ~

b) Given an ideal I C K(X), the ideal IN K (X) in K(X) is called the elimination
ideal of I with respect to L.

It is easy to check that for any j € {1,...,n}, the elimination ordering Elim on (X),

as given in Definition [3.1.8] is an elimination ordering for L = {zy,...,z;}.

Lemma 6.2.2. Let o be an admissible ordering on (X). Then the restriction ¢ of o

to (X) is also an admissible ordering.

~

Proof. Consider (X) as a subset of (X). Observe that for any two words @y, @ € (X)),
we have w; <, ws if and only if w; <z wy. Then it is straightforward to check that &
on (X) satisfies conditions a)-f) of Definition m O

As shown in the following theorem, using Grébner bases with respect to some
elimination ordering, we can obtain Grobner bases of elimination ideals easily. The

following theorem is the key to the applications we shall consider in this subsection.
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Theorem 6.2.3. (Computation of Elimination Ideals) Let I C K(X) be an
1deal, let L C X be a subset of alphabet, and let o be an elimination ordering for L.
Furthermore, let X = X\L, let K()A() be the free monoid ring generated by X, and let &
be the restriction of o to (X). If G is a o-Grébner basis of I, then the set G N K(X)
is a 6-Grobner basis of the elimination ideal I N K(X).

Proof. Clearly G N K(X) C I N K(X). To prove G N K(X) is a 6-Grobner basis
of INK(X), by Lemma it suffices to show that the set LTs{GNK (X)} generates
the leading term set LT5{I N K()AQ} Let feInN K()AQ be a non-zero polynomial.
As ¢ is the restriction of ¢ to ()?}, we have LT, (f) = LT;(f) € ()AQ Since G is a o-
Grobner basis of I, there exist w,w’ € (X) and g € G such that LT, (f) = wLT,(g)w'.
Clearly w,w’, LT,(g) € (X). Then g € K(X) follows from the assumption that o is an
elimination ordering for L. Thus g € G N K(X). Therefore LT;{G N K (X)} generates

LT;{IN K()?}}, and hence G'N K()/f> is a g-Grobner basis of I N K()?) O

With the notation given in Theorem [6.2.3] it is obvious that if G is the reduced
o-Grobner basis of I then G N K (X) is the reduced 6-Grobner basis of I N K (X).

The first application we shall study in this subsection is the computation of the
intersection of ideals in K(X). Let G;,G; C K(X) \ {0} be two sets of polynomials
which generate ideals I,J C K(X), respectively. It is easy to check that the ideal
I+ J C K(X) is generated by the set G; UG;. The following proposition formulates

the computation of the intersection I N J.

Proposition 6.2.4. Let G;,G; C K(X)\{0} be two sets of polynomials which gener-
ate ideals I, J C K(X), respectively. We choose a new indeterminate y, and form the
free monoid ring K(y, X) generated by {y}UX over K. Furthermore, let N C K{(y, X)
be the ideal generated by the set {yf | f € G} U{(1 —y)g | g € G}, and let
C C K(y,X) be the ideal of commutators, i.e. the ideal C is generated by the set
{yz1 — 21y, ..., yx, — xy}. Then we have INJ = (N + C) N K(X).

Proof. For a polynomial v € IN.J, there exist not necessarily pairwise distinct fq,..., fs
€eGr, q1,...,q € Gy, and pr,....0,, q1,...,q, € K(X), such that v = >"7_| p;fip} =
> i1 439:4;- Then we have v = yo+(1—y)v = Y0, ypifipi+> ;1 (1—y)q;9;4}. Clearly
yr; = 2y + (yr; — zy) and (1 — y)z; = 23(1 —y) — (yr; — ayy) for all ¢ € {1,... ,n}.
By replacing yx; with z;y + (yx; — 2;y) and (1 — y)x; with z;(1 — y) — (yx; — z;y) for
alli € {1,...,n}, we get v ="> " pyfipi + Z;:l ¢;(1 —y)g;q; +p with p € C. Thus
we have v € (N + C) N K(X).
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Conversely, suppose that v € (N + C) N K(X). By the definitions of N and C,
there exist not necessarily pairwise distinct f1,...,fs € G1, ¢1,...,9: € Gy, and py,
P @y q) € K(y, X),p € C, such that v = Y0 piyfipi+ 352, 4;(1— ) g5 +p-
Since v € K(X), the polynomial v is invariant under the substitution y — 1, i.e. we
have v = > 7 pi(1, X) f;(X)pi(1,X) € I. Similarly, the polynomial v is invariant
under the substitution y +— 0, i.e. we have v = 22:1 7;(0, X)g;(X)q;(0, X) € J.
Altogether, we get v € I N J. O

Remark 6.2.5. With the notation given in Proposition [6.2.4] we compute the inter-

section I N J using the following sequence of instructions.

1) Let H C K(y, X) be the ideal generated by the set {yf | f € G;}U{(1—y)g|g €
GJ} U {y'rl —nyY,...,YTp — xny}

2) Choose an elimination ordering o on (y, X) for {y}. Enumerate a o-Grobner
basis G of the ideal H.

3) By Proposition and Theorem the set G N K(X) is a 6-Grobner basis
of the ideal I N J C K(X).

Proposition [6.2.4] can be easily generalized for the computation of the intersection
of s > 2 ideals in K (X) as follows.

Corollary 6.2.6. Let s > 2, and let I; C K(X) be the ideal generated by the set of
polynomials G; C K(X) fori=1,...,s. We choose a set of new indeterminates Y =
{y1,...,ys—1}, and form the free monoid ring K(Y, X). Moreover, let N C K(Y, X) be
the ideal generated by the set UiZ{{yigi; | 9ij € Gi}U{(1=y1—---—ys-1)gsj | 955 € G},
and let C" C K(Y, X) be the ideal generated by the set {y;x;—z;y; | i € {1,...,s—1},j €
{1,...,n}}. Then we have Ni_I; = (N + C") N K(X).

The next application we shall consider in this subsection is to investigate the kernels
and images of K-algebra homomorphisms. The following proposition computes the

kernel of a given K-algebra homomorphism.

Proposition 6.2.7. Let I C K(X) be an ideal, let Y = {y1,...,ym} be another
alphabet, let K(Y') be the free monoid ring generated by Y over K, and let J C K(Y)
be an ideal. Moreover, let gy, ...,g9m € K(X) be polynomials, and let ¢ : K{Y')/J —
K(X)/I be a homomorphism of K-algebras defined by g; — g; fori =1,...,m. We
form the free monoid ring K(X,Y') generated by X UY over K, and let D C K(X,Y)
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be the diagonal ideal generated by the set {y1—g1, ..., Ym—9gm}. Then we have ker(p) =
(D+1)NK(Y))+ J.

Proof. Let h € K(Y) be a polynomial such that h + J € ker(p), i.e. @o(h+ J) =
h(g1,...,gm) € I. Clearly y; = (y; — g;) + ¢; for all i € {1,...,m}. By replacing y;
with (y; — ¢;) +¢; for all i € {1,...,m}, we get h(y1,...,yn) =p+ h(g1,- .., gm) With
p € D. Therefore we have h +.J € (D + 1) N K(Y)) + J. Conversely, suppose that
h+J € (D+I)NK(Y))+J. By the definition of D, there exist not necessarily pairwise
distinet yi, — Giyy -5 Yio — Gi. €E{U1— 15 Ym—9gm}, and py, ..., p, € K(X,Y), q € I,
such that h+J =7, pi(yi, — i, )P, + ¢+ J. Now we substitute y; + J — g; + I for
alli e {1,...,m}, we get ¢(h+ J) € I. Therefore h + J € ker(p). ]

Remark 6.2.8. In the setting of Proposition [6.2.7 we assume that G; C K(X) and
Gy C K(Y) are systems of generators of the ideals I and J, respectively. Then we
can compute the kernel of K-algebra homomorphism ¢ using the following sequence of

instructions.
1) Let H C K(X,Y) be the ideal generated by the set {y1 — g1, ..., Ym — gm} UGT.

2) Choose an elimination ordering ¢ on (X,Y) for X. Enumerate a o-Groébner
basis G of the ideal H.

3) By Proposition and Theorem the set G N K(Y) is a 6-Grobner basis
of the ideal (D + I) N K(Y). Hence the set (G N K(Y))U G is a system of

generators of ker(p).

Let I € K(X) be an ideal, let g € K(X) be a polynomial, and let g € K(X)/I
be the residue class of f. Moreover, let y be a new indeterminate, and let K[y] be the
univariate polynomial ring. If there exists a polynomial u € K[y] such that u(g) = 0,
then g is called algebraic over K; otherwise g is called transcendental over K. In the
former case the monic polynomial i € K[y] of least degree such that p(g) = 0 is called
the minimal polynomial of g. As an immediate application of Proposition [6.2.7] the
following corollary gives a condition for an element of K(X)/I to be algebraic over K

and computes its minimal polynomial.

Corollary 6.2.9. Let ¢ : Kly] — K(X)/I be a K-algebra homomorphism given by
y > g. Then an element g € K(X)/I is algebraic over K if and only if ker(p) # {0}.
Moreover, if an element g € K(X)/I is algebraic over K, then the unique monic

generating polynomial of the ideal ker(p) C K{y| is the minimal polynomial of g over K .
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Proof. Analogous to [43], Corollary 3.6.4. O

Remark 6.2.10. In the setting of Corollary [6.2.9] we choose an elimination ordering
o on (X, y) for X and compute a o-Grobner basis G of the ideal {y—g}+1 C K(X,y).
If G N Kly] # {0}, then by Corollary the element g € K(X)/I is algebraic over
K. However, since the ideal {y — ¢} + I may not have a finite o-Grdbner basis, it is

only semi-decidable whether an element of K (X)/I is algebraic over K.

Remark 6.2.11. Furthermore, we can use Corollary to semi-decide if a monoid
element has finite order. Let M = (X | R) be a finitely presented monoid, and let
I C K(X) be the ideal generated by the set {l — r | (I,r) € R}. Recall that we have
K{M) =~ K(X)/I (see Corollary 2.2.11)). Let @ € M be a monoid element, and let
H C K(X,y) be the ideal generated by the set {y —w}U{l —r | (I,r) € R}. Choose
an elimination ordering ¢ on (X, y) for X, and compute a o-Grébner basis G of the
ideal H.

1) By Corollary [6.2.9] the order of @ is infinite if and only if G N K[y] = 0. In this
case the order of M is also infinite. However the ideal H may not have a finite
o-Grobner basis. Instead of computing a complete o-Grobner basis G, we can
compute partial o-Grébner bases G’ (see Remark step by step using the
Buchberger Procedure given in Theorem and check whether G' N K[y is
empty. If G’ N Ky] # (), then we claim that the order of w is finite. Otherwise,
we continue with next iteration of the loop of the Buchberger Procedure. In
another way, we choose other polynomials hy,..., hy € K(X,y), and consider
the ideal HY = H + (hy,...,h) C K(X,y). Clearly H* N K[y] = () implies
HN K[yl = 0. By chance H" has a finite o-Grobner basis. Thus to check
whether @ has infinite order we can compute a o-Grobner basis G of HT and
check whether G™ N K[y] = 0 (see [45], Remark 6.5).

2) If G N K[y] # 0, then by Corollary the element w € K(X)/I is algebraic
over K. Since the generators of the ideal H are binomials, the polynomials in G
and G N K[y| are also binomials. Thus the minimal polynomial u(y) of w is
a binomial. Let K = F,. Then the minimal polynomial of w is of the form
w(y) =y + ot with k > [, i.e. w* = w'. Moreover, if M is a group, then by the

cancellation law we have w*~ = 1, i.e. the order of w is k — L.

Example 6.2.12. Consider the infinite dihedral group Dy, = {(a,b | b* = (ab)?* = 1).

We want to check the order of a. We choose a new indeterminate ¢ and form the
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free monoid ring Fy(a,b,t). Let 0 = Elim be the elimination ordering induced by
a >, b >, t as given in Definition 3.1.8f We compute the reduced o-Grobner basis G
of the ideal (a —t,b* — 1, (ab)* — 1) C K{(a,b,t) and obtain G = {tbt + b,b0* + 1,a +t}.
Since G N K[t] is empty, the order of a is infinite and so is the order of D.,. Now
we consider the dihedral group D¢ = {(a,b | a® = b* = (ab)? = 1). We want to
check the order of bab. Thus we compute the reduced o-Grébner basis H of the ideal
(bab —t,a® — 1,b* — 1, (ab)?> — 1) C K{a,b,t) and obtain H = {t> + 1,20 + bt, tbt + b,
bt? +1tb,b? + 1,btb + 1%, a + t*}. Since H N K[t] = {t* + 1}, the polynomial ¢* + 1 is the

minimal polynomial of bab and hence the order of bab is 3.

Given a K-algebra homomorphism as in Proposition [6.2.7], the following proposition

enables us to semi-decide whether an element is in the image of homomorphism.

Proposition 6.2.13. In the setting of Proposition |6.2.7, we consider the ideal H =
D+ 1 C K(X,Y). Let o be an elimination ordering on (X,Y) for X. Then for a
polynomial f € K{(X), we have f € im(p) if and only if we have NF, (f) € K(Y).

Proof. Let f € K(Y) be a polynomial such that f + I € im(¢). Then there exists
a polynomial h € K(X) satistying p(h + J) = h(g1,...,9m) + I = f + I. Clearly
g = vyi — (yi —gi) for all i € {1,...,m}. By replacing ¢g; with y; — (y; — ¢;) for
all i € {1,...,m}, we have h(g1,...,9m) = h(y1,...,Ym) + p with p € D. Thus we
have f — h(y1,...,ym) € H, and hence NF, y(f) = NF, y(h(y1,...,ym)) by Remark
B-1.18c. Since o is an elimination ordering on (X,Y) for X and h(y1, ..., ym) € K(Y),
we have NF, g (h(y1,...,ym)) € K(Y). Therefore we have NF, (f) € K(Y).
Conversely, let f € K(X) be a polynomial such that NF, z(f) € K(Y). By
Corollary .b we have f — NF, y(f) € H. By the definition of H, there exist
not necessarily pairwise distinct vy, — iy - Y. — Gi. € {1 — 91, Ym — Gm ), and
p1,.... 0y € K(X,Y),peI,suchthat f — NF, u(f) = > 7_ pk(Vi, — i )P} + p- Now
we substitute y; — g; for all i« € {1,...,m}, we have f — NF, z(f)(g1,...,9m) € I.
Therefore f + 1 = ¢(NF, g(f)) and f+ I € im(¢p). O

Remark 6.2.14. We can use Proposition to semi-decide the subagebra mem-
bership problem. Assume that G; C K(X) is a system of generators of the ideal I. Let
fig1,-- -, 9m € K(X) be polynomials, and let S = K{(g1,...,Gm) C K(X)/I be the
subalgebra generated by {gi,...,gm}. We can semi-decide whether f € K{(gi,...,Gm)

via the following sequence of instructions.

1) Construct the ideal H C K(X,Y) generated by the set {y1—g1, ..., Ym—gm }UG].
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Choose an elimination ordering ¢ on (X,Y) for X.

2) Let G ={y1 — ¢1,- - Ym — gm} U G;. Note that G is a partial o-Grobner basis

of H (see Remark [4.1.16)).

3) Compute NR, ¢(f) using the Division Algorithm given in Theorem [3.2.1] If
NR, z(f) € K(Y), then by Proposition [6.2.13| we have f € S, and return f =
NR,c(f)(g1,- - -, Gm) which is an explicit representation of f as an element of S.

4) Using the Buchberger Procedure given in Theorem [4.1.14] we compute a new
partial o-Grobner basis G’ of H that contains G. Let G = G'. Then continue
with step 3).

Since the ideal H may not have a finite o-Grobner basis, the loop in the instructions

above may not terminate. Hence the subagebra membership problem is semi-decidable.

Remark 6.2.15. In particular, we can also semi-decide the generalized word problem
(see Definition 2.1.21)). Let M = (X | R) be a finitely presented monoid, and let
H C M be the submonoid generated by the set of words {wy,...,w,} C (X)\ {1}.
Given a word w € (X), the generalized word problem is to decide whether w € H. We
consider the residue class ring K(X)/I where I C K(X) is the ideal generated by the
set {{—r| (I,r) € R}. Note that we have H = (wy, ..., W,,). Then w € H if and only
ifw—-1e€ K(w; — 1,...,w, —1) € K(X)/I. Therefore we can semi-decide whether

w € H via the following sequence of instructions.

1) Construct the ideal H C (X,Y’) generated by the set {y;3 — w1 +1,...,Yym — W,
+1}U{l—r| (I,r) € R}. Choose an elimination ordering ¢ on (X,Y’) for X.

2) Let G={y1 —w1+1,...,ym —wy, +1} U{l —r | (,r) € R}. Note that G is a
partial o-Grobner basis of H (see Remark [4.1.16)).

3) Compute NR, (w — 1) using the Division Algorithm given in Theorem |3.2.1}
If NRyg(w — 1) € K(Y), then by Proposition [6.2.13| we have w — 1 € K (w; —

1,...,w, — 1), and we conclude that w € H and stop.

4) Using the Buchberger Procedure given in Theorem [4.1.14] we compute a new
partial o-Grobner basis G’ of H that contains G. Let G = G'. Then continue
with step 3).
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As in the previous remark, the ideal H may not have a finite o-Grobner basis and
the loop in the instructions above may not terminate. Therefore the generalized word

problem is also semi-decidable.

By Proposition |6.2.13|and the definition of the reduced Grobner basis (see Definition
3.3.16|), we give a sufficient and necessary condition for a K-algebra homomorphism to

be surjective in the following corollary.

Corollary 6.2.16. In the setting of Proposition[6.2.7, let G be the reduced o-Grébner
basis of the ideal H = D + 1 C K(X,Y). Then the homomorphism ¢ is surjective
if and only if G contains polynomials of the form x; — h;, where h; € K(Y) for all
ie{l,...,n}.

Proof. Analogous to [43], Proposition 3.6.6.d. ]

6.2.2 Component Elimination in (K(X) ® K(X))"

In this subsection we shall study applications of Grobner bases related to component
elimination in free K (X)-bimodule F, = (K(X) ® K(X))". In [§], H. Bluhm and M.
Kreuzer developed component elimination technique in F,. and proposed methods to
compute two-sided syzygies in non-commutative settings. In this subsection we shall
revise their results with slight adaptations, highlight our observations and extensions
in remarks, and apply their technique to the computation of colon modules. In the
following, we let L C {1,...,r} be a subset, F, the free K (X)-bimodule generated by

-----

terms in Fi.
Definition 6.2.17. Let L C {1,...,r} be a subset as above.

a) A module term ordering 7 on T(F,) is called a component elimination order-

ing for L if every element m € F,. \ {0} such that LT,(m) € T(F,) is contained
in ﬁr.

b) Given a K(X)-submodule M C F,, the K(X)-submodule M N F, in F, is called

the component elimination module of M with respect to L.

It is easy to verify that for any j € {1,...,r}, the module term ordering PosTo
on T(F,) defined as in Example [5.1.3\b is a component elimination ordering for L =
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{1,...,7}. Component elimination ordering has the following properties that are anal-
ogous to Lemma [6.2.2] and Theorem [6.2.3, The proofs of the following lemma and
theorem proceed similarly to the proofs of Lemma and Theorem [6.2.3] respec-
tively.

Lemma 6.2.18. Let 7 be a module term ordering on T(F,), then the restriction T of T

~

to T(F,) is also a module term ordering.

Theorem 6.2.19. (Computation of Component Elimination Submodules)
Let M C F, be a K(X)-submodule, let L. C {1,...,r} be a subset, let T be a com-
ponent elimination ordering for L, and let T be the restriction of T to T(F\T). If G is
a T7-Grobner basis of M, then the set G N F\T 15 a T-Grobner basis of the component

elimination module M N ﬁr.

The first application we shall introduce in this subsection is the computation of
the intersection of K (X)-submodules in F,.. The following proposition formulates the

intersection of two submodules.

Proposition 6.2.20. Let Gy, Gy C F,. \ {0} be two sets of elements which generate
K(X)-submodules M, N C F,, respectively. Let Fy,. be the free K(X)-bimodule with
the canonical basis {éi, ..., e }. For every element m = ;_, ZjeN cijw,»jeing € F,,
we denote Y., ZJEN cijwii€wi; € Fop by m and Y57, ZJEN CijWijryiWi; € Fop by m'.
Consider the submodule V' C Fy, generated by the set {g+¢' | g € Gy }U{R' | h € Gn}.

Then we have MNN =V N {(ey,...,é).
Proof. Analogous [§], Proposition 3.4. O

Remark 6.2.21. We can illustrate Proposition [6.2.20] as follows. Assume that G, =
{g1,...,9s} and Gy = {hy,...,h}. Consider elements g;, hy for all i € {1,...,s}, k €
{1,...,t} as column vectors and construct the following matrix V of size 2r x (s +t)

V:<g1 g 0 0 )
G g o by

Let v be an element of the K(X)-submodule generated by the column vectors of V.
We divide v into two halves: the first half of v, denoted by v, belongs to the
K (X)-submodule M; the second half of v, denoted by v~, belongs to the K({X)-
submodule M + N. Assume that v~ =77 | ZjeN (Wi giwi; + 22:1 > en bt hiuy
with a;; € K, wij,wj; € (X) foralli € {1,...,s},j € Nand by € K, up, uy, € (X) for
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all k€ {1,...,t},1 € N. Then we have v™ =7 | >y ajw;giw;. Clearly v™ =0 if
and only if v* =77 | ZJEN AijWij Giwi; = — 22:1 Y ien brugihpuy, € MO N.

In what follows, for v > r, by abusing the notation we shall consider an element

m € F, as an element of F,. whose components at e,.1,..., e, are zero, and conversely,
consider an element m’ € F,.» whose components at e, 1, ..., e are zero as an element
of F,.

Remark 6.2.22. With the notation given in Proposition [6.2.20] we compute the in-

tersection M N N using the following sequence of instructions.

1) Let V C F5, be the K(X)-submodule generated by the set {g+ ¢ | g € Gy} U
{h | heGn}.

2) Choose a component elimination ordering 7 on T(Fy,) for {r+1,...,2r}. Enu-
merate a 7-Grobner basis G of the K (X)-submodule V.

3) By Proposition [6.2.20| and Theorem [6.2.19| the set G N F,. is a 7-Grobner basis of
the intersection M N N.

We can easily construct the required component elimination ordering 7 through a slight
modification on the module term ordering PosTo (see Example [5.1.3b) as follows.
Let To be an admissible ordering on (X), and let wye;w), woe;wy € T(Fy.). We say
wie;wy >, woe;wy if we have ¢ > j, or if we have i = j and wijw] >1, wow), or if we

have i = j and wyw| = wowh, and wy >, wo.

It is straightforward to generalize Proposition [6.2.20] for the computation of the

intersection of more than two K (X)-submodules in F,.

Corollary 6.2.23. Let s > 2, and let My, C F, be the K(X)-submodule generated by
the set Gy C F, for k=1,...,s. For every element m = Y /_| > .y
we denote Y i\ > oy CijWijeis(k—1)rWi; € For by m®) . Consider the K{(X)-submodule
V C F,. generated by the set Ui—{ {g") + ¢(*Y |g € G;} U{g® | g € G,}. Then we
have N;_ M =V N {ey,...,e).

!
Cijwijeiwij S Fr

The most important and useful application we shall introduce next is the compu-
tation of syzygy modules of a tuple of elements in F, which gives rise to further appli-
cations. Recall that for a tuple of non-zero elements G = (g1, ...,¢s) € F? the syzygy
module Syz(G) is the set {D°7_, >y cijwijeawy; € Fy | D771 D ey cijwijgiwy; = 0}
The following proposition formulates the computation of syzygy modules.
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Proposition 6.2.24. Let G = (g1,...,9s) € F? be a tuple of non-zero elements. For
every elementm =y ;_, Z]EN cijwijeawy; € I, we writem’ =Y 0 ZJEN CijWijCitsWij
as an element of F,is. Let U C F,g be the K(X)-submodule generated by the set
{e1+4g},...,es +g.}. Then we have Syz(G) = U N (e, ..., es).

Proof. Analogous [8], Proposition 3.6. O]

Remark 6.2.25. We can visualize Proposition as follows. Consider elements g;

for all ¢ € {1,...,s} as column vectors and construct the following matrix U of size
(s+7r)xs
l®1 0 -~ 0
Y — . D .
o - 0 1®1
g 92 - Gs

Let u be an element of the K(X)-submodule generated by the column vectors of U.
We divide u into two parts: the first part consists of the first s components of wu,
denoted by u™, belongs to the K(X)-submodule generated by {ey,...,es}; the sec-
ond part consists of the last r components of u, denoted by w™, belongs to the
K (X)-submodule generated by {g1,...,gs}. Assume that u™ =327 > .y
with ¢;; € K,wy,wj; € (X) for all i € {1,...,s},j € N. Then we have u~ =
> ie1 2ojen Cijwiggiwy;. Clearly u™ = 0 if and only if u* € Syz(G).

!
cijwijeiwij

Remark 6.2.26. With the notation given in Proposition |[6.2.24] we compute the

syzygy module Syz(G) using the following sequence of instructions.
1) Let U C Fg,, be the K(X)-submodule generated by the set {e; +g¢1,...,es+g.}.

2) Choose a component elimination ordering 7 on T(F,,) for {s +1,...,s +r}.
Enumerate a 7-Grobner basis G of the K (X)-submodule U.

3) By Proposition [6.2.24] and Theorem [6.2.19| the set G N F} is a 7-Grobner basis of
the syzygy module Syz(G).

In [§], H. Bluhm and M. Kreuzer constructed the K (X)-submodule U = (g1 — €41, . . .,
gs — €rts) C Fris and showed that Syz(G) = UN{ey41,...,€r4s5). For the computation
of Syz(G), they chose a component elimination ordering 7 for {1,...,r} on T(F, 1),
computed a 7-Grébner basis of the K (X)-submodule U, let F,,, be the K (X )-bimodule
generated by the set {e,11,...,€e.14}, and defined the homomorphism ¢ : ﬁﬂrs — F
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1,...,s. Then they claimed that ¢(G N F\T+S) is a 7-
Grobner basis of Syz(G) (see [§], Theorem 3.7). However, to make the claim correct
the ordering 7 should satisfy a strict condition that LT.(¢(m)) = @(LT:(m)) for
every element m € F,,, \ {0}. Consider a generalization of the module term ordering
PosTo (see Example[5.1.3]b) as follows. Let o4, ..., 0,4, be pairwise distinct admissible

orderings on (X). For wje,w}, woe;why € T(F, 1) we say that wie;w) > woe;wh if we

given by e,.; — e; for 1 =

have i < j, or if we have i = j and wyw] >,, wowj, or if i = j and wyw] = wow}
and wy >,, we. It can be verified that the ordering defined in this way is a component
elimination ordering for {1,...,r} on T(F, ) but it does not satisfy the condition
that LT, (¢(m)) = o(LT;(m)) for every element m € Fy,,\ {0}. The advantage of our
constructions in Proposition as well as Proposition is that we compute a
7-Grobner basis of the desired submodule by component elimination directly and avoid

the effect of the homomorphism . Meanwhile we also simplify the computation.

Recall that, for a tuple of non-zero polynomials G = (g1,...,9s) € K(X)*, the
syzygy module Syz(G) is the set {d 7| >~y cijwijeiws; € Fi | 377 Y75y Cijwigiwy; =
0}. Using the same approach as Proposition , we can compute the syzygy module
of a tuple of polynomials as follows. Fori = 1,..., s, we consider polynomial g; € K(X)
as an element g;esy1 € Fyyq and construct the K (X)-submodule generated by the set
{e1 + g1€s41,---,€5 + gsesi1}. To eliminate the effect of canonical basis es, 1, we in-
troduce a set of commutators {r1es11 — €54121, . .., Tpesi1 — €517y} which makes ey

commute with each word in (X). Altogether we have the following corollary.

Corollary 6.2.27. Let G = (¢1,...,9s) € K(X)® be a tuple of non-zero polynomials,
and let U C Fyi 1 be the K(X)-submodule generated by the set {e; + g1€si1,...,€s +

Js€si1; T1€541 — €541X1, - - -, Tp€si1 — €s41Tn . Then we have Syz(G) = U N ey, ..., es).

Proof. Analogous to [§], Proposition 3.9. O

Furthermore, we compute syzygy modules of a tuple of elements in residue class
rings. Let I C K(X) be the two-sided ideal generated by the set {fi,..., f;} C K(X),
let K(X)/I be a residue class ring, and for s > 1 let F, = (K(X)/I® K(X)/I)* be the
free K(X)/I-bimodule of rank s with the canonical basis {ey, ..., es}. Asin Section 6.1}
we represent elements in F, of the form Yoy ZjeN cijwigeawy; with ¢ € K, wij, wj; €
O,(I) foralli € {1,...,r},j € N. Moreover, let g1,...,9s € K(X)\ I be polynomials,
and let G = (g1,...,3s) € (K(X)/I)® be the tuple where g; is the residue class of g;

fori=1,...,s. The syzygy module of G is the set Syz(G) = {>_;_, > jen CijWijeiw;; €
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Fo | 22002 en Cijwiggiwi; € T}

Corollary 6.2.28. Using the notation as above, we let U C Fgiy be the K(X)-
submodule generated by the set {e1 + g1€s41, .-, €s + Gs€sit, [1€s41, -+, [t€si1, T1€511

—€541%1, ..., Tp€si1 — €s41Tn}. Then we have Syz(G) = (U N (e1,...,es)) where
W Fy — F, is the map defined by m — m.

Proof. Analogous to [§], Proposition 4.6. O]

Remark 6.2.29. Using the same notation as above, we can compute the syzygy mod-

ule Syz(G) via the following sequence of instructions.

1) Let U C Fsyy be the K(X)-submodule generated by the set {e; + gi€5:1,. ..,

st JsCosi1s f1€541s -« s [tCsi1, T1€si1 — Cs 1Ty - vy TnCsil — €si1Tp )

2) Choose a component elimination ordering 7 on T(Fsy) for {s + 1}. Enumerate

a 7-Grobner basis G of the K(X)-submodule U.

3) By Theorem [6.2.19] and Corollary [6.2.28] the set G N Fy is a 7-Grobner basis
of the K(X)-submodule U N Fy and the set ¢(G N Fy) generates the syzygy

module Syz(G).

4) Moreover, if 7 is compatible with o, then the set ¢)(G N Fy) is a 7-Grébner basis

of the syzygy module Syz(G).

We show the correctness of step 4). Let m = >0, > . cijwieiw); € Syz(G) with

;€ Oy(I) for all 7 € {1,...,s} and for all j € N where all but

finitely many of the ¢;; are zero. We can prove that m € U N F in the same way as
the proof of [8], Proposition 4.6. Let LT;(m) = wye;w]. Since G N Fy is a 7-Grébner
basis of U N Fy, there exist w,w’ € (X), g € GN F, such that LT:(m) = w-LT:(g) - w'.
Since wy, w] € O,(I) and 7 is compatible with o, we have LT:(g) = LT:(g). Therefore

we have LT:(m) = w - LT;(g) - w’ and hence (G N Fy) is a 7-Grobner basis of Syz(G).

¢j € K and w;j, w;

Remark 6.2.30. M. Kreuzer [45] proposed that we can attack the decomposition
search problem and the factorization search problem by using syzygy computations.

We explicitly present steps to attack these problems.

a) Let G = (X | R) be a finitely presented group, let v,w € G be two elements, and
let A, B C G be two submonoids such that there exist a € A,b € B satisfying
avb = w. The decomposition search problem is to find a € A and b € B such
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that avb = w. Assume that R = {(wy,w}),..., (w;,w;)}. Consider the residue
class ring K(X)/I where I C K(X) is the two-sided ideal generated by the set
{w; —wi,...,wy—w;}. Using the following sequence of instructions, we compute
Syz(v, —w) € K(G)e; K(G) & K{(G)es K(G) and find in it the unique element of
the form aeb + e with a € A and b € B satisfying avb = w.

1) Let U C F3 be the K(X)-submodule generated by the set {e; + ves, es —

weg, (w1 — w)es, ..., (W — Wy)es, Tiez — €371, ..., Tn€3 — €305}

2) Choose the following module term ordering 7 on T(F3). For wye;w], weejw) €
T(F3), we say wie;w] >, woejwh if we have i > j, or if we have i = j and
wiw] >, wews, or if we have i = j and wyw] = wew) and wy; >, ws.
Compute the reduced 7-Grébner basis G of the K (X)-submodule U.

3) In G there exists a unique element of the form aeib + ey where a,b € (X).
Then a € A and b € B represent the desired elements.

We prove the correctness of step 3). By assumption there exist a,b € (X) repre-
senting elements in A, B respectively such that avb = w. Thus ae;b+e; represents
an element in Syzx ) (v, —w) and is contained in U by Corollary By the
definition of 7 the leading term of ae;b + ey is e5 and G contains an element
whose leading term is e;. Observe that U is generated by a system of generators
consisting of only binomials. Thus G also consists of only binomials. In particu-
lar, G contains an element of the form ae;b + ey with a,b € (X). Since it is the
reduced 7-Grobner basis, G' contains a unique elements of the form ae b+ es with
a,b € (X). The fact that a € A,b € B follows from the uniqueness. Note that
in step 2) the Grobner basis computation is an enumerating procedure. After
a new Grobner basis element has been added, we fully interreduce the Grobner
basis and check whether it contains the element of the form as in step 3). Since

by assumption the elements a € A,b € B exist, they will be found eventually.

Let G = (X | R) be a finitely presented group, let w € G be a group element, and
let A, B C G be two submonoids such that there exist a € A,b € B satisfying
ab = w. The factorization search problem is to find elements a € A and b € B
such that ab = w. We solve it by computing Syz(1,—w) C K{(G)e; K(G) &
K(G)es K(G) and finding in it the unique element of the form ae;b + ey with
a € A and b € B satisfying ab = w. Clearly, this is just a specific case of the

decomposition search problem.
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By combining the results of Proposition [6.2.20] and Corollary [6.2.28, we compute

the intersection of two syzygy modules over the residue class ring K (X)/I as follows.

Corollary 6.2.31. Let g1,...,9s,h1,...,hs € K(X)\ I be polynomials, and let G =
(G1,-- - Gs), H = (h1,...,hs) € (K(X)/I)* be two tuples where g; is the residue class
of g; and h; is the residue class of hy fori =1,...,s. Furthermore, let U C Fys,o be the
K(X)-submodule generated by the set {e1+esi1+ g1€9511, - - -, €s+ €25+ gsCasi1, f1€2541,

o ft€asi1, T1€2541 — €2511T1, . -, TpCosy1 — €254 1Tn, €541 + N€ogya, ..., €o5 + Ngagya,

f1€2s42, -, fi€asta, T1€as42 — €212, - - -, TpCost2 —625+237n}- Then we have Syz(g) N

Syz(H) = w(U N (ey,...,es)) where  : Fy — F, is the map defined by m v~ m.

Proof. Let m = Y7 > ey CijWijesw;; € Syz(G) N Syz(H) with ¢;; € K and wy;, wj; €
O,(I) for all i € {1,...,s} and for all j € N where all but finitely many of the ¢;;
are zero. Let m = 377, > ycjwiewy;. Clearly we have i(m) = m and m €
(e1,...,es). We want to prove that m € U. We write m as m = >, >y cijwij(e; +
Csrit GiCosy1)Wij — Yo ZjEN CijWij(€syi+ gieasy1)wi; where the first summand is con-
tained in U. Thus to prove m € U it suffices to prove that >, , Z]EN CijWij(esti +
gie2s11)wj; € U. Since we have >, ZjeN Cijwij(€sti + hieasa)wi,; € U, it suffices to
show that Y7 | >y cijwij(€syi + Gieast1)Wi; — D i_y D jen CijWij (€si + hieaso)w); =
> ZJEN CijWijJiCass1Wi; — > ZjeN cijwijhiezsrawi; € U. 1In the following we
show that both »°7 | ZJEN CijWijgicass1wi; and Y7 ZJEN cijwijhieaspwi; are con-
tained in U. Since m € Syz(G) and I = (fy,..., fi), we have > ;| > jen CijWij giwy; =
2221 D ren Gt fruy with agy € K and wyy, vy, € (X) for all k € {1,...,¢} and for all
| € N where all but finitely many of the ag, are zero. Thus Y, ZjeN CijWij GiWi; €211 —
22:1 Y ten WU frigeastn = 0 € U. Note that the set {1€2541 — €254171, . . ., Tn€2si1
—e9541Tn} € U makes ey, commutative with every word in (X). Therefore we have
S, ZjeN CijWijGi€2s41Wi; — ZZ=1 > e @kl frezsi1ty; € U. Since the second sum-
mand is contained in U, sois > ;_; > JeN CijWijgi€2s41W;;. Similarly we can prove that
Zf:l ZjEN Cijwijhie2s+2w£j eU.

Conversely, let m = 37| ZjeN cijwieawy; € U N (er,... e,) with ¢;; € K and
wij, wi; € (X) for all i € {1,...,s} and for all j € N where all but finitely many of
the ¢;; are zero. Since {ej+e541+g1€2511, - - -, €5+ €25+ Gs€25+1, €511+ M1€2510, .. ., €25+
hseasya} C U, wehave Y77 | 37 cijwij(eitesritgieasii)Wi;—Y iy D ey Cijwij(€syit
hi€asia)wi; — M = Y01 D7y CijWijGi€2s i 1Wi; — Dy D en CijWighieasiawy; € U. Ob-
serve that none of the generators ey, ..., eys appears in the sum. Therefore we must

S /
have Zizl ZjeN CijWijGi€2s+1W;5 € <f1€25+1, o [t€2541, T1€2541 —€2541%1, -+ -, Ty 41—
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S /
€2s+1$n> and Zizl ZjeN Cz’jwijhie2s+2wi]’ € <f1€23+2, oy Ji€asta, T1€osqo — €26401, . . .,

Ty €25+2—€9512%y). Using the result of [§], Proposition 2.12 we have > 7_, ZJEN CijWij GiW};,
>, ZjeN cijwihawi; € (f1,..., fi). Hence we have ¢(m) = > Z]EN CijWijeiW; €

Syz(G) N Syz(H). []

Remark 6.2.32. With the notation given in Corollary [6.2.31] we can compute the

intersection Syz(G) N Syz(H) of two syzygy modules using the following sequence of

instructions.

1) Let U C Fyo be the K(X)-submodule generated by the set {e; + esyq +
G1€2541, - - - €5 €25+ G525 11, [1€265415 - - - [t€2641, T1€2511 — €2641T1,5 - - -, Tn€2s1 —
€254+1Tn, €s+1+h1€25+2, cee ,625+hs€25+2, f162s+27 cee ft€25+2, X1€2542—€2542L1, - - -,

Tp€os+2 — 625+2$n}-

2) Choose a component elimination ordering 7 on T(Fpsyo) for {s+1,...,2s + 2}.
Enumerate a 7-Grobner basis G of the K (X)-submodule U. By Theorem [6.2.19
the set G N Fy is a 7-Grobner basis of the K (X)-submodule U N Fj.

3) By Corollary |6.2.31] and by using the similar method as in Remark [6.2.29| we can

show that the set (G N Fy) is a 7-Grobner basis of the intersection Syz(G) N

Syz(H) if 7 is compatible with o.

Remark 6.2.33. One outstanding application of Corollary is Bluhm-Kreuzer’s
Congugator Search Algorithm (see [8, 145]). Let G = (X | R) be a finitely presented
group, and let w,w" € G be two conjugated elements. The conjugacy search problem
is to find an element a € G such that aw = w'a. H. Bluhm and M. Kreuzer [8 [45]
converted the problem to the computation of Syz(w, w’)NSyz(1, —1) C K(G)e1 K(G) &
K(G)es K(G). There is a unique element of the form ae; — esa with a € G. Then the

element a represents the desired conjugator.

To end this subsection we shall present the computation of colon modules by using

syzygy computations.

Definition 6.2.34. Let R be a ring, let U be an R-bimodule, and let M, N C U be

two R-submodules. The set

Nipor M ={Y ri@r,e ROR| Y ri-M- 1, C N}
1€EN 1€EN

is a two-sided R-submodule in R ® R. It is called the colon module of N by M.
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In the following we let R = K(X) be the free monoid ring and U = F,. be the free
K (X )-bimodule of rank r.

Corollary 6.2.35. Let M = (g) and N = (hq, ..., hy) be two K{X)-submodules in F,,
and let {vy,...,vs} C Fyyq be a system of generators of Syz(g, hy,...,h). For every
ke{l,... s}, we write vy as v, = Zfii Z]EN ckijwk,-jeiw;ij with cij € K, wkij,wfﬂj €

(X) where all but finitely many of the cy;; are zero. Then we have

N:p M= <Z cnjwnjelw'nj, o Z csljwsljelw;1j>.
jEN jEN

Proof. Let ), yaqwieiw; € N :p M. Then we have ), _gauwgw; € N. Since N
is generated by the set {hi,...,h:}, there exist b;; € K, wy,wj; € (X) for all i €
{1,...,t},j € Nsuch that ), qyuigw; = Z§=1 ZjeN bijwijhiwi;. Thus Y, o arwyeiwy,—
Zle ZjeN bijwijeiriwij € Syz(g, ha, ..., h). Since {vq,...,vs} is a system of genera-
tors of Syz(g, by, ..., ), there exist dy; € K, up;,up; € (X) for k€ {1,...,s},j € N
such that ), ajwie w; — Z:f:l ZjeN bijwijei1Wi; =Y 1, ZjeN dkjukjvkuﬁﬁj. By sub-
stituting v, = Zfi} > jeN ckijwkijeiwfcij and comparing the first component of the equa-
tion, we obtain ), . wweiw; = >, Z]EN dkjukj(zjeN ckljwkljelw,glj)u;j. There-
fore we have >, qywieiw] € (ZjeN C11jW115€1W] 1, - - - ,szN Co1jWs1€1 WYy 1)

Conversely, to prove (ZJEN ClIj W11 WY 55 - - - Z]EN CorjWarje1Wyy;) € N iy M it
is sufficient to show that ZjeN Ckljwkljelwélj € N :p M forall ke {l,...,s}. Since
vk € Syz(g, by, ..., h), we have ZJEN Ch1jWhij GWyy; + Zfié ZjEN ChijWighi 1wy, = 0.
Therefore we have szN Cr1jWhij Wy = — f’;; Z]EN Crijwrijhi1w),; € N, and hence

/ .
ZjEN ckljwkljelwklj eN o M. ]

Remark 6.2.36. Using the notion given in Corollary [6.2.35] we define the homomor-
phism 7 : Fpyy — F) given by Y27 > jen CijWijeiws; v Y iey cijwizeiwy;. Then we

compute the colon module N :p, M by the following sequence of instructions.

1) Compute a system of generators G of Syz(g, hy, ..., h;) using the instructions as

in Remark [6.2.26]
2) Then the set {m(g) | g € G} is a system of generators N :p M.

Using Corollary [6.2.35, we compute colon modules in general situation as follows.

Corollary 6.2.37. Let M = (g1,...,9s) and N = (hq, ..., h) be two K (X)-submodules
i F,.. Then we have
N:p M= ﬂle(N Ry <gZ>)
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To put it another way, we consider elements g;, h; for alli € {1,...,s},j € {1,...,t}
as column vectors, and let H = (hy,...,h) € F! be a tuple. Construct the following

block matriz of size sr x (st + 1)

g1 H 0 0
0O H . 0
m=| %
: S |
g 0 -~ 0 H

Let {v1,...,v,} C Fyy1 be a system of generators of Syz(M). For k =1,..., 1, we
write v, as vy = Zf:{l Z]EN ChijWhij€iWy;; With crij € K, Wyij, wi,: € (X)) where all but

finitely many of the cx;j are zero. Then we have
N o M = <Z clljwlljelw'nj, RN ,Z Culjw“1j€1w21j>.
jEN jEN
Proof. Analogous to [43], Proposition 3.2.15. O

Remark 6.2.38. Recall that every ideal of a ring R is a two-sided R-submodule. Let [
and J be two ideals of R. The set

IiporJ={> r@r€e ROR| > r;-J -1 C I}
ieN ieN
is a two-sided R-submodule in R ® R. It is called the colon module of [ by J. In

particular, if R = K(X) is the free monoid ring and I, J C K (X) are finitely generated
ideals, then we can compute the colon module [ :zrgr J by adapting Corollaries [6.2.35

and [6.2.37] and by combining the results of Corollary [6.2.27] and Proposition |6.2.20]

6.3 The K-Dimension of K(X)/I

Let I C K(X) be a finitely generated ideal. The residue class ring K(X) /I is a finitely
generated K-algebra. Considering K(X)/I as a K-vector space, we wish to study the
K-dimension of the K-algebra K(X)/I. It is natural to ask the following motivating

questions.
(i) Is the K-dimension dimg (K (X)/I) of K(X)/I finite?

(ii) How can one compute dimy (K (X)/I) if it is finite?
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(iii) What is the growth of dimg (K (X)/I) if it is infinite?

In this section we intend to answer these questions with the aid of Grobner bases and
the Ufnarovski graph which is named after V. Ufnarovski [69].

Remark 6.3.1. The last question is related to the Gelfand-Kirillov dimension which
measures the rate of the growth of finitely generated K-algebras. Let A be a finitely
generated K-algebra. Choose a finite dimensional K-subspace V' C A which gener-
ates A as a K-algebra. Then A has a standard finite dimensional filtration {A; | i € N}
where Ag = V" = K and 4; = Zj’:o V7 for all i > 1. The Gelfand-Kirillov dimen-
sion of K-algebra A is

GKdim(A) = lim;_, log; dimg (4;).

The Gelfand-Kirillov dimension of K-algebra A is an invariant in the sense that, given
any finite dimensional K-subspace V' C A generating A as a K-algebra, the number
GKdim(A) is unchanged. It is clear that dimg(A) < oo if and only if GKdim(A) =
0. It can be shown that dimg(A) = oo if and only if GKdim(A) > 1 (see [42],
Proposition 1.4). Moreover, G. Bergman [6] showed that there is no algebra A with
1 < GKdim(A) < 2. W. Borho and H. Kraft [7] proved that for every real number r > 2
there exists an algebra A with GKdim(A) = r. R.B. Warfield [73] gave a construction
of an algebra A with GKdim(A) > 2. We refer to [42], 56] for more details about the

Gelfand-Kirillov dimension.

Recall that the free monoid ring K(X) is N-graded. We introduce a filtration of
the K-algebra K(X)/I as follows. For i € N, let F; C K(X) be the K-vector subspace
generated by the words of length less than or equal to i, i.e. let F; = &' (K (X);.
It is easy to check that K(X) = UjenF; and F; - F; € Fiyj for all 4,5 € N. Thus
the set {F; | i € N} is a filtration of K(X). Furthermore, it induces a filtration
{F:/(F;nI)|ie N} of K(X)/I. Clearly we have dimg(F;/(F; N 1)) < oo for all
i € N. In the literature, the set {F;/(F; N I) | i € N} is called N-grading filtration
of K(X)/I. We refer to [48] for more information on grading filtrations.

Definition 6.3.2. Let {F;/(F;NI) | i € N} be N-grading filtration of K(X)/I.
a) The function HF% vy, : N = N given by
HF% xy,7(i) = dimg (F/(F N0 1))

is called the affine Hilbert function of K(X)/I. For the sake of convenience
we define HF % /(i) = 0 for all 7 < 0.
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b) The function HF g (xy/; : N = N given by

HF ke xy/1(i) = HF e xy1 () — HF g xy 1 (0 = 1)
is called the Hilbert function of K(X)/I.

¢) Moreover, let z be a new indeterminate. The power series

HSk(x)/1(2) = Y HF gexy (i)'

>0
is called the Hilbert series of K(X)/I.

By definition, we have dimg (K(X)/I) = lim; o HFy xy /(i) = HSk(x)/r(1) and
GKdim(K(X)/I) = lim; log; dimp (HF % vy (7). In the following, for simplicity of
notation, we will sometimes drop the index K (X)/I and write HF*(i), HF (i) and HS(z)
instead of HF% y/(i), HF (x)/r(i) and HSk(x)/1(2), respectively, if no confusion is

likely to arise.

Remark 6.3.3. The Hilbert series HSx (xy,1(2) is actually a generating function that
encodes the information on the values of the Hilbert function HF g (xy,7(¢) for all i > 0.
In the literature of combinatorial theory, generating functions are introduced to solve
the general linear recurrence problem. Indeed, at the end of this section we will en-
counter the recurrence relation of the Hilbert function HF x(xy,7(¢). Therefore we have
a chance to investigate the dimensions of K (X)/I using techniques from combinatorial

theory.

Observe that HF %y /(i) is a monotonically increasing function. We use the notions
from sophisticated complexity theory (see [61]) to classify monotonically increasing

functions.

Definition 6.3.4. Let ® be the set of all eventually monotonically increasing functions
f:N = R* ie. for f € ® there exists an integer ny € N such that f(n+1) > f(n)

for all n > ny. We define the relations on ® as follows.

a) For all f,g € ®, we say f < ¢ if and only if there exist a number ¢ > 0 and
k € N\ {0} such that f(n) < cg(kn) for almost all n € N. Moreover, we say f
and g are equivalent and denote it by f ~ ¢ if and only if f < g and g < f.

b) For f € ® the equivalence class G(f) € ®/ ~ is called the growth of f. The
partial ordering on the set ®/ ~ induced by = is denoted by <.
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If a function is in G(1) we call it constant. If a function is in G(log(n)), we call
it logarithmic. If a function is in G(n?) with v > 1, we call it polynomial. In
particular, it is called linear if v = 1 and it is called quadratic if v = 2. If a function
is in G(2"), we call it exponential. The following lemma is essential to prove the

invariance of Gelfand-Kirillov dimension (see [42], Chapter 2).

Lemma 6.3.5. Let f,g € ®. Then G(f) = G(g) if and only if lim,_, log, f(n) =

lim,,_,+ log,, g(n).
Proof. See [42], Lemma 2.1. O

Due to Lemma [6.3.5, we define the growth of the K-algebra K(X)/I to be the
growth of the affine Hilbert function HF% y,,/(i), which is also referred by the growth
of dimg (K(X)/I).

Example 6.3.6. Consider the free monoid ring K (X) as a K-algebra. Since HF xx) (1)
= n', we have HF v (i) = % It is easy to check that G(HFY y,(i)) = G(2').

Thus the growth of K (X) is exponential. Moreover, we have GKdim (K (X)) :

In the following we let I C K (X) be a non-zero ideal. In the rest of this section,
we shall investigate the K-dimension of K(X)/I by using Grobner bases. Recall that
Macaulay’s Basis Theorem (see Theorem states that the residue classes of the
words in the order ideal O, (I) form a basis of the K-vector space K(X)/I. Thus we
have dimg (K(X)/I) = |O,(I)|. Moreover, given a Grobner basis G of the ideal I, we

can rephrase Macaulay’s Basis Theorem as follows.

Lemma 6.3.7. Let I C K(X)\{0} be an ideal, let o be an admissible ordering on (X),
let G C K(X)\ {0} be a o-Grobner basis of I, and let B C (X) be the set of all words

which are not a multiple of any word in the set LT,{G}. Then the residue classes of
the words in B form a K-basis K(X)/I.

Proof. This follows directly from Theorem [3.1.15] and Definition [3.3.1] O

The following proposition gives a connection between dimg (K (X)/I) and minimal
Grobner bases of the ideal I.

Proposition 6.3.8. Let I C K(X)\ {0} be an ideal, let G C K(X)\{0} be a minimal

o-Grobner basis of I

a) If G is infinite, then so is dimg (K(X)/I).
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b) If dimg (K(X)/I) is finite, then so is G.

Proof. We prove claim a). To prove claim a), let B C (X) be the set of all words
which are not multiples of any word in the set LT,{G}. By Lemma we have
dimg (K(X)/I) = |B|. Since G is a minimal o-Grdbner basis of I, for all g € G every
subword of LT, (g) is contained in B. Then claim a) follows from assumption. Claim b)

is the contraposition of claim a). O

The converse of Proposition [6.3.8b is not true, i.e. dimy(K(X)/I) need not be

finite even if the ideal I has a finite Grobner basis.

Example 6.3.9. Consider the free monoid ring Q(x,y) and the ideal I = (z?,y?). By
Corollary the set {22, y*} is a o-Grobner basis of I for any admissible ordering o
on (X). Observe that O,(I) = {xy, yx, y(zy)", x(yz)"* | n € N} has infinitely many
elements. Therefore we have dimg(Q(z,y)/I) = co.

The example implies that many useful finiteness criteria in the commutative case
(see for instance [43], Proposition 3.7.1) are infeasible in the non-commutative case.
However, given a Grobner basis G of I with respect to a length compatible admissible
ordering, we can effectively compute the values of the affine Hilbert function of K (X)/I
and explore information on dimg(K(X)/I). The following proposition proves very

helpful for computing the values of the affine Hilbert function HF% x,;(4).

Proposition 6.3.10. Let I C K(X) \ {0} be an ideal, let o be a length compatible
admissible ordering on (X), and let G C K(X) \ {0} be a o-Grébner basis of I.

Moreover, let B C (X) be the set of all words which are not a multiple of any word in
the set LT,{G}. Then we have HFf /(i) = |B<il.

Proof. By Lemma the residue classes of the words in B form a K-basis K(X)/I.
In the same way as the proof of [44], Proposition 5.6.3.a, we can show that the residue
classes of the words in B<; form a basis of K-vector space F;/(F;NI). Then the claim
follows. ]

Assume that we are given a finite Grobner basis G of I with respect to a length com-
patible admissible ordering. Using the result of the above proposition, we present the

following algorithm for computing the values of the affine Hilbert function of K (X)/I.

Corollary 6.3.11. Let I C K(X) \ {0} be an ideal, let o be a length compatible
admissible ordering on (X), and let G C K(X) \ {0} be a finite o-Grébner basis of 1.
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Moreover, let n € N. Consider the following sequence of instructions.
1) Let d =0,B = {1} and HF*(d) = 1.
2) If d = n, then return the sequence HF*(0), HF(1),... HF(n).

3) Replace B by the set {w -z | w € B,z € X}, and then delete from B all words
w € B such that w is a multiple of some word in Fyq NLT{G}.

4) If B =0, then return the sequence HF*(0), HF*(1), ... , HF*(d), HF*(d + 1),. ..,
HF*(n) where HF*(d+1) = - -- = HF*(n) = HF*(d). Otherwise, set HF*(d+1) =
HF*(d) + |B|, increase d by one. Then start again with step 2).

This is an algorithm computing the sequence HF*(0), HF*(1), ..., HF*(n) which are the
values of the affine Hilbert function HF % xy /1.

Proof. Observe that the sequence of instructions constructs words in O, (I) length by

length and the number d is strictly increasing until d = n or B = (). The claim is an
immediate consequence of Proposition [6.3.10L O

Remark 6.3.12. Let us make some observations about the preceding algorithm.

a) The algorithm enumerates sets of representatives of the basis elements of K(X)/I
length by length. If the algorithm returns a result in step 4), then no new
basis elements can be found and HF?(d) becomes eventually stable. Conse-
quently, the K-dimension dimg(K(X)/I) is finite. In this case by setting n
large enough the algorithm computes K-dimension of K(X)/I, i.e. we have
dimg (K(X)/I) = HF*(n). Note that it is not very efficient to check the finite-
ness of dimg (K (X)/I) in this way. In the second part of this section we shall
introduce Ufnarovski’s finiteness criteria (see Theorem to check the finite-
ness of dimy (K (X)/I). Moreover, the algorithm also computes the values of the
Hilbert function HF g (xy/;. Indeed, in step 4) we have HF(d + 1) = |B].

b) The major operation in the algorithm is string matching. From the point of view
of implementation, we would like to require that G is the reduced o-Grobner basis
of I since the set LT,{G} becomes the minimal system of generators of LT,{/}
and we can reduce a lot of string matching operations in step 3). However, to
get the reduced Gobner basis we have to operate interreduction on the system

of generators of I, which is known to be quite costly. An economic solution is to
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interreduce the set LT,{G} and obtain a small enough system of generators of
LT,{I}. This strategy is applied in the ApCoCoA package gbmr.

c) In practice the ideal I may not have a finite o-Grobner basis. In this case we
shall combine the computation of the affine Hilbert function with the enumerating

procedure of Grobner basis computations.

c.1) If the ideal I is generated by a set of homogeneous polynomials with respect
to an N-grading, then by applying the Homogeneous Buchberger Procedure
(see Theorem we compute truncated Grobner bases of I degree by
degree. Step 3) of the algorithm in Corollary indicates that in order to
compute HF ¢ vy /;(d) it is only necessary to compute d-truncated o-Grébner
basis G<q of 1.

c.2) If the ideal I is non-graded and has no finite Grébner bases, then by applying
the Buchberger Procedure (see Theorem with the normal selection
strategy we compute partial Grobner bases of I to some degree. Then using
the algorithm as in Corollary we compute “pseudo” values of affine

Hilbert function HF yy,;, which estimate the real values.

The following corollary describes more precisely what we mean by saying “pseudo”
values of affine Hilbert function HF y,,; in Remark [6.3.12c.2.

Corollary 6.3.13. Let I C K(X) \ {0} be an ideal, let o be a length compatible
admissible ordering on (X), and let G, C K(X) \ {0} be a partial o-Grébner basis
of I. Moreover, let d € N, and let HF}(d) be the result of the algorithm in Corollary
. Then we have HF"(d) < HF}(d). In particular, dimg(K(X)/(Gp)) < oo
implies dimy (K(X)/I) < 0.

Proof. Clearly G, is contained in a o-Grobner basis, say G, of I. Therefore we have

FaNLT{G,} C FanLT,{G}. The claim follows from Proposition [6.3.10 O

Given a Grobner basis G of I with respect to a length compatible ordering, a less
risky and more efficient method to check the finiteness of dimy (K (X)/I) is to use the
Ufnarovski graph, whose initial intention was to check the finiteness of dimg (K (X)/I)
and to compute the growth of K(X)/I (see [60} 69, [70, [71]). In the second part of this
section we shall introduce the original idea of V. Ufnarovski [69] and explore it further.
We develop an algorithm to compute Hilbert series by combining the computation of

the values of the affine Hilbert function with Ufnarovski’s technique. For our purpose
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we shall first borrow some notions from graph theory. We refer to [24], [39] as standard

textbooks for more information on graph theory.

Definition 6.3.14. A directed graph G is a pair (V, E) of disjoint sets where F C
V x V is a set of ordered pairs. An element v € V is called a vertex. An element

(v,v") € E is called an edge from v to v'. An edge (v,v) € E is called a loop.
The advantage of graphs is that they have natural visual representations.

Example 6.3.15. Consider the graph G = (V, E) with V' = {Munich, Passau, Bei-
jing, Quanzhou} and E = {(Passau,Munich), (Munich,Passau), (Munich,Beijing),
(Beijing,Quanzhou)}. We illustrate G as follows.

Munich —— Beijing

0

Passau Quanzhou

Definition 6.3.16. Let G = (V, E) be a graph.

a) A path in G is a sequence of pairwise distinct vertices vg, vy, ...,vx € V such
that (v;,vi41) € F for all 7 € {0,...,7— 1}. The length of a path is the number
of edges on the path.

b) A cycle in G is a sequence of vertices vy, vq,...,vx € V such that vy, vq,. .., 051

is a path and vy = vy.

¢) A route in G is a sequence of vertices vy, vy, ...,v; € V such that (v;,v;41) € E
for all i € {0,...,k — 1}. The length of a route is the number of edges on the
route.

Using this definition, an edge is a path as well as a route of length 1, and a loop
is a cycle as well as a route of length 1. For our purposes we shall also consider each

vertex v € V as a route from v to v with length 0.

Example 6.3.17. (continued) Consider the graph as in Example [6.3.15] Let P, be
the sequence Passau, Munich, Beijing, Quanzhou. Then P; is a path of length 3 from

Passau to Quanzhou. Now let P, be the sequence Munich, Passau, Munich, Beijing.
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Then P, is a route of length 3 from Munich to Beijing and contains a cycle of length 2.

P1: Munich —— Beijing P2 Munich —— Beijing
Passau Quanzhou Passau

Note that there are two standard ways to represent a graph: as a collection of
adjacency lists or as an adjacency matrix (see [19], Chapter 22). The latter is an

essential tool for our computations.

Definition 6.3.18. Let G = (V, E) be a graph with the set of vertices V' = {vy,..., v, }.
An adjacency matrix B of G is a matrix of Mat,,.,(N) whose the (4, 7)™ element b;;
is defined by

1, if (v;,v5) € E,
0, lf (UZ‘,UJ') ¢ E

Given an adjacency matrix B of a graph G, the following lemma enables us to

compute the number of routes of specified length between any two vertices in G.

Lemma 6.3.19. Let G = (V| E) be a graph with the set of vertices V- = {vy,...,v,}
and an adjacency matriv B € Mat,«,(N). For m € N, the (i,7)™ element b,g;n) of the

matriz B™ is the number of routes of length m from v; to v; for alli,j € {1,...,n}.

Proof. We prove the claim by induction on m. For m = 0 the adjacency matrix
BO = [ is the identity matrix of Mat,,»,,(N) since routes of length 0 are vertices. For
m = 1 the claim holds since routes of length 1 are edges. Note that the (i, j)*" element
bﬁ}”) of the matrix B™ is equal to >, _, bg;n_l)bgj). By the induction hypothesis, bg;n_l)
is the number of routes of length m — 1 from v; to v, and b,(:j) is the number of routes
of length 1 from v, to v;. Thus bﬁ,@”*”b;? is the number of routes of length m from

v; to v; passing through v;. Hence the number of routes of length m from v; to v; is
n —1),(1
S by g =

Example 6.3.20. (continued) Consider the graph as in Example [6.3.15 An adja-
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cency matrix B of the graph G is as follows.

Munich Passau Beijing Quanzhou

Munich 0 1 1 0
Passau 1 0 0 0 _B
Beijing 0 0 0 1 B
Quanzhou 0 0 0 0
Moreover, for an integer m > 2 we have
(m+1) mod 2 m mod 2 m mod 2 (m +1) mod 2
B m mod 2 (m+1)mod2 (m+1)mod 2 m mod 2
a 0 0 0 0
0 0 0 0

With ingredients introduced above, we are ready to define the Ufnarovski graph

and investigate Ufnarovski’s technique further.

Definition 6.3.21. Let S C (X) be a finite set of words, and let £k = max{len(w) | w €
S} —1. The Ufnarovski graph Ug of S is a graph with the pair (V| F) satisfying the

following conditions.

a) The vertices set V' consists of all words w € (X) of length k such that w is a
normal word modulo (S).

b) For all w,w" € V, there exists an edge (w,w’) € E if and only if there exist
z;, x; € X such that wx; = z;w’ and such that wz; is a normal word modulo ().

In this case we denote the edge (w,w’) by z;.

Example 6.3.22. Consider X = {z,y} and S = {z% xyz}. Then we have k = 2,
V = {zy,yx,y*}, and the following Ufnarovski graph Us.

vy < yr<—y> )
y
Lemma 6.3.23. Let S C (X) be a finite set of words, let k = max{len(w) | w € S}—1,
and let Ug be the Ufnarovski graph of S. Then for all m € N there is a one-to-one

correspondence between the routes of length m in Ug and the normal words of length
m + k modulo (S).

Proof. See [69], Theorem 3. O
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Example 6.3.24. (continued) Consider Example again. Each vertex in V' =
{zy, yz,y?} is a route of length 0 and corresponding to a normal word of length 2. There
are four edges (zy,y?), (yx, xy), (v*, yx), (y*, y*) which are routes of length 1 and corre-
sponding to the normal words xy?, yxy, y?x, y° of length 3, respectively. Observe that
the loop (y%,y?) generates infinite many normal words {*>™" | n € N}, and the cycle
ry, y*, yz, vy generates infinite many normal words {zy(y?z)™, yx(zy*)™, v*(yzy)" | n €
N}.

We add the word zy? to S, i.e. S = {x? zyx,zy?}. Then we have k =2,V = {zy,
yx,y°}, and the following Ufnarovski graph.

xy<x—yx<y—y23y

Each vertex in V' = {zy, yz,y?} is a route of length 0 and corresponding to a normal
word of length 2. There are three edges (yz, zy), (v?, yz), (v*,y?) which are routes of
length 1 and corresponding to the normal words yxy, y?z, y® of length 3, respectively.
The loop (y?,y?) involves infinite many normal words {y*™™, y*™"x, y*™zy | n € N}.
Furthermore, we add the word 3 to S, i.e. S = {2? xyz, zy? y*}. Then we have

k =2V ={zy,yzr,y*}, and the following Ufnarovski graph.
Ty ~5—yr<5—y’

Each vertex in V = {zy,yz,y?} is a route of length 0 and corresponding to a normal
word of length 2. There are two edges (yz,zy), (y*,yx) which are routes of length 1
and corresponding to the normal words yxy, y?z of length 3, respectively. There is one
route 2, yx, vy of length 2 with the corresponding normal words y%xy of length 4. The

maximal length of the routes in the graph is 2.

Using the Ufnarovski graph, we can check the finiteness of the K-dimension of the
K-algebra K(X)/I as well as its growth.

Theorem 6.3.25. (Ufnarovski’s Finiteness Criteria) Let I C K(X) \ {0} be an
ideal, let o be a length compatible admissible ordering on (X), let G C K(X) \ {0}
be a finite o-Grobner basis of I, and let U be the Ufnarovski graph of LT,{G}. Then
we have dimg (K(X)/I) < oo if and only if U has no cycle. Moreover, the growth
of K(X)/I is exponential if and only if U has two intersecting cycles. Otherwise, the
growth of K(X)/I is polynomial of degree d, where d is the maximal number of distinct

cycles that can be included in a single route in U.

Proof. This follows from Lemma and [69], Theorem 2. O
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Inspired by Lemma [6.3.23] we develop another approach to compute the values of
the affine Hilbert function of K(X)/I.

Assumption 6.3.26. In the rest of this section, we let o be a length compatible ad-
missible ordering on (X). We shall assume that the ideal I has a finite o-Grébner ba-
sis G. Moreover, let U be the Ufnarovski graph of LT,{G}, let k = max{len(w) | w €
LT, {G}} =1, let V = {wy,...,w,} be the set of all vertices in U, and let B €
Mat, x,(N) be an adjacency matriz of U.

By Lemma|6.3.19| the (i, )™ element bf.;“) of the matrix B™ is the number of routes
of length m from w; to w; for all m € N. By Lemma [6.3.23| we have

F(k+m) = Zb

for all m € N. Therefore the values of the affine Hilbert function HFf v, can be

formulated as follows.

Theorem 6.3.27. Under Assumption we let s € N such that s > k. Consider

the following sequence of instructions.

1) Compute the sequence HF*(0), HF*(1), ..., HF*(k) using Corollary [6.3.11. Let
d=kF.

2) If s = d, then return the sequence HF*(0), HF*(1), ..., HF*(s).

8) If B¥'=F = 0, then return the sequence HF*(0),HF*(1),..., HF*(d), HF*(d +

1),...,HF%(s) where HF*(d + 1) = --- = HF%(s) = HF*(d). If B¢k #£ 0, set
HF(d + 1) = HF*(d) + 3_, ; bljﬂ " increase d by one, and continue with step

2),

This is an algorithm computing the sequence HF*(0), HF*(1), ..., HF*(s) which are the
values of the affine Hilbert function HF% xy /7.

Proof. Observe that ). bk is the number of the normal words of length d + 1.

1,7 "1

The claim follows from Lemmas [6.3.19] and [6.3.23] O

Remark 6.3.28. The algorithm as in Theorem [6.3.27] is superior to the algorithm as
in Corollary [6.3.11] in twofold.
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a) Firstly, Corollaryhas to compute all the values of the affine Hilbert function
HF*(0), HF*(1),...,HF*(d), HF*(d + 1), ... sequentially; while for d > k Theo-
rem can compute the individual value of the affine Hilbert function HF*(d)
using the formula HF(d) = HF(k) + 3_, ; bi; where by; is the (i,7)" element of
the matrix B = Y2("F B, In particular, we have HF g (xy1(d) =32, bg?_k) where
bg?_k) is the (4, 7)™ element of the matrix B4*.

b) Secondly, the fundamental computations in Corollary [6.3.11| are symbolic com-
putations, i.e. string matching; while for d > k the computations in Theorem
, i.e. B¥* and Zf;f B!, are numeric computations which are generally

much faster than symbolic computations.

Now we are going to formulate the Hilbert series of the K-algebra K(X)/I. Note
that the adjacency matrix B € Mat,,«,(N) has a unique minimal polynomial pp(z) in

Qlz], i.e. pp(z) is the monic polynomial of least degree such that pp(B) = 0. Assume
that up(x) = 2° — Zf;& c;x' with¢; € Qfori=0,1,...,5— 1.

Theorem 6.3.29. Under Assumption and using the same notation as above,
we have

Zfié‘l(Hme(j) — > e iHFgixy (4 —1))%7
HSk(x)/1(2) = p— :
2 up(3)

Proof. From pug(B) = 0, we get B® = 37" ¢;B'. Multiplying both sides by B’ with
j €N, we obtain B = Y7 ¢, B, Since HF(k +d) = 32,0\ for all d € N, we

ij Yij
have the recurrence relation of the Hilbert function
s—1
HF(k+5s+j) =Y ¢HF(k+i+ j) for all j > 0.
i=0

We multiply both sides of the equation by z****7 and sum over all j € N. By simplifying

the summand we obtain the Hilbert series HSg(x, 1(2) as claimed. O

Example 6.3.30. (continued) Consider Example [6.3.22 again. Recall that we have
X = {z,y} and S = {z* zyz}. Consider the K-algebra K(X)/(S). Clearly the set
S is a Grobner basis of the ideal (S) C K(X). From Example [6.3.22] we have k = 2,

V = {xy,yr,y*}, and an adjacency matrix

zy yr y?
zyf 0 0 1
yel 1 0 O | =8
>\ 0 1 1
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The minimal polynomial of B is ug(x) = 2* — 2% — 1. Moreover, we have HF(0) = 1,
HF(1) = 2, HF(2) = 3 using Corollary [6.3.11] and HF(3) = 4, HF(4) = 6 using Theo-
rem [6.3.27, Then by Theorem [6.3.29) we have HS(z) = % Equivalently, we have
HS(2) = (14 2 + 2%) 22 (2 + 2°)". Clearly the affine Hilbert function HF% vy, is
strictly increasing. Moreover, by Example and Theorem the growth of
K(X)/(S) is exponential.

As in Example we add the word zy? to S, i.e. S = {z? zyz,zy*}. Then we

have k = 2,V = {xy,yz,y?}, and an adjacency matrix

ry yr oy
zy{ 0 0 O
yel 1 0 O | =0B.
P\ 0 1 1

The minimal polynomial of B is up(z) = 2® — 22, Moreover, we have HF(0) = 1,
HF(1) = 2,HF(2) = 3,HF(3) = 3, and HF(4) = 3. Then by Theorem we
have HS(z) = % Equivalently, we have HS(z) = 1+ 2z + > ;°, 3z". Therefore
HF“(i) = 3¢ for i > 1. Hence the growth of K(X)/(S) is linear.

Furthermore, we also add the word 3 to S, i.e. S = {z? xyz,zy* y3}. Then we

have k = 2,V = {xy,yz,y?}, and an adjacency matrix

vy yr Y’
zy{ 0 0 O
yel 1 0 O | =0B.
>\ 0 1 0

The minimal polynomial of B is up(z) = z*. Moreover, we have HF(0) = 1, HF(1) = 2,
HF(2) = 3,HF(3) = 2, and HF(4) = 1. Then by Theorem [6.3.29 we have HS(z) =
1+ 22+ 322+ 223 + 2% Therefore HF(i) = 9 for i > 4. Hence dimg (K (X)/(S)) = 9.

Example 6.3.31. Consider the free monoid ring K (x,y, z) and the ideal I generated
by the set G = {zy — yz,2z — zx,yz — zy}. Let 0 = LLex on (X) such that x >,
y >, z. It is easy to verify that G is a o-Grobner basis of I. Consider the K-algebra
K(x,y,z)/1. Note that K(x,y,z)/I = K[x,y,z]. We have LT,{G} = {zy, zz, yz},
k=1,V ={x,y, z}, and the following Ufnarovski graph U.

P

Oyt
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By Theorem |6.3.25| the growth of K (x,y, z)/I is polynomial of degree 3. An adjacency

matrix of U is

= B.

SIS

_ = = R
— = O
_— O O W

The minimal polynomial of B is ug(z) = (x — 1)3. Moreover, we have HF(0) = 1,
HF(1) = 3,HF(2) = 6 using Corollary [6.3.11, and HF(3) = 10,HF(4) = 15 using
Theorem |6.3.27] ThenAby Th'eorernA 6.3.29 we have HS(z) = (1 —2)7% = 322 (*}) 2"
Therefore HF*(i) = > _, (*}7) = ("1?).

=0\ 2 3

Remark 6.3.32. Finally, we shall make some remarks about Theorem [6.3.29] Let
pp(r) = 2 — 3277 c;a’ € Q[r] be the minimal polynomial of the adjacency matrix B.
As seen in the proof of the theorem, for all j € N the recurrence relation HF (k+j+s) =
coHF(k+j) +aHF(k+j5+ 1)+ -+ ¢s1HF(k +j + s — 1) holds. We can use this
recurrence relation instead of the multiplication of the adjacency matrix B to compute
the values of the Hilbert function HF (i) where ¢ > k+s. As a result, we can improve the
algorithm in Theorem [6.3.27| using the recurrence relation. Moreover, using sufficiently
effective techniques from combinatorial theory (see for instance [32], Chapter 7), we can
obtain the formula for the Hilbert function HF(7) by expanding the Hilbert series HS(z)
into a power series and reading off the coefficient of 2. Further, as seen in the previous

examples, we might also obtain the formula for the affine Hilbert function HF*(3).
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