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Abstract

In this thesis, we shall consider a certain class of algebraic cryptosystems called

Gröbner Basis Cryptosystems. In 1994, Koblitz introduced the Polly Cracker cryp-

tosystem that is based on the theory of Gröbner basis in commutative polynomials

rings. The security of this cryptosystem relies on the fact that the computation of

Gröbner basis is, in general, EXPSPACE-hard. Cryptanalysis of these commutative

Polly Cracker type cryptosystems is possible by using attacks that do not require

the computation of Gröbner basis for breaking the system, for example, the attacks

based on linear algebra. To secure these (commutative) Gröbner basis cryptosys-

tems against various attacks, among others, Ackermann and Kreuzer introduced a

general class of Gröbner Basis Cryptosystems that are based on the difficulty of

computing module Gröbner bases over general non-commutative rings. The objec-

tive of this research is to describe a special class of such cryptosystems by introduc-

ing the Weyl Gröbner Basis Cryptosystems. We divide this class of cryptosystems

in two parts namely the (left) Weyl Gröbner Basis Cryptosystems and Two-Sided

Weyl Gröbner Basis Cryptosystems. We suggest to use Gröbner bases for left and

two-sided ideals in Weyl algebras to construct specific instances of such cryptosys-

tems. We analyse the resistance of these cryptosystems to the standard attacks and

provide computational evidence that secure Weyl Gröbner Basis Cryptosystems can

be built using left (resp. two-sided) Gröbner bases in Weyl algebras.
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Chapter 1
Introduction

The distance is nothing; it is only the first step that is difficult.

Anonymous

The development and study of Gröbner basis cryptosystems is an active area of re-

search in the Gröbner basis community. It is believed that if such cryptosystems are

developed successfully, they will not be threatened by the development of quantum

computers. Motivated by the fact that Ackermann and Kreuzer [1] recently defined

a general class of Gröbner basis cryptosystems, the goal of this thesis is to intro-

duce a new special class of Gröbner basis cryptosystems by using ideals in Weyl

algebras and to present presumably hard instances of such cryptosystems.

Why?

In 1976, the new concept of Public Key Cryptography presented in the historical

paper “New Directions in Cryptography”, by Diffie and Hellman [14] has radically

altered the face of modern cryptography. The security of the Diffie and Hellman

protocol is based on the difficulty of computing discrete logarithms in a an abelian

group. Many public-key cryptosystems have been proposed and implemented since

1976. Among them, the most prominent are the ones by Rivest, Shamir, and Adle-

man [44] and by ElGamal [17]. The security of these encryption schemes rely,

respectively, on the intractability of the integer factorization problem (IFP) and the



discrete logarithm problem (DLP). Furthermore, due to the improvements in algo-

rithms for solving IFP and DLP, parameters of these cryptosystems are required to

be bounded by new limits in order to achieve a reasonable level of security. For

instance, 156 and 200-digit RSA numbers have already been factorized. As com-

puters get faster, to keep using cryptology, present cryptosystems have to become

stronger by using longer keys and more clever techniques. In 1999, Peter Shor [46]

discovered polynomial time algorithms to solve the IFP and DLP on a ‘hypotheti-

cal’ quantum computer. Once quantum computers have been developed, cryptosys-

tems based on these problems will not remain secure any more. Therefore, there

is a strong need to find new encryption schemes that do not depend on these two

closely related problems.

The threat of quantum computers is a very hot topic in today’s world of cryp-

tography. It has been realized that there is a great need for the development of

cryptosystems which are as secure on quantum computers as on conventional com-

puters. Multivariate cryptography is one of the main fields of research for the de-

velopment of multivariate algebraic cryptosystems which are believed to be secure

against attacks with quantum computers [15]. The goal of this thesis is to intro-

duce a new algebraic multivariate public key cryptosystem based on the difficulty

of computing Gröbner bases of ideals in Weyl algebras. Note that the problem of

computing a Gröbner basis is totally different from the IFP and DLP. In the com-

mutative setting, the worst case complexity of computing Gröbner bases is known

to be EXPSPACE (see [36]). Before we explain how we are going to achieve our

goal, let us first have a brief overview of related work.

Related Work

The question whether there exist ‘secure’ public-key cryptosystems based on NP-

hard problems has remained open for a long time. In 1994, Fellows and Koblitz [18],

introduced a new algebraic multivariate encryption scheme which became known

as the Polly Cracker Cryptosystem (PCC). This encryption scheme relies on the

hard problem of polynomial system solving over a finite field. In principle, these

cryptosystems could encode NP-hard problems, but constructing a hard instance

2



Chapter 1. Introduction

turned out to be a non-trivial matter. Koblitz’s PCC works as follows: Let K = Fq

be a finite field, where q = pe with a prime number p and e > 0. The encryption

scheme operates in a commutative ring P = K[x1, . . . ,xn] over the field K. The

public key Q = {p1, . . . , ps} is set by choosing a point (a1, . . . ,an) ∈ Kn such that

for all i = 1, . . . ,s, we have pi(a1, . . . ,an) = 0. For encrypting a message m ∈ K,

choose “random” polynomials h1, . . . ,hs ∈ P and compute the encrypted message

as c = h1 p1 + · · ·+ hs ps +m. Decryption is then achieved by evaluating c at the

common-zero (a1, . . . ,an) of pi (see Section 3.2 for details). One can attempt to

attack an instance of PCC for instance by using the following two kinds of attacks:

• total-break attacks, where an attacker tries to reveal the secret key or to make

another equivalent secret key. In this way, the attacker will be able to decrypt

successfully any encrypted message.

• single-break attacks, where an attacker knows the encrypted message and

tries to recover the corresponding original message by using publicly avail-

able information.

The cryptanalysis of various instances of PCC have been carried out success-

fully. Koblitz’s “graph perfect code instance” [25], has been broken by Hofheins and

Steinwandt [23] by introducing a differential attack. R. Steinwandt and M. Vasco

showed in [50] that PCC is susceptible to a chosen-ciphertext attack which is a total

break attack. In [49], Steinwandt et. al. also describe a timing attack that may

be used to reveal the secret key. The cryptosystem ENROOT [20] can be viewed

as a special instance of Polly Cracker which has been successfully attacked in [6].

Here we also remark that the main weakness of PCC is that its secret key is a point

(a1, . . . ,an) in Kn and the decryption is achieved by evaluating a polynomial at this

point. This fact has been exploited in most of the above mentioned attacks on an

instance of a PCC.

Soon PCC was generalized (see for instance [25] and [8]) to commutative Gröbner

Basis Cryptosystem, or CGBC for short, where the underlying hard problem of

polynomial system solving was replaced by the hard problem of computing Gröbner bases

of ideals in commutative polynomial rings.

In particular, for an instance of a CGBC, the secret key is a Gröbner basis G =

{g1, . . . ,gs} of an ideal I ⊂ P with respect to some term ordering σ . The public key

3



is a finite subset Q of I, constructed by choosing “random” polynomials p1, . . . , ps

of the ideal I. The messages are the polynomials that are reduced with respect

to G. For sending a message m, we choose random polynomials h1, . . . ,hs and

compute the encrypted message as c = h1 p1+ · · ·+hs ps+m. The original message

m then can be recovered by reducing c with respect to the secret key G. Again,

theoretically, the security of a CGBC relies on the hard problem of computing a

Gröbner basis but, practically, constructing a really secure instance is a non-trivial

matter.

Moreover, this generalized form of PCC is also threatened by the above men-

tioned two kinds of attacks. That is, there are single-break attacks like the basic

linear algebra attack, the ‘intelligent’ linear algebra attack (see [25]), and the par-

tial Gröbner basis attack (see [8]) as well as total break attacks like the chosen-

ciphertext attack. Most of these attacks exploit the structural weaknesses of CGBC.

For example, in the commutative polynomial ring setting it is very difficult to hide

the terms used in the polynomials h1, . . . ,hs for computing the encrypted message

c = h1 p1 + · · ·+ hs ps +m, because in this representation, terms on the right-hand

side rarely cancel. Therefore, an attacker can play with the statistics of the terms in

c and in the public polynomials and can have a very high probability of success for

the attacks based on linear algebra. In [8], another threat for the security of a CGBC

has been raised by introducing a partial Gröbner bases attack. The success of this

attack greatly depends on the successful computation of a partial Gröbner basis up

to a certain degree bound. Again, in the commutative setting, this method of at-

tack might be feasible in some cases. No computational results are provided in

favour of feasibility of this attack on specific instances of CGBC, but still the way

it is presented suggests that these earlier suggestions of CGBC instances met a very

polemic response by the Gröbner basis community. Note that the main criticisms

of this encryption scheme were single-break attacks based on linear algebra and on

the computation of a partial Gröbner basis.

Later, Ackerman and Kreuzer [1] discovered that the commonly used cryptosys-

tem, RSA, can be viewed as a special case of a general kind of Gröbner basis cryp-

tosystem. Note that RSA has not been broken yet. It follows that, the existence of

the above attacks does not mean that secure instances of Gröbner basis cryptosys-

4



Chapter 1. Introduction

tems cannot be constructed at all. In fact, in the following years, several possible

countermeasures against these attacks have been proposed. Moreover, several mod-

ifications, to improve the general idea, have also been investigated. For instance,

L. Ly [34], cleverly constructed a more refined version of Polly Cracker which is

known as Polly Two and which she believed to be secure against all these standard

attacks. One instance of Polly Two has been broken recently by R. Steinwandt [47]

using a side channel attack. Because of the proposed cryptanalysis of such com-

mutative Gröbner basis cryptosystems, it remained an open problem to construct

hard instances of such systems which are secure against all standard attacks. An-

other attempt can be found in [41], where T. Rai introduced non-commutative Polly

Cracker cryptosystems. The motivation for such cryptosystems was the fact that

there are ideals of non-commutative polynomial rings over finite fields that have

infinite reduced Gröbner bases, and hence, theoretically, there is no chance for the

usual total break attack. Moreover, by construction, the single-break attacks based

on linear algebra are not possible against such cryptosystems. One major weakness

here seems to be the explicit suggestion to use Gröbner bases containing only one

element. Principal ideals might allow an easier recovery of the secret key from the

public information through a factoring attack. Moreover, finding suitable ideals for

constructing concrete instances turns out to be a difficult task.

Going further in this direction, recently, Ackermann and Kreuzer have devel-

oped the most general and intelligent technique in [1] by defining general Gröbner

Basis Cryptosystems. This general class of cryptosystems is special in the sense

that it allows well known cryptosystems, such as RSA, El-Gamal, Polly Cracker,

Polly 2 and Rai’s non-commutative Polly Cracker to be formulated as special cases.

Although no specific instances of these cryptosystems are provided, it seems to be

a promising frame-work for future cryptosystems.

In this thesis, we introduce two special classes of instances of General Gröbner

Basis Cryptosystems by using left and two-sided Gröbner basis for ideals in Weyl

algebras respectively. They will be called (left) Weyl Gröbner Basis Cryptosystems

(WGBC) and Two-Sided Weyl Gröbner Basis Cryptosystems (TWGBC), respec-

tively. They are a straightforward generalization of CGBC and can also be formu-

lated as a special case of the very general setting used in [1].

5



How?

The goal of constructing left and two-sided Weyl Gröbner basis cryptosystems will

be achieved by going through the following steps:

(1) Introduce Weyl Gröbner Basis Cryptosystems and present methods for key

generation and implementation of the enciphering and deciphering maps.

(2) Construct hard instances of these cryptosystems.

(3) Study efficiency and security issues of these cryptosystems.

Recall that the Weyl algebra An of index n over a field K is the associative al-

gebra An = K⟨x1, . . . ,xn,∂1, . . . ,∂n⟩ such that [xi,x j] = [∂i,∂ j] = 0 and [∂i,x j] = δi j,

where 1 ≤ i, j ≤ n and δi j is the Kronecker delta. The computational environment

of our proposed cryptosystems is some Weyl algebra An over a field K. For a variety

of reasons, it appears necessary to use a finite base field K. The secret key, G, is a

Gröbner basis of an ideal I ⊂ An with respect to a term ordering σ . The message

space is the K-vector space generated by a small subset M of Oσ (I), the comple-

ment of the set of leading terms of elements of I. The public key Q is a finite set of

polynomials p1, . . . , ps of I. For sending a message m, we carefully choose polyno-

mials ℓ1, . . . , ℓs and compute the encrypted message as c = ℓ1 p1 + · · ·+ ℓs ps +m.

Finally, the message m can be recovered by computing the normal remainder of c

with respect to the secret key G.

Why Weyl Algebras?

With the above ingredients, we shall now explain why we feel that choosing Weyl

algebras as base rings for defining a special class of general Gröbner basis cryp-

tosystems is better than the usual CGBC setting. The reasons for choosing Weyl

algebras as base rings are provided by the following facts.

(1) There is a well developed and carefully studied theory of Gröbner bases of

ideals in Weyl algebras. Moreover, due to non-commutativity of An, the com-

putation of Gröbner bases of ideals of An is usually much harder than the

computation in a commutative polynomial ring P.

6



Chapter 1. Introduction

(2) For n ≥ 1 the set Bn = {xα ∂ β | α, β ∈ Nn } of all terms forms a K-vector

space basis of An. Therefore, every element f ∈ An has a unique standard

form given by f = ∑cα ,β xα∂ β , where xα = xα1
1 · · ·xαn

n , ∂ β = ∂ β1
1 · · ·∂ βn

n , and

cα,β ∈ K\{0}. For example, consider the Weyl algebra A2 = F7[x1,x2,∂1,∂2].

Then the term ∂ 3
1 ∂2x3

1x2 will be written in its standard form as x3
1x2∂ 3

1 ∂2 +

x3
1∂ 3

1 +2x2
1x2∂ 2

1 ∂2+2x2
1∂ 2

1 −3x1x2∂1∂2−3x1∂1−x2∂2−1. This feature turns

out to be helpful in performing efficient multiplication of elements of An.

(3) Another main reason for suggesting the use of Weyl algebras for cryptogra-

phy stems from Proposition 2.1.5. This result implies that every multiplica-

tion of polynomials in Weyl algebras substantially increases the size of the

support of the corresponding product. For instance, let A2 be given as above.

Then the standard form of the product of a term x2
1∂ 3

1 ∂ 2
2 with another term

x2
1x3

2∂1 contains 9 terms,

x2
1∂ 3

1 ∂ 2
2 · x2

1x3
2∂1 = x4

1x3
2∂ 4

1 ∂ 2
2 − x4

1x2
2∂ 4

1 ∂2 − x3
1x3

2∂ 3
1 ∂ 2

2 − x4
1x2∂ 4

1 + x3
1x2

2∂ 3
1 ∂2

−x2
1x3

2∂ 2
1 ∂ 2

2 + x3
1x2∂ 3

1 + x2
1x2

2∂ 2
1 ∂2 + x2

1x2∂ 2
1 .

From this observation about the product of two terms, one can imagine what

is going to happen when several polynomials containing several terms are

multiplied and added together to obtain a single polynomial of An. This

means that, when we compute the encrypted message c = ℓ1 p1+ · · ·+ℓs ps+

m in the setting of Weyl algebras, many lower degree terms are added and

the coefficients of the lower degree parts change in a way that is in general

hard to predict. Later, we shall see that this phenomenon is helpful to make

attacks based on linear algebra infeasible when applied to an instance of our

proposed cryptosystem.

(4) In the encryption process of computing c = ℓ1 p1 + · · ·+ ℓs ps +m, the poly-

nomials ℓ1, . . . , ℓs can be chosen to cancel the degree forms of ℓ j p j of highest

degree. By the process of converting c to its standard form, the other degree

forms of ℓ j p j cancel or their coefficients are changed in c. Let us observe this

effect in a simple example. Consider the Weyl algebra A2 as given above, and

let p1 = 2x1x2
2∂1∂ 2

2 −3x2
1∂1+2x2∂2−x1+1 and p2 = 3x3

2∂2+x2
2−x2∂2−3 be

the given polynomials of A2. Choose ℓ1 = 2x1x2
2∂1∂2 − 3x1∂1∂2 + 2x2∂2 − 3

7



and ℓ2 = x2
1x2∂ 2

1 ∂ 2
2 −2x2

1∂ 2
1 ∂2 + x1x2∂1∂ 2

2 + x1∂1∂ 2
2 . Then the standard form

of c = ℓ1 p1 + ℓ2 p2 +3 is given as

c = x3
1x2

2∂ 2
1 ∂2 +2x2

1x2
2∂ 2

1 ∂2 +3x1x3
2∂1∂ 2

2 − x2
1x2∂ 2

1 ∂ 2
2 +2x3

1∂ 2
1 ∂2 − x1x2∂1∂ 3

2

−2x2
1x2∂ 2

1 + x2
1x2∂1∂2 + x2

1∂ 2
1 ∂2 −2x1x2∂1∂ 2

2 −2x1x2
2∂2 + x1x2∂1∂2 −

3x2
2∂ 2

2 +2x1∂1∂ 2
2 +2x2

1∂1 +2x1x2∂1 −2x1x2∂2 −2x1∂1∂2 +2x1∂1 +

3x1∂2 +3x1

Note here that the degrees of the polynomials p1, p2, ℓ1 and ℓ2 are 6, 4, 5, and

7, respectively, and the degree of c is not 11 but 8. This means that all terms

of degree greater than 8 are cancelled. Moreover, the plaintext m = 3 is also

not visible in c. The total number of terms in c is 21 whereas the summands

ℓ1 p1 and ℓ2 p2 contain 22 and 19 terms respectively. That is, many terms are

either cancelled or their coefficients are changed in c.

(5) All the gaps in the degrees of various homogeneous components of c can be

removed, for example by including a few lower degree terms in some of the

polynomials ℓ1, . . . , ℓs. In this way, the encrypted message can be made more

‘random-looking’. This is a relatively difficult task in the setting of CGBC.

Later, in Chapter 5, we shall see that this strategy of reducing the sparsity

of the polynomial c can make the intelligent linear algebra attack harder to

apply in the setting of WGBC.

(6) Our methods suggested for the key generation for an instance of a WGBC do

not allow the chosen ciphertext attack to work as in the setting of CGBC. In

fact, using the countermeasures suggested in [42], both WGBC and TWGBC

have a built-in mechanism of recognizing ‘illegal’ ciphertext messages. Hence

the chosen ciphertext attack fails.

(7) In contrast to the commutative setting, the computation of a partial Gröbner

basis turns out to be quite hard in the Weyl algebra setting. In fact, due to the

properties of Weyl multiplication, the sizes of the supports of the interme-

diate polynomials during the computation of partial Gröbner bases grow too

large. This in turn slows down the reduction process of computing normal

remainders and also increases the amount of memory required to store the

intermediate results during the process of computing a Gröbner basis. Hence,

8



Chapter 1. Introduction

a partial Gröbner basis required for the success of the partial Gröbner basis

attack is hard to compute in the setting of Weyl algebras. Several examples

of left as well as two-sided ideals of An are given in Chapters 4 and 6 which

provide the evidence that large enough partial Gröbner bases of these ideals

are infeasible to compute.

(8) The setting of TWGBC turns out to be even more favourable as compared

with the WGBC setting. For TWGBC, the encryption is achieved by com-

puting the standard form of c = ℓ1 p1 r1 + · · ·+ ℓs ps rs +m, where m is the

message to be encrypted. Now the process of multiplying pi from the left-

hand and the right-hand side by suitably choosing polynomials ℓi and ri and

then converting c to its standard form can really mess up the resulting en-

crypted message (see Section 6.2 for details). In this way, it will be very hard

to predict the terms used in the polynomials for left and right multiplication

with the polynomials in the public key. Moreover, this encryption scheme is

not vulnerable to usual attacks based on linear algebra since it is based on

two-sided ideals of Weyl algebras.

Motivated by these observations, the main part of this thesis is devoted to present a

detailed study and investigation of our proposed cryptosystems.

Organization of the Thesis

This section presents an outline of the remainder of the thesis and our contribution

to the field of algebraic cryptography particularly the construction of hard instances

of general Gröbner basis cryptosystems as presented in [1].

In Chapter 2, we introduce Weyl algebras and give their basic properties. We

emphasize that Weyl algebras in positive characteristic have properties which differ

from the well-known case of characteristic 0. Then we briefly describe the funda-

mentals of Gröbner basis theory of left ideals in these algebras. Most of this theory

is available in [24] in general setting of solvable polynomial rings and in [30] for

the even more general case of G-algebras. In our case, we are mostly interested in

left Gröbner bases of left ideals, and in this setting most results are similar to the

corresponding results from commutative Gröbner bases theory [27], or they can be

9



adapted from commutative Gröbner bases theory using minimal alterations. The

readers familiar with the theory of Gröbner bases in commutative setting can skip

this section and continue with Chapter 3. We also present an easy way of construct-

ing non-trivial left ideals in Weyl algebras, both for positive and zero characteristic.

We conclude the chapter by listing various computer algebra systems available for

computations in Weyl algebras. Here we also introduce our own package Weyl

written for the computer algebra system ApCoCoA. The details about the usage of

this package have been set out in Appendix A.

Chapter 3 provides the cryptographic background with emphasis on public key

cryptography. After some preliminary material on cryptography, we describe Fel-

lows and Koblitz’s [18] Polly Cracker cryptosystems and then study their cryptanal-

ysis. In particular, we describe very serious single-break attacks based on linear

algebra and a total-break attack the chosen ciphertext attack, to break an instance of

Polly Cracker. Afterwards, we describe commutative Gröbner basis cryptosystems

and explain a partial Gröbner bases attack on such systems. We conclude the chap-

ter by introducing the most general class of Gröbner basis cryptosystems presented

in [1].

In Chapter 4, we introduce the class of (left) Weyl Gröbner basis cryptosystems.

They can be viewed as a special case of the setting used in [1]. Our main contribu-

tion is then to present methods for the key generation and implementation of these

cryptosystems, such that they have resistance against the standard attacks. We con-

structed three explicit concrete instances of these cryptosystems which we believe

to be reasonably secure.

In more detail, the security and efficiency issues of these cryptosystems are

studied in Chapter 5. We provide computational evidence that our proposed cryp-

tosystems can be built to have security against all known standard attacks. In par-

ticular, we examine the security of our concrete instances of these cryptosystems

against these standard attacks. By the construction and the methods introduced in

Chapter 4, we think that attacks like the chosen ciphertext attack and the partial

Gröbner basis attack can be safely ignored.

Finally, Chapter 6 is devoted to introduce and study two-sided Weyl Gröbner ba-

sis cryptosystems. We briefly present the fundamentals of two-sided Gröbner basis

10



Chapter 1. Introduction

theory following the approach in [24] and [30]. We study the structure of two-sided

ideals of Weyl algebras defined over a prime field Fp. Then we provide methods for

key generation for such cryptosystems and by using these methods, we construct

some concrete instances of these cryptosystems. We examine their efficiency and

their security against the standard attacks. In the end, we give a brief conclusion

and wrap up the chapter by presenting a decryption challenge in Section 6.6.

In Appendix A we introduce the package Weyl for performing various com-

putations in Weyl algebras using the computer algebra system ApCoCoA. After a

brief introduction to the package, all the functions available for performing specific

computations in Weyl algebras are explained with the syntax and an example de-

scribing the usage of these functions. Appendix B contains our implementation of

the basic linear algebra attack and the “intelligent” linear algebra attack, both in the

commutative polynomial rings and in the setting of Weyl algebras. Finally, the last

Appendix C is provided to contain the data related to various examples presented

throughout the thesis.

To summarize our results, we can say that one can build hard instances of our

proposed cryptosystems which have resistance against the known standard attacks

proposed by cryptanalysts of Gröbner basis type cryptosystems. It seems that, in

order to break a Weyl Gröbner basis cryptosystem, an attacker will have no choice

except to compute a Gröbner bases of the ideal generated by the elements in the

corresponding public key. In [32], the degree bound for the Gröbner bases in al-

gebras of solvable type has been established to be doubly exponential. In general,

the problem of computing Gröbner bases is EXPSPACE-hard [53]. Altogether, we

believe that Weyl Gröbner basis cryptosystems have potential for further investiga-

tion. Our challenge in Section 6.6 is intended to entice the readers to get into this

subject. There may be many further interesting results on computations in Weyl

algebras, particularly when the base field has positive characteristic.

Some results presented in this thesis are based on the joint paper “Weyl Gröbner

Basis Cryptosystems” [2] submitted for publication.

11



12



Chapter 2
Gröbner Bases in Weyl Algebras

In this thesis, we are going to introduce a special class of Gröbner basis cryptosys-

tems by using Weyl algebras as the base ring. The purpose of this chapter is to intro-

duce Weyl algebras, and their basic properties. We also introduce the computational

theory of Gröbner basis for Weyl algebras and study the structure of ideals in such

algebras. In fact, we describe algorithms for computing Gröbner bases of ideals in

Weyl algebras. The computational complexity of these algorithms motivated us to

use Weyl algebras for designing the “Weyl Gröbner Basis Cryptosystems” that we

describe in chapter 4.

2.1 Weyl Algebras

In this section we shall describe the main ingredients of our proposed cryptosystem,

the Weyl algebra and then present some of its basic properties that are required for

establishing the theory of Gröbner basis in the Weyl algebras.

Throughout the thesis let K be a field and n ≥ 1. The characteristic of K will be

denoted by char(K). We define the Weyl algebra of index n as follows:

Definition 2.1.1. Let {x1, . . . ,xn,∂1, . . . ,∂n} denote a set of indeterminates, and

let K⟨x1, . . . ,xn,∂1, . . . ,∂n⟩ be the free associative algebra in these indeterminates.

Then the Weyl algebra of index n over K is the associative K-algebra

An = K⟨x1, . . . ,xn,∂1, . . . ,∂n⟩/I



2.1. Weyl Algebras

where I is the two-sided ideal generated by the following elements,

xi x j − x j xi, 1 ≤ i, j ≤ n,

∂i ∂ j −∂ j ∂i, 1 ≤ i, j ≤ n,

xi ∂ j −∂ j xi, 1 ≤ i ̸= j ≤ n,

∂i xi − xi ∂i −1, i = 1, . . . ,n

The last element indicates that ∂i xi ̸= xi ∂i and hence An is not commutative. If no

confusion arises, from now on we denote (x1, . . . ,xn) and (∂1, . . . ,∂n) respectively

by x and ∂ . The elements of An will be called Weyl polynomials.

For details on the subject, we refer to standard textbooks such as [12] in the case

when the field-characteristic is zero, and to the articles [43], [52] and [7] when K has

a positive characteristic. For a more general class of non-commutative Noetherian

rings we refer to [37] and [19] where some properties and examples are given for

Weyl algebras as a special class of solvable polynomial rings both for positive and

zero characteristic of the base field.

The natural action for the Weyl Algebra An on a polynomial f in K[x1, . . . ,xn]

is as follows:

∂i • f =
∂ f
∂xi

, xi • f = xi f

Since K[x1, . . . ,xn] is a subring of An, the symbol • helps distinguish the above

action from the product An × An → An. For example, if K = Q, then ∂ 2
1 • x3

1 =

6x1 but ∂ 2
1 · x3

1 = x3
1∂ 2

1 + 6x2
1∂1 + 6x1. With this action of an element ∂i · xi ∈ A

on a polynomial f ∈ K[x1, . . . ,xn] and using the product rule of differentiation we

immediately get the last relation, ∂i xi = xi ∂i + 1, of the definition 2.1.1 of An. In

fact, we have

(∂i · xi) f = xi
∂i f
∂xi

+ f ⇒ ∂i · xi = xi ·∂i +1

It is easy to describe a basis for the Weyl algebra as a K-vector space by using the

multi-index notation. Let xα and ∂ β respectively denote xα1
1 · · ·xαn

n and ∂ β1
1 · · ·∂ βn

n .

Further, for α,β ∈ Nn with α = (α1, . . . ,αn) and β = (β1, . . . ,βn), we write

|α|= α1 + · · ·+αn and |β |= β1 + · · ·+βn

14



Chapter 2. Gröbner Bases in Weyl Algebras

Definition 2.1.2. In the above notation, the elements of the form xα ∂ β in the Weyl

algebra An are called (Weyl) terms.

We denote by Bn, the set of all terms in An. That is, for n ≥ 1, we let

Bn = {xα ∂ β | α, β ∈ Nn }

Proposition 2.1.3. The elements of the set Bn, as given above, form a K-vector

space basis of An.

Proof. See Ch. 1 Proposition 2.1 in [12].

In view of Proposition 2.1.3, it is natural to write every non-zero element f ∈ An

as a K-linear combination of elements in the basis Bn. This way of writing elements

in some unique form will be useful to perform explicit calculations with the Weyl

polynomials.

Definition 2.1.4. A non-zero element f in a Weyl algebra An written as a K-linear

combination of the elements in the K-vector space basis Bn is called an element in

standard form.

So, every element f ∈ An has a unique standard form:

f = ∑
(α ,β )∈E

cα ,β xα∂ β (2.1)

where xα = xα1
1 · · ·xαn

n , ∂ β = ∂ β1
1 · · ·∂ βn

n , cα,β ∈ K\{0}, and where E is a finite

subset of N2n.

Hence, there is a natural K-vector space isomorphism between the commutative

polynomial ring in 2n variables {x1, . . . ,xn,ξ1, . . . ,ξn} and the Weyl algebra An.

Explicitly,

Ψ : K[x,ξ ] = K[x1, . . . ,xn,ξ1, . . . ,ξn]−→ An

xαξ β 7−→ xα∂ β (2.2)

Using the defining relations of Def. 2.1.1, one can convert every element of the

Weyl algebra An into its standard form in a straightforward way. The following

result proves to be useful for writing a Weyl polynomial in its standard form and

hence, can be used to perform effective multiplication of Weyl polynomials.
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2.1. Weyl Algebras

Proposition 2.1.5. (a) Let i ∈ {1, . . . ,n}, and let k, ℓ ∈ N. Then we have

∂ k
i xℓi =

min{k,ℓ}

∑
j=0

j!
(

k
j

)(
ℓ

j

)
xℓ− j

i ∂ k− j
i

(b) Assume that char(K) = 0, and let t = xα∂ β and t ′ = xα ′∂ β ′
be two terms

in An. Write α ′ = (α ′
1, . . . ,α

′
n) and β = (β1, . . . ,βn). Then the representation

of t t ′ in the basis Bn consists of

n

∏
i=1

(min{α ′
i ,βi}+1)

summands.

(c) If K is a field of positive characteristic, then the number of summands in the

product of the terms t and t ′ of part (b) becomes

∏n
i=1 (min{α ′

i mod p,βi mod p}+1)

Proof. (a) We can derive the formula from the relation ∂i xi = xi ∂i + 1 and by

induction on k. For k = 1, we have

∂i xℓi = (∂i xi)xℓ−1
i

= (xi ∂i +1)xℓ−1
i

= xi(∂i xℓ−1
i )+ xℓ−1

i

= xi(xi ∂i +1)xℓ−2
i + xℓ−1

i

= x2
i ∂i +2xℓ−1

i = · · · = xℓi ∂i + ℓxℓ−1
i

=
1

∑
j=0

j!
(

1
j

)(
ℓ

j

)
xℓ− j

i ∂ 1− j
i

Hence the formula is true for k = 1. We shall now prove that the formula is

true for k+1 when it is true for k.
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(1) Case (ℓ≤ k)

∂ k+1
i xℓi = ∂ k

i (∂i xℓi )

= ∂i(∂ k
i xℓi )

= ∂i(
ℓ

∑
j=0

j!
(

k
j

)(
ℓ

j

)
xℓ− j

i ∂ k− j
i )

= ∂i(xℓi ∂ k
i + k ℓxℓ−1

i ∂ k−1
i + · · ·+(k− ℓ)∂ k−ℓ

i )

= (xℓi ∂i + ℓxℓ−1
i )∂ k

i + (kℓxℓ−1
i ∂i + k ℓ(ℓ−1)xℓ−2

i )∂ k−1
i +

· · ·+(k− l)∂ k+1−ℓ
i

= xℓi ∂ k+1
i +(k+1)ℓxℓ−1

i ∂ k
i + · · ·+(k− ℓ)∂ k+1−ℓ

i

=
ℓ

∑
j=0

j!
(

k+1
j

)(
ℓ

j

)
xℓ− j

i ∂ k+1− j
i

Hence the formula is true for k+1.

(2) Case (ℓ > k)

∂ k+1
i xℓi = ∂ k

i (∂i xℓi ) = ∂i(∂ k
i xℓi )

= ∂i(
k

∑
j=0

j!
(

k
j

)(
ℓ

j

)
xℓ− j

i ∂ k− j
i )

= ∂i(xℓi ∂ k
i + k ℓxℓ−1

i ∂ k−1
i +

k(k−1)ℓ(ℓ−1)
2!

xℓ−2
i ∂ k−2

i

+ · · · + (ℓ− k)xℓ−k
i )

= (xℓi ∂i + ℓxℓ−1
i )∂ k

i + (k ℓxℓ−1
i ∂i + k ℓ(ℓ−1)xℓ−2

i )∂ k−1
i

+ · · · + (
(k+1)k ℓ(ℓ−1)

2!
xℓ−2

i ∂i +(ℓ−2)xℓ−3
i )∂ k−2

i

(ℓ− k)(xℓ−k
i ∂i + xℓ−k−1

i

= xℓi ∂ k+1
i +(k+1)ℓxℓ−1

i ∂ k
i +

(k+1)k ℓ(ℓ−1)
2!

xℓ−2
i ∂ k−1

i

+ · · ·+(ℓ− k)xℓ−(k+1)
i

=
k+1

∑
j=0

j!
(

k+1
j

)(
ℓ

j

)
xℓ− j

i ∂ k+1− j
i

Again, the formula is true for k+1.

(b) From part (a), it follows that for each i ∈ {1, . . . ,n} the number of terms in

the standard form of ∂ k
i xℓi is (min{k, ℓ}+1). Hence the result follows.
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(c) For char(K)> 0 we have to replace the summation bound min{k, ℓ}in part (a)

by min{k mod p, ℓ mod p} and hence the result follows.

We have used part (a) of this proposition to implement an algorithm for comput-

ing the product of two Weyl polynomials f and g in standard form for the computer

algebra system ApCoCoA. One of the motivational factors of using Weyl polynomi-

als for designing a secure cryptosystem is part (b) of this proposition which means

that the supports are going to expand greatly with every multiplication, even if it is

only the multiplication by a term. We illustrate this by the following example.

Example 2.1.6. Let m1 = x2
1x2

2x3∂ 3
1 ∂ 4

2 ∂ 4
3 and m2 = x4

1x3
2x5

3∂1∂ 2
2 ∂ 5

3 be terms of the

Weyl algebra A3 =Q⟨x1,x2,x3,∂1,∂2,∂3⟩. Then the number of terms in the product

m1 m2 is (3+1)(3+1)(4+1) is 80. If we replace the base field by Z7, then the num-

ber of terms in the product is (min{4 mod 7, 3 mod 7}+1)(min{3 mod 7, 4 mod

7}+1)(min{4 mod 7, 5 mod 7}+1) = (3+1)(3+1)(4+1) = 80, whereas for the

field Z5, this product will have 4 ·4 ·1 = 16 terms.

2.2 Basic Properties

In this section, we will describe the basic properties of Weyl algebras and explain

how the Weyl algebras over a field K of characteristic zero are different from the

ones that are defined over a field of positive characteristic.

Definition 2.2.1. Let t = xα ∂ β be a Weyl term of An. Then the degree of t is given

by deg(t) = |α|+ |β |.

Definition 2.2.2. Let f = c1t1 + · · ·+ csts be a Weyl polynomial in standard form,

where ci ∈ K \ {0} and ti ∈ Bn. For i = 1, . . . ,s, the element ti is called a term of

f and ci is called the coefficient of f corresponding to the term ti. The summand

citi in this representation of f is called a monomial of f . We denote by Supp( f ) =

{t1, . . . , ts}, the set of all terms of f and call it the (standard) support of f .

Definition 2.2.3. Let f = c1t1 + · · ·+ csts be a Weyl polynomial in standard form,

where ci ∈ K \ {0} and ti ∈ Bn. The degree, deg( f ) of the polynomial f ∈ An is
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Chapter 2. Gröbner Bases in Weyl Algebras

then defined as

deg( f ) = max{deg(t) | t ∈ Supp( f )}

Note that here f ̸= 0 and the degree of a zero-polynomial is not defined.

Definition 2.2.4. Let f = c1t1 + · · ·+ csts be a Weyl polynomial in standard form,

where ci ∈ K \{0} and ti ∈ Bn. We define the degree form, DF( f ), of a polynomial

f ∈ An to be the sum of all monomials of f having degree equal to deg( f ). That is,

DF( f ) = {∑
j

c jt j | t j ∈ Supp( f ) and deg(t j) = deg( f )}

Example 2.2.5. Consider the Weyl algebra A2 =Q[x1,x2,∂1,∂2] and

f = 3x3
1x2

2∂1∂ 2
2 + 7x3

1x3
2∂ 2

2 − 2x3
2∂ 4

1 ∂2 − 2x2
1∂ 2

1 + ∂1∂ 2
2 + x1x2 − 2x2 + x1 − 5. Then

we have

deg( f ) = 8,

DF( f ) = {3x3
1x2

2∂1∂ 2
2 +7x3

1x3
2∂ 2

2 −2x3
2∂ 4

1 ∂2}, and

Supp( f ) = {x3
1x2

2∂1∂ 2
2 , x3

1x3
2∂ 2

2 , x3
2∂ 4

1 ∂2, x2
1∂ 2

1 , ∂1∂ 2
2 , x1x2, x2, x1, 1}.

Proposition 2.2.6. For Weyl polynomials f , g ∈ An \ {0}, the degree satisfies fol-

lowing the properties:

(1) deg( f +g)≤ max{deg( f ), deg(g)}, where f +g ̸= 0.

(2) deg( f g) = deg( f ) + deg(g)

(3) deg( f g)−deg(g f )≤ deg( f )+deg(g)−2

Proof. see [12], Ch. 2, Theorem 1.1.

Recall that a ring is said to be simple if it does not have any non-trivial two-

sided ideals. For a commutative ring to be simple, it has to be a field. This in not

true in general for non-commutative rings. In fact, for Weyl algebras we have the

following proposition.

Proposition 2.2.7. Let An be the Weyl algebra of index n over K. If char(K) = 0

then An does not have any non-trivial two-sided ideals, i.e. An is simple.
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Proof. Consider a non-zero two-sided ideal I of An. Let 0 ̸= f ∈ I be such that d =

deg( f ) =min{deg( f ′) | f ′ ∈ I\{0}}. If d = 0, then f ∈K, hence I =An and there is

nothing to prove. We, therefore, assume that d > 0. Suppose t = xα ∂ β ∈ Supp( f )

be such that deg(t) = d and βi ̸= 0 for some i = 1, . . . ,n. Since, ∂i xi = xi ∂i + 1,

and by the supposition f has a summand t = xα ∂ β with deg(t) = deg( f ) = d and

βi ̸= 0, we have (xi f − f xi) ̸= 0 (because f xi = xi f + h with h ̸= 0) and part (3)

of Proposition 2.2.6 implies that deg(xi f − f xi) ≤ d − 1. Since I is a two-sided

ideal, the element xi f − f xi ∈ I. This contradicts our assumption that d is minimal.

Hence βi = 0, for all i. Since d > 0, there exists an i ∈ {1, . . . ,n} such that αi ̸= 0.

Now the element ∂i f − f ∂i ̸= 0 belongs to I and has degree d − 1 and again we

have a contradiction. Therefore the ideal I = {0} and hence An is simple.

From this proposition, one can immediately infer that every endomorphism of

An is injective.

Proposition 2.2.8. Let An be the Weyl algebra of index n over K. If char(K) = 0

then An is a domain, i.e. it has no left or right zero-divisors.

Proof. As in the case of commutative polynomial ring over a field, the proof follows

from part (2) of Proposition 2.2.6.

Proposition 2.2.9. Let An be the Weyl algebra of index n over K. If K is a field of

positive characteristic p then the center Cn of An is given by

Cn = K[xp
1 , . . . ,x

p
n ,∂

p
1 , . . . ,∂

p
n ]

It is a commutative polynomial ring in 2n indeterminates over K. Moreover, An is a

free Cn-module of rank p2n and an Azumaya algebra of rank pn over Cn.

Proof. These claims are proved in [52], Lemma 3.

In view of Propositions 2.2.7, 2.2.8, and 2.2.9, most of the time we will be using

mainly left ideals in Weyl algebras over a field K of positive characteristic.

Proposition 2.2.10. An is a left Noetherian ring. That is, every left ideal is finitely

generated.

Proof. See [12] (Ch. 8, §2).
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After giving a brief introduction to Weyl algebras and their basic properties, we

are now ready to describe the Gröbner basis theory for these algebras.

2.3 Left Gröbner Bases in Weyl Algebras

In this section, we will see how one can compute Gröbner bases of ideals in Weyl

algebras. In [24] a Gröbner basis theory for algebras of solvable type was intro-

duced. Weyl algebras are special cases for these algebras (see [24], 1.9.b). Teo

Mora, established in [39] a unified Gröbner basis theory for both commutative and

non-commutative algebras which was further considered by H. Li in his book [33]

and then by Levandovskyy in his Ph.D thesis [30]. For a computational introduction

to Weyl algebras, we refer to chapter one of the book [45]. Using this approach and

following the notation and terminology of the books [27] and [28], we shall now

present the methods for computing Gröbner bases of ideals in Weyl algebras. The

main ingredients of the theory are term orderings and the division algorithm. In this

section, we define term orderings on the set Bn of all terms in the Weyl algebra An

and then describe the left division algorithm for Weyl algebras. From now on by an

ideal we mean a left ideal of the Weyl algebra An, until specified otherwise.

Definition 2.3.1. A complete ordering σ on Bn is called a (Weyl) term ordering if

it has the following properties.

(1) An inequality xα∂ β <σ xα ′∂ β ′
implies

xα+α ′′
∂ β+β ′′

<σ xα ′+α ′′
∂ β ′+β ′′

for all α,α ′,α ′′,β ,β ′,β ′′ ∈ Nn.

(2) The ordering σ is well-founded, i.e. we have 1 <σ t for all t ∈ Bn \{1}.

Below we define some of the well-known term orderings on Bn ⊂ An. Basically,

these are the orderings induced by corresponding well-orderings on N2n.

Definition 2.3.2. We define the lexicographic order (Lex) on the terms in Bn as

follows. For two terms t1 = xα∂ β and t2 = xα ′∂ β ′
in Bn we say that t1 >Lex t2 if and

only if the left-most non-zero entry in

(α,β )− (α ′,β ′) = (α1 −α ′
1, . . . ,αn −α ′

n,β1 −β ′
1, . . . ,βn −β ′

n)
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is positive.

Example 2.3.3. Using Lex, the indeterminates are ordered decreasingly, that is,

x1 >Lex x2 >Lex · · ·>Lex xn >Lex ∂1 >Lex · · ·>Lex ∂n

Now consider the Weyl algebra A2 = K[x1,x2,∂1,∂2] and let the terms t1, t2 ∈ B2 be

such that t1 = x1x2
2∂2 and t2 = x3

2∂ 4
1 ∂ 2

2 . Then t1 >Lex t2, since the difference of the

exponent vectors (α,β )− (α ′,β ′) = (1,−1,−4,−1), has a positive first non-zero

component.

Definition 2.3.4. We define the degree lexicographic order (DegLex) on the terms

in Bn as follows. For two terms t1 = xα∂ β and t2 = xα ′∂ β ′
in Bn we say that

t1 >DegLex t2 if and only if deg(t1)> deg(t2) or if deg(t1) = deg(t2) and t1 >Lex t2.

Example 2.3.5. Note that, using DegLex we have

x1 >DegLex x2 >DegLex · · ·>DegLex xn >DegLex ∂1 >DegLex · · ·>DegLex ∂n

For example, consider the Weyl algebra A2 = K[x1,x2,∂1,∂2] and let the terms

t1, t2 ∈ B2 be as given in Example 2.3.3. Then t2 >DegLex t1, since deg(t2) = 9 >

deg(t1) = 4. Moreover, if t3 = x2
1∂ 2

2 then deg(t1) = deg(t3) but t3 >Lex t1 therefore

t3 >DegLex t1.

Definition 2.3.6. For the terms in Bn ⊂ An we define the degree reverse lexico-
graphic order (DegRevLex) as follows. For two terms t1 = xα∂ β and t2 = xα ′∂ β ′

in Bn we say that t1 >DegRevLex t2 if and only if deg(t1) > deg(t2) or if deg(t1) =

deg(t2) and the right-most non-zero entry in

(α,β )− (α ′,β ′) = (α1 −α ′
1, . . . ,αn −α ′

n,β1 −β ′
1, . . . ,βn −β ′

n)

is negative.

Example 2.3.7. Again we have

x1 >DegRevLex · · ·>DegRevLex xn >DegRevLex ∂1 >DegRevLex · · ·>DegRevLex ∂n

For the terms t1, t2, t3 as in Example 2.3.5, we have

t2 >DegRevLex t1 and t1 >DegRevLex t3 since in the difference of exponent vectors

(1,2,0,1)− (2,0,0,2) = (−1,2,0,−1) the right-most non-zero entry is negative.
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Definition 2.3.8. A term ordering σ on Bn is called degree compatible if t1 ≤σ t2
for t1, t2 ∈ Bn implies deg(t1)≤ deg(t2).

For instance, DegLex and DegRevLex are degree compatible term orderings.

After fixing a term ordering σ , we now define the following.

Definition 2.3.9. Consider a non-zero Weyl polynomial f = c1t1 + · · ·+ csts with

ci ∈ K \{0} and ti ∈ Bn, where t1 >σ · · ·>σ ts. Then we write

LTσ ( f ) = t1, the leading term of f ,

LCσ ( f ) = c1, the leading coefficient of f ,

LMσ ( f ) = c1 t1 the leading monomial of f .

Definition 2.3.10. In the setting of Example 2.2.5, let σ = DegRevLex. Then we

have LCσ ( f ) = 3, LTσ ( f ) = x3
1x2

2∂1∂ 2
2 , and LMσ ( f ) = 3x3

1x2
2∂1∂ 2

2 .

Remark 2.3.11. For Weyl algebras, if a term ordering σ satisfies only the condition

(1) of the Definition 2.3.1, then it need not be compatible with multiplication. That

is, we do not have LTσ ( f g) = LTσ ( f )LTσ (g) for all f ,g ∈ An. For instance, let τ
be a complete ordering defined by

xα∂ β <τ xα ′
∂ β ′

if and only if β −α < β ′−α ′ or β −α = β ′−α ′ and α > α ′.

This is not compatible with multiplication. Here we have x∂ <τ 1 and LTτ(∂ ·x∂ ) =
LTτ(x∂ 2 + ∂ ) = ∂ . Thus in case of Weyl algebras, for a complete ordering σ on

Bn to be compatible with multiplication, in addition to condition (1), it must also

satisfy that 1 <σ xi ∂i for all i = 1, . . . ,n. Hence a well founded ordering σ together

with condition (1) automatically becomes compatible with multiplication.

Let us collect some properties of leading terms in Weyl algebras.

Proposition 2.3.12. Let σ be a term ordering on Bn. Let f ,g ∈ An \ {0} be such

that LTσ ( f ) = xα∂ β and LTσ (g) = xα ′∂ β ′
with α,α ′,β ,β ′ ∈ Nn. Then we have

LTσ ( f g) = LTσ (g f ) = xα+α ′
∂ β+β ′

Proof. First note that from Proposition 2.1.5 it follows that for any Weyl polynomi-

als f g ∈ An \{0}, we have f g = f ·g+h with h <σ f ·g and the polynomial h ∈ An
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is uniquely determined from f and g. Here ‘·’ means the commutative multiplica-

tion of the polynomials f and g, that is assuming that all the indeterminates of An

are commuting. Now
LTσ ( f g) = LTσ ( f ·g) = xα+α ′

∂ β+β ′

and similarly,
LTσ (g f ) = LTσ (g · f ) = LTσ ( f ·g) = xα+α ′

∂ β+β ′

This completes the proof.

Definition 2.3.13. For two terms t = xα∂ β and t ′ = xα ′∂ β ′
in Bn we say that t

pseudo-divides t ′ if αi ≤ α ′
i and βi ≤ β ′

i for all i = 1, . . . ,n.

Definition 2.3.14. Let t = xα∂ β and t ′ = xα ′∂ β ′
be two terms in Bn. For each i ∈

{1, . . . ,s}, let µi =max(αi,α ′
i ), νi =max(βi,β ′

i ) and (µ,ν)= (µ1, . . . ,µn,ν1, . . . ,νn).

We define the pseudo-lcm of t1 and t2 as lcm(t1, t2) = xµ ∂ ν .

Definition 2.3.15. Let σ be a term ordering on An and consider a left ideal I ⊂ An.

Let G be a finite subset of I. The set G is called a left σ -Gröbner basis of I if

and only if for any f ∈ I \{0} there exists g ∈ G such that LTσ (g) pseudo-divides

LTσ ( f ).

Definition 2.3.16. Let F be a subset of the Weyl algebra An. The span of leading
terms of F is defined to be the K-vector subspace spanned by the set {LTσ ( f ) | f ∈
F} ⊆ Bn. We denote it by ⟨LTσ (F)⟩K = ⟨{LTσ ( f ) | f ∈ F}⟩K ⊆ An.

Remark 2.3.17. Here we should remark that the standard definition of Gröbner

bases via leading term ideals in commutative settings cannot be transferred directly

to the case of Weyl algebras. For example consider the Weyl algebra A1 = K[x,∂ ],
and the set F = {x∂ +1,x}. Let I be the ideal generated by F . Then I is a proper left

ideal of A1 with reduced Gröbner basis G = {x} and I = ⟨x⟩. The K-vector space

⟨LTσ (F)⟩K = ⟨LTσ ( f ) | f ∈ I⟩K is equal to the vector space ⟨x⟩, whereas, the ideal

generated by the set LTσ (F) = ⟨{x∂ ,x}⟩= ⟨1⟩= A.

However, we have a well established theory of Gröbner bases of ideals in some

general non-commutative rings where Weyl algebras can be considered as special

cases. For instance see [24], [30], [33], and [39] . A computational introduction

to the theory of Gröbner bases of ideals in Weyl algebras is also sketched in [45].
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In particular, for Weyl polynomials, there exist natural definitions of S-polynomials

and an analogue of the Buchberger algorithm for computing left σ -Gröbner bases

of ideals in Weyl algebras.

We are now ready to give left division algorithm for Weyl algebras. Just like di-

vision of polynomials in commutative polynomial rings, we can divide the standard

form of a Weyl polynomial f ∈A by a tuple G = (g1, . . . ,gs) of Weyl polynomials in

standard form. With this division, we get a representation f = q1 g1+ · · ·+qs gs+ r

with r,q1, . . . ,qs ∈ An. The polynomial r ∈ An has certain extra properties and is

called the normal remainder of the polynomial f with respect to the tuple G . This

representation and hence the normal remainder r depends not only on the term or-

dering σ on Bn but also on the order of the elements in the tuple (g1, . . . ,gs). The

procedure of getting this representation is known as left division algorithm which is

the main ingredient of the Buchberger’s Algorithm 2.3.24. We now present the left

division algorithm for Weyl algebras in pseudo-code.

Algorithm 2.3.18. The Left Division Algorithm

Input: f , g1, . . . ,gs ∈ An \{0}, with G = (g1, . . . ,gs)⊂ An

Output: The tuple (q1, . . . ,qs) ∈ As
n and a Weyl polynomial r ∈ An such that

f = q1 g1 + · · ·+qs gs + r

1) q1 := 0. . . . qs := 0, r := 0, and f ′ := f

2) while ( f ′ ̸= 0) do
3) while ( ∃ smallest i ∈ {1, . . . ,s} such that

4) LTσ ( f ′) is pseudo-divisible by LTσ (gi)) do
5) qi := qi +

LMσ ( f ′)
LMσ (gi)

6) f ′ := f ′− LMσ ( f ′)
LMσ (gi)

·gi

7) end while
8) r := r+LMσ ( f ′)

9) f ′ := f ′−LMσ ( f ′)

10) end while
11) return (q1, . . . ,qs, r)
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2.3. Left Gröbner Bases in Weyl Algebras

Proposition 2.3.19. The Algorithm 2.3.18 terminates and returns polynomials

q1, . . . ,qs and r ∈ An such that

f = q1 g1 + · · ·+qs gs + r

and such that the following conditions are satisfied

(a) Either r = 0 or no element of Supp(r) is pseudo-divisible by any of the ele-

ment in the set {LTσ (g1), . . . ,LTσ (gs)}
(b) For each i ∈ {1, . . . ,s}, if qi ̸= 0 then we have LTσ (qi gi)≤σ LTσ ( f ).

(c) For all i ∈ {1, . . . ,s}, we have qi ·LTσ (gi) /∈ ⟨LTσ (g1), . . . ,LTσ (gi−1)⟩.

The polynomials r,q1, . . . , qs satisfying above conditions are uniquely determined

by the tuple G and the polynomial f ∈ An.

Proof. First we note that the equation

f = q1 g1 + · · ·+qs gs + f ′+ r

holds at each point in the Algorithm 2.3.18. This is clearly true for the starting

values of q1, . . . ,qs, f ′ and r. To show that the equation holds at each step after

initializing, we note that one of two things can happen. If the next step is from the

inner while-loop, that is, some LTσ (gi) divides LTσ ( f ′), then the lines 5) and 6) in

the loop ensure from the equality

qi gi + f ′ = (qi +
LMσ ( f ′)
LMσ (gi)

)gi +( f ′− LMσ ( f ′)
LMσ (gi)

·gi)

that qi gi + f ′ remains unchanged and hence the above equation holds in this case.

On the other hand, if the next step is outside this loop, then again from the lines 8)

and 9) of the main while-loop, we see that although r and f ′ are changed but their

sum r+ f ′ is unaltered because we have

r+ f ′ = (r+LMσ ( f ′))+( f ′−LMσ ( f ′))

Thus in any case our claim remains true.

Next, we claim that the algorithm eventually terminates. To prove the claim,

note that at the jth step of the second while-loop, we are replacing f ′j by f ′j−1 −
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LMσ ( f ′j−1)

LMσ (gi)
· gi. Since LTσ ( f ′j) < LTσ ( f ′j−1), we obtain a set {LTσ ( f ′j)} of leading

terms of f ′j, where for all j we have LTσ ( f ′j)< LTσ ( f ′j−1). Since σ is well founded,

this set has a minimum and hence the inner while-loop terminates. Similarly at line

(9) f ′ is replaced by f ′−LM( f ′) at each step of the outer while-loop and hence f ′

becomes 0 after finite number of steps of outer while-loop. Therefore termination

of the algorithm follows and after termination we have

f = q1 g1 + · · ·+qs gs + r

and the polynomial r in the above representation will satisfy the property (a), since

each time the line 8) is executed, we are adding LMσ ( f ′) to r only when there does

not exist an i ∈ {1, . . . ,s} such that LTσ ( f ′) is a multiple of LTσ (gi).

Further, note that each time the line 5) is executed and the old and new qi are

not zero, we always have the inequality

LTσ

(
(qi +

LMσ ( f ′)
LMσ (gi)

) ·gi

)
≤σ max

{
LTσ (qi gi),LTσ ( f ′)

}
≤σ LTσ ( f )

The same is trivially true if the old value of qi was zero. Thus, throughout the

algorithm, property (b) holds.

Now we prove property (c). For i ∈ {1, . . . ,s}, note that at line 3) of the algo-

rithm, the index i is chosen minimally. Therefore, property (c) follows from the fact

that LTσ ( f ′) /∈ ⟨LTσ (g1), . . . ,LTσ (gi−1)⟩, where LTσ ( f ′) = 1
LCσ (gi)

qi LTσ (gi).

Finally, to prove uniqueness, suppose there exist other polynomials q′1, . . . , g′s
and r′ which satisfy conditions (a), (b), and (c) such that f = q′1 g1+ · · ·+q′s gs+ r′.

Then we have

0 = (q1 −q′1)g1 + · · ·+(qs −q′s)gs +(r− r′) (*)

Now condition (a) implies that LTσ (r − r′) /∈ ⟨LTσ (g1), . . . ,LTσ (gs)⟩, and condi-

tion (c) implies that for each i ∈ {1, . . . ,s},

LTσ ((qi −q′i)gi) /∈ ⟨LTσ (g1), . . . ,LTσ (gi−1)⟩ with qi ̸= q′i.

Thus the leading term with respect to σ of the summands in (*) are pairwise dif-

ferent from those of smaller index. This is possible only when (q1 − q′1) = · · · ,=
(qs −q′s) = (r− r′) = 0. This completes the proof.
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Definition 2.3.20. Let f , g1, . . . ,gs ∈ An \{0}, and let G be the tuple (g1, . . . , gs).

Let the representation
f = q1 g1 + · · ·+qs gs + r

be obtained by applying left Division Algorithm on the polynomial f and the tuple

G . Then the Weyl polynomial r ∈ An is called the left normal remainder of f with

respect to G and is denoted by NRσ ,G ( f ), or simply by NRG ( f ) if no confusion

can arise. Moreover, we have NRG (0) = 0.

The normal remainder r of a polynomial f ∈ An with respect to an s-tuple G =

(g1, . . . ,gs) of polynomials depends greatly on the ordering of the tuple G . This can

be seen in the following example.

Example 2.3.21. Consider the Weyl Algebra A1 = Q[x1,∂1] and let the term or-

dering be σ = DegRevLex. Let g1 = x3
1 ∂ 3

1 − 5x1 ∂1 − 1, g2 = x2
1 ∂ 4

1 + 2∂ 3
1 , and

f = x4
1 ∂ 5

1 − 4x1 ∂ 3
1 − 4∂ 3

1 . Now if G = (g1,g2), then the left Division Algorithm

2.3.18 gives
NRσ ,G ( f ) = 17x2

1∂ 3
1 −4x1∂ 3

1 −19x1∂ 2
1 −4∂ 3

1 −36∂1

whereas if G = (g2,g1), then NRσ ,G ( f ) = 0.
This ordering of the elements in the tuple can also affect the number of steps

required by Algorithm 2.3.18 to complete the computation. But if we follow the

Division Algorithm exactly the way as stated, that is, for a fixed ordered tuple, the

output of the algorithm is uniquely determined as proved in part (d) of Proposition

2.3.19. Of course, the output also depends on the choice of the term ordering σ
on An. On the other hand, as in the commutative case, the Division Algorithm has

very nice properties when it is applied to Gröbner bases. More precisely, let f be

a Weyl polynomial of a left ideal I ⊂ An and let the set G = {g1, . . . ,gs} be a left

Gröbner basis of I with respect to a term ordering σ on An. Let G = (g1, . . . ,gs).

Then the normal remainder, NRσ ,G ( f ) is always unique no matter how the tuple G

is ordered (see Theorem 2.4.1).

Remark 2.3.22. In the above setting, the normal remainder NRσ ,G ( f ) of a poly-

nomial f ∈ An is referred to as normal form of f with respect to the ideal I and

the term ordering σ and is denoted by NFσ ,I( f ) or simply by NFσ ( f ) if it is clear

which ideal is considered. The normal form NFσ ,I( f ) of f ∈ An with respect to the

ideal I ⊂ An is the unique element of An with the property that f −NFσ ,I( f ) ∈ I. In
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particular, it does not depend on the particular σ -Gröbner basis chosen. (see [27]

Proposition 2.4.7).

Definition 2.3.23. Let σ be a term ordering on An and let f ,g ∈ An be two Weyl

polynomials in standard form. Let LTσ ( f ) = xα∂ β and LTσ (g) = xγ∂ δ . Let t f g =
lcm(LTσ ( f ),LTσ (g))

LTσ ( f ) ∈ Bn. We define S-polynomial of f and g to be the standard form

of the Weyl polynomial S f g ∈ An given by

S f g =
t f g

LCσ ( f )
f −

tg f

LCσ (g)
g (2.3)

Note that Sg f =−S f g and S f g belongs to the left ideal generated by f ,g. Thus,

S f g ∈ I where I is a left ideal generated by a set F such that f , g ∈ F .

With these definitions of the term ordering, S-polynomials, and the normal re-

mainder algorithm, the Gröbner basis of an ideal I ⊂ An can now be obtained in

an analogous way to the well-known commutative case. Below we present the left
Buchberger algorithm for computing Gröbner basis of a left ideal I ⊂ An with re-

spect to a term ordering σ .

Algorithm 2.3.24. The Left Buchberger Algorithm: LWGB(I)

Input: Ideal I := ⟨ f1, . . . , fs⟩ of An and a term ordering σ .

Output: A Gröbner basis for I with respect to σ
B := {( fi, f j) |1 ≤ i < j ≤ s}
G := ( f1, . . . , fs)

while (B ̸= /0) do
Take any pair ( f , f ′) from the set B

B := B\{( f , f ′)}
h := S f f ′

r := NRσ ,G (h)

if (r ̸= 0) then
B := B∪{(g,r) |g ∈ G }
G := G ∪{r}

end if
end while
return G
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Theorem 2.3.25. Let G = {g1, . . . ,gs} be a finite subset of the Weyl algebra An

and let σ be a term ordering.

(1) The set G is a left σ -Gröbner basis of the ideal I = ⟨G⟩ if and only if the nor-

mal remainder of every S-polynomial Sgig j (i ̸= j) with respect to (g1, . . . ,gs)

is 0.

(2) The Left Buchberger Algorithm 2.3.24 terminates and returns a Gröbner basis

of the ideal I with respect to σ .

Proof. The proof is similar to the commutative case, for instance see [27] Theorem

2.5.5.

The study of optimizations of Buchberger’s Algorithm for maximum speed

is an active research area both in the commutative and the non-commutative set-

tings. Not all the optimizations of Buchberger’s Algorithm in the commutative ring

P = K[x1, . . . ,xn] are true in the setting of the Weyl algebra An. For example, the

coprimality test (see [27], Cor. 2.5.10) does not hold in general for Weyl algebras.

This test states that, if G= {g1, . . . ,gs}⊂ P\{0} generates the ideal I = ⟨g1, . . . ,gs⟩
and if the leading terms of the elements g1, . . . ,gs are pairwise coprime then G is

a σ -Gröbner basis of I. This is not true in general for Weyl algebras. For exam-

ple, consider the Weyl algebra A1 = Q[x1,∂1] and g1 = x1, g2 = ∂1. Let I be an

ideal generated by the set G = {g1,g2}. Then this criterion would imply that G is a

Gröbner basis of I which is of course not true since g2g1 −g1g2 = 1. However, for

Weyl algebras, one of the optimizations of the Left Buchberger’s Algorithm is pos-

sible by using a similar criterion which is known as Generalized Product Criterion.

It is explained in [30] (Ch. 2, Lemma 4.11).

Definition 2.3.26. Let I = ⟨ f1, . . . , fr⟩ be an ideal of the Weyl algebra An and let σ
a term ordering. Let d ≥ max{deg( f1), . . . ,deg( fr)}. Let H be the output of the left

Buchberger Algorithm, modified so that each computation involving polynomials

of degree higher than d is not performed. The set H then contains polynomials of

degree less than or equal to d and it is called a left partial Gröbner basis of the

ideal I with respect to the term ordering σ and the degree d is called the degree
bound for this partial Gröbner basis H.
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Remark 2.3.27. Note here that if G is a left σ -Gröbner basis of a left ideal I ⊂ An,

then it does not mean that a left partial σ -Gröbner basis H with degree bound d,

necessarily contains all Gröbner basis elements g ∈ G such that deg(g) ≤ d. It

should be clear from the above definition that H is computed by interrupting the

left Buchberger Algorithm to skip any operation involving polynomial of degree

higher than d. That is, if the process is allowed to continue from the interruption

point, then it might be possible that new Gröbner basis elements have degree less

than or equal to the degree bound d of the partial Gröbner basis H.

2.4 Left Ideal Membership

Among many applications of Gröbner bases of ideals, we are mainly interested in

the left ideal membership problem. That is, given a left ideal I ⊂ An and a Weyl

polynomial f ∈ An, the ideal membership problem is to decide whether f ∈ I. Even

in the commutative setting, the ideal membership problem is EXPSPACE-hard. In

particular, this implies that it is in neither NP nor co-NP (see [36] or [53]). Just like

in the commutative case (see [27]), the solution to this problem for left ideals in

Weyl algebras is provided by the following theorem.

Theorem 2.4.1. Let I be a non-zero left ideal of a Weyl algebra An = K[x,∂ ] and

let G = {g1, . . . ,gr} be a finite subset of An. Let σ be a term ordering on An and let

G = (g1, . . . ,gr). Then the following are equivalent

(1) G is a left σ -Gröbner basis for I.

(2) For f ∈ An, we have f ∈ I if and only if NRσ ,G ( f ) = 0

(3) Every f ∈ I has a standard (left) representation with respect to G. That is,

there exist ℓ1, . . . , ℓr ∈ An such that f = ℓ1g1 + · · ·+ ℓrgr and

LTσ (ℓ jg j)≤ LTσ ( f ) for all j such that ℓ j g j ̸= 0.

(4) For any Weyl polynomial f ∈ An, the normal remainder NRσ ,G ( f ) agrees

with NFσ ,I( f ). In particular, the normal remainder does not depend on the

order of elements g1, . . . ,gr.

Proof. For parts (1) – (3), see [30], Theorem 1.16. Part (4) is similar to the com-

mutative case, see [27], Corollary 2.4.9.

31



2.4. Left Ideal Membership

The part (2) of this theorem provides us a way of deciding left ideal membership

in two steps. That is, given a left ideal I ⊂ An and a Weyl polynomial f ∈ An, we

can decide ideal membership of f as follows:

(a) Compute a left σ -Gröbner basis G = {g1, . . . ,gs} of the ideal I and let G =

(g1, . . . ,gs)

(b) Compute the normal remainder NRσ ,G ( f ) by using the normal remainder

algorithm with respect to G . If NRσ ,G ( f ) = 0, then f ∈ I, otherwise f /∈ I.

Remark 2.4.2. Here we note that the complexity of deciding left ideal member-

ship depends on the complexity of the computation of Gröbner bases of left ideals

in Weyl algebra and secondly on the computation of normal remainders of Weyl

polynomials. The degree bound for Gröbner bases in Weyl algebras is established

to be doubly-exponential (see [5] for details). Regardless of possible optimizations

of Buchberger’s Algorithm (2.3.24) for computing Gröbner bases of ideals in Weyl

algebras, we observe that Weyl multiplication (see 2.1.5) makes the computation

harder by increasing the size of polynomials and hence memory consumption for

storing intermediate results during the computation. In fact this slows down the re-

duction process of computing the normal remainder (see Algorithm 2.3.18) with re-

spect to a tuple H of Weyl polynomials, especially when H is not a Gröbner basis.

The following proposition will be useful in choosing a polynomial in an ideal I of

An.

Proposition 2.4.3. Consider a Weyl algebra An = K[x1, . . . ,xn,∂1, . . . ,∂n] and a

term ordering σ . Let I be a left ideal of An and let G = {g1, . . . ,gs} be its left

σ -Gröbner basis. For an arbitrary polynomial f ∈ An, the polynomial g = f −
NRσ ,G ( f ) belongs to the ideal I, where G = (g1, . . . ,gs).

Proof. The proof follows immediately from Theorem 2.4.1.

This concludes our brief overview. Further results about Gröbner bases in Weyl

algebras will be recalled as needed.
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2.5 Constructing Gröbner Bases of Left Ideals of An

Because of the relation ∂x = x∂ + 1, it is very likely that an ideal generated by a

set of randomly chosen Weyl polynomials contains 1 and hence has a Gröbner basis

equal to {1}. For example, in the Weyl algebra A1 = Q[x,∂ ], the following ideals

are trivial ideals:

⟨x,∂ ⟩, ⟨2x2 +∂ ,∂ ⟩, ⟨x2 + x∂ −∂ ,x3∂ + x∂ −1⟩, ⟨x4∂ 7 + x4,x9∂ 3 + x2∂ 2 −1⟩
Likewise, in A2 = Q[x1,x2,∂1,∂2] the ideals ⟨x4

1∂ 7
1 − 1,x3

2∂ 3
2 + x1∂1 + 1⟩, ⟨x3

1∂ 7
1 +

∂1 − 1,x3
2∂ 3

2 + x1∂1 + 1⟩, ⟨x2
2∂ 2

1 − 1,x1∂1 + ∂1⟩, and ⟨∂ 3
2 + x1∂2 − 1,x1∂1 + ∂1⟩ are

trivial ideals. Similarly in An, n > 1, it is very likely that after a large amount of

computation, the Gröbner basis of an ideal generated by a set of randomly chosen

Weyl polynomials turns out to be {1}. In this section, we propose some ways of

finding non-trivial left ideals of the Weyl algebra An. For this, let us collect some

useful observations.

Proposition 2.5.1. Let σ be a term ordering on Bn. Let g ∈ An \{0} and let I = ⟨g⟩
be the left principal ideal generated by g. Then G = {g} is a left σ -Gröbner basis

of I.

Proof. This claim is an immediate consequence of the Proposition 2.3.12.

Claim in this Proposition means that for a Weyl polynomial g ∈ An \ {0,1}
the left principal ideal I = ⟨g⟩ is a non-trivial ideals of the Weyl algebra An. The

following proposition gives us a way of constructing non-trivial ideals of the Weyl

algebra An that are not principal.

Proposition 2.5.2. Let An = K[x1, . . . ,xn,∂1, . . . ,∂n] be Weyl algebra of index n over

a field K and let σ be a term ordering on An. Let G = {g1, . . . ,gr} be such that

gi is a Weyl polynomial in the indeterminates xi and ∂i for i = 1, . . . ,r. Then the

ideal I = ⟨g1, . . . ,gr⟩ is a non-trivial left ideal of An. In fact, the set G is a left

σ -Gröbner basis of the ideal I.

Proof. Note that for all i, j, we have gi ·g j = g j ·gi, i.e. gi and g j commute for all i, j.

Moreover, by construction, the leading terms of the elements g1, . . . ,gr are pairwise

coprime. Therefore, the claim follows from the commutative Product Criterion (see

[27], Corollary 2.5.10).
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Using this proposition, we can construct non-trivial ideals in Weyl algebras as

follows:

Example 2.5.3. Consider the Weyl algebra A2 = K[x1,x2,∂1,∂2] of index 2 over the

base field K = F31 and let the term ordering be σ = DegRevLex. Let I = ⟨g1,g2⟩
be given by

g1 = 17x3
1∂ 4

1 +21x2
1∂ 3

1 −3x2
1 −2∂ 2

1 +14x1∂1 +12x1 −13∂1 −21

g2 = 11x3
2∂ 4

2 +21x2
2∂ 2

2 +25x2
2 −30∂ 2

2 +21x2
2 −7x2∂2 −3

Then the ideal I is a left ideal of An and the set G= {g1,g2} is its left σ -Gröbner basis.

Example 2.5.4. Consider the Weyl algebra A4 = K[x1,x2,x3,x4,∂1,∂2,∂3,∂4] of in-

dex 4, over the base field K = F3, and let the term ordering be σ = DegRevLex. Let

I = ⟨g1,g2,g3⟩ be given by

g1 = x6
1∂ 5

1 +2x2
1∂ 4

1 − x2
1 −∂1 −1

g2 = x5
2∂ 6

2 + x2
2∂ 4

2 +∂ 2
2 − x2 +∂2 +1

g3 = x3
3x3

4∂ 2
3 −2x4∂3 +∂3∂4 + x3 − x4 +∂4 +1

Then the ideal I is a left ideal of An and G = {g1,g2,g3} is a left σ -Gröbner basis

of I.

Remark 2.5.5. Recall that Weyl a polynomial f ∈ Cn commutes with every ele-

ment of the Weyl algebra An when the base field K has positive characteristic p.

Now consider the Weyl algebra A1 = K[x,∂ ] with the base field K = Fp of positive

characteristic p and let σ be a term ordering on B1. We can now create a non trivial

left ideal I of A1 generated by two Weyl polynomials f1 and f2 as follows: Choose

a polynomial f1 ∈Cn \{1,0} and set f2 ∈ A1 \Cn such that NRσ , f2( f1) /∈ Fp \{0}.

Then there is a very high probability that the ideal I = ⟨ f1, f2⟩ is a non-trivial left

ideal of A1. That is, I constructed this way will rarely be a trivial ideal. Moreover, if

for the generating polynomial f2, LTσ ( f2) = xα ∂ β is such that both α,β ≥ 2, then

it will be very likely that minimum number of elements in any left σ -Gröbner basis

are more than 2. Here it does not mean that if the polynomials f1, f2 are not selected

as suggested above then the ideal I cannot be a non-trivial ideal of An. For instance,
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the ideal I = ⟨x7 + 1, x∂ 2 + x2 + x + 1⟩ of A1 = F2[x,∂ ] with the term ordering

σ = DegRevLex is a non trivial left ideal of A1 and its reduced left Gröbner basis G

contains 3 polynomials as given below,

G = {∂ 6 + x4 +∂ 4 + x3, x5 +∂ 4 + x2 +1, x∂ 2 + x2 + x+1},

whereas if I = ⟨x7 + 1, x2∂ + x2 + x+ 1⟩ then we have G = {1}. In fact, we sug-

gested above technique to minimize the probability of getting a trivial Gröbner basis

G = {1} of a properly chosen ideal I.

We illustrate the technique described in Remark 2.5.5 in the following example.

Example 2.5.6. Consider the Weyl algebra A1 = F7[x,∂ ] over the field F7 of char-

acteristic 7 and let σ = DegRevLex. Take f1 = ∂ 7−1, f2 = x3∂ 3+x2∂ −∂ −1 then

I = ⟨ f1, f2⟩ is a non-trivial left ideal of A1 and a left Gröbner basis G of the ideal I

consists of 7 polynomials1 respectively having 19, 21, 19, 18, 17, 17, and 4 terms .

Note here that f1 ∈C1 = F7[x7,∂ 7].

Using the technique described in Remark 2.5.5, we can construct non-trivial

ideals of Weyl algebras of any index n > 1. We illustrate this by the following

example.

Example 2.5.7. Consider the Weyl algebra A2 = K[x1,x2,∂1,∂2] of index 2 over

the field K = F3 and let σ = DegRevLex. Let I be the ideal of A generated by the

following Weyl polynomials

f11 = x3
1∂ 3

1 −1

f12 = x2
1∂1 + x1 −∂1 +1

f21 = x6
2∂ 6

2 + x3
2∂ 3

2 +∂ 3
2 −1

f22 = x2
2∂ 2

2 − x2∂ 2
2 + x2

2 +1

Then the ideal I is a non-trivial ideal of A2 and its reduced σ -Gröbner basis is the

set G = {g1, . . . ,g8} of 8 Weyl polynomials where

g1 = ∂ 7
2 − x2∂ 5

2 + x5
2 − x4

2∂2 − x4
2 − x2∂ 3

2 +∂ 4
2 + x3

2 + x2
2∂2 + x2∂ 2

2 −∂ 3
2 −

x2
2 + x2∂2 +∂ 2

2 +1,
1These Gröbner basis elements are given in the Appendix C.1
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g2 = x6
2 − x5

2 − x2∂ 4
2 +∂ 5

2 + x3
2∂2 − x2∂ 3

2 − x3
2 − x2∂ 2

2 −∂ 3
2 + x2

2 +∂ 2
2 −

x2 +∂2 −1,

g3 = x2∂ 6
2 − x5

2 − x2∂ 4
2 −∂ 5

2 − x2∂ 3
2 −∂ 4

2 − x2
2∂2 +∂ 3

2 + x2
2 + x2∂2 − x2 −

∂2 +1,

g4 = x3
1 + x2

1 − x1∂1 − x1 +∂1 +1,

g5 = ∂ 3
1 + x2

1 − x1∂1 − x1 +∂1 +1,

g6 = x1∂ 2
1 + x2

1 −∂ 2
1 −∂1 −1,

g7 = x2
2∂ 2

2 − x2∂ 2
2 + x2

2 +1,

g8 = x2
1∂1 + x1 −∂1 +1.

Note that the polynomials f11 and f21 belong to the center of the Weyl algebra A2.

Similarly, a left σ -Gröbner basis of the ideal generated by f11 = x3
1∂ 3

2 − 1, and

f12 = x2
1∂ 2

1 + x2 +∂2 +1 consists of the following 5 polynomials:

g1 = x3
2∂ 6

2 +∂ 9
2 − x2

2∂ 6
2 + x2∂ 7

2 −∂ 8
2 + x2∂ 6

2 +∂ 7
2 +∂ 6

1 −∂ 6
2 ,

g2 = x1∂ 4
1 − x2

2∂ 3
2 + x2∂ 4

2 −∂ 5
2 − x2∂ 3

2 −∂ 4
2 +∂ 3

1 −∂ 3
2 ,

g3 = x1x2∂ 3
2 + x1∂ 4

2 + x1∂ 3
2 +∂ 2

1 ,

g4 = x3
1∂ 3

2 −1,

g5 = x2
1∂ 2

1 + x2 +∂2 +1.

Later, in chapter 4, we shall use these simple ways of creating ideals in Weyl

algebras for constructing hard instances of our proposed cryptosystem.

2.6 Computer Algebra Systems

In order to present our work on Gröbner Bases cryptosystems, we have to perform

explicit calculations with Weyl polynomials and to compute Gröbner bases of cer-

tain classes of ideals in Weyl algebras. For this purpose and to conclude our work,

we have to rely on available computer algebra systems that are designed for compu-

tations in Weyl algebras. Most of the time we need an efficient implementation of

Buchberger Algorithm 2.3.24 to compute complete as well as partial Gröbner bases

of some interesting ideals of Weyl algebras and the Division Algorithm 2.3.18 to
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compute the normal remainders of Weyl polynomials of very large size with re-

spect to these Gröbner bases. These algorithms and many of their applications have

been implemented in several readily available computer algebra systems (CAS).

The most important CAS available for performing efficient computations with Weyl

algebras are presented below:

(1) Singular
The CAS Singular [22] is designed for polynomial computations both in

commutative and non-commutative algebras and can also be used for work-

ing with algebraic geometry and singularity theory. Its powerful package

Plural, written by V. Levandovskyy (see [30, 31]), provides many algo-

rithms for efficient computations with certain non-commutative algebras.

Many of its non-commutative functions are available for computations in

Weyl algebras. In particular, we are interested in the following functions

for carrying out calculations related to this work:

Weyl(), groebner(), slimgb(), std(), twostd(),

NF(), options()

For the parameters, syntax and examples related to these functions, we refer

to the Singular online manual and to [22].

(2) Macaulay2
Macaulay2 is a software system developed by Daniel R. Grayson and Michael

E. Stillman [21], for computations in commutative algebra and algebraic ge-

ometry. Its package Dmodules [32], written by A. Leykin and H. Tsai,

contains efficient implementations for working with Weyl algebra and D-

modules. Among many, some of the functions that we found useful for our

work are: ideal(), gb(), and ‘%’ (an operator used for computing

normal remainders).

(3) Risa /Asir
Risa/Asir is an open source general computer algebra system written by Noro

et. al. [40]. Besides commutative rings, it also provides functions for com-

puting Gröbner bases of ideals in Weyl algebras.
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(4) CoCoA / ApCoCoA
This CAS [4] is developed and maintained by the teams of L. Robbiano in

Genova (Italy) and M. Kreuzer in Passau (Germany). It was initially designed

to perform special computations in commutative algebra like computation of

border bases and Gröbner bases in commutative rings. ApCoCoA is based on

the computer algebra system CoCoA [11]. The ApCoCoA library contains sev-

eral packages for working with non-commutative algebras and group rings.

Our own package Weyl has been especially designed to carry out the re-

search work presented in this thesis and to perform many computations in

Weyl algebras. The functions available in this package for working with the

Weyl algebras are explained in Appendix A.

Note. Through out the thesis, we will refer to one or some of the above CAS for

describing our computational results obtained on our ‘computing machine’, that

is, the computer system with 24 GB of RAM, and having Processor: AMD Dual

Opteron 2.4 GHz. All computations are performed on this computing machine and

therefore all the timings are given accordingly.
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Chapter 3
Gröbner Basis Cryptosystems

This chapter is about some preliminary material on cryptography with emphasis

on a class of public key cryptosystems known as Gröbner Basis Cryptosystems. In

particular, we shall discuss an algebraic public key cryptosystem, the Polly Cracker

and its generalization, the commutative Gröbner bases cryptosystem. We describe

various known standard attacks for the cryptanalysis of these cryptosystems in the

commutative setting. We conclude the chapter by describing a more general class

of such cryptosystems that are based on Gröbner bases of modules over certain

non-commutative rings and hence develop a base and motivation for our new alge-

braic public key cryptosystem that is based on Gröbner bases in Weyl algebras and

introduced in Chapter 4

3.1 Cryptography

In this section we briefly describe cryptography and the basic components of a

modern cryptosystem with emphasis on public key cryptography. There are many

good references on the subject and among them we refer to [38], [9], and [25].

Cryptology is the science of secret communication. Using the science of cryptol-

ogy, the two parties, usually known as Alice and Bob, can share information on a

public network. That is, it is all about secret and secure communication through

insecure channels. This process of secret communication means converting origi-

nal messages or data into secret codes for transmission over a public network. The
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original message is called ‘plaintext’ and the corresponding converted message is

known as ‘ciphertext’. When Alice wants to send a ‘plaintext’ to Bob, she con-

verts it into the corresponding ‘ciphertext’ via an encryption algorithm. After Bob

has received the ‘ciphertext’ through a public network, he decrypts it back to the

‘plaintext’ via a decryption algorithm.

This science is classified into the following two main areas:

(1) Cryptography is the part that deals with the designing of a system, known

as a cryptosystem, for the encryption and decryption of the data.

(2) Cryptanalysis is the part that deals with the breaking of such a cryptosystem

and hence checking its security from various directions.

Cryptosystems have been in use since ancient times. In fact, Julius Caesar is said to

have used the ‘shift cipher’ for secret communication with his generals. In modern

times, such cryptosystems have ‘no security’. One can use computers to break the

encryption scheme by trying all ‘possible shifts’ in a very short time. Therefore,

for designing a truly secure cryptosystem, we should have to consider an other

important third character in the process of secret sharing, the eavesdropper usually

known as Eve. That is, a cryptosystem that Alice and Bob are using for secret

communication should be such that Eve is unable to break the system by using her

complete potential. The process of an attempt for breaking a system will be called

an attack on the system.

A typical cryptosystem has following four basic components:

(1) The message space M, is the set of all possible ‘plaintext’ messages.

(2) The ciphertext space C, is the set of all possible encrypted messages, ‘cipher-

texts’.

(3) The encryption algorithm E, a function that maps ‘plaintext’ into its ‘cipher-

text’.

(4) The decryption algorithm D,a function that maps ‘ciphertext’ back to its cor-

responding ‘plaintext’.

Following are the two major cryptographic methods that have been used in mod-

ern cryptosystems:
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plaintext m - -ciphertext c
E D

Alice Bob

plaintext m

Figure 3.1: cryptosystem

(1) Secret Key Cryptography (SKC)

where both parties share a common secret key for encryption and decryption

processes (such as DES and AES).

(2) Public Key Cryptography (PKC)

where each party has its own secret key (such as RSA (Rivest - Shamir -

Adleman) and El Gamal)

Cryptosystems in SKC and PKC are respectively known as Symmetric Systems and

Asymmetric Systems. Although symmetric systems are usually more efficient and

faster, they have many drawbacks like security and key-management. The major

drawback of these methods is the ‘sharing of secret key’, that is, SKC requires the

prior communication of the secret key between Alice and Bob. Moreover, if Alice

has to communicate with n independent parties, she would have to take care of n

different ‘secret keys’ from all the parties. All these keys need to be shared through

a trusted and secure channel and should be saved properly. In practice, this may be

very difficult to achieve in the modern world of computers. In order to resolve such

issues, the introduction of PKC, or asymmetric systems have played an important

role in modern cryptography.

The idea of public key cryptography was first put forward by Whitfield Diffie

and Martin Hellman [14] in 1976. They introduced an encryption scheme based on

the intelligent idea of not using ‘one’ single secretly shared key for both encryption

and decryption and opened the doors of new world of modern cryptography. In the
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world of PKC, the recipient Bob has a key with two parts, namely, a public key
Q which is published to use by every one and a secret key which is kept secret.

When Alice wishes to send data to Bob, she uses Bob’s public key to encrypt the

‘plaintext’ via an encryption rule eQ and then Bob uses his secret key to decrypt

the ‘ciphertext’ via a decryption rule dQ. The idea behind a public key cryptosys-

tem is that it might be possible to find a cryptosystem where it is computationally

infeasible to determine dQ given eQ.

At the heart of this concept is the idea of using one-way function for encryption.

Recall that, a function that is easy to compute but hard to invert is often called a

one-way function. That is, a one-to-one function f : X → Y is “one-way” if it is

easy to compute f (x) for any x ∈ X but hard to compute f−1(y) for most randomly

selected y in the range of f . Although there are many injective functions that are

believe to be “one-way”, unfortunately, currently there do not exist such functions

that can be proved to be one-way. Of course, the encryption rule eQ, should not

have to be one-way from Bob’s point of view because he has to decrypt (invert) the

the ciphertext message that he receives in an efficient way. To make the inversion

process easier for Bob, we use the concept of a trapdoor function. A trapdoor
function is a function that is easy to compute in one direction, yet believed to

be difficult to compute in the opposite direction (finding its inverse) without some

special information, called the “trapdoor”.

Thus it is necessary that Bob possesses a trapdoor, that is, secret information

that permits an easy inversion of eQ for a given ciphertext. In other word, PKC is

based on a trapdoor one-way function, that is, a one-way function but it becomes

easy to invert with the knowledge of certain trapdoor (the “secret” key).

Many public-key cryptosystems have already been proposed and implemented

since 1976. Among them, the most important are, RSA, Elliptic-Curve Cryptogra-

phy (ECC), and the El Gamal cryptosystem. The two most commonly used cryp-

tosystems mentioned here, namely RSA and El Gamal, are respectively based on

integer factorization and discrete logarithm problems. Both problems are consid-

ered to be hard to solve for chosen parameters for the corresponding cryptosystem.

The drawback of these cryptosystems is that, with the increase in computing power

and development of modern computers, the parameters of these cryptosystems need
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to be modified for achieving a reasonable level of security. The NP-completeness

or NP-hardness of these problems has not been proven yet. In fact, in 1999, Peter

Shor has discovered a polynomial time algorithm for both the integer-factorization

and the discrete logarithm on ‘quantum computers’. This motivates researchers to

search for cryptosystems that are based on computationally infeasible problems. In

the next section, we shall describe a general public-key cryptosystem Polly Cracker
that is introduced by Fellows and Koblitz [25] (Chapter 5, §3). The security of this

cryptosystem relies on the difficulty of solving a system of algebraic equations.

Note that, the problem of ‘polynomial system solving’ over some finite field is in

general an NP-hard problem (see for instance [29]).

3.2 The Polly Cracker Cryptosystems

Before we describe the multivariate algebraic cryptosystem Polly Cracker, and in

general, the commutative Gröbner Basis Cryptosystem, let us first fix some notation

for subsequent use: Let P = Fq[x1, . . . ,xn] be polynomial ring in n indeterminates

over a finite field Fq with q = pe for some prime number p and e > 0. Let xα

denote xα1
1 · · ·xαn

n , and for α = (α1, . . . ,αn) ∈ Nn, we write |α| = α1 + · · ·+αn.

The elements of the form xα in P are called terms. Let Tn be the monoid of all

terms in P, i.e. Tn = {xα | α = (α1, . . . ,αn) ∈ Nn}. For the basic form of Polly

Cracker cryptosystem (PCC), as introduced by Fellows and Koblitz, we assume that

the plaintext units are represented as elements of the field Fq. In order to receive

a message m ∈ Fq from Alice, Bob chooses his secret key by selecting a random

element (a1, . . . ,an) ∈ Fn
q and his public key is the ideal J generated by a set Q =

{p1, . . . , ps} of polynomials in P such that p j(a1, . . . ,an) = 0, for all j = 1, . . . ,s.

For sending a message m, Alice chooses a random element ∑
j

p j q j of the ideal J and

sends an element c = m+∑
j

p j q j to Bob. Finally, Bob recovers m by evaluating c

at (a1, . . . ,an). To sum up we have the following:

Cryptosystem 3.2.1 (Polly Cracker). Let K = Fq be a finite field, where q = pe

with a prime number p and e > 0. Let P = K[x1, . . . ,xn] be a commutative poly-

nomial ring. Choose a point (a1, . . . ,an) ∈ Fn
q. Let I be the ideal generated by

{x1 − a1, . . . ,xn − an}. Choose polynomials p1, . . . , ps ∈ I, i.e. for all i = 1, . . . ,s,
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pi(a1, . . . ,an) = 0. The basic Polly Cracker cryptosystem is then constructed as

follows:

(1) Public key: A set Q = {p1, . . . , ps} of polynomials in P.

(2) Secret key: A common zero (a1, . . . ,an) ∈ Fn
q of polynomials in Q.

(3) Message Space: The message space is M = Fq, i.e. plaintext units are ele-

ments of Fq.

(4) Ciphertext Space: The ciphertext units are polynomials in P.

(4) Encryption: For encrypting a plaintext message m in Fq, the ciphertext c is

computed as:

c = m+h1 p1 + · · ·+hs ps,

with suitably chosen h1, . . . ,hs in P.

(5) Decryption: The Evaluation of c at the common zero (a1, . . . ,an) yields m,

i.e. c(a1, . . . ,cn) = m.

Remark 3.2.2. It is easy for Bob to construct a pair (a,Q), where a = (a1, . . . ,an)

is the secret key in Fn and Q is the public key. For example, he can randomly

choose an a ∈ Fn and arbitrary polynomials h j, and sets q j = h j − h j(a). On the

other hand, for the security of the secret key a, it should be hard to find out common

zero of public polynomials in Q. Constructing a pair (a,Q) for a secure system is

a non trivial matter. If attacker knows the Gröbner basis G = {g1, . . . ,gr} of the

ideal J generated by the polynomials in the set Q, he can break the cryptosystem by

computing normal form of ciphertext c with respect to G = (g1, . . . ,gs).

In [25], Koblitz suggested some concrete instances of Cryptosystem 3.2.1 for

some combinatorial problems like Graph 3-Coloring and Graph Perfect Code. The

Polly cracker based on such NP-hard problems are also known as combinatorial-

algebraic cryptosystems. In the next section we shall explain the cryptanalysis of

PCC.
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3.3 Cryptanalysis of Polly Cracker

Although the Cryptosystem 3.2.1 is based on the NP-hard problem of polynomial

system solving over a finite field, it turned out that constructing practically hard

instances is very difficult and is an involved task. Note here that, for encrypting

a message m, Alice has to randomly choose polynomials h1, . . . ,hs ∈ P such that

the resulting ciphertext c, should be ‘random-looking’. This choice of polynomials

should be such that:

• the ciphertext c should be random-looking

• the message m should be well hidden in the sum m+ p1 h1 + · · ·+ ps hs.

• monomials/terms used in h1, . . . ,hs should not ‘shine-through’ the cipher-

text c.

For building a concrete instance of the Polly cracker cryptosystem 3.2.1, all these

tasks are rather involved. Therefore, a weakly constructed ciphertext can be broken

easily with the standard attacks proposed by the cryptanalysts. For details, we refer

to ([25], Chapter 5), [48], [49], [23], and [50]. Here, we describe these attacks

briefly and later we shall refer to these attacks again to discuss the security of our

proposed cryptosystem against these attacks.

3.4 The Chosen Ciphertext Attack

In [48], Steinwandt and Geiselmann describe this attack for the basic Polly Cracker

scheme to reveal the secret key and hence completely compromising the security of

the encryption scheme. The main assumption of the attack is that the attacker, Eve,

has temporary access to Bob’s decryption black box i.e. Eve is able to decrypt the

finite number of ciphertext messages that she sends, without actually knowing Bob’s

secret key. This attack is most serious in the sense that it recovers the complete

secret key and hence the attacker can successfully decrypt any stolen ciphertext

message. The idea is to send a fake ciphertext to the decryption black box and

recover the Bob’s original secret key. The attack works as follows:
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Attack 3.4.1. The Chosen Ciphertext Attack

Assume that, instead of a ciphertext polynomial c = m+
s
∑
j=1

h j p j, Alice sends to

Bob, a “fake ciphertext”,

c′i = xi +
s

∑
j=1

hi j p j with i = 1, . . . ,s , and hi j ∈ Fq[X ]

Then, the specification of Polly Cracker gives no hint on how Bob can distinguish

such a “fake” ciphertext from a correct one, i.e., from a ciphertext of the form

c = m+
s
∑
j=1

h j p j with m ∈ Fq and h1, . . . ,hs ∈ P = Fq[X ]

Now, the decryption of this fake ciphertext is the evaluation of c′i at the common

zero (a1, . . . ,an), i.e.

c′i(a1, . . . ,an) = xi(a1, . . . ,an)+
s

∑
j=1

hi j p j(a1, . . . ,an) = ai.

Hence, learning the plaintext corresponding to c′i determines the i-th coordinate of

the Bob’s secret key a∈Fn
q. Hence learning the plaintexts corresponding to n chosen

“fake” ciphertexts c′1, . . . ,c
′
n is enough for Alice to reveal the Bob’s complete secret

key a.

To defeat this attack, it has been suggested to design a decryption algorithm that

can recognise “fake” ciphertext messages. For the basic Polly Cracker encryption

scheme, there seems to be no straightforward way to recognise fake ciphertext poly-

nomials c′i as they are valid ciphertexts. Therefore, this encryption scheme is not

secure against such kind of attacks.

3.5 The Linear Algebra Attack

In [25], Koblitz explained a linear algebra attack for breaking Cryptosystem 3.7.2

and all its special cases. Basically, the attacker looks for the weaknesses in the con-

struction of the ciphertext c and success of the attack will recover the corresponding

plaintext m that Alice has sent to Bob. The idea of the attack is to reconstruct the

polynomials h1, . . . ,hs that Bob has used for the encryption. The attack works as

follows:
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In the equation

c = m+h1 p1 + · · ·+hs ps,

the eavesdropper, Eve, regards the polynomial coefficients h1, . . . ,hs, respectively,

as the polynomials h′1, . . . ,h
′
s of P = K[X ] of degree less than or equal to d =

deg(c)− dp , where dp = max{deg(pi), i = 1, . . . ,s} and regards the message con-

stant m as an unknown constant m′ ∈ Fq. She then formulates a linear system of

equations using

c′ = m′+h′1 p1 + · · ·+h′s ps

and then equating the coefficients in c and c′. Let do be the initial guess for the

degree dh of the polynomials h′1, . . . ,h
′
s that Bob has used for the encryption. To

break the Polly Cracker, an attacker has to implement the following attack.

Attack 3.5.1. The Linear Algebra Attack

For an instance of the basic Polly Cracker cryptosystem, the linear algebra attack
works as follows:

Input: c ∈ P, Q = {p1, . . . , ps} ⊂ P.

Output: m ∈ M = Fq, the element of the message space M .

(1) Initialize, d := (deg(c)−dp).

(2) For i = 1, . . . ,s, write the polynomials h′i = Σ|α|≤d bi jxα ∈ P with indetermi-

nate coefficients bi j, where xα = xα1
1 · · ·xαn

n and |α| = α1 + · · ·+αn. Let m′

be the unknown message m, and compute c′ = ∑
i

h′i pi +m′.

(3) By equating monomial terms in c and c′ formulate a system of linear equa-

tions in unknowns bi j, and m′.

(4) Solve the above system of linear equations for finding the values of bi j and

m′.
Case-1 If the system has a solution then return m′.
Case-2 If system has no solution then

(i) Replace d by (d +1),

(ii) go to Step (2).

We illustrate the attack by the following example.
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Example 3.5.2. Let us now consider an instance of Polly Cracker with P=F19[x1,x2].

Let the public key be Q = {p1, p2} with

p1 = 7x3
1x2 +6x2

1 +4x1x2 + x2
2 +8x1 +2x2 −3

p2 = −5x3
1x2 +7x2

1x2 +4x1x2
2 −5x1x2 +6x2

2 +9x1 +4x2 +5

For encrypting the message m = 8, let us choose

h1 = −2x1x2 +2x1 +5, h2 =−x1 + x2 +7.

We compute the ciphertext c = h1 p1 +h2 p2 +m and get the polynomial

c = 5x4
1x2

2 −5x3
1x2

2 −5x2
1x2

2 +2x1x3
2 −7x3

1 +8x2
1x2 −4x1x2

2 +6x3
2 − x2

1 −6x2
2 −

3x1 +5x2 +9

Now, for reconstructing the polynomials h1,h2 and recovering the message m = 8,

the attacker, Eve, can apply the Attack 3.5 as follows:

By setting d = 2 as the initial degree for the polynomials h′1 and h′2 and by setting

these polynomials as

h′1 = b11x2
1 +b12x1x2 +b13x2

2 +b14x1 +b15x2 +b16

h′2 = b21x2
1 +b22x1x2 +b23x2

2 +b24x1 +b25x2 +b26

she obtains the general ciphertext polynomial c′ = h′1 p1 +h′2 p2 +m0 as

c′ = 7b11x5
1x2 − 5b21x5

1x2 + 7b12x4
1x2

2 − 5b22x4
1x2

2 + 7b13x3
1x3

2 − 5b23x3
1x3

2 + 7b14x4
1x2 −

5b24x4
1x2+7b21x4

1x2+7b15x3
1x2

2−5b25x3
1x2

2+7b22x3
1x2

2+4b21x3
1x2

2+7b23x2
1x3

2+4b22x2
1x3

2+

4b23x1x4
2+6b11x4

1+7b16x3
1x2+6b12x3

1x2+4b11x3
1x2−5b26x3

1x2+7b24x3
1x2−5b21x3

1x2+

6b13x2
1x2

2+4b12x2
1x2

2+b11x2
1x2

2+7b25x2
1x2

2+4b24x2
1x2

2−5b22x2
1x2

2+6b21x2
1x2

2+4b13x1x3
2+

b12x1x3
2+4b25x1x3

2−5b23x1x3
2+6b22x1x3

2+b13x4
2+6b23x4

2+6b14x3
1+8b11x3

1+9b21x3
1+

6b15x2
1x2+4b14x2

1x2+8b12x2
1x2+2b11x2

1x2+7b26x2
1x2−5b24x2

1x2+9b22x2
1x2+4b21x2

1x2+

4b15x1x2
2+b14x1x2

2+8b13x1x2
2+2b12x1x2

2+4b26x1x2
2−5b25x1x2

2+6b24x1x2
2+9b23x1x2

2+

4b22x1x2
2 + b15x3

2 + 2b13x3
2 + 6b25x3

2 + 4b23x3
2 + 6b16x2

1 + 8b14x2
1 − 3b11x2

1 + 9b24x2
1 +

5b21x2
1+4b16x1x2+8b15x1x2+2b14x1x2−3b12x1x2−5b26x1x2+9b25x1x2+4b24x1x2+

5b22x1x2 + b16x2
2 + 2b15x2

2 − 3b13x2
2 + 6b26x2

2 + 4b25x2
2 + 5b23x2

2 + 8b16x1 − 3b14x1 +

9b26x1 +5b24x1 +2b16x2 −3b15x2 +4b26x2 +5b25x2 −3b16 +5b26 +m0
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Equating the corresponding coefficients with the original ciphertext c, she then gets

the following system of linear equations in the unknowns b11, . . . ,b16, b21, . . . ,b26,m0

7b11 −5b21 = 0, 7b12 −5b22 = 5, 7b13 −5b23 = 0,

7b14 +7b21 −5b24 = 5,

7b15 +4b21 +7b22 −5b25 =−5,

4b22 +7b23 = 0,

4b23 = 0, 6b11 = 0,

4b11 +6b12 +7b16 −5b21 +7b24 −5b26 = 0,

b11 +4b12 +6b13 +6b21 −5b22 +4b24 +7b25 =−5,

b12 +4b13 +6b22 −5b23 +4b25 = 2,

b13 +6b23 = 0,

8b11 +6b14 +9b21 = 0,

−3b14 +8b16 +5b24 +9b26 = 3,

2b11 +8b12 +4b14 +6b15 +4b21 +9b22 −5b24 +7b26 = 0,

2b12 +8b13 +b14 +4b15 +4b22 +9b23 +6b24 −5b25 +4b26 =−6,

2b13 +b15 +4b23 +6b25 = 6,

−3b11 +8b14 +6b16 +5b21 +9b24 = 2,

−3b12 +2b14 +8b15 +4b16 +5b22 +4b24 +9b25 −5b26 =−4,

−3b13 +2b15 +b16 +5b23 +4b25 +6b26 =−6,

−3b15 +2b16 +5b25 +4b26 = 5,

−3b16 +5b26 +m′ = 9.

By solving this system, she then gets

b11 = 0, b12 =−2, b13 = 0, b14 = 2, b15 = 0, b16 = 5,

b21 = 0, b22 = 0, b23 = 0, b24 =−1, b25 = 1, b26 = 7,

and m′= 8. This recovers the original message m=m′= 8 and also the polynomials

used for the encryption.
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The linear system of equations obtained this way can be easily made infeasible

to solve by choosing various parameters as suggested in Notation 3.7.4. For ex-

ample, as stated in [25] (see Ch. 5 §6), if c and pi are “sparse” polynomials then

method in this general form is exponential time. However, Koblitz [25] cited a pri-

vate communication with H. W. Lenstra Jr. and proposed a modified form of Attack

3.5.1 and call it “intelligent” linear algebra attack.

3.6 Intelligent Linear Algebra Attack

The “intelligent” linear algebra attack was roughly suggested by H.W. Lenstra Jr

([25], Chapter 5). The attack is based on a simple technique of reducing the number

of unknowns in the linear system of equations obtained by the linear algebra attack.

To explain the attack, we define a set

D = {t ∈ Tn | ∃ tp ∈
s∪

i=1

Supp(pi), s.t. t · tp = tc for some tc ∈ Supp(c)}.

Roughly speaking, D is the set of all terms that Bob can potentially use for the poly-

nomials h1, . . . ,hs in the encryption process. Using this refined form, the attacker

proceeds as follows:

Attack 3.6.1. The “Intelligent” Linear Algebra Attack

Input: c ∈ P, Q = {p1, . . . , ps} ⊂ P.

Output: m ∈ M = Fq, the element of the message space M .

(1) Initialize, d := (deg(c)−dp).

(2) Compute the set of candidate terms of degree at most d in h1. . . . ,hs

D = {t ∈ Tn | ∃ tp ∈
s∪

i=1

Supp(pi) s.t. t · tp = tc

for some tc ∈ Supp(c) and deg(t)≤ d}.

(3) Let h′i = ∑
t∈D

bi j t ∈ P with unknown coefficients bi j and let m′ ∈ Fq be the

unknown message m, and compute c′ = ∑
i

h′i pi +m′.
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(4) By equating monomial terms in c and c′ formulate a system of linear equa-

tions in unknown coefficients bi j, and the unknown m′.

(5) Solve the above system of equations by using linear algebra.

Case-1 If the system has a solution then return the plaintext message m = m′.
Case-2 If the system has no solution then replace d by d +1 and go to Step 2.

Remark 3.6.2. Note that the Linear Algebra Attack 3.5.1 will not be feasible if the

ciphertext and public polynomials are of very large degree, whereas the intelligent

linear algebra attack is very efficient when we have high degree and sparse input

polynomials. We also remark here that, the denser the ciphertext polynomial c is,

the more difficult the intelligent linear algebra attack will be to apply since this

would increase the size of the set D in the Intelligent Linear Algebra Attack 3.6.1.

Therefore, we expect to have more unknowns in the linear system obtained in this

case.

We illustrate Attack 3.6.1 in the following example using our implementation

of the attack in ApCoCoA (see B.2).

Example 3.6.3. Let us apply the intelligent linear algebra attack to the instance of

Polly Cracker given in Example 3.5.2, Since deg(c) = 6, we have d = 6− 4 = 2,

and the set D turns out to be

D = {x2
1, x1x2, x2

2, x1, x2, 1},

containing 6 candidate terms for the polynomials h′1 and h′2. Therefore, by setting

h′1 = b11x2
1 +b12x1x2 +b13x2

2 +b14x1 +b15x2 +b16,

h′2 = b21x2
1 +b22x1x2 +b23x2

2 +b24x1 +b25x2 +b26,

and representing the unknown message by m′, we compute c′ = h′1 p1 +h′2 p2 +m′.

As explained in Example 3.5.2, by equating monomials terms in c and c′, we obtain

a linear system of 22 equations in 13 unknowns. By solving this system, we recover

the message m=m′ = 8 by using the package LinBox of the CAS ApCoCoA in 0.15

seconds of CPU time on our computing machine.
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Note that, the Linear Algebra Attack applied to this instance of Polly Cracker

was resulted in a linear system of size 28×13, (see Example 3.5.2) which is almost

the same size as we have obtained now by applying the intelligent attack. This is

what we have explained in Remark 3.6.2, that when the input polynomials for the at-

tack are dense then the ‘intelligent’ technique of reducing the number of unknowns

for the resulting system of linear equations is not much effective. As we have seen

in this example, the set D contains all the terms of degree less than or equal to

d = deg(c)−dp = 2 and therefore, the above linear system has 13 unknowns, 6 for

each of h′1 and h′2 and one is m′ for the message.

To see the effectiveness of this attack, let us now check how the attack works

when the input polynomials are sparse. For instance, if we use h1 = 2x21
1 + 5 and

h2 =−x21
1 +7 for encryption, then the ciphertext polynomial c = h1 p1 +h2 p2 +8

has degree 24 and # Supp(c) = 14. Therefore, the expected degree d = 24−4 = 20

for the polynomials h′1, h′2 and hence, now the following set

D = {x20
1 , x19

1 x2, x19
1 , x18

1 x2, x2
1x2, x1x2

2, x2
1, x1x2, x2

2, x1, x2, 1}

contains 12 candidate terms for each polynomial hi. Hence, after executing Step (3)

and (4) of ‘intelligent’ Attack 3.6.1, we get a linear system of 43 equations in 25

unknowns. This system has no solution, as the degree d = 20 is not sufficient

for the polynomials h′1 and h′2, since both of the polynomials actually used for the

encryption are of degree 21 and there is highest degree term has cancelled in c. As

suggested in Step (5-ii), we replace d by d +1 = 21 and this results in addition of

three more terms in the set D. That is, this time

D = {x21
1 , x20

1 x2, x19
1 x2

2, x20
1 , x19

1 x2, x19
1 , x18

1 x2, x2
1x2, x1x2

2, x2
1, x1x2, x2

2, x1, x2, 1},

contains 15 candidate terms for each h′1 and h′2. Hence, again after Step (3) and (4),

we now get a system of linear equations of size 50× 31 and recover the message

m = m′ = 8 in 0.74 seconds of CPU time on our computing machine using CAS

ApCoCoA.

In contrast, if we apply the Linear Algebra Attack, as explained in Example

3.5.2, to this instance of Polly Cracker, with d = 20, we get a linear system of

equations of size 325×463. After replacing d by d+1= 21, the resulting system of
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linear equations has size 351×507 and this time we recover the message m=m′= 8

in 62.3 seconds of CPU time on our computing machine using CAS ApCoCoA.

Remark 3.6.4. In [25], to defeat Attack 3.6.1, the cited private communication also

suggested that Bob must carefully build at least one term t ′ into at least one h j such

that t ′ times any term in p j is cancelled in the entire sum ∑h j p j. Moreover, terms

t ′ with this property should not be too few or easy to guess, since otherwise the

cryptanalyst would simply adjoin those terms to D.

The cryptanalysis of some special instances of Polly Cracker cryptosystems is

also possible by several other methods of attacks. These attacks are either variants

of linear algebra attacks or rely on the structural weaknesses of the Polly Cracker

encryption schemes, like evaluation of the polynomials at a common zero. That

is, evaluation of polynomials can also leak significant information about the secret

key. We refer to [49], [23], and [35] for details on these attacks. In the next section

we will describe the generalised form of the Polly Cracker cryptosystem and study

its security against these standard attacks.

3.7 Commutative Gröbnr Basis Cryptosystems

The PCC has soon been generalised to Commutative Gröbner Basis Cryptosystems

by replacing the underlying NP-hard problem of polynomial system solving by the

EXPSPACE-hard problem of computing Gröbner bases of ideals in a commutative

polynomial ring. For the theory of Gröbner basis of ideals in commutative polyno-

mial rings we refer to [27].

Let K be a finite field and let P = K[x1, . . . ,xn] be a polynomial ring in n inde-

terminates over the field K. Using the notation of Section 3.2, let Tn be the set of

all terms in P which form the K-vector space basis of the ring P. The term ordering

on Tn is defined as follows in the setting of P.

Definition 3.7.1. A complete ordering σ on Tn is called a term ordering if it has

the following properties:

(1) An inequality xα <σ xα ′
implies

xα+α ′′
<σ xα ′+α ′′
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for all α,α ′,α ′′ ∈ Nn.

(2) The ordering σ is well-founded, i.e. we have 1 <σ t for all t ∈ Tn \{1}.

Then, in the Gröbner basis setting, the secret key is replaced by the Gröbner

basis G = {g1, . . . ,gt} of an ideal I ⊂ P and the public key is the ideal J = ⟨Q⟩
generated by the set Q = {p1, . . . , ps} ⊂ I. Further, we denote the complement of

the set of leading terms of the ideal I by Oσ (I). The message space M is then

either entire set Oσ (I) or a subset of it. That is, messages are polynomials in P that

cannot be reduced modulo the Gröbner basis G. With these ingredients, we define

the commutative Gröbner Basis Cryptosystem (CGBC) as follows:

Cryptosystem 3.7.2. Commutative Gröbner Basis Cryptosystem: Let P be a com-

mutative polynomials ring over a field K and let σ be a term ordering on Tn. Let

I ⊂ P be an ideal of P having a Gröbner basis G = {g1, . . . ,gr} with respect to σ
and let G = (g1, . . . ,gr) . Then a CGBC is constructed as follows:

1. Public key: The set Q = {p1, . . . , ps} of polynomials in the ideal I ⊂ P such

that the Gröbner basis of the ideal J = ⟨Q⟩ is infeasible to compute.

2. Secret key: Gröbner basis G = {g1, . . . ,gr} of the ideal I ⊂ P.

3. Message Space: The set M of all polynomials that cannot be reduced mod-

ulo the Gröbner basis G.

4. Encryption: The ‘plaintext’ message m ∈ M ⊆ Oσ (I) is encrypted as:

c = m+h1 p1 + · · ·+hs ps

with suitably chosen h1, . . . ,hs in P.

5. Decryption: The normal remainder of the polynomial c with respect to the

tuple G = (g1, . . . ,gr) yields m. That is, NRσ ,G (c) = m

Remark 3.7.3. In this setting, again it is very easy for Bob to choose a pair (G,Q)

for constructing an instance of a CGBC. For example, after choosing a Gröbner

basis G of an ideal I ⊂ P, in order to choose the set Q = {p j | j = 1, . . . ,s} of poly-

nomials in the ideal I, he can choose for each j = 1, . . . ,s, an arbitrary polynomial
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h j ∈ P and set p j = h j −NRG(h j). His public key is then the set Q ⊂ I of polyno-

mials p1, . . . , ps. On the other hand, for the security of CGBC he has to make sure

that a Gröbner basis of the ideal J generated by the polynomials in the public key Q

should be hard to compute. Of course, it is not the only thing on which the security

of CGBC relies. Later we shall see that, as in the case of Polly Cracker cryptosys-

tems, the cryptanalysis of CGBC is also possible by using the attacks where the

attacker does not have to compute a Gröbner basis or a complete Gröbner basis.

Notation 3.7.4 (CGBC Parameters:). The Polly Cracker cryptosystem 3.2.1 is

a special case of CGBC. In order to use a CGBC, one has to consider following

parameters for its construction:

• p, the characteristic of the field K,

• n, the number of indeterminates of the ring P,

• s, the number of polynomials in the public key Q,

• dp = max{deg(pi) | pi ∈ Q}, and

• dh = max{deg(hi) |1 ≤ i ≤ s}, and

• dc, the degree of the ciphertext c.

Although the security of the Gröbner basis cryptosystems relies on the fact that

the computation of Gröbner bases of ideals in commutative polynomial rings is,

in general, EXPSPACE-hard (see [53] §21.7 ). Unfortunately, the cryptanalysis

of these cryptosystems can be carried out not only by using the attacks where an

attacker does not need to compute a Gröbner basis, but also by using another attack,

proposed by T. Mora et. al. [8], where the attacker can compute a successful partial

Gröbner basis. We describe this attack in the next section. The existence of these

attacks prompted T. Mora and others to conjecture that the ideal membership cannot

be used to construct a public key cryptosystem. Let us now study the security issues

of CGBC against known standard attacks.

Remark 3.7.5. (Linear Algebra Attacks on CGBC) For an instance of a CGBC,

the Basic Linear Algebra Attack 3.5 and the Intelligent Linear Algebra Attack 3.6
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work exactly the same way as for the basic Polly Cracker cryptosystem with one

exception. In this case, instead of representing the plaintext message by an unknown

constant m′ ∈ Fq, we let m′ = ∑mixα as a polynomial m′ of the message space

M with indeterminate coefficients mi. We can then create the linear system of

equations in the unknowns bi j and mi and recover the plaintext message m = m′ by

solving that linear system of equations. Again, the basic linear algebra attack can

be easily made infeasible to work by appropriately setting the CGBC-parameters n

and dc. Therefore, the only serious linear algebra attack is the “intelligent” Attack

3.6.1. To defeat the attack various suggestions have been proposed (see for instance

Remark 3.6.4 and [51]) but there do not exist concrete instances of CGBC where

infeasibility of this attack can be checked.

3.8 Attack By Partial Gröbner Basis

In [8], an other attack was proposed for the standard Polly Cracker cryptosystem

3.2.1 and its generalised form CGBC 3.7.2. The idea of the attack is based on

a result from [13], cited in [8]. It states that if a polynomial is constructed by

adding multiples h j p j of elements in an ideal, where the degree of h j p j is known

to be bounded by D, then in testing Ideal Membership by means of a Gröbner basis

one can ignore steps in the algorithm involving polynomials of degree greater than

D. This, essentially means the following: Let I = ⟨p1, . . . , ps⟩ be the ideal in the

commutative polynomial ring P and let σ be a degree compatible term ordering on

Tn. If the polynomial f ∈ P be such that deg( f )≤ D and f = ∑ j h j p j +NRσ ,G ( f )

with deg(h j p j)≤D holds. Then for deciding the ideal membership of f in the ideal

I, do not compute a Gröbner basis of I, but run Buchberger Algorithm modified to

compute H such that each computation involving polynomials of degree higher

than D is not performed. Then the NRσ ,G ( f ) can be computed by reduction of f

via the partial Gröbner basis H .

This idea of using a partial Gröbner basis for computing normal remainder can

be used for trying to break an instance of CGBC and to reveal the plaintext message

m. First, note that the attacker, Eve knows the public polynomials p1, . . . , ps, the

ciphertext polynomials c ∈ P, the message space M and the fact that m = NRG (c)
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where G = (g1, . . . ,gr) is secret. Moreover, because of the uniqueness of NRG (c),

she does not need to find out actual polynomials h1, . . . ,hs which are used by Alice

for encrypting the plaintext message m. In fact, any other choice of polynomials

h′1, . . . ,h
′
s ∈ P for which c = m+∑h′i pi holds is equally fine for her. Therefore, she

can think for the representation c = NRG(c)+∑h′i pi and hence has to estimate the

maximal degree

d = max{deg(h′i pi) | i = 1, . . . ,s}.

This estimation could be dc, the degree of the ciphertext polynomial c. If there is no

cancellation in the top part of the sum ∑hi pi then this will be the right estimation

otherwise, d will be some number greater than dc. We now summarize the method

of this attack as follows:

Attack 3.8.1. The Partial Gröbner Basis Attack

Given an instance of CGBC, with public polynomials p1, . . . , ps and the ciphertext

polynomial c ∈ P. Let J be the ideal generated by {p1, . . . , ps} and let the term

ordering σ be degree compatible. Then for the partial Gröbner basis attack, the

attacker, Eve performs the following steps to reveal the corresponding plaintext

message m ∈ M .

(1) Estimate the maximal degree d = max{deg(h′i pi)} of the summands in a rep-

resentation c = NRσ ,G (c)+∑s
i=1 h′i pi for which deg(h′i pi)≤ deg(c) holds.

(2) Run the Buchberger Algorithm on {p1, . . . , pr} modified such that all oper-

ations involving polynomials of degree larger than d are not performed. The

output will be a partial Gröbner basis H of the ideal J.

(3) Using the Division Algorithm, compute the normal remainder, r = NRσ ,H (c).

If r ∈ M then r is the required plaintext message m. Otherwise, increase d

by one and repeat steps (2) and (3).

In step (1) of the above attack, the representation

c = NRσ ,G(c)+
s

∑
i=1

h′i pi for which deg(h′i pi)≤ deg(c)
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always exist (see [27] Proposition 2.1.1). Further, in the commutative setting, for

the element c in the polynomial ideals, most of the times, it is not so difficult to

generate enough Gröbner basis elements for the desired representation of c to ex-

ist. Therefore, theoretically, this attack seems to be very serious for the security of

CGBC. In [8], where this attack was introduced, it has been described theoretically

with the assumption that ‘the polynomials in the public key are low-degee dense

polynomials’. No experimental data is given to realize the effectiveness and the

success of this attack when applied to some concrete cases. How the attack will

work when these polynomials are not dense or when the degree bound for comput-

ing a partial Gröbner basis is very large? Is it always feasible to compute a partial

Gröbner basis for a degree bound that is necessary for the success of this attack?

In order to answer such questions and to examine the effectiveness and the success

of this attack against a concrete instance of CGBC, it would be helpful to have a

concrete public key and some ciphertexts available. Later, in Chapter 5, we shall ex-

amine the feasibility of this kind of attack when applied to some concrete instances

of our proposed cryptosystem.

3.9 Chosen Ciphertext Attack and CGBC

The chosen ciphertext attack of Section 3.4 also applies to the case of CGBC. As ex-

plained earlier, to use the attack and to to break the cryptosystem, an attacker should

have temporary access to the decryption algorithm. That is the attacker, Eve should

be able to decrypt a limited number of “fake” ciphertext messages that she sends,

without actually knowing Bob’s secret key. The attack in the setting that we are go-

ing to describe here was originally introduced by Bulygin [10] for attacking Rai’s

non-commutative Polly Cracker cryptosystem [41] but it also applies to CGBC. It is

based on the fact that, given an ideal I of a polynomial ring P = K[x1, . . . ,xn] and a

term ordering σ on Tn, if G = (g1, . . . ,gr) is a σ -Gröbner basis of I then we always

have

NRσ ,G (LTσ (gi)) = LTσ (gi)−gi.

Further, we assume that Eve knows or able to guess the leading terms of the secret

polynomials in G = (g1, . . . ,gr). She then setup some “fake” ciphertext messages
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c′i of the form ∑ j h′i j p j +LTσ (gi). Using her temporary access to the decryption

algorithm, she can then reveal complete secret key by decrypting each c′i. For the

sake of completeness, below we describe this attack in the setting of CGBC.

Attack 3.9.1. Chosen Ciphertext Attack For CGBC

Let P = K[x1, . . . ,xn] be a polynomial ring and let σ be a term ordering on Tn.

Consider an instance of a CGBC with the secret key G = {g1, . . . ,gr} and the public

key Q = {p1, . . . , ps}. For i = 1, . . . ,r, let gi = ti +hi, with ti = LTσ (gi) and note

that ti does not divide any monomial in hi. Suppose that the attacker, Eve knows

or can guess these leading terms of the polynomials g1, . . . ,gr ∈ G and that she

has temporary access to the decryption black box and can decrypt finite number of

encrypted messages of her choice. Now she can recover the original secret key G

by using the chosen ciphertext attack as follows:

For each i = 1, . . . ,r, she prepares “fake” ciphertext messages c′i of the form

c′i = ti +∑
j

h′i j p j

by randomly choosing the polynomials h′i j ∈ P. Then the basic set up of CGBC can

give Bob no idea on how he can distinguish this fake ciphertext from the original

one, i.e. from c = m+h1 p1 + · · · +hs ps.

Now by using her access to the decryption algorithm, she decrypts these fake

ciphertext polynomials c′i. For each i = 1, . . . ,r, we have NRσ ,G (∑ j h′i j p j) = 0. As

a result, for each i, she gets

NRσ ,G (ci) =−hi.

And then by recombining, she recovers gi = ti +hi.

Note that the success of this attack completely reveals the Bob’s secret key and

hence the attacker can then decrypt any ciphertext c = m+ h1 p1 + · · ·+ hs ps to

recover the plaintext message m. The attack in this form also remains valid for the

general non-commutative Gröbner basis Cryptosystem presented in [1].

In [42], T. Rai and S. Bulygin have proposed certain countermeasures to de-

feat Attack 3.9.1. We will come to these countermeasure while discussing security

issues of our proposed cryptosystems in Chapter 5. The idea is not to make the
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complete set Oσ (I) = P\LTσ (I) public. That is, the message space, M should not

equal to Oσ (I) rather it should be a small subset of Oσ (I). In this way, it will not

be difficult for Bob to detect fake ciphertext polynomials c′i by publishing a subset

M ⊂ Oσ (I) such that the set

(Oσ (I)\M )∩Supp(gi) ̸= /0 for all i = 1, . . . ,r.

Then modify the decryption algorithm to return an error message whenever

NRσ ,G (c) /∈ M .

For further details we refer to [42].

3.10 General Gröbner Basis Cryptosystems

The successful cryptanalysis of specific instances of the Polly Cracker encryption

scheme has put the security of CGBC in a great doubt. Except for the linear al-

gebra attack, most of the other attacks are known to work only in the special case,

that is, Polly Cracker. We call it a special case in the sense that the secret key is

a tuple (a1, . . . ,an) ∈ Kn, where K is a finite field and decryption is achieved by

evaluating the ciphertext at this tuple which is supposed to be common zero of the

polynomials in the public key (see Section 3.2). No further concrete hard instances

of CGBC have been investigated or presented to confirm the failure of such cryp-

tosystems. This, motivates researchers in this area to investigate other algebraic

structures for constructing Gröbner basis type cryptosystems that might be secure

against standard attacks or to use different strategies for encryption to make these

attacks impossible to work. Among these tries, most prominent are the following

attempts:

• Le Van Ly’s Polly Two (see [35], an invariant of Polly Cracker scheme with

the advantage that the usual linear algebra attacks do not work. Sine the at-

tacks based on linear algebra (see 3.5 and 3.6) appeared to be most serious

attacks on both the Polly Cracker cryptosystem and CGBC, it seems that in

Polly Two, the only choice left for the attacker, Eve is to compute a possibly

hard Gröbner basis. In [34] some concrete hard instances of Polly Two are
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given that are assumed to be difficult to break but, unfortunately, these in-

stances have been successfully broken by R. Steinwandt using a side channel

attack [47].

• T. Rai’s Non-commutative Polly Cracker Cryptosystems, where to prevent

linear algebra attacks, it has been suggested to construct Gröbner basis cryp-

tosystems based on two-sided ideals in non-commutative polynomial rings

(see [41]). In its original setting, non-commutative Polly cracker cryptosys-

tems are vulnerable to chosen ciphertext attacks described in Section 3.4.1.

To defeat this attack, various countermeasures are suggested in [42]. More-

over, the explicit instances of this cryptosystem given in [41] are based on

principal ideals of free non-commutative associative algebras. It has been

argued that the Gröbner basis of such principal non-commutative ideals can

be infinite but, it is easy to compute and describe, and that the principal ide-

als might allow the easy recovery of the secret key by using the ‘factoring

attack’.

• The Gröbner Basis Cryptosystems (GBC) introduced by Ackermann and

Kreuzer. This is a most general class of Gröbner basis type cryptosystems.

These cryptosystems are based on the theory of Gröbner basis of modules

over general non-commutative rings.

Remark 3.10.1. The security of this general class of GBC is strongly based on the

difficulty of computing Gröbner bases of modules over non-commutative rings (see

[1]). In general, the computation of Gröbner basis is EXPSPACE-hard. The advan-

tage of using modules instead of ideals of the ring is that one can encode hard com-

binatorial or number theoretic problems in the action of the terms on the canonical

basis vectors. Following well known cryptosystems are contained as special cases
in this general class of GBC:

• RSA (Rivest-Shamir- Adelmann) cryptosystem,

• ElGamal cryptosystem,

• Polly Cracker and (commutative) GBC,
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• Polly 2,

• Braid group cryptosystem (see [3]), and

• Rai’s non-commutative Polly cracker cryptosystem.

In [1] the security issues of general Gröbner bases cryptosystems are also addressed

and it is claimed that GBC are secure against various known standard attacks de-

scribed in Section 3.3.

Being described in a “general” setting, it is important to construct a “Spe-

cial Class” of such GBC with specific hard instances. Here we will not describe

the complete theory of Gröbner basis of modules over general non-commutative

monoid rings nor we explain GBC in this general setting. Instead we refer to [1] for

details and use the idea of GBC to propose a new cryptosystem. For the design and

implementation of this special class of cryptosystems we shall use Weyl Algebras

(see Chapter 2) as base rings. In the next chapter, we will describe these “Weyl

Gröbner basis Cryptosystems (WGBC)”.
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Weyl Gröbner Basis Cryptosystems

In this chapter we will introduce cryptosystems which are special cases of the fol-

lowing Cryptosystem 4.1.1. This class of new cryptosystems is adapted from the

very general setting of Gröbner Basis Cryptosystems 3.10, by using the Weyl alge-

bra as the base ring. We have described Weyl algebras and their basic properties in

Chapter 2. This special class of general GBC will be called “Weyl Gröbner Basis

Cryptosystem (WGBC)” and will be described in Section 4.1 of this chapter. In

Section 4.2 , we will introduce procedures for WGBC key generation and in Sec-

tion 4.3 , we describe explicit instructions for constructing concrete instances of

WGBC.

4.1 The WGBC

Using the notation from Chapter 2, let K be a field, and consider the Weyl algebra

An = K[x1, . . . ,xn,∂1, . . . ,∂n] of index n over K. The set of all standard terms of An

is given by the set
Bn = {xα∂ β | α,β ∈ Nn}.

Let σ be a term ordering on Bn. Further recall that, given a set of Weyl polynomials

G = {g1, . . . ,gr} ⊂ An \ {0}, we can use the left Division Algorithm to find out a

normal remainder NRσ ,G ( f ) of any polynomial f ∈ An with respect to the tuple

G = (g1, . . . ,gr) (see Algorithm 2.3.18 and Definition 2.3.20). Moreover, if G is a

left σ -Gröbner basis of an ideal I, then every Weyl polynomial f has a unique nor-

mal remainder NRσ ,G ( f ) (see Theorem 2.4.1), and that if f ∈ I then NRσ ,G ( f ) = 0
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(Theorem 2.4.1, Part (2)). With these ingredients, we are now ready to introduce

the following class of cryptosystems.

Cryptosystem 4.1.1. Given a Weyl algebra An of index n over K, let I be a non-

trivial left ideal of An and let G = {g1, . . . ,gr} be its left σ -Gröbner basis. We

set G = (g1, . . . ,gr) and Oσ (I) = Bn \ {LTσ ( f ) | f ∈ I \ {0}}. Then a left Weyl
Gröbner basis cryptosystem (WGBC) consists of the following data.

(1) Public Key A set Q of Weyl polynomials {p1, . . . , ps} contained in I \ {0}
and a subset M of Oσ (I) are known publicly.

(2) Secret Key: The left σ -Gröbner basis G = {g1, . . . ,gr} of the ideal I and the

set Oσ (I) are kept secret.

(3) Message Space: The message space is the K-vector subspace ⟨M ⟩K of An

generated by M ⊂ Oσ (I).

(4) Ciphertext Space: The ciphertext units are Weyl polynomials in A.

(5) Encryption: For encrypting a plaintext message m ∈ ⟨M ⟩K , choose Weyl

polynomials ℓ1, . . . , ℓs and compute the standard form of

c = m+ ℓ1 p1 + · · ·+ ℓs ps.

to get the ciphertext polynomial c.

(6) Decryption: Given a ciphertext unit c ∈ An, compute NRσ ,G (c). If the result

is contained in ⟨M ⟩K , return it. Otherwise, return c.

Note here that, since G is a σ -Gröbner basis of the ideal I and the polyno-

mials p1, . . . , ps are contained in I, it follows that for each i = 1, . . . ,s, we have

NRσ ,G (pi) = 0 (see Theorem 2.4.1.2 ). This implies that

NRσ ,G (m+ ℓ1 p1 + · · ·+ ℓs ps) = m,

which in turn implies the correctness of this system.

Note. From now onwards, we abbreviate a left Weyl Gröbner basis cryptosystem

as WGBC if no confusion can arise.
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The security of WGBC strongly depends on the difficulty of computing Gröbner

bases in Weyl algebras. That is, if an attacker can compute G, he can break the

cryptosystem. Together with the subset of Oσ (I) the attacker only knows the Weyl

polynomials {p1, . . . , ps} in the public key Q ⊂ I. Therefore, they have to be cre-

ated in a way that hides all the information about the system of generators of I. The

attacker might try to compute a left σ -Gröbner basis of the ideal J = ⟨Q⟩ gener-

ated by the set of polynomials in the public key. In fact, in the settings of Weyl

algebra, we can make this task difficult by suitably constructing the public polyno-

mials {p1, . . . , ps} such that the Gröbner basis of the ideal J = ⟨p1, . . . , ps⟩ is hard

to compute. To show the existence of such ideals in Weyl algebras, below we give

three examples using Weyl algebras over a field of characteristic 7, 3, and 0.

Note. Throughout the thesis whenever we write ‘our computing machine’, we mean

a computer system with 24 GB of RAM, and having the processor AMD Dual

Opteron 2.4 GHz. All computations are performed on this computing machine and

therefore all the timings are given accordingly.

Example 4.1.2. Consider the Weyl Algebra A3 = F7[x1,x2,x3,∂1,∂2,∂3] of index

3 over the finite field F7 of characteristic 7 and let σ=DegRevLex. Choose the

following Weyl polynomials of A3,

f1 = −∂ 3
1 ∂ 5

3 ∂ 5
2 + x5

3,

f2 = −3x3∂ 5
3 ∂ 5

2 + x3∂ 3
1 ,

f3 = −2∂ 4
1 ∂ 5

3 − x1∂ 7
3 + x3

2∂ 5
2 .

Let I = ⟨ f1, f2, f3⟩ be the left ideal of A3 generated by { f1, f2, f3}. Then the reduced

left σ -Gröbner basis of I is the set G = {g1, . . . ,g35} consisting of the following 35

polynomials in standard form

{∂ 5
1 , x5

3, x3∂ 4
1 ∂3+3∂ 4

1 , x3
3∂ 3

1 , x2x2
3∂ 3

1 ∂2∂3+3x2x3∂ 3
1 ∂2+3x2

3∂ 3
1 ∂3+2x3∂ 3

1 ,

x3
2∂ 5

2 − x1∂ 7
3 , x2∂ 4

1 ∂ 3
2 −2∂ 4

1 ∂ 2
2 , x1x3

2∂ 4
1 −3x3

2x3∂ 3
1 ∂3 −3x3

2∂ 3
1 , ∂ 4

1 ∂ 5
3 ,

x3
2x2

3∂ 3
1 ∂3 +3x3

2x3∂ 3
1 , ∂ 3

1 ∂ 7
3 , x3∂ 3

1 ∂ 5
2 ∂3 +3∂ 3

1 ∂ 5
2 , ∂ 19

3 ,

x2
2x3∂ 3

1 ∂ 3
2 ∂3−x2∂ 2

1 ∂ 7
3 −2x1x2∂ 4

1 ∂ 2
2 +x2

2∂ 3
1 ∂ 3

2 −3x2x3∂ 3
1 ∂ 2

2 ∂3−x1∂ 4
1 ∂2−3x2∂ 3

1 ∂ 2
2 +

3x3∂ 3
1 ∂2∂3 +3∂ 3

1 ∂2, x2
2x3∂ 3

1 ∂ 4
2 +3x3∂ 2

1 ∂ 7
3 −3x2x3∂ 3

1 ∂ 3
2 −3x3∂ 3

1 ∂ 2
2 ,

x2
2∂ 3

1 ∂ 5
2 −3x2x3∂ 3

1 ∂ 4
2 ∂3 +3∂ 2

1 ∂2∂ 7
3 −3x2∂ 3

1 ∂ 4
2 +3x3∂ 3

1 ∂ 3
2 ∂3 +3∂ 3

1 ∂ 3
2 ,

x1x2
2x3∂ 4

1 ∂ 2
2 −2x3

2x3∂ 3
1 ∂ 3

2 +x1x2x3∂ 4
1 ∂2+3x2

2x3∂ 3
1 ∂ 2

2 −2x1x3∂ 4
1 −x2x3∂ 3

1 ∂2+2x3∂ 3
1 ,
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x3∂ 2
1 ∂ 8

3 +3∂ 2
1 ∂ 7

3 , x3
3∂ 10

3 + x2
3∂ 9

3 −3x3∂ 8
3 −3∂ 7

3 , x2
2∂ 2

1 ∂ 5
2 ∂ 5

3 ,

x2∂ 2
1 ∂2∂ 7

3 −2x2x3∂ 3
1 ∂ 3

2 ∂3 +2∂ 2
1 ∂ 7

3 −2x2∂ 3
1 ∂ 3

2 −3x3∂ 3
1 ∂ 2

2 ∂3 −3∂ 3
1 ∂ 2

2 ,

x2x3∂ 2
1 ∂ 7

3 +2x1x2x3∂ 4
1 ∂ 2

2 +2x22x3∂ 3
1 ∂ 3

2 + x1x3∂ 4
1 ∂2 + x2x3∂ 3

1 ∂ 2
2 − x3∂ 3

1 ∂2,

x2
2∂ 2

1 ∂ 7
3 +3x1x2

2∂ 4
1 ∂ 2

2 −2x2
2x3∂ 3

1 ∂ 2
2 ∂3+2x1x2∂ 4

1 ∂2−2x2
2∂ 3

1 ∂ 2
2 +x2x3∂ 3

1 ∂2∂3−2x1∂ 4
1 +

x2∂ 3
1 ∂2 − x3∂ 3

1 ∂3 −∂ 3
1 , x3∂ 5

2 ∂ 5
3 +2x3∂ 3

1 , x3
3∂ 5

2 ∂ 3
3 + x2

3∂ 5
2 ∂ 2

3 −3x3∂ 5
2 ∂3 −3∂ 5

2 ,

x4
2x3∂ 3

1 ∂ 3
2 − x1x2

2x3∂ 4
1 ∂2 −2x3

2x3∂ 3
1 ∂ 2

2 −3x1x2x3∂ 4
1 + x2

2x3∂ 3
1 ∂2 +3x2x3∂ 3

1 ,

x3
3∂ 2

1 ∂ 7
3 , x2x3∂ 3

1 ∂2∂ 6
3 −x2∂ 3

1 ∂2∂ 5
3 +3x3∂ 3

1 ∂ 6
3 −3∂ 3

1 ∂ 5
3 , ∂1∂ 12

3 , x3∂ 12
3 +2x3

2x3∂ 4
1 ,

x3
2x3∂ 3

1 ∂ 6
3 −x3

2∂ 3
1 ∂ 5

3 , ∂ 3
1 ∂ 5

2 ∂ 5
3 , x2∂ 2

1 ∂ 5
2 ∂ 6

3 −3x3∂ 2
1 ∂ 4

2 ∂ 7
3 −2x2x3∂ 3

1 ∂ 7
2 +3x3∂ 3

1 ∂ 6
2 ,

x2x2
3∂ 3

1 ∂ 8
2 −3x2∂ 2

1 ∂ 6
2 ∂ 5

3 +3x2
3∂ 3

1 ∂ 7
2 ,

x2
3∂ 2

1 ∂ 4
2 ∂ 7

3 +3x2x2
3∂ 3

1 ∂ 7
2 −2x2∂ 2

1 ∂ 5
2 ∂ 5

3 − x2
3∂ 3

1 ∂ 6
2 }.

From the polynomials { f1, f2, f3}, let us now create polynomials p1 and p2 as fol-

lows:

p1 = h11 f1 +h12 f2 +h13 f3 and p2 = h21 f1 +h22 f2 +h23 f3

By choosing

h11 = −2∂1 +∂ 5
2 ∂ 5

3 , h12 = −2x4
3, h13 = ∂ 5

2 ,

h21 = −2∂1 + x3, h22 = ∂ 3
1 , h23 = ∂ 5

2 ,

we then have,

p1 = −∂ 3
1 ∂ 10

2 ∂ 10
3 + x3

2∂ 10
2 −3x4

3∂ 5
2 ∂ 4

3 − x1∂ 5
2 ∂ 7

3 + x2
2∂ 9

2 −3x3
3∂ 5

2 ∂ 3
3 −3x2∂ 8

2 −

2x2
3∂ 5

2 ∂ 2
3 −2x5

3∂ 3
1 −3∂ 7

2 −2x3∂ 5
2 ∂3 −2x5

3∂1 +∂ 5
2 ,

p2 = 3x3∂ 3
1 ∂ 5

2 ∂ 5
3 + x3

2∂ 10
2 − x1∂ 5

2 ∂ 7
3 + x2

2∂ 9
2 −3x2∂ 8

2 + x3∂ 6
1 −3∂ 7

2 + x6
3 −2x5

3∂1.

Let J = ⟨p1, p2⟩ be the left ideal generated by the polynomials p1 and p2. We

claim that the Gröbner basis of the ideal J is very hard to compute using current

resources and implementation of algorithms for the computation of Gröbner bases

of ideals in Weyl algebras. We were unable to compute this Gröbner basis using the

implementation of these algorithms on Singular, ApCoCoA, and Macaulay 2 on our

computing machine.

Note. It has been observed that this claim remains valid if we change the charac-

teristic p to 3 and 5 in the above Example 4.1.2. Moreover, the ideal I becomes a

trivial ideal for characteristic p ≥ 13. That is, for p ≥ 13, we have G = {1}.
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Chapter 4. Weyl Gröbner Basis Cryptosystems

Below we give another example by considering the Weyl algebra A3 over the

prime field of characteristic 3.

Example 4.1.3. Consider the Weyl algebra A3 = F3[x1,x2,x3,∂1,∂2,∂3] of index 3

over the field K = F3, and let the monomial ordering on A be σ =DegRevLex.

Choose the following Weyl polynomials of A3

f1 =−∂ 3
1 ∂ 5

2 ∂ 5
3 + x5

2, f2 = x2∂ 5
3 +∂ 3

1 , and f3 = ∂ 4
1 ∂ 5

2 − x1∂ 7
2 .

Let I = ⟨ f1, f2, f3⟩ be the left ideal generated by f1, f2, and f3. Then the reduced

left σ -Gröbner basis of the ideal I is the set1 G consisting of 26 Weyl polynomials

in standard form.

Let us now construct an ideal J = ⟨p1, p2⟩, where

p1 = h11 f1 +h12 f2 +h13 f3 and p2 = h21 f1 +h22 f2 +h23 f3

and where we let

h11 = x2 +∂1, h12 = ∂ 4
2 ∂ 5

3 +∂ 3
1 ∂ 5

2 , h13 = ∂ 5
3 −∂ 2

1 ,

h21 = ∂1∂2∂3, h22 = −∂ 4
1 ∂ 5

2 , h23 = ∂2∂ 6
3 + x2∂ 5

3 .

We get

p1 = x2∂ 4
2 ∂ 10

3 − x1∂ 7
2 ∂ 5

3 +∂ 3
2 ∂ 10

3 + x1∂ 2
1 ∂ 7

2 −∂1∂ 7
2 + x6

2 + x5
2∂1,

p2 = −x1∂ 8
2 ∂ 6

3 − x1x2∂ 7
2 ∂ 5

3 +∂ 4
1 ∂ 4

2 ∂ 5
3 −∂ 7

1 ∂ 5
2 + x5

2∂1∂2∂3 − x4
2∂1∂3.

Again, based on experiments carried out on our computing machine, we claim that

the Gröbner basis of the ideal J is hard to compute. For instance, the implemen-

tation of the Buchberger Algorithm 2.3.24 on Macaulay2 took 7,924 minutes of

CPU time on our computing machine after which we interrupted the process to ter-

minate without an output. At the time of interruption, we still had untreated 1777

S-polynomials with a total number of 59,196,454 monomials.

In the above Examples 4.1.2 and 4.1.3 we have considered the Weyl Alge-

bra A over a field of positive characteristic. We have seen in this case that given

a non-trivial left ideal I ⊂ A, it is possible to construct an ideal J ⊂ I such that

Gröbner basis of the ideal J is hard to compute. Our next example shows that such

ideals can also be created for Weyl algebras over a field of characteristic zero.
1This set G is given in Appendix C.2.
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Example 4.1.4. Consider the Weyl algebra A3 =Q3[x1,x2,x3,∂1,∂2,∂3] of index 3

over the field Q of characteristic 0, and let the term ordering be σ = DegRevLex.

Choose following Weyl polynomials

f1 = 2x3
2∂ 3

2 +3x3
1∂ 2

1 , f2 =−x2
2∂ 5

3 +∂ 3
1 , and f3 = x3

3∂ 3
3 − x2

1∂ 3
1 .

Le I = ⟨ f1, f2, f3⟩ be the left ideal generated by these polynomials. Then a left

σ -Gröbner basis of the ideal I is given by the set

G = {∂ 2
1 , ∂ 3

3 , x3
2∂ 3

2 }.

Let us now construct an ideal J = ⟨p1, p2⟩, where

p1 = h11 f1 +h12 f2 +h13 f3 and p2 = h21 f1 +h22 f2 +h23 f3

and where we let

h11 = ∂ 5
3 , h12 = x2

3 +2x2∂ 3
2 , h13 = x2

2∂ 2
3 ,

h21 = x3
3∂ 3

3 +∂2∂ 5
3 , h22 = 6∂ 3

2 , h23 = −2x3
2∂ 3

2 .

We get

p1 = −x2
2x3

3∂ 5
3 +3x3

1∂ 2
1 ∂ 5

3 −12x2
2∂ 2

2 ∂ 5
3 + x4

2∂ 4
3 +2x2∂ 3

1 ∂ 3
2 −12x2∂2∂ 5

3 + x3
3∂ 3

1 ,

p2 = 2x3
2∂ 4

2 ∂ 5
3 +2x2

1x3
2∂ 3

1 ∂ 3
2 +3x3

1x3
3∂ 2

1 ∂ 3
3 +3x3

1∂ 2
1 ∂2∂ 5

3 −36x2∂ 2
2 ∂ 5

3 +6∂ 3
1 ∂ 3

2 −

36∂2∂ 5
3

With these settings, the left Gröbner basis of the ideal J = ⟨p1, p2⟩ turned out to

be very hard to compute. In this case we fail to compute the Gröbner basis due

to very fast growth of memory required for the computations. For instance, using

the CAS Macaulay2 on our computing machine, we terminated the process of

Gröbner basis computation of the ideal J after 4004 minutes of CPU time. At the

time of interruption, the intermediate results had grown enough to consume 18.7 GB

of system memory. The same computation also fails to complete on the computer

algebra systems ApCoCoA and Singular.

Note. In Examples 4.1.2, 4.1.3, and 4.1.4, the intermediate results during computa-

tion show that, the computation of Gröbner bases of carefully constructed ideals in

Weyl algebras fails to complete because of the following reasons:
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• the memory required to store the intermediate results grows too fast,

• due to the increase in the size of the polynomials during the computation,

the reduction process (Division Algorithm 2.3.18) gets very slow. That is,

reduction of S-polynomials slows down as the computation grows.

Now an obvious question arises: ‘Can we use such ideals for the construction

of practical concrete instances of WGBC?’ As explained in Chapter 3, successful

cryptanalysis of Gröbner Basis Cryptosystems might be possible by using certain

attacks where the attacker does not need to compute the Gröbner basis of the ideal

J ⊂ I. For example, the chosen ciphertext attack and the attacks based on linear

algebra can be applied. Moreover, instead of computing a complete Gröbner basis

of the ideal J, the attacker can also try using partial Gröbner bases of J for the

partial Gröbner basis attack. Therefore, choosing an ideal J ⊂ I such that Gröbner

basis of the ideal J is hard to compute is not sufficient for constructing a secure

instance of a WGBC. Together with this condition, we also have to make sure that,

on a particular instance of WGBC that we construct, the above standard attacks

cannot be successful to break the system. To achieve this goal, we have to fix certain

parameters of the WGBC and the way of constructing polynomials p1, . . . , ps ∈ I

for the public key Q.

Notation 4.1.5. Parameters of a WGBC: In order to make Cryptosystem 4.1.1

usable, we have to quantify certain parameters for the key generation and the way

of choosing the polynomials ℓ1, . . . , ℓs for the encryption process. Here are the

various parameters that we have to consider for constructing an instance of WGBC

that might be hard to break:

* p: the characteristic of the base field K,

* n: the index of the Weyl algebra A,

* σ : the term ordering on A,

* s: the size of the public key Q,

* dg: the maximum degree of the polynomials g1, . . . ,gr in the secret key G,

* dp: the maximum degree of the polynomials p1, . . . , ps ∈ Q,

* dℓ: the maximum degree of the polynomials ℓ1, . . . , ℓs used for the encryp-

tion.
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The efficiency and the security of Weyl Gröbner basis cryptosystems greatly

depends on the right choice for these parameters. For example, we shall see in

the coming sections that the degree dℓ and number of terms in the polynomials

ℓ1, . . . , ℓs can make the size of the resulting ciphertexts too large and result in a bad

data-rate for transmissions. The large size of the ciphertext might also decrease the

efficiency by increasing the time taken by the decryption process. Moreover, we

need to specify the values for the degree dℓ for a guaranteed security against partial

Gröbner basis attacks.

In the next section, we describe in detail the key generation and implementation

in order to construct a practical instance of a WGBC. This parameter consideration

is also important to defeat the attacks based on linear algebra.

4.2 WGBC Key Generation and Implementation

The aim of this section is to introduce a step-by-step procedure for generating a

pair (G,Q) for constructing a secure instance of WGBC. Keeping in mind the ob-

servations and the experimental results from the examples of the last section, we

introduce following procedure for the way of creating a secure secret key and a

presumably hard to break ciphertext c.

Procedure 4.2.1. In the above setting of Cryptosystem 4.1.1 perform the following

steps.

(1) Choose a set of Weyl polynomials G = {g1, . . . ,gr} which form a reduced left

σ -Gröbner basis of the left ideal I = ⟨G⟩ ⊂ An.

(2) For i= 1, . . . ,s and j = 1, . . . ,r, choose the polynomials hi j ∈An and compute

the standard form of the Weyl polynomials

pi = hi1 g1 + · · ·+hir gr.

While choosing the polynomials hi j, make sure that following properties

hold.

(a) The degree forms DF(hi jg j) of highest degree cancel. The other degree

forms DF(hi jg j) cancel or their coefficients are changed in pi by the

process of converting the remaining hikgk to standard form.
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(b) There are sufficiently high powers of ∂1, . . . ,∂n in the terms of the sup-

port of hi j such that, after bringing hi jg j to standard form, no informa-

tion about Supp(g j) is leaked in Supp(pi). In particular, the leading

terms LTσ (g1), . . . ,LTσ (gr) should be well hidden.

(c) In verifying properties (a) and (b) above, make sure that there are no

gaps in the degrees of various terms in Supp(pi). That is, for each i,

if deg(pi) = dpi , then Supp(pi) should contain a sufficient number of

terms of each degree between dpi and 1. In fact, this reduces the sparsity

of the polynomials p1, . . . , ps.

(3) Let J = ⟨p1, . . . , ps⟩ be the left ideal generated by the polynomials in the

public key Q. Make sure that not only the complete left σ -Gröbner basis of

the ideal J is hard to compute, but also partial Gröbner bases are infeasible

to compute for large degree bounds.

(4) Choose a small enough subset M ⊂ Oσ (I) for the message space ⟨M ⟩K in

such a way that every gi contains at least one term in Oσ (I)\M .

(5) For constructing a ciphertext polynomial

c = ℓ1 p1 + · · ·+ ℓs ps +m,

choose the polynomials ℓ1, . . . , ℓs such that the following properties hold:

(a) Make sure that Supp(ℓ1 p1 + · · ·+ ℓs ps) contains all terms of Supp(m)

and many terms of M . In this way, the monomials of m will be either

cancelled or their coefficients will be changed in the lower-degree part

of the polynomial c.

(b) Ascertain that the degree forms DF(ℓi pi) of highest degree cancel in c,

and that the other degree forms DF(ℓi pi) cancel or their coefficients are

changed in c by the process of converting the remaining ℓi pi to standard

form.

(c) Again, in meeting properties (a) and (b) above, use sufficiently high

powers of ∂1, . . .∂n in the terms of the support of ℓi such that, after

bringing ℓi pi to standard form, there are no wide gaps in degrees of
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various terms in Supp(c). This means that the sparsity of the ciphertext

polynomial will be reduced.

(6) Make sure that the above choices of the polynomials ℓ1, . . . , ℓs make the de-

gree, dc, of the ciphertext c high enough such that no partial Gröbner basis of

the ideal J can be computed up to the degree bound dc. Moreover, if H is a

partial Gröbner basis of J up to a degree bound d < dc, then NRσ ,H (c) ̸= m.

Remark 4.2.2. We have seen in Chapter 2, that due to the structure of Weyl mul-

tiplication, the product of Weyl polynomials in standard form blows up to include

many terms. In fact, in the Weyl algebra An, we can have t, t ′ ∈ Bn such that the

product tt ′ is a polynomial having many terms in its standard form. Therefore, by

including powers of ∂1, . . . ,∂n in the polynomials ℓ1, . . . , ℓs, we can make the lower

and the middle part of the ciphertext polynomial c = ℓ1 p1 + · · ·+ ℓs ps +m dense

enough to hide the message m, and to accomplish the steps (5) and (6) of Proce-

dure 4.2.1. With the same strategy, we can fulfil the above requirement (2).(b) of

Procedure 4.2.1.

In the next chapter, we shall explain why we believe that, by completing the

steps of Procedure 4.2.1, we can make the standard attacks infeasible. In fact,

step (2) makes sure that the polynomials in the secret key G are well concealed. The

step (5) ensures that not only the plaintext message m is well hidden in the ciphertext

polynomial c, but by reducing the sparsity of the polynomial c and removing gaps

in the degrees of the terms in the support of c we are also, making linear algebra

attacks harder to apply. Similarly, by completing the steps (3) and (4), we are,

respectively, making the chosen ciphertext attack and the partial Gröbner basis

attack infeasible.

Remark 4.2.3. In Step (4) of Procedure 4.2.1, we have suggested to use the re-

duced σ -Gröbner bases of the ideal I considered for constructing an instance of a

WGBC. By definition of WGBC in Cryptosystem 4.1.1, Bob, can take any left σ -

Gröbner basis of I for such construction, but, for all our experimental results and

instances of WGBC that will be presented in this thesis, most of the time we will

be using the reduced Gröbner bases unless otherwise specified.
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4.3 Construction of Hard Instances

For constructing concrete hard instances of Weyl Gröbner Bases Cryptosystems,

the structure of Weyl algebras is very useful in satisfying the requirements of Pro-

cedure 4.2.1. In the next procedure, we shall provide an explicit suggestion how

this can be done. The idea is based on Proposition 2.5.2 for constructing non-trivial

left ideals of An (see Example 2.5.3).

Procedure 4.3.1. Let K = Fp be a finite field of characteristic p, let n ≥ 2, and

consider the Weyl algebra An of index n over K. Let σ be a term ordering on Bn.

Then the following instructions define a WGBC which satisfies Conditions (1) – (6)

of Procedure 4.2.1.

(1) For i= 1, . . . ,r, with 2≤ r ≤ n, choose a (random) polynomial gi ∈K[xi,∂i]⊆
An such that:

(a) deg(gi)≥ d′,
(b) the number of terms in support of each gi is at least N.

Let G= {g1, . . . ,gr} be the set of these polynomials, and let I = ⟨G⟩ be the left

ideal generated by G. By Proposition 2.5.2, the set G is a left σ -Gröbner basis

of I.

(2) For the message space, choose the set M ⊆ Oσ (I) such that every gi has at

least one term from Oσ (I)\M in its support.

(3) Now create Weyl polynomials p1, . . . , ps of the form pi = hi1g1 + · · ·+ hirgr

such that Conditions (2a)– (2c) of Procedure 4.2.1 are satisfied. In particular,

choose the degree forms of the polynomials hi1, . . . ,hir such that they are a

syzygy of DF(G), at least in the top-degree.

Remark 4.3.2. In Step (1) of the above procedure, the lower bounds D and N are

suggested, respectively, for the degree and number of terms in the support of each

gi. Based on our experimentations and computations, it turns out that D = 10 and

N = 5 are good choices for meeting the requirements of Procedure 4.2.1.

In the next chapter we shall see that if we establish an instance of WGBC by

following the instructions in the above procedure, then such a system will be secure

against standard known attacks.
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Let us now use the instructions of this procedure to formulate a concrete case of

WGBC.

Example 4.3.3. Let us take the Weyl algebra

A2 = K[x1,x2,∂1,∂2]

over the finite field K = F13 of characteristic 13. Let the term ordering on the set

B2 of all terms of A2 be DegRevLex. With these ingredients, we introduce the

following WGBC:

(1) Secret Key:
Let G = {g1,g2} be given by

g1 = 7x7
1∂ 7

1 +2x6
1∂ 6

1 +4x2
1∂ 2

1 +3x3
1 −∂ 3

1 + x2
1 −3x1∂1 −2∂ 2

1 +5x1 −7∂1 +1

g2 = 4x5
2∂ 5

2 +3x4
2∂ 4

2 +5x4
2 +∂ 4

2 −3x3
2 −4∂ 3

2 + x2
2 − x2∂2 +2∂ 2

2 −3

and let I = ⟨g1,g2⟩ be the left ideal generated by G. The secret key is now the

set G and let G = (g1,g2).

(2) Public Key:
Compute the standard form of the Weyl polynomials

p1 = h11 g1 +h12 g2 and p2 = h21 g1 +h22 g2,

where

h11 = 4x3
1x11

2 ∂ 3
1 ∂ 9

2 +5x3
1x10

2 ∂ 3
1 ∂ 8

2 +2x1x5
2∂ 5

2 +2x5
2∂1∂ 5

2 +5x1 −3x2 +

2∂1 −6∂2 +3,

h12 = 6x10
1 x6

2∂ 10
1 ∂ 4

2 −6x9
1x6

2∂ 9
1 ∂ 4

2 −4x8
1∂ 7

1 +3x7
1∂ 8

1 +4x2 +2∂2 +4,

h21 = 5x2
1x14

2 ∂ 6
1 ∂ 16

2 −4x2
1x13

2 ∂ 6
1 ∂ 15

2 −7x1 +2x2 +4,

h22 = x9
1x9

2∂ 13
1 ∂ 11

2 +7x8
1x9

2∂ 12
1 ∂ 11

2 +6∂1 −3∂2 +1.

Then the Weyl polynomial p1 has degree 36 and its standard form consists

of 170 terms. Note here that, as suggested in Part (3) of Procedure 4.3.1, our

choice of the polynomials h11 and h12 is such that the degree form DF(h11g1)
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and DF(h12g2) cancel in p1 and many other terms are cancelled or their co-

efficients are changed in p1. For instance, since LMσ (g1) = −6x7
1∂ 7

1 , we

choose a random term t1 = 4x3
1x11

2 ∂ 3
1 ∂ 9

2 of degree 26 for h11. Now the lead-

ing monomial of the product t1 g1 is 2x10
1 x11

2 ∂ 10
1 ∂ 9

2 and to cancel it in p1,

we choose the monomial t ′1 = 6x10
1 x6

2∂ 10
1 ∂ 4

2 for h12. If required, we pro-

ceed the same way for cancelling the terms in DF(t g1). Note that we have

DF(t ′1 g2) = −2x10
1 x11

2 ∂ 10
1 ∂ 9

2 and it will not appear in p1. In order to make

lower part of p1 dense enough, we make use of Weyl multiplication by in-

serting lower-degree terms both in h11 and h12. For instance, we choose a

monomial t2 = 5x1 for h11 and to cancel the leading term of the product t2 g1

we insert the monomial t ′2 = 3x8
1∂ 7

1 in h12 and again for the cancellation insert

t3 = 2x1x5
2∂ 5

2 in h11. Continuing this way, we keep on adding and setting vari-

ous terms for h11, and h12 and finally compute p1 as above. The degree of p1

is 36 which means that all the terms of degree greater than 36 are cancelled

in p1. In this way, many terms in p1 are either cancelled or their coefficients

are changed. This can be easily seen by observing the number of terms in the

homogeneous components of h11 g1, h12 g2, and h13 g4 and comparing them

with the number of terms of the homogeneous components of p1, for instance,

by using a CAS. Similarly, to compute p2 we choose the above polynomials

h21 and h22. The Weyl polynomial p2 has degree 48 and there are 128 terms

in its standard form. Again, the highest degree terms cancel in p2. The set

Q = {p1, p2} is now our public key2.

(3) Message Space:
For the message space, we choose the K-vector space generated by the set

M = {xα∂ β | |α| ≤ 11, |β | ≤ 7}.

There are 132808 different possible plaintext units. Moreover, both secret

polynomials g1 and g2 have terms from Oσ (I)\M in their support.

(4) Encryption:
To encrypt a message m ∈ ⟨M ⟩K , we choose sparse polynomials ℓ1, ℓ2 of suf-

2These polynomials p1 and p2 are given in Appendix C.2.(2).
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ficiently high degree and compute the standard form of the ciphertext poly-

nomial

c = m+ ℓ1 p1 + ℓ2 p2.

For instance, let us encrypt

m=−6x4
2∂ 3

2 +6∂ 6
2 +5x4

2−∂ 4
2 +6x3

2+6∂ 3
2 +x2

1+x2∂2−3∂1∂2+2x1+2∂1−5

By choosing

ℓ1 = −5x10
1 x16

2 ∂ 12
1 ∂ 19

2 −2x8
1x18

2 ∂ 10
1 ∂ 21

2 −∂1 +1,

ℓ2 = 4x11
1 x13

2 ∂ 9
1 ∂ 12

2 −6x9
1x15

2 ∂ 7
1 ∂ 14

2 +2∂2 + x2 +2,

in the above representation of c, we obtain the ciphertext polynomial c of de-

gree 91 and its standard form consists of 2954 terms. Considering the size

of the message space, the message expansion is rather moderate. The poly-

nomials ℓ1, ℓ2 are chosen such that the degree forms of ℓ1 p1 and ℓ2 p2 are

cancelled in c and to make the degree dc high enough to meet the require-

ment (6) in Procedure 4.2.1. This can be achieved for instance in the same

way as described the way of choosing h11 and h12 in the above key genera-

tion process. Moreover, lower-degree terms in ℓ1, ℓ2 are selected to make the

message m well-hidden.

(5) Decryption:
Since m = NRσ ,G (c), therefore to decipher c, it suffices to compute the nor-

mal remainder of the ciphertext polynomial c with respect to the secret key

G . In the present case, an efficient implementation of the Division Algorithm

2.3.18, recovers m in a couple of seconds.

The reason why we had to go up to rather high degrees in this example is clearly

the fact that we used the Weyl algebra of index 2. As soon as we add a few more

indeterminates, i.e. for n> 2, we gain additional freedom for the message space and

the usual attacks on the Gröbner basis type cryptosystems become more difficult to

carry out.

Note. For the instance of WGBC given in Example 4.3.3, observe that Supp(c) \
Supp(ℓ1 p1 + ℓ2 p2) contains only 2 terms. This indicates that the message m is well
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hidden in the ciphertext c. Moreover, the number of terms in the homogeneous

components of the ciphertext c are distributed as follows

{(91,7),(90,2),(89,17),(88,8),(87,26),(86,11),(85,31),(84,20),(83,38),

(82,30),(81,42),(80,43),(79,55),(78,52),(77,61),(76,60),(75,71),(74,79),

(73,78),(72,92),(71,88),(70,94),(69,94),(68,96),(67,87),(66,92),(65,84),

(64,84),(63,72),(62,84),(61,82),(60,81),(59,75),(58,63),(57,57),(56,47),

(55,39),(54,28),(53,18),(52,12),(51,6),(50,16),(49,22),(48,33),(47,39),

(46,30),(45,36),(44,25),(43,28),(42,20),(41,24),(40,19),(39,22),(38,19),

(37,17),(36,13),(35,12),(34,11),(33,12),(32,11),(31,13),(30,13),(29,14),

(28,14),(27,15),(26,13),(25,12),(24,11),(23,10),(22,7),(21,3),(20,6),

(19,8),(18,14),(17,10),(16,14),(15,9),(14,13),(13,8),(12,11),(11,5),(10,5),

(9,3),(8,2),(7,2),(6,16),(5,28),(4,27),(3,19),(2,9),(1,4),(0,1)}

where the tuple (n1,n2) indicates that the total number of terms of degree n1 is n2.

This shows that the highest degree terms are cancelled in c and that the ciphertext

contains many terms from the message space ⟨M ⟩K .

In the next chapter, we shall come back to this instance of WGBC for further

investigations and discuss the resistance of this system with respect to several stan-

dard attacks.

Our next procedure for the key generation of WGBC is based on the idea of

using a randomly chosen left ideal of a Weyl algebra An. That is, we choose an

ideal of An whose generators are selected as random Weyl polynomials. In order to

proceed this way one has to be extra careful in choosing generating polynomials of

such an ideal I ⊂ A (see Section 2.5 for details). The selection of these polynomials

is not purely random as we have to make sure that the ideal generated should have

a non-trivial Gröbner basis.

Remark 4.3.4. Recall from Section 2.5, choosing a non-trivial ideal I = ⟨ f1, . . . , fq⟩
of Weyl algebras is not a trivial task when generating polynomials f1, . . . , fq are ran-

domly chosen elements of An. From our experiments and computations, we have

observed that higher the degree and number of terms in Supp( fi), more time con-

suming and difficult will be the computation of a left σ -Gröbner basis of I (see also
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note at the end of Example 4.3.6). On the other hand, we also do not want the left

Gröbner basis G of such ideals contains very few elements or, is very easy to guess

from the public information. After all, we are interested in those ideals, such that

a practical instance of WGBC can be built on them by meeting the requirements of

Procedure 4.2.1. Therefore, based on our computational results, in order to choose

a polynomial fi ∈An for the generating system of a left ideal I, we suggest to choose

fi such that deg( fi)≥ 6 and the number of terms in Supp( fi) is at least 3. It will be

very likely that the ideal constructed this way will be a non-trivial ideal of An and

that it can be used to make a practical instance of a WGBC satisfying requirements

of Procedure 4.2.1. We will use these suggestions in the following procedure.

Procedure 4.3.5. Consider the Weyl algebra An = K[x1, . . . ,xn, ∂1, . . . ,∂n] of index

n over a prime3 field K = Fp of characteristic p. Let n ≥ 3 and let σ be a term

ordering on Bn. Then the following instructions define a WGBC which satisfies the

requirements of Procedure 4.2.1.

(1) For i = 1, . . . ,u, choose a random Weyl polynomial fi ∈ An \K, such that

deg( fi)≥ 6 and #Supp( fi)≥ 3. Moreover, these polynomials should be such

that the left ideal I = ⟨ f1, . . . , fu⟩ is a non-trivial ideal of An. Let the set

G = {g1, . . . ,gr} be a left σ -Gröbner basis of the ideal I. Make sure that the

size of this secret key is at least 8, i.e. r ≥ 8.

(2) For the message space, choose the set M ⊆ Oσ (I) such that at least 80

percent of polynomials in G are such that they have at least one term from

Oσ (I)\M in their supports.

(3) For i = 1, . . . ,s, create Weyl polynomials pi of the form

pi = hi1 g1 + · · ·+ hir gr

where hi j ∈ An are chosen such that the computation of a left σ -Gröbner basis

of the ideal J = ⟨p1, . . . , ps⟩ is infeasible and such that Conditions (2a)– (2c)

3We have also performed experiments with K =Q, it turns out that in this case, firstly, choosing
a random non-trivial ideal of our interest is rather involved task, and secondly, it is very difficult to
control the sizes of polynomials in Q and growth of the ciphertext c.
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of Procedure 4.2.1 are satisfied. Make sure that if some g j ∈ G does not

satisfy Condition (2), then set the corresponding hi j = 0 in the above rep-

resentation of pi. That is, use a g j ∈ G for the construction of polynomials

p1, . . . , ps only when it fulfils Condition (2).

Note. In the above procedure, the requirement of ‘80 percent’ in Step (2) is based on

our experimental results. As we will be using these polynomials in the construction

of polynomials in Q, therefore, we want most of them to be such that the chosen

ciphertext attack of Section 5.4 can be defeated.

Let us now use the instructions of this procedure to establish the following con-

crete example of a WGBC.

Example 4.3.6. Let n = 3 and consider the Weyl algebra

A3 = F3[x1,x2,x3,∂1,∂2, ∂3]

over the field of characteristic 3 and let the term ordering on Bn be σ = DegRevLex.

We now introduce the following WGBC:

(1) Secret Key:
Choose the following polynomials of A3

f1 = −∂ 3
1 ∂ 5

2 ∂ 5
3 − x2

1x3
2 + x5

2 +1,

f2 = x2∂ 5
3 +∂ 3

1 −1,

f3 = ∂ 4
1 ∂ 5

2 + x5
1∂ 7

2 − x2
1∂2.

Let I = ⟨ f1, f2, f3 ⟩ be the ideal generated by these polynomials. Then the

σ -Gröbner basis G of I is the set {g1, . . . ,g11} where

g1 = ∂ 3
1 ∂ 3

2 , g2 = x4
2∂ 3

1 −∂ 5
3 + x2

1x2
2 − x4

2,

g3 = x2
1∂ 5

3 − x4
1x2

2 + x6
2 + x2, g4 = x2

1∂ 3
1 ,

g5 = ∂ 3
2 ∂ 5

3 − x2
1x2

2∂ 3
2 + x4

2∂ 3
2 , g6 = x5

1∂ 6
2 − x2

1,

g7 = x9
2∂ 6

2 + x4
1∂ 6

2 + x2
1x2

2∂ 6
2 + x4

2∂ 6
2 − x1x5

2 − x1,
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g8 = x1x7
2∂ 6

2 + x3
1∂ 6

2 + x1x2
2∂ 6

2 − x5
2 −1,

g9 = ∂ 10
3 + x3

2∂ 6
1 + x3

2∂ 3
1 − x2

1x2 + x3
2,

g10 = x2
1x3

2 − x5
2 −1,

g11 = x2∂ 5
3 +∂ 3

1 −1.

The set G is our secret key and let G =(g1, . . . ,g11). Note that, to fulfil Condi-

tion (2) in the above procedure we can use g2, g3, g5, g7, g8, g9, g10, g11 ∈ G

for setting the message space and for creating the polynomials in the follow-

ing public key.

(2) Public Key:
Let us now create public polynomial p1, p2, p3 by choosing

h11 = −x5
1∂ 7

2 + x3
2∂ 2

1 ∂ 5
3 −∂ 4

1 ∂ 5
2 +∂2∂ 5

3 −∂ 5
3 + x2

1∂2 −1,

h12 = x2
2∂ 5

1 ∂ 5
2 ∂ 5

3 + x2∂ 5
1 ∂ 4

2 ∂ 5
3 −∂ 5

2 ∂ 5
3 +∂ 2

2 −∂2,

h13 = −∂ 3
1 ∂ 5

2 ∂ 5
3 −∂1 +1,

h21 = x2x2
3∂2∂ 5

3 + x2
1x5

2∂2 + x2
1x3

2x2
3∂2 −∂2∂ 5

3 − x4
2 − x3

2 + x2
1∂2 − x2

3∂2,

h22 = x4
1∂2∂ 5

3 + x4
1∂2 − x4

3∂2 +∂ 5
3 +1,

h23 = −x2
1x2

3∂2∂ 5
3 − x6

1x2
2∂2 − x6

2x2
3∂2 + x2

1x3
2 +∂2,

h31 = x7
2∂ 4

1 ∂ 7
2 − x2

1x4
2∂1∂ 6

2 ,

h32 = −x1x7
2x4

3∂1∂ 9
2 − x5

2x4
3∂1∂ 3

2 − x1x3
2∂ 3

2 ,

h33 = −x3
1x4

3∂1∂ 6
2 − x2

2∂ 7
1 ∂2 − x1x4

2∂ 5
3 + x4

3∂1 + x1x3
2 − x2

3∂1 + x3∂1,

h34 = x4
3∂1∂ 6

2 ∂ 5
3 + x4

2x4
3∂1∂ 6

2 + x6
2∂ 5

3 + x1x2∂ 4
1 + x2∂ 5

3 − x5
2 − x1x2

3∂2 +

x1∂2 + x3∂2 −1,

and then computing the standard forms of

p1 = h11 f1 +h12 f2 +h13 f3,

p2 = h21g3 +h22 g10 +h23g11,

p3 = h31 g2 +h32 g5 +h33 g7 +h34 g8.

The polynomial p1 has degree 20 and consists of 46 terms in its standard

form. The polynomial p2 has degree 14 and 51 terms and p3 has degree 28
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and 120 terms in its standard form. The polynomials hi j are chosen such that

the degree forms of the summands during the computation of the polynomials

pi cancel. In fact, the polynomials hi j are chosen in the same way as described

in (2) of Example 4.3.3. Moreover, the leading terms of the polynomials in G

are not possible to guess from the polynomials p1, p2, and p3 of the public

key Q. These public polynomials are given in the Appendix C.2.

We set the public key Q = { p1, p2, p3 }.

(3) The Message Space:
For the message space we choose

M = {xα ∂ β | |α|+ |β | ≤ 3}

That is, ⟨M ⟩K is the vector space of all polynomials in A3 of degree less than

or equal to 3. With this M , we can have 384 possible plaintext messages.

This message space is also known publicly.

(4) Encryption:
Suppose that the plaintext message m∈ ⟨M ⟩K is given by the following poly-

nomial

m = x2
1x2 − x2

1∂1 −∂ 2
1 ∂2 + x2∂ 2

2 +∂ 3
3 + x1x2 − x2x3 − x1∂1 + x3∂1 +

x2∂2 −∂1∂2 − x3∂3 +∂2∂3 − x1 − x2 +∂1 −∂3 +1

For the encryption, choose

ℓ1 = −x6
1x9

2x6
3∂ 5

1 ∂ 8
2 ∂ 4

3 − x6
1x7

2x6
3∂ 9

2 ∂ 9
3 − x7

2x9
3∂ 7

2 ∂ 7
3 + x1x10

2 x4
3∂ 11

2 − x6
2x5

3∂ 2
1 ∂ 7

2

+x1x10
2 ∂1∂ 6

2 + x6
2x5

3∂ 7
2 + x3∂1 − x2 +∂1

ℓ2 = −x1x4
2x4

3∂ 7
1 ∂ 22

2 ∂ 5
3 + x1x6

2x2
3∂ 8

1 ∂ 16
2 − x8

2x2
3∂1∂ 12

2 +∂ 2
1 ∂ 5

2 ∂ 5
3 +∂ 2

1 +

∂1∂2 −∂1∂3 − x2 −∂3,

ℓ3 = x6
1x4

2x2
3∂ 13

1 ∂2∂ 4
3 − x7

1x4
2∂ 7

1 ∂ 11
2 + x3

1x8
2∂ 7

1 ∂ 11
2 − x7

1x2
2x2

3∂ 7
1 ∂ 11

2 +

x3
1x6

2x2
3∂ 7

1 ∂ 11
2 + x1x5

2∂ 5
1 ∂ 4

2 + x2
2x5

3∂ 7
3 − x2

1x2∂1∂ 5
3 + x2x3∂ 2

1 −

x2x3 −∂1∂2 − x1∂3 −∂1∂3 +∂1,

and compute the ciphertext c as

c = ℓ1 p1 + ℓ2 p2 + ℓ3 p3 +m.
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Then the polynomial c has degree 57 and there are 4289 terms in its standard

form. We have selected the polynomials ℓ1, ℓ2, and ℓ3 in such a way that the

highest degree terms cancel and many other terms are either cancelled or their

coefficients are changed in the middle and lower parts of the resulting cipher-

text. For instance, choosing −x6
1x9

2x6
3∂ 5

1 ∂ 8
2 ∂ 4

3 for ℓ1 and then x6
1x4

2x2
3∂ 13

1 ∂2∂ 4
3

for ℓ3, cancels the term −x6
1x11

2 x6
3∂ 13

1 ∂ 13
2 ∂ 9

3 of degree 58 in c. Similarly, by

choosing −x1x4
2x4

3∂ 7
1 ∂ 22

2 ∂ 5
3 for ℓ2, we get the leading term of the product ℓ2 p2

as x7
1x11

2 x4
3∂ 7

1 ∂ 23
2 ∂ 5

3 and then inserting −x7
1x4

2∂ 7
1 ∂ 11

2 in ℓ3 cancels that leading

term in c. To cancel the term −x6
1x9

2x6
3∂ 8

1 ∂ 14
2 ∂ 14

3 of degree 57 so that it does

not appear in c we insert the monomial −x6
1x7

2x6
3∂ 9

2 ∂ 9
3 in ℓ1. Continuing this

way, we keep on adding and setting various terms for ℓ1, ℓ2, and ℓ3 and finally

compute c as above. In this way, many terms in c are either cancelled or their

coefficients are changed. The lower degree parts of the ciphertext polynomial

c are dense enough to include many terms from the set M . The monomials of

the plaintext message m are either cancelled or their coefficients are changed

in the ciphertext c. In fact, out of 18 monomials of m, 14 are not present in c.

(5) Decryption:
For recovering the plaintext message m we compute NRσ ,G (c), the normal

remainder of c modulo the Gröbner basis G . An efficient implementation of

the left Division Algorithm 2.3.18 recovers m within a second.

In the next chapter, we shall discuss the security of this instance of WGBC against

known standard attacks.

Note. With reference to Procedure 4.3.5, note that why we are emphasizing that

one has to be extra careful while attempting to create an instance of WGBC based

on a randomly chosen left ideal of Weyl algebra. In the setting of Example 4.3.6, if

we use the base field K = Fp (p ≥ 5) or K =Q, then the Gröbner basis of the ideal

I becomes G = {1}. For char(K) = 7, the computation of Gröbner basis of the ideal

I = ⟨ f1, f2, f3⟩ takes 577.14 seconds on our computing machine and turns out to be

{1}.
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4.4 A WGBC Based on Remark 2.5.5

We shall now use the technique of Remark 2.5.5 for choosing an ideal in a Weyl

algebra. We give an example for an instance of WGBC based on the following

procedure:

Procedure 4.4.1. In the settings of Procedure 4.3.5, perform Step (1) as follows:

Following the suggestions given in Remark 2.5.5, choose a left ideal

I of An. Let the secret key G = {g1, . . . ,gr} be the reduced left σ -

Gröbner basis of the ideal I.

Continue with Step (2) and (3) of Procedure 4.3.5 for choosing a message space M

and constructing a public key Q.

We now illustrate this procedure by presenting the following instance of WGBC.

Example 4.4.2. Over the base field K = F7, we consider the Weyl algebra

A3 = K[x1,x2,x3,∂1,∂2,∂3]

of index 3 and the term ordering σ = DegRevLex. Then we introduce the following

WGBC.

(1) Secret Key:
Consider the Weyl polynomials given by

f1 = x7
1, f2 = x3

1∂ 3
1 + x1,

f3 = x7
2, f4 = x2

2∂ 2
2 + x2 +∂2,

f5 = x7
3∂ 7

3 f6 = ∂ 4
3 + x3,

and let I be the left ideal I = ⟨ f1, f2, f3, f4, f5, f6⟩. Then the reduced left σ -

Gröbner basis G of the ideal I consists of the following 11 polynomials:

g1 = x1∂ 3
1 +3x2

1 +3x1∂1 − x1 −3∂1 −3

g2 = x3
1 +3x1∂ 2

1 −2x2
1 −2x1∂1 −2x1 −3∂1 +2

g3 = x2
1∂1 +3x2

1 + x1∂1 −3x1 −2

g4 = x10
3 −2x7

3∂ 2
3 , g5 = x9

3∂3 − x8
3,
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g6 = ∂ 4
2 +3∂ 3

2 +2x2
2 −2x2∂2 +∂ 2

2 − x2 −3∂2 −3

g7 = x7
3∂ 3

3 −2x9
3

g8 = x2∂ 2
2 −∂ 3

2 −2x2
2 +2x2∂2 +2∂ 2

2 +2x2 −3

g9 = x2
2∂2 +3∂ 3

2 +2x2
2 −2x2∂2 +3∂ 2

2 −2x2 −2∂2 −3

g10 = x3
2 −∂ 3

2 + x2
2 −3x2∂2 +3∂ 2

2 −2x2 −∂2 −2

g11 = ∂ 4
3 + x3

(2) Public Key:
For the public key Q, we compute the standard form of the polynomials

p1 = h11g1 +h12g6 +h13g4,

p2 = h21g2 +h22g8 +h23g5,

p3 = h31g3 +h32g9 +h33g7 +h34g11,

by choosing

h11 = x1x6
2∂ 3

2 ∂ 4
3 − x6

2∂ 3
2 ∂ 4

3 −2x2∂ 3
2 ∂3 +3x2∂ 3

2 −2x2
3∂3 + x2∂3 −3∂3,

h12 = −x3
1x6

2x10
3 ∂1 −3x3

1x3
2∂ 3

2 ∂ 4
3 +2x1x2x3∂ 2

1 ∂ 2
2 ∂ 4

3 +∂ 3
1 ∂ 3

2 ∂3 − x3
1∂ 4

3 +3x3∂ 4
3

−x3
1 −3x3

2 +3x3,

h13 = x3
1x6

2∂1∂ 4
2 +3x3

1x6
2∂1∂ 3

2 +2x3
1x8

2∂1 + x3
1x6

2∂1∂ 2
2 +3x1∂1∂ 2

2 ∂ 3
3 + x3∂ 3

3 +

x1∂ 2
1 + x2∂ 2

2 −∂ 3
2 +2x1∂1 + x1∂2 +3∂1,

h21 = −3x11
3 ∂ 2

1 ∂ 2
2 ∂ 2

3 +3x3
1x2

3∂1∂ 2
3 −3x2

1∂3 +2x2∂1 − x3 −∂2 −2∂3,

h22 = −3x2
1x2x11

3 ∂ 3
2 ∂ 2

3 − x2
1x2

2x9
3∂ 3

2 + x1x3
2x2

3∂ 4
1 ∂ 3

3 −2x1∂1∂ 2
2 ∂ 2

3 + x2x3∂ 2
1 +

x1∂1 −2∂ 2
2 −3x3 −∂3,

h23 = 3x2
1x2

2x2
3∂ 5

2 ∂3 −3x2
1x2x2

3∂ 6
2 ∂3 + x2

1x3
2x2

3∂ 3
2 ∂3 − x2

1x2
2x2

3∂ 4
2 ∂3 − x2

1x4
2∂ 3

2 +

x2
1x3

2∂ 4
2 +2x2

1x2
2∂ 5

2 + x2
1x2

2∂ 4
2 + x2

1x3
2∂ 2

2 + x2
1x2

2∂ 3
2 +3x1x3∂ 2

3 +3∂1∂2∂3

−2x2 +∂2,

h31 = −3x2x12
3 ∂2∂3 +3x2x10

3 ∂ 2
2 ∂3 −3x10

3 ∂ 3
2 ∂3 − x10

3 ∂ 2
2 ∂3 + x3

2x9
3 −

2x2x7
3∂2∂ 3

3 +3x2x9
3∂2 −2x2x7

3∂ 3
3 + x1x2x3∂3 +∂ 2

1 ∂2 +3x2∂ 2
3 +

2x1∂3 −3x2 −2∂3,

h32 = −3x1x10
3 ∂ 3

1 ∂3 +3x2
1x7

3∂ 3
3 +3x1x7

3∂1∂ 3
3 +2x1x3

3∂ 3
3 + x4

3 −2x1∂ 2
2 −

∂ 3
2 −3x2∂ 2

3 − x2x3 + x2
3 +3∂1,
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h33 = 2x2
1x2x3

3∂1∂2∂3 + x1x2
2x3∂ 3

1 − x2
1x3∂ 2

2 +3x1x3∂1∂ 2
2 +2x2x3∂1∂ 2

2 −

3x1x3∂ 3
2 −2x3∂1∂ 3

2 + x1x3∂3 − x3∂2 −3x1∂3 −2x1,

h34 = −2x2
1x2x10

3 ∂1∂2 − x1x2∂ 3
1 ∂2∂3 − x1x2∂ 3

1 ∂3 −2x2
1x2∂ 2

2 ∂3 −

2x1x2∂1∂ 2
2 ∂3 +2x2

1∂ 3
2 ∂3 +2x1∂1∂ 3

2 ∂3 −2x1∂ 3
1 ∂3 −3x2

1∂ 2
2 ∂3 +

3x1x2∂ 2
2 ∂3 +3∂ 2

1 −3x2∂2 + x1∂3 −3x3.

Then the Weyl polynomial p1 has degree 23 and its standard form consists of

141 terms. The Weyl polynomial p2 has degree 21 and there are 150 terms

in its standard form and the polynomial p3 has degree 18 and 204 terms. The

public key is then the set4 Q = {p1, p2, p3}.

(3) Message Space
For the message space, we choose the K-vector space generated by

M = {xα1
1 xα2

2 xα3
3 ∂ β1

1 ∂ β2
2 ∂ β3

3 | |α1|, |α2|, |β2| ≤ 1, |α3| ≤ 6, |β1| ≤ 2, |β3| ≤ 3}.

There are 7672 different possible plaintext units and 10 polynomials in the

secret key G have at least one term from Oσ (I)\M in their supports.

(4) Encryption:
Let the plaintext message m ∈ ⟨M ⟩K be given by

m = x2
2 −2x1∂1 −3∂ 2

1 +2x1∂2 −3x2∂2 −2∂1∂2 +∂ 2
2 −2x1∂3 − x2∂3 +

x3∂3 +2∂1∂3 −3∂2∂3 +3∂ 2
3 +2x1 −3x2 −2∂1 +∂2 +3.

To encrypt this message m, we choose5 sparse polynomials ℓ1, ℓ2, ℓ3 of suffi-

ciently high degree and compute the standard form of the Weyl polynomial

c = m+ ℓ1 p1 + ℓ2 p2 + ℓ3 p3.

For instance, let us encrypt m by choosing ℓ1, ℓ2 and ℓ3 in the above repre-

4This set of polynomials is given in the Appendix C.2.
5These polynomials are chosen in the same way as described in the encryption part of Example

4.3.6.
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sentation of c as follows

ℓ1 = −3x3
1x3

2x3
3∂ 8

1 ∂ 5
2 ∂ 5

3 −2x3
1x2x3

3∂ 8
1 ∂ 7

2 ∂ 5
3 +2x5

1x5
3∂ 7

1 ∂ 8
2 ∂3 +3∂ 2

2 ∂3 −3∂2∂3,

ℓ2 = −3x6
1x5

2x3∂ 8
1 ∂ 7

2 ∂3 + x6
1x4

2x3∂ 8
1 ∂ 5

2 ∂ 4
3 +2x6

1x4
2∂ 8

1 ∂ 5
2 ∂ 4

3 +3x7
2x3∂ 3

1 ∂ 4
2 +

x3∂ 3
1 ∂ 2

3 − x1x2
2x3∂1 −∂ 3

1 ∂3 − x2
2,

ℓ3 = 2x5
1x7

2∂ 6
1 ∂ 8

2 ∂ 6
3 +3x1x9

2∂ 7
2 +2x5

2∂ 3
2 ∂3 + x1x2

2∂ 3
2 ∂ 2

3 +∂1.

The resulting ciphertext c has degree 49 and its standard form consists of 6796

terms. Our choice of the polynomials ℓ1, ℓ2, and ℓ3 has not only cancelled the

degree form of ℓi pi in c but also the lower part of ciphertext polynomial is

dense enough to hide m completely. In fact, out of 18 monomials of m, 16 are

not present in c.

(5) Decryption:
For recovering m we see that m = NRσ ,G(c). Therefore, for decryption, we

have to compute normal remainder of the ciphertext polynomial c with re-

spect to the Gröbner basis G. In this case, an efficient implementation of the

Division Algorithm recovers m in a few seconds.

In the next chapter, we will study security issues of the concrete instances of

WGBC presented in Examples 4.3.3, 4.3.6, and 4.4.2. We conclude this chapter by

the following remark.

Remark 4.4.3. All instances of WGBC presented in this chapter are based on Weyl

algebras over a finite field of positive characteristic. Although one can also attempt

to construct an instance of WGBC based on the field Q of characteristic zero, based

on the experimental results we recommend to use only the fields of characteristic

p > 0. As we have seen in the observations in Example 4.1.4, the field Q is prone

to coefficient-swell, and the growth of the support of polynomials can result in the

requirement of large amount of memory for storing intermediate results during the

computations. These phenomena may also result in unexpected size of the cipher-

text polynomial and reduce the efficiency of the decryption process.
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Chapter 5
Efficiency and Security

In this chapter we will consider the efficiency of the Weyl Gröbner Basis Cryptosys-

tems. We also check the security issues of these systems against known standard

attacks that are described in Chapter 3 and show that the instances of WGBC pre-

sented in Chapter 4 are secure against these attacks. We start by describing the

efficiency of the computations that are involved when using the cryptosystem.

5.1 Efficiency

The efficiency of the WGBC strongly depends on the encryption and the decryption

algorithms of the cryptosystem, that is, on the amount of work to be done by both

Alice and Bob for secret communication over a public network. Therefore, in the

setting of WGBC, both Alice and Bob have to be able to compute efficiently in the

Weyl algebra An of index n over a field K of characteristic p > 0.

The two main operations involved in the encryption and the decryption pro-

cesses of a WGBC are ‘Weyl multiplication’ and the computation of the ‘normal

remainder’ modulo the secret key G. Efficient algorithms are available for perform-

ing these computations in Weyl algebras. These algorithms have been implemented

in various computer algebra systems (see Section 2.6). We have also implemented

these algorithms for the package Weyl of computer algebra system ApCoCoA. They

can be used by calling the functions Weyl.WMul() and Weyl.WNR(), respec-

tively. We refer to Appendix A for the description of these functions.



5.1. Efficiency

Another important operation involved in the process of secret communication

is the transmission of the ciphertext message m over a public network. In the set-

tings of a WGBC, the plaintext and the ciphertext units are the Weyl polynomials

m and c respectively. We define the data-rate for transmitting a ciphertext unit over

a network as the ratio of the size of the support of m to the size of the support of

c. Moreover, the term message expansion refers to the length increase of a mes-

sage when it is encrypted. One can measure the efficiency of Gröbner basis type

cryptosystems either by the data-rate or by the message expansion. The message

expansion can become a serious efficiency issue of such cryptosystem if the sup-

port of the resulting ciphertext grows too large as compared to the support of the

plaintext unit m. It does not only affect the data-rate but also the storage and the

decryption of the resulting ciphertext. In practice, it is very likely that, due to the

way encryption is performed in such cryptosystems, the Supp(c) may become very

large if various parameters are not properly restricted. For example, consider the

Koblitz’s “graph perfect code instance” of PCC presented in [25] (Ch. 5, §7), where

the base ring is the commutative polynomial ring P = F2[x1, . . . ,xn] in n indetermi-

nates over the finite field F2. For security considerations, among other parameters,

Koblitz suggested to use n ≈ 500. In [23], the cryptanalysis of this instance of Polly

Cracker is carried out. It is shown that even, by restricting n to 200, one gets a

ciphertext polynomial containing more than 550,000 terms in its support whereas,

there is only one term in the support of m (see [23] for details). This, of course,

results in a very bad data-rate for transmitting c. We shall now discuss the effi-

ciency of WGBC in terms of the time required for the decryption and in terms of

the data-rate for sending a ciphertext unit to its intended recipient.

In Chapter 2, we have noted that the multiplication of Weyl polynomials can

increase the size of the resulting ciphertext given by the expression

c = ℓ1 p1 + · · ·+ ℓs ps +m.

This fact can reduce the efficiency of WGBC by decreasing the ‘date-rate’ for trans-

mitting the ciphertext c over a network and also by decreasing the performance of

the decryption process. The larger the size of the support of the ciphertext polyno-

mial, the slower will the computation of normal remainder NRσ ,G (c) with respect

to the secret Gröbner basis G be. Of course, the efficiency of the decryption pro-
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cess also depends on the size and the number of polynomials in the secret key G .

On the basis of our experimental results, it has been observed that these issues are

controllable in the setting of WGBC. This can be seen in the following table by

observing the time (in seconds on our computing machine) taken by the decryption

process and the data-rate for transmitting c, for our instances of WGBC presented

in Examples 4.3.3, 4.3.6, and 4.4.2.

WGBC Decryption Data-Rate

Ex. 4.3.3 0.79 1/246

Ex. 4.3.6 0.59 1/238

Ex. 4.4.2 0.63 1/377

Table 5.1: WGBC: Decryption Time and Data-Rate

From the above table and many other similar instances of WGBC, we observe that

instances of WGBC can be constructed which are efficient in terms of the time

required by the decryption process. As far as the efficiency in terms of the data-

rate is concerned, from the above table, we believe that the data-rates1 achieved by

instances of WGBC are manageable as compared to the instances of usual CGBC

that have been presented so far. At the same time, as compared to usual CGBC,

this nature of Weyl multiplication also gives WGBC additional security by hiding

the coefficients of various terms of the plaintext in the above representation of c.

Later, we will see that, since in the process of Weyl multiplication many new terms

are introduced, it makes the “intelligent” linear algebra attack harder to apply on an

instance of a WGBC.

Note that, from Proposition 2.1.5, the growth of the product of Weyl polyno-

mials also depends on the characteristic of the underlying field K of An. That is,

for fixed f ,g ∈ An, the larger the characteristic of the base field K, the greater will

the size of the support of the product f g be. For characteristic p = 0, for example,

1These data-rates depend on the size of the support of the the message m. Depending on the
size of the message space M , the message m could have a larger support and this might result in a
more better or similar data-rate as size of the Supp(c) may also increase for hiding various terms in
Supp(m).
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when K =Q, the size of the support of this product will be a maximum. In partic-

ular, given two Weyl terms t = xα ∂ β and t ′ = xα ′ ∂ β ′
, then from Proposition 2.1.5

it follows that the size of the support of the standard form of t t ′, together with the

exponents β and α ′ also depends on the characteristic p of the underlying field K

of the corresponding Weyl algebra. For fixed β and α ′ this size is maximal when

p = 0. That is why, in the concrete instances of WGBC presented in Section 4.3,

we have not used Weyl algebras over the field K of very large characteristic p.

In the next section we shall now discuss the security of WGBC against known

standard attacks. In particular, we test our instances of WGBC presented in Section

4.3, by applying attacks based on linear algebra, the chosen ciphertext attack and

the partial Gröbner basis attack.

5.2 Linear Algebra Attacks

In Section 3.3 we have described two attacks on PCC and CGBC, namely, the basic

linear algebra attack and the “intelligent” linear algebra attack. In this section we

briefly describe these attacks again in the setting of WGBC. We have implemented

Attacks 3.5.1 and 3.6.1 in the setting of WGBC for the computer algebra system

ApCoCoA2. We shall see that the instances of WGBC can be constructed that are

secure against these attacks.

First we consider the basic linear algebra attack for WGBC. It is the same as

Attack 3.5 for CGBC described in Chapter 3. For the sake of completeness, we

rephrase it below in the setting of WGBC.

Attack 5.2.1. Basic Linear Algebra Attack for WGBC

Given an instance of WGBC, recall that the ciphertext polynomial c is constructed

as follows:

c = m+ ℓ1 p1 + · · ·+ ℓr pr.

In this representation of c, an eavesdropper, Eve knows the public polynomials

p1, . . . , pr and the stolen ciphertext c. She also knows a set M containing the sup-

2see Appendix B.3 and B.4 for these implementations
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port of m. Therefore, she can perform the following steps to attack the system using

linear algebra.

(1) Fix an initial guess for the degree bound d0 for the coefficient polynomials

ℓ1, . . . , ℓs by setting d0 = dc −dp.

(2) For i = 1, . . . ,s,

(i) Write down the polynomials ℓi as ℓ′i = ∑ j ai j t j with indeterminate coef-

ficients ai j, where the sum ranges over all j such that the terms t j are all

terms of degree ≤ d0.

(ii) Write down the message m as m0 = ∑ j b j t j with indeterminate coeffi-

cients b j, where the sum ranges over all j such that the terms t j are the

elements of M .

(3) Compute the standard form of

c′ = m0 + ℓ′1 p1 + · · ·+ ℓ′r pr

to obtain a general ciphertext representation c′ in the unknowns ai j and b j.

(4) Formulate a linear system of equations for the indeterminates ai j,b j by equat-

ing coefficients of c′ to those of the original ciphertext c.

(5) Solve the above linear system of equations using linear algebra.

Case 1: If the system has a solution then recover the message m using the values

b j obtained from the solution of the system. That is, compute m = m0 =

∑ j b jt j, and stop.

Case 2: If the system has no solution, then replace d0 by d0 + 1 and go to

Step (2).

As in the case of CGBC, if the polynomials c and pi are sparse, then the diffi-

culty of the resulting problem of polynomial system solving increases as the number

dc −dp gets larger. In particular, one has to make the degree bounds dc − dp large

enough, in order to generate linear systems of equations in too many indeterminates
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to be solvable in an acceptable amount of time. At this point the first important dif-

ference between CGBC and WGBC stems from Proposition 2.1.5. As explained in

the last section, the process of bringing c= ℓ1 p1+ · · ·+ℓs ps+m into standard form

creates a large number of terms in the support of c. Hence the indeterminates ai j

appear in many different linear equations, and the linear equations are not sparse.

Therefore, the user of a WGBC can make the resulting linear system of equation

difficult to solve by selecting parameters n,dc,dp and dℓ appropriately.

By using an implementation of Attack 5.2.1, let us now examine how the in-

stances of WGBC presented in Section 4.3 can be considered as secure against the

basic Linear Algebra Attack.

Example 5.2.2. For the instance of the WGBC of Example 4.3.3, suppose that an

attacker tries to recover the plaintext message m by using an implementation of the

basic linear algebra attack. Note that in this case dc = 91 and the public polyno-

mials p1 and p2, have degrees 36 and 48 respectively. Therefore, the initial degree

bound for the polynomials ℓ′1, and ℓ′2 is d0 = dc −dp = 55. An implementation of

Attack 5.2.1 on our ‘computing machine’ resulted in a dense linear system of size

3,183,545×910,967 which could not be solved. Moreover, because of the cancel-

lation of the degree forms DF(ℓi pi), in c, for the success of the attack, an attacker

has to solve even a larger linear system of equations.

Example 5.2.3. Let us now consider the instance of WGBC presented in Example

4.3.6. Before applying the attack, we determine the size of the linear system of

equations that will be created by the basic linear algebra attack. In this case, we

have dc = 57, and the degrees of the public polynomials p1, p2, and p3 are 20, 14,

and 28 respectively. Therefore, to attack the system by using Attack 5.2.1, we have

to start by assuming that the degrees of the polynomials ℓ′1, ℓ
′
2, and ℓ′3 are 37, 43,

and 29 respectively. We also write the message m as a polynomial m0 of degree

less than or equal to 3 with indeterminate coefficients. With these informations,

the basic linear algebra attack on this instance of WGBC will result in a linear

system of equations of size 67,945,521×21,703,514. We believe that this system

is infeasible to solve using the current known techniques of solving a dense as well

as sparse linear system of equation over some finite field.
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One can also similarly see that an attempt for breaking the cryptosystem pre-

sented in Example 4.4.2 by applying Attack 5.2.1 will be fruitless.

However, as described in Section 3.6, there is a more serious version of the

basic linear algebra attack that is known as the “intelligent” Linear Algebra Attack

[25]. The idea of the attack is to reduce the size of the linear system by reducing

the number of unknowns in the linear system of equations obtained by the basic

Linear Algebra Attack 5.2.1. Below we briefly describe this attack in our setting of

WGBC and explain how WGBC can be made secure against it.

Attack 5.2.4. Intelligent Linear Algebra Attack for WGBC

Consider an instance of WGBC based on a Weyl algebra An. Let Bn be the set of

all terms of An. Recall that, in the setting of WGBC, encryption is achieved by

computing the standard form of

c = m+ ℓ1 p1 + · · ·+ ℓs ps.

For i = 1, . . . ,s, write the coefficient polynomial ℓi as the polynomial ℓ′i with inde-

terminate coefficients bi j. Instead of using a dense representation of ℓ′i, compute the

following set D.

D = {t ∈ Bn | ∃ tp ∈
s∪

i=1

Supp(pi), s.t. t · tp = tc for some tc ∈ Supp(c)}.

The set D ⊂ Bn is the set of all the candidate terms for each ℓi.

Then use indeterminate coefficients bi j in ℓ′i only for the terms t ∈ D and mount

a linear algebra attack as described in Attack 5.2.1. That is, with these settings, one

can tries to mount the attack on an instance of WGBC by following all the steps of

Attack 3.6.1.

For the usual CGBC case, this attack might be very serious because of the fact that

multiplication and addition of commutative polynomials rarely cancel terms com-

pletely. Moreover, as explained in Remark 3.6.2, this attack is more efficient when

input polynomials are sparse. In the setting of WGBC, We have already explained

in Section 5.1 that the process of converting ℓi pi to standard form introduces many
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new terms in the ciphertext c and in turns reduces the sparsity of c. That is, the sup-

port of c becomes rather large and essentially all terms of suitable degrees pseudo-

divide some term in Supp(c). Hence the set D in the Intelligent Linear Algebra

Attack will contain a large number of candidate terms for the polynomial ℓ′i. In

other words, by a suitable choice of WGBC parameters given in Remark ??, the

user of WGBC can make it difficult to solve the linear system of equations obtained

by using this attack.

Let us illustrate our claims with an extremely simple example.

Example 5.2.5. In the Weyl algebra A2 = F31[x1,x2,∂1,∂2], consider the polynomi-

als
p1 = 2x5

1∂ 2
1 +4x5

2 +5x3
1x2 −2x2

1x2
2 +4x3

1∂1 +4x2
2 +3x2∂1 −2,

p2 = 33x3
1x3

2∂ 2
1 ∂2 + x3

1x4
2 +4x2

1∂ 2
1 +8x3

1 +8x2
1x2 +2x2 +3.

Let us use the coefficient polynomials

ℓ1 = −6x4
2∂ 3

1 ∂ 5
2 +10∂ 4

1 +9∂ 3
1 +8∂ 3

2 −∂ 2
2 , and

ℓ2 = 4x2
1x2∂ 3

1 ∂ 4
2 −6x1∂ 3

1 −12∂ 3
2 +15∂ 2

1 +14∂ 2
2

for the encryption. Notice that the numbers of terms in the supports of p1, p2, ℓ1

and ℓ2 are 8, 7, 5 and 5 respectively. The resulting ciphertext c = m+ ℓ1 p1 + ℓ2 p2

has degree 11 and there are 184 terms in its standard form. However, in order to

mount the intelligent linear algebra attack in this setting, the number of terms we

have to consider for ℓ1 and ℓ2 is 268 each. This means that we have to solve a

linear system of equations in more than 500 indeterminates. On the other hand,

if the same set of polynomials are considered in the commutative polynomial ring

P = F31[x1,x2,∂1,∂2], then the intelligent linear algebra attack results in a linear

system with 220 unknowns.

We have implemented Attack 5.2.4 for the computer algebra system ApCoCoA

(see Appendix B.4) and tried to break the instances of WGBC presented in Section

4.3. We summarize our observations in the following examples.

Example 5.2.6. Consider the instance of WGBC given in Example 4.3.3 and ap-

ply the intelligent linear algebra attack using the ciphertext c, the public polyno-

mials p1, p2 and the message space M as inputs. Note that, we have dc = 91
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and the public polynomials p1 and p2 have degrees 36 and 48 respectively. The

total number of monomials in the public polynomials is 298. Therefore, the at-

tack will start by initialising the degree d = d0 = 55 for the polynomials ℓ′1 and ℓ′2
in unknown indeterminates bi j. The next step is then to compute the set D for

the candidate terms that are used for the encryption as explained above in the as-

sumption of Attack 5.2.4. In this way, as compared to the basic linear algebra

attack, the total number of unknowns bi j reduces to 90,634 and we have to perform

(90,634− 2808)× 298 = 26,172,148 Weyl multiplications of monomials for cre-

ating the general ciphertext c′ in these unknowns. By comparing the coefficients

of c′ to those of c, the attack then results in a linear system of 368,344 equations

in 90,634 unknowns. This task takes about 7 hours of CPU time on our comput-

ing machine. The next step is the setting-up of matrices for using linear algebra

to solve this system. Another time consuming process of creating and filling up a

large matrix of dimension 368,344×90,634 then starts. The resulting matrix con-

tains 43,058,100 number of non-zero entries. We were unable to solve the system

using the ApCoCoA package LinBox based on the C++ library of LinBox [16].

On the other hand, in these circumstances, if an attacker somehow is successful

in solving this system by putting additional resources like using high-power com-

puters and implementation of the attacks at lower level, he will learn that the system

has no solution and that degree d0 should be first increased to 56 and then to 57.

Each time he has to try to solve even a larger system with more effort. With these

observations, we believe that the instance of WGBC presented in Example 4.3.3 are

to be hard to break by using intelligent linear algebra attack.

Remark 5.2.7. Because of the requirement (5) of Procedure 4.2.1, we note that,

after bringing c = ℓ1 p1, . . . , ℓs ps +m into standard form, the degree form DF(ℓi pi)

cancel . An attacker does not know how many terms in the upper part of the cipher-

text polynomial c are cancelled during this process. Therefore, the linear system of

equation obtained by the first iteration of Attack 5.2.4 may not have any solution.

That is depending on the number of terms cancelled in the upper-part of c, the at-

tacker has to try solving more than one systems of linear equation, each time with

more effort and resources. As we have seen in the above example that for recov-

ering the plaintext message m, the attacker has to solve three very large systems of
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equations. Moreover, the users of WGBC can always make more difficult to solve

the resulting linear system of equations. For instance, they can use the polynomials

ℓ1, . . . , ℓs in such a way that makes the ciphertext dense in the lower and the middle

parts.

For the instance of WGBC discussed in the above example, let us use the sug-

gestions of choosing ℓi in the above remark and construct the following example.

Example 5.2.8. Consider again the instance of WGBC given in Example 4.3.3.

Here we have the Weyl algebra A2 = F13[x1,x2,∂1,∂2] and the term ordering σ =

DegRevLex. The message m for sending using WGBC is given by

m =−6x4
2∂ 3

2 +6∂ 6
2 +5x4

2 −∂ 4
2 +6x3

2 +6∂ 3
2 + x2

1 + x2∂2 −3∂1∂2 +2x1 −5

For encrypting m, we now choose different Weyl polynomials ℓ1, ℓ2 ∈A2 as follows:

ℓ1 = −5x10
1 x16

2 ∂ 12
1 ∂ 19

2 −2x8
1x18

2 ∂ 10
1 ∂ 21

2 − x6
1∂ 13

1 +∂ 13
1 −2∂ 13

2 −3x5
1∂ 5

1 − x5
1x3

2 −

3x5
1 + x1∂1 −2x2∂2 +∂1∂2 −∂1 +1,

ℓ2 = 4x11
1 x13

2 ∂ 9
1 ∂ 12

2 −6x9
1x15

2 ∂ 7
1 ∂ 14

2 − x6
1∂ 13

1 +∂ 13
1 −2∂ 13

2 − x5
1x3

2 −∂ 5
1 +4∂ 2

1 ∂2 +

x1∂1 −3x2∂2 −4∂1∂2 + x2 +2∂2 +2.

With these ℓ1 and ℓ2, the new ciphertext polynomial c = m+ ℓ1 p1 + ℓ2 p2 has de-

gree 91 and there are 5278 terms in its standard form. The message m is also

well-hidden, i.e. out of 12 monomials of m, 10 are not present in the ciphertext

c. Again an efficient implementation of the normal remainder algorithm takes 2.7

seconds to decrypt the ciphertext. If an attacker tries to break the cryptosystem by

using the intelligent linear algebra attack, then the attack starts with initial degree

d0 = 55 for the polynomials ℓ′1, ℓ
′
2 and results in a linear system 570,356 equations

in 144,470 unknowns. This resulting system of equations is much harder to solve as

compared to the linear system obtained by applying intelligent linear algebra attack

on the ciphertext c of Example 4.3.3.

Remark 5.2.9. Although we were unable to solve the linear system resulting from

the intelligent linear algebra attack on the instance of WGBC in the Example 4.3.3

and its modification in Example 5.2.8, we recommend to use a Weyl algebra of
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index n > 2 and choose the number of public polynomials s > 2 for achieving suf-

ficient level of security against this attack. In fact, the larger the number of polyno-

mials in public key, the larger will the number of unknowns in the resulting linear

system be. This means that the linear system resulting from the intelligent linear

algebra attack can always be made more difficult to solve by increasing the number

of polynomials in the public key Q. This together with the suggestion given in Re-

mark 5.2.7 provides us sufficient flexibility for making an attempt of mounting the

intelligent linear algebra attack impractical.

Let us now observe how this attack behaves for the cryptosystems presented in

Examples 4.3.6, and 4.4.2.

Example 5.2.10. Consider the instance of WGBC of Example 4.3.6. Note that,

here we have the ciphertext polynomial c of degree 57 and its standard form consists

of 4177 terms. In this setting, the attack starts with an initial degree of d0 = 43 for

the polynomials ℓ′1, ℓ
′
2, and ℓ′3 with unknowns bi j. The set D of candidate terms for

these polynomials contains 101,792 terms and the total number of monomials in all

public polynomials is 217. Therefore, for the general ciphertext polynomial c′ of

degree 57, we have to perform 22,088,864 Weyl multiplications of monomials. An

implementation of this attack determines the size of the linear system required to

solve is 5,872,648× 305,460. Without setting up matrices for the corresponding

system of equations, this task, took 47.3 hours of CPU time on our computing

machine. We believe that this linear system of equations is very hard to solve by

using current solving techniques. Therefore, we claim that this instance of WGBC

is hard to break with the intelligent linear algebra attack.

Example 5.2.11. For the instance of WGBC presented in Example 4.4.2, we have

Weyl algebra A3 = F3[x1,x2,x3,∂1,∂2,∂3] of index 3 and the term ordering σ =

DegRevLex. In this case, we have dc = 49, the degree of the ciphertext c. The

support of c contains 6798 terms. There are 495 total number of monomials in the

polynomials p1, p2, and p3 and their minimal degree is 18. With these ingredients,

the intelligent linear algebra attack fails to succeed for this instance of WGBC.

In fact, in this case an attacker has to start with the initial guess d0 = 31 for the

polynomials ℓ′i with unknowns bi j. For the success of the attack, he has to solve a
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linear system of dimension 6,903,190×640,083, which, we believe, is extremely

hard. The number of non-zero entries in the resulting matrix is 356,669,618.

Remark 5.2.12. Here we remark that the linear algebra type attacks, being single-

break attack, have nothing to do with the secret key G. That is, if the attack is

successful, the attacker would only be able to determine the plaintext message m

corresponding to one stolen ciphertext c. The success of breaking one ciphertext

does not reduce the amount of the time and the resources required to break another

ciphertext.

All the above examples show that the instances of WGBC can be constructed

to make them secure against the intelligent linear algebra attack. We believe that

an attempt of trying to break an instance of WGBC by using these attacks is not

practical. Note that the number of non-zero entries in the matrices of the linear sys-

tems of Examples 5.2.10 and 5.2.11 indicate that these matrices are sparse. Further

investigation in this direction could be an attempt of exploiting the sparsity of these

matrices for solving these linear systems in an efficient way. But is this practical?

How difficult is it to accomplish? Are the corresponding matrices sparse enough

that one can easily solve the system by exploiting the number of zero entries in

these matrices? These are the questions that can only be answered by investigat-

ing ‘structure’ of these matrices and by studying all the techniques that have been

developed so for solving ‘sparse linear systems’.

We have not yet performed a detailed investigation for the possibility of such

an attempt by using ‘sparse linear algebra’. The techniques from the sparse linear

algebra are efficient but most of the techniques depend on the structure of the corre-

sponding matrices. In particular, the efficiency depends not only on the number of

non-zero entries but also on their distribution in these matrices. Many techniques

are designed only to work with the square matrices, i.e. with the determined sys-

tems and most of them are efficient for the symmetric matrices. We are interested

in how efficient are the techniques for solving a sparse linear system when applied

to the linear systems of Examples 5.2.10 and 5.2.11. On the other hand, if these

systems are possible to solve by exploiting the sparsity of the system, we can al-

ways use suggestions of Remarks 5.2.7 and 5.2.9 such that mounting the intelligent

linear algebra attack results in a linear system of even a more larger size. In this way

98



Chapter 5. Efficiency and Security

we can make an attempt of using sparse linear algebra techniques more difficult to

apply for the possibility of solving the resulting linear systems.

We illustrate it by the following example.

Example 5.2.13. Consider again the instance of WGBC of Example 4.4.2. In this

case, the number of polynomials in the public key Q is s = 3 and the secret key G

contains 11 polynomials g1, . . . ,g11. As suggested in Remark 5.2.9, we change the

parameter s to 3 and construct two new polynomials p4 and p5 for the public key

Q. In order to achieve this, let us choose

h41 = −3x2
2x4

3∂ 2
1 ∂ 4

2 ∂ 3
3 −2x4

3∂ 2
1 ∂ 6

2 ∂ 3
3 +3x3

1x2
3∂1∂ 2

3 − x1x2∂ 3
1 ∂2∂3 −2x2

1x2∂ 2
2 ∂3 −

2x1x2∂1∂ 2
2 ∂3 +2x2

1∂ 3
2 ∂3 +2x1∂1∂ 3

2 ∂3 −2x1∂ 3
1 ∂3 −3x2

1∂ 2
2 ∂3 +3x1x2∂ 2

2 ∂3

−3x2
1∂3 +2x2∂1 +3∂ 2

1 −3x2∂2 + x1∂3 +3x3 −2∂3,

h42 = 3x1x4
3∂ 5

1 ∂ 3
2 ∂ 3

3 + x1x2
2x3∂ 3

1 − x2
1x3∂ 2

2 +3x1x3∂1∂ 2
2 +2x2x3∂1∂ 2

2 −3x1x3∂ 3
2

−2x3∂1∂ 3
2 + x1x3∂3 − x3∂2 −3x1∂3 −2x1,

h51 = −3x3
1x3

2∂ 3
2 ∂ 4

3 − x3
1x3

2x2
3∂ 3

2 ∂3 +∂ 3
1 ∂ 3

2 ∂3 − x3
1∂ 4

3 +3x3∂ 4
3 − x3

1 −3x3
2 +3x3,

h52 = −3x2
1x2

2x7
3∂ 3

2 ∂ 3
3 − x2

1x2
2x9

3∂ 3
2 + x1x3

2x2
3∂ 4

1 ∂ 3
3 −2x1∂1∂ 2

2 ∂ 2
3 + x2x3∂ 2

1 + x1∂1 −

2∂ 2
2 −3x3 −∂3,

h53 = 3x3
1x3

2x3
3∂ 3

2 ∂3 − x2
1x3∂ 2

2 +3x1x3∂1∂ 2
2 +2x2x3∂1∂ 2

2 −3x1x3∂ 3
2 −2x3∂1∂ 3

2 +

x1x3∂3 − x3∂2 −3x1∂3 −2x1.

and then compute the standard form of the polynomials

p4 = h41 g1 +h42 g9, and p5 = h51 g4 +h52 g6 +h53 g7.

The polynomial p4 has degree 18 and contains 198 terms in its standard form. The

degree of p5 is 22 and there are 124 terms in its standard form. The public key

is now Q = {p1, p2, p3, p4, p5}. Let the message m be as given in Example 4.4.2.

To encrypt the message m, together with ℓ1, ℓ2, ℓ3 be as given in the above referred

example, we also choose

ℓ4 = x5
1x8

2x9
3∂ 4

1 ∂ 3
2 ∂ 2

3 + x2
1x2x3

3∂1∂ 2
3 , and ℓ5 = −∂ 6

1 −2∂2 −2∂3,

and compute the ciphertext c as

c = m+ ℓ1 p1 + ℓ2 p2 + ℓ3 p3 + ℓ4 p4 + ℓ5 p5.
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With these changes, the resulting ciphertext c again has degree 49 and its support

consists of 8410 terms. Moreover, the message m is well hidden. If we mount the in-

telligent linear algebra attack with the above 5 polynomials in the public key and the

ciphertext c, then the resulting linear system has 1,544,445 number of unknowns.

Note here the difference in the number of unknowns with the corresponding number

in Example 5.2.11. That is what we have explained in Remark 5.2.9 that by increas-

ing the number of polynomials in the public key, one can always make it difficult

to apply the intelligent linear algebra attack to the resulting instance of WGBC.

Moreover, if we choose ℓ4, ℓ5 such that the degree dc also becomes larger than 49,

the degree of the ciphertext in Example 4.4.2, then the resulting linear system will

become more difficult to solve. For instance, by choosing

ℓ4 = x9
1x6

2x6
3∂ 3

1 ∂ 4
2 ∂ 7

3 + x5
1x8

2x9
3∂ 4

1 ∂ 3
2 ∂ 2

3 − x2
1x2∂ 3

1 , and

ℓ5 = −x7
1x5

2x3
3∂ 8

1 ∂ 4
2 ∂ 4

3 + x7
1x4

2x3
3∂ 8

1 ∂ 5
2 ∂ 4

3 +2x7
1x3

2x3
3∂ 8

1 ∂ 6
2 ∂ 4

3 −2∂2 −2∂3,

the resulting ciphertext has degree dc = 52 and 9267 terms in its support. In this

setting, mounting the intelligent linear algebra attack, with the initial guess of d0 =

34, results in a linear system in 2,247,150 number of unknowns. Because of the

cancellation of highest degree terms in c, an attacker will have to solve a very large

linear system in more than 2.2 million indeterminate coefficients for the success of

the intelligent linear algebra attack.

5.3 Partial Gröbner Basis Attack

We have described in Section 3.7 the partial Gröbner basis attack for the usual com-

mutative Gröbner basis cryptosystem. The attack works exactly the same way for

Weyl Gröbner basis cryptosystems as described in Attack 3.8. The obvious defence

to this kind of attack is to choose the public polynomials p1, . . . , ps in such a way

that the computation of partial Gröbner bases of the ideal J = ⟨p1, . . . , ps⟩ is infea-

sible. In this section, we discuss the security of the instances of WGBC of Section

4.3 against a partial Gröbner basis attacks.

Recall that by a partial Gröbner basis H of the ideal J = ⟨p1, . . . , ps⟩ ⊂ An upto

the degree bound d we mean the output of the left Buchberger’s Algorithm 2.3.24
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modified such that each computation involving polynomials of degree higher than

d is not performed. In the setting of WGBC an attacker can apply the partial

Gröbner basis attack as follows:

Attack 5.3.1. Partial Gröbner Basis Attack and WGBC

Consider the Weyl algebra An = K[x1, . . . ,xn,∂1, . . . ,∂n] of index n over K. Let σ
be a degree compatible term ordering on Bn. Given an instance of WGBC based on

An, let J = ⟨p1, . . . , ps⟩ be the ideal generated by the polynomials in the public key

Q. For the partial Gröbner basis attack on WGBC, an attacker performs following

steps.

(1) Choose a number d > dp, where dp = max{deg(pi)|i = 1, . . . ,s}.

(2) Compute a partial Gröbner basis H of J upto the degree bound d. Let H be

the tuple of polynomials in H.

(3) Compute the normal remainder m′ = NRσ ,H (c). If m′ is contained in the

message space then stop otherwise replace d by d +1 and go to Step(2).

The probability of the success of the above Attack 5.3.1 increases with the in-

crement in the degree bound d for H. In fact, it is more likely to succeed if d = dc,

the degree of ciphertext polynomial (see [8]). In [8], it is also suggested to start the

attack by setting d = dc in the setting of CGBC. The question arises here: is this

realistic? or is it always feasible to compute a partial Gröbner basis upto the degree

bound d = dc. In our setting of WGBC, the answer is NO. In fact for an instance

of WGBC, there is a strong computational evidence that if the difference dp −dc is

greater than 25 then it is very likely that the computation of a partial Gröbner basis

of J turned out to be infeasible. This claim is a consequence of Proposition 2.1.5.

Even if we have an ideal I generated by randomly chosen sparse Weyl polynomials

f1, . . . , fk and plan to compute a partial Gröbner basis upto a degree bound d then

at each step of the left Buchberger’s Algorithm there is a considerable expansion in

the supports of the resulting polynomials. This expansion of the supports not only

increases the amount of the memory required to store the intermediate results but

also affects the efficiency of computing the normal remainder of S-polynomials of
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very large sizes with respect to a set of polynomials with very large supports. In

short, these facts slow down the entire computation enormously. We have already

observed this behaviour of Buchberger’s algorithm in Examples 4.1.2, 4.1.3, and

4.1.4.

In Procedure 4.2.1 for constructing a WGBC, we have explicitly requested that

the designer checks that partial Gröbner bases of J are hard to compute for large

degree bounds. As explained above, this is very easy to accomplish in the case of

WGBC for a suitable choice of the parameter dp and the polynomials hi j used for

creating the public polynomials p1, . . . , ps. Of course, our polynomials p1, . . . , pr

are not entirely random, since they are contained in a larger ideal which has a sim-

ple Gröbner basis, namely G. But we have not been able to use this fact to the

benefit of the attacker, and in all cases that we tried, the predicted expansion of

the supports happened indeed. The success of Attack 5.3.1 highly depends on the

successful computation of a partial Gröbner basis of the ideal J = ⟨p1, . . . , ps⟩ for

large degree bounds. From all our experimental results we believe that in the set-

ting of WGBC, if the difference dc − dp is kept greater than 25 then the success

of the partial Gröbner basis attack cannot be guaranteed because of the above ex-

planations. In the following examples we examine the security of the instances of

WGBC presented in Section 4.3 against the partial Gröbner basis attack.

Example 5.3.2. Consider the WGBC presented in Example 4.3.3 and let J = ⟨p1, p2⟩
be the ideal generated by the polynomials in the public key. Note that we have

dc = 91 and dp = max{36,48} = 48 therefore, to start the attack we set the de-

gree bound d = 60 for computing a partial Gröbner basis of J. Using the CAS

Singular on our computing machine, we computed a partial Gröbner basis H of

the ideal J in 3613.93 seconds of CPU time. The set H contains 108 polynomi-

als consuming 183 MB of memory. The reduction of the ciphertext c modulo H

returns a remainder with 284,745 terms. This process takes 17547.56 seconds of

CPU time on our computing machine. As required by Attack 5.3.1, we replaced d

with d + 1 = 61 and continue. For d = 65, we were unable to compute a partial

Gröbner basis of the ideal J in 546513.6 seconds (151.81 Hours) of CPU time. At

this point, the computation was progressing very slow and the amount of memory

consumed during the computation was 3481.6 MB. For the possible success of the
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attack, one has to compute a partial Gröbner basis of J for the degree bound d ≥ 91.

With these observations, we claim that the computation of a partial Gröbner basis

for the success of the partial Gröbner basis attack is infeasible.

Example 5.3.3. Consider now the instance of WGBC presented in Example 4.3.6.

In this case we have dc = 57 and dp = 28. For attacking the system with Attack

5.3.1, let us choose d = 45. Let J = ⟨p1, p2, p3⟩ be the ideal generated by the

polynomials in the public key Q of the cryptosystem under consideration. With

these ingredients, the computation of a partial Gröbner basis H of J for d = 45 takes

136,401.80 seconds on our computing machine. The resulting set H contains 195

Weyl polynomials the amount of memory required to store these polynomials grows

to 12.1 GB. Note here the expansion in the supports of the resulting polynomials.

We interrupted the process of computing the normal remainder of c with respect

to H after 18,921 minutes of CPU time to stop without any output. During this

process the the intermediate results had grown enough to consume more than 16

GB of the system memory. We then started to compute a partial Gröbner basis

with the degree bound d = 47 and could not compute H. In fact, we interrupted

the computation after more than 7 days of CPU time on our computing machine

to terminate without an output. At the time of interruption, the computations had

already consumed 16.3 GB of memory and was progressing very slow. Hence there

is a significant computational evidence that the partial Gröbner basis attack fails for

this instance of WGBC.

In the following we illustrate how the partial Gröbner basis attack fails when

applies to the instance of WGBC of Example 4.4.2.

Example 5.3.4. Consider the case of WGBC presented in 4.4.2. The given Weyl al-

gebra is A3 = F7[x1,x2,x3,∂1,∂2,∂3] and the term ordering is DegRevLex. More-

over, we have dc = 49 and dp = 23. Let J = ⟨p1, p2, p3⟩ be the ideal generated

by the polynomials in the public key Q. In this case we fail to compute a partial

Gröbner basis of J due to very fast growth of memory required for the computa-

tions. For instance, using the CAS Singular, we set the degree bound d = 32

for computing a partial Gröbner basis H of the ideal J. The computation of H takes

38884.19 seconds on our computing machine. The set H contains 326 polynomials
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and fails to reduce the ciphertext c in 15065 minutes of CPU time. We were unable

to compute a partial Gröbner basis of J for a degree bound d > 32 using our current

resources. With these observations, we claim that the instance of this WGBC is

secure against the partial Gröbner basis attack.

Notice that in all above examples the attempts of trying to break the instances

of WGBC by partial Gröbner basis attack fail. In fact, in all these cases the compu-

tation of a partial Gröbner basis for a degree bound d = dc is infeasible. Moreover,

if H is a successfully computed partial Gröbner basis of the ideal J = ⟨p1, . . . , ps⟩
for some degree bound d such that dp < d < dc, then the normal remainder of the

ciphertext c with respect to H is not contained in the message space M .

5.4 Chosen Ciphertext Attack and WGBC

Recall the chosen ciphertext attack explained in the Section 3.9 for the usual CGBC.

In the setting of WGBC, one can apply the chosen ciphertext attack exactly the same

way as described for the CGBC setting in Attack 3.9.1. That is, the attacker Eve,

should have a temporary access to the decryption black box for decrypting a finite

number of ciphertext messages of her choice. For i = 1, . . . ,r, let us write ‘secret’

polynomials gi in the secret key G as:

gi = ti +hi, with LTσ (hi)<σ ti

In order to attack an instance of WGBC, Eve should also know or be able to guess

the leading terms ti of the polynomials gi ∈ G. With this knowledge, she can then

construct a ‘fake’ ciphertext message of the form

c′i = ti +∑
j

h′i j p j.

By using her temporary access to the decryption black box, she decrypt the fake ci-

phertext message c′i. As a result, for each i = 1, . . . ,r, she will get NRσ ,G (ci) =−hi.

Then by recombining she will find all secret polynomials gi = ti +hi. This reveals

the complete secret key G of the corresponding cryptosystem. This attack works

well both on the basic set-up of CGBC and Rai’s basic non-commutative Polly
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Cracker cryptosystem because their decryption processes are not able to distinguish

such fake ciphertext messages from the original one. To defend this attack in the

setting of non-commutative Polly cracker cryptosystem, Rai and Bulygin [42] have

proposed the following countermeasures:

(1) Do not publish the complete set Oσ (I). Publish only a (small) part M ⊂
Oσ (I) and use M as a K-basis for the message space.

(2) Ensure that the tail hi of each polynomial gi ∈ G contains at least one term

from Oσ (I) \M in its support. In this way, if the attacker guesses LTσ (gi)

and tries to decrypt it, countermeasure (3) will make sure that he fails.

(3) Design the decryption algorithm such that if the normal remainder of the

ciphertext c is not contained in ⟨M ⟩K then either return an error message

or the original ciphertext without reduction. In this way, when the attacker

decrypts a term outside M , the term is returned unchanged and no secret

information is revealed.

These countermeasures are suggesting us a way of recognising illegal or fake ci-

phertext messages and hence the above explained chosen ciphertext attack will not

work. That is, if the decryption algorithm computes a normal remainder which is

not contained in ⟨M ⟩K , it is clear that an illegal ciphertext was used. Therefore the

decryption algorithm does not reveal the normal remainder, but returns the cipher-

text unchanged. It has been argued that countermeasure (1) reduces the efficiency

of the cryptosystem too much. By restricting M to a proper subset of Oσ (I) we

can make the probability for a random polynomial to be a valid ciphertext as small

as we like.

The above explained countermeasures can be adapted for any Gröbner basis

type cryptosystem. Since WGBC is a special case of GBC, we have already pro-

posed to design a WGBC in a way that its basic set-up automatically recognises

the illegal ciphertext messages. For instance, notice that in the introduction of the

WGBC in Cryptosystem 4.1.1, we have adapted countermeasures (3). The other

two countermeasures are part of the set-up proposed in Procedure 4.2.1.

Note also that all the instances of WGBC presented in Section 4.3 have resis-

tance against chosen ciphertext attack from the procedures on which they are based.
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5.5 Adaptive Chosen-Ciphertext Attack

In [25] Koblitz described an adaptive chosen ciphertext attack for PCC (see Chapter

5, §3, Exercise 11) which exploits the fact that PCC is homomorphic. That is, if

c,c′ ∈ P are ciphertext units corresponding to the plaintext messages m and m′ ∈ K

respectively, then it holds that c+ c′ and c · c′ are ciphertext units for m+m′ and

m ·m′ respectively. Koblitz described this attack as follows:

Suppose that two companies A (Alice’s company), and C (Cathy’s company) are

communicating with B (Bob’s company) using Bob’s public key. On many ques-

tions, C is cooperating with B, but there is one extremely important customer who

is taking competing bids from a group of companies led by A and B, and from a

different consortium led by C. C knows that A has just sent B the encrypted amount

of their bid, and she desperately wants to know what it is. Suppose that A’s mes-

sage m is sent as the ciphertext c, and that Cathy is able to see it. Cathy creates a

ciphertext, c′ = c0 + c+m0 where c0 =
s
∑

i=1
hi pi is an encrypting polynomial, and

c′ decrypts to the element m′ of the message space M . She sends c′ to B, suppos-

edly part of a message on an unrelated subject. She then informs B that she had

a computer problem, lost her plaintext, and thinks that an incomplete sequence of

bits was encrypted for Bob. Could Bob please send her the decrypted m′ that she

obtained from c′, so that Cathy can reconstruct the correct message and re-encrypt

it? Since c0 vanishes during the decryption process, and c decrypts to m, it follows

that c′ decrypts to m′ = m+m0. Hence m′ can be used to find m = m′−m0. Bob is

willing to give Cathy m′ because he is unable to see any connection between c′ and

c or between m′ and m, and because Cathy’s request seems reasonable when they

are exchanging messages about a matter on which they are cooperating.

Note that the way c′ is constructed makes it a legitimate ciphertext and there

seems to be no straightforward way for Bob’s decryption algorithm to recognize it

as a security threat. Even with the countermeasures presented in Section 5.4 for the

chosen-ciphertext security, one cannot recognize such a fake ciphertext message.

Moreover, the attack in this form is a single-break attack since the message corre-

sponding to only one ciphertext can be recovered at a time and it has nothing to

with the secret key.

In the following we summarise this attack in our setting of WGBC and then
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provide countermeasures for the security of the instances of WGBC against this

attack.

Attack 5.5.1. Adaptive Chosen-Ciphertext Attack

Let Alice and Cathy be communicating with Bob using a WGBC. Suppose that

Cathy knows the ciphertext c = m+
s
∑

i=1
ℓi pi ∈ An that Alice has just sent to Bob. As

explained above, Cathy has decided to cheat Bob to break the ciphertext c. In order

to recover the plaintext m corresponding to c she has to perform the following steps.

(1) Create a fake ciphertext message c′ as c′ = c0+c+m0, where c0 =
s
∑

i=1
ℓi pi ∈

⟨p1, . . . , ps⟩ and m0 ∈ M .

(2) Request Bob to decrypt c′ and send the result m′ to her. Note that

m′ = NFσ ,G (c′) = NFσ ,G (c0)+NFσ ,G (c)+NFσ ,G (m0) = m+m0.

(3) Recover the plaintext message m as m = m′−m0.

In [42], Rai and Bulygin have proposed a countermeasure to overcome the above

attack in the setting of Rai’s non-commutative Polly Cracker cryptosystem. Be-

cause of the richness of the WGBC message space M , the countermeasure of [42]

(see Countermeasure 4.3) can also be adapted for the security of WGBC against

Attack 5.5.1. This countermeasure works as follows:

(1) Bob’s public key is Q = {p1, . . . , ps} and he sets his secret key G such that

the message space M should be large enough to be partitioned into disjoint

subsets.

(2) Bob chooses Alice’s message space as MA ⊂ M and Cathy’s message space

as MC ⊂ M such that MA ∩MC = /0.

(3) Design the decryption algorithm to recognize the ciphertext by its sender.

In this way, Bob can easily recognize Cathy’s fake ciphertext of the form c′ =

c0+c+m0, where c is the ciphertext used by Alice to encrypt the message m ∈MA.

Let m′ ∈M be the decryption of c′. Since both MA and MC are publicly known, if

m0 ∈ MC then m′ does not belong to MA as well as MC and decryption algorithm
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will return an error message about the suspicious nature of Cathy’s ciphertext. On

the other hand, if m0 ∈ MA, then m′ will be an element of MA and again decryp-

tion algorithm will recognize that an invalid ciphertext is sent by Cathy. Hence by

adapting the countermeasures presented in [42], one can overcome Attack 5.5.1. An

other technique to defend the attack is described in L. Van Ly thesis [35](see §4,4).

A similar countermeasure can also be adapted in the setting of WGBC. We, there-

fore, believe that this attack does not appear to be a major threat for the security

of WGBC. Further study of these cryptosystems might also results in other more

interesting and efficient techniques for the chosen-ciphertext security of WGBC.

5.6 Further Security Parameters

In this section we will describe how additional security of WGBC can be achieved.

In [51] it has been pointed out that for sending a message m to Bob by using a

CGBC, Alice has nothing to do with the characteristic p of the underlying field K

and the term ordering σ . Therefore, one can achieve additional security by hiding

the characteristic p of the field K and the term ordering σ on the terms of the

base ring from the public information of CGBC. For the case of the usual Polly

Cracker cryptosystems, this suggestion has been worked out in detail in [51]. This

suggestion can also be adapted for the case of WGBC for making the cryptosystem

even more secure.

Remark 5.6.1 (Make p and σ secret). Here we remark that one can achieve addi-

tional security by hiding the characteristic p of the field K and the term ordering σ
on An from the public information of WGBC. By keeping p and σ secret,

• we increase the cost of linear algebra attack.

• the chosen cipher text attack will not be possible in general settings.

• for the Gröbner basis computation of the public ideal J, the attacker has to

guess for a true p and the term ordering σ on An.
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Chapter 6
Two Sided Weyl Gröbner Basis

Cryptosystems

In Chapter 4, we have presented several concrete instances of our proposed left

Weyl Gröbner basis cryptosystems and in Chapter 5, we have discussed the security

of these instances of WGBC against known standard attacks. We have strong com-

putational evidence that these concrete instances of WGBC have resistance against

these attacks. On the other hand, we are also aware of the possibility of modifying

the attacks that are based on linear algebra. Such improvements might be possible

by introducing some more clever strategies or by playing with the statistics of the

terms in the ciphertext and the public key polynomials for reducing the size of the

resulting linear system of equations to solve it in a reasonable time. Success of

these attacks is also based on the current available techniques for solving a system

of linear equations. Although we were unable to break our instances of WGBC by

using the intelligent linear algebra attack, we are still interested in ‘totally’ avoid-

ing the attacks based on linear algebra. This objective can be achieved by choosing

proper two-sided ideals in Weyl algebras and then construct a GBC based on these

ideals. We shall call such a system a Two-sided Weyl Gröbner Basis Cryptosystem

(TWGBC).

In this chapter, we describe two-sided ideals of Weyl algebras and explain how

we can compute a two-sided Gröbner basis of such ideals. We shall then introduce

TWGBC in Section 6.2. These cryptosystems are based on the difficulty of comput-
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ing two-sided Gröbner bases in Weyl algebras over fields of positive characteristic.

We shall also present some concrete instances of such cryptosystems and discuss

their security and efficiency issues.

6.1 Two-Sided Gröbner Bases

Let us first recall some definitions from non-commutative polynomial ring theory.

Definition 6.1.1. Given a non-commutative ring R, we say that a subset IT ⊂ R is a

two-sided ideal of R if IT is closed with respect to addition and for any ℓ,r ∈ R and

f ∈ IT we have ℓ f r ∈ I.

Definition 6.1.2. Given a subset F ⊂ R of a a ring R, we say that ⟨F⟩T is the two-
sided ideal generated by F if it is of the form

⟨F⟩T = {∑
i∈Λ

ℓi firi | ℓi, ri ∈ R, fi ∈ F,Λ finite}

Moreover, a two-sided ideal IT is called trivial if IT = {0} or IT = R and otherwise

it is called non-trivial.

We shall now describe some two-sided ideals of the Weyl algebra An of index

n. Recall that the Weyl algebra An = K[x1, . . . ,xn,∂1, . . . ,∂n] of index n over the

field K is simple when K has characteristic 0. That is, An does not have any non-

trivial 2-sided ideals if char(K) = 0. On the other hand, if char(K) = p > 0, then

this property does not hold anymore. This follows immediately from the following

example.

Example 6.1.3. Consider the Weyl algebra A1 = Fp[x,∂ ] of index 1 over the finite

field Fp of prime characteristic p. Take the element ∂ p ∈ A1. For any term t =

xα ∂ β ∈ A1, we have, from Proposition 2.1.5 that

∂ pt = (∂ pxα)∂ β

=

(
min{p mod p,α mod p}

∑
j=0

j!
(

p
j

)(
α
j

)
xα− j ∂ p− j

)
∂ β

=

(
0

∑
j=0

j!
(

p
j

)(
α
j

)
xα− j ∂ p− j

)
∂ β

= (xα ∂ p)∂ β = xα(∂ p ∂ β ) = (xα ∂ β )∂ p = t ∂ p
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It follows that ∂ p commutes with every term t ∈ A. Therefore, I = ⟨∂ p⟩, the left

ideal generated by ∂ p, is also a two-sided ideal of A1. Hence A1 is not simple.

In fact, for the Weyl algebra An over a field K = Fp of positive characteristic p

we have Proposition 2.2.9. It states that, if An is a Weyl algebra of index n over a

field K of positive characteristic p > 0, then the center Cn of An is a commutative

polynomial ring in 2n indeterminates over K and it is given by

Cn = K[xp
1 , . . . ,x

p
n ,∂

p
1 , . . . ,∂

p
n ].

In view of this proposition and the above example, we note that, for the Weyl

algebra An = Fp[x1, . . . ,xn, ∂1, . . . ,∂n], if I is the left ideal generated by the elements

in the set {xp
1 , . . . ,x

p
n ,∂ p

1 , . . . ,∂
p
n }, then it is also be a two-sided ideal. In particular,

any non-trivial left ideal I of An whose system of generators is contained in the

center Cn is always a two-sided ideal of An.

From now on, we let K = Fp be a field of positive characteristic p and let An

be the Weyl algebra of index n over the field K. By an ideal we mean a two-sided

ideal of the Weyl algebra An and we denote it by the symbol IT unless otherwise

specified. The K-vector space basis of An as defined in Section 2.1 is the set Bn of

all terms given by,

Bn = {xα ∂ β | α, β ∈ Nn, n ≥ 1}. (6.1)

Example 6.1.4. Consider the following Weyl algebra

A2 = F13[x1, x2,∂1, ∂2]

of index 2 over the finite field of characteristic 13. Then the center C2 of A2 is given

by

C2 = F13[x13
1 , x13

2 ,∂ 13
1 , ∂ 13

2 ].

The following are some non-trivial two-sided ideals of A2:

IT1 = ⟨x13
1 ,x13

2 ,∂ 13
1 ,∂ 13

2 ⟩T

IT2 = ⟨x13
1 −1,∂ 13

1 −3,2∂ 13
2 −5⟩T ,

IT3 = ⟨x13
1 x13

2 −1,∂ 13
1 ∂ 13

2 −5⟩T

IT4 = ⟨x26
2 −∂ 13

1 ∂ 13
2 −3,x13

1 x13
2 ∂ 13

1 −3∂ 13
2 −1⟩T

IT5 = ⟨∂ 13
2 ⟩T , a principal two-sided ideal
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Example 6.1.5. For the Weyl algebra A4 = F2[x1,x2,x3,x4,∂1,∂2,∂3,∂4] of index 4

over the field F2 of characteristic 2, the center C2 is given as

C4 = F2[x2
1,x

2
2,x

2
3,x

2
4,∂

2
1 ,∂

2
2 ,∂

2
3 ,∂

2
4 ].

The following are non-trivial two-sided ideals of A2

IT = ⟨x4
1x4

2∂ 4
3 ∂ 2

4 −∂ 4
1 ∂ 2

3 − x2
4 −1, ∂ 4

1 ∂ 2
4 − x2

2x2
3 + x2

4 +∂ 2
1 −∂4 +1⟩T

JT = ⟨x6
1∂ 4

1 − x4
2∂ 6

2 + x4
3∂ 2

3 + x2
4∂ 2

4 +1, ∂ 6
1 ∂ 4

2 −∂ 6
3 ∂ 2

4 +1,

x4
1x4

4 − x4
2x2

4 − x2
3 −∂ 2

1 +∂ 2
3 −1⟩T

Note that each term in the support of the generating polynomial of the above ideals

belongs to the center C4.

Remark 6.1.6. For a two-sided ideal IT ⊂ An, if its generating system is contained

in the center Cn then it does not mean that all the elements of IT commute. For

instance, in the Weyl algebra A1 = F3[x,∂ ], the ideal ⟨x3⟩T is a two-sided principal

ideal generated by x3 ∈ A1. Here x3 ∈ Cn and the element ∂ (x3)x = x3(∂ x) =

x3(x∂ +1) = x4∂ + x3 belongs to IT but it is not contained in Cn.

We shall now briefly explain the theory of two-sided Gröbner bases of two-sided

ideals of the Weyl algebra An by following the approach of [24] or [26] and compute

two-sided Gröbner bases using the algorithm presented in [30].

Given a non-empty subset F ⊂ An, we denote the left, right and two-sided ide-

als generated by F by ⟨F⟩L, ⟨F⟩R, and ⟨F⟩T respectively. Recall from Section 2.3,

we consider a left-sided generating system as the set of left-sided generators of a

left-sided ideal and compute its left Gröbner basis by using left Division Algorithm

2.3.18 and left Buchberger Algorithm 2.3.24. In the same way one can also com-

pute a right Gröbner basis of a right ideal by using the right multiplication instead

of the left in these algorithms. The approach used in [24] and [26] for two-sided

Gröbner bases is that, unlike the one-sided case, we consider consider a given two-

sided generating system as a left or right sided generating system equivalent to the

given two-sided one. That is, given a two-sided ideal IT , and a term ordering σ ,

then IT , being a two-sided ideal is also a left ideal of An. Therefore, from Chap-

ter 2, Section 2.3 it has left σ -Gröbner basis GL. We can compute GL by using
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the Buchberger Algorithm 2.3.24. Then, for computing a two-sided Gröbner basis

of IT , we can for example start from the left Gröbner basis GL, and complete it

successively to the right structure, keeping the left one (see [30], Ch. 2 §3).

Definition 6.1.7. Let σ be a term ordering on An and consider a two-sided ideal

IT ⊂ A. Let GT = {g1, . . . ,gr} be a set of generators of IT . We say that GT is a two-
sided σ -Gröbner basis of IT if it satisfies one of the following three equivalent

conditions:

(1) ⟨GT ⟩L = ⟨GT ⟩T = IT

(2) ⟨GT ⟩R = ⟨GT ⟩T = IT

(3) ⟨GT ⟩L = ⟨GT ⟩R = IT

In fact, from ([24],Theorem 5.4), the above equalities (2) and (3) follow from (1).

Remark 6.1.8. If a finite subset G is a left σ -Gröbner basis of the left ideal ⟨G⟩L

and also a right Gröbner basis of the right ideal ⟨G⟩R, then in general ⟨G⟩L ̸= ⟨G⟩R.

For instance, consider the Weyl algebra A1 = F11[x,∂ ] with σ = DegRevLex, then

G = {x} is left Gröbner basis of ⟨x⟩L and is also a right Gröbner basis of ⟨x⟩R. Now,

xy+ 1 ∈ ⟨x⟩L, whereas xy+ 1 /∈ ⟨x⟩R. This implies that ⟨x⟩L ̸= ⟨x⟩R. Therefore, G

is not a two-sided Gröbner basis of ⟨x⟩T , the two-sided ideal generated by {x}. In

fact, ⟨x⟩T is not proper.

We are now ready to present an algorithm for computing a two-sided Gröbner

basis of a two-sided ideal IT ⊂ An. As stated above, the algorithm works as follows.

Algorithm 6.1.9. Two-sided Gröbner Basis Algorithm: TwoWGB(IT )

Let IT be a two-sided ideal of Weyl algebra An of index n over a field K = Fp.

Input: Ideal IT := ⟨ f1, . . . , fs⟩ of An and a term ordering σ .

Output: A two-sided Gröbner basis for IT with respect to σ
Perform the following sequence of steps.

(1) Compute a left σ -Gröbner basis GL of IT .

(2) Multiply every element of L form the right side with the 2n indeterminates of

An selecting one at a time.
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(3) If the normal remainder of the above product with respect to GL is non-zero

then add it to the set GL.

(4) After performing Steps (2) and (3) for each indeterminate, stop if GL is not

changed. Otherwise replace GL by a left Gröbner basis of the ideal generated

by GL and continue with Step (2).

Proposition 6.1.10. Algorithm 6.1.9 terminates and returns a two-sided Gröbner

basis of the ideal IT with respect to the term ordering σ .

Proof. For the proof we refer to [30] (Algorithm 3.1).

The following observation will be important for constructing instances of cryp-

tosystems

Proposition 6.1.11. Let IT = ⟨ f1, . . . , fr⟩T be a two-sided ideal of the Weyl algebra

An = Fp[x1, . . . ,xn,∂1, . . . ,∂n] and let σ be a term ordering on An. If the generating

polynomials f1, . . . , fr of IT are contained in the center Cn, then the following claims

hold:

(1) The ideal IT , viewed as a left (resp. right) ideal of An, its left (resp. right) σ -

Gröbner basis GL will be contained in the center Cn.

(2) The two-sided σ -Gröbner basis GT of IT is contained in Cn.

Proof. Since for i = 1, . . . ,r we have fi ∈ Cn, therefore, Supp( fi) ⊂ Cn. In partic-

ular, for each i we have LTσ ( fi) ∈ Cn. Therefore, for any pair ( fi, f j), we have

lcm(LTσ ( fi),LTσ ( f j)) ∈ Cn and hence the S-polynomial of fi and f j belongs to

the center Cn. Since Cn is a commutative polynomial ring, it follows that all the

intermediate and final results obtained by the left Division Algorithm 2.3.18 are the

elements of Cn. Therefore, the left σ -Gröbner basis GL obtained as an output of the

left Buchberger Algorithm 2.3.24 will be contained in Cn. This completes the proof

of (1).

We can now prove part (2). From Part (1), the left σ -Gröbner basis GL is con-

tained in Cn. Note that in Algorithm 6.1.9, for computing two-sided Gröbner basis

GT , we first compute GL. Let GL be the tuple of polynomials in GL. Then for
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i = 1, . . . ,n, and for every g ∈ GL, we have NRσ ,GL(gxi) = 0 and NRσ ,GL(g∂i) = 0.

This follows from the fact that GL ⊂Cn is left Gröbner basis and both gxi = xig ∈ IT

and g∂i = ∂ig ∈ IT . Therefore in the Step (3) of Algorithm 6.1.9, nothing will be

added to the set GL. Hence in this case GT = GL and the claim follows.

We shall now provide some examples of two-sided Gröbner bases of two-sided

ideals of An.

Example 6.1.12. For the Weyl algebra A1 =F7[x,∂ ] with σ = DegRevLex, consider

the subset S = {x7y7 + 1,xy2 − 1} ⊂ A1. Then a two-sided σ -Gröbner basis of the

ideal ⟨S⟩T generated by S ⊂ A1 turns out to be GT = {1}. Hence ⟨S⟩T is a trivial

two-sided ideal of A1, whereas the reduced left σ -Gröbner basis of the left ideal

⟨S⟩L is {g1, . . . ,g4} where

g1 = y4 − y3 − x2 +2xy− x−2,

g2 = x2y+ y3 + x2 −3xy−3x+3,

g3 = x3 −3y3 +3x2 + xy−2y2 +3x+ y−1,

g4 = xy2 −1.

Hence ⟨S⟩L is a proper left ideal of A1.

Example 6.1.13. Consider the Weyl algebra A3 = F3[x1,x2,x3,∂1,∂2,∂3] with σ =

DegRevLex. Choose polynomials

f1 = x6
1x3

2∂ 6
1 − x3

2x3
3∂ 6

2 + x3
3∂ 6

3 −∂ 3
1 +∂ 3

3 −1,

f2 = x3
1∂ 6

1 − x3
2∂ 3

2 + x3
3∂ 3

3 − x3
1 +∂ 3

2 −1

in A3 and consider the two-sided ideal IT = ⟨ f1, f2⟩T generated by these two polyno-

mials. Then the implementation of Algorithm 6.1.9 returns the set GT = {g1,g2,g3}
as the reduced two-sided Gröbner basis of the ideal IT , where

g1 = x3
2x3

3∂ 6
1 ∂ 6

2 − x9
2∂ 6

2 − x6
2x3

3∂ 3
2 ∂ 3

3 − x3
2x6

3∂ 6
3 − x3

3∂ 6
1 ∂ 6

3 − x6
2∂ 6

2 + x3
2x3

3∂ 6
2 +

x3
2x3

3∂ 3
2 ∂ 3

3 + x6
1x3

2 +∂ 9
1 + x6

2∂ 3
2 − x3

2∂ 6
2 − x3

2x3
3∂ 3

3 −∂ 6
1 ∂ 3

3 − x3
3∂ 6

3 +∂ 6
1 −

x3
2∂ 3

2 − x3
2 +∂ 3

1 −∂ 3
3 +1,

g2 = x3
1x6

2∂ 3
2 − x3

2x3
3∂ 6

2 − x3
1x3

2x3
3∂ 3

3 + x6
1x3

2 − x3
1x3

2∂ 3
2 + x3

3∂ 6
3 + x3

1x3
2 −∂ 3

1 +∂ 3
3 −1,

g3 = x3
1∂ 6

1 − x3
2∂ 3

2 + x3
3∂ 3

3 − x3
1 +∂ 3

2 −1.
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Note here that GT is also a left σ -Gröbner basis of the left ideal IT = ⟨ f1, f2⟩T .

Moreover, GT ⊂Cn = F3[x3
1,x

3
2,x

3
3,∂

3
1 ,∂

3
2 ,∂

3
3 ].

6.2 Two-sided Weyl Gröbner Basis Cryptosystems

Keeping in mind the properties and the structure of two-sided ideals in Weyl alge-

bras, we are now ready to introduce two-sided Weyl Gröbner Basis Cryptosystems

(TWGBC). As before, let the field K = Fp be a finite field of characteristic p and

An be the Weyl algebra of index n over K. Let the K-basis Bn of An be as given

in Equation (6.1) and let σ be a term ordering on Bn. Further recall that, given

a set of Weyl polynomials G = {g1, . . . ,gr} ⊂ An \ {0}, we can use the left Di-

vision Algorithm to compute the normal remainder NRσ ,G ( f ) of any polynomial

f ∈ An with respect to the tuple G = (g1, . . . ,gr) (see Algorithm 2.3.18 and Def-

inition 2.3.20). Moreover, if GT is a two-sided σ -Gröbner basis of the two-sided

ideal IT , then then it will also be a left σ -Gröbner basis of the left ideal generated

by GT , i.e. ⟨GT ⟩L = ⟨GT ⟩T = IT . It turns out that every Weyl polynomial f ∈ An

has a unique normal remainder NRσ ,GT ( f ) (see Theorem 2.4.1), and that if f ∈ IT

then NRσ ,GT ( f ) = 0 (Theorem 2.4.1, Part (2)). With these ingredients, we are now

ready to introduce the following cryptosystems.

Cryptosystem 6.2.1. Given a Weyl algebra An of index n over K = Fp, let IT be

a non-trivial two-sided ideal of An and let GT = {g1, . . . ,gr} be its two-sided σ -

Gröbner basis. We set GT = (g1, . . . ,gr) and Oσ (IT ) = Bn\{LTσ ( f ) | f ∈ IT \{0}}.

Then a two-sided Weyl Gröbner basis cryptosystem (TWGBC) consists of the

following data.

(1) Public Key: A set Q of Weyl polynomials {p1, . . . , ps} contained in IT \{0}
and a subset M of Oσ (I) are known publicly.

(2) Secret Key: The reduced two-sided σ -Gröbner basis GT = {g1, . . . ,gr} of

the ideal IT and the set Oσ (IT ) are kept secret.

(3) Message Space: The message space is the K-vector subspace ⟨M ⟩K of An

generated by M ⊂ Oσ (IT ).
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(4) Ciphertext Space: The ciphertext units are Weyl polynomials in An.

(5) Encryption: For encrypting a plaintext message m ∈ ⟨M ⟩K , choose Weyl

polynomials ℓi and ri, and then compute the standard form of

c =
s′

∑
i=1

ℓi pki ri, where s′ ≥ s and ki ∈ {1, ...,s},

to get the ciphertext polynomial c ∈ An.

(6) Decryption: Given a ciphertext polynomial c ∈ An, compute NRσ ,GT (c). If

the result is contained in ⟨M ⟩K , return it. Otherwise, return c.

Note here that since GT is a two-sided σ -Gröbner basis of the ideal IT and the

polynomials p1, . . . , ps ∈ IT , it follows that we have NRσ ,GT (pi) = 0 for each i =

1, . . . ,s, (see Theorem 2.4.1.2 ). This implies that for ki ∈ {1, . . . ,s}

NRσ ,GT (m+∑
i
ℓi pki ri) = m,

and hence the correctness of the system follows.

Note. From now onwards, we abbreviate a two-sided Weyl Gröbner basis cryp-

tosystem as TWGBC.

Again the security of TWGBC strongly depends on the difficulty of computing

two-sided Gröbner basis in Weyl algebras. That is, if an attacker can compute GT ,

he can break the cryptosystem. Together with the subset of Oσ (I) the attacker only

knows the Weyl polynomials {p1, . . . , ps} in the public key Q ⊂ IT . Therefore, they

have to be created in a way that hides all information about the system of generators

of IT . In particular, the leading terms of polynomials in the secret key should be

well hidden. On the other hand, the attacker might also try to compute a two-sided

σ -Gröbner basis of the ideal JT = ⟨Q⟩T generated by the set of polynomials in

the public key. But, in the setting of Weyl algebras, as in the case of WGBC (see

Section 4.1), we can make this task difficult by choosing suitable polynomials in

the public key Q = {p1, . . . , ps} such that a two-sided σ -Gröbner basis of the ideal

JT = ⟨p1, . . . , ps⟩T is hard to compute. To show the existence of such ideals in Weyl

algebras, we present an easily construct example below.
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Example 6.2.2. Let the Weyl algebra An, the term ordering σ and the two-sided

ideal IT ⊂ An be as given in Example 6.1.13. Then a two-sided Gröbner basis of

this ideal is the set GT = {g1,g2,g3}, as given in the same example. We choose two

random sparse polynomials p1, p2 ∈ IT such that deg(p1) = 18 and deg(p2) = 17.

The number of terms in the standard form of the polynomials p1 and p2 are 204 and

198 respectively. It is very easy and straightforward to choose such polynomials

in the ideal IT by using any computer algebra system. For instance, if f is a dense

polynomial in An such that deg( f ) = 18 then Supp( f ) can contain at most 134596

terms. For getting a sparse polynomial in A3, we first randomly choose less than

one percent i.e. between 1000 - 1300 terms in the Supp( f ) and randomly assign

them coefficients from K = F3 to obtain a new random-looking sparse polynomial

f ′ ∈ A3. Now we can set p1 = f ′−NRGT ( f ′) and get another random-looking poly-

nomial p1 ∈ IT . The polynomials p1, and p2 are given in Appendix C.3. Now con-

sider the set Q = {p1, p2} and let JT = ⟨Q⟩T be the two-sided ideal generated by Q.

Then there is a significant computational evidence that a two-sided Gröbner basis of

the ideal JT is hard to compute. In this case, using the CAS Singular, our com-

puting machine failed to compute not only a two-sided Gröbner basis but also the

computation of a left Gröbner basis of the ideal ⟨Q⟩L was found to be infeasible.

This claim is based on the observation that our computation has consumed more

than 3 GB of memory when we stopped it after 38,422.8 seconds of CPU time. At

the time of interruption, computations were progressing too slow due to very large

size of the resulting polynomials.

Remark 6.2.3. It is remarkable to point out here that in the above example and

many other similar cases, it is the very slow reduction process that makes the com-

putation of two-sided Gröbner basis of the ideal J = ⟨Q⟩T infeasible. After couple

of hours of computation, the sizes of the resulting intermediate Weyl polynomials

grow too large to compute their normal remainder effectively.

From these computational results, we claim that it is easy to construct a public

key Q for a TWGBC such that a two-sided Gröbner basis of the ideal J = ⟨Q⟩T is

hard to compute. This claim is based on the results obtained by using an implemen-

tation of Algorithm 6.1.9 for computing two-sided Gröbner bases of ideals in Weyl

algebras. But this is not sufficient for constructing a secure instance of TWGBC.
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Rather, one also has to make sure that various attacks proposed by the cryptana-

lysts of the Gröbner basis type cryptosystems are either not applicable or are not

practical in the setting of TWGBC. As in the case of WGBC, we can achieve this

objective by fixing parameters of our proposed TWGBC and the way of choosing

public polynomials and various other Weyl polynomials required for the encryption

process. In the following remark, let us first observe an important advantage of

using a two-sided Weyl Gröbner basis cryptosystem.

Remark 6.2.4. In the encryption process the ciphertext polynomial c is computed

as
c =

s′

∑
i=1

ℓi pki ri, where s′ ≥ s and ki ∈ {1, ...,s}.

Note that for computing c, the sender Alice needs two sets of polynomials, namely

the polynomials ℓ1, . . . , ℓs′ and the polynomials r1, . . . ,rs′ . That is, for each pki

she needs a polynomial ℓi for the left multiplication and a polynomial ri for the

multiplication from the right-hand side with pki . Hence one obvious advantage of

using a TWGBC over a WGBC is that the TWGBC is not vulnerable to the very

serious attacks based on linear algebra of Section 5.2. In this setting, the resulting

polynomial system of equations will be quadratic. Such systems are much harder

to solve than systems of linear equations.

The hardness of solving the above mentioned system of equations also depends

on the various parameters of a TWGBC. These parameters are same as the param-

eters given in Notation 4.1.5 for WGBC, except for one additional parameter dr,

the maximum degree of the polynomials r1, . . . ,rs′ used for the encryption. More-

over, unlike WGBC, for TWGBC the field characteristic has to be positive which is

obviously needed for the existence of two-sided ideals of a Weyl algebra An.

In the next section, we shall now provide a procedure for the key generation and

implementation of practical instances of TWGBC.

6.3 TWGBC Key Generation and Implementation

In the following Procedure 6.3.1 we introduce a step-by-step method for generating

a pair (G,Q) for constructing concrete instances of TWGBC. That is, by following
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these steps, one can generate an apparently secure secret key and a presumably hard

to break ciphertext.

Procedure 6.3.1. Let An be a Weyl algebra of index n over the field K = Fp and let

Bn be its set of terms. Let σ be a term ordering on Bn. Then, to construct a concrete

hard instance of Cryptosystem 6.2.1, perform the following steps.

(1) Choose a non-trivial two-sided ideal IT of An such that its two-sided Gröbner

basis is easy to compute. Let GT = {g1, . . . ,gr} be the reduced two-sided

Gröbner basis of the ideal IT such that GT ⊂Cn. Let dg = max{deg(g) | g ∈
GT}.

(2) For i = 1, . . . ,s choose random sparse polynomials pi ∈ IT of sufficient high

degree as compare to the degree dg. This can be done for instance by follow-

ing (2a) or (2b) below:

(2a) Choose random sparse polynomials f ′1, . . . , f ′q ∈ An of degrees greater

than dg. For i = 1, . . . ,q, compute fi = f ′i −NRσ ,GT ( f ′i ). Then, for each

i, fi ∈ IT , and Supp( fi) will also contain terms that are not contained

in the center Cn. Keeping these polynomials secret, choose the poly-

nomials hi j and si j in An and compute the standard form of the Weyl

polynomials

pi = hi1 f1 si1 + · · ·+hiq fq siq.

While choosing the polynomials hi j and si j, make sure that the degree

forms DF(hi j f j si j) cancel. The other degree terms of hi j f j si j cancel

or their coefficients are changed in pi by the process of converting the

remaining hik fk sik to standard form. In this way, no important infor-

mation about the polynomials in the secret key GT should be visible in

pi.

(2b) Since, g1, . . . ,gr ∈Cn, for i = 1, . . . ,s and j = 1, . . . ,r, choose the poly-

nomials hi j ∈ An, and compute the standard form of the Weyl poly-

nomials

pi = hi1 g1 + · · ·+hir gr.

While choosing the polynomials hi j, make sure that the degree forms

DF(hi jg j) of highest degree cancel.

120



Chapter 6. Two Sided Weyl Gröbner Basis Cryptosystems

Let the set Q = {p1, . . . , ps} be the public key.

(3) Let JT = ⟨p1, . . . , ps⟩T be the two-sided ideal generated by the polynomials in

the public key Q. Make sure that not only the complete two-sided σ -Gröbner

basis of the ideal JT is hard to compute, but also a partial Gröbner basis is

infeasible to compute for large degree bounds.

(4) Choose a subset M ⊂ Oσ (IT ) for the message space ⟨M ⟩K in such a way

that every gi contains at least one term in Oσ (IT )\M .

(5) For constructing a ciphertext polynomial

c =
s′

∑
i=1

ℓi pki ri, where s′ ≥ s and ki ∈ {1, ...,s},

choose the polynomials ℓ1, . . . , ℓs′ and r1, . . . ,rs′ such that the following prop-

erties hold:

(a) Make sure that Supp(∑s′
i=1 ℓi pki ri) contains all terms of Supp(m) and

many terms of M . In this way, the monomials of m will be either can-

celled or their coefficients will be changed in the lower degree part of

the polynomial c.

(b) Ascertain that the degree forms DF(ℓi pkiri) cancel in c, and that the

other degree forms DF(ℓi pkiri) cancel or their coefficients are changed

in c by the process of converting the remaining ℓ j pk jr j to standard form.

(c) Again, in meeting properties (a) and (b) above, use sufficiently high

powers of ∂1, . . .∂n in the terms of the support of ℓi and high powers

of x1, . . . ,xn in the terms of the support of ri such that, after bringing

ℓi pki ri to standard form, there are no wide gaps in degrees of various

terms in Supp(c). This means that due to expansion of the ciphertext

polynomial during Weyl multiplication, the sparsity of the polynomial

c will be reduced and it will be more ‘random-looking’.

(6) Make sure that with the above choices of the polynomials ℓ1, . . . , ℓs′ and

r1, . . . ,rs′ , the degree, dc, of the ciphertext c becomes high enough such that

no partial two-sided Gröbner basis of the ideal JT can be computed for large
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degree bounds. Moreover, if H is a partial Gröbner basis of JT for a degree

bound less than dc, then ensure that NRσ ,H (c) ̸= m.

In Section 6.4, we shall see that, if we follow the the steps of Procedure 6.3.1,

the standard attacks become infeasible. In fact, step (2) makes sure that the polyno-

mials in the secret key GT are well concealed. The step (5) ensures that not only the

plaintext message m is well hidden in the ciphertext polynomial c, but, by reducing

the sparsity of the polynomial c and by removing gaps in the degrees of the terms

in the support of c, we are, making c more ‘random-looking’. Similarly, by com-

pleting the steps (3) and (4), we are, respectively making the partial Gröbner basis

attack and the chosen ciphertext attack infeasible (see Section 6.4 for details).

Let us now try to construct a concrete instance of a TWGBC. In the following

example, we follow Step (2b) for creating a public key Q.

Example 6.3.2. Consider the Weyl algebra A2 = Z13[x1,x2,∂1,∂2] and let the term

ordering be σ = DegRevLex. Choose a subset {F1,F2} ⊂ An where

F1 = x13
1 x26

2 ∂ 26
1 −2 and F2 = 3x26

2 +2x13
2 ,

Let IT = ⟨{F1,F2}⟩T be the two-sided ideal generated by this subset. then the re-

duced two-sided Gröbner basis of IT is the set GT = {g1,g2}, where

g1 = x13
2 +5 and g2 = x13

1 ∂ 26
1 +2.

We now introduce the following TWGBC

(1) Secret Key:
The secret key is the two-sided Gröbner basis GT = {g1,g2}. Let GT =

(g1,g2).
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(2) Public Key:
Choose
f ′1 = x13

2 ∂2 +3x14
2 +5x13

2 −2x13
1 ∂ 26

1 x3
2 +2x13

2 ∂2 +3x13
2 ∂1∂2 − x14

1 ∂ 28
1 ∂ 2

2 −

x13
2 ∂ 2

1 − x3
1x2∂ 3

2 − x2
2∂2 −7

f ′2 = 2x13
2 ∂ 2

2 −3x13
2 ∂ 2

1 + x13
1 x26

2 ∂ 26
1 −3x3

1x15
2 ∂ 2

2 +4x14
1 x2

2∂ 28
1 −2x13

2 ∂ 13
2 +

x13
2 ∂1∂ 2

2 −3∂ 11
2 x10

2

and compute f1 = f ′1 −NFσ ,GT ( f ′1) and f2 = f ′2 −NFσ ,GT ( f ′2). Then

f1 = −x14
1 ∂ 28

1 ∂ 2
2 −2x13

1 x3
2∂ 26

1 − x13
2 ∂ 2

1 +3x13
2 ∂1∂2 +3x14

2 +3x13
2 ∂2 +5x13

2

−2x1∂ 2
1 ∂ 2

2 −4x3
2 −5∂ 2

1 +2∂1∂2 +2x2 +2∂2 −1

f2 = x13
1 x26

2 ∂ 26
1 +4x14

1 x2
2∂ 28

1 −2x13
2 ∂ 13

2 −3x3
1x15

2 ∂ 2
2 + x13

2 ∂1∂ 2
2 −3x13

2 ∂ 2
1 +

2x13
2 ∂ 2

2 +3∂ 13
2 −2x3

1x2
2∂ 2

2 −5x1x2
2∂ 2

1 +5∂1∂ 2
2 −2∂ 2

1 −3∂ 2
2 −2

Using f1 and f2, we can create polynomials p1, p2, . . . for the public key Q

by computing the standard forms of

p1 = h11 f1s11 +h12 f2s12,

p2 = h21 f1s21 +h22 f2s22.

Here we let

h11 = x16
2 +3∂1 +2∂ 3

2 −1, s11 = x10
2 +3x3

1 −1,

h12 = x1∂1∂ 2
2 , s12 = ∂1,

h21 = x8
2∂2 + x12

2 , s21 = x20
2 ∂2 + x11

2 ,

h22 = x1∂1∂ 2
2 +5∂1∂ 2

2 +2, and s22 = x2
2∂1∂ 2

2 +3x2
1 −2x2

2 +1.

Then the Weyl polynomial p1 has degree 68 and its standard form consists of

332 terms. The Weyl polynomial p2 has degree 77 and there are 531 terms in

its standard form. These polynomials p1 and p2 are given in Appendix C.3.

(3) Message Space:
For the message space, we choose the K-vector space generated by the set

M = {xα∂ β | |α| ≤ 9, |β | ≤ 10}.

There are 133660 different possible plaintext units.
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(4) Encryption:
To encrypt a message m ∈ ⟨M ⟩K , we use Step (5) of Procedure 6.3.1 and

choose polynomials ℓ1, ℓ2, ℓ
′
1, ℓ

′
2 and r1,r2,r′1,r

′
2 of sufficiently high degree

and compute the standard form of the ciphertext polynomial

c =
s′

∑
i=1

ℓi pki ri, where s′ ≥ 2 and ki ∈ {1,2s},

For instance, to encrypt a message

m=−3x2
1∂ 4

1 ∂ 4
2 +6x2

1x3
2∂ 5

2 −x1x2∂ 3
1 ∂ 5

2 +3x3
1x3

2∂ 3
1 −2x3

1∂ 6
1 +4x2

1∂ 7
1 −2x6

1x2∂1∂2−x7
1∂ 2

2 +

x2
1x3

2∂ 2
1 ∂ 2

2 +3x3
1∂ 4

1 ∂ 2
2 +3x1x2∂ 5

1 ∂ 2
2 +5x2∂ 6

1 ∂ 2
2 −4x4

1∂ 2
1 ∂ 3

2 +6x4
2∂ 5

2 +3x1∂ 8
2 +3x2

1x6
2 −

3x2
1x2∂ 4

1 ∂2 + 6x4
1∂ 2

1 ∂ 2
2 + x1x2∂ 4

1 ∂ 2
2 − 6x1x2

2∂ 2
1 ∂ 3

2 + 3∂ 5
1 ∂ 3

2 + 3∂ 2
1 ∂ 6

2 + 4x2∂ 7
2 + x2

1x5
2 +

2x3
1∂ 4

1 −4x1x2∂ 5
1 +2x2

1x4
2∂2+6x1x5

2∂2−2x2
1x2∂ 3

1 ∂2−2x4
1∂1∂ 2

2 +x3
1x2∂1∂ 2

2 +6x2
1x2∂ 4

2 −
3∂ 2

1 ∂ 5
2 +2x1x2

2∂ 3
2 +6x3

1x2
2 −2x1x3

2∂1 −6∂ 4
1 +5x2

1∂ 2
2 +∂1,

we may choose

ℓ1 = 3x4
1∂ 6

1 ∂ 6
2 + x1x2

2∂ 3
1 ∂ 2

2 , r1 = x2
1x2∂1∂ 3

2 ,

ℓ2 = −4x2
1∂ 4

1 ∂ 3
2 + x1∂ 2

1 − x1∂1∂2 +∂1, r2 = x2
1∂ 2

1 ∂ 3
2 − x1∂ 2

1 + x1∂1∂2 − x1,

ℓ3 = −x2
1x2

2, ℓ4 = ℓ5 = r3 = 1,

r4 = x4
1x6

2∂ 6
1 ∂ 7

2 −3x6
1x2∂ 7

1 ∂ 9
2 , r5 = 4x4

1∂ 6
1 ∂ 6

2 +6x3
1∂ 5

1 ∂ 6
2 .

and compute the standard form of

c = m+ ℓ1 p1 r1 + ℓ2 p2 r2 + ℓ3 p1 r3 + ℓ4 p1 r4 + ℓ5 p2 r5.

In the above representation of c we obtain a ciphertext polynomial of degree

89 and its standard form consists of 13,175 terms. The polynomials ℓi, ri

are chosen such that the highest degree form of the ciphertext polynomial c

cancels. For instance, we have deg(p1) = 68 and LTσ (p1) = 6x14
1 x25

2 ∂ 28
1 ∂2.

We choose a random term tℓ1 = 3x4
1∂ 6

1 ∂ 6
2 of degree 16 for ℓ1 and another ran-

dom term tr1 = x2
1x2∂1∂ 3

2 of degree 7 for r1. Now the degree of the product

tℓ1 · p1 · tr1 is 91 and its leading term is 5x20
1 x26

2 ∂ 35
1 ∂ 10

2 , to cancel it from c,

choose −3x6
1x2∂ 7

1 ∂ 9
2 of degree 23 as a term in r4. This cancels the above

leading term of degree 91 from c. Now choose another term tr4 = x4
1x6

2∂ 6
1 ∂ 7

2

for r4, then the leading term of the product p1 r4 is 6x18
1 x31

2 ∂ 34
1 ∂ 8

2 and its de-

gree is again 91. Again to cancel it from c, we choose terms in ℓ2, r2 and r5
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such that −2x18
1 x31

2 ∂ 34
1 ∂ 8

2 appears in the product ℓ2 p2 r2 and −4x18
1 x31

2 ∂ 34
1 ∂ 8

2

appears in the product p2 r5 and this cancels 6x18
1 x31

2 ∂ 34
1 ∂ 8

2 in c. Note also

that for the term tr4 = 4x4
1∂ 6

1 ∂ 6
2 chosen for r4 and setting ℓ4 = 1, we can can-

cel many terms in the product ℓ4 p2 r4 by using various possible factors of tr4

for the left and the right multiplication with p2. For instance, among many

possibilities, we choose a term tℓ2 =−4x2
1∂ 4

1 ∂ 3
2 for ℓ2 and the corresponding

factor tr2 = x2
1∂ 2

1 ∂ 3
2 for r2. Note the strategy of choosing the terms tℓ2 and tr2

such that tℓ2 ∗ tr2 becomes equal to tr4 , here ∗ means the multiplication in the

commutative sense. This does not only cancel the leading term of 1 · p2 · tr4

in c but altogether 531 terms are cancelled in the sum tℓ2 · p2 · tr2 +1 · p2 · tr4 .

All the terms that are left in this sum are due to Weyl multiplication. Contin-

uing this way, we keep on adding and setting various terms for ℓi and ri and

finally compute c as above. In this way, many terms in c are either cancelled

or their coefficients are changed. The degree form DF(c) contains 7 terms of

degree dc = 89. This means that all the terms of degree greater than 89 are

cancelled in c. Further, instead of 19, we only have 7 terms of degree 89,

i.e. some of the terms of degree 89 are cancelled or their coefficients are

changed in c. This can be easily seen by observing the number of terms in

the homogeneous components of ℓi pki ri,for each i and comparing them with

the number of terms of the homogeneous components of c.

Moreover, out of 39 monomials of m, 25 are not present in c, and the remain-

ing 14 monomials are mixed in 540 monomials of c from the message space.

Therefore, the message m is well-hidden.

(5) Decryption:
Since m=NRσ ,GT (c), to decipher c, it suffices to compute the normal remain-

der of the ciphertext polynomial c with respect to the secret key GT . In the

present case, the decryption takes 0.79 seconds on our computing machine

using the package Weyl of ApCoCoA.

Note that in the above Example 6.3.2, not all the requirements of Procedure

6.3.1 are satisfied. For instance, the polynomials g1 and g2 of the public key GT

are binomials. Moreover, none of the polynomials g1 and g2 have terms from

Oσ (I) \ M in their support. If an attacker can guess the leading terms of these
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polynomials with respect to the term ordering σ , he can try to break the system

by using the chosen ciphertext attack as described in Section 5.4 for the case of

WGBC.

Remark 6.3.3. In the case of a TWGBC, for encryption we need two sets of poly-

nomials, namely the polynomials ℓ1, . . . , ℓs′ that are multiplied from the left with

each pki and the polynomials r1, . . . ,rs′ for multiplication from the right. In view of

the requirement (6)-(c) the ciphertext polynomial may expand too much and may

result in a bad data-rate for transmitting the ciphertext c over a network. For in-

stance, in the above example, the resulting ciphertext contains 13,175 terms. This

gives us a data-rate of approx. 1/337 for transmitting c. To overcome this problem,

we suggest to use a message space M that allows us to represent a plaintext mes-

sage m with a polynomial of large size. In the above example, considering the size

of the message space, message expansion is rather moderate. The message expan-

sion can also be controlled by working in fields with small characteristic such as

F2,F3,F5, or F7.
Keeping these observations in mind, we now present a procedure for construct-

ing concrete instances of TWGBC.

6.4 Concrete Hard Instances

As in the case of WGBC, the structure and properties of Weyl algebras turn out

to be very useful in satisfying the requirements of Procedure 6.3.1 for constructing

concrete hard instances of TWGBC. In view of Example 6.3.2 and related obser-

vations, below we present a procedure that provides an explicit suggestion on how

this can be done. The idea is to choose a proper two-sided ideal IT ⊂ An such that

it satisfies condition of Proposition 6.1.11 (see Examples 6.1.12 and 6.1.13).

Procedure 6.4.1. Let K = Fp be a finite field of characteristic p. Let n > 2, and

consider the Weyl algebra An of index n over K. Let σ be a term ordering on Bn.

Then the following instructions define a TWGBC which satisfies Conditions (1) –

(6) of Procedure 6.3.1.

(1) For 2 < k ≤ n, choose a (random) set F = { f1, . . . , fk} of Weyl polynomials

such that F ⊂ Cn \Fp. Moreover, for i = 1, . . . ,k, every polynomial fi ∈ F

should be such that
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(a) deg( fi)≥ 2p

(b) The number of terms in support of each fi should be at least 3. This will

be helpful in satisfying requirement (2) below.

Let IT = ⟨F⟩T be the two-sided ideal generated by F . Then by Proposition

6.1.11, a two-sided σ -Gröbner basis GT will be a subset of Cn and hence IT

is a non trivial two-sided ideal in An. Moreover, it will be very likely that for

every polynomial g ∈ GT , we will have deg(g)≥ 2p and #Supp(g)≥ 3.

(2) For the message space, choose the set M ⊆ Oσ (I) such that every gi has at

least one term from Oσ (I)\M in its support.

(3) Since every gi ∈Cn, create Weyl polynomials p1, . . . , ps of the form

pi = hi1 g1 + · · ·+hir gr

by choosing Weyl polynomials hi1, . . . ,hir ∈ An such that Condition (2b) of

Procedure 6.3.1 is satisfied. At this point, we also suggest not to using a poly-

nomial g ∈ GT in the construction of more than one polynomial of the public

key Q. That is, if there are 6 polynomials g1, . . . ,g6 in the secret key GT , then

one may use g1,g3,g6 for computing p1, and g2,g4,g5 for computing p2. This

might be helpful in concealing the secret key well to make it difficult for an

attacker to guess it from the public information.

(4) To make the polynomial pi random-looking and to reduce its sparsity, choose

some polynomials h′i, q′i ∈A and compute the standard form of p′i = h′i pi q′i. In

this way, some other other terms of hi j g j either cancel or their coefficients are

changed in p′i by the process of converting h′i pi q′i to standard form. Replace

pi by p′i and set Q = {p1, . . . , ps} as the public key. It is an optional step that

can be performed after step (3) if it seems that the secret polynomials used

for constructing pi are not well-hidden. Make sure that the size of the support

of pi does not grow too large after performing this step.

Later we will see that by following these steps, we can create a pair (GT ,Q), for

a secret communication by using a TWGBC.
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Remark 6.4.2. It is interesting to remark here that by construction, the secret key

GT is contained in the center Cn. Therefore, in the decryption process, while com-

puting the normal remainder with respect GT , the intermediate results will not grow

due to Weyl multiplication. This fact can make the decryption process of TWGBC

faster as compare to the decryption in WGBC.

Let us now use the instructions of Procedure 6.4.1 to formulate some concrete

cases of TWGBC.

Example 6.4.3. Let n = 3 and consider the Weyl algebra

A3 = F2[x1,x2,x3,∂1,∂2, ∂3]

over the field of characteristic 2. Let the term ordering on Bn be σ = DegRevLex.

We now introduce the following TWGBC:

(1) Secret Key:
Choose the following polynomials of A3

f1 = x6
1x4

2 + x4
1x2

2 + x2
1 +1, f2 = x6

2 + x4
2x2

3 + x2
2 +1,

f3 = ∂ 6
1 ∂ 4

2 +∂ 4
1 ∂ 2

2 +∂ 2
1 +1, f4 = ∂ 8

3 + x2
1∂ 2

2 ∂ 2
3 +1,

f5 = x2
2x10

3 + x6
3 + x2

1x2
3 + x2

3 +1.

Let IT = ⟨ f1, f2, f3 f4, f5⟩ be the two-sided ideal generated by these poly-

nomials. Then the reduced two-sided σ -Gröbner basis GT of IT is the set

{g1, . . . ,g10} where

g1 = x4
1x10

3 + x6
1x6

3 + x2
1x10

3 + x2
1x4

2x4
3 + x2

1x8
3 + x10

3 + x6
1x2

3 + x4
1x2

2x2
3 + x4

1x4
3 +

x4
2x4

3 + x8
3 + x6

1 + x4
2x2

3 + x2
1x4

3 + x2
2x4

3 + x2
1x2

2 + x4
3 + x2

2 + x2
3,

g2 = x14
3 + x2

1x10
3 + x6

1x2
3 + x2

1x4
2x2

3 + x2
1x2

2x4
3 + x4

2x4
3 + x8

3 + x2
1x4

2 + x2
1x2

2x2
3 +

x4
2 + x2

1x2
3 + x2

2x2
3 + x4

3 + x2
1 + x2

2 + x2
3 +1,

g3 = x4
2x6

3 + x2
2x8

3 + x10
3 + x2

1x4
2x2

3 + x2
1x2

2x4
3 + x4

2x2
3 + x2

2x4
3 + x6

3 + x4
2 +

x2
1x2

3 + x2
2x2

3 + x2
3 +1,

g4 = x8
1 + x2

1x4
2x2

3 + x2
1x2

2x4
3 + x4

2x2
3 + x2

2x4
3 + x4

2 + x2
1x2

3 + x2
2x2

3 + x2
1 + x2

2,

128



Chapter 6. Two Sided Weyl Gröbner Basis Cryptosystems

g5 = x4
1x4

2 + x4
1x2

2x2
3 + x6

1 + x2
1x4

2 + x2
1x2

2x2
3 + x4

1 + x2
1x2

2 + x4
2 + x2

1x2
3 + x2

2x2
3 +

x2
1 + x2

2 + x2
3 +1,

g6 = x2
2x10

3 + x6
3 + x2

1x2
3 + x2

3 +1,

g7 = x6
1x2

2 + x2
1x4

2 + x2
1x2

2x2
3 + x4

1 + x4
2 + x2

2x2
3 + x2

1 +1,

g8 = ∂ 6
1 ∂ 4

2 +∂ 4
1 ∂ 2

2 +∂ 2
1 +1,

g9 = ∂ 8
3 + x2

1∂ 2
2 ∂ 2

3 +1

g10 = x6
2 + x4

2x2
3 + x2

2 +1.

The set GT is our secret key. Moreover, the set Oσ (IT ) is also kept secret and

only a subset of it will disclosed publicly for the message space.

(2) Public Key:
Let us now create public polynomial p1, p2, p3 by choosing

h11 = x9
1x5

3∂ 5
1 ∂ 3

3 + x9
1x4

3∂ 5
1 ∂ 2

3 + x8
1x5

3∂ 4
1 ∂ 3

3 + x8
1x4

3∂ 4
1 ∂ 2

3 + x8
1x3

3∂ 2
1 ∂ 2

3 +

x6
1x2

3∂ 3
1 ∂3 + x5

1,

h12 = x13
1 x3∂ 5

1 ∂ 3
3 + x13

1 ∂ 5
1 ∂ 2

3 + x12
1 x3∂ 4

1 ∂ 3
3 ,

h13 = x3
1x13

3 ∂ 2
1 ∂ 2

3 + x3
1x12

3 ∂ 2
1 ∂3 + x2

1x12
3 ∂ 3

1 ∂3 + x2
1x13

3 ∂1∂ 2
3 + x2

1x12
3 ∂1∂3 + x1x10

3 .

and then compute the standard form of

p1 = h11 g1 +h12 g2 +h13 g4.

The polynomial p1 has degree 34 and consists of 222 terms in its standard

form. The above polynomials h11,h12,h13 are chosen such that the condi-

tions of Procedure 6.3.1 are satisfied. In particular, we want that the re-

sulting polynomial p1 should not leak information about the polynomials

g1,g2, and g4 used for computing p1 and that it should look like a random

non-commuting polynomial of A3 with a sufficient high degree as compared

to dg = max{deg(g) | g ∈ GT}.

For instance, since deg(g1) = 14 and LTσ (g1) = x4
1x10

3 , for h11, we choose

a random term t = x9
1x5

3∂ 5
1 ∂ 3

3 of degree 22. Now the leading term of the

product t g1 is x13
1 x15

3 ∂ 5
1 ∂ 3

3 and to cancel it so that it does not appear in p1,
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we set another term t ′ = x13
1 x3∂ 5

1 ∂ 3
3 for h12. If required, we proceed the same

way for cancelling the terms in DF(t g1). Note that now we have DF(t g2) =

x13
1 x15

3 ∂ 5
1 ∂ 3

3 and it will not appear in p1. Continuing this way, we keep on

adding and setting various terms for h11,h12, and h13 and finally compute

p1 as above. In this way, many terms in p1 are either cancelled or their

coefficients are changed. This can be easily seen by observing the number

of terms in the homogeneous components of h11 g1, h12 g2, and h13 g4 and

comparing them with the number of terms of the homogeneous components

of p1, for instance, by using a CAS.

Similarly, choose

h21 = x3
1x3

2x4
3∂ 3

1 ∂ 3
2 ∂3 + x3

1x2
2x4

3∂ 3
1 ∂ 2

2 ∂3 + x2
1x3

2x4
3∂ 2

1 ∂ 3
2 ∂3 + x4

1x4
2x4

3∂3 +

x2
1x2

2x4
3∂ 2

1 ∂ 2
2 ∂3 + x6

1x4
3∂1∂2 + x6

1x4
3 + x6

1x3
2∂3 + x4

1x2
2∂3 + x4

3,

h22 = x3
1x5

2∂ 3
1 ∂ 3

2 ∂3 + x3
1x3

2x2
3∂ 3

1 ∂ 3
2 ∂3 + x4

1x6
2∂3 + x6

1x2
2∂1∂2 + x6

1x2
2 + x2

2,

h23 = x5
2x6

3∂3 + x2
3∂3 +∂1∂2 +1,

h31 = x1x3
2∂1 + x4

2∂1 + x1x2x2
3∂1 + x1x2

2∂1∂2 + x1x3
2 + x2

2∂1 +∂1,

h32 = x1x2x3∂ 3
1 ∂ 3

2 ∂ 9
3 + x1x2∂ 3

1 ∂ 3
2 ∂ 8

3 + x1x3∂ 3
1 ∂ 2

2 ∂ 9
3 + x2x3∂ 2

1 ∂ 3
2 ∂ 9

3 +

x1∂ 3
1 ∂ 2

2 ∂ 8
3 + x2∂ 2

1 ∂ 3
2 ∂ 8

3 + x3∂ 2
1 ∂ 2

2 ∂ 9
3 +∂ 2

1 ∂ 2
2 ∂ 8

3 + x6
2∂ 2

1 ∂ 2
2 +∂1∂ 9

3 +

∂ 9
3 + x6

2∂1∂2 + x6
2,

h33 = ∂ 6
1 ∂ 4

2 ∂3 + x1x2x3∂ 3
1 ∂ 3

2 ∂3 +∂ 7
1 ∂2∂3 + x1x2∂ 3

1 ∂ 3
2 + x1x3∂ 3

1 ∂ 2
2 ∂3 +

x2x3∂ 2
1 ∂ 3

2 ∂3 + x1∂ 3
1 ∂ 2

2 + x2∂ 2
1 ∂ 3

2 + x3∂ 2
1 ∂ 2

2 ∂3 +∂ 2
1 ∂ 2

2 +∂ 3
1 ∂3 +∂3,

h34 = ∂ 8
1 ∂ 6

2 +∂ 7
1 ∂ 5

2 + x5
1x2∂1 + x4

1x2
2∂1 + x5

1∂1∂2 + x5
1x2 + x4

1∂1 +1,

and then compute

p2 = h21 g3 +h22 g6 +h23 g7,

p3 = h31 g5 +h32 g8 +h33 g9 +h34 g10.

The polynomial p2 has degree 27 and consists of 148 terms in its standard

form. The polynomial p3 has degree 28 and 126 terms in its standard form.

The polynomials hi j are chosen such that the highest degree forms during the

computation of the polynomials pi cancel. Moreover, the leading terms of the
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polynomials in GT are difficult to guess from the polynomials p1, p2, and p3

of the public key Q. To increase the member of lower degree terms in p2 and

p3, we can now use Step (4) of Procedure 6.4.1 as follows: Choose q′2 = x2+

1,q′3 = x1 and replace p2 and p3 by p2 q′2 and p3 q′3. The number of terms,

respectively, in the standard forms of the new replaced polynomials p2 and

p3 is 290 and 166 respectively, and deg(p2) = 28, deg(p3) = 29.

We set the public key as Q = { p1, p2, p3 }. These public polynomials are

given in Appendix C.3.

(3) The Message Space:
For the message space we choose

M = {xα ∂ β | |α|+ |β | ≤ 4}

That is, ⟨M ⟩K is the vector space of all polynomials in A3 of degree less than

or equal to 4. With this M , we can have 2210 possible plaintext messages.

This message space is also known publicly.

This message space fulfils Condition (2) of Procedure 6.4.1, i.e. every poly-

nomials in GT has at least one element from Oσ (IT )\M .

(4) Encryption:
Suppose that the plaintext message m∈ ⟨M ⟩K is given by the following poly-

nomial

m = x1x2x3∂1 + x1x2∂ 2
1 + x2x3∂ 2

1 + x1x2∂1∂2 + x2
2∂1∂2 + x1x3∂1∂2 + x1∂1∂ 2

2

+x3
2∂3 + x3∂ 2

1 ∂3 + x1x3∂2∂3 + x3∂ 2
2 ∂3 +∂1∂2∂ 2

3 + x2x3∂1 + x3∂ 2
1 + x2

1∂2

+x2
2∂2 + x2x3∂3 + x1∂1∂3 + x2∂ 2

3 + x1x2 + x2∂2 +∂1.

For the encryption, choose

ℓ1 = x6
1x2

2x3
3∂ 9

1 ∂ 3
2 ∂ 9

3 +1, r1 = x5
1x3

2x3
3∂ 5

1 ∂ 2
2 ∂ 5

3 + x1x2 + x3,

ℓ2 = x10
1 x2x4

3∂ 11
1 ∂2∂ 11

3 +∂2∂3 +∂3 +1,

r2 = x9
1x3

3∂ 5
1 ∂2∂ 5

3 + x3
1x3

2 + x1∂1 + x3 +1,

ℓ3 = ∂ 3
1 ∂ 3

2 ∂ 3
3 +∂1∂ 5

3 +∂2∂3 +∂1, r3 = x3
1x3

2x3
3 + x3

1x2,
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ℓ4 = x3
1x3

2x3
3∂ 3

1 ∂ 3
2 ∂ 3

3 , ℓ5 = x1x2∂1 + x2x3∂1 +∂2,

ℓ6 = x1x2x3 + x1x2∂1 + x2x3∂1 + x3∂2, r7 = x11
1 x4

2x6
3∂ 14

1 ∂ 5
2 ∂ 14

3 ,

r8 = x3∂ 2
1 ∂3 + x3∂ 2

2 ∂3 + x3∂1∂3 + x1x2 + x2∂3 +∂3,

r9 = x2
2∂1∂2 + x3∂1 +∂ 2

2 + x1 + x2 + x3 +1,

r4 = r5 = r6 = ℓ7 = ℓ8 = ℓ9 = 1.

and compute the ciphertext c as the standard form of

c = ℓ1 p1r1+ℓ2 p2r2+ℓ3 p3 r3+ℓ4 p1+ℓ5 p2+ℓ6 p3+ p1r7+ p2 r8+ p3 r9+m.

Note that by taking r4 = r5 = r6 = ℓ7 = ℓ8 = ℓ9 = 1, we are using sum-

mands with only one-sided multiplication. The polynomial c then has de-

gree 87 and there are 13,532 terms in its standard form. We have selected

the polynomials ℓ1, . . . , ℓ9, and r1, . . . ,r9 in the same way as described earlier

in the encryption process of Example 6.3.2. In this way, the highest degree

terms cancel and many other terms are either cancelled or their coefficients

are changed in the middle and lower part of the resulting ciphertext. The

lower degree parts of the ciphertext polynomial c are dense enough to in-

clude many terms from the set M . In this way out of 22 monomials of m,

16 are cancelled or their coefficients are changed in the ciphertext c. The re-

maining 6 monomials of m are mixed among other 82 monomials of c from

the message space.

(5) Decryption:
For recovering the plaintext message m we compute NR(σ ,GT )(c), the normal

remainder of c modulo the Gröbner basis GT . An efficient implementation of

the left Division Algorithm 2.3.18 can recover m within a few seconds. For

instance, such an implementation on the CAS Singular takes 3.93 seconds

on our computing machine for the decryption.

Observations: In the setting of such a TWGBC, the secret key GT is contained

in the center Cn. Since they are commuting polynomials of Weyl algebra, the cre-

ation of a key-pair is relatively easy as compared to WGBC. For instance, in the

above example note the computation of the polynomials p1, p2, and p3. Here, Bob,
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only have to choose a polynomial hi j as described in Procedure 6.3.1, such that no

information about structure of the system of generators of the ideal IT is visible un-

changed. On the other hand, the sender Alice can mess-up the ciphertext by using

suitably chosen Weyl polynomials both for the left and the right multiplication in

the encryption process. It turns out that such a ciphertext can only be decrypted

efficiently when the correct secret key, i.e. when a two-sided σ -Gröbner basis is

at hand. As far as the attacker Eve is concerned, it seems that her only choice is

to compute a complete two-sided Gröbner basis of the ideal J = ⟨p1, p2, p3⟩T ⊂ IT .

But, on the basis of our experimental results, by using Algorithm 6.1.9 for comput-

ing a two-sided Gröbner basis, this task turns out to be infeasible for the attacker in

the setting of TWGBC (see Section 6.4 for details).

Let us now create another concrete case of TWGBC with a Weyl algebra over a

field of characteristic 3.

Example 6.4.4. Over the finite field K = F3, consider the Weyl algebra A3 =

F3[x1,x2,x3,∂1.∂2,∂3] of index 3. Let the term ordering on B3 be σ = DegRevLex.

Note that here the center is given by C3 = F3[x3
1,x

3
2,x

3
3,∂

3
1 ,∂

3
2 ,∂

3
3 ]. With these in-

gredients, we introduce following TWGBC.

(1) Secret Key:
Choose the following polynomials of A3

f1 = x9
1x6

2 + x6
1x3

2 +∂ 3
1 +1, f2 = x9

2 + x6
2x3

3 − x3
2 +1,

f3 = ∂ 9
1 ∂ 6

2 +∂ 6
1 ∂ 3

2 +∂ 3
1 +1, f4 = ∂ 12

3 + x3
1∂ 3

2 ∂ 3
3 +∂ 6

1 +1,

f5 = x15
3 ∂ 3

2 +∂ 9
3 − x3

3∂ 3
1 +∂ 3

2 +1.

Let IT = ⟨ f1, f2, f3 f4, f5⟩ be the two-sided ideal generated by these poly-

nomials. Then the reduced two-sided σ -Gröbner basis GT of IT is the set

{g1, . . . ,g10} where

g1 = x30
3 ∂ 3

1 + x30
3 − x18

3 ∂ 9
1 + x6

3∂ 18
1 ∂ 3

2 +∂ 18
1 ∂ 3

2 ∂ 6
3 − x6

3∂ 15
1 ∂ 3

2 −∂ 15
1 ∂ 3

2 ∂ 6
3 −

x15
3 ∂ 9

3 + x3
3∂ 12

1 ∂ 9
3 − x3

1x15
3 ∂ 3

1 − x18
3 ∂ 3

1 + x15
3 ∂ 6

1 − x6
3∂ 15

1 − x3
1x3

3∂ 12
1 ∂ 3

2 +

x3
3∂ 15

1 ∂ 3
2 +∂ 12

1 ∂ 3
2 ∂ 6

3 − x3
1x15

3 − x15
3 ∂ 3

1 − x6
3∂ 12

1 − x3
3∂ 12

1 ∂ 3
2 −∂ 12

1 ∂ 6
3 −

∂ 9
1 ∂ 3

2 ∂ 6
3 −∂ 9

1 ∂ 9
3 − x3

1x3
3∂ 9

1 − x3
3∂ 12

1 + x3
1∂ 9

1 ∂ 3
2 +∂ 12

1 ∂ 3
2 + x3

3∂ 9
1 −∂ 9

1 ∂ 3
2

−∂ 6
1 ∂ 6

3 + x3
1∂ 9

3 + x3
1∂ 6

1 −∂ 9
1 −∂ 9

3 − x3
1∂ 3

1 − x3
3∂ 3

1 − x3
1 +∂ 3

1 −1,
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g2 = x15
3 ∂ 3

1 ∂ 3
3 + x3

3∂ 12
1 ∂ 3

2 ∂ 3
3 +∂ 15

1 ∂ 3
2 + x15

3 ∂ 3
3 + x3

3∂ 9
1 ∂ 3

3 −∂ 9
1 ∂ 3

2 ∂ 3
3 +∂ 12

1 +

∂ 9
1 ∂ 3

2 − x3
1∂ 3

1 ∂ 3
3 −∂ 6

1 ∂ 3
3 +∂ 6

1 − x3
1∂ 3

3 +∂ 3
1 ∂ 3

3 +∂ 3
3 ,

g3 = ∂ 9
1 ∂ 3

2 ∂ 9
3 − x15

3 ∂ 3
1 − x3

3∂ 12
1 ∂ 3

2 − x15
3 +∂ 6

1 ∂ 9
3 − x3

3∂ 9
1 +∂ 9

1 ∂ 3
2 +∂ 6

1 −

∂ 3
1 −1,

g4 = x12
1 − x3

1x6
2∂ 3

1 − x3
1x3

2x3
3∂ 3

1 − x6
2x3

3∂ 3
1 − x3

2x6
3∂ 3

1 + x9
1 + x6

1x3
2 − x3

1x6
2 +

x6
1x3

3 − x3
1x3

2x3
3 − x6

2x3
3 − x3

2x6
3 − x3

1x3
2∂ 3

1 − x3
1x3

3∂ 3
1 − x3

1x3
2 − x3

1x3
3 +

x3
1∂ 3

1 + x3
3∂ 3

1 + x3
1 + x3

3 +∂ 3
1 +1,

g5 = x6
1x6

2 + x6
1x3

2x3
3 − x9

1 + x6
2∂ 3

1 + x3
2x3

3∂ 3
1 − x6

1 + x6
2 + x3

2x3
3 + x3

2∂ 3
1

+x3
3∂ 3

1 + x3
2 + x3

3 −∂ 3
1 −1,

g6 = x15
3 ∂ 3

2 +∂ 9
3 − x3

3∂ 3
1 +∂ 3

2 +1,

g7 = x9
1x3

2 − x6
2∂ 3

1 − x3
2x3

3∂ 3
1 + x6

1 − x6
2 − x3

2x3
3 +∂ 3

1 +1,

g8 = ∂ 9
1 ∂ 6

2 +∂ 6
1 ∂ 3

2 +∂ 3
1 +1,

g9 = ∂ 12
3 + x3

1∂ 3
2 ∂ 3

3 +∂ 6
1 +1,

g10 = x9
2 + x6

2x3
3 − x3

2 +1.

The secret key is the set GT and the set Oσ (IT ) is also kept secret. Let GT =

(g1, . . . ,g10).

(2) Public Key:
Let us now create polynomials p1, p2 for the public key Q by using some

polynomials in GT . As described in Example 6.4.3, choose

h11 = x3∂ 7
1 ∂ 7

2 + x1∂1∂2∂ 5
3 − x3∂ 5

3 +∂ 2
1 ∂2∂ 2

3 ,

h12 = −x1x15
3 ∂1∂2∂ 2

3 − x15
3 ∂ 2

1 ∂2∂ 2
3 + x16

3 ∂ 2
3 +∂ 6

1 ∂ 9
2 +∂ 3

1 ∂ 6
2 ,

h13 = −x31
3 ∂1∂2 − x15

3 ∂ 3
2 ∂ 3

3 −∂ 3
1 ∂ 3

2 +1,

h21 = −x1∂ 7
1 ∂ 9

2 +∂ 3
1 ∂ 3

2 + x1∂1∂ 3
2 +∂1∂2∂ 3

3 −∂ 5
3 +∂ 3

2 ∂3 +1,

h22 = −x1∂ 10
1 ∂ 6

2 + x1∂ 4
1 −∂ 4

3 , h23 = −∂ 10
1 ∂ 4

2 +∂ 9
1 ∂ 3

2 ∂ 2
3 +∂3,

h24 = x1∂ 7
1 ∂ 6

2 ∂ 9
3 −∂ 3

1 ∂ 9
3 −∂ 10

3 ,

and then compute the standard form of

p1 = h11 g1 +h12 g2 +h13 g8

p2 = h21 g3 +h22 g6 +h23 g7 +h24 g8.
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The polynomial p1 has degree 45 and consists of 203 terms in its standard

form. The polynomial p2 has degree 35 and there are 91 terms in its stan-

dard form. The polynomials hi j are chosen (as the way described in Example

6.4.3) such that the highest degree forms of the polynomials pi are cancelled.

To make p2 more random looking, we can use Step (4) of Procedure 6.4.1 as

follows: choose h′2 = ∂1,q′3 = x1x3 and replace p2 by h′2 p2 q′2. The polyno-

mial p2 has degree 38 and there are 258 terms in its standard form.

We set the public key Q = { p1, p2}. These public polynomials are given in

Appendix C.3.

(3) The Message Space:
For the message space we choose

M = {xα ∂ β | |α|+ |β | ≤ 8}

That is, ⟨M ⟩K is the vector space of all polynomials in A3 of degree less than

or equal to 8. With this M , we can have 33003 possible plaintext messages.

As usual, M is known publicly. Moreover, every polynomial in GT has at

least one element from Oσ (IT )\M .

(4) Encryption:
Suppose that the plaintext message m ∈ ⟨M ⟩K is given by the polynomial

m = x3
2x2

3∂ 2
2 − x2

2x3
3∂1∂3 + x3

2x3∂1∂2∂3 − x2x3∂1∂ 3
2 ∂3 + x1∂ 3

1 ∂2∂ 2
3 + x2

2∂ 3
2 ∂ 2

3

−x2
2∂ 3

2 +∂ 5
2 + x2

1x2∂2∂3 − x1x2x3∂2 − x1x3∂ 2
2 + x2

1x2∂3 + x1x2x3∂3 −

x1x3∂ 2
3 + x1∂ 2

1 + x1x2∂2 + x1x3∂2 + x2
3∂2 + x1∂1.

For the encryption, choose

ℓ1 = x2
1x3

2x2
3∂ 2

1 ∂ 4
2 , r1 = x2

1x4
2x2

3∂ 16
1 ∂ 4

2 ,

ℓ2 = −x1x3
2x15

3 ∂ 2
1 ∂2 +∂ 2

3 , r2 = x1x4
2x16

3 ∂ 3
1 ∂ 2

2 + x2
2,

ℓ3 = x3
2x2

3∂ 2
2 − x2

2x3
3∂1∂3 + x3

2x3∂1∂2∂3 − x2x3∂1∂ 3
2 ∂3 − x1x2∂2,

ℓ4 = x1∂2 + x3∂2 +∂1∂2 − x1 +∂1 −1,

r6 = x1x4
3 −∂ 2

1 ∂2∂ 2
3 + x2

2∂ 2
3 − x2

2 +∂ 2
2 ,

r3 = r4 = r5 = ℓ5 = ℓ6 = 1.
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Next, we compute the ciphertext c as the standard form of

c = ℓ1 p1 r1 + ℓ2 p2 r2 + ℓ3 p1r3 + ℓ4 p2r4 + ℓ5 p1r5 + ℓ6 p2r6 +m

Then the polynomial c has degree 84 and there are 8,557 terms in its support.

We have selected the polynomials ℓ1, . . . , ℓ6, and r1, . . . ,r6 in the same way

as described in the encryption process of Example 6.3.2. In this way, the

highest degree terms cancel and many other terms are either cancelled or

their coefficients are changed in the resulting ciphertext. The lower part of

the ciphertext polynomial c is dense enough to include many terms from the

set M and the monomials of the plaintext message m are either cancelled

or their coefficients are changed in the ciphertext c. In this way out of 19

monomials of m, 13 are cancelled from the ciphertext c. The remaining 6

monomials of m are mixed in 282 monomials of the message space that are

present in c. Therefore, m is well-hidden in c.

(5) Decryption:
For recovering the plaintext message m, we compute NR(σ ,GT )(c). An ef-

ficient implementation of the left Division Algorithm 2.3.18 can recover m

within a second. For instance, such an implementation in the CAS Singular

takes 0.63 seconds on our computing machine for the decryption.

In the next section, we shall discuss the security of these instances of TWGBC

against known standard attacks.

6.5 Efficiency and Security

As explained in Chapter 5, efficient algorithms are available for the computation

in Weyl algebras both for positive and zero characteristic. In particular, both

Alice and Bob can compute effectively in the setting of TWGBC for the encryp-

tion and decryption processes respectively. For a TWGBC, the key-generation is

rather faster than the key-generation process of WGBC, since, by construction,

the polynomials in the secret key GT are elements of the commutative polyno-

mial ring Cn = Fp[x
p
1 , . . . ,x

p
n ,∂ p

1 , . . . ,∂
p
n ]. Therefore, in this case, Bob can easily
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control the sizes of the supports of polynomials p1, . . . , ps in his public key. Note

here that p1, . . . , ps /∈Cn, and therefore the sender Alice has to perform several Weyl

multiplications for the encryption. Recall that, for encrypting a plaintext message

m ∈ ⟨M ⟩K , Alice has to compute the ciphertext c as the standard form of

c =
s′

∑
i=1

ℓi pki ri, where s′ ≥ s and ki ∈ {1, ...,s} (*)

In the computation of c, both left and right Weyl multiplication of polynomi-

als are involved. This is of course a plus point for a TWGBC. In this setting, the

TWGBC environment seems to be more favourable for the users of the cryptosys-

tem. The process of converting the resulting polynomials into their standard form

after both the left and the right multiplication provides sufficient flexibility to hide

the polynomials that are used for the encryption. Contrary to the general non-

commutative setting of GBC, this is very interesting phenomenon of TWGBC and

we, therefore, explain it further in the following remark.

Remark 6.5.1 (TWGBC and non-commutative Polly Cracker). Our proposed

TWGBC has a major advantage over Rai’s basic non-commutative Polly Cracker

cryptosystem. In our setting of TWGBC, we are multiplying a polynomial pi from

the left side by a polynomial ℓi and from the right side by a polynomial ri. Then we

convert the product ℓi pki ri into its standard form, where, as before ki ∈ {1, . . . ,s}.

Therefore, for a term t ∈ Supp(pki), an attacker will have difficulties to guess which

terms tℓ ∈ Supp(ℓi) and tr ∈ Supp(ri) was used for the left and the right multipli-

cation by the term t. This will become more difficult to guess from the ciphertext

polynomial c when various such summands are combined, as in the Equation (*)

above.

This favourable environment of TWGBC might also reduce its efficiency by

increasing the size of the support of c to a value that may results in a bad ‘data-

rate’ for transmitting c over a network. Therefore, users of TWGBC have to be

very careful in choosing various polynomials in Equation (*) for the encryption.

Note that, the aim for the encryption is to hide the plaintext message m and also

to make c random-looking, so that the polynomials used for the encryption become

difficult to guess from the ciphertext. For controlling the size of Supp(c), we have
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suggested in Remark 6.3.3 to use a finite field Fp such that p ≤ 7. Moreover, we

also suggest in the above Equation (*) to use most of the summands with only one-

sided multiplication with pki by taking one of ℓi or ri as 1. For the summands where

the polynomials ℓ j and r j are used for the left as well as the right multiplication

with pk j , keep the sizes of the supports of ℓ j and r j as low as possible. We illustrate

this by the following example.

Example 6.5.2. Consider the instance of TWGBC of Example 6.4.3. Let the plain-

text message m and the polynomial p1, p2, p3 be given as in Example 6.4.3. For

encrypting the message m, choose

ℓ1 = x6
1x2

2x3
3∂ 9

1 ∂ 3
2 ∂ 9

3 , r1 = x5
1x3

2x3
3∂ 5

1 ∂ 2
2 ∂ 5

3 ,

ℓ2 = x10
1 x2x4

3∂ 11
1 ∂2∂ 11

3 , r2 = x9
1x3

3∂ 5
1 ∂2∂ 5

3 ,

ℓ3 = ∂ 3
1 ∂ 3

2 ∂ 3
3 +∂1∂2∂3, r3 = x2

1x3
2x3

3 + x3
1x2 + x3

2x3,

ℓ4 = ∂1 +∂2 +1, ℓ5 = x2x3∂1 +∂ 2
1 +∂2∂3 +∂3 +1,

ℓ6 = x1x2x3 + x1x2∂1 + x2x3∂1,

r7 = x3∂ 2
1 ∂3 + x1x2 + x1x3 + x1∂1 + x2∂3 + x1 + x2 + x3,

r8 = x3∂1∂2∂3 + x1x3∂1 + x3∂ 2
1 + x3∂1∂2 + x3∂1∂3 + x1∂2∂3 + x2∂2∂3 + x3∂2∂3 +

x2
1 + x1x2 + x1x3 + x1∂1 + x2∂1 + x3∂1 + x1∂2 + x2∂2 + x3∂2 +∂1∂2 + x1∂3 +

x2∂3 + x3∂3 +∂2∂3 + x1 +1,

r4 = r5 = r6 = ℓ7 = ℓ8 = 1,

and compute the ciphertext c as

c = m+ ℓ1 p1 r1 + ℓ2 p2 r2 + ℓ3 p3 r3 + ℓ4 p1 + ℓ5 p2 + ℓ6 p3 + p2r7 + p3r8.

Note that by taking r4 = r5 = r6 = ℓ7 = ℓ8 = 1 in the above representation of c,

we are using only one-sided multiplication in the last 5 summands. The polyno-

mial c then has degree 88 and number of terms in its support is reduced to 8890

from 13,532 (see Example 6.4.3). Moreover, the lower part of the ciphertext poly-

nomial c is dense enough to include many terms from the message space and that

the message m is also well-hidden, i.e. again, out of 22 monomials of m, 15 are

cancelled from the ciphertext c and other 7 monomials are mixed among 82 mono-

mials in c that are from the message space. Simultaneously, the decryption time is

reduced to 2.9 seconds on our computing machine.
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Hence the efficiency issue arising from the growth of the ciphertext polyno-

mial is somewhat controllable by using the above suggestions for encryption and

by choosing a base field of small characteristic. Of course, it also depends on

the size s, the number of polynomials in the public key and the sizes of the sup-

ports of these polynomials. The instances of TWGBC that have been presented

in Examples 6.3.2, 6.4.3, and 6.4.4, have decryption time of 0.79, 3.93 and 0.63

seconds respectively on our computing machine. There is strong evidence that our

proposed TWGBC is efficient in terms of the amount of time required to legally

decrypt the ciphertext and to recover the plaintext message m. For these instances

of TWGBC, we have achieved data-rates of 1/337, 1/615, and 1/450 respectively.

For the case of TWGBC shown in Example 6.4.3, we have seen in Example 6.5.2,

that by changing the polynomials used for the encryption, the size of the resulting

ciphertext can be controlled to improve the efficiency both in terms of decryption

time and the data-rate. In this case, the data-rate is improved to approx. 1/400 and

the decryption time has been reduced to 2.9 second. To sum up, the efficiency of

TWGBC, in terms of data-rate for transmitting the ciphertext seems to be reason-

able as compared to the instances of usual CGBC that have been presented so far.

We believe that further investigation might result in better ways to control the size

of the resulting ciphertext and hence to improve the data-rate for transmission.

On the other hand, the set-up of TWGBC gives us more security and reliability

as compared to WGBC. We have already seen in Chapter 5, that hard instances

of WGBC can be formulated that seem to be secure against the known standard

attacks. Let us now discuss the security of TWGBC against these attacks:

(1) Linear Algebra Attacks: For the WGBC case, we have described in Section

5.2 that hard instances of WGBC can be formulated that are secure against

the attacks based on linear algebra. For instance, in this setting, we have seen

that for the instances of WGBC presented in Chapter 4, these attacks are not

practical to apply, because the resulting linear system of equations turns out

to be hard to solve. In contrast, there is no room for such attacks on TWGBC

(see Remark 6.2.4), i.e. an instance of TWGBC is not vulnerable to Attacks

5.2.1 and 5.2.4.
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(2) The Chosen Ciphertext Attack: As in the case of WGBC, the basic setup of

TWGBC provides security against Attack 5.4, since every polynomial g∈GT

is chosen such that Supp(g) contains at least one term from Oσ (IT ) \M ,

where IT is the two-sided ideal on which the instance of TWGBC is based.

Hence Step (7) of Procedure 6.3.1 ensures that the basic chosen ciphertext

attack will not be successful for a TWGBC, because of its built-in mechanism

of recognizing an ‘illegal’ or ‘fake’ ciphertext (see Section 5.4 for details on

how this attack works).

(3) Partial Gröbner Basis Attack and TWGBC: This attack on an instance

of TWGBC works exactly the same way as described in Section 5.3 in the

setting of WGBC. In the setting of TWGBC, the computation of a two-sided

partial Gröbner basis, even for the degree bound that is less than the required

by the attack, turns out to be more harder than for the cases of WGBC. Our

experimental results give a strong evidence that a partial Gröbner basis attack

is infeasible to apply on an instance of TWGBC based on Procedure 6.4.1

(see the examples below).

We now give computational evidence that the partial Gröbner basis attack is infea-

sible for the instances of TWGBC presented in Examples 6.3.2, 6.4.3 and 6.4.4.

Example 6.5.3. For the instance of TWGBC of Example 6.3.2, let J = ⟨p1, p2⟩T be

the two-sided ideal generated by the Weyl polynomials p1 and p2 of the public key

Q. In this case, we have deg(c) = 93, where c is the ciphertext polynomial. Let us

now attempt to attack this system by computing a partial two-sided Gröbner basis

of J. For this, we first try to compute a left partial Gröbner basis of the ideal J using

the CAS Singular for the degree bound 85. This computation takes more than

56 hours of CPU time on our ‘computing machine, consumes 4.4 GB of memory,

and returns a partial left Gröbner basis consisting of 817 polynomials.

On the other hand, for the same value of the degree bound, a two-sided partial

Gröbner basis is found to be infeasible. In fact, we terminated the computation after

10512.4 minutes of CPU time and utilizing more than 7 GB of memory. Since c is

computed in a two-sided ideal, its normal remainder with respect to a complete or a

partial left Gröbner basis cannot be equal to the plaintext message m. In the present
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case, computation of the normal remainder resulted in a polynomial of degree 84

and its standard form contains 120535 terms. The time taken by this computation

was 12.1 hours on our computing machine. On the basis of these observations,

we conclude that the partial Gröbner basis attack does not work on this instance of

TWGBC.

Example 6.5.4. Consider the TWGBC presented in Example 6.4.3. In this case,

for the ciphertext polynomial c we have deg(c) = 88. Let J = ⟨p1, p2, p3⟩T be the

two sided ideal of A3 = F2[x1,x2,x3,∂1,∂2,∂3] generated by the polynomials in the

public key Q = {p1, p2, p3} of this system. Again, the partial Gröbner basis attack

on this system does not work, since a partial Gröbner basis for the degree bound 50

is found to be hard to compute. Note that for the possibility of success of this attack,

an attacker has to compute a partial Gröbner basis for a degree bound larger than 50.

In the present case, for the degree bound 50, the memory consumed during the

computation on the CAS Singular grows to 4.1 GB in 643.24 minutes of CPU

time on our computing machine. Hence there is sufficient evidence that, for a value

larger than the degree bound, the computation of a partial two-sided Gröbner basis

is infeasible.

Example 6.5.5. For the TWGBC of Example 6.4.4, a partial Gröbner basis attack

fails as follows: The computation of a two-sided partial Gröbner basis of the ideal

J = ⟨p1, p2⟩T is found to be infeasible, where p1, p2 ∈ A3 = F3[x1,x2,x3,∂1,∂2,∂3]

are as given in Example 6.4.4. In this case, for the degree bound 71, our computa-

tion had grown to consume 2.2 GB of memory in 74.4 minutes and remained busy

in the reduction process for the next 1220 minutes. We terminated our computations

without an output after 1294.43 minutes of CPU time on our computing machine.

The computational results and observations obtained from the above examples

are sufficient to conclude that there is strong evidence that a partial Gröbner basis

attack can be ignored safely for the instances of TWGBC that are based on Proce-

dure 6.4.1.

Conclusion: To conclude this thesis, we believe that hard instances of our

proposed WGBC and TWGBC can be constructed such that they will have resis-

tance against known standard attacks proposed by cryptanalyst of Gröbner basis
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type cryptosystems. The underlying problem of these systems is the computation

of Gröbner basis of ideals of Weyl algebras. that is known to be EXPSPACE hard

in general (see [53]). Therefore, Gröbner basis type cryptosystems do not have a

threat of ‘quantum computing’ like RSA and ElGamal cryptosystems.

The cryptanalysis of such cryptosystems might be helpful in exploring the struc-

ture of their base rings, i.e. Weyl algebras. For instance, one might come up with

new ideas and the modification of known attacks or some interesting algorithmic

results for computations in Weyl algebras. In particular, a faster and more efficient

way to compute a two-sided Gröbner basis of two-sided ideals of Weyl algebras

will be a good contribution. Our examples presented in this chapter can be used

to check the timings, efficiency and complexity of these new algorithms. Further

investigation of these cryptosystems might also result in suggesting better ways of

controlling the size of the ciphertext c and improving the efficiency of these sys-

tems, but not at the cost of security. A positive solution could be to minimize the

sizes of the supports of polynomials p1, . . . , ps in public key such that computa-

tion of a left (resp. two-sided) Gröbner basis of the left (resp. two-sided) ideal

J generated by these polynomial remains infeasible. Currently, to the best of our

knowledge of the subject, we believe that these systems are reliable and might be

adapted for the secret communication. We support our claim by all our experimen-

tal results, observations and examples presented in this thesis and by the challenges

presented in the next section.

6.6 TWGBC Challenge:

Challenge 6.6.1. Over the field K =F3, consider the Weyl algebra A3 =F3[x1,x2,x3,∂1,∂2,∂3].

Let the term ordering σ = DegRevLex on the set of terms B3 of A3. We introduce

the following TWGBC

(1) Secret Key
The secret key is the reduced two-sided σ -Gröbner basis G of a two-sided

ideal IT ⊂ A3.

(2) Public Key
The set Q = {p1, p2, p3} is our public key, where
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p1 = x5
1x5

2x2
3∂ 10

1 ∂ 4
2 ∂ 14

3 − x2x10
3 ∂ 9

1 ∂ 19
2 − x7

2x10
3 ∂ 22

2 − x4
2x4

3∂ 9
1 ∂ 22

2 − x10
2 x4

3∂ 25
2 + x3

1x4
2x16

3 ∂ 13
2 ∂ 3

3 −

x3
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2 x4
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2 ∂ 3
3 +x3

1x4
2x10

3 ∂ 10
2 ∂ 12

3 −x4
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2 ∂ 12
3 +x5

1x5
2x2

3∂ 9
1 ∂ 4

2 ∂ 14
3 −x11

1 x4
2x5

3∂ 2
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1x2x5

3∂ 11
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1 ∂ 17
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1 x4
2x5

3∂ 2
1 ∂ 8

2 ∂ 4
3 −x8

1x2x5
3∂ 11

1 ∂ 8
2 ∂ 4

3 −x8
1x7

2x5
3∂ 2

1 ∂ 11
2 ∂ 4

3 −x8
1x4

2x5
3∂ 2

1 ∂ 5
2 ∂ 13

3 +x5
1x4

2x5
3∂ 5

1 ∂ 5
2 ∂ 13

3 +

x4
2x16

3 ∂ 6
1 ∂ 10

2 −x4
2x4

3∂ 15
1 ∂ 13

2 −x10
2 x4

3∂ 6
1 ∂ 16

2 −x7
2x3∂ 9

1 ∂ 19
2 −x13

2 x3∂ 22
2 +x11

1 x4
2x5

3∂1∂ 14
2 ∂3+x5

1x2x5
3∂ 10

1 ∂ 14
2 ∂3+

x5
1x7

2x5
3∂1∂ 17

2 ∂3+x3
1x10

2 x7
3∂ 13

2 ∂ 3
3 −x3
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2 x3∂ 16

2 ∂ 3
3 +x14

1 x4
2x5

3∂1∂ 8
2 ∂ 4

3 +x8
1x2x5

3∂ 10
1 ∂ 8

2 ∂ 4
3 +x8

1x7
2x5

3∂1∂ 11
2 ∂ 4

3 +

x3
1x4

2x10
3 ∂ 3

1 ∂ 4
2 ∂ 12

3 +x3
2x6

3∂ 9
1 ∂ 6

2 ∂ 12
3 +x9

2x6
3∂ 9

2 ∂ 12
3 −x4

2x10
3 ∂ 10

2 ∂ 12
3 +x3

1x4
2x4

3∂ 13
2 ∂ 12

3 +x8
1x4

2x5
3∂1∂ 5

2 ∂ 13
3 −

x5
1x4

2x5
3∂ 4

1 ∂ 5
2 ∂ 13

3 −x11
1 x4

2x5
3∂ 8

1 ∂ 5
2 ∂3−x5

1x2x5
3∂ 17

1 ∂ 5
2 ∂3−x5

1x7
2x5

3∂ 8
1 ∂ 8

2 ∂3−x11
1 x5

2x2
3∂1∂ 13

2 ∂ 2
3 −x5

1x8
2x2

3∂1∂ 16
2 ∂ 2

3 −

x14
1 x5

2x2
3∂1∂ 7

2 ∂ 5
3 −x8

1x8
2x2

3∂1∂ 10
2 ∂ 5

3 +x5
1x4

2x5
3∂ 2

1 ∂ 5
2 ∂ 13

3 −x8
1x5

2x2
3∂1∂ 4

2 ∂ 14
3 +x5

1x5
2x2

3∂ 4
1 ∂ 4

2 ∂ 14
3 +x10

2 x7
3∂ 6

1 ∂ 10
2 −

x7
2x3∂ 15

1 ∂ 10
2 −x13

2 x3∂ 6
1 ∂ 13

2 +x3
2x15

3 ∂ 15
2 −x3

2x3
3∂ 9

1 ∂ 18
2 +x3

1x2x10
3 ∂ 19

2 −x2x10
3 ∂ 3

1 ∂ 19
2 +x4

2x3∂ 9
1 ∂ 19

2 −

x9
2x3

3∂ 21
2 −x3

1x7
2x3∂ 22

2 +x10
2 x3∂ 22

2 +x3
1x4

2x4
3∂ 22

2 −x4
2x4

3∂ 3
1 ∂ 22

2 +x11
1 x4

2x5
3∂ 7

1 ∂ 5
2 ∂3+x5

1x2x5
3∂ 16

1 ∂ 5
2 ∂3+

x5
1x7

2x5
3∂ 7

1 ∂ 8
2 ∂3 −x11

1 x5
2x2

3∂ 13
2 ∂ 2

3 −x5
1x8

2x2
3∂ 16

2 ∂ 2
3 +x3

1x3
2x15

3 ∂ 9
2 ∂ 3

3 −x3
1x7

2x7
3∂ 13

2 ∂ 3
3 +x4

2x13
3 ∂ 13

2 ∂ 3
3 −

x3
1x9

2x3
3∂ 15

2 ∂ 3
3 +x3

1x10
2 x3∂ 16

2 ∂ 3
3 +x4

2x10
3 ∂ 16

2 ∂ 3
3 −x3

1x4
2x4

3∂ 3
1 ∂ 16

2 ∂ 3
3 +x4

2x3∂ 9
1 ∂ 16

2 ∂ 3
3 +x10

2 x3∂ 19
2 ∂ 3

3 −

x14
1 x5

2x2
3∂ 7

2 ∂ 5
3 −x8

1x8
2x2

3∂ 10
2 ∂ 5

3 +x12
2 x3

3∂ 6
2 ∂ 12

3 +x3
1x3

2x9
3∂ 6

2 ∂ 12
3 −x3

2x9
3∂ 3

1 ∂ 6
2 ∂ 12

3 −x5
1x4

2x5
3∂1∂ 5

2 ∂ 13
3 −

x8
1x5

2x2
3∂ 4

2 ∂ 14
3 +x5

1x5
2x2

3∂ 3
1 ∂ 4

2 ∂ 14
3 −x11

1 x5
2x2

3∂ 7
1 ∂ 4

2 ∂ 2
3 −x5

1x8
2x2

3∂ 7
1 ∂ 7

2 ∂ 2
3 +x5

1x5
2x2

3∂1∂ 4
2 ∂ 14

3 +x3
2x15

3 ∂ 6
1 ∂ 6

2 −

x3
2x3

3∂ 15
1 ∂ 9

2 −x4
2x16

3 ∂ 10
2 +x3

1x4
2x7

3∂ 6
1 ∂ 10

2 −x7
2x7

3∂ 6
1 ∂ 10

2 +x4
2x3∂ 15

1 ∂ 10
2 −x9

2x3
3∂ 6

1 ∂ 12
2 −x3

1x7
2x3∂ 6

1 ∂ 13
2 +

x10
2 x3∂ 6

1 ∂ 13
2 +x3

1x4
2x4

3∂ 6
1 ∂ 13

2 +x9
2x6

3∂ 15
2 −x3

2x12
3 ∂ 15

2 −x6
2∂ 9

1 ∂ 15
2 +x10

2 x4
3∂ 16

2 −x12
2 ∂ 18

2 +x6
1x4

2x3∂ 19
2 −

x2x10
3 ∂ 19

2 −x4
2x4

3∂ 22
2 −x11

1 x5
2x2

3∂ 6
1 ∂ 4

2 ∂ 2
3 −x5

1x8
2x2

3∂ 6
1 ∂ 7

2 ∂ 2
3 +x3

1x9
2x6

3∂ 9
2 ∂ 3

3 −x3
1x3

2x12
3 ∂ 9

2 ∂ 3
3 +x4

2x10
3 ∂ 3

1 ∂ 10
2 ∂ 3

3 −

x3
1x12

2 ∂ 12
2 ∂ 3

3 +x9
1x4

2x3∂ 13
2 ∂ 3

3 +x10
2 x4

3∂ 13
2 ∂ 3

3 +x3
1x4

2x7
3∂ 13

2 ∂ 3
3 +x10

2 x3∂ 16
2 ∂ 3

3 −x3
1x4

2x4
3∂ 16

2 ∂ 3
3 +x4

2x4
3∂ 19

2 ∂ 3
3 +

x3
1x3

2x9
3∂ 3

1 ∂ 12
3 −x3

1x4
2x4

3∂ 3
1 ∂ 4

2 ∂ 12
3 +x3

1x6
2x3

3∂ 6
2 ∂ 12

3 −x9
2x3

3∂ 6
2 ∂ 12

3 −x3
1x3

2x6
3∂ 6

2 ∂ 12
3 −x3

2x9
3∂ 6

2 ∂ 12
3 +x3

2x6
3∂ 3

1 ∂ 6
2 ∂ 12

3 +

x3
1x3

2x3
3∂ 9

2 ∂ 12
3 +x3

1x4
2x3∂ 10

2 ∂ 12
3 −x4

2x3∂ 3
1 ∂ 10

2 ∂ 12
3 −x4

2x3∂ 13
2 ∂ 12

3 +x5
1x5

2x2
3∂ 4

2 ∂ 14
3 +x11

1 x4
2x5

3∂ 2
1 ∂ 5

2 ∂3+

x5
1x2x5

3∂ 11
1 ∂ 5

2 ∂3 +x5
1x7

2x5
3∂ 2

1 ∂ 8
2 ∂3 +x9

2x6
3∂ 6

1 ∂ 6
2 −x3

2x12
3 ∂ 6

1 ∂ 6
2 −x6

2∂ 15
1 ∂ 6

2 −x12
2 ∂ 6

1 ∂ 9
2 −x10

2 x7
3∂ 10

2 +

x6
1x4

2x3∂ 6
1 ∂ 10

2 +x4
2x7

3∂ 6
1 ∂ 10

2 +x7
2x3∂ 9

1 ∂ 10
2 +x13

2 x3∂ 13
2 +x3

1x7
2x4

3∂ 13
2 −x3

1x7
2x3∂ 3

1 ∂ 13
2 −x4

2x4
3∂ 6

1 ∂ 13
2 +

x3
1x3

2x6
3∂ 15

2 −x6
2x6

3∂ 15
2 +x3

2∂ 9
1 ∂ 15

2 −x3
1x6

2∂ 18
2 +x9

2∂ 18
2 +x3

1x3
2x3

3∂ 18
2 −x3

2x3
3∂ 3

1 ∂ 18
2 −x11

1 x4
2x5

3∂1∂ 5
2 ∂3−

x5
1x2x5

3∂ 10
1 ∂ 5

2 ∂3−x5
1x7

2x5
3∂1∂ 8

2 ∂3−x4
2x4

3∂ 9
1 ∂ 7

2 ∂ 3
3 −x3

1x6
2x6

3∂ 9
2 ∂ 3

3 +x3
2x12

3 ∂ 9
2 ∂ 3

3 +x10
2 x4

3∂ 10
2 ∂ 3

3 +x10
2 x3∂ 3

1 ∂ 10
2 ∂ 3

3 +

x3
1x9

2∂ 12
2 ∂ 3

3 +x3
2x9

3∂ 12
2 ∂ 3

3 −x3
1x3

2x3
3∂ 3

1 ∂ 12
2 ∂ 3

3 +x3
2∂ 9

1 ∂ 12
2 ∂ 3

3 +x3
1x4

2x4
3∂ 13

2 ∂ 3
3 −x7

2x4
3∂ 13

2 ∂ 3
3 +x9

2∂ 15
2 ∂ 3

3 +

x4
2x3∂ 3

1 ∂ 16
2 ∂ 3

3 +x3
1x4

2x4
3∂ 4

2 ∂ 12
3 +x3

1x4
2x3∂ 3

1 ∂ 4
2 ∂ 12

3 +x6
2x3

3∂ 6
2 ∂ 12

3 +x3
2x6

3∂ 6
2 ∂ 12

3 −x4
2x3∂ 10

2 ∂ 12
3 +x3

2x9
3∂ 2

1 ∂ 12
3 +

x2
1x3

3∂ 9
1 ∂ 12

3 −x3
3∂ 11

1 ∂ 12
3 +x2

1x6
2x3

3∂ 3
2 ∂ 12

3 −x6
2x3

3∂ 2
1 ∂ 3

2 ∂ 12
3 +x11

1 x5
2x2

3∂1∂ 4
2 ∂ 2

3 +x5
1x8

2x2
3∂1∂ 7

2 ∂ 2
3 −x3

2x9
3∂1∂ 12

3 +

x3
3∂ 10

1 ∂ 12
3 +x6

2x3
3∂1∂ 3

2 ∂ 12
3 +x3

1x7
2x4

3∂ 6
1 ∂ 4

2 −x3
1x7

2x3∂ 9
1 ∂ 4

2 −x3
2x15

3 ∂ 6
2 +x3

1x3
2x6

3∂ 6
1 ∂ 6

2 −x6
2x6

3∂ 6
1 ∂ 6

2 +

x3
2∂ 15

1 ∂ 6
2 −x3

1x6
2∂ 6

1 ∂ 9
2 +x9

2∂ 6
1 ∂ 9

2 +x3
1x3

2x3
3∂ 6

1 ∂ 9
2 −x3

1x4
2x7

3∂ 10
2 +x7

2x7
3∂ 10

2 −x4
2x3∂ 9

1 ∂ 10
2 +x9

2x3
3∂ 12

2 +

x3
1x7

2x3∂ 13
2 −x10

2 x3∂ 13
2 −x3

1x4
2x4

3∂ 13
2 +x3

1x4
2x3∂ 3

1 ∂ 13
2 +x4

2x4
3∂ 3

1 ∂ 13
2 +x6

1x3
2∂ 15

2 +x3
2x6

3∂ 15
2 −x3

2x3
3∂ 18

2 +

x11
1 x5

2x2
3∂ 4

2 ∂ 2
3 +x5

1x8
2x2

3∂ 7
2 ∂ 2

3 +x3
2x9

3∂ 3
1 ∂ 6

2 ∂ 3
3 −x13

2 x3∂ 7
2 ∂ 3

3 +x9
1x3

2∂ 9
2 ∂ 3

3 +x9
2x3

3∂ 9
2 ∂ 3

3 +x3
1x3

2x6
3∂ 9

2 ∂ 3
3 +

x3
1x4

2x3∂ 3
1 ∂ 10

2 ∂ 3
3 −x7

2x3∂ 3
1 ∂ 10

2 ∂ 3
3 −x4

2x4
3∂ 3

1 ∂ 10
2 ∂ 3

3 +x9
2∂ 12

2 ∂ 3
3 −x3

1x3
2x3

3∂ 12
2 ∂ 3

3 +x4
2x4

3∂ 13
2 ∂ 3

3 +x3
2x3

3∂ 15
2 ∂ 3

3 +
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x4
2x3∂ 16

2 ∂ 3
3 − x3

1x3
2x3

3∂ 3
1 ∂ 12

3 + x4
2x3∂ 3

1 ∂ 4
2 ∂ 12

3 + x3
1x3

2∂ 6
2 ∂ 12

3 − x3
2∂ 3

1 ∂ 6
2 ∂ 12

3 − x3
2∂ 9

2 ∂ 12
3 + x2

1x9
2∂ 12

3 −

x9
2∂ 2

1 ∂ 12
3 + x9

2∂1∂ 12
3 + x3

1x4
2x3∂ 9

1 ∂ 4
2 − x9

2x6
3∂ 6

2 + x3
2x12

3 ∂ 6
2 + x6

1x3
2∂ 6

1 ∂ 6
2 + x3

2x6
3∂ 6

1 ∂ 6
2 + x6

2∂ 9
1 ∂ 6

2 +

x12
2 ∂ 9

2 +x3
1x6

2x3
3∂ 9

2 −x3
1x6

2∂ 3
1 ∂ 9

2 −x3
2x3
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1 ∂ 9
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1x4

2x3∂ 10
2 −x4

2x7
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2x4

3∂ 13
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1 ∂ 3
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2x3
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2 ∂ 3
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1 ∂ 6
2 ∂ 3

3 −x3
1x7

2x3∂ 7
2 ∂ 3

3 +x10
2 x3∂ 7

2 ∂ 3
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1x4
2x4
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2 ∂ 3

3 −x7
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1 ∂ 7
2 ∂ 3
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2 ∂ 3
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2x4
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2 ∂ 3
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1x9
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1 ∂ 3

2 ∂ 3
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3 − x5
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1x3

2∂ 2
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1 ∂ 12
3 +x3

1x3
3∂ 2
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1x3
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3 −x3
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1 ∂ 12

3 +x9
3∂1∂ 9

2 +x3
1x9
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2 ∂ 3

3 +x3
1x3

2∂1∂ 12
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x6
2∂1∂ 12

3 −x3
1x3
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3 +x3
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3 +x3
1x6

2x3
3∂ 6

1 −x3
1x6
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1 −x3

1x7
2x4

3∂ 4
2 +x3
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1 ∂ 4
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x3
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2x6
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2 +x6
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1x3
2x3

3∂ 9
2 +x3

1x3
2∂ 3

1 ∂ 9
2 +x3

2x3
3∂ 3

1 ∂ 9
2 −x12

2 ∂ 3
2 ∂ 3

3 +

x3
1x3

2∂ 3
1 ∂ 6

2 ∂ 3
3 −x6

2∂ 3
1 ∂ 6

2 ∂ 3
3 −x3

2x3
3∂ 3

1 ∂ 6
2 ∂ 3

3 +x7
2x3∂ 7

2 ∂ 3
3 −x4

2x4
3∂ 7

2 ∂ 3
3 +x4

2x3∂ 3
1 ∂ 7

2 ∂ 3
3 +x3

2x3
3∂ 9

2 ∂ 3
3 +

x3
2∂ 12

2 ∂ 3
3 +x3

2∂ 3
1 ∂ 12

3 −x2
1x9

3∂ 6
1 −x9

3∂ 8
1 +x2

1x3
2∂ 12

3 +x2
1x3

3∂ 12
3 −x3

3∂ 2
1 ∂ 12

3 +x9
3∂ 7

1 +x3
3∂1∂ 12

3 +x3
1x3

2∂ 9
1 −

x3
1x4

2x3∂ 3
1 ∂ 4

2 −x6
1x3

2∂ 6
2 −x3

2x6
3∂ 6

2 −x6
2∂ 9

2 +x3
2x3

3∂ 9
2 −x3

1x6
2∂ 3

2 ∂ 3
3 +x9

2∂ 3
2 ∂ 3

3 +x3
1x3

2x3
3∂ 3

2 ∂ 3
3 −x6

2∂ 3
1 ∂ 3

2 ∂ 3
3 −

x3
2x3

3∂ 3
1 ∂ 3

2 ∂ 3
3 +x3

2x3
3∂ 6

2 ∂ 3
3 +x3

2∂ 3
1 ∂ 6

2 ∂ 3
3 −x4

2x3∂ 7
2 ∂ 3

3 −x5
1∂ 9

2 −x8
1∂ 3

2 ∂ 3
3 −x3

1x6
2x3

3+x3
1x6

2∂ 3
1 −x6

2∂ 6
1 +

x7
2x3∂ 4

2 +x6
2∂ 3

2 ∂ 3
3 −x3

2x3
3∂ 3

2 ∂ 3
3 +x3

2∂ 3
1 ∂ 3

2 ∂ 3
3 +x2

1x9
3+x9

3∂ 2
1 −x5

1∂ 6
1 +∂ 2

1 ∂ 9
2 +x3

1∂ 2
1 ∂ 3

2 ∂ 3
3 −x9

3∂1−

∂1∂ 9
2 − x3

1∂1∂ 3
2 ∂ 3

3 − x3
1x3

2∂ 3
1 +∂ 9

2 + x3
1∂ 3

2 ∂ 3
3 − x3

2∂ 3
2 ∂ 3

3 +∂ 8
1 −∂ 7

1 + x6
2 +∂ 6

1 + x5
1 −∂ 2

1 +∂1 −1,

p2 =−x5
1x11

2 x2
3∂ 15

1 ∂ 11
2 ∂3+x5

1x10
2 x2

3∂ 15
1 ∂ 10

2 ∂3+x4
1x11

2 x2
3∂ 14

1 ∂ 11
2 ∂3+x5

1x8
2x2

3∂ 15
1 ∂ 11

2 ∂3−x4
1x10

2 x2
3∂ 14

1 ∂ 10
2 ∂3−

x5
1x7

2x2
3∂ 15

1 ∂ 10
2 ∂3 − x4

1x8
2x2

3∂ 14
1 ∂ 11

2 ∂3 − x5
1x5

2x2
3∂ 15

1 ∂ 11
2 ∂3 − x8

1x5
2x5

3∂ 6
1 ∂ 14

2 ∂3 + x2
1x5

2x11
3 ∂ 6

1 ∂ 14
2 ∂3 +

x4
1x4

2∂ 11
1 ∂ 19

2 +x4
1x7

2x2
3∂ 14

1 ∂ 10
2 ∂3+x13

1 x2∂ 11
1 ∂ 10

2 ∂ 3
3 −x1x2∂ 20

1 ∂ 13
2 ∂ 3

3 −x1x7
2∂ 11

1 ∂ 16
2 ∂ 3

3 +x7
1x2∂ 11

1 ∂ 7
2 ∂ 12

3 −

x4
1x2∂ 14

1 ∂ 7
2 ∂ 12

3 +x5
1x4

2x2
3∂ 15

1 ∂ 10
2 ∂3+x4

1x5
2x2

3∂ 14
1 ∂ 11

2 ∂3+x8
1x4

2x5
3∂ 6

1 ∂ 13
2 ∂3−x2

1x4
2x11

3 ∂ 6
1 ∂ 13

2 ∂3+x7
1x5

2x5
3∂ 5

1 ∂ 14
2 ∂3−

x1x5
2x11

3 ∂ 5
1 ∂ 14

2 ∂3+x4
1x3

2∂ 11
1 ∂ 18

2 −x3
1x4

2∂ 11
1 ∂ 18

2 +x3
1x4

2∂ 10
1 ∂ 19

2 +x8
1x11

2 x5
3∂ 6

1 ∂ 5
2 ∂3−x2

1x11
2 x11

3 ∂ 6
1 ∂ 5

2 ∂3−

x8
1x11

2 x2
3∂ 9

1 ∂ 5
2 ∂3+x13

1 ∂ 11
1 ∂ 9

2 ∂ 3
3 −x12

1 x2∂ 11
1 ∂ 9

2 ∂ 3
3 +x12

1 x2∂ 10
1 ∂ 10

2 ∂ 3
3 −x1∂ 20

1 ∂ 12
2 ∂ 3

3 +x2∂ 20
1 ∂ 12

2 ∂ 3
3 −

x2∂ 19
1 ∂ 13

2 ∂ 3
3 − x1x6

2∂ 11
1 ∂ 15

2 ∂ 3
3 + x7

2∂ 11
1 ∂ 15

2 ∂ 3
3 − x7

2∂ 10
1 ∂ 16

2 ∂ 3
3 + x7

1∂ 11
1 ∂ 6

2 ∂ 12
3 − x6

1x2∂ 11
1 ∂ 6

2 ∂ 12
3 −

x4
1∂ 14

1 ∂ 6
2 ∂ 12

3 + x3
1x2∂ 14

1 ∂ 6
2 ∂ 12

3 + x6
1x2∂ 10

1 ∂ 7
2 ∂ 12

3 − x3
1x2∂ 13

1 ∂ 7
2 ∂ 12

3 + x10
1 x2∂ 17

1 ∂ 7
2 + x4

1x4
2∂ 17

1 ∂ 10
2 −

x4
1x4

2x2
3∂ 14

1 ∂ 10
2 ∂3−x7

1x4
2x5

3∂ 5
1 ∂ 13

2 ∂3+x1x4
2x11

3 ∂ 5
1 ∂ 13

2 ∂3+x7
1x2∂ 14

1 ∂2∂ 12
3 −x4

1x2∂ 11
1 ∂ 7

2 ∂ 12
3 +x1x2∂ 11

1 ∂ 10
2 ∂ 12

3 +

x3
1x3

2∂ 10
1 ∂ 18

2 −x8
1x10

2 x5
3∂ 6

1 ∂ 4
2 ∂3+x2

1x10
2 x11

3 ∂ 6
1 ∂ 4

2 ∂3+x8
1x10

2 x2
3∂ 9

1 ∂ 4
2 ∂3−x7

1x11
2 x5

3∂ 5
1 ∂ 5

2 ∂3+x1x11
2 x11

3 ∂ 5
1 ∂ 5

2 ∂3+

x7
1x11

2 x2
3∂ 8

1 ∂ 5
2 ∂3+x12

1 ∂ 10
1 ∂ 9

2 ∂ 3
3 −∂ 19

1 ∂ 12
2 ∂ 3

3 −x6
2∂ 10

1 ∂ 15
2 ∂ 3

3 +x6
1∂ 10

1 ∂ 6
2 ∂ 12

3 −x3
1∂ 13

1 ∂ 6
2 ∂ 12

3 +x10
1 ∂ 17

1 ∂ 6
2 −

x9
1x2∂ 17

1 ∂ 6
2 +x9

1x2∂ 16
1 ∂ 7

2 +x4
1x3

2∂ 17
1 ∂ 9

2 −x3
1x4

2∂ 17
1 ∂ 9

2 +x3
1x4

2∂ 16
1 ∂ 10

2 +x8
1x8

2x2
3∂ 9

1 ∂ 5
2 ∂3+x8

1x5
2x5

3∂ 9
1 ∂ 5

2 ∂3−

x2
1x5

2x11
3 ∂ 9

1 ∂ 5
2 ∂3 + x5

1x5
2x2

3∂ 6
1 ∂ 14

2 ∂3 + x7
1∂ 14

1 ∂ 12
3 − x6

1x2∂ 14
1 ∂ 12

3 + x6
1x2∂ 13

1 ∂2∂ 12
3 − x4

1∂ 11
1 ∂ 6

2 ∂ 12
3 +

x3
1x2∂ 11

1 ∂ 6
2 ∂ 12

3 −x3
1x2∂ 10

1 ∂ 7
2 ∂ 12

3 +x1∂ 11
1 ∂ 9

2 ∂ 12
3 −x2∂ 11

1 ∂ 9
2 ∂ 12

3 +x2∂ 10
1 ∂ 10

2 ∂ 12
3 +x7

1x10
2 x5

3∂ 5
1 ∂ 4

2 ∂3−

x1x10
2 x11

3 ∂ 5
1 ∂ 4

2 ∂3−x7
1x10

2 x2
3∂ 8

1 ∂ 4
2 ∂3+x4

1x2∂ 11
1 ∂ 13

2 ∂ 3
3 −x1x2∂ 14

1 ∂ 13
2 ∂ 3

3 +x9
1∂ 16

1 ∂ 6
2 +x3

1x3
2∂ 16

1 ∂ 9
2 −

x8
1x7

2x2
3∂ 9

1 ∂ 4
2 ∂3−x8

1x4
2x5

3∂ 9
1 ∂ 4

2 ∂3+x2
1x4

2x11
3 ∂ 9

1 ∂ 4
2 ∂3−x7

1x8
2x2

3∂ 8
1 ∂ 5

2 ∂3−x7
1x5

2x5
3∂ 8

1 ∂ 5
2 ∂3+x1x5

2x11
3 ∂ 8

1 ∂ 5
2 ∂3−
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Chapter 6. Two Sided Weyl Gröbner Basis Cryptosystems

x5
1x4

2x2
3∂ 6

1 ∂ 13
2 ∂3−x4

1x5
2x2

3∂ 5
1 ∂ 14

2 ∂3+x6
1∂ 13

1 ∂ 12
3 −x3

1∂ 10
1 ∂ 6

2 ∂ 12
3 +∂ 10

1 ∂ 9
2 ∂ 12

3 −x4
1x2x9

3∂ 10
1 ∂ 6

2 −x5
1x11

2 x2
3∂ 6

1 ∂ 5
2 ∂3−

x8
1x5

2x5
3∂ 6

1 ∂ 5
2 ∂3+x2

1x5
2x11

3 ∂ 6
1 ∂ 5

2 ∂3−x8
1x5

2x2
3∂ 9

1 ∂ 5
2 ∂3+x4

1∂ 11
1 ∂ 12

2 ∂ 3
3 −x3

1x2∂ 11
1 ∂ 12

2 ∂ 3
3 −x1∂ 14

1 ∂ 12
2 ∂ 3

3 +

x2∂ 14
1 ∂ 12

2 ∂ 3
3 +x3

1x2∂ 10
1 ∂ 13

2 ∂ 3
3 −x2∂ 13

1 ∂ 13
2 ∂ 3

3 −x10
1 x2∂ 11

1 ∂ 7
2 −x13

1 x2∂ 5
1 ∂ 10

2 −x4
1x4

2∂ 11
1 ∂ 10

2 −x7
1x2∂ 2

1 ∂ 19
2 +

x7
1x7

2x2
3∂ 8

1 ∂ 4
2 ∂3+x7

1x4
2x5

3∂ 8
1 ∂ 4

2 ∂3−x1x4
2x11

3 ∂ 8
1 ∂ 4

2 ∂3+x4
1x4

2x2
3∂ 5

1 ∂ 13
2 ∂3−x1x2∂ 11

1 ∂ 13
2 ∂ 3

3 −x1x2∂ 14
1 ∂2∂ 12

3 −

x3
1x2x9

3∂ 9
1 ∂ 6

2 +x4
1x7

2x3∂ 10
1 ∂ 6

2 +x5
1x10

2 x2
3∂ 6

1 ∂ 4
2 ∂3+x8

1x4
2x5

3∂ 6
1 ∂ 4

2 ∂3−x2
1x4

2x11
3 ∂ 6

1 ∂ 4
2 ∂3+x8

1x4
2x2

3∂ 9
1 ∂ 4

2 ∂3+

x4
1x11

2 x2
3∂ 5

1 ∂ 5
2 ∂3+x7

1x5
2x5

3∂ 5
1 ∂ 5

2 ∂3−x1x5
2x11

3 ∂ 5
1 ∂ 5

2 ∂3+x7
1x5

2x2
3∂ 8

1 ∂ 5
2 ∂3+x3

1∂ 10
1 ∂ 12

2 ∂ 3
3 −∂ 13

1 ∂ 12
2 ∂ 3

3 −

x4
1x7

2∂ 10
1 ∂ 6

2 −x10
1 ∂ 11

1 ∂ 6
2 +x9

1x2∂ 11
1 ∂ 6

2 +x3
1x7

2∂ 11
1 ∂ 6

2 −x9
1x2∂ 10

1 ∂ 7
2 −x3

1x7
2∂ 10

1 ∂ 7
2 −x13

1 ∂ 5
1 ∂ 9

2 +x12
1 x2∂ 5

1 ∂ 9
2 −

x4
1x3

2∂ 11
1 ∂ 9

2 + x3
1x4

2∂ 11
1 ∂ 9

2 − x12
1 x2∂ 4

1 ∂ 10
2 − x3

1x4
2∂ 10

1 ∂ 10
2 − x7

1∂ 2
1 ∂ 18

2 + x6
1x2∂ 2

1 ∂ 18
2 − x6

1x2∂1∂ 19
2 −

x5
1x5

2x2
3∂ 9

1 ∂ 5
2 ∂3−x1∂ 11

1 ∂ 12
2 ∂ 3

3 +x2∂ 11
1 ∂ 12

2 ∂ 3
3 −x2∂ 10

1 ∂ 13
2 ∂ 3

3 −x1∂ 14
1 ∂ 12

3 +x2∂ 14
1 ∂ 12

3 −x2∂ 13
1 ∂2∂ 12

3 +

x3
1x7

2x3∂ 9
1 ∂ 6

2 +x7
1x7

2∂ 2
1 ∂ 10

2 +x1x4
2∂ 11

1 ∂ 10
2 −x4

1x10
2 x2

3∂ 5
1 ∂ 4

2 ∂3−x7
1x4

2x5
3∂ 5

1 ∂ 4
2 ∂3+x1x4

2x11
3 ∂ 5

1 ∂ 4
2 ∂3−

x7
1x4

2x2
3∂ 8

1 ∂ 4
2 ∂3+x4

1x4
2∂ 11

1 ∂ 4
2 ∂ 3

3 +x1x2∂ 11
1 ∂2∂ 12

3 −x3
1x7

2∂ 9
1 ∂ 6

2 −x9
1∂ 10

1 ∂ 6
2 −x3

1x6
2∂ 10

1 ∂ 6
2 −x4

1x4
2x3∂ 10

1 ∂ 6
2 −

x12
1 ∂ 4

1 ∂ 9
2 −x3

1x3
2∂ 10

1 ∂ 9
2 −x6

1∂1∂ 18
2 +x5

1x4
2x2

3∂ 9
1 ∂ 4

2 ∂3+x4
1x5

2x2
3∂ 8

1 ∂ 5
2 ∂3−∂ 10

1 ∂ 12
2 ∂ 3

3 −∂ 13
1 ∂ 12

3 +x4
1x4

2∂ 10
1 ∂ 6

2 −

x3
1x4

2∂ 11
1 ∂ 6

2 +x3
1x4

2∂ 10
1 ∂ 7

2 +x7
1x6

2∂ 2
1 ∂ 9

2 −x6
1x7

2∂ 2
1 ∂ 9

2 +x1x3
2∂ 11

1 ∂ 9
2 −x4

2∂ 11
1 ∂ 9

2 +x6
1x7

2∂1∂ 10
2 +x4

2∂ 10
1 ∂ 10

2 +

x5
1x5

2x2
3∂ 6

1 ∂ 5
2 ∂3+x4

1x3
2∂ 11

1 ∂ 3
2 ∂ 3

3 −x3
1x4

2∂ 11
1 ∂ 3

2 ∂ 3
3 +x3

1x4
2∂ 10

1 ∂ 4
2 ∂ 3

3 +x1∂ 11
1 ∂ 12

3 −x2∂ 11
1 ∂ 12

3 +x2∂ 10
1 ∂2∂ 12

3 +

x1x4
2∂ 17

1 ∂2−x3
1x4

2x3∂ 9
1 ∂ 6

2 +x7
1x2∂ 5

1 ∂ 10
2 −x4

1x4
2x2

3∂ 8
1 ∂ 4

2 ∂3+x3
1x4

2∂ 9
1 ∂ 6

2 +x3
1x3

2∂ 10
1 ∂ 6

2 +x4
1x2x3∂ 10

1 ∂ 6
2 +

x6
1x6

2∂1∂ 9
2 +x7

1x2x4
3∂1∂ 9

2 −x1x2x10
3 ∂1∂ 9

2 +x3
2∂ 10

1 ∂ 9
2 −x5

1x4
2x2

3∂ 6
1 ∂ 4

2 ∂3−x4
1x5

2x2
3∂ 5

1 ∂ 5
2 ∂3+x3

1x3
2∂ 10

1 ∂ 3
2 ∂ 3

3 +

∂ 10
1 ∂ 12

3 − x7
1x2x9

3∂ 4
1 + x1x3

2∂ 17
1 − x4

2∂ 17
1 + x4

2∂ 16
1 ∂2 + x3

1x2∂ 11
1 ∂ 6

2 − x3
1x2∂ 10

1 ∂ 7
2 − x7

1x2x3
3∂1∂ 9

2 +

x6
1x2x3

3∂ 2
1 ∂ 9

2 −x2x9
3∂ 2

1 ∂ 9
2 +x7

1∂ 5
1 ∂ 9

2 −x6
1x2∂ 5

1 ∂ 9
2 −x6

1x2x3
3∂1∂ 10

2 +x2x9
3∂1∂ 10

2 +x6
1x2∂ 4

1 ∂ 10
2 +x3

1x2x3∂ 9
1 ∂ 6

2 +

x6
1x2x4

3∂ 9
2 −x2x10

3 ∂ 9
2 −x7

1x2∂ 2
1 ∂ 10

2 +x4
1x4

2x2
3∂ 5

1 ∂ 4
2 ∂3−x7

1x7
2x4

3∂1+x1x7
2x10

3 ∂1−x6
1x2x9

3∂ 3
1 +x7

1x7
2x3∂ 4

1 +

x3
2∂ 16

1 −x3
1∂ 10

1 ∂ 6
2 −x6

1x2x3
3∂ 9

2 −x6
1x3

3∂1∂ 9
2 +x9

3∂1∂ 9
2 +x6

1∂ 4
1 ∂ 9

2 +x7
1x7

2x3
3∂1−x6

1x7
2x3

3∂ 2
1 +x7

2x9
3∂ 2

1 −

x7
1x7

2∂ 4
1 + x6

1x7
2∂ 5

1 + x6
1x7

2x3
3∂1∂2 − x7

2x9
3∂1∂2 − x6

1x7
2∂ 4

1 ∂2 − x7
1∂ 2

1 ∂ 9
2 + x6

1x2∂ 2
1 ∂ 9

2 − x6
1x2∂1∂ 10

2 −

x6
1x7

2x4
3 + x7

2x10
3 + x6

1x7
2x3∂ 3

1 − x1x4
2∂ 11

1 ∂2 + x6
1x7

2x3
3 + x6

1x6
2x3

3∂1 − x6
2x9

3∂1 − x6
1x7

2∂ 3
1 − x6

1x6
2∂ 4

1 −

x7
1x4

2x3∂ 4
1 − x7

1x2x4
3∂ 4

1 + x1x2x10
3 ∂ 4

1 − x6
1∂1∂ 9

2 − x4
1x2x3∂1∂ 9

2 + x7
1x4

2∂ 4
1 + x7

1x2x3
3∂ 4

1 − x6
1x4

2∂ 5
1 −

x6
1x2x3

3∂ 5
1 +x2x9

3∂ 5
1 −x1x3

2∂ 11
1 +x4

2∂ 11
1 +x6

1x4
2∂ 4

1 ∂2+x6
1x2x3

3∂ 4
1 ∂2−x2x9

3∂ 4
1 ∂2−x4

2∂ 10
1 ∂2+x4

1x2∂1∂ 9
2 −

x3
1x2∂ 2

1 ∂ 9
2 +x3

1x2∂1∂ 10
2 −x6

1x4
2x3∂ 3

1 −x6
1x2x4

3∂ 3
1 +x2x10

3 ∂ 3
1 −x3

1x2x3∂ 9
2 +x4

1x7
2x3∂1+x7

1x2x4
3∂1−

x1x2x10
3 ∂1 + x6

1x4
2∂ 3

1 + x6
1x2x3

3∂ 3
1 + x6

1x3
2∂ 4

1 + x7
1x2x3∂ 4

1 + x6
1x3

3∂ 4
1 − x9

3∂ 4
1 − x3

2∂ 10
1 + x3

1x2∂ 9
2 +

x3
1∂1∂ 9

2 −x4
1x7

2∂1−x7
1x2x3

3∂1+x3
1x7

2∂ 2
1 +x6

1x2x3
3∂ 2

1 −x2x9
3∂ 2

1 +x6
1x2∂ 5

1 −x3
1x7

2∂1∂2−x6
1x2x3

3∂1∂2+

x2x9
3∂1∂2−x6

1x2∂ 4
1 ∂2+x1x2∂1∂ 9

2 +x3
1x7

2x3+x6
1x2x4

3−x2x10
3 +x6

1x2x3∂ 3
1 −x3

1x7
2−x6

1x2x3
3−x3

1x6
2∂1−

x6
1x3

3∂1+x9
3∂1−x6

1∂ 4
1 +x4

1x2x3∂ 4
1 +x2∂ 9

2 −x1x7
2∂1−x4

1x2∂ 4
1 +x3

1x2∂ 5
1 −x3

1x2∂ 4
1 ∂2+x3

1x2x3∂ 3
1 −

x7
2 − x4

1x2x3∂1 − x3
1x2∂ 3

1 − x3
1∂ 4

1 + x4
1x2∂1 − x3

1x2∂ 2
1 − x1x2∂ 4

1 + x3
1x2∂1∂2 − x3

1x2x3 + x3
1x2 +

x3
1∂1 − x2∂ 3

1 + x1x2∂1 + x2,
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6.6. TWGBC Challenge:

p3 =−x4
1x18

2 x11
3 ∂ 2

1 ∂ 2
2 ∂ 2

3 −x4
1x15

2 x5
3∂ 11

1 ∂ 2
2 ∂ 2

3 −x4
1x21

2 x5
3∂ 2

1 ∂ 5
2 ∂ 2

3 −x4
1x18

2 x11
3 ∂ 2

1 ∂ 2
2 ∂3−x4

1x15
2 x5

3∂ 11
1 ∂ 2

2 ∂3−

x4
1x21

2 x5
3∂ 2

1 ∂ 5
2 ∂3−x4

1x24
2 x2

3∂ 2
1 ∂ 2

2 ∂ 2
3 −x4

1x24
2 x2

3∂ 2
1 ∂ 2

2 ∂3−x12
1 x3

2x4
3∂ 9

1 ∂ 6
2 +x6

1x3
2x10

3 ∂ 9
1 ∂ 6

2 +x6
1x3

2x9
3∂ 9

1 ∂ 7
2 +

x6
1x3

3∂ 18
1 ∂ 7

2 + x6
1x6

2x3
3∂ 9

1 ∂ 10
2 − x12

1 x3
2x3

3∂ 9
1 ∂ 6

2 ∂3 − x6
1x3

3∂ 18
1 ∂ 6

2 ∂3 − x6
1x6

2x3
3∂ 9

1 ∂ 9
2 ∂3 + x1x16

3 ∂ 16
2 ∂3 +

x7
1x3

2x4
3∂ 19

2 ∂3+x4
1x16

3 ∂ 10
2 ∂ 4

3 −x4
1x4

3∂ 9
1 ∂ 13

2 ∂ 4
3 −x4

1x6
2x4

3∂ 16
2 ∂ 4

3 +x4
1x10

3 ∂ 7
2 ∂ 13

3 −x7
1x4

3∂ 3
1 ∂ 7

2 ∂ 13
3 +x12

1 x3
2x3

3∂ 9
1 ∂ 6

2 +

x6
1x3

2x9
3∂ 9

1 ∂ 6
2 −x6

1x3
3∂ 18

1 ∂ 6
2 −x6

1x6
2x3

3∂ 9
1 ∂ 9

2 −x1x16
3 ∂ 16

2 −x7
1x3

2x4
3∂ 19

2 −x7
1x18

2 x2
3∂ 2

1 ∂ 2
2 ∂ 2

3 +x4
1x21

2 x2
3∂ 2

1 ∂ 2
2 ∂ 2

3 +

x7
1x15

2 x5
3∂ 2

1 ∂ 2
2 ∂ 2

3 −x4
1x15

2 x5
3∂ 5

1 ∂ 2
2 ∂ 2

3 −x4
1x16

3 ∂ 10
2 ∂ 3

3 +x4
1x4

3∂ 9
1 ∂ 13

2 ∂ 3
3 +x4

1x6
2x4

3∂ 16
2 ∂ 3

3 −x4
1x10

3 ∂ 7
2 ∂ 12

3 +

x7
1x4

3∂ 3
1 ∂ 7

2 ∂ 12
3 −x7

1x18
2 x2

3∂ 2
1 ∂ 2

2 ∂3+x4
1x21

2 x2
3∂ 2

1 ∂ 2
2 ∂3+x7

1x15
2 x5

3∂ 2
1 ∂ 2

2 ∂3−x4
1x15

2 x5
3∂ 5

1 ∂ 2
2 ∂3+x6

1x9
2x3∂ 9

1 ∂ 6
2 +

x6
1x9

2∂ 9
1 ∂ 7

2 +x7
1x10

3 ∂ 6
1 ∂ 7

2 ∂3 +x7
1x3

2x4
3∂ 6

1 ∂ 10
2 ∂3 +x7

1x6
2x3∂ 16

2 ∂3 +x1x6
2x7

3∂ 16
2 ∂3 +x2

1x8
2x10

3 ∂ 4
1 ∂ 5

2 ∂ 2
3 +

x2
1x5

2x4
3∂ 13

1 ∂ 5
2 ∂ 2

3 +x2
1x11

2 x4
3∂ 4

1 ∂ 8
2 ∂ 2

3 +x4
1x6

2x7
3∂ 10

2 ∂ 4
3 −x4

1x3
2x3∂ 9

1 ∂ 10
2 ∂ 4

3 −x4
1x9

2x3∂ 13
2 ∂ 4

3 +x4
1x10

3 ∂ 3
1 ∂2∂ 13

3 −

x7
1x4

3∂ 7
2 ∂ 13

3 +x4
1x4

3∂ 10
2 ∂ 13

3 +x6
1x9

2∂ 9
1 ∂ 6

2 −x7
1x10

3 ∂ 6
1 ∂ 7

2 −x7
1x3

2x4
3∂ 6

1 ∂ 10
2 −x7

1x6
2x3∂ 16

2 −x1x6
2x7

3∂ 16
2 +

x2
1x8

2x10
3 ∂ 4

1 ∂ 5
2 ∂3+x2

1x5
2x4

3∂ 13
1 ∂ 5

2 ∂3+x2
1x11

2 x4
3∂ 4

1 ∂ 8
2 ∂3−x4

1x18
2 x2

3∂ 2
1 ∂ 2

2 ∂ 2
3 −x4

1x15
2 x5

3∂ 2
1 ∂ 2

2 ∂ 2
3 −x4

1x6
2x7

3∂ 10
2 ∂ 3

3 +

x4
1x3

2x3∂ 9
1 ∂ 10

2 ∂ 3
3 +x4

1x9
2x3∂ 13

2 ∂ 3
3 −x4

1x10
3 ∂ 3

1 ∂2∂ 12
3 +x7

1x4
3∂ 7

2 ∂ 12
3 −x4

1x4
3∂ 10

2 ∂ 12
3 −x4

1x18
2 x2

3∂ 2
1 ∂ 2

2 ∂3−

x4
1x15

2 x5
3∂ 2

1 ∂ 2
2 ∂3+x9

1x3
2x3∂ 9

1 ∂ 6
2 −x6

1x6
2x3∂ 9

1 ∂ 6
2 +x9

1x3
2∂ 9

1 ∂ 7
2 −x6

1x6
2∂ 9

1 ∂ 7
2 −x9

1x3
3∂ 9

1 ∂ 7
2 +x6

1x3
3∂ 12

1 ∂ 7
2 +

x9
1x3

3∂ 9
1 ∂ 6

2 ∂3−x6
1x3

3∂ 12
1 ∂ 6

2 ∂3+x7
1x6

2x3∂ 6
1 ∂ 7

2 ∂3+x10
1 x3∂ 16

2 ∂3−x7
1x3

2x3∂ 16
2 ∂3+x4

1x7
3∂ 16

2 ∂3−x1x3
2x7

3∂ 16
2 ∂3+

x2
1x14

2 x3∂ 4
1 ∂ 5

2 ∂ 2
3 + x13

1 x3∂ 10
2 ∂ 4

3 + x7
1x7

3∂ 10
2 ∂ 4

3 − x4
1x3

2x7
3∂ 10

2 ∂ 4
3 + x4

1x3∂ 9
1 ∂ 10

2 ∂ 4
3 + x4

1x6
2x3∂ 13

2 ∂ 4
3 +

x7
1x4

3∂ 13
2 ∂ 4

3 − x4
1x4

3∂ 3
1 ∂ 13

2 ∂ 4
3 + x7

1x3∂ 7
2 ∂ 13

3 + x9
1x3

2∂ 9
1 ∂ 6

2 − x6
1x6

2∂ 9
1 ∂ 6

2 + x9
1x3

3∂ 9
1 ∂ 6

2 − x6
1x3

3∂ 12
1 ∂ 6

2 −

x7
1x6

2x3∂ 6
1 ∂ 7

2 −x10
1 x3∂ 16

2 +x7
1x3

2x3∂ 16
2 −x4

1x7
3∂ 16

2 +x1x3
2x7

3∂ 16
2 +x2

1x14
2 x3∂ 4

1 ∂ 5
2 ∂3−x13

1 x3∂ 10
2 ∂ 3

3 −

x7
1x7

3∂ 10
2 ∂ 3

3 +x4
1x3

2x7
3∂ 10

2 ∂ 3
3 −x4

1x3∂ 9
1 ∂ 10

2 ∂ 3
3 −x4

1x6
2x3∂ 13

2 ∂ 3
3 −x7

1x4
3∂ 13

2 ∂ 3
3 +x4

1x4
3∂ 3

1 ∂ 13
2 ∂ 3

3 −x7
1x3∂ 7

2 ∂ 12
3 +

x6
1x3

3∂ 9
1 ∂ 7

2 +x6
1x3

2∂ 9
1 ∂ 6

2 ∂3−x6
1x3

3∂ 9
1 ∂ 6

2 ∂3−x7
1x10

3 ∂ 7
2 ∂3+x10

1 x3∂ 6
1 ∂ 7

2 ∂3−x7
1x3

2x3∂ 6
1 ∂ 7

2 ∂3−x7
1x3

2x4
3∂ 10

2 ∂3+

x7
1x3∂ 16

2 ∂3 − x4
1x3

2x3∂ 16
2 ∂3 + x1x7

3∂ 16
2 ∂3 + x5

1x8
2x3∂ 4

1 ∂ 5
2 ∂ 2

3 − x2
1x11

2 x3∂ 4
1 ∂ 5

2 ∂ 2
3 − x5

1x5
2x4

3∂ 4
1 ∂ 5

2 ∂ 2
3 +

x2
1x5

2x4
3∂ 7

1 ∂ 5
2 ∂ 2

3 +x10
1 x3∂ 10

2 ∂ 4
3 +x4

1x7
3∂ 10

2 ∂ 4
3 −x4

1x3
2x3∂ 3

1 ∂ 10
2 ∂ 4

3 −x4
1x4

3∂ 13
2 ∂ 4

3 +x7
1x3∂ 3

1 ∂2∂ 13
3 −x4

1x4
3∂ 3

1 ∂2∂ 13
3 +

x4
1x3∂ 7

2 ∂ 13
3 −x6

1x3
2∂ 9

1 ∂ 6
2 −x6

1x3
3∂ 9

1 ∂ 6
2 +x7

1x10
3 ∂ 7

2 −x10
1 x3∂ 6

1 ∂ 7
2 +x7

1x3
2x3∂ 6

1 ∂ 7
2 +x7

1x3
2x4

3∂ 10
2 −x7

1x3∂ 16
2 +

x4
1x3

2x3∂ 16
2 − x1x7

3∂ 16
2 + x5

1x8
2x3∂ 4

1 ∂ 5
2 ∂3 − x2

1x11
2 x3∂ 4

1 ∂ 5
2 ∂3 − x5

1x5
2x4

3∂ 4
1 ∂ 5

2 ∂3 + x2
1x5

2x4
3∂ 7

1 ∂ 5
2 ∂3 −

x10
1 x3∂ 10

2 ∂ 3
3 −x4

1x7
3∂ 10

2 ∂ 3
3 +x4

1x3
2x3∂ 3

1 ∂ 10
2 ∂ 3

3 +x4
1x4

3∂ 13
2 ∂ 3

3 −x7
1x3∂ 3

1 ∂2∂ 12
3 +x4

1x4
3∂ 3

1 ∂2∂ 12
3 −x4

1x3∂ 7
2 ∂ 12

3 −

x7
1x6

2x3∂ 7
2 ∂3+x7

1x3∂ 6
1 ∂ 7

2 ∂3−x4
1x3

2x3∂ 6
1 ∂ 7

2 ∂3+x4
1x3

2x4
3∂ 10

2 ∂3−x4
1x3

2x3∂ 3
1 ∂ 10

2 ∂3+x4
1x3∂ 16

2 ∂3+x2
1x8

2x3∂ 4
1 ∂ 5

2 ∂ 2
3 +

x2
1x5

2x4
3∂ 4

1 ∂ 5
2 ∂ 2

3 + x7
1x3

2x4
3∂ 4

2 ∂ 4
3 − x7

1x3
2x3∂ 3

1 ∂ 4
2 ∂ 4

3 − x4
1x3

2x3∂ 10
2 ∂ 4

3 + x4
1x3∂ 3

1 ∂ 10
2 ∂ 4

3 + x4
1x4

3∂2∂ 13
3 +

x4
1x3∂ 3

1 ∂2∂ 13
3 + x7

1x6
2x3∂ 7

2 − x7
1x3∂ 6

1 ∂ 7
2 + x4

1x3
2x3∂ 6

1 ∂ 7
2 − x4

1x3
2x4

3∂ 10
2 + x4

1x3
2x3∂ 3

1 ∂ 10
2 − x4

1x3∂ 16
2 +

x2
1x8

2x3∂ 4
1 ∂ 5

2 ∂3+x2
1x5

2x4
3∂ 4

1 ∂ 5
2 ∂3−x7

1x3
2x4

3∂ 4
2 ∂ 3

3 +x7
1x3

2x3∂ 3
1 ∂ 4

2 ∂ 3
3 +x4

1x3
2x3∂ 10

2 ∂ 3
3 −x4

1x3∂ 3
1 ∂ 10

2 ∂ 3
3 −

x4
1x4

3∂2∂ 12
3 −x4

1x3∂ 3
1 ∂2∂ 12

3 +x3
1x3∂ 9

1 ∂ 6
2 +x3

1∂ 9
1 ∂ 7

2 +x4
1x3

2x4
3∂ 6

1 ∂2∂3−x4
1x3

2x3∂ 9
1 ∂2∂3−x3

1∂ 9
1 ∂ 6

2 ∂3−

x10
1 x3∂ 7

2 ∂3+x7
1x3

2x3∂ 7
2 ∂3+x4

1x3∂ 6
1 ∂ 7

2 ∂3+x4
1x3∂ 3

1 ∂ 10
2 ∂3+x7

1x3∂ 3
1 ∂ 4

2 ∂ 4
3 +x4

1x3∂ 10
2 ∂ 4

3 −x4
1x3

2x4
3∂ 6

1 ∂2+

x4
1x3

2x3∂ 9
1 ∂2−x3

1∂ 9
1 ∂ 6

2 +x10
1 x3∂ 7

2 −x7
1x3

2x3∂ 7
2 −x4

1x3∂ 6
1 ∂ 7

2 −x4
1x3∂ 3

1 ∂ 10
2 −x7

1x3∂ 3
1 ∂ 4

2 ∂ 3
3 −x4

1x3∂ 10
2 ∂ 3

3 −

x3
1x3

2x9
3∂1∂2−x3

1x3
3∂ 10

1 ∂2−x3
1x6

2x3
3∂1∂ 4

2 +x3
1x3

2x9
3∂ 2

3 +x3
1x3

3∂ 9
1 ∂ 2

3 +x3
1x6

2x3
3∂ 3

2 ∂ 2
3 +x3

1x3∂ 12
1 +x3

1∂ 12
1 ∂2+
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x3
1x6

2x3∂ 3
1 ∂ 3

2 +x3
1x6

2∂ 3
1 ∂ 4

2 −x3
1x3

2x3∂ 9
2 −x3

1x3
2∂ 10

2 +x3
1x3

2x9
3∂3+x3

1x3
3∂ 9

1 ∂3−x3
1∂ 12

1 ∂3+x4
1x3∂ 9

1 ∂2∂3+

x3
1x6

2x3
3∂ 3

2 ∂3−x3
1x6

2∂ 3
1 ∂ 3

2 ∂3−x7
1x3∂ 7

2 ∂3+x4
1x3

2x3∂ 7
2 ∂3+x3

1x3
2∂ 9

2 ∂3−x3
1∂ 12

1 −x4
1x3∂ 9

1 ∂2−x3
1x6

2∂ 3
1 ∂ 3

2 +

x7
1x3∂ 7

2 −x4
1x3

2x3∂ 7
2 +x3

1x3
2∂ 9

2 −x3
1x9

2∂1∂2+x3
1x9

2∂ 2
3 +x3

1x9
2x3+x3

1x9
2∂2−x4

1x3
2x4

3∂2∂3+x4
1x3

2x3∂ 3
1 ∂2∂3−

x4
1x3∂ 7

2 ∂3−x3
1x9

2+x4
1x3

2x4
3∂2−x4

1x3
2x3∂ 3

1 ∂2+x4
1x3∂ 7

2 −x6
1x3

2∂1∂2+x3
1x6

2∂1∂2+x9
3∂1∂2−x3

1x3
3∂ 4

1 ∂2+

x6
1x3

2∂ 2
3 −x3

1x6
2∂ 2

3 −x9
3∂ 2

3 +x3
1x3

3∂ 3
1 ∂ 2

3 +x3
1x3

2x3∂ 3
1 +x3

1x3∂ 6
1 +x3

1x3
2∂ 3

1 ∂2+x3
1∂ 6

1 ∂2+x3∂ 9
2 +∂ 10

2 +

x6
1x3

2∂3 − x3
1x6

2∂3 − x9
3∂3 − x3

1x3
2∂ 3

1 ∂3 + x3
1x3

3∂ 3
1 ∂3 − x3

1∂ 6
1 ∂3 − x4

1x3∂ 3
1 ∂2∂3 − ∂ 9

2 ∂3 − x3
1x3

2∂ 3
1 −

x3
1∂ 6

1 + x4
1x3∂ 3

1 ∂2 −∂ 9
2 − x3

1x3
2∂1∂2 + x6

2∂1∂2 − x3
1x3

3∂1∂2 + x3
1x3

2∂ 2
3 − x6

2∂ 2
3 + x3

1x3
3∂ 2

3 − x3
1x3

2x3 −

x6
2x3 + x3

1x3∂ 3
1 − x3

1x3
2∂2 − x6

2∂2 + x3
1∂ 3

1 ∂2 − x3
1x3

2∂3 + x3
1x3

3∂3 − x3
1∂ 3

1 ∂3 + x3
1x3

2 + x6
2 − x3

1∂ 3
1 +

x3
1∂1∂2 − x3

2∂1∂2 − x3
1∂ 2

3 + x3
2∂ 2

3 − x3∂ 3
1 −∂ 3

1 ∂2 − x3
1∂3 + x3

2∂3 +∂ 3
1 ∂3 +∂ 3

1 +∂1∂2 −∂ 2
3 + x3 +

∂2 +∂3 −1.

(3) Message Space For the message space we choose

M = {xα ∂ β | |α|+ |β | ≤ 7}

That is, ⟨M ⟩K is the vector space of all polynomials in A3 of degree less than

or equal to 7. With this M , we can have 31716 possible plaintext messages.

We have encrypted a message m and obtained the ciphertext c of degree 80 and

its standard form consists of 9,703 terms. We believe that this ciphertext is se-

cure and cannot be broken by using the known standard attacks presented in this

thesis. The ciphertext c together with the public key Q is available in the file

twgbc challenge.coc in a format usable for the CAS ApCoCoA. This file can be

downloaded from the WWW page

http://www.megaupload.com/?d=54LD2L16

We welcome our readers to attack this cryptosystem and provide us further useful

suggestions and improvements. Keeping in mind the chosen-ciphertext security for

the attack presented in Section 5.5, we are ready to decrypt any ciphertext message

that is the encryption of a message in the following message space:

M ′ = {xα ∂ β | |α|+ |β | ≤ 4}
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Appendix A
Package Weyl

In Chapters 2 and 4 we talk about computations in Weyl algebra. In particular, we

have defined the standard form of a Weyl polynomial and described the left Division

Algorithm 2.3.18 for Weyl algebras. We have also explained algorithms for com-

puting left and two-sided Gröbner bases of ideals in Weyl algebras (see Algorithms

2.3.24 and 6.1.9 for details). We have developed the package Weyl for performing

various computations in Weyl algebras using ApCoCoA. In this appendix we are go-

ing to explain the usage of this package by briefly describing the functions which

are implemented in this package for performing various computations in Weyl al-

gebras. The CAS ApCoCoA, an acronym of ‘Applied Computations in Commutative

Algebra’ is based on the CAS CoCoA. It is primarily designed for working with

‘real-problems’ by using the symbolic computations methods of CoCoAand by de-

veloping new libraries for related computations.

The CAS ApCoCoAis available free of charge via the internet and can be down-

loaded from the WWW page

http://www.apcocoa.org/

For a short introduction to CoCoA and for the help on getting started with it we

refer to [27] (Appendix A, page 275). The ApCoCoAworks exactly the same way as

explained there.

For working with the Weyl algebra of index n by using the CAS ApCoCoA,

one first has to define and activate a ring in 2n indeterminates. For instance, for



A.1. Available Functions

working with the Weyl algebra A5 = Z7[x1, . . . ,x5,∂1, . . . ,∂5] of index 5 one can

start by using the following two commands:

An ::= ZZ/(7)[x[1..5],y[1..5]];

Use An;

Note that the symbol ∂ can be replaced by any other symbol that can be used to

represent indeterminates in ApCoCoA. In general, given a ring in 2n indeterminates

in ApCoCoA, the package Weyl takes the first n indeterminates as x1, . . . ,xn and

the last n indeterminates as ∂1, . . . ,∂n in the definition of the Weyl algebra An (see

Definition 2.1.1). The default term ordering σ for the rings in ApCoCoA is defined

as DegRevLex. For using other term orderings, see the ApCoCoA documentation

from the help-menu.

A.1 Available Functions

In the following we give a short description of the functions available in the package

Weyl for working with the Weyl Algebra An over a field K. This description is also

available as part of the documentation of this package and can be seen from the

help-menu of ApCoCoA.

A.1.1. WStandardForm(L)

Purpose: Computes the standard form of a Weyl polynomial.

Syntax Weyl.WStandardForm(L:LIST):POLY

Input A list L of lists where each list represents a monomial of a Weyl polynomial.

Output The standard form of the Weyl polynomial represented by the above list L.

Example Consider the Weyl algebra A2 =Q[x1,x2,y1,y2]. For converting a Weyl poly-

nomial F := 2x2y1x2
2 −9y2x2

1x3
2 +5 in to its standard form, one has to run the

following commands in ApCoCoA interactive window:

A2::=QQ[x[1..2],y[1..2]]; -- Define the appropriate ring

Use A2;

L := [ [2x[1],y[1],x[2]̂ 2], [-9y[2],x[1] 2̂,x[2]̂ 3],[5] ];

– note how the polynomial F is represented by the above list L.

Weyl.WStandardForm(L);
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-9x[1]̂ 2x[2]̂ 3y[2] - 27x[1]̂ 2x[2]̂ 2 + 2x[1]x[2] 2̂y[1] + 5

-- this output is the standard form of the given polynomial F .

Note. From now on, by a Weyl polynomial we mean a polynomial represented in

its unique standard form. For using any of the function below, if a polynomial is not

given in its standard form then first convert it into the standard form as explained

above.

A.1.2. WMulByMonom(M,P)

Purpose: Computes the product M*P of a Weyl monomial M and a Weyl Polynomial P.

Syntax Weyl.WMulByMonom(M:POLY,P:POLY):POLY

Input 1st parameter M, a Weyl monomial in its standard form.

2nd parameter P, a Weyl polynomial.

Output The Weyl polynomial for the product M*P.
Example For multiplying a monomial M = x3y4 with the polynomial F := x3 + y3 +

3xy+5, where both M,F ∈ A1 =Q[x,y], We proceed as follows:
A1::=QQ[x,y]; Use A1; -- Define and activate the appropriate ring
M:=x 3̂ŷ 4; F:=x̂ 3+ŷ 3+3xy+5;

Weyl.WMulByMonom(M,F);

x 6̂ŷ 4+x̂ 3ŷ 7+3x̂ 4ŷ 5+12x̂ 5ŷ 3+17x̂ 3ŷ 4+36x̂ 4ŷ 2+24x̂ 3y

-- this output is the standard form of the product M*F.

A.1.3. WMul(F,G)

Purpose: computes the product F*G of the Weyl polynomials F and G.

Syntax Weyl.WMul(F:POLY,G:POLY):POLY

Input Two Weyl polynomials F and G.

Output A polynomial which is the standard form of the product F*G.

Example Consider the Weyl algebra A2 =Z101[x1,x2,y1,y2], then we can perform mul-

tiplication of various polynomials in A2 as follows:

A2::=ZZ/(101)[x[1..2],y[1..2]]; -- Define the appropriate ring

Use A2;

Weyl.WMul(x[1]̂ 11,y[1]̂ 11);

x[1]̂ 11y[1]̂ 11
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-- this is the standard form of the product of x11
1 ,y11

1 ∈ A2

Weyl.WMul(y[1]̂ 11,x[1]̂ 11);

x[1] 1̂1y[1]̂ 11+20x[1]̂ 10y[1]̂ 10-10x[1]̂ 9y[1]̂ 9+33x[1]̂ 8y[1]

8̂+23x[1]̂ 7y[1]̂ 7-17x[1]̂ 6y[1]̂ 6-x[1]̂ 5y[1]̂ 5- 18x[1]̂ 4y[1]

4̂-36x[1]̂ 3y[1]̂ 3-36x[1]̂ 2y[1]̂ 2+26x[1]y[1]-16

-- this is the standard form of the product of y11
1 ,x11

1 ∈ A2

F:=3x[1] 2̂y[1]̂ 3-2x[2]y[2]̂ 2+5x[2]-5y[2]-7;

G:=4x[1] 2̂y[1]̂ 2-9x[2]y[2]-7x[1]+y[1]+11;

12x[1]̂ 4y[1]̂ 5 - 29x[1]̂ 3y[1]̂ 4 - 27x[1] 2̂x[2]y[1]̂ 3y[2] -

8x[1] 2̂x[2]y[1]̂ 2y[2]̂ 2 - 21x[1] 3̂y[1]̂ 3 + 3x[1]̂ 2y[1]̂ 4 +

20x[1]̂ 2x[2]y[1]̂ 2 + 4x[1]̂ 2y[1]̂ 3 - 20x[1] 2̂y[1]̂ 2y[2] +

18x[2]̂ 2y[2]̂ 3 + 10x[1]̂ 2y[1]̂ 2 + 14x[1]x[2]y[2] 2̂ -

2x[2]y[1]y[2]̂ 2 - 45x[2] 2̂y[2] - 42x[2]y[2]̂ 2 - 35x[1]x[2]

+ 5x[2]y[1] + 35x[1]y[2] - 38x[2]y[2] - 5y[1]y[2] +

49x[1] - 46x[2] - 7y[1] - 10y[2] + 24

-- this is the standard form of the product F*G of polynomials F and G.

A.1.4. WMult(F,G)

Purpose: Just like the function explained in A.1.3, this function also computes the prod-

uct F*G of the Weyl polynomials F and G. The only difference is that it is

implemented in ApCoCoAServer for the faster computation while working

with the Weyl polynomials of very large size. This will also be useful for the

computations in Weyl algebra by using ApCoCoALib. The ApCoCoAServer

should be running for using this function.

Syntax Weyl.WMult(F:POLY,G:POLY):POLY

Input Two Weyl polynomials F and G.

Output A polynomial which is the standard form of the product F*G.

A.1.5. WPower(F,N)

Purpose: Computes the integer-power N of a Weyl polynomial F.

Syntax Weyl.WPower(F:POLY,N:INT):POLY

Input 1st parameter F, a Weyl polynomial.

2nd parameter N, a positive integer.
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Output FˆN as a Weyl polynomial.

Example For instance to compute (xy3 − xy+ 1)4 in A1 = Q[x,y], we proceed as fol-

lows:

A1::=QQ[x,y]]; Use A1; --Define and activate the appropriate ring

Weyl.WPower(xŷ 3-xy+1,4);

x 4̂ŷ 12-4x̂ 4ŷ 10+18x̂ 3ŷ 11+6x̂ 4ŷ 8-56x̂ 3ŷ 9+87x̂ 2ŷ 10-4x̂ 4ŷ 6

+60x 3̂ŷ 7-204x̂ 2ŷ 8+105xŷ 9+x̂ 4ŷ 4-24x̂ 3ŷ 5+148x̂ 2ŷ 6-

180xy 7̂+2x̂ 3ŷ 3-32x̂ 2ŷ 4+84xŷ 5+x̂ 2ŷ 2-8xŷ 3-xy+1

-- this is the standard form of (xy3 − xy+1)4.

A.1.6. WNR(F,G)

Purpose: Computes the normal remainder of a Weyl polynomial F with respect to a

polynomial G or a set of polynomials in the list G. If G is a Gröbner basis then

this function is used for the ideal membership problem. The ApCoCoAServer

should be running for using this function.

Syntax Weyl.WNR(F:POLY,G:POLY):POLY

Weyl.WNR(F:POLY,G:LIST):POLY

Input 1st parameter F, a Weyl polynomial.

2nd parameter G, a list of Weyl polynomials or simply a Weyl polynomial.

Output The normal remainder of F with respect to the tuple of the Weyl polynomials

given by the list G using the normal remainder algorithm 2.3.18.

Example Consider the Weyl algebra A3 = Z7[x1,x2,x3,∂1,∂2,∂3] with the term or-

dering σ=DegRevLex. Let f1 = −∂ 3
1 ∂ 5

2 ∂ 5
3 + x5

2, f2 = −3x2∂ 5
2 ∂ 5

3 + x2∂ 3
1 ,

f3 =−2∂ 4
1 ∂ 5

2 −x1∂ 7
2 +x3

3∂ 5
3 , and f4 =−∂ 3

1 ∂ 7
2 ∂ 6

3 +x5
2 be the given Weyl poly-

nomials. To compute the normal remainder of f1 with respect to G = ( f2, f3)

we proceed as follows

A3::=ZZ/(7)[x[1..3],d[1..3]]; --DegRevLex is the default term

ordering in ApCoCoA.

-- Define the appropriate ring using d[1],d[2],d[3] for the indetermi-

nates ∂1,∂2,∂3 respectively.

Use A3;

F1:=-d[1]̂ 3d[2]̂ 5d[3]̂ 5+x[2]̂ 5;

F2:=-3x[2]d[2]̂ 5d[3]̂ 5+x[2]d[1]̂ 3;
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F3:=-2d[1]̂ 4d[2]̂ 5-x[1]d[2]̂ 7+x[3]̂ 3d[3]̂ 5;

F4:=x[2] 5̂-d[1]̂ 3d[2]̂ 7d[3]̂ 6;

G:=[F2,F3];

Weyl.WNR(F1,G);

-d[1]̂ 3d[2]̂ 5d[3]̂ 5 + x[2]̂ 5

-- This is the normal remainder NRσ ,G ( f1). Similarly, to compute NRσ , f1( f4),

run the following command:

Weyl.WNR(x[2]̂ 5-d[1]̂ 3d[2]̂ 7d[3]̂ 6,F1);

-x[2]̂ 5d[2]̂ 2d[3] - 3x[2] 4̂d[2]d[3] + x[2]̂ 5 + x[2] 3̂d[3]

-- this output is the result of NRσ , f1( f4).

A.1.7. WSPoly(F,G)

Purpose: Computes the S-polynomial of Weyl polynomials F andG.
Syntax Weyl.WSPoly(F:POLY,G:POLY):POLY

Input Both parameters F and G are Weyl polynomials.
Output The S-polynomial of F and G.

Example In the Weyl algebra A3 of A.1.6, consider again the polynomials f1, f2 and f3.

For computing the S-polynomials (see Definition 2.3.23) S f1 f2 , S f2 f3 using

ApCoCoA, as before first define and activate the appropriate ring and the run

the following commands:

F1:=-d[1] 3̂d[2]̂ 5d[3]̂ 5+x[2]̂ 5;

F2:=-3x[2]d[2]̂ 5d[3]̂ 5+x[2]d[1]̂ 3;

F3:=-2d[1]̂ 4d[2]̂ 5-x[1]d[2]̂ 7+x[3]̂ 3d[3]̂ 5;

Weyl.WSPoly(F1,F2);

x[2]d[1] 6̂ - 3x[2]̂ 6

Weyl.WSPoly(F2,F3);

-3x[1]x[2]d[2]̂ 7d[3]̂ 5 + 3x[2]x[3]̂ 3d[3]̂ 10 + 3x[2]x[3] 2̂d[3]

9̂ - 2x[2]x[3]d[3]̂ 8 - 2x[2]d[1] 7̂ - 2x[2]d[3] 7̂

-------------------------------

A.1.8. WGB(...)

Purpose: This function computes the Gröbner basis of the ideal I using the correspond-

ing implementation in CoCoALib. The ApCoCoAServer should be running

in order to use this function.
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Syntax Weyl.WGB(I:IDEAL,L:LIST,N:INT):LIST

Input 1. Ideal I of An.

2. (optional) List L of positive integers corresponding to the numbers of the

indeterminates that are to be eliminated while computing Gröbner basis

of I.

3. (optional) Integer N = 0 or 1.

Output The list of Weyl polynomials forming the Gröbner basis of the ideal I. If the

2nd parameter is given as a list of positive integers, then the function returns

the Gröbner basis computed with by eliminating the indeterminates corre-

sponding to the positive integers in the list L. The default value for the list L

is the empty list []. If the value 0 is used for the 3rd parameter N, then the

function will returns the complete Gröbner basis computed by the Weyl code

implemented in the CoCoALib without reduction otherwise default value of

1 will be used for N and output will be the reduced Gröbner basis of I. Note

that, user can interchange the position of the two optional 2nd and 3rd param-

eters.

Example Following commands illustrate how one can use this function for computing

a left Gröbner basis of an ideal I of An

A1::=QQ[x,d]; -- Define the appropriate ring

Use A1;

I:=Ideal(x,d);

Weyl.WGB(I);

[1] -- Note that the Gröbner basis obtained is minimal.

-------------------------------

Weyl.WGB(I,0);

[x,y,1] -- The Gröbner basis obtained is not minimal.

-------------------------------

W3::=ZZ/(7)[x[1..3],y[1..3]];

Use W3;

I3:=Ideal(x[1]̂ 3y[2],x[2]y[1]̂ 2);

Set Indentation;

Weyl.WGB(I3,0);
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[

x[2]y[1] 2̂,

x[1] 3̂y[2],

x[1] 3̂y[1]̂ 2 + x[1]̂ 2x[2]y[1]y[2] + x[1]x[2]y[2],

x[1] 2̂x[2]y[1]y[2]̂ 2 + 2x[1]̂ 2y[1]y[2] + x[1]x[2]y[2] 2̂ +

2x[1]y[2],

x[1] 2̂x[2]̂ 2y[1]y[2] + x[1]x[2]̂ 2y[2],

x[1]x[2]y[1]y[2]̂ 2 + 2x[1]y[1]y[2] - 2x[2]y[2] 2̂ + 3y[2],

x[1] 2̂x[2]y[2]̂ 2 + 2x[1]̂ 2y[2],

x[1]x[2] 2̂y[1]y[2] - 2x[2]̂ 2y[2],

x[1] 2̂x[2]̂ 2y[2],

x[2]y[1]y[2]̂ 2 + 2y[1]y[2],

x[1]x[2]y[2]̂ 2 + 2x[1]y[2],

x[2] 2̂y[1]y[2],

x[1]x[2] 2̂y[2],

x[2]y[2] 2̂ + 2y[2],

x[2] 2̂y[2]]

-------------------------------

Weyl.WGB(I3); -- now the reduced Gröbner basis will be returned

[

x[2] 2̂y[2],

x[2]y[2] 2̂ + 2y[2],

x[1] 3̂y[1]̂ 2 + x[1]̂ 2x[2]y[1]y[2] + x[1]x[2]y[2],

x[1] 3̂y[2],

x[2]y[1] 2̂]

-------------------------------

Unset Indentation;

A.1.9. TwoWGB(I)

Purpose: Computes the two-sided σ -Gröbner basis G of a two-sided ideal I of An. Re-

call that the Weyl algebra An is simple when K is a field of characteristic 0.

The usage of this function makes sense only when K has positive character-

istic. The ApCoCoAServer should be running for using this function.
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Syntax Weyl.TwoWGB(I:IDEAL):LIST

Input An ideal I of An.

Output The two-sided Gröbner basis of the ideal I as a list of Weyl polynomials.

Example We illustrate the usage of this function by the following ApCoCoA commands.

A2::=ZZ/(2)[x[1..2],y[1..2]];--Define the appropriate ring

Use A2;

Weyl.TwoWGB(Ideal(x[1],y[1]));

[1]

Weyl.TwoWGB(Ideal(x[1] 2̂+1,y[2]̂ 2));

[x[1] 2̂+1,y[2]̂ 2]

Weyl.TwoWGB(Ideal(x[1] 2̂-1,y[1]̂ 2-x[1]));

[1]

Weyl.TwoWGB(Ideal(x[1] 2̂y[1]̂ 2-x[2]̂ 2+1,x[2]̂ 2y[1]̂ 2-1));

[x[2] 4̂ + x[1]̂ 2 + x[2]̂ 2, x[1]̂ 2y[1]̂ 2 + x[2]̂ 2 + 1, x[2]

2̂y[1]̂ 2 + 1]

-------------------------------

A.1.10. WDim(I)

Purpose: Computes dimension (GK-dimension) of an ideal I of An. The ApCoCoAServer

should be running in order to use this function.

Syntax Weyl.WDim(I:IDEAL):INT

Input Ideal I of a Weyl Algebra An.

Output An integer N, the GK-dimension of the ideal I.

Example The following commands illustrate the usage of this function.

A2::=QQ[x[1..2],y[1..2]];

Use A3;

I1:=Ideal(x[1]y[1] + 2x[2]y[2] - 5, y[1] 2̂ - y[2]);

Weyl.WDim(I);

2 -- this output is the GK-dimension of the ideal I.

I2:=Ideal(x[1]y[1] + 2x[2]y[2] - 5, y[1] 2̂ - y[2]-1);

Weyl.WDim(I);
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-1 -- if the dimension is zero then -1 will be returned

Use W2::=ZZ/(2)[x[1..2],y[1..2]]; --Define and activate W2

I3:=Ideal(y[2]̂ 2 + 2x[2] 2̂y[2]̂ 4 - 5, y[1] 2̂ - y[2] 2̂-y[1]

2̂y[1]̂ 2, x[2]̂ 4-1);

Weyl.WDim(I); 1 -- the dimension of I3 in W2 is 1.

A.1.11. IsHolonomic(I)

Purpose: Checks whether an ideal I of An is holonomic or not. Recall that an ideal I

is said to be holonomic if and only if its dimension is n, the index of the Weyl

algebra An.

The ApCoCoAServer should be running in order to use this function.

Syntax Weyl.IsHolonomic(I:IDEAL):BOOL

Input An ideal I of An.

Output True, if I is holonomic and False otherwise.

Example We explain the usage by the following commands:

A2::=QQ[x[1..2],y[1..2]]; --Define the appropriate ring

Use A2;

I:=Ideal(x[1]y[1] + 2x[2]y[2] - 5, y[1] 2̂ - y[2]-1);

Weyl.IsHolonomic(I);

False

I:=Ideal(x[1]y[1] + 2x[2]y[2] - 5, y[1] 2̂ - y[2] 3̂-y[1]̂ 2x[1]);

Weyl.IsHolonomic(I);

True -- the ideal I is holonomic.

A.1.12. WRGB(G)

Purpose: Converts a Gröbner basis G into the reduced Gröbner Basis. If G is not a

Gröbner basis then the output will not be the reduced Gröbner basis.

Syntax Weyl.WRGB(G:LIST):LIST

Input A list G, of Weyl polynomials.

Output A reduced list L of Weyl polynomials such that ⟨L⟩= ⟨G⟩.
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Example For instance, consider the Weyl algebra A1 in indeterminates x and d over

the field Q and let I be the ideal of A1 generated by elements in the list

L:=[x,d,1]. Then L is a Gröbner basis of I and its reduced Gröbner basis

can be computed as follows:

A1::=QQ[x,d]; -- Define the appropriate ring

Use A1;

L:=[x,y,1];

Weyl.WRGB(L);

[1] -- this output is the reduced Gröbner basis of I.

A.1.13. WLT(I)

Purpose: Computes the leading term ideal of an ideal I of An.

The ApCoCoAServer should be running in order to use this function.

Syntax Weyl.WLT(I:IDEAL):IDEAL

Input An ideal I of An.

Output An ideal, which is the leading term ideal of I

Example A2::=QQ[x[1..2],y[1..2]]; -- Define the appropriate ring

Use A2;

I:=Ideal(x[1]y[2],x[2]y[1]);

Weyl.WLT(I);

Ideal(x[2] 2̂y[2], x[2]y[2]̂ 2, x[1]y[1], x[2]y[1], x[1]y[2])

-- this output is the leading terms ideal of I.

Many other functions have also been implemented for the package Weyl. These

functions are not relevant to the results presented in this thesis and therefore we have

not described them here. For instance, one can also use this package for computing

the characteristic ideal, the annihilating ideal of a polynomial f s using the algo-

rithm of Oaku and Takayama, the Bernstein-Sato polynomial of a polynomial f .

The detailed description of these functions is available on-line at WWW page:

http://www.apcocoa.org/wiki?title=Category:Package weyl

or also from the ‘help menu’ of your installed ApCoCoA.
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B.1 Linear Algebra Attack (commutative)
Define LAA(PK, C, Dm) DegC := Deg(C);

NPi := Len(PK); -- no. of public polynomials
HF := NewList(NPi, 1);
MC := Monomials(C);
D1 := Deg(PK[1]); D2 := Deg(PK[2]);
DegPi := [Deg(P)|P In PK];
DegH := DegC - Max(DegPi);
S := Sum(Indets());
SH1 := 0; SH2 := 0; SC2 := 0; M2 := 0;
S := Sum(Indets());
For N := 0 To Dm Do

M2 := M2 + DensePoly(N);
EndFor;
M2 := Support(M2);
Sol := Mat([[]]);
While Sol=Mat([[ ]]) Do

MC := Monomials(C);
For N := 0 To DegH Do

SH1 := SH1 + DensePoly(N);
EndFor;
SH1 := Support(SH1);
For N := 0 To DegC Do

SC2 := SC2 + DensePoly(N);
EndFor;
SC2 := Support(SC2);
SizeH := Len(SH1);
While Len(MC) <> Len(SC2) Do

Append(MC, Poly(1));
EndWhile;

161



B.1. Linear Algebra Attack (commutative)

For I := 1 To Len(SC2) Do
If LPP(SC2[I]) <> LPP(MC[I]) Then

Insert(MC, I, 0);
Remove(MC, Len(MC));

EndIf;
EndFor;
MatB := Transposed(Mat([[LC(Term)|Term In MC]]));
NRows := Len(SC2);
Lis := []; MonomPi := [];
For I := 1 To Len(PK) Do

Append(Lis, SH1); -- Lis is list of general li’s in ∑ li pi
Append(MonomPi, Monomials(PK[I]));

EndFor;
Cols := ConcatLists([ConcatLists(Lis), M2]);
NCols := Len(Cols);
PrintLn(" Size of the Linear system = ",NRows," × ",NCols);
PrintLn("Creating matrix of coefficients . . . ");
Ax := NewMat(NRows, NCols, 0);
For I := 1 To SizeH Do

For K := 0 To (NPi-1) Do
HF[K + 1] := Monomials(Cols[I + K*SizeH] * PK[K + 1]);
While HF[K + 1] <> [] Do

For J := 1 To NRows Do
If Len(HF[K + 1]) = 0 Then Break;EndIf;
Lpp := LPP(HF[K + 1][1]);
If Lpp = SC2[J] Then

Ax[J][I + K*SizeH] := LC(HF[K + 1][1]);
Remove(HF[K + 1],1);

EndIf;
EndFor;

EndWhile;
EndFor;
Print(".");

EndFor;
PrintLn();
I := NPi*SizeH + 1;
For J := 1 To NRows Do

If Cols[I] = SC2[J] Then
Ax[J][I] := 1;
I := I + 1;

EndIf;
EndFor;
PrintLn("Now trying to solve using LinBox ...");
Sol := $apcocoa/linbox.Solve(Ax,MatB);
If Sol = Mat([[]]) Then

PrintLn("Increasing Degree of Li >>>>>>>>>>>");
DegH := DegH + 1; SH1 := 0; SC2 := 0;
HF := NewList(NPi,1);
DegC := DegH + Max(DegPi);
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EndIf;
EndWhile;
NewLis := [];
S2 := ConcatLists(List(Sol));
For I := 1 To NPi Do

Li := [Cols[J]|J In 1..SizeH];
CLi := [S2[J]|J In ((I-1)*SizeH + 1)..(I*SizeH)];
Append(NewLis, ScalarProduct(CLi, Li));

EndFor;
CM := [S2[J]|J In (NPi*SizeH + 1)..Len(S2)];
C2 := 0;
For I := 1 To NPi Do

C2 := C2 + NewLis[I]*PK[I];
EndFor;
M2 := ScalarProduct(CM, M2);
PrintLn("Message was = ", M2);
Return [M2, NewLis];

EndDefine; -- EndOf LAA( )

B.2 Intelligent Linear Algebra Attack
Define ILAA(PK, C, Dm)

-- PK is list of public polynomials
-- C is ciphertext.
-- Dm is degree of message polynomial M
DegC := Deg(C);
SizeC := Len(C);
NPi := Len(PK); -- no. of public polynomials
HF := NewList(NPi,1);
MC := Monomials(C);
Inds := NumIndets();
DegPi := [Deg(P)|P In PK];
DegH := DegC-Max(DegPi);
PrintLn("Initalizing degree Li --> ",DegH);
S := Sum(Indets());
SH1 := 0; SH2 := 0; SC2 := 0; M2 := 0;
NewRing ::= QQ[x[1..NumIndets()]];
For N := 0 To Dm Do

M2 := M2 + DensePoly(N);
EndFor;
M2 := Support(M2);
Using NewRing Do

SH2 := CreateD(ZPQ(PK),ZPQ(C));
EndUsing;
Sol := Mat([[]]);
SH2 := QZP(SH2);
While Sol=Mat([[ ]]) Do

SH1 := [];
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Foreach MonH In SH2 Do
If Deg(MonH)<=DegH Then

Append(SH1,MonH);
EndIf;

EndForeach;
PrintLn(" # SH1 = ", Len(SH1));
SizeH := Len(SH1);--SH2 := [];
Lis := []; MonomPi := [];
For I := 1 To NPi Do

Append(Lis,SH1);
-- Lis is list of general li’s in encryption
Append(MonomPi,Monomials(PK[I]));

EndFor;
WExpecC := []; Counter := 0;
WSC2 := [];
Foreach MonH In SH1 Do

For I := 1 To NPi Do
Append(WExpecC,MonH*PK[I]);

EndFor;
Counter := Counter + 1;
If Mod(Counter,2000)=0 Then

Using NewRing Do
WExpecC := ZPQ(WExpecC);
Append(WSC2,Sum(WExpecC));
WSC2 := [Sum(WSC2)];

EndUsing;
WExpecC := [];

EndIf;
EndForeach;
PrintLn();
Using NewRing Do

WExpecC := ZPQ(WExpecC);
Append(WSC2,Sum(WExpecC));
WSC2 := Support(Sum(WSC2));

EndUsing;
WSC2 := QZP(WSC2);
PrintLn(".................# WExpecC = ",Len(WSC2));
SC2 := WSC2;
SizeSC2 := Len(SC2);
SupC := Support(C);
CoefC := Coefficients(C);
CoefC := [Cast(Coef, INT) | Coef In CoefC];
MC2 := [];
For I :=1 To SizeSC2 Do

If Len(SupC) > 0 Then
If SupC[1]= SC2[I] Then

Append(MC2,[CoefC[1]]);
Remove(SupC,1);Remove(CoefC,1);

Else

164



Appendix B. Implementation

Append(MC2,[Zero]);
EndIf;

Else
Append(MC2,[Zero]);

EndIf;
EndFor;
MatB := Mat(MC2);
PrintLn("Calculating Ax . . . . . ");
NRows := Len(SC2);
Cols := ConcatLists([ConcatLists(Lis),M2]);
NCols := Len(Cols);
PrintLn(" Dimension of Ax = ",NRows," X ",NCols);
Ax := NewMat(NRows,NCols,0);
For I := 1 To SizeH Do

For K := 0 To (NPi-1) Do
HF[K + 1] := Monomials(Cols[I + K*SizeH] * PK[K + 1]);
While HF[K + 1]<>[] Do

For J := 1 To NRows Do
If Len(HF[K + 1])=0 Then Break; EndIf;
Lpp := LPP(HF[K + 1][1]);
If Lpp=SC2[J] Then

Ax[J][I + K*SizeH] := LC(HF[K + 1][1]);
Remove(HF[K + 1],1);

EndIf;
EndFor;

EndWhile;
EndFor;
Print(".");

EndFor;
PrintLn();
I := NPi*SizeH + 1;
For J := 1 To NRows Do

If Cols[I]=SC2[J] Then
Ax[J][I] := Unit;
I := I + 1;

EndIf;
EndFor;
PrintLn(" System’s size = ", NRows, " × ", NCols);
PrintLn("Now trying to solve LinBox . . .");
Sol := $apcocoa/linbox.Solve(Ax,MatB);
If Sol = Mat([[]])

OR NonZero(ConcatLists(List(Sol))) = [] Then
PrintLn("Increasing Degree of Li >>>>>>>>>>>");
DegH := DegH + 1; SH1 := 0; HF := NewList(NPi,1);
SC2 := 0;MC := Monomials(C);Sol := Mat([[]]);

EndIf;
EndWhile;
NewLis := [];
S2 := ConcatLists(List(Sol));
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For I := 1 To NPi Do
Li := [Cols[J]|J In 1..SizeH];
CLi := [S2[J]|J In ((I-1)*SizeH + 1)..(I*SizeH)];
Append(NewLis,ScalarProduct(CLi,Li));

EndFor;
CM := [S2[J]|J In (NPi*SizeH + 1)..Len(S2)];
C2 := 0;
For I := 1 To NPi Do

C2 := C2 + NewLis[I]*PK[I];
EndFor;
M2 := ScalarProduct(CM,M2);--Message found
C2 := C2 + M2;
PrintLn("Message was = ", M2);
PrintLn("CipherText = ", C2=C);
Return [M2,NewLis,Sol];--,Cols,Ax,MatB];

EndDefine;--End of ILAA( )

B.3 Linear Algebra Attack for Weyl Algebras
Define WLAA(PK, C, Dm) DegC := Deg(C);

NPi := Len(PK); -- no. of public polynomials
HF := NewList(NPi, 1);
MC := Monomials(C);
D1 := Deg(PK[1]); D2 := Deg(PK[2]);
DegPi := [Deg(P)|P In PK];
DegH := DegC - Max(DegPi);
S := Sum(Indets());
SH1 := 0; SH2 := 0; SC2 := 0; M2 := 0;
S := Sum(Indets());
For N := 0 To Dm Do

M2 := M2 + DensePoly(N);
EndFor;
M2 := Support(M2);
For N := 0 To DegH Do

SH1 := SH1 + DensePoly(N);
EndFor;
SH1 := Support(SH1);
For N := 0 To DegC Do

SC2 := SC2 + DensePoly(N);
EndFor;
SC2 := Support(SC2);
Sol := Mat([[]]);
While Sol=Mat([[ ]]) Do

MC := Monomials(C);
SizeH := Len(SH1);
While Len(MC) <> Len(SC2) Do

Append(MC, Poly(1));
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EndWhile;
For I := 1 To Len(SC2) Do

If LPP(SC2[I]) <> LPP(MC[I]) Then
Insert(MC, I, 0);
Remove(MC, Len(MC));

EndIf;
EndFor;
MatB := Transposed(Mat([[LC(Term)|Term In MC]]));
NRows := Len(SC2);
Lis := []; MonomPi := [];
For I := 1 To Len(PK) Do

Append(Lis, SH1); -- Lis is list of general li’s in ∑ li pi
Append(MonomPi, Monomials(PK[I]));

EndFor;
Cols := ConcatLists([ConcatLists(Lis), M2]);
NCols := Len(Cols);
PrintLn(" Size of the Linear system = ",NRows," × ",NCols);
PrintLn("Creating matrix of coefficients . . . ");
PrintLn("Time depends upon the size of the system ... ");
Ax := NewMat(NRows, NCols, 0);
For I := 1 To SizeH Do

For K := 0 To (NPi-1) Do
HF[K + 1] := Monomials($apcocoa/weyl.WMul(Cols[I +
K*SizeH], PK[K+1]));
While HF[K + 1] <> [] Do

For J := 1 To NRows Do
If Len(HF[K + 1]) = 0 Then Break;EndIf;
Lpp := LPP(HF[K + 1][1]);
If Lpp = SC2[J] Then

Ax[J][I + K*SizeH] := LC(HF[K + 1][1]);
Remove(HF[K + 1],1);

EndIf;
EndFor;

EndWhile;
EndFor;
Print(".");

EndFor;
PrintLn();
I := NPi*SizeH + 1;
For J := 1 To NRows Do

If Cols[I] = SC2[J] Then
Ax[J][I] := 1;
I := I + 1;

EndIf;
EndFor;
PrintLn("Now trying to solve using LinBox ...");
Sol := $apcocoa/linbox.Solve(Ax,MatB);
If Sol = Mat([[]]) Then

PrintLn("Increasing Degree of Li >>>>>>>>>>>");
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DegH := DegH + 1;
HF := NewList(NPi,1);
SH1:= Support(Sum(SH1)+DensePoly(DegH));
SC2:= Support(Sum(SC2)+DensePoly(DegC+1));
DegC := DegH + Max(DegPi);

EndIf;
EndWhile;
NewLis := [];
S2 := ConcatLists(List(Sol));
For I := 1 To NPi Do

Li := [Cols[J]|J In 1..SizeH];
CLi := [S2[J]|J In ((I-1)*SizeH + 1)..(I*SizeH)];
Append(NewLis, ScalarProduct(CLi, Li));

EndFor;
CM := [S2[J]|J In (NPi*SizeH + 1)..Len(S2)];
C2 := 0;
For I := 1 To NPi Do

C2 := C2 + $apcocoa/weyl.WMul(NewLis[I],PK[I]);
EndFor;
M2 := ScalarProduct(CM, M2);
PrintLn("Message was = ", M2);
Return [M2, NewLis];

EndDefine; -- EndOf WLAA( )

B.4 Intelligent Linear Algebra Attack for Weyl Alge-
bras

Define WILAA(PK, C, Dm)
-- PK is list of public polynomials
-- C is ciphertext.
-- Dm is degree of message polynomial M
DegC := Deg(C);
SizeC := Len(C);
NPi := Len(PK); -- no. of public polynomials
HF := NewList(NPi,1);
MC := Monomials(C);
Inds := NumIndets();
DegPi := [Deg(P)|P In PK];
DegH := DegC-Max(DegPi);
PrintLn("Initalizing degree Li --> ",DegH);
S := Sum(Indets());
SH1 := 0; SH2 := 0; SC2 := 0; M2 := 0;
NewRing ::= QQ[x[1..NumIndets()]];
For N := 0 To Dm Do

M2 := M2 + DensePoly(N);
EndFor;
M2 := Support(M2);
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Using NewRing Do
SH2 := CreateD(ZPQ(PK),ZPQ(C));
-- It is the set of candidate terms for Li’s

EndUsing;
Sol := Mat([[]]);
SH2 := QZP(SH2);
While Sol=Mat([[ ]]) Do

SH1 := [];
Foreach MonH In SH2 Do

If Deg(MonH)<=DegH Then
Append(SH1,MonH);

EndIf;
EndForeach;
PrintLn(" # SH1 = ", Len(SH1));
SizeH := Len(SH1);--SH2 := [];
Lis := []; MonomPi := [];
For I := 1 To NPi Do

Append(Lis,SH1);
-- Lis is list of general li’s in encryption
Append(MonomPi,Monomials(PK[I]));

EndFor;
WExpecC := []; Counter := 0;
WSC2 := [];
Foreach MonH In SH1 Do

For I := 1 To NPi Do
Append(WExpecC,$apcocoa/weyl.WMul(MonH,PK[I]));

EndFor;
Counter := Counter + 1;
If Mod(Counter,2000)=0 Then

Using NewRing Do
WExpecC := ZPQ(WExpecC);
Append(WSC2,Sum(WExpecC));
WSC2 := [Sum(WSC2)];

EndUsing;
WExpecC := [];

EndIf;
EndForeach;
PrintLn();
Using NewRing Do

WExpecC := ZPQ(WExpecC);
Append(WSC2,Sum(WExpecC));
WSC2 := Support(Sum(WSC2));

EndUsing;
WSC2 := QZP(WSC2);
PrintLn(".................# WExpecC = ",Len(WSC2));
SC2 := WSC2;
SizeSC2 := Len(SC2);
SupC := Support(C);
CoefC := Coefficients(C);
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CoefC := [Cast(Coef, INT) | Coef In CoefC];
MC2 := [];
For I :=1 To SizeSC2 Do

If Len(SupC) > 0 Then
If SupC[1]= SC2[I] Then

Append(MC2,[CoefC[1]]);
Remove(SupC,1);Remove(CoefC,1);

Else
Append(MC2,[0]);

EndIf;
Else

Append(MC2,[0]);
EndIf;

EndFor;
MatB := Mat(MC2);
PrintLn("Calculating Ax . . . . . ");
NRows := Len(SC2);
Cols := ConcatLists([ConcatLists(Lis),M2]);
NCols := Len(Cols);
PrintLn(" Dimension of Ax = ",NRows," × ",NCols);
Ax := NewMat(NRows,NCols,0);
For I := 1 To SizeH Do

For K := 0 To (NPi-1) Do
HF[K + 1] := Monomials($apcocoa/weyl.WMul(Cols[I +
K*SizeH], PK[K + 1]));
While HF[K + 1]<>[] Do

For J := 1 To NRows Do
If Len(HF[K + 1])=0 Then Break; EndIf;
Lpp := LPP(HF[K + 1][1]);
If Lpp=SC2[J] Then

Ax[J][I + K*SizeH] := LC(HF[K + 1][1]);
Remove(HF[K + 1],1);

EndIf;
EndFor;

EndWhile;
EndFor;
Print(".");

EndFor;
PrintLn();
I := NPi*SizeH + 1;
For J := 1 To NRows Do

If Cols[I]=SC2[J] Then
Ax[J][I] := 1;
I := I + 1;

EndIf;
EndFor;
PrintLn("Now trying to solve LinBox . . .");
Sol := $apcocoa/linbox.Solve(Ax,MatB);
If Sol = Mat([[]])
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OR NonZero(ConcatLists(List(Sol))) = [] Then
PrintLn("Increasing Degree of Li >>>>>>>>>>>");
DegH := DegH + 1; SH1 := 0; HF := NewList(NPi,1);
SC2 := 0;MC := Monomials(C);Sol := Mat([[]]);

EndIf;
EndWhile;
NewLis := [];
S2 := ConcatLists(List(Sol));
For I := 1 To NPi Do

Li := [Cols[J]|J In 1..SizeH];
CLi := [S2[J]|J In ((I-1)*SizeH + 1)..(I*SizeH)];
Append(NewLis,ScalarProduct(CLi,Li));

EndFor;
CM := [S2[J]|J In (NPi*SizeH + 1)..Len(S2)];
C2 := 0;
For I := 1 To NPi Do

C2 := C2 + $apcocoa/weyl.WMul(NewLis[I],PK[I]);
EndFor;
M2 := ScalarProduct(CM,M2);--Message found
C2 := C2 + M2;
PrintLn("Message was = ", M2);
PrintLn("CipherText = ", C2=C);
Return [M2,NewLis];

EndDefine;--End of WILAA( )

171



B.4. Intelligent Linear Algebra Attack for Weyl Algebras

172



Appendix C
Examples Data

The aim of this Appendix is to include some data related to various examples that

are presented in this thesis. For the reader’s convenience, the title of each section

below is the chapter number in which such examples are presented. In each section,

there is an enumerated items list in which every item starts with the reference to the

corresponding example in that chapter.

C.1 Chapter 2

(1) Example 2.5.6 The Gröbner basis elements g1, . . . ,g7 are:

g1 = x6 +2x4∂ −2x3∂ 2 −3x2∂ 3 +3x∂ 4 +∂ 5 +3x4 +x3∂ −x2∂ 2 −3x∂ 3 −3∂ 4 −x3 −x2∂ +

x∂ 2 − x2 −2x∂ −∂ 2 −2∂ +2,

g2 = ∂ 6 +3x5 −2x4∂ − x3∂ 2 − x2∂ 3 + x∂ 4 +3∂ 5 −3x4 − x3∂ −3x2∂ 2 − x∂ 3 +3∂ 4 −3x3 −

x2∂ −2x∂ 2 +∂ 3 −2x2 −2x∂ + x−∂ −2”

g3 = x∂ 5+2x5−x4∂ −3x3∂ 2+x2∂ 3+2x∂ 4+3∂ 5+x4−2x2∂ 2−3x3−3x2∂ +3x∂ 2+2∂ 3−

3x2 + x∂ +2∂ 2 +3x−2∂ +1,

g4 = x5∂ − x5 − 2x4∂ + x3∂ 2 + 2x2∂ 3 + 3x∂ 4 + 3∂ 5 + x4 + 2x2∂ 2 + 3x∂ 3 − 3x3 + 3x2∂ −

3x∂ 2 +2∂ 3 + x2 −2x∂ − x−3∂ ,

g5 = x4∂ 2−3x5−3x4∂ −2x3∂ 2−3x2∂ 3+3∂ 5−3x3∂ +3x2∂ 2−2x∂ 3−3∂ 4−2x3+3x2∂ −

3x2 +2x∂ −2∂ 2 + x−2”,

g6 = x2∂ 4 +3x4∂ +2x3∂ 2 − x2∂ 3 + x∂ 4 −2∂ 5 + x4 −∂ 4 +2x3 + x2∂ +3x∂ 2 −2∂ 3 +2x2 +

2∂ 2 −2x−2∂ −2,

g7 = x3∂ 3 + x2∂ −∂ −1



C.2. Chapter 4

C.2 Chapter 4
(1) Example 4.1.3 The Gröbner basis G of the ideal I = ⟨ f1, f2, f3⟩ consists of

the following 26 Weyl polynomials in standard form:

G = {x2∂ 5
3 +∂ 3

1 , x5
2∂2 − x4

2, x5
2∂1, x4

2∂ 3
1 , ∂ 4

1 ∂ 5
2 − x1∂ 7

2 , x3
2∂ 6

1 ,

x1∂ 2
1 ∂ 8

2 −∂1∂ 8
2 , x1x2∂ 2

1 ∂ 7
2 +∂ 3

1 ∂ 3
2 ∂ 5

3 +∂ 6
1 ∂ 4

2 − x2∂1∂ 7
2 + x27,

x1x4
2∂ 6

2 + x3
2∂ 4

1 ∂ 3
2 , x3

2∂ 4
1 ∂ 4

2 − x1x3
2∂ 6

2 , x2
2∂ 6

1 ∂ 3
2 − x10

2 , x2
2∂ 9

1 , x11
2 ,

x1∂ 6
2 ∂ 5

3 + x1∂ 3
1 ∂ 7

2 , ∂ 3
1 ∂ 4

2 ∂ 5
3 − x1∂ 2

1 ∂ 7
2 +∂1∂ 7

2 − x6
2

∂ 4
1 ∂ 3

2 ∂ 5
3 +∂ 7

1 ∂ 4
2 + x1∂ 3

1 ∂ 6
2 , x2

1∂ 10
2 +∂ 3

1 ∂ 8
2 ,

x2
1x2∂ 9

2 + x2∂ 3
1 ∂ 7

2 − x2
1∂ 8

2 −∂ 3
1 ∂ 6

2 , x2
1x2

2∂ 8
2 + x2

2∂ 3
1 ∂ 6

2 ,

x1x2
2∂ 3

1 ∂ 6
2 , x1x3

2∂ 2
1 ∂ 6

2 − x23∂1∂ 6
2 , x2∂ 7

1 ∂ 4
2 + x1x2∂ 3

1 ∂ 6
2 −∂ 7

1 ∂ 3
2 ,

∂ 9
1 ∂ 3

2 + x12x2∂1∂ 8
2 , x2∂ 12

1 , ∂ 15
1 ,∂ 3

1 ∂ 3
2 ∂ 10

3 + x2
1∂1∂ 9

2 }

(2) Example 4.3.3
The polynomials p1 and p2 of the public key Q are

p1 =−4x10
1 x9

2∂ 10
1 ∂ 7

2 +6x8
1x11

2 ∂ 8
1 ∂ 9

2 +4x10
1 x10

2 ∂ 10
1 ∂ 4

2 −3x10
1 x8

2∂ 10
1 ∂ 6

2 +4x9
1x9

2∂ 9
1 ∂ 7

2 +x8
1x10

2 ∂ 8
1 ∂ 8

2 +

6x10
1 x6

2∂ 10
1 ∂ 8

2 −4x7
1x11

2 ∂ 7
1 ∂ 9

2 −5x10
1 x9

2∂ 10
1 ∂ 4

2 +2x10
1 x6

2∂ 10
1 ∂ 7

2 −x10
1 x9

2∂ 10
1 ∂ 3

2 −4x9
1x10

2 ∂ 9
1 ∂ 4

2 +6x10
1 x8

2∂ 10
1 ∂ 4

2 +

3x9
1x8

2∂ 9
1 ∂ 6

2 −x10
1 x6

2∂ 10
1 ∂ 6

2 −5x7
1x10

2 ∂ 7
1 ∂ 8

2 −6x9
1x6

2∂ 9
1 ∂ 8

2 −2x6
1x11

2 ∂ 6
1 ∂ 9

2 +5x10
1 x8

2∂ 10
1 ∂ 3

2 +5x9
1x9

2∂ 9
1 ∂ 4

2 −

2x9
1x6

2∂ 9
1 ∂ 7

2 +2x10
1 x8

2∂ 10
1 ∂ 2

2 +x9
1x9

2∂ 9
1 ∂ 3

2 −4x10
1 x7

2∂ 10
1 ∂ 3

2 −6x9
1x8

2∂ 9
1 ∂ 4

2 +x9
1x6

2∂ 9
1 ∂ 6

2 +4x6
1x10

2 ∂ 6
1 ∂ 8

2 +

3x5
1x11

2 ∂ 5
1 ∂ 9

2 +2x10
1 x7

2∂ 10
1 ∂ 2

2 −5x9
1x8

2∂ 9
1 ∂ 3

2 −x6
1x11

2 ∂ 3
1 ∂ 9

2 −4x3
1x11

2 ∂ 6
1 ∂ 9

2 −6x10
1 x7

2∂ 10
1 ∂2−2x9

1x8
2∂ 9

1 ∂ 2
2 −

6x10
1 x6

2∂ 10
1 ∂ 2

2 +4x9
1x7

2∂ 9
1 ∂ 3

2 −6x5
1x10

2 ∂ 5
1 ∂ 8

2 +4x5
1x11

2 ∂ 3
1 ∂ 9

2 +6x4
1x11

2 ∂ 4
1 ∂ 9

2 +5x3
1x11

2 ∂ 5
1 ∂ 9

2 −3x10
1 x6

2∂ 10
1 ∂2−

2x9
1x7

2∂ 9
1 ∂ 2

2 +2x6
1x10

2 ∂ 3
1 ∂ 8

2 −5x3
1x10

2 ∂ 6
1 ∂ 8

2 +4x5
1x11

2 ∂ 2
1 ∂ 9

2 −6x4
1x11

2 ∂ 3
1 ∂ 9

2 −2x3
1x11

2 ∂ 4
1 ∂ 9

2 +5x10
1 x6

2∂ 10
1 +

6x9
1x7

2∂ 9
1 ∂2+6x9

1x6
2∂ 9

1 ∂ 2
2 +5x5

1x10
2 ∂ 3

1 ∂ 8
2 +x4

1x10
2 ∂ 4

1 ∂ 8
2 +3x3

1x10
2 ∂ 5

1 ∂ 8
2 −2x4

1x11
2 ∂ 2

1 ∂ 9
2 −x3

1x11
2 ∂ 3

1 ∂ 9
2 +

3x9
1x6

2∂ 9
1 ∂2−2x8

1x5
2∂ 7

1 ∂ 5
2 +5x5

1x10
2 ∂ 2

1 ∂ 8
2 −x4

1x10
2 ∂ 3

1 ∂ 8
2 +4x3

1x10
2 ∂ 4

1 ∂ 8
2 −5x4

1x11
2 ∂1∂ 9

2 −5x3
1x11

2 ∂ 2
1 ∂ 9

2 −

5x9
1x6

2∂ 9
1 +4x4

1x10
2 ∂ 2

1 ∂ 8
2 +2x3

1x10
2 ∂ 3

1 ∂ 8
2 −2x3

1x11
2 ∂1∂ 9

2 + x8
1x4

2∂ 7
1 ∂ 4

2 −4x7
1x4

2∂ 8
1 ∂ 4

2 +4x7
1x5

2∂ 6
1 ∂ 5

2 −

2x6
1x5

2∂ 7
1 ∂ 5

2 − 3x4
1x10

2 ∂1∂ 8
2 − 3x3

1x10
2 ∂ 2

1 ∂ 8
2 − 6x3

1x11
2 ∂ 9

2 + 4x3
1x10

2 ∂1∂ 8
2 − 2x5

1x5
2∂ 6

1 ∂ 5
2 − x3

1x10
2 ∂ 8

2 +

6x8
1x4

2∂ 7
1 +2x7

1x4
2∂ 8

1 −4x8
1∂ 7

1 ∂ 4
2 +3x7

1∂ 8
1 ∂ 4

2 −x8
1x3

2∂ 7
1 +4x7

1x3
2∂ 8

1 +3x8
1∂ 7

1 ∂ 3
2 +x7

1∂ 8
1 ∂ 3

2 −4x8
1x2

2∂ 7
1 +

3x7
1x2

2∂ 8
1 +4x8

1x2∂ 7
1 ∂2−3x7

1x2∂ 8
1 ∂2+5x8

1∂ 7
1 ∂ 2

2 +6x7
1∂ 8

1 ∂ 2
2 −5x8

1∂ 7
1 +5x7

1x2∂ 7
1 +5x7

1∂ 8
1 −3x7

1∂ 7
1 ∂2−

5x3
1x5

2∂ 2
1 ∂ 5

2 −5x2
1x5

2∂ 3
1 ∂ 5

2 −5x7
1∂ 7

1 +6x4
1x5

2∂ 5
2 +6x3

1x5
2∂1∂ 5

2 −2x1x5
2∂ 3

1 ∂ 5
2 −2x5

2∂ 4
1 ∂ 5

2 −3x7
1∂ 6

1 −

6x6
1x2∂ 6

1 −2x6
1∂ 7

1 +x6
1∂ 6

1 ∂2+2x3
1x5

2∂ 5
2 −4x2

1x5
2∂1∂ 5

2 +6x1x5
2∂ 2

1 ∂ 5
2 −4x5

2∂ 3
1 ∂ 5

2 +6x6
1∂ 6

1 +2x2
1x5

2∂ 5
2 −

4x1x5
2∂1∂ 5

2 −x5
2∂ 2

1 ∂ 5
2 −2x5

1∂ 6
1 +6x1x5

2∂ 5
2 +3x6

2∂ 5
2 −4x5

2∂1∂ 5
2 −5x5

2∂ 6
2 −x5

2∂ 4
2 −6x4

2∂ 5
2 −x4

2∂ 4
2 −

2x3
2∂ 4

2 − 6x5
2 − 6x3

1∂ 2
1 + x2

1x2∂ 2
1 − 5x2

1∂ 3
1 − 3x4

2∂2 + 2x2
1∂ 2

1 ∂2 + 4x2∂ 4
2 + 2∂ 5

2 + 2x4
1 + 4x3

1x2 −

5x4
2 + 6x3

1∂1 − x2
1∂ 2

1 − 5x1∂ 3
1 + 3x2∂ 3

1 − 2∂ 4
1 − 5x3

1∂2 − 6x3
2∂2 + 6∂ 3

1 ∂2 − 3x2∂ 3
2 − 4∂ 4

2 + x3
1 −

3x2
1x2+6x3

2−4x1x2∂1+6x2∂ 2
1 +6∂ 3

1 −6x2
1∂2−2x2

2∂2+5x1∂1∂2−∂ 2
1 ∂2+6x2∂ 2

2 +∂ 3
2 −6x2

1−
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2x1x2 − x2
2 +5x1∂1 −5x2∂1 +6∂ 2

1 −4x1∂2 −4x2∂2 +3∂1∂2 −5∂ 2
2 −2x1 +2x2 +∂1 −∂2 +1,

and

p2 =−5x9
1x12

2 ∂ 13
1 ∂ 14

2 −2x7
1x14

2 ∂ 11
1 ∂ 16

2 +5x9
1x13

2 ∂ 13
1 ∂ 11

2 +6x9
1x11

2 ∂ 13
1 ∂ 13

2 +4x8
1x12

2 ∂ 12
1 ∂ 14

2 −x7
1x13

2 ∂ 11
1 ∂ 15

2 +

x9
1x9

2∂ 13
1 ∂ 15

2 −2x6
1x14

2 ∂ 10
1 ∂ 16

2 −3x9
1x12

2 ∂ 13
1 ∂ 11

2 −4x9
1x9

2∂ 13
1 ∂ 14

2 −x9
1x12

2 ∂ 13
1 ∂ 10

2 −4x8
1x13

2 ∂ 12
1 ∂ 11

2 +

x9
1x11

2 ∂ 13
1 ∂ 11

2 +5x9
1x10

2 ∂ 13
1 ∂ 12

2 +3x8
1x11

2 ∂ 12
1 ∂ 13

2 +2x9
1x9

2∂ 13
1 ∂ 13

2 −x6
1x13

2 ∂ 10
1 ∂ 15

2 −6x8
1x9

2∂ 12
1 ∂ 15

2 +

3x5
1x14

2 ∂ 9
1 ∂ 16

2 +5x9
1x11

2 ∂ 13
1 ∂ 10

2 +5x8
1x12

2 ∂ 12
1 ∂ 11

2 −2x8
1x9

2∂ 12
1 ∂ 14

2 −2x9
1x11

2 ∂ 13
1 ∂ 9

2 +6x8
1x12

2 ∂ 12
1 ∂ 10

2 −

4x9
1x10

2 ∂ 13
1 ∂ 10

2 − 6x8
1x11

2 ∂ 12
1 ∂ 11

2 + x9
1x9

2∂ 13
1 ∂ 11

2 − 4x8
1x10

2 ∂ 12
1 ∂ 12

2 + x8
1x9

2∂ 12
1 ∂ 13

2 − 5x5
1x13

2 ∂ 9
1 ∂ 15

2 +

x4
1x14

2 ∂ 8
1 ∂ 16

2 −2x9
1x10

2 ∂ 13
1 ∂ 9

2 −4x8
1x11

2 ∂ 12
1 ∂ 10

2 +2x5
1x14

2 ∂ 6
1 ∂ 16

2 −5x2
1x14

2 ∂ 9
1 ∂ 16

2 +x9
1x10

2 ∂ 13
1 ∂ 8

2 −x8
1x11

2 ∂ 12
1 ∂ 9

2 +

6x9
1x9

2∂ 13
1 ∂ 9

2 − 2x8
1x10

2 ∂ 12
1 ∂ 10

2 − 6x8
1x9

2∂ 12
1 ∂ 11

2 − 6x4
1x13

2 ∂ 8
1 ∂ 15

2 + 5x4
1x14

2 ∂ 6
1 ∂ 16

2 − 5x3
1x14

2 ∂ 7
1 ∂ 16

2 +

3x2
1x14

2 ∂ 8
1 ∂ 16

2 −6x9
1x9

2∂ 13
1 ∂ 8

2 −x8
1x10

2 ∂ 12
1 ∂ 9

2 +x5
1x13

2 ∂ 6
1 ∂ 15

2 +4x2
1x13

2 ∂ 9
1 ∂ 15

2 −3x4
1x14

2 ∂ 5
1 ∂ 16

2 −x3
1x14

2 ∂ 6
1 ∂ 16

2 +

4x2
1x14

2 ∂ 7
1 ∂ 16

2 +2x9
1x9

2∂ 13
1 ∂ 7

2 −6x8
1x10

2 ∂ 12
1 ∂ 8

2 +3x8
1x9

2∂ 12
1 ∂ 9

2 −4x4
1x13

2 ∂ 6
1 ∂ 15

2 +4x3
1x13

2 ∂ 7
1 ∂ 15

2 −5x2
1x13

2 ∂ 8
1 ∂ 15

2 −

5x3
1x14

2 ∂ 5
1 ∂ 16

2 + 6x2
1x14

2 ∂ 6
1 ∂ 16

2 − 3x8
1x9

2∂ 12
1 ∂ 8

2 + 5x4
1x13

2 ∂ 5
1 ∂ 15

2 + 6x3
1x13

2 ∂ 6
1 ∂ 15

2 + 2x2
1x13

2 ∂ 7
1 ∂ 15

2 −

2x3
1x14

2 ∂ 4
1 ∂ 16

2 −6x2
1x14

2 ∂ 5
1 ∂ 16

2 +x8
1x9

2∂ 12
1 ∂ 7

2 +4x3
1x13

2 ∂ 5
1 ∂ 15

2 +3x2
1x13

2 ∂ 6
1 ∂ 15

2 −6x2
1x14

2 ∂ 4
1 ∂ 16

2 −x3
1x13

2 ∂ 4
1 ∂ 15

2 −

3x2
1x13

2 ∂ 5
1 ∂ 15

2 +6x2
1x14

2 ∂ 3
1 ∂ 16

2 −3x2
1x13

2 ∂ 4
1 ∂ 15

2 +3x2
1x13

2 ∂ 3
1 ∂ 15

2 +3x8
1∂ 7

1 +x7
1x2∂ 7

1 +2x7
1∂ 7

1 −x7
1∂ 6

1 +

4x6
1x2∂ 6

1 − 5x6
1∂ 6

1 − 2x5
2∂1∂ 5

2 + x5
2∂ 6

2 + 4x5
2∂ 5

2 + 5x4
2∂1∂ 4

2 − 4x4
2∂ 5

2 + 3x4
2∂ 4

2 + 3x3
2∂ 4

2 + 4x4
2∂1 −

2x3
1∂ 2

1 − 5x2
1x2∂ 2

1 − 2x4
2∂2 + 6∂1∂ 4

2 − 3∂ 5
2 + 5x4

1 + 6x3
1x2 + 5x4

2 − 5x3
2∂1 + 3x2

1∂ 2
1 − 6x1∂ 3

1 −

2x2∂ 3
1 − 4x3

2∂2 + 2∂1∂ 3
2 + 5x3

1 + 2x2
1x2 + 2x3

2 − 5x2
1∂1 − 6x1x2∂1 + 6x2

2∂1 + x1∂ 2
1 − 4x2∂ 2

1 −

4∂ 3
1 − 3x2

2∂2 − 6x2∂1∂2 + 3x2∂ 2
2 − ∂1∂ 2

2 + 3∂ 3
2 − 5x2

1 − 3x1x2 + 2x2
2 − 2x1∂1 − x2∂1 + 5∂ 2

1 −

x2∂2 +2∂ 2
2 −4x2 +6∂1 −∂2 +1.

(3) Example 4.3.6
The polynomials p1, p2, and p2 of the public key Q are

p1 = x2
2∂ 8

1 ∂ 5
2 ∂ 5

3 +x2∂ 5
1 ∂ 3

2 ∂ 10
3 −∂ 3

1 ∂ 6
2 ∂ 10

3 +x2∂ 8
1 ∂ 4

2 ∂ 5
3 +∂ 3

1 ∂ 5
2 ∂ 10

3 +x7
1x3

2∂ 7
2 −x5

1x5
2∂ 7

2 −x2
2∂ 5

1 ∂ 5
2 ∂ 5

3 −

x2∂ 5
2 ∂ 10

3 +x5
1x4

2∂ 6
2 −x2

1x6
2∂ 2

1 ∂ 5
3 +x8

2∂ 2
1 ∂ 5

3 −x2∂ 5
1 ∂ 4

2 ∂ 5
3 +x2

1x3
2∂ 4

1 ∂ 5
2 −x5

2∂ 4
1 ∂ 5

2 +∂ 4
2 ∂ 10

3 −x5
1∂1∂ 7

2 −

x1x6
2∂1∂ 5

3 −x4
2∂ 4

1 ∂ 4
2 −x1x3

2∂ 3
1 ∂ 5

2 +x4
1∂ 7

2 +x6
2∂ 5

3 −x2
1x3

2∂2∂ 5
3 +x5

2∂2∂ 5
3 +x3

2∂ 4
1 ∂ 3

2 −∂ 5
1 ∂ 5

2 +x2
1x3

2∂ 5
3 −

x5
2∂ 5

3 + x3
2∂ 2

1 ∂ 5
3 + ∂ 5

2 ∂ 5
3 − x4

2∂ 5
3 − x4

1x3
2∂2 + x2

1x5
2∂2 + x2∂ 2

2 ∂ 5
3 − x2∂2∂ 5

3 − x2
1x4

2 + x2
1x3

2 − x5
2 +

∂ 3
1 ∂ 2

2 +∂ 5
3 + x2

1∂1∂2 −∂ 3
1 ∂2 − x1∂2 −∂ 2

2 +∂2 −1,

p2 = −x6
1x7

2∂2 + x2
1x11

2 ∂2 − x6
1x5

2x2
3∂2 + x2

1x9
2x2

3∂2 − x2
1x2

3∂ 10
3 − x6

1x2
2∂ 5

3 + x4
1x4

2∂ 5
3 + x4

1x2
2x2

3∂ 5
3 −

x6
2x2

3∂ 5
3 −x2

1x2
3∂ 3

1 ∂2∂ 5
3 −x2

1∂2∂ 10
3 +x6

1x6
2+x6

1x4
2x2

3−x6
1x2

2∂ 3
1 ∂2−x6

2x2
3∂ 3

1 ∂2+x4
1x2

2∂2∂ 5
3 −x6

2∂2∂ 5
3 +

x4
1x6

2 − x10
2 + x6

1x3
2∂2 − x4

1x5
2∂2 − x2

1x3
2x4

3∂2 + x5
2x4

3∂2 − x4
1x2∂ 5

3 − x5
2∂ 5

3 + x2
2x2

3∂2∂ 5
3 + x4

1x5
2 − x9

2 −

x2
1x6

2∂2+x4
1x2

2x2
3∂2+x2

1x4
2x2

3∂2+x4
1x4

2−x4
2x4

3+x2
1x3

2∂ 3
1 +x2x2

3∂ 5
3 +x6

1x2+x2
1x5

2−x4
1x2x2

3+x2
1x3

2x2
3+

x5
2 − x4

1∂2 + x4
3∂2 −∂ 5

3 − x4
2 + x2

1x2∂2 − x2x2
3∂2 +∂ 3

1 ∂2 + x2
1 − x2

3 −∂2 −1, and
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C.2. Chapter 4

p3 = x7
2x4

3∂ 12
2 ∂ 5

3 −x2
1x9

2x4
3∂ 12

2 +x11
2 x4

3∂ 12
2 +x3

1x4
3∂1∂ 12

2 ∂ 5
3 +x1x2

2x4
3∂1∂ 12

2 ∂ 5
3 −x7

1x4
3∂1∂ 12

2 −x5
1x2

2x4
3∂1∂ 12

2 +

x1x6
2x4

3∂1∂ 12
2 +x10

2 ∂ 7
1 ∂ 6

2 −x7
2∂ 4

1 ∂ 7
2 ∂ 5

3 +x2
2x4

3∂ 12
2 ∂ 5

3 +x2
1x9

2∂ 4
1 ∂ 7

2 −x11
2 ∂ 4

1 ∂ 7
2 −x6

1x4
3∂ 12

2 +x4
1x2

2x4
3∂ 12

2 +

x6
2x4

3∂ 12
2 +x5

2x4
3∂1∂ 6

2 ∂ 5
3 +x4

1x5
2x4

3∂1∂ 6
2 +x2

1x7
2x4

3∂1∂ 6
2 −x9

2x4
3∂1∂ 6

2 −x2
1x8

2∂ 4
1 ∂ 6

2 −x10
2 ∂ 4

1 ∂ 6
2 −x1x9

2∂ 3
1 ∂ 7

2 −

x4
1x2

2∂ 7
1 ∂ 7

2 −x2
1x4

2∂ 7
1 ∂ 7

2 −x6
2∂ 7

1 ∂ 7
2 −x5

1x4
2∂ 6

2 ∂ 5
3 +x1x8

2∂ 6
2 ∂ 5

3 +x3
1x5

2x4
3∂ 6

2 −x1x7
2x4

3∂ 6
2 −x9

2x2
3∂1∂ 6

2 −

x1x8
2∂ 3

1 ∂ 6
2 +x2

1x3
2∂ 7

1 ∂ 6
2 −x5

2∂ 7
1 ∂ 6

2 −x2
1x7

2x2
3∂ 7

2 −x3
1x2

2∂ 6
1 ∂ 7

2 +x1x4
2∂ 6

1 ∂ 7
2 +x2

1x4
2∂1∂ 6

2 ∂ 5
3 −x4

1x6
2∂1∂ 6

2 +

x2
1x8

2∂1∂ 6
2 + x9

2x3∂1∂ 6
2 + x1x7

2∂ 7
1 ∂2 − x2

1x6
2x2

3∂ 6
2 − x1x3

2∂ 6
1 ∂ 6

2 + x2
1x7

2∂ 7
2 + x1x7

2x3∂ 7
2 + x2

1x9
2∂ 5

3 −

x11
2 ∂ 5

3 − x4
3∂1∂ 6

2 ∂ 5
3 + x3

1x6
2∂ 6

2 − x4
1x4

3∂1∂ 6
2 + x2

1x2
2x4

3∂1∂ 6
2 + x4

1x2∂ 4
1 ∂ 6

2 + x2
1x3

2∂ 4
1 ∂ 6

2 + x3
1x2∂ 6

2 ∂ 5
3 −

x1x6
2∂ 7

1 + x7
2∂ 6

1 ∂2 + x5
1x3

2∂ 6
2 + x3

1x5
2∂ 6

2 + x2
1x6

2∂ 6
2 + x1x7

2∂ 6
2 + x1x6

2x3∂ 6
2 − x3

1x4
3∂ 6

2 − x1x2
2x4

3∂ 6
2 −

x4
1x2

3∂1∂ 6
2 − x2

1x2
2x2

3∂1∂ 6
2 − x4

2x2
3∂1∂ 6

2 + x1x3
2∂ 3

1 ∂ 6
2 − x4

1x2
3∂ 7

2 − x2
1x2

2x2
3∂ 7

2 − x6
2∂ 6

1 + x4
1x3∂1∂ 6

2 +

x2
1x2

2x3∂1∂ 6
2 + x4

2x3∂1∂ 6
2 − x1x5

2x4
3∂1 − x1x6

2∂ 4
1 + x1x2

2∂ 7
1 ∂2 − x3

1x2
3∂ 6

2 + x2
1x2x2

3∂ 6
2 + x1x2

2x2
3∂ 6

2 +

x4
1∂ 7

2 + x2
1x2

2∂ 7
2 + x3

1x3∂ 7
2 + x1x2

2x3∂ 7
2 + x2

1x4
2∂ 5

3 + x6
2∂ 5

3 − x2
1x8

2 + x10
2 + x3

1x3∂ 6
2 − x1x2

2x3∂ 6
2 −

x5
2x4

3+x1x5
2x2

3∂1+x1x5
2x2

3∂2+x2
2∂ 6

1 ∂2−x3
1∂ 6

2 −x2
1x2∂ 6

2 −x1x2
2∂ 6

2 −x1x2x3∂ 6
2 −x1x5

2x3∂1−x1x4
2x2

3+

x5
2x2

3 − x1x5
2∂2 − x5

2x3∂2 − x5
2x3 − x1x4

3∂1 − x1x2∂ 4
1 − x2∂ 5

3 − x2
1x3

2 + x1x4
2 − x5

2 + x4
2x3 − x4

3 +

x1x2
3∂1 + x1x2

3∂2 − x1x3∂1 + x2
3 − x1∂2 − x3∂2 − x3 +1

(4) Example 4.4.2
The polynomials p1, p2, and p2 of the public key Q are

p1 =−x3
1x6

2x10
3 ∂1∂ 3

2 +2x3
1x6

2x7
3∂1∂ 3

2 ∂ 2
3 +x2

1x6
2∂ 3

1 ∂ 3
2 ∂ 4

3 +3x1x10
3 ∂1∂ 2

2 ∂ 3
3 −x1x6

2∂ 3
1 ∂ 3

2 ∂ 4
3 +3x3

1x3
2∂ 7

2 ∂ 4
3 +

3x3
1x6

2∂ 3
2 ∂ 4

3 +3x2
1x6

2∂1∂ 3
2 ∂ 4

3 −2x3
1x3

2∂ 6
2 ∂ 4

3 +x1x7
3∂1∂ 2

2 ∂ 5
3 −x1x9

3∂1∂ 2
2 ∂ 2

3 +x3
1x5

2∂ 3
2 ∂ 4

3 +3x2
1x6

2∂ 3
2 ∂ 4

3 +

x1x6
2∂1∂ 3

2 ∂ 4
3 −x3

1x4
2∂ 4

2 ∂ 4
3 −3x3

1x3
2∂ 5

2 ∂ 4
3 +2x1x2x3∂ 2

1 ∂ 6
2 ∂ 4

3 +x11
3 ∂ 3

3 +3x3
1x4

2∂ 3
2 ∂ 4

3 −2x1x6
2∂ 3

2 ∂ 4
3 +

3x6
2∂1∂ 3

2 ∂ 4
3 +2x3

1x3
2∂ 4

2 ∂ 4
3 −x1x2x3∂ 2

1 ∂ 5
2 ∂ 4

3 +x1x10
3 ∂ 2

1 +x2x10
3 ∂ 2

2 −x10
3 ∂ 3

2 −2x1x8
3∂1∂ 2

2 ∂3−x3
1x4

2∂ 2
2 ∂ 4

3 −

3x1x3
2x3∂ 2

1 ∂ 2
2 ∂ 4

3 −x3
1x3

2∂ 3
2 ∂ 4

3 +3x6
2∂ 3

2 ∂ 4
3 +3x1x2

2x3∂ 2
1 ∂ 3

2 ∂ 4
3 +2x1x2x3∂ 2

1 ∂ 4
2 ∂ 4

3 −2x8
3∂ 5

3 +2x1x10
3 ∂1+

x1x10
3 ∂2+2x10

3 ∂ 2
3 −2x1x7

3∂ 2
1 ∂ 2

3 −2x2x7
3∂ 2

2 ∂ 2
3 +2x7

3∂ 3
2 ∂ 2

3 +2x3
1x3

2∂ 2
2 ∂ 4

3 −2x1x2
2x3∂ 2

1 ∂ 2
2 ∂ 4

3 +x1x2x3∂ 2
1 ∂ 3

2 ∂ 4
3 +

3x10
3 ∂1−3x1x7

3∂1∂ 2
2 +∂ 3

1 ∂ 7
2 ∂3+3x1x7

3∂1∂ 2
3 −2x1x7

3∂2∂ 2
3 −x3

1x3
2∂2∂ 4

3 +2x1x2
2x3∂ 2

1 ∂2∂ 4
3 −x3

1∂ 4
2 ∂ 4

3 −

3x9
3∂3+3∂ 3

1 ∂ 6
2 ∂3+x7

3∂1∂ 2
3 +3x1x2x3∂ 2

1 ∂2∂ 4
3 −3x3

1∂ 3
2 ∂ 4

3 −2x1x2∂ 3
1 ∂ 3

2 ∂3+2x2
2∂ 3

1 ∂ 3
2 ∂3−2x2∂ 3

1 ∂ 4
2 ∂3+

∂ 3
1 ∂ 5

2 ∂3−2x3
1x2

2∂ 4
3 +x1x2x3∂ 2

1 ∂ 4
3 +2x3

1x2∂2∂ 4
3 −x3

1∂ 2
2 ∂ 4

3 +3x3∂ 4
2 ∂ 4

3 −x8
3+3x1x2∂ 3

1 ∂ 3
2 −x2∂ 3

1 ∂ 3
2 ∂3−

3∂ 3
1 ∂ 4

2 ∂3+x3
1x2∂ 4

3 +3x3
1∂2∂ 4

3 +2x3∂ 3
2 ∂ 4

3 −x3
1∂ 4

2 −3x3
2∂ 4

2 −2x1x2
3∂ 3

1 ∂3−2x2∂ 3
1 ∂ 2

2 ∂3+x2
1x2∂ 3

2 ∂3+

x1x2∂1∂ 3
2 ∂3−2∂ 3

1 ∂ 3
2 ∂3+3x3

1∂ 4
3 −x2

2x3∂ 4
3 +x2x3∂2∂ 4

3 +3x3∂ 2
2 ∂ 4

3 −3x3
1∂ 3

2 +2x2
1x2∂ 3

2 −2x3
2∂ 3

2 +

2x1x2∂1∂ 3
2 + x1x2∂ 3

1 ∂3 − 3∂ 3
1 ∂ 2

2 ∂3 + 2x1x2∂ 3
2 ∂3 − x2∂1∂ 3

2 ∂3 − 3x2x3∂ 4
3 − 2x3∂2∂ 4

3 − 2x3
1x2

2 +

x5
2 + 2x3

1x2∂2 − x4
2∂2 − x3

1∂ 2
2 − 3x3

2∂ 2
2 − 3x1x2∂ 3

2 − 2x2∂1∂ 3
2 + 3x3∂ 4

2 + x2
1x2

3∂3 + x1x2
3∂1∂3 −

3x1∂ 3
1 ∂3−2∂ 3

1 ∂2∂3−x2∂ 3
2 ∂3−2x3∂ 4

3 +x3
1x2+3x4

2+3x3
1∂2+2x3

2∂2−2x2∂ 3
2 +2x3∂ 3

2 +3x2
1x2∂3+

2x1x2
3∂3+3x1x2∂1∂3−x2

3∂1∂3+3x3
1+2x3

2−x2
2x3+x2x3∂2+3x3∂ 2

2 −2x2
1∂3−x1x2∂3−x2

3∂3−

2x1∂1∂3 −3x2∂1∂3 −3x2x3 −2x3∂2 +3x1∂3 −3x2∂3 +2∂1∂3 −2x3 +2∂3,
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Appendix C. Examples Data

p2 = 3x2
1x4

2x9
3∂ 4

2 ∂3 + 2x2
1x2

2x9
3∂ 6

2 ∂3 − 3x2
1x3

2x7
3∂ 5

2 ∂ 3
3 + 3x2

1x2
2x7

3∂ 6
2 ∂ 3

3 − x2
1x3

2x9
3∂ 5

2 + x2
1x2

2x9
3∂ 6

2 −

x2
1x4

2x9
3∂ 3

2 ∂3+x2
1x3

2x9
3∂ 4

2 ∂3+2x2
1x2

2x9
3∂ 5

2 ∂3−x2
1x4

2x7
3∂ 3

2 ∂ 3
3 +x2

1x3
2x7

3∂ 4
2 ∂ 3

3 +x2
1x2

2x7
3∂ 5

2 ∂ 3
3 +2x2

1x4
2x9

3∂ 3
2 −

3x2
1x4

2x8
3∂ 4

2 −2x2
1x3

2x9
3∂ 4

2 −2x2
1x2

2x9
3∂ 5

2 −2x2
1x2

2x8
3∂ 6

2 +x2
1x2

2x9
3∂ 4

2 ∂3+x2
1x3

2x7
3∂ 3

2 ∂ 3
3 −2x2

1x2
2x7

3∂ 4
2 ∂ 3

3 +

x2
1x4

2x8
3∂ 3

2 −2x2
1x3

2x9
3∂ 3

2 − x2
1x3

2x8
3∂ 4

2 −3x2
1x2

2x9
3∂ 4

2 −2x2
1x2

2x8
3∂ 5

2 +

x2
1x3

2x9
3∂ 2

2 ∂3+x2
1x2

2x9
3∂ 3

2 ∂3+x2
1x3

2x7
3∂ 2

2 ∂ 3
3 −2x2

1x2
2x7

3∂ 3
2 ∂ 3

3 −3x3
1x5

3∂ 2
1 ∂ 4

2 ∂ 3
3 −2x1x5

3∂ 4
1 ∂ 4

2 ∂ 3
3 −2x2

1x3
2x9

3∂ 2
2 −

3x2
1x2

2x9
3∂ 3

2 −x2
1x2

2x8
3∂ 4

2 +3x2
1x2

2x7
3∂ 2

2 ∂ 3
3 +x1x4

2x2
3∂ 4

1 ∂ 2
2 ∂ 3

3 −x1x3
2x2

3∂ 4
1 ∂ 3

2 ∂ 3
3 −x2

1x5
3∂ 2

1 ∂ 4
2 ∂ 3

3 −x1x5
3∂ 3

1 ∂ 4
2 ∂ 3

3 −

x2
1x3

2x8
3∂ 2

2 +x2
1x2

2x9
3∂ 2

2 −x2
1x2

2x8
3∂ 3

2 −2x1x5
2x2

3∂ 4
1 ∂ 3

3 +x2
1x2

2x7
3∂2∂ 3

3 +2x1x4
2x2

3∂ 4
1 ∂2∂ 3

3 +2x1x3
2x2

3∂ 4
1 ∂ 2

2 ∂ 3
3 +

3x2
1x5

3∂1∂ 4
2 ∂ 3

3 −x1x5
3∂ 2

1 ∂ 4
2 ∂ 3

3 −2x5
3∂ 3

1 ∂ 4
2 ∂ 3

3 −2x2
1x2

2x9
3∂2+3x1x10

3 ∂ 3
3 −3x11

3 ∂ 3
3 +2x1x4

2x2
3∂ 4

1 ∂ 3
3 +

3x1x5
3∂1∂ 4

2 ∂ 3
3 −x5

3∂ 2
1 ∂ 4

2 ∂ 3
3 +x2

1x9
3∂ 2

3 +3x9
3∂1∂2∂ 2

3 −3x1x3
2x2

3∂ 4
1 ∂ 3

3 +3x1x5
3∂ 4

2 ∂ 3
3 −2x5

3∂1∂ 4
2 ∂ 3

3 +

2x1x9
3∂ 2

3 −2x10
3 ∂ 2

3 −2x5
3∂ 4

2 ∂ 3
3 +x2

1x8
3∂3−2x2x9

3∂3+x9
3∂2∂3+3x8

3∂1∂2∂3+3x6
1x2

3∂1∂ 2
3 +2x4

1x2
3∂ 3

1 ∂ 2
3 +

x5
1x2

3∂1∂ 2
3 +x4

1x2
3∂ 2

1 ∂ 2
3 −x2

1x7
3+2x2x8

3−x8
3∂2−3x7

3∂1∂2+2x5
1x2

3∂ 2
3 +x4

1x2
3∂1∂ 2

3 −2x1x2∂1∂ 4
2 ∂ 2

3 +

2x1∂1∂ 5
2 ∂ 2

3 +2x4
1x2

3∂ 2
3 −3x1x2

2∂1∂ 2
2 ∂ 2

3 +3x1x2∂1∂ 3
2 ∂ 2

3 +3x1∂1∂ 4
2 ∂ 2

3 +x2
2x3∂ 2

1 ∂ 2
2 −x2x3∂ 2

1 ∂ 3
2 +

x3
1x2

3∂ 2
3 +3x1x2∂1∂ 2

2 ∂ 2
3 +3x1∂1∂ 3

2 ∂ 2
3 −2x3

2x3∂ 2
1 +2x2

2x3∂ 2
1 ∂2+2x2x3∂ 2

1 ∂ 2
2 −3x5

1∂3−2x3
1∂ 2

1 ∂3+

2x1x2∂1∂2∂ 2
3 − 2x1∂1∂ 2

2 ∂ 2
3 + 2x3

1x2∂1 + 2x2
2x3∂ 2

1 − x1x2∂ 3
1 + x1x2∂1∂ 2

2 − x1∂1∂ 3
2 − 2x2∂ 4

2 +

2∂ 5
2 −x4

1∂3−x3
1∂1∂3−x1∂1∂2∂ 2

3 −x3
1x3+3x2

1x2∂1−2x1x2
2∂1+3x1x2∂ 2

1 −3x1x3∂ 2
1 −3x2x3∂ 2

1 +

2x1x2∂1∂2−3x2
2∂ 2

2 −3x2x3∂ 2
2 +2x1∂1∂ 2

2 +3x2∂ 3
2 +3x3∂ 3

2 +3∂ 4
2 −3x3

1∂3+2x2
1∂1∂3+x1∂ 2

1 ∂3−

x2∂ 2
2 ∂3+∂ 3

2 ∂3+x1∂1∂ 2
3 −x2

1x2+2x2
1x3−x2

2x3−2x1x2∂1+2x1x3∂1+x2x3∂2+3x2∂ 2
2 +x3∂ 2

2 +

3∂ 3
2 −2x2

1∂3 +2x2
2∂3 −3x1∂1∂3 −2x2∂2∂3 −2∂ 2

2 ∂3 − x1x2 +2x1x3 + x2x3 −3x1∂1 +3x3∂1 +

2x2∂2 −2∂ 2
2 −3x1∂3 −2x2∂3 −∂1∂3 +3x2 −∂2 −∂3 +1, and

p3 =−3x1x2
2x10

3 ∂ 3
1 ∂2∂3−2x1x10

3 ∂ 3
1 ∂ 3

2 ∂3+x1x2
2x10

3 ∂ 3
1 ∂3−x1x2x10

3 ∂ 3
1 ∂2∂3+3x2

1x2x10
3 ∂1∂ 2

2 ∂3−

2x1x10
3 ∂ 3

1 ∂ 2
2 ∂3 − 3x2

1x10
3 ∂1∂ 3

2 ∂3 + x1x2
2x8

3∂ 3
1 ∂ 3

3 − 2x1x2
2x10

3 ∂ 3
1 − x1x2x10

3 ∂ 3
1 ∂3 − x1x10

3 ∂ 3
1 ∂2∂3 +

2x2
1x2x10

3 ∂ 2
2 ∂3 − x2

1x10
3 ∂1∂ 2

2 ∂3 + 3x1x2x10
3 ∂1∂ 2

2 ∂3 − 2x2
1x10

3 ∂ 3
2 ∂3 − 3x1x10

3 ∂1∂ 3
2 ∂3 + x2

1x3
2x9

3∂1 +

2x1x10
3 ∂ 3

1 ∂3−3x2
1x10

3 ∂ 2
2 ∂3−2x1x2x10

3 ∂ 2
2 ∂3−x1x10

3 ∂1∂ 2
2 ∂3+2x1x10

3 ∂ 3
2 ∂3+3x2

1x2
2x7

3∂2∂ 3
3 −2x2

1x2x7
3∂1∂2∂ 3

3 +

3x1x2
2x7

3∂1∂2∂ 3
3 −x2

1x8
3∂ 2

2 ∂ 3
3 +3x1x8

3∂1∂ 2
2 ∂ 3

3 +2x2x8
3∂1∂ 2

2 ∂ 3
3 +2x2

1x7
3∂ 3

2 ∂ 3
3 −3x1x8

3∂ 3
2 ∂ 3

3 +2x1x7
3∂1∂ 3

2 ∂ 3
3 −

2x8
3∂1∂ 3

2 ∂ 3
3 +3x2

1x3
2x9

3+x1x3
2x9

3∂1+3x2
1x2x9

3∂1∂2+2x2
1x10

3 ∂ 2
2 +x1x10

3 ∂1∂ 2
2 +3x2x10

3 ∂1∂ 2
2 −x1x10

3 ∂ 3
2 −

3x10
3 ∂1∂ 3

2 + 3x1x10
3 ∂ 2

2 ∂3 + x2x10
3 ∂ 2

2 ∂3 − x10
3 ∂ 3

2 ∂3 − x2
1x2

2x7
3∂ 3

3 − 2x2
1x2x7

3∂1∂ 3
3 − x1x2

2x7
3∂1∂ 3

3 +

2x2
1x2x7

3∂2∂ 3
3 −x1x2x7

3∂1∂2∂ 3
3 +2x2

1x7
3∂ 2

2 ∂ 3
3 +2x1x7

3∂1∂ 2
2 ∂ 3

3 −3x1x3
2x9

3+2x2
1x2x9

3∂2+3x1x2x9
3∂1∂2+

2x10
3 ∂ 2

2 ∂3+2x2
1x2x7

3∂ 3
3 −x1x2x7

3∂1∂ 3
3 +x2

1x7
3∂2∂ 3

3 −x1x2x7
3∂2∂ 3

3 +x1x7
3∂1∂2∂ 3

3 +x1x8
3∂ 4

3 −2x3
2x9

3−

2x1x2x9
3∂2−2x1x10

3 ∂3−2x2
1x7

3∂ 3
3 −x1x2x7

3∂ 3
3 −2x1x7

3∂1∂ 3
3 −3x2x7

3∂2∂ 3
3 −x8

3∂2∂ 3
3 −3x1x7

3∂ 4
3 +

x2x9
3∂2 + 2x10

3 ∂2 − x1x9
3∂3 − 2x1x7

3∂ 3
3 − 3x2x7

3∂ 3
3 − x1x2∂ 3

1 ∂2∂ 5
3 + 2x1x2

2x3
3∂2∂ 3

3 − x1x3
3∂ 3

2 ∂ 3
3 −

x1x2∂ 3
1 ∂ 5

3 −2x2
1x2∂ 2

2 ∂ 5
3 −2x1x2∂1∂ 2

2 ∂ 5
3 +2x2

1∂ 3
2 ∂ 5

3 +2x1∂1∂ 3
2 ∂ 5

3 −2x1x8
3−3x1x2

2x3
3∂ 3

3 +3x1x2x3
3∂2∂ 3

3 −
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C.3. Chapter 6

x1x3
3∂ 2

2 ∂ 3
3 − 2x1∂ 3

1 ∂ 5
3 − 3x2

1∂ 2
2 ∂ 5

3 + 3x1x2∂ 2
2 ∂ 5

3 − x1x2x3∂ 3
1 ∂2∂3 + 3x1x2x3

3∂ 3
3 + 3x1x3

3∂2∂ 3
3 +

x2
2x4

3∂2 + 3x4
3∂ 3

2 + x3
1x2x3∂1∂3 − x1x2x3∂ 3

1 ∂3 − 2x2
1x2x3∂ 2

2 ∂3 − 2x1x2x3∂1∂ 2
2 ∂3 + 2x2

1x3∂ 3
2 ∂3 +

2x1x3∂1∂ 3
2 ∂3 + x1x3

3∂ 3
3 +2x2

2x4
3 −2x2x4

3∂2 + x2
1∂ 3

1 ∂2 − x1x2∂ 3
1 ∂2 +3x4

3∂ 2
2 −2x1x2

2∂ 3
2 − x2

2∂ 4
2 +

x1∂ 5
2 −3∂ 6

2 +3x3
1x2x3∂3+x2

1x2x3∂1∂3−2x1x3∂ 3
1 ∂3−3x2

1x3∂ 2
2 ∂3+3x1x2x3∂ 2

2 ∂3+3x2
1x2∂1∂ 2

3 −

3x3
2∂2∂ 2

3 −2x2∂ 3
2 ∂ 2

3 +3∂ 2
1 ∂ 4

3 −3x2∂2∂ 4
3 +x1∂ 5

3 −2x2x4
3−x1x2∂ 3

1 −x3
2x3∂2+x2

2x2
3∂2−2x4

3∂2+

3x2
1∂ 2

1 ∂2+x1∂ 3
1 ∂2−2x2

1x2∂ 2
2 +3x1x2

2∂ 2
2 −2x1x2∂1∂ 2

2 +2x2
1∂ 3

2 −3x1x2∂ 3
2 −2x2

2∂ 3
2 −3x2x3∂ 3

2 +

3x2
3∂ 3

2 +2x1∂1∂ 3
2 +x1∂ 4

2 +2x2∂ 4
2 −3∂ 5

2 −3x2
1x2x3∂3+2x3

1∂1∂3+2x2
1x2∂ 2

3 +x3
2∂ 2

3 +3x1x2∂1∂ 2
3 −

x2
2∂2∂ 2

3 −2x2∂ 2
2 ∂ 2

3 −3x3∂ 4
3 −2x3

2x3 +2x2
2x2

3 −3x4
3 −3x2

1x2∂1 −2x1∂ 3
1 +2x2

2x3∂2 −2x2x2
3∂2 +

3x2
2∂1∂2 + x1∂ 2

1 ∂2 − 3x2
1∂ 2

2 − x1x2∂ 2
2 − 3x2x3∂ 2

2 + 3x2
3∂ 2

2 − 3x1∂ 3
2 + 3x2∂ 3

2 + 2∂1∂ 3
2 + 2∂ 4

2 −

x3
1∂3 − 2x1x2x3∂3 − 2x1x2∂ 2

3 − x2
2∂ 2

3 − x2∂2∂ 2
3 − 2x2

1x2 + 2x2
2x3 − 2x2x2

3 − 3x1x2∂1 − x2
2∂1 +

3x3∂ 2
1 −2x1x2∂2−x2x3∂2−2x2

3∂2−2x1∂1∂2+x2∂1∂2+2x2∂ 2
2 +2∂1∂ 2

2 +2∂ 3
2 +2x2

1∂3+x1x3∂3−

2x1∂1∂3 +3x2∂ 2
3 +2x1x2 +3x2x3 + x2

3 + x2∂1 −3x1∂2 −3∂1∂2 +2x1∂3 − x2 −2∂1 +∂2 −3∂3

C.3 Chapter 6

(1) Example 6.2.2
The generating set {p1, p2} consists of the following Weyl polynomials in A3

p1 = x6
1x5

2x3∂ 6
1 + x6

1x4
2x3∂ 7

1 + x5
1x5

2∂ 7
1 ∂2 − x3

1x6
2x3

3∂ 2
1 ∂ 4

2 − x7
1x2∂ 6

1 ∂ 4
2 + x3

1x8
2∂1∂ 6

2 + x3
2x6

3∂ 2
1 ∂ 7

2 −

x5
2x3

3∂1∂ 9
2 +x8

1x3
3∂ 6

1 ∂3+x5
1x2

2∂ 7
1 ∂ 3

2 ∂3+x10
1 ∂ 6

1 ∂ 2
3 +x7

1x3
2∂ 6

1 ∂ 2
3 +x3

1x3
2x6

3∂ 2
1 ∂2∂ 3

3 −x3
1x5

2x3
3∂1∂ 3

2 ∂ 3
3 −

x5
1x2x2

3∂ 9
1 + x6

1x2
2x3∂ 6

1 ∂ 2
2 − x5

1x9
2∂ 3

2 + x3
1x2x3∂ 7

1 ∂ 5
2 + x2

1x6
2x3

3∂ 6
2 − x4

1x2
2∂ 9

1 ∂2∂3 + x6
1x2∂ 6

1 ∂ 3
2 ∂3 +

x3
1x6

3∂ 6
1 ∂ 2

3 −x4
1x3

2x3∂ 7
1 ∂ 2

3 +x3
1x2

3∂ 10
1 ∂ 2

3 +x5
1x6

2x3
3∂ 3

3 +x5
1x3

3∂ 6
1 ∂ 3

3 −x3
1x2x2

3∂ 7
1 ∂2∂ 3

3 −x3
1x5

3∂ 6
1 ∂2∂3−

x3
1x3∂ 8

1 ∂ 4
3 −x6

1x3
2x3

3∂ 2
1 ∂2+x6

1x5
2∂1∂ 3

2 −x3
1x6

2x3∂ 2
1 ∂ 3

2 −x2
1x8

2∂1∂ 4
2 +x3

1x3
2x3

3∂ 2
1 ∂ 4

2 −x5
2x4

3∂ 6
2 −x3

1x5
2∂1∂ 6

2 −

x4
2x4

3∂1∂ 6
2 +x3

2x4
3∂ 2

1 ∂ 6
2 +x4

1x4
2∂ 7

2 −x5
1x3

2x3
3∂ 3

2 ∂3−x3
1x2∂ 7

1 ∂ 3
2 ∂3−x3

1∂ 6
1 ∂ 5

2 ∂3−x2
1x5

2∂1∂ 6
2 ∂3−x3

1x2x3∂ 6
1 ∂ 2

2 ∂ 2
3 −

x7
1x3

2∂ 3
2 ∂ 2

3 −x1x3
2x3

3∂ 6
2 ∂ 2

3 +x3
1x3

2x4
3∂ 2

1 ∂ 3
3 +x4

1x2
3∂ 6

1 ∂ 3
3 +x2

1x5
2x3

3∂1∂2∂ 3
3 −x4

1x2x3
3∂ 4

2 ∂ 3
3 +x5

1x6
3∂ 4

3 +

x2
1x2

2x3
3∂1∂ 3

2 ∂ 4
3 +x7

1x3
3∂ 5

3 −x6
3∂ 2

1 ∂2∂ 6
3 +x2

2x3
3∂1∂ 3

2 ∂ 6
3 −x8

1x6
2+x3

1x3
3∂ 6

1 ∂ 2
2 +x2

1x4
2x2

3∂ 3
1 ∂ 3

2 −x3
1x5

2x3∂ 5
2 +

x2
1x3

2x3
3∂ 6

2 −x4
2x3∂1∂ 8

2 +x1x5
2∂ 3

1 ∂ 4
2 ∂3−x3

1x4
2∂ 6

2 ∂3−x3
2x6

3∂ 3
2 ∂ 2

3 +x1x6
2x3∂1∂ 3

2 ∂ 2
3 −x3

2x2
3∂ 4

1 ∂ 3
2 ∂ 2

3 +

x5
1x3

2x3
3∂ 3

3 −x2
1x2x5

3∂ 3
1 ∂ 3

3 +x3
1x2

2x4
3∂ 2

2 ∂ 3
3 −x2

1x3
2x3

3∂ 3
2 ∂ 3

3 +x4
2x2

3∂1∂ 4
2 ∂ 3

3 +x2x4
3∂1∂ 5

2 ∂ 3
3 −x1x2

2x3
3∂ 3

1 ∂2∂ 4
3 +

x3
1x2x3

3∂ 3
2 ∂ 4

3 +x9
3∂ 5

3 −x1x3
2x4

3∂1∂ 5
3 +x5

3∂ 4
1 ∂ 5

3 −x2
1x3

2x3
3∂ 6

3 +x2
1x6

3∂ 6
3 −x2x5

3∂1∂2∂ 6
3 +x3

1x2x2
3∂ 7

1 +

x3
2x5

3∂ 4
2 ∂3−x8

3∂2∂ 4
3 +x3

2x3∂ 2
1 ∂ 3

2 ∂ 4
3 −x4

3∂ 2
1 ∂ 7

3 −x6
1x3

2x3∂ 2
1 −x5

1x5
2∂1∂2−x3

1x3
2x3

3∂ 2
1 ∂2+x3

1x5
2∂1∂ 3

2 +

x3
1x3

2x3∂ 2
1 ∂ 3

2 +x7
1x2∂ 4

2 +x2
1x5

2∂1∂ 4
2 −x4

1x2∂ 7
2 −x8

1x3
3∂3+x5

1x3
3∂ 3

2 ∂3−x5
1x2

2∂1∂ 3
2 ∂3+x2

1x2
2∂1∂ 6

2 ∂3+

x4
2∂1∂ 6

2 ∂3 + x3
2∂ 8

2 ∂3 − x10
1 ∂ 2

3 + x7
1∂ 3

2 ∂ 2
3 + x4

2x3∂ 5
2 ∂ 2

3 − x1x3
2x2

3∂ 3
2 ∂ 3

3 − x2x3
3∂1∂ 3

2 ∂ 4
3 − x3

3∂ 5
2 ∂ 4

3 −

x2x4
3∂ 2

2 ∂ 5
3 +x2

2x4
3∂ 6

3 +x1x5
3∂ 6

3 +x2x4
3∂1∂ 6

3 −x4
3∂ 2

1 ∂ 6
3 +x1x3

3∂ 8
3 −x8

1x3
2−x5

1x6
2+x5

1x2x2
3∂ 3

1 −x6
1x2

2x3∂ 2
2 +
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Appendix C. Examples Data

x5
1x3

2∂ 3
2 −x2

1x2x2
3∂ 3

1 ∂ 3
2 +x3

1x2
2x3∂ 5

2 −x3
2x3

3∂ 5
2 −x3

1x2x3∂1∂ 5
2 +x2x3∂1∂ 8

2 +x4
1x2

2∂ 3
1 ∂2∂3−x6

1x2∂ 3
2 ∂3−

x1x2
2∂ 3

1 ∂ 4
2 ∂3+x3

1x2∂ 6
2 ∂3−x3

1x6
3∂ 2

3 +x4
1x3

2x3∂1∂ 2
3 −x3

1x2
3∂ 4

1 ∂ 2
3 +x6

3∂ 3
2 ∂ 2

3 −x1x3
2x3∂1∂ 3

2 ∂ 2
3 +x2

3∂ 4
1 ∂ 3

2 ∂ 2
3 −

x5
1x3

3∂ 3
3 +x3

1x2x2
3∂1∂2∂ 3

3 +x6
3∂ 2

2 ∂ 3
3 +x2

1x3
3∂ 3

2 ∂ 3
3 −x2x2

3∂1∂ 4
2 ∂ 3

3 −x2
1x3

3∂ 6
3 −x4

2x2
3∂1∂ 3

2 +x3
1x5

3∂2∂3−

x5
3∂ 4

2 ∂3+x2x5
3∂1∂ 3

3 +x3
1x3∂ 2

1 ∂ 4
3 −x3∂ 2

1 ∂ 3
2 ∂ 4

3 −x3
1x3

2x3∂ 2
1 −x2

1x5
2∂1∂2+x3

3∂ 5
1 ∂2−x2

2∂ 4
1 ∂ 3

2 +x4
1x2∂ 4

2 −

x5
1x3

3∂3+x3
1x2∂1∂ 3

2 ∂3−x2
1x2

2∂1∂ 3
2 ∂3+x3

1∂ 5
2 ∂3−x2∂1∂ 6

2 ∂3−∂ 8
2 ∂3−x7

1∂ 2
3 +x3

1x2x3∂ 2
2 ∂ 2

3 −x2x3∂ 5
2 ∂ 2

3 −

x4
1x2

3∂ 3
3 −x3

3∂ 2
1 ∂2∂ 3

3 +x1x2
3∂ 3

2 ∂ 3
3 +x2

2∂1∂ 3
2 ∂ 3

3 −x5
1x3

2+x2
1x3

2∂ 3
1 +x2

1x2x2
3∂ 3

1 −x3
1x2

2x3∂ 2
2 −x3

1x3
3∂ 2

2 +

x3
3∂ 5

2 −x2x3∂1∂ 5
2 +x1x2

2∂ 3
1 ∂2∂3−x3

1x2∂ 3
2 ∂3−x6

3∂ 2
3 +x1x3

2x3∂1∂ 2
3 −x2

3∂ 4
1 ∂ 2

3 −x2
1x3

2∂ 3
3 −x2

1x3
3∂ 3

3 +

x2x2
3∂1∂2∂ 3

3 −x3
1x2x2

3∂1 +x2x2
3∂1∂ 3

2 +x5
3∂2∂3 +x3∂ 2

1 ∂ 4
3 −x2

2x3∂ 3
1 −x2x3∂ 4

1 +x3∂ 5
1 +x3

3∂ 2
1 ∂2 −

x2
2∂1∂ 3

2 + x2∂1∂ 3
2 ∂3 +∂ 5

2 ∂3 − x1∂ 3
1 ∂ 2

3 + x2x3∂ 2
2 ∂ 2

3 + x2
2x3∂ 3

3 − x1x2
3∂ 3

3 + x2x3∂1∂ 3
3 − x3∂ 2

1 ∂ 3
3 +

x1∂ 5
3 + x2

1x3
2 + x2

1∂ 3
1 − x3

3∂ 2
2 − x2

1∂ 3
3 − x2x2

3∂1 − x2
2x3 − x2x3∂1 + x3∂ 2

1 − x1∂ 2
3 + x2

1,

p2 = x5
1x2x4

3∂ 7
1 −x3

1x8
2x3∂ 2

1 ∂ 3
2 +x4

1x2x2
3∂ 7

1 ∂ 3
2 +x6

1x6
2∂1∂ 4

2 +x5
2x4

3∂ 2
1 ∂ 6

2 −x3
1x3

2x3
3∂1∂ 7

2 −x6
1∂ 6

1 ∂ 4
2 ∂3−

x3
1x4

2∂ 8
1 ∂ 2

3 +x5
1x3

2∂ 6
1 ∂2∂ 2

3 +x5
1x2

2x3∂ 6
1 ∂2∂ 2

3 +x5
1x2∂ 6

1 ∂ 3
2 ∂ 2

3 +x3
1x5

2x4
3∂ 2

1 ∂ 3
3 −x6

1x3
2x3

3∂1∂2∂ 3
3 −x3

1x2
2x3∂ 7

1 ∂2∂ 3
3 +

x3
1x2∂ 6

1 ∂ 7
3 +x3

1x6
2∂ 7

1 −x4
1x4

2∂ 7
1 ∂3+x4

1x3
2x3∂ 7

1 ∂3+x3
1x2∂ 6

1 ∂ 5
2 ∂3−x6

1x3∂ 6
1 ∂2∂ 2

3 −x4
1x2x3∂ 6

1 ∂ 2
2 ∂ 2

3 −

x4
1x2

2x3∂ 6
1 ∂ 3

3 + x4
1∂ 6

1 ∂ 3
2 ∂ 3

3 + x7
1x3∂ 7

1 − x3
1x3

2∂ 6
1 ∂ 3

2 − x4
1x2

2∂ 6
1 ∂ 2

2 ∂3 − x3
1x7

2∂1∂ 3
2 ∂3 + x4

2x3
3∂1∂ 6

2 ∂3 +

x5
1x2

3∂ 6
1 ∂ 2

3 + x3
1x2∂ 7

1 ∂2∂ 3
3 + x3

1x4
2x3

3∂1∂ 4
3 − x3

1x2x3∂ 6
1 ∂ 4

3 − x6
1x5

2x3∂ 2
1 + x9

1x3
2∂1∂2 − x2

1x4
2x4

3∂1∂ 3
2 +

x3
1x5

2x3∂ 2
1 ∂ 3

2 −x6
1x3

2∂1∂ 4
2 −x1x4

2x2
3∂1∂ 6

2 +x6
1x3∂ 6

1 ∂3+x4
1x2x3∂ 6

1 ∂2∂3+x3
1x2x2

3∂ 6
1 ∂2∂3+x3

1x3
2∂ 7

2 ∂3−

x5
1∂ 7

1 ∂ 2
3 + x7

2∂ 2
1 ∂ 3

2 ∂ 2
3 − x2

1x6
2∂ 4

2 ∂ 2
3 − x2

1x5
2x3∂ 4

2 ∂ 2
3 − x2

1x4
2∂ 6

2 ∂ 2
3 + x2

1x2x7
3∂1∂ 3

3 + x1x2x5
3∂1∂ 3

2 ∂ 3
3 +

x5
2x3∂1∂ 4

2 ∂ 3
3 −x3

1x3
3∂ 4

2 ∂ 4
3 −x4

2x3
3∂ 2

1 ∂ 5
3 +x2

1x3
2x3

3∂2∂ 5
3 +x2

1x2
2x4

3∂2∂ 5
3 +x2

1x2x3
3∂ 3

2 ∂ 5
3 −x2

2x4
3∂ 2

1 ∂ 6
3 +

x3
1x3

3∂1∂2∂ 6
3 −x2

2x4
3∂1∂2∂ 6

3 −x4
2∂ 3

2 ∂ 7
3 +x2x3

3∂ 10
3 −x9

2∂1∂ 3
2 +x1x7

2∂1∂ 3
2 ∂3−x1x6

2x3∂1∂ 3
2 ∂3−x4

2∂ 8
2 ∂3+

x3
1x3

2x3∂ 4
2 ∂ 2

3 +x1x4
2x3∂ 5

2 ∂ 2
3 +x6

2x3
3∂1∂ 3

3 −x3
1x3∂ 6

1 ∂ 3
3 +x1x5

2x3∂ 3
2 ∂ 3

3 −x1x3
2∂ 6

2 ∂ 3
3 −x1x4

2x3
3∂1∂ 4

3 +

x1x3
2x4

3∂1∂ 4
3 + x2x3

3∂ 5
2 ∂ 4

3 − x3
1x4

3∂2∂ 5
3 − x1x2x4

3∂ 2
2 ∂ 5

3 − x1x2
2x4

3∂ 6
3 + x1x3

3∂ 3
2 ∂ 6

3 − x4
1x3

2x3∂1∂ 3
2 +

x6
2∂ 6

2 −x6
1x4

2∂1∂3+x3
1x4

2∂1∂ 3
2 ∂3+x1x5

2∂ 5
2 ∂3−x2

1x3
2x2

3∂ 3
2 ∂ 2

3 +x4
1x4

3∂1∂ 3
3 −x3

2x3
3∂ 3

2 ∂ 3
3 −x4

2∂1∂ 4
2 ∂ 3

3 −

x1x2
2x3

3∂ 2
2 ∂ 4

3 +x4
2x3∂ 3

2 ∂ 4
3 +x2

1x5
3∂ 5

3 +x2x3
3∂1∂2∂ 6

3 −x2x4
3∂ 7

3 −x2x3
3∂1∂ 7

3 −x5
1x2x4

3∂1−x3
1x5

2x3∂ 2
1 +

x6
1x3

2∂1∂2 − x4
1x2x2

3∂1∂ 3
2 + x2

1x2x4
3∂1∂ 3

2 + x1x2x2
3∂1∂ 6

2 − x3
1x3

2x3∂ 3
2 ∂3 + x6

1∂ 4
2 ∂3 − x1x4

2x3∂ 4
2 ∂3 −

x4
2x2

3∂ 4
2 ∂3−x3

1∂ 7
2 ∂3+x3

1x4
2∂ 2

1 ∂ 2
3 −x5

1x3
2∂2∂ 2

3 −x5
1x2

2x3∂2∂ 2
3 −x5

1x2∂ 3
2 ∂ 2

3 +x2
1x3

2∂1∂ 3
2 ∂ 2

3 −x4
2∂ 2

1 ∂ 3
2 ∂ 2

3 +

x2
1x3

2∂ 4
2 ∂ 2

3 +x2
1x2

2x3∂ 4
2 ∂ 2

3 +x2
1x2∂ 6

2 ∂ 2
3 +x3

1x2
2x3∂1∂2∂ 3

3 −x2
2x3∂1∂ 4

2 ∂ 3
3 +x3

1x4
3∂ 4

3 +x1x2x4
3∂2∂ 4

3 +

x2x5
3∂2∂ 4

3 −x2
1x3

3∂1∂ 5
3 −x3

1x2∂ 7
3 +x2∂ 3

2 ∂ 7
3 −x3

1x6
2∂1+x6

2∂1∂ 3
2 +x4

1x4
2∂1∂3−x4

1x3
2x3∂1∂3−x1x4

2∂1∂ 3
2 ∂3+

x1x3
2x3∂1∂ 3

2 ∂3 − x3
1x2∂ 5

2 ∂3 + x2∂ 8
2 ∂3 + x6

1x3∂2∂ 2
3 + x4

1x2x3∂ 2
2 ∂ 2

3 − x3
1x3∂ 4

2 ∂ 2
3 − x1x2x3∂ 5

2 ∂ 2
3 +

x4
1x2

2x3∂ 3
3 −x4

1∂ 3
2 ∂ 3

3 −x1x2
2x3∂ 3

2 ∂ 3
3 +x3

2x3∂ 3
2 ∂ 3

3 +x1∂ 6
2 ∂ 3

3 −x4
3∂ 6

3 −x7
1x3∂1+x3

1x3
2∂ 3

2 +x4
1x3∂1∂ 3

2 −

x3
2∂ 6

2 − x3
1x4

2∂1∂3 + x4
1x2

2∂ 2
2 ∂3 − x1x2

2∂ 5
2 ∂3 − x5

1x2
3∂ 2

3 + x2
1x2

3∂ 3
2 ∂ 2

3 − x3
1x2∂1∂2∂ 3

3 + x2∂1∂ 4
2 ∂ 3

3 +

x3
1x2x3∂ 4

3 − x2x3∂ 3
2 ∂ 4

3 − x2
1x2x4

3∂1 + x2
2x3∂ 5

1 − x3
1∂ 4

1 ∂2 − x1x2x2
3∂1∂ 3

2 − x6
1x3∂3 − x4

1x2x3∂2∂3 −

x3
1x2x2

3∂2∂3 +x3
1x3∂ 3

2 ∂3 +x3
1∂ 4

2 ∂3 +x1x2x3∂ 4
2 ∂3 +x2x2

3∂ 4
2 ∂3 +x5

1∂1∂ 2
3 +x4

2∂ 2
1 ∂ 2

3 −x2
1x3

2∂2∂ 2
3 −
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x2
1x2

2x3∂2∂ 2
3 − x2

1x2∂ 3
2 ∂ 2

3 − x2
1∂1∂ 3

2 ∂ 2
3 − x2

2x3∂ 2
1 ∂ 3

3 + x3
1∂1∂2∂ 3

3 + x2
2x3∂1∂2∂ 3

3 − x2∂ 7
3 − x6

2∂1 +

x1x4
2∂1∂3 − x1x3

2x3∂1∂3 − x2∂ 5
2 ∂3 + x3

1x3∂2∂ 2
3 + x1x2x3∂ 2

2 ∂ 2
3 + x3

1x3∂ 3
3 + x1x2

2x3∂ 3
3 − x1∂ 3

2 ∂ 3
3 −

x3∂ 3
2 ∂ 3

3 −x4
1x3∂1+x3

2∂ 3
2 +x2∂ 4

1 ∂3+x1x2
2∂ 2

2 ∂3−x2
1x2

3∂ 2
3 −x2∂1∂2∂ 3

3 +x2x3∂ 4
3 −x2∂1∂ 4

3 +x2
2x3∂ 2

1 −

x3
1∂1∂2 − x3

1x3∂3 − x1x2x3∂2∂3 − x2x2
3∂2∂3 + x2

1∂1∂ 2
3 + x3∂ 3

3 + x2∂1∂3

(2) Example 6.3.2
The polynomials p1, and p2 of the public key Q are:

p1 = 6x14
1 x25

2 ∂ 28
1 ∂2+x14

1 x24
2 ∂ 28

1 −3x17
1 x16

2 ∂ 28
1 ∂ 2

2 −6x16
1 x19

2 ∂ 26
1 −5x16

1 x16
2 ∂ 27

1 ∂ 2
2 +x14

1 x16
2 ∂ 28

1 ∂ 2
2 −

5x15
1 x16

2 ∂ 26
1 ∂ 2

2 +2x13
1 x19

2 ∂ 26
1 −2x14

1 x10
2 ∂ 28

1 ∂ 5
2 −3x14

1 x10
2 ∂ 29

1 ∂ 2
2 −4x13

1 x13
2 ∂ 26

1 ∂ 3
2 +4x14

1 x9
2∂ 28

1 ∂ 4
2 +

x14
1 x10

2 ∂ 28
1 ∂ 2

2 −6x13
1 x13

2 ∂ 27
1 +5x14

1 x9
2∂ 29

1 ∂2−3x13
1 x10

2 ∂ 28
1 ∂ 2

2 −6x14
1 x8

2∂ 28
1 ∂ 3

2 +2x13
1 x13

2 ∂ 26
1 −6x14

1 x9
2∂ 28

1 ∂2+

3x14
1 x8

2∂ 29
1 +5x13

1 x9
2∂ 28

1 ∂2+4x14
1 x7

2∂ 28
1 ∂ 2

2 −x14
1 x8

2∂ 28
1 −6x17

1 ∂ 28
1 ∂ 5

2 +3x13
1 x8

2∂ 28
1 +x14

1 x6
2∂ 28

1 ∂2+

4x15
1 x2

2∂ 30
1 ∂ 2

2 +4x17
1 ∂ 29

1 ∂ 2
2 +x16

1 x3
2∂ 26

1 ∂ 3
2 +3x16

1 ∂ 27
1 ∂ 5

2 +4x14
1 x5

2∂ 28
1 +3x15

1 x2∂ 30
1 ∂2+3x17

1 ∂ 28
1 ∂ 2

2 +

4x14
1 x2

2∂ 29
1 ∂ 2

2 +2x14
1 ∂ 28

1 ∂ 5
2 −5x16

1 x3
2∂ 27

1 −4x16
1 x2

2∂ 26
1 ∂ 2

2 +x16
1 ∂ 28

1 ∂ 2
2 +3x15

1 ∂ 26
1 ∂ 5

2 +6x16
1 x3

2∂ 26
1 −

5x15
1 ∂ 30

1 +3x14
1 x2∂ 29

1 ∂2+5x16
1 ∂ 27

1 ∂ 2
2 +3x14

1 ∂ 29
1 ∂ 2

2 +4x13
1 x3

2∂ 26
1 ∂ 3

2 −2x15
1 x3

2∂ 26
1 +5x16

1 x2∂ 26
1 ∂2+

5x15
1 ∂ 27

1 ∂ 2
2 −x14

1 ∂ 28
1 ∂ 2

2 +6x13
1 x3

2∂ 27
1 −5x14

1 ∂ 29
1 +5x15

1 ∂ 26
1 ∂ 2

2 −3x13
1 x2

2∂ 26
1 ∂ 2

2 +3x13
1 ∂ 28

1 ∂ 2
2 +6x16

1 ∂ 26
1 −

2x13
1 x3

2∂ 26
1 −4x14

1 ∂ 26
1 ∂ 2

2 −x39
2 ∂ 2

1 +3x39
2 ∂1∂2 −6x13

1 x2∂ 26
1 ∂2 +3x40

2 +3x39
2 ∂2 +5x39

2 +4x38
2 ∂1 −

2x13
1 ∂ 26

1 +4x38
2 −3x3

1x29
2 ∂ 2

1 −4x3
1x29

2 ∂1∂2−4x3
1x30

2 −4x3
1x29

2 ∂2+2x3
1x29

2 −5x2
1x29

2 ∂1+x2
1x29

2 ∂2+

x29
2 ∂ 2

1 −3x29
2 ∂1∂2−2x1x26

2 ∂ 2
1 ∂ 2

2 −2x1x13
2 ∂ 2

1 ∂ 15
2 −5x1x29

2 −3x30
2 −3x29

2 ∂2+4x29
2 −x1x25

2 ∂ 2
1 ∂2−

4x16
2 ∂ 13

2 −5x26
2 ∂ 2

1 +2x26
2 ∂1∂2−2x23

2 ∂ 2
1 ∂ 3

2 +6x23
2 ∂1∂ 4

2 +2x27
2 +2x1x24

2 ∂ 2
1 +2x26

2 ∂2+6x24
2 ∂ 3

2 +

6x23
2 ∂ 4

2 −x26
2 −6x25

2 ∂1−3x23
2 ∂ 3

1 −4x23
2 ∂ 2

1 ∂2+5x22
2 ∂ 2

1 ∂ 2
2 −3x23

2 ∂ 3
2 +6x22

2 ∂1∂ 3
2 −6x25

2 −4x24
2 ∂1+

x23
2 ∂ 2

1 +6x23
2 ∂1∂2+3x23

2 ∂ 2
2 +6x22

2 ∂ 3
2 −3x4

1x15
2 ∂ 2

1 ∂ 4
2 −3x24

2 +2x23
2 ∂1−x22

2 ∂ 2
1 −3x23

2 ∂2+6x21
2 ∂ 2

1 ∂2+

x22
2 ∂ 2

2 +3x21
2 ∂1∂ 2

2 −6x4
1x16

2 ∂ 2
1 ∂ 2

2 −5x23
2 −5x22

2 ∂1+4x22
2 ∂2−6x3

1x18
2 ∂ 2

2 +3x21
2 ∂ 2

2 +x4
1x14

2 ∂ 2
1 ∂ 3

2 +

4x3
1x15

2 ∂1∂ 4
2 + x3

1x19
2 − 4x22

2 + 3x20
2 ∂ 2

1 − 4x21
2 ∂2 + 3x20

2 ∂1∂2 + 3x3
1x16

2 ∂1∂ 2
2 − x21

2 − 2x3
1x16

2 ∂ 2
1 +

3x20
2 ∂2+6x3

1x16
2 ∂1∂2−6x4

1x13
2 ∂ 2

1 ∂ 2
2 +2x1x16

2 ∂ 2
1 ∂ 2

2 +3x3
1x14

2 ∂1∂ 3
2 −6x3

1x13
2 ∂ 2

1 ∂ 3
2 +5x3

1x13
2 ∂1∂ 4

2 +

x1x13
2 ∂ 3

1 ∂ 4
2 +6x3

1x17
2 −2x20

2 +2x19
2 ∂1+6x3

1x16
2 ∂2+3x2

1x16
2 ∂ 2

2 −3x1x13
2 ∂ 4

1 ∂ 2
2 +5x3

1x14
2 ∂ 3

2 +5x3
1x13

2 ∂ 4
2 +

2x1x13
2 ∂ 2

1 ∂ 4
2 − 3x3

1x16
2 + 6x19

2 + x2
1x16

2 ∂1 + 4x3
1x13

2 ∂ 3
1 + 5x2

1x16
2 ∂2 + x3

1x13
2 ∂ 2

1 ∂2 − 5x3
1x13

2 ∂1∂ 2
2 +

2x16
2 ∂1∂ 2

2 +4x3
1x13

2 ∂ 3
2 +3x2

1x13
2 ∂1∂ 3

2 +2x2
1x13

2 ∂ 4
2 +x3

1x14
2 ∂1+3x3

1x13
2 ∂ 2

1 −x16
2 ∂ 2

1 +5x3
1x13

2 ∂1∂2−

2x16
2 ∂1∂2 +2x3

1x13
2 ∂ 2

2 +4x16
2 ∂ 2

2 +2x13
2 ∂ 2

1 ∂ 3
2 −6x13

2 ∂1∂ 4
2 −4x1x10

2 ∂ 2
1 ∂ 5

2 +3x1∂ 2
1 ∂ 15

2 +4x3
1x14

2 +

x1x16
2 −2x17

2 +6x3
1x13

2 ∂1−3x2
1x13

2 ∂ 2
1 +4x3

1x13
2 ∂2−2x16

2 ∂2+6x2
1x13

2 ∂1∂2+3x1x13
2 ∂ 3

2 −6x14
2 ∂ 3

2 −

6x13
2 ∂ 4

2 −2x3
1x13

2 +3x2
1x14

2 + x16
2 +5x2

1x13
2 ∂1 +3x13

2 ∂ 3
1 +2x2

1x13
2 ∂2 +4x13

2 ∂ 2
1 ∂2 −6x1x10

2 ∂ 3
1 ∂ 2

2 −

5x13
2 ∂ 3

2 −5x1x9
2∂ 2

1 ∂ 4
2 +6x3

2∂ 13
2 +5x2

1x13
2 −6x1x13

2 ∂1+4x14
2 ∂1−x13

2 ∂ 2
1 +6x1x13

2 ∂2−6x13
2 ∂1∂2−

5x13
2 ∂ 2

2 +2x1x10
2 ∂ 2

1 ∂ 2
2 +3x10

2 ∂ 2
1 ∂ 3

2 +4x10
2 ∂1∂ 4

2 +5x1x13
2 +3x14

2 −x13
2 ∂1+3x13

2 ∂2−3x1x9
2∂ 3

1 ∂2−

6x10
2 ∂ 2

1 ∂ 2
2 +4x11

2 ∂ 3
2 +x1x8

2∂ 2
1 ∂ 3

2 +4x10
2 ∂ 4

2 −6x13
2 −2x10

2 ∂ 3
1 +x1x9

2∂ 2
1 ∂2+6x10

2 ∂ 2
1 ∂2−x9

2∂ 2
1 ∂ 2

2 −
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Appendix C. Examples Data

2x10
2 ∂ 3

2 +4x9
2∂1∂ 3

2 +6x11
2 ∂1+5x10

2 ∂ 2
1 +6x1x8

2∂ 3
1 +4x10

2 ∂1∂2−3x9
2∂ 2

1 ∂2+2x10
2 ∂ 2

2 −5x1x7
2∂ 2

1 ∂ 2
2 +

4x9
2∂ 3

2 −2x4
1x2

2∂ 2
1 ∂ 4

2 −2x11
2 −3x10

2 ∂1−2x1x8
2∂ 2

1 −5x9
2∂ 2

1 −2x10
2 ∂2+4x8

2∂ 2
1 ∂2+5x9

2∂ 2
2 +2x8

2∂1∂ 2
2 +

x4
1∂ 2

1 ∂ 5
2 +x10

2 +x9
2∂1+6x8

2∂ 2
1 −6x9

2∂2+2x1x6
2∂ 2

1 ∂2−4x3
1x5

2∂ 2
2 +2x8

2∂ 2
2 −5x2

1x2
2∂ 4

1 ∂ 2
2 +5x4

1x2∂ 2
1 ∂ 3

2 −

6x3
1x2

2∂1∂ 4
2 +6x9

2+2x7
2∂ 2

1 +6x8
2∂2+2x7

2∂1∂2−5x4
1∂ 3

1 ∂ 2
2 +2x3

1x3
2∂ 3

2 +6x3
1∂1∂ 5

2 −5x8
2−5x1x5

2∂ 2
1 +

2x7
2∂2 + 6x2

1x2∂ 4
1 ∂2 + 2x4

1∂ 2
1 ∂ 2

2 − 5x1x2
2∂ 3

1 ∂ 2
2 + 2x3

1x2∂1∂ 3
2 − 4x3

1∂ 2
1 ∂ 3

2 − x3
1∂1∂ 4

2 + 5x1∂ 3
1 ∂ 4

2 +

4x1∂ 2
1 ∂ 5

2 +3x7
2+3x3

1x3
2∂1−3x6

2∂1+5x3
1x2

2∂ 2
2 +2x3

1∂ 2
1 ∂ 2

2 −2x1∂ 4
1 ∂ 2

2 −x3
1x2∂ 3

2 −x3
1∂ 4

2 −3x1∂ 2
1 ∂ 4

2 +

6x2
1∂ 5

2 −x3
1x3

2−3x6
2−6x3

1∂ 3
1 +3x2

1∂ 4
1 +5x3

1∂ 2
1 ∂2+6x1x2∂ 3

1 ∂2−2x3
1∂1∂ 2

2 −3x3
2∂1∂ 2

2 +6x1∂ 3
1 ∂ 2

2 −

6x3
1∂ 3

2 −5x3
2∂ 3

2 +2x2
1∂1∂ 3

2 −3x2
1∂ 4

2 −4x2
1x3

2 +5x3
1x2∂1 +2x3

1∂ 2
1 −4x3

2∂ 2
1 −3x3

1x2∂2 −x3
1∂1∂2 −

3x3
1∂ 2

2 − 6x3
2∂ 2

2 − 3x2
1∂1∂ 2

2 − 4x1∂ 2
1 ∂ 2

2 − 3∂ 2
1 ∂ 3

2 − 4∂1∂ 4
2 − 6x3

1x2 + 4x3
1∂1 − x3

2∂1 − 2x2
1∂ 2

1 +

3x1∂ 3
1 −6x3

1∂2 +4x2
1∂1∂2 −3x2

1∂ 2
2 −6x2

2∂ 2
2 +6∂ 2

1 ∂ 2
2 +2x1∂ 3

2 −4x2∂ 3
2 −4∂ 4

2 +2x3
1 +2x2

1x2 +

5x3
2−x2

1∂1+2∂ 3
1 −3x2

1∂2−6∂ 2
1 ∂2+5x1∂ 2

2 +2∂ 3
2 −x2

1−4x1∂1−6x2∂1−5∂ 2
1 +4x1∂2+x2∂2−

4∂1∂2 +∂ 2
2 − x1 +2x2 +3∂1 +2∂2 −2, and

p2 =−x14
1 x32

2 ∂ 28
1 ∂ 3

2 −2x13
1 x35

2 ∂ 26
1 ∂2−x14

1 x31
2 ∂ 28

1 ∂ 2
2 −3x14

1 x30
2 ∂ 28

1 ∂2+5x13
1 x28

2 ∂ 28
1 ∂ 4

2 −2x13
1 x31

2 ∂ 26
1 ∂ 2

2 −

4x14
1 x27

2 ∂ 28
1 ∂ 3

2 +3x16
1 x26

2 ∂ 27
1 ∂ 2

2 −2x14
1 x28

2 ∂ 27
1 ∂ 2

2 −6x13
1 x27

2 ∂ 28
1 ∂ 3

2 +6x13
1 x30

2 ∂ 26
1 ∂2+2x15

1 x26
2 ∂ 27

1 ∂ 2
2 +

5x13
1 x28

2 ∂ 27
1 ∂ 2

2 +6x14
1 x26

2 ∂ 28
1 ∂ 2

2 +5x14
1 x27

2 ∂ 27
1 ∂2+6x15

1 x26
2 ∂ 26

1 ∂ 2
2 +x14

1 x26
2 ∂ 27

1 ∂ 2
2 −3x13

1 x26
2 ∂ 28

1 ∂ 2
2 −

x13
1 x27

2 ∂ 27
1 ∂2−2x14

1 x25
2 ∂ 28

1 ∂2+4x14
1 x26

2 ∂ 26
1 ∂ 2

2 +5x13
1 x26

2 ∂ 27
1 ∂ 2

2 +6x15
1 x26

2 ∂ 26
1 −4x13

1 x28
2 ∂ 26

1 −4x14
1 x26

2 ∂ 27
1 −

x14
1 x23

2 ∂ 28
1 ∂ 2

2 +6x13
1 x26

2 ∂ 27
1 +4x14

1 x22
2 ∂ 28

1 ∂2−x14
1 x19

2 ∂ 28
1 ∂ 3

2 −6x14
1 x21

2 ∂ 28
1 −2x13

1 x22
2 ∂ 26

1 ∂2+6x14
1 x18

2 ∂ 28
1 ∂ 2

2 −

2x13
1 x21

2 ∂ 26
1 −5x14

1 x17
2 ∂ 28

1 ∂2−2x14
1 x16

2 ∂ 28
1 +4x15

1 x4
2∂ 30

1 ∂ 4
2 −6x14

1 x4
2∂ 30

1 ∂ 4
2 +6x15

1 x3
2∂ 30

1 ∂ 3
2 +4x14

1 x4
2∂ 29

1 ∂ 4
2 −

x17
1 x2

2∂ 29
1 ∂ 2

2 +5x15
1 x4

2∂ 29
1 ∂ 2

2 +4x14
1 x3

2∂ 30
1 ∂ 3

2 −6x13
1 x4

2∂ 29
1 ∂ 4

2 −5x16
1 x2

2∂ 29
1 ∂ 2

2 −6x14
1 x4

2∂ 29
1 ∂ 2

2 −4x15
1 x2

2∂ 30
1 ∂ 2

2 +

6x14
1 x3

2∂ 29
1 ∂ 3

2 −x45
2 ∂ 2

1 ∂2−4x17
1 x2∂ 29

1 ∂2+x15
1 x3

2∂ 29
1 ∂2+3x45

2 ∂1∂ 2
2 +6x16

1 x2
2∂ 28

1 ∂ 2
2 +5x14

1 x4
2∂ 28

1 ∂ 2
2 +

4x15
1 x2

2∂ 29
1 ∂ 2

2 +6x14
1 x2

2∂ 30
1 ∂ 2

2 +4x13
1 x3

2∂ 29
1 ∂ 3

2 +3x46
2 ∂2+6x16

1 x2∂ 29
1 ∂2+5x14

1 x3
2∂ 29

1 ∂2+3x45
2 ∂ 2

2 +

4x15
1 x2

2∂ 28
1 ∂ 2

2 −x13
1 x4

2∂ 28
1 ∂ 2

2 +3x14
1 x2

2∂ 29
1 ∂ 2

2 −2x16
1 x2

2∂ 28
1 −3x14

1 x4
2∂ 28

1 −2x17
1 ∂ 29

1 −5x15
1 x2

2∂ 29
1 +

5x45
2 ∂2−5x44

2 ∂1∂2−2x16
1 x2∂ 28

1 ∂2+x14
1 x3

2∂ 28
1 ∂2+3x15

1 x2∂ 29
1 ∂2+3x15

1 x2
2∂ 27

1 ∂ 2
2 +4x14

1 x2
2∂ 28

1 ∂ 2
2 +

6x13
1 x2

2∂ 29
1 ∂ 2

2 + 3x16
1 ∂ 29

1 + x14
1 x2

2∂ 29
1 − 5x44

2 ∂2 + 3x15
1 x2∂ 28

1 ∂2 + 5x13
1 x3

2∂ 28
1 ∂2 + 2x14

1 x2∂ 29
1 ∂2 −

x41
2 ∂ 2

1 ∂ 2
2 +2x14

1 x2
2∂ 27

1 ∂ 2
2 −6x13

1 x2
2∂ 28

1 ∂ 2
2 +3x41

2 ∂1∂ 3
2 +5x15

1 x2
2∂ 27

1 −x16
1 ∂ 28

1 +3x14
1 x2

2∂ 28
1 −5x15

1 ∂ 29
1 −

x15
1 x2∂ 27

1 ∂2+3x14
1 x2∂ 28

1 ∂2+3x42
2 ∂ 2

2 −2x14
1 x2

2∂ 26
1 ∂ 2

2 +3x41
2 ∂ 3

2 −5x15
1 ∂ 28

1 +x13
1 x2

2∂ 28
1 +x14

1 ∂ 29
1 +

6x40
2 ∂ 2

1 ∂2 − 5x14
1 x2∂ 27

1 ∂2 + 2x13
1 x2∂ 28

1 ∂2 + 5x41
2 ∂ 2

2 + 3x40
2 ∂1∂ 2

2 + 3x13
1 x2

2∂ 26
1 ∂ 2

2 − 4x14
1 x2

2∂ 26
1 +

6x15
1 ∂ 27

1 −5x14
1 ∂ 28

1 −2x41
2 ∂2+5x14

1 x2∂ 26
1 ∂2+3x40

2 ∂ 2
2 +4x14

1 ∂ 27
1 +x13

1 ∂ 28
1 −4x40

2 ∂2−4x39
2 ∂1∂2−

x13
1 x2∂ 26

1 ∂2−4x14
1 ∂ 26

1 −4x39
2 ∂2+6x13

1 ∂ 26
1 −x36

2 ∂ 2
1 +3x36

2 ∂1∂2−2x1x32
2 ∂ 2

1 ∂ 3
2 +3x37

2 +3x36
2 ∂2+

5x36
2 −6x35

2 ∂1−4x35
2 ∂2−2x1x31

2 ∂ 2
1 ∂ 2

2 −6x35
2 −6x32

2 ∂ 2
1 ∂2+5x32

2 ∂1∂ 2
2 −2x1x28

2 ∂ 2
1 ∂ 4

2 −2x1x15
2 ∂ 2

1 ∂ 17
2 +

5x33
2 ∂2−6x1x30

2 ∂ 2
1 ∂2+5x32

2 ∂ 2
2 +3x15

2 ∂ 2
1 ∂ 17

2 +2x31
2 ∂ 2

1 +4x32
2 ∂2+2x31

2 ∂1∂2−4x31
2 ∂ 2

2 −3x1x27
2 ∂ 2

1 ∂ 3
2 +

5x1x14
2 ∂ 2

1 ∂ 16
2 −3x32

2 +2x31
2 ∂2−5x28

2 ∂ 2
1 ∂ 2

2 +2x28
2 ∂1∂ 3

2 −6x3
1x13

2 ∂1∂ 15
2 +4x1x15

2 ∂1∂ 15
2 −x14

2 ∂ 2
1 ∂ 16

2 +
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C.3. Chapter 6

3x31
2 +5x30

2 ∂1−x30
2 ∂2+2x29

2 ∂ 2
2 −5x1x26

2 ∂ 2
1 ∂ 2

2 +2x28
2 ∂ 3

2 −4x2
1x13

2 ∂1∂ 15
2 +3x15

2 ∂1∂ 15
2 −4x1x13

2 ∂ 2
1 ∂ 15

2 +

5x30
2 +4x27

2 ∂ 2
1 ∂2−x28

2 ∂ 2
2 +2x27

2 ∂1∂ 2
2 +3x1x14

2 ∂1∂ 14
2 +x2

1x13
2 ∂ 15

2 −2x1x13
2 ∂1∂ 15

2 +6x13
2 ∂ 2

1 ∂ 15
2 +

3x28
2 ∂2−4x1x25

2 ∂ 2
1 ∂2+2x27

2 ∂ 2
2 −3x4

1x17
2 ∂ 2

1 ∂ 6
2 +2x14

2 ∂1∂ 14
2 +5x1x13

2 ∂ 15
2 +3x13

2 ∂1∂ 15
2 +6x27

2 ∂2+

6x26
2 ∂1∂2−2x1x23

2 ∂ 2
1 ∂ 2

2 −2x3
1x17

2 ∂ 2
1 ∂ 6

2 +x2
1x13

2 ∂ 13
2 −5x15

2 ∂ 13
2 −5x1x13

2 ∂1∂ 13
2 +6x26

2 ∂2+3x4
1x16

2 ∂ 2
1 ∂ 5

2 +

4x3
1x17

2 ∂1∂ 6
2 +x13

2 ∂1∂ 13
2 −4x26

2 −5x1x22
2 ∂ 2

1 ∂2+4x6
1x15

2 ∂1∂ 4
2 +6x4

1x17
2 ∂1∂ 4

2 +2x3
1x16

2 ∂ 2
1 ∂ 5

2 −6x2
1x17

2 ∂1∂ 6
2 −

4x13
2 ∂ 13

2 −5x23
2 ∂ 2

1 +2x23
2 ∂1∂2−2x1x19

2 ∂ 2
1 ∂ 3

2 −6x5
1x15

2 ∂1∂ 4
2 −2x3

1x17
2 ∂1∂ 4

2 +3x4
1x15

2 ∂ 2
1 ∂ 4

2 −4x3
1x16

2 ∂1∂ 5
2 +

x1x15
2 ∂ 3

1 ∂ 6
2 + 2x24

2 + x1x21
2 ∂ 2

1 + 2x23
2 ∂2 + 3x6

1x14
2 ∂1∂ 3

2 − 6x4
1x16

2 ∂1∂ 3
2 − 6x5

1x15
2 ∂ 4

2 + 5x3
1x17

2 ∂ 4
2 −

3x4
1x15

2 ∂1∂ 4
2 +2x3

1x15
2 ∂ 2

1 ∂ 4
2 −3x1x15

2 ∂ 4
1 ∂ 4

2 +6x2
1x16

2 ∂1∂ 5
2 +2x1x15

2 ∂ 2
1 ∂ 6

2 +5x15
2 ∂ 3

1 ∂ 6
2 −x23

2 −4x22
2 ∂1−

4x22
2 ∂2−x1x18

2 ∂ 2
1 ∂ 2

2 +2x5
1x14

2 ∂1∂ 3
2 −2x3

1x16
2 ∂1∂ 3

2 −5x4
1x14

2 ∂ 2
1 ∂ 3

2 −4x4
1x15

2 ∂ 4
2 −x2

1x17
2 ∂ 4

2 −6x3
1x15

2 ∂1∂ 4
2 −

2x15
2 ∂ 4

1 ∂ 4
2 −5x1x14

2 ∂ 3
1 ∂ 5

2 −3x15
2 ∂ 2

1 ∂ 6
2 −4x22

2 −5x19
2 ∂ 2

1 ∂2−5x5
1x15

2 ∂ 2
2 −x3

1x17
2 ∂ 2

2 −5x6
1x13

2 ∂1∂ 2
2 −

6x4
1x15

2 ∂1∂ 2
2 +2x19

2 ∂1∂ 2
2 +2x5

1x14
2 ∂ 3

2 −5x3
1x16

2 ∂ 3
2 +x4

1x14
2 ∂1∂ 3

2 +x3
1x14

2 ∂ 2
1 ∂ 3

2 +x1x14
2 ∂ 4

1 ∂ 3
2 +4x3

1x15
2 ∂ 4

2 +

6x2
1x15

2 ∂1∂ 4
2 +3x3

1x13
2 ∂ 2

1 ∂ 4
2 −2x1x15

2 ∂ 2
1 ∂ 4

2 +3x1x14
2 ∂ 2

1 ∂ 5
2 +x14

2 ∂ 3
1 ∂ 5

2 +3x1x2
2∂ 2

1 ∂ 17
2 −4x21

2 +2x20
2 ∂2+

3x1x17
2 ∂ 2

1 ∂2 +2x19
2 ∂ 2

2 + x5
1x13

2 ∂1∂ 2
2 −3x3

1x15
2 ∂1∂ 2

2 + x4
1x13

2 ∂ 2
1 ∂ 2

2 +4x3
1x13

2 ∂ 3
1 ∂ 2

2 +6x1x15
2 ∂ 3

1 ∂ 2
2 −

3x4
1x14

2 ∂ 3
2 +x2

1x16
2 ∂ 3

2 +3x3
1x14

2 ∂1∂ 3
2 +5x14

2 ∂ 4
1 ∂ 3

2 −6x2
1x15

2 ∂ 4
2 +6x3

1x13
2 ∂1∂ 4

2 −4x1x15
2 ∂1∂ 4

2 +2x2
1x13

2 ∂ 2
1 ∂ 4

2 +

5x15
2 ∂ 2

1 ∂ 4
2 − x1x13

2 ∂ 3
1 ∂ 4

2 +2x14
2 ∂ 2

1 ∂ 5
2 +2x2

2∂ 2
1 ∂ 17

2 −3x18
2 ∂ 2

1 −4x3
1x16

2 ∂2 − x19
2 ∂2 −3x4

1x14
2 ∂1∂2 +

5x18
2 ∂1∂2+x5

1x13
2 ∂ 2

2 +2x3
1x15

2 ∂ 2
2 −6x4

1x13
2 ∂1∂ 2

2 +5x3
1x13

2 ∂ 2
1 ∂ 2

2 −6x2
1x13

2 ∂ 3
1 ∂ 2

2 −2x15
2 ∂ 3

1 ∂ 2
2 −6x1x13

2 ∂ 4
1 ∂ 2

2 +

3x3
1x14

2 ∂ 3
2 + 3x2

1x14
2 ∂1∂ 3

2 − 3x1x14
2 ∂ 2

1 ∂ 3
2 + 3x2

1x13
2 ∂1∂ 4

2 − 3x15
2 ∂1∂ 4

2 − x1x13
2 ∂ 2

1 ∂ 4
2 − 5x13

2 ∂ 3
1 ∂ 4

2 −

x1x2∂ 2
1 ∂ 16

2 − 2x19
2 − 4x1x16

2 ∂ 2
1 + 5x18

2 ∂2 − 2x3
1x14

2 ∂1∂2 − 2x1x14
2 ∂ 3

1 ∂2 + 5x4
1x13

2 ∂ 2
2 + x2

1x15
2 ∂ 2

2 −

x3
1x13

2 ∂1∂ 2
2 − 2x2

1x13
2 ∂ 2

1 ∂ 2
2 − 3x1x13

2 ∂ 3
1 ∂ 2

2 − 4x13
2 ∂ 4

1 ∂ 2
2 + 2x2

1x14
2 ∂ 3

2 − 6x1x14
2 ∂1∂ 3

2 + 6x14
2 ∂ 2

1 ∂ 3
2 −

x2
1x13

2 ∂ 4
2 − 3x1x13

2 ∂1∂ 4
2 − 5x13

2 ∂ 2
1 ∂ 4

2 − 4x3
1∂1∂ 15

2 − 6x1x2
2∂1∂ 15

2 − 5x2∂ 2
1 ∂ 16

2 − 2x3
1x15

2 + 2x18
2 −

2x4
1x13

2 ∂1−x17
2 ∂1+4x3

1x14
2 ∂2+3x14

2 ∂ 3
1 ∂2−5x3

1x13
2 ∂ 2

2 −5x2
1x13

2 ∂1∂ 2
2 −4x15

2 ∂1∂ 2
2 +5x1x13

2 ∂ 2
1 ∂ 2

2 −

2x13
2 ∂ 3

1 ∂ 2
2 −x14

2 ∂1∂ 3
2 +x1x13

2 ∂ 4
2 −3x13

2 ∂1∂ 4
2 +6x2

1∂1∂ 15
2 +2x2

2∂1∂ 15
2 +6x1∂ 2

1 ∂ 15
2 −x17

2 +3x3
1x13

2 ∂1−

5x2
1x13

2 ∂ 2
1 −x15

2 ∂ 2
1 −x1x13

2 ∂ 3
1 −6x2

1x14
2 ∂2+5x15

2 ∂ 2
2 +2x1x13

2 ∂1∂ 2
2 +x13

2 ∂ 2
1 ∂ 2

2 +4x13
2 ∂ 4

2 +2x1x2∂1∂ 14
2 +

5x2
1∂ 15

2 +3x1∂1∂ 15
2 +4∂ 2

1 ∂ 15
2 −6x3

1x13
2 −5x13

2 ∂ 3
1 −3x14

2 ∂1∂2−x1x13
2 ∂ 2

2 −6x13
2 ∂1∂ 2

2 −2x4
1x4

2∂ 2
1 ∂ 6

2 −

3x2∂1∂ 14
2 − x1∂ 15

2 +2∂1∂ 15
2 −4x2

1x13
2 +6x1x13

2 ∂1 −6x13
2 ∂ 2

1 −6x14
2 ∂2 +4x13

2 ∂ 2
2 +3x3

1x4
2∂ 2

1 ∂ 6
2 +

5x2
1∂ 13

2 +x2
2∂ 13

2 +x1∂1∂ 13
2 +5x13

2 ∂1−5x2
1x4

2∂ 4
1 ∂ 4

2 +2x4
1x3

2∂ 2
1 ∂ 5

2 −6x3
1x4

2∂1∂ 6
2 +5∂1∂ 13

2 −6x6
1x2

2∂1∂ 4
2 +

4x4
1x4

2∂1∂ 4
2 +x1x4

2∂ 4
1 ∂ 4

2 −3x3
1x3

2∂ 2
1 ∂ 5

2 −4x2
1x4

2∂1∂ 6
2 +6∂ 13

2 −x2
1x3

2∂ 4
1 ∂ 3

2 −4x5
1x2

2∂1∂ 4
2 +3x3

1x4
2∂1∂ 4

2 +

2x4
1x2

2∂ 2
1 ∂ 4

2 −5x1x4
2∂ 3

1 ∂ 4
2 +6x3

1x3
2∂1∂ 5

2 +5x1x2
2∂ 3

1 ∂ 6
2 −2x4

1x2
2∂ 3

1 ∂ 2
2 −3x2

1x4
2∂ 3

1 ∂ 2
2 +2x6

1x2∂1∂ 3
2 −

4x4
1x3

2∂1∂ 3
2 −5x1x3

2∂ 4
1 ∂ 3

2 −4x5
1x2

2∂ 4
2 −x3

1x4
2∂ 4

2 −2x4
1x2

2∂1∂ 4
2 −3x3

1x2
2∂ 2

1 ∂ 4
2 +x4

2∂ 3
1 ∂ 4

2 −2x1x2
2∂ 4

1 ∂ 4
2 +

4x2
1x3

2∂1∂ 5
2 −3x1x2

2∂ 2
1 ∂ 6

2 −x2
2∂ 3

1 ∂ 6
2 +3x3

1x2
2∂ 3

1 ∂ 2
2 +x1x4

2∂ 3
1 ∂ 2

2 +5x2
1x2

2∂ 4
1 ∂ 2

2 −3x5
1x2∂1∂ 3

2 +3x3
1x3

2∂1∂ 3
2 +

x4
1x2∂ 2

1 ∂ 3
2 −x1x3

2∂ 3
1 ∂ 3

2 +6x4
1x2

2∂ 4
2 −5x2

1x4
2∂ 4

2 −4x3
1x2

2∂1∂ 4
2 +3x2

2∂ 4
1 ∂ 4

2 +x1x2∂ 3
1 ∂ 5

2 −2x2
2∂ 2

1 ∂ 6
2 +

5x4
1x2∂ 3

1 ∂2+2x2
1x3

2∂ 3
1 ∂2+x5

1x2
2∂ 2

2 −5x3
1x4

2∂ 2
2 +x6

1∂1∂ 2
2 −4x4

1x2
2∂1∂ 2

2 −x3
1x2

2∂ 2
1 ∂ 2

2 −3x1x4
2∂ 2

1 ∂ 2
2 −
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Appendix C. Examples Data

5x2
1x2

2∂ 3
1 ∂ 2

2 −x1x2
2∂ 4

1 ∂ 2
2 −3x5

1x2∂ 3
2 +x3

1x3
2∂ 3

2 +5x4
1x2∂1∂ 3

2 +5x3
1x2∂ 2

1 ∂ 3
2 −5x3

2∂ 3
1 ∂ 3

2 +5x1x2∂ 4
1 ∂ 3

2 −

6x3
1x2

2∂ 4
2 +4x2

1x2
2∂1∂ 4

2 +2x3
1∂ 2

1 ∂ 4
2 +x1x2

2∂ 2
1 ∂ 4

2 +2x1x2∂ 2
1 ∂ 5

2 +5x2∂ 3
1 ∂ 5

2 −x3
1x2∂ 3

1 ∂2−3x1x3
2∂ 3

1 ∂2+

5x5
1∂1∂ 2

2 −2x3
1x2

2∂1∂ 2
2 +5x4

1∂ 2
1 ∂ 2

2 −5x2
1x2

2∂ 2
1 ∂ 2

2 −2x4
2∂ 2

1 ∂ 2
2 −6x3

1∂ 3
1 ∂ 2

2 −3x1x2
2∂ 3

1 ∂ 2
2 −2x4

1x2∂ 3
2 +

5x2
1x3

2∂ 3
2 + 2x3

1x2∂1∂ 3
2 − x2∂ 4

1 ∂ 3
2 − 4x2

1x2
2∂ 4

2 + 4x3
1∂1∂ 4

2 + 6x1x2
2∂1∂ 4

2 − 3x2
1∂ 2

1 ∂ 4
2 + 2x2

2∂ 2
1 ∂ 4

2 −

5x1∂ 3
1 ∂ 4

2 −3x2∂ 2
1 ∂ 5

2 −4x3
1x2

2∂ 2
1 −6x1x4

2∂ 2
1 −4x4

1∂ 3
1 +3x2

1x2
2∂ 3

1 +6x3
1x3

2∂2−2x4
1x2∂1∂2−4x3

1x2∂ 2
1 ∂2+

2x1x3
2∂ 2

1 ∂2+6x2
1x2∂ 3

1 ∂2+5x5
1∂ 2

2 −3x3
1x2

2∂ 2
2 −4x4

1∂1∂ 2
2 +6x2

1x2
2∂1∂ 2

2 −x3
1∂ 2

1 ∂ 2
2 −5x1x2

2∂ 2
1 ∂ 2

2 −

4x2
1∂ 3

1 ∂ 2
2 +2x2

2∂ 3
1 ∂ 2

2 −4x1∂ 4
1 ∂ 2

2 +2x3
1x2∂ 3

2 +2x2
1x2∂1∂ 3

2 +3x1x2∂ 2
1 ∂ 3

2 +2x2
1∂1∂ 4

2 −2x2
2∂1∂ 4

2 −

5x1∂ 2
1 ∂ 4

2 +∂ 3
1 ∂ 4

2 +6x3
1∂ 3

1 +2x1x2
2∂ 3

1 +3x3
1x2∂1∂2+6x2

1x2∂ 2
1 ∂2−3x3

2∂ 2
1 ∂2−6x1x2∂ 3

1 ∂2−x4
1∂ 2

2 +

5x2
1x2

2∂ 2
2 +2x3

1∂1∂ 2
2 −5x1x2

2∂1∂ 2
2 +3x2

1∂ 2
1 ∂ 2

2 +x2
2∂ 2

1 ∂ 2
2 −2x1∂ 3

1 ∂ 2
2 +6∂ 4

1 ∂ 2
2 −3x2

1x2∂ 3
2 −4x1x2∂1∂ 3

2 +

3x2∂ 2
1 ∂ 3

2 −5x2
1∂ 4

2 −2x1∂1∂ 4
2 +∂ 2

1 ∂ 4
2 +3x3

1x2
2+3x4

1∂1−3x2
1x2

2∂1−2x3
1∂ 2

1 +6x1x2
2∂ 2

1 +3x2
1∂ 3

1 −

6x3
1x2∂2−2x2

1x2∂1∂2+6x1x2∂ 2
1 ∂2+2x2∂ 3

1 ∂2+x3
1∂ 2

2 −4x1x2
2∂ 2

2 −3x2
1∂1∂ 2

2 −4x2
2∂1∂ 2

2 −5x1∂ 2
1 ∂ 2

2 +

3∂ 3
1 ∂ 2

2 −5x2∂1∂ 3
2 +5x1∂ 4

2 −2∂1∂ 4
2 +2x3

1∂1+4x2
1∂ 2

1 −3x2
2∂ 2

1 −3x1∂ 3
1 −4x2

1x2∂2+6x1x2∂1∂2+

4x2∂ 2
1 ∂2 + x2

1∂ 2
2 + 5x2

2∂ 2
2 − 5x1∂1∂ 2

2 − 2∂ 2
1 ∂ 2

2 − 6∂ 4
2 − 4x3

1 + 5x1x2
2 − x2

1∂1 + 3x1∂ 2
1 + ∂ 3

1 −

3x1x2∂2 −∂1∂ 2
2 −6x2

1 −5x2
2 −6x1∂1 −2∂ 2

1 −6x2∂2 −6∂ 2
2 +5x1 −5

(3) Example 6.4.3
The polynomials p1, p2, p3 ∈ A3 = F2[x1,x2,x3,∂1,∂2,∂3] of the public key Q

are:

p1 = x11
1 x15

3 ∂ 5
1 ∂ 3

3 + x12
1 x14

3 ∂ 4
1 ∂ 2

3 + x11
1 x14

3 ∂ 5
1 ∂ 2

3 + x10
1 x15

3 ∂ 4
1 ∂ 3

3 + x11
1 x4

2x9
3∂ 5

1 ∂ 3
3 + x11

1 x13
3 ∂ 5

1 ∂ 3
3 +

x9
1x15

3 ∂ 5
1 ∂ 3

3 +x14
1 x10

3 ∂ 4
1 ∂ 2

3 +x10
1 x14

3 ∂ 4
1 ∂ 2

3 +x11
1 x4

2x8
3∂ 5

1 ∂ 2
3 +x11

1 x12
3 ∂ 5

1 ∂ 2
3 +x9

1x14
3 ∂ 5

1 ∂ 2
3 +x10

1 x4
2x9

3∂ 4
1 ∂ 3

3 +

x10
1 x13

3 ∂ 4
1 ∂ 3

3 +x8
1x15

3 ∂ 4
1 ∂ 3

3 +x19
1 x3

3∂ 5
1 ∂ 3

3 +x15
1 x4

2x3
3∂ 5

1 ∂ 3
3 +x15

1 x2
2x5

3∂ 5
1 ∂ 3

3 +x13
1 x4

2x5
3∂ 5

1 ∂ 3
3 +x15

1 x7
3∂ 5

1 ∂ 3
3 +

x13
1 x2

2x7
3∂ 5

1 ∂ 3
3 +x9

1x4
2x9

3∂ 5
1 ∂ 3

3 +x9
1x13

3 ∂ 5
1 ∂ 3

3 +x12
1 x13

3 ∂ 2
1 ∂ 2

3 +x11
1 x13

3 ∂ 2
1 ∂ 2

3 +x5
1x4

2x15
3 ∂ 2

1 ∂ 2
3 +x5

1x2
2x17

3 ∂ 2
1 ∂ 2

3 +

x10
1 x4

2x8
3∂ 4

1 ∂ 2
3 +x10

1 x12
3 ∂ 4

1 ∂ 2
3 +x8

1x14
3 ∂ 4

1 ∂ 2
3 +x19

1 x2
3∂ 5

1 ∂ 2
3 +x15

1 x4
2x2

3∂ 5
1 ∂ 2

3 +x15
1 x2

2x4
3∂ 5

1 ∂ 2
3 +x13

1 x4
2x4

3∂ 5
1 ∂ 2

3 +

x15
1 x6

3∂ 5
1 ∂ 2

3 +x13
1 x2

2x6
3∂ 5

1 ∂ 2
3 +x9

1x4
2x8

3∂ 5
1 ∂ 2

3 +x9
1x12

3 ∂ 5
1 ∂ 2

3 +x18
1 x3

3∂ 4
1 ∂ 3

3 +x14
1 x4

2x3
3∂ 4

1 ∂ 3
3 +x14

1 x2
2x5

3∂ 4
1 ∂ 3

3 +

x12
1 x4

2x5
3∂ 4

1 ∂ 3
3 +x14

1 x7
3∂ 4

1 ∂ 3
3 +x12

1 x2
2x7

3∂ 4
1 ∂ 3

3 +x8
1x4

2x9
3∂ 4

1 ∂ 3
3 +x8

1x13
3 ∂ 4

1 ∂ 3
3 +x15

1 x4
2x3∂ 5

1 ∂ 3
3 +x15

1 x2
2x3

3∂ 5
1 ∂ 3

3 +

x15
1 x5

3∂ 5
1 ∂ 3

3 +x9
1x4

2x7
3∂ 5

1 ∂ 3
3 +x11

1 x9
3∂ 5

1 ∂ 3
3 +x9

1x2
2x9

3∂ 5
1 ∂ 3

3 +x14
1 x9

3∂ 2
1 ∂ 2

3 +x10
1 x13

3 ∂ 2
1 ∂ 2

3 +x11
1 x12

3 ∂ 2
1 ∂3+

x5
1x4

2x14
3 ∂ 2

1 ∂3+x5
1x2

2x16
3 ∂ 2

1 ∂3+x4
1x4

2x14
3 ∂ 3

1 ∂3+x4
1x2

2x16
3 ∂ 3

1 ∂3+x10
1 x13

3 ∂1∂ 2
3 +x4

1x4
2x15

3 ∂1∂ 2
3 +x4

1x2
2x17

3 ∂1∂ 2
3 +

x3
1x4

2x15
3 ∂ 2

1 ∂ 2
3 +x3

1x2
2x17

3 ∂ 2
1 ∂ 2

3 +x14
1 x6

3∂ 4
1 ∂ 2

3 +x12
1 x2

2x6
3∂ 4

1 ∂ 2
3 +x12

1 x8
3∂ 4

1 ∂ 2
3 +x8

1x4
2x8

3∂ 4
1 ∂ 2

3 +x8
1x12

3 ∂ 4
1 ∂ 2

3 +

x15
1 x4

2∂ 5
1 ∂ 2

3 +x15
1 x2

2x2
3∂ 5

1 ∂ 2
3 +x15

1 x4
3∂ 5

1 ∂ 2
3 +x9

1x4
2x6

3∂ 5
1 ∂ 2

3 +x11
1 x8

3∂ 5
1 ∂ 2

3 +x9
1x2

2x8
3∂ 5

1 ∂ 2
3 +x14

1 x4
2x3∂ 4

1 ∂ 3
3 +

x14
1 x2

2x3
3∂ 4

1 ∂ 3
3 +x14

1 x5
3∂ 4

1 ∂ 3
3 +x8

1x4
2x7

3∂ 4
1 ∂ 3

3 +x10
1 x9

3∂ 4
1 ∂ 3

3 +x8
1x2

2x9
3∂ 4

1 ∂ 3
3 +x13

1 x4
2x3∂ 5

1 ∂ 3
3 +x15

1 x3
3∂ 5

1 ∂ 3
3 +

x13
1 x2

2x3
3∂ 5

1 ∂ 3
3 +x13

1 x5
3∂ 5

1 ∂ 3
3 +x11

1 x2
2x5

3∂ 5
1 ∂ 3

3 +x9
1x9

3∂ 5
1 ∂ 3

3 +x10
1 x4

2x7
3∂ 2

1 ∂ 2
3 +x10

1 x11
3 ∂ 2

1 ∂ 2
3 +x8

1x13
3 ∂ 2

1 ∂ 2
3 +

x10
1 x12

3 ∂1∂3+x4
1x4

2x14
3 ∂1∂3+x4

1x2
2x16

3 ∂1∂3+x3
1x4

2x14
3 ∂ 2

1 ∂3+x3
1x2

2x16
3 ∂ 2

1 ∂3+x12
1 x8

3∂ 3
1 ∂3+x8

1x12
3 ∂ 3

1 ∂3+

x2
1x4

2x14
3 ∂ 3

1 ∂3+x2
1x2

2x16
3 ∂ 3

1 ∂3+x2
1x4

2x15
3 ∂1∂ 2

3 +x2
1x2

2x17
3 ∂1∂ 2

3 +x3
1x4

2x13
3 ∂ 2

1 ∂ 2
3 +x5

1x15
3 ∂ 2

1 ∂ 2
3 +x3

1x2
2x15

3 ∂ 2
1 ∂ 2

3 +

183
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x14
1 x4

3∂ 4
1 ∂ 2

3 +x8
1x4

2x6
3∂ 4

1 ∂ 2
3 +x10

1 x8
3∂ 4

1 ∂ 2
3 +x8

1x2
2x8

3∂ 4
1 ∂ 2

3 +x13
1 x4

2∂ 5
1 ∂ 2

3 +x15
1 x2

3∂ 5
1 ∂ 2

3 +x13
1 x2

2x2
3∂ 5

1 ∂ 2
3 +

x13
1 x4

3∂ 5
1 ∂ 2

3 +x11
1 x2

2x4
3∂ 5

1 ∂ 2
3 +x9

1x8
3∂ 5

1 ∂ 2
3 +x12

1 x4
2x3∂ 4

1 ∂ 3
3 +x14

1 x3
3∂ 4

1 ∂ 3
3 +x12

1 x2
2x3

3∂ 4
1 ∂ 3

3 +x12
1 x5

3∂ 4
1 ∂ 3

3 +

x10
1 x2

2x5
3∂ 4

1 ∂ 3
3 +x8

1x9
3∂ 4

1 ∂ 3
3 +x15

1 x3∂ 5
1 ∂ 3

3 +x13
1 x2

2x3∂ 5
1 ∂ 3

3 +x13
1 x3

3∂ 5
1 ∂ 3

3 +x9
1x2

2x5
3∂ 5

1 ∂ 3
3 +x9

1x7
3∂ 5

1 ∂ 3
3 +

x14
1 x5

3∂ 2
1 ∂ 2

3 +x12
1 x2

2x5
3∂ 2

1 ∂ 2
3 +x12

1 x7
3∂ 2

1 ∂ 2
3 +x8

1x4
2x7

3∂ 2
1 ∂ 2

3 +x8
1x11

3 ∂ 2
1 ∂ 2

3 +x2
1x4

2x14
3 ∂1∂3+x2

1x2
2x16

3 ∂1∂3+

x3
1x4

2x12
3 ∂ 2

1 ∂3+x5
1x14

3 ∂ 2
1 ∂3+x3

1x2
2x14

3 ∂ 2
1 ∂3+x8

1x4
2x6

3∂ 3
1 ∂3+x8

1x10
3 ∂ 3

1 ∂3+x6
1x12

3 ∂ 3
1 ∂3+x2

1x4
2x12

3 ∂ 3
1 ∂3+

x4
1x14

3 ∂ 3
1 ∂3+x2

1x2
2x14

3 ∂ 3
1 ∂3+x2

1x4
2x13

3 ∂1∂ 2
3 +x4

1x15
3 ∂1∂ 2

3 +x2
1x2

2x15
3 ∂1∂ 2

3 +x5
1x13

3 ∂ 2
1 ∂ 2

3 +x3
1x2

2x13
3 ∂ 2

1 ∂ 2
3 +

x10
1 x2

2x4
3∂ 4

1 ∂ 2
3 + x8

1x8
3∂ 4

1 ∂ 2
3 + x15

1 ∂ 5
1 ∂ 2

3 + x13
1 x2

2∂ 5
1 ∂ 2

3 + x13
1 x2

3∂ 5
1 ∂ 2

3 + x9
1x2

2x4
3∂ 5

1 ∂ 2
3 + x9

1x6
3∂ 5

1 ∂ 2
3 +

x14
1 x3∂ 4

1 ∂ 3
3 +x12

1 x2
2x3∂ 4

1 ∂ 3
3 +x12

1 x3
3∂ 4

1 ∂ 3
3 +x8

1x2
2x5

3∂ 4
1 ∂ 3

3 +x8
1x7

3∂ 4
1 ∂ 3

3 +x13
1 x3∂ 5

1 ∂ 3
3 +x14

1 x3
3∂ 2

1 ∂ 2
3 +

x8
1x4

2x5
3∂ 2

1 ∂ 2
3 +x10

1 x7
3∂ 2

1 ∂ 2
3 +x8

1x2
2x7

3∂ 2
1 ∂ 2

3 +x2
1x4

2x12
3 ∂1∂3+x4

1x14
3 ∂1∂3+x2

1x2
2x14

3 ∂1∂3+x5
1x12

3 ∂ 2
1 ∂3+

x3
1x2

2x12
3 ∂ 2

1 ∂3+x12
1 x4

3∂ 3
1 ∂3+x10

1 x2
2x4

3∂ 3
1 ∂3+x10

1 x6
3∂ 3

1 ∂3+x6
1x4

2x6
3∂ 3

1 ∂3+x6
1x10

3 ∂ 3
1 ∂3+x4

1x12
3 ∂ 3

1 ∂3+

x2
1x2

2x12
3 ∂ 3

1 ∂3+x4
1x13

3 ∂1∂ 2
3 +x2

1x2
2x13

3 ∂1∂ 2
3 +x8

1x2
2x4

3∂ 4
1 ∂ 2

3 +x8
1x6

3∂ 4
1 ∂ 2

3 +x13
1 ∂ 5

1 ∂ 2
3 +x12

1 x3∂ 4
1 ∂ 3

3 +

x3
1x4

2x12
3 +x3

1x2
2x14

3 +x10
1 x2

2x3
3∂ 2

1 ∂ 2
3 +x8

1x7
3∂ 2

1 ∂ 2
3 +x4

1x12
3 ∂1∂3+x2

1x2
2x12

3 ∂1∂3+x12
1 x2

3∂ 3
1 ∂3+x6

1x4
2x4

3∂ 3
1 ∂3+

x8
1x6

3∂ 3
1 ∂3+x6

1x2
2x6

3∂ 3
1 ∂3+x11

1 x6
3+x7

1x10
3 +x1x4

2x12
3 +x1x2

2x14
3 +x8

1x2
2x3

3∂ 2
1 ∂ 2

3 +x8
1x5

3∂ 2
1 ∂ 2

3 +x8
1x2

2x2
3∂ 3

1 ∂3+

x6
1x6

3∂ 3
1 ∂3 + x7

1x4
2x4

3 + x7
1x8

3 + x5
1x10

3 + x1x4
2x10

3 + x3
1x12

3 + x1x2
2x12

3 + x6
1x2

2x2
3∂ 3

1 ∂3 + x6
1x4

3∂ 3
1 ∂3 +

x11
1 x2

3 + x9
1x2

2x2
3 + x9

1x4
3 + x5

1x4
2x4

3 + x5
1x8

3 + x3
1x10

3 + x1x2
2x10

3 + x11
1 + x5

1x4
2x2

3 + x7
1x4

3 + x5
1x2

2x4
3 +

x7
1x2

2 + x5
1x4

3 + x5
1x2

2 + x5
1x2

3,

p2 = x3
1x4

2x14
3 ∂ 3

1 ∂ 3
2 ∂3+x3

1x3
2x14

3 ∂ 3
1 ∂ 3

2 ∂3+x3
1x7

2x10
3 ∂ 3

1 ∂ 2
2 ∂3+x3

1x5
2x12

3 ∂ 3
1 ∂ 2

2 ∂3+x2
1x8

2x10
3 ∂ 2

1 ∂ 3
2 ∂3+

x2
1x6

2x12
3 ∂ 2

1 ∂ 3
2 ∂3+x2

1x4
2x14

3 ∂ 2
1 ∂ 3

2 ∂3+x5
1x8

2x6
3∂ 3

1 ∂ 3
2 ∂3+x5

1x6
2x8

3∂ 3
1 ∂ 3

2 ∂3+x3
1x6

2x10
3 ∂ 3

1 ∂ 2
2 ∂3+x3

1x4
2x12

3 ∂ 3
1 ∂ 2

2 ∂3+

x3
1x2

2x14
3 ∂ 3

1 ∂ 2
2 ∂3+x2

1x7
2x10

3 ∂ 2
1 ∂ 3

2 ∂3+x2
1x5

2x12
3 ∂ 2

1 ∂ 3
2 ∂3+x2

1x3
2x14

3 ∂ 2
1 ∂ 3

2 ∂3+x5
1x7

2x6
3∂ 3

1 ∂ 3
2 ∂3+x5

1x5
2x8

3∂ 3
1 ∂ 3

2 ∂3+

x4
1x7

2x12
3 ∂3 + x4

1x5
2x14

3 ∂3 + x4
1x8

2x6
3∂ 2

1 ∂ 3
2 ∂3 + x4

1x6
2x8

3∂ 2
1 ∂ 3

2 ∂3 + x3
1x8

2x6
3∂ 3

1 ∂ 3
2 ∂3 + x3

1x6
2x8

3∂ 3
1 ∂ 3

2 ∂3 +

x3
1x4

2x10
3 ∂ 3

1 ∂ 3
2 ∂3+x6

1x3
2x12

3 ∂1∂2+x6
1x2x14

3 ∂1∂2+x4
1x6

2x12
3 ∂3+x4

1x4
2x14

3 ∂3+x2
1x6

2x10
3 ∂ 2

1 ∂ 2
2 ∂3+x2

1x4
2x12

3 ∂ 2
1 ∂ 2

2 ∂3+

x2
1x2

2x14
3 ∂ 2

1 ∂ 2
2 ∂3+x5

1x6
2x6

3∂ 3
1 ∂ 2

2 ∂3+x5
1x4

2x8
3∂ 3

1 ∂ 2
2 ∂3+x4

1x7
2x6

3∂ 2
1 ∂ 3

2 ∂3+x4
1x5

2x8
3∂ 2

1 ∂ 3
2 ∂3+x3

1x7
2x6

3∂ 3
1 ∂ 3

2 ∂3+

x3
1x5

2x8
3∂ 3

1 ∂ 3
2 ∂3+x3

1x3
2x10

3 ∂ 3
1 ∂ 3

2 ∂3+x6
1x2

2x12
3 ∂1∂2+x6

1x14
3 ∂1∂2+x6

1x9
2x6

3∂3+x6
1x7

2x8
3∂3+x2

1x8
2x6

3∂ 2
1 ∂ 3

2 ∂3+

x2
1x6

2x8
3∂ 2

1 ∂ 3
2 ∂3+x2

1x4
2x10

3 ∂ 2
1 ∂ 3

2 ∂3+x3
1x8

2x4
3∂ 3

1 ∂ 3
2 ∂3+x5

1x4
2x6

3∂ 3
1 ∂ 3

2 ∂3+x3
1x4

2x8
3∂ 3

1 ∂ 3
2 ∂3+x6

1x3
2x12

3 +

x6
1x2x14

3 +x6
1x2

2x12
3 ∂1+x6

1x14
3 ∂1+x8

1x5
2x6

3∂1∂2+x8
1x3

2x8
3∂1∂2+x6

1x8
2x6

3∂3+x6
1x4

2x10
3 ∂3+x4

1x6
2x6

3∂ 2
1 ∂ 2

2 ∂3+

x4
1x4

2x8
3∂ 2

1 ∂ 2
2 ∂3+x3

1x6
2x6

3∂ 3
1 ∂ 2

2 ∂3+x3
1x4

2x8
3∂ 3

1 ∂ 2
2 ∂3+x3

1x2
2x10

3 ∂ 3
1 ∂ 2

2 ∂3+x2
1x7

2x6
3∂ 2

1 ∂ 3
2 ∂3+x2

1x5
2x8

3∂ 2
1 ∂ 3

2 ∂3+

x2
1x3

2x10
3 ∂ 2

1 ∂ 3
2 ∂3+x3

1x7
2x4

3∂ 3
1 ∂ 3

2 ∂3+x5
1x3

2x6
3∂ 3

1 ∂ 3
2 ∂3+x3

1x3
2x8

3∂ 3
1 ∂ 3

2 ∂3+x6
1x2

2x12
3 +x6

1x14
3 +x8

1x4
2x6

3∂1∂2+

x8
1x2

2x8
3∂1∂2+x4

1x9
2x6

3∂3+x6
1x5

2x8
3∂3+x4

1x7
2x8

3∂3+x6
1x3

2x10
3 ∂3+x4

1x5
2x10

3 ∂3+x3
1x5

2x6
3∂ 3

1 ∂ 2
2 ∂3+x3

1x3
2x8

3∂ 3
1 ∂ 2

2 ∂3+

x2
1x8

2x4
3∂ 2

1 ∂ 3
2 ∂3+x4

1x4
2x6

3∂ 2
1 ∂ 3

2 ∂3+x2
1x6

2x6
3∂ 2

1 ∂ 3
2 ∂3+x5

1x6
2x2

3∂ 3
1 ∂ 3

2 ∂3+x5
1x4

2x4
3∂ 3

1 ∂ 3
2 ∂3+x3

1x4
2x6

3∂ 3
1 ∂ 3

2 ∂3+

x8
1x5

2x6
3+x8

1x3
2x8

3+x8
1x4

2x6
3∂1+x8

1x2
2x8

3∂1+x6
1x5

2x6
3∂1∂2+x6

1x3
2x8

3∂1∂2+x6
1x2x10

3 ∂1∂2+x8
1x8

2x2
3∂3+

x8
1x6

2x4
3∂3+x4

1x8
2x6

3∂3+x2
1x10

2 x6
3∂3+x4

1x6
2x8

3∂3+x2
1x8

2x8
3∂3+x4

1x4
2x10

3 ∂3+x2
1x6

2x6
3∂ 2

1 ∂ 2
2 ∂3+x2

1x4
2x8

3∂ 2
1 ∂ 2

2 ∂3+

x2
1x2

2x10
3 ∂ 2

1 ∂ 2
2 ∂3+x3

1x6
2x4

3∂ 3
1 ∂ 2

2 ∂3+x5
1x2

2x6
3∂ 3

1 ∂ 2
2 ∂3+x3

1x4
2x6

3∂ 3
1 ∂ 2

2 ∂3+x2
1x7

2x4
3∂ 2

1 ∂ 3
2 ∂3+x4

1x3
2x6

3∂ 2
1 ∂ 3

2 ∂3+
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Appendix C. Examples Data

x2
1x5

2x6
3∂ 2

1 ∂ 3
2 ∂3+x5

1x5
2x2

3∂ 3
1 ∂ 3

2 ∂3+x5
1x3

2x4
3∂ 3

1 ∂ 3
2 ∂3+x3

1x3
2x6

3∂ 3
1 ∂ 3

2 ∂3+x8
1x4

2x6
3+x8

1x2
2x8

3+x6
1x4

2x6
3∂1∂2+

x6
1x2

2x8
3∂1∂2+x6

1x10
3 ∂1∂2+x8

1x7
2x2

3∂3+x8
1x5

2x4
3∂3+x4

1x9
2x4

3∂3+x6
1x5

2x6
3∂3+x4

1x7
2x6

3∂3+x2
1x9

2x6
3∂3+

x4
1x5

2x8
3∂3+x2

1x7
2x8

3∂3+x4
1x3

2x10
3 ∂3+x5

1x5
2x2

3∂ 3
1 ∂ 2

2 ∂3+x5
1x3

2x4
3∂ 3

1 ∂ 2
2 ∂3+x2

1x4
2x6

3∂ 2
1 ∂ 3

2 ∂3+x3
1x6

2x2
3∂ 3

1 ∂ 3
2 ∂3+

x6
1x5

2x6
3+x6

1x3
2x8

3+x6
1x2x10

3 +x6
1x4

2x6
3∂1+x6

1x2
2x8

3∂1+x6
1x10

3 ∂1+x6
1x5

2x4
3∂1∂2+x8

1x2x6
3∂1∂2+x6

1x8
2x2

3∂3+

x6
1x6

2x4
3∂3+x4

1x8
2x4

3∂3+x10
2 x6

3∂3+x4
1x4

2x8
3∂3+x8

2x8
3∂3+x4

1x2
2x10

3 ∂3+x2
1x6

2x4
3∂ 2

1 ∂ 2
2 ∂3+x4

1x2
2x6

3∂ 2
1 ∂ 2

2 ∂3+

x2
1x4

2x6
3∂ 2

1 ∂ 2
2 ∂3 +x3

1x2
2x6

3∂ 3
1 ∂ 2

2 ∂3 +x2
1x3

2x6
3∂ 2

1 ∂ 3
2 ∂3 +x3

1x5
2x2

3∂ 3
1 ∂ 3

2 ∂3 +x6
1x4

2x6
3 +x6

1x2
2x8

3 +x6
1x10

3 +

x6
1x4

2x4
3∂1∂2+x8

1x6
3∂1∂2+x6

1x7
2x2

3∂3+x6
1x3

2x6
3∂3+x9

2x6
3∂3+x7

2x8
3∂3+x3

1x5
2x2

3∂ 3
1 ∂ 2

2 ∂3+x3
1x3

2x4
3∂ 3

1 ∂ 2
2 ∂3+

x2
1x4

2x4
3∂ 2

1 ∂ 3
2 ∂3+x3

1x6
2∂ 3

1 ∂ 3
2 ∂3+x3

1x4
2x2

3∂ 3
1 ∂ 3

2 ∂3+x6
1x5

2x4
3+x8

1x2x6
3+x3

2x12
3 +x2x14

3 +x6
1x4

2x4
3∂1+

x8
1x6

3∂1 + x8
1x3

2x2
3∂1∂2 + x6

1x2x6
3∂1∂2 + x6

1x8
2∂3 + x8

1x4
2x2

3∂3 + x6
1x6

2x2
3∂3 + x6

1x4
2x4

3∂3 + x4
1x4

2x6
3∂3 +

x2
1x6

2x6
3∂3 + x2

1x2
2x6

3∂ 2
1 ∂ 2

2 ∂3 + x3
1x2

2x4
3∂ 3

1 ∂ 2
2 ∂3 + x2

1x3
2x4

3∂ 2
1 ∂ 3

2 ∂3 + x3
1x5

2∂ 3
1 ∂ 3

2 ∂3 + x3
1x3

2x2
3∂ 3

1 ∂ 3
2 ∂3 +

x6
1x4

2x4
3+x8

1x6
3+x2

2x12
3 +x14

3 +x8
1x2

2x2
3∂1∂2+x6

1x6
3∂1∂2+x6

1x7
2∂3+x8

1x3
2x2

3∂3+x6
1x5

2x2
3∂3+x4

1x3
2x6

3∂3+

x2
1x5

2x6
3∂3 + x3

1x5
2∂ 3

1 ∂ 2
2 ∂3 + x3

1x3
2x2

3∂ 3
1 ∂ 2

2 ∂3 + x8
1x3

2x2
3 + x6

1x2x6
3 + x2

1x5
2x6

3 + x2
1x3

2x8
3 + x8

1x2
2x2

3∂1 +

x6
1x6

3∂1+x6
1x3

2x2
3∂1∂2+x6

1x2x4
3∂1∂2+x6

1x4
2x2

3∂3+x4
1x2

2x6
3∂3+x6

2x6
3∂3+x2

1x2
2x4

3∂ 2
1 ∂ 2

2 ∂3+x8
1x2

2x2
3+

x6
1x6

3 + x2
1x4

2x6
3 + x2

1x2
2x8

3 + x6
1x2

2x2
3∂1∂2 + x6

1x4
3∂1∂2 + x6

1x3
2x2

3∂3 + x4
1x5

2x2
3∂3 + x5

2x6
3∂3 + x6

1x3
2x2

3 +

x6
1x2x4

3+x5
2x6

3+x3
2x8

3+x2x10
3 +x6

1x2
2x2

3∂1+x6
1x4

3∂1+x6
1x4

2∂3+x4
1x4

2x2
3∂3+x6

1x2
2x2

3+x6
1x4

3+x4
2x6

3+

x2
2x8

3+x10
3 +x6

1x3
2∂3+x4

1x3
2x2

3∂3+x2
1x5

2x2
3∂3+x2

1x3
2x4

3∂3+x5
2x4

3+x2
1x2x6

3+x2
1x5

2∂1∂2+x2
1x3

2x2
3∂1∂2+

x4
1x2

2x2
3∂3+x2

1x4
2x2

3∂3+x2
1x2

2x4
3∂3+x4

2x4
3+x2

1x6
3+x2

1x4
2∂1∂2+x2

1x2
2x2

3∂1∂2+x4
1x3

2∂3+x4
1x2x2

3∂3+

x5
2x2

3∂3+x3
2x4

3∂3+x2
1x5

2+x2x6
3+x2

1x4
2∂1+x2

1x2
2x2

3∂1+x4
1x2∂1∂2+x5

2∂1∂2+x3
2x2

3∂1∂2+x4
1x2

2∂3+

x4
1x2

3∂3 +x4
2x2

3∂3 +x2
2x4

3∂3 +x2
1x4

2 +x6
3 +x4

1∂1∂2 +x4
2∂1∂2 +x2

2x2
3∂1∂2 +x2

1x2x2
3∂3 +x4

1x2 +x5
2 +

x2x4
3 + x4

1∂1 + x4
2∂1 + x2

2x2
3∂1 + x2

1x2∂1∂2 + x2
1x2

3∂3 + x4
1 + x4

2 + x4
3 + x2

1∂1∂2 + x2x2
3∂3 + x2

1x2 +

x3
2 + x2

1∂1 + x2∂1∂2 + x2
3∂3 + x2

1 + x2
2 +∂1∂2 + x2 +∂1 +1,

p3 = x2
1x2x3∂ 9

1 ∂ 7
2 ∂ 9

3 +x2
1x2∂ 9

1 ∂ 7
2 ∂ 8

3 +x2
1x3∂ 9

1 ∂ 6
2 ∂ 9

3 +x2
1∂ 9

1 ∂ 6
2 ∂ 8

3 +x2
1x2x3∂ 7

1 ∂ 5
2 ∂ 9

3 +x2
1x2∂ 7

1 ∂ 5
2 ∂ 8

3 +

x2
1x3∂ 7

1 ∂ 4
2 ∂ 9

3 +x1x4
2x2

3∂ 8
1 ∂ 6

2 +x2
1∂ 7

1 ∂ 4
2 ∂ 8

3 +x2
1x2x3∂ 5

1 ∂ 3
2 ∂ 9

3 +x1∂ 7
1 ∂ 4

2 ∂ 9
3 +x1x4

2x2
3∂ 7

1 ∂ 5
2 +x2

1x2∂ 5
1 ∂ 3

2 ∂ 8
3 +

x2
1x3∂ 5

1 ∂ 2
2 ∂ 9

3 + ∂ 6
1 ∂ 4

2 ∂ 9
3 + x3

1∂ 6
1 ∂ 6

2 ∂ 3
3 + x1∂ 7

1 ∂2∂ 9
3 + x4

2x2
3∂ 6

1 ∂ 5
2 + x1x2

2∂ 8
1 ∂ 6

2 + x4
1x2x3∂ 3

1 ∂ 5
2 ∂ 3

3 +

x2
1∂ 5

1 ∂ 2
2 ∂ 8

3 +x1∂ 5
1 ∂ 2

2 ∂ 9
3 +x3

1∂ 7
1 ∂ 3

2 ∂ 3
3 +∂ 6

1 ∂2∂ 9
3 +x1∂ 4

1 ∂ 2
2 ∂ 9

3 +x1x6
2∂ 5

1 ∂ 3
2 +x1x2

2∂ 7
1 ∂ 5

2 +x1∂ 8
1 ∂ 6

2 +

x4
1x2∂ 3

1 ∂ 5
2 ∂ 2

3 +x4
1x3∂ 3

1 ∂ 4
2 ∂ 3

3 +∂ 4
1 ∂ 2

2 ∂ 9
3 +x6

1x5
2x2

3∂1+x6
1x3

2x4
3∂1+x2

1∂ 6
1 ∂ 3

2 ∂ 3
3 +x6

2∂ 4
1 ∂ 3

2 +x2
2∂ 6

1 ∂ 5
2 +

x1∂ 7
1 ∂ 5

2 +x4
1∂ 3

1 ∂ 4
2 ∂ 2

3 +x5
1x5

2x2
3+x5

1x3
2x4

3+x8
1x3

2∂1+x7
1x4

2∂1+x4
1x7

2∂1+x3
1x8

2∂1+x8
1x2x2

3∂1+x3
1x6

2x2
3∂1+

x4
1x3

2x4
3∂1+x8

1x2
2∂1∂2+x4

1x6
2∂1∂2+x4

1x4
2x2

3∂1∂2+x1∂ 6
1 ∂ 4

2 ∂3+x1∂ 2
1 ∂ 9

3 +x8
1x3

2+x4
1x7

2+x4
1x5

2x2
3+

x1x6
2∂ 3

1 ∂2 + x1x6
2∂ 2

1 ∂ 2
2 + ∂ 6

1 ∂ 5
2 + x2

1x2x3∂ 3
1 ∂ 3

2 ∂3 + x3
1∂ 3

1 ∂ 2
2 ∂ 3

3 + x1∂1∂ 9
3 + x7

1x3
2 + x6

1x4
2 + x3

1x7
2 +

x2
1x8

2 + x7
1x2x2

3 + x2
1x6

2x2
3 + x3

1x3
2x4

3 + x7
1x2

2∂1 + x5
1x4

2∂1 + x4
1x5

2∂1 + x2
1x7

2∂1 + x1x8
2∂1 + x6

1x2x2
3∂1 +

x5
1x2

2x2
3∂1+x1x6

2x2
3∂1+x4

1x2x4
3∂1+x2

1x3
2x4

3∂1+x7
1x2

2∂2+x3
1x6

2∂2+x3
1x4

2x2
3∂2+x4

1x4
2∂1∂2+x2

1x6
2∂1∂2+

x4
1x2

2x2
3∂1∂2 +x2

1x4
2x2

3∂1∂2 +x1∂ 7
1 ∂2∂3 +x4

1x5
2 +x2

1x7
2 +x4

1x3
2x2

3 +x2
1x5

2x2
3 +x1x6

2∂ 2
1 +x1x6

2∂1∂2 +
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C.3. Chapter 6

x6
2∂ 2

1 ∂2+x2
1x2∂ 3

1 ∂ 3
2 +x2

1x3∂ 3
1 ∂ 2

2 ∂3+x2
1∂ 2

1 ∂ 2
2 ∂ 3

3 +∂ 9
3 +x6

1x2
2+x4

1x4
2+x3

1x5
2+x1x7

2+x8
2+x5

1x2x2
3+

x4
1x2

2x2
3+x6

2x2
3+x3

1x2x4
3+x1x3

2x4
3+x7

1∂1+x6
1x2∂1+x5

1x2
2∂1+x4

1x3
2∂1+x3

1x4
2∂1+x2

1x5
2∂1+x4

1x2x2
3∂1+

x2
1x2x4

3∂1+x3
1x4

2∂2+x1x6
2∂2+x3

1x2
2x2

3∂2+x1x4
2x2

3∂2+x6
1∂1∂2+x4

1x2
2∂1∂2+x2

1x4
2∂1∂2+x2

1x2
2x2

3∂1∂2+

∂ 6
1 ∂2∂3+x3

1∂ 2
2 ∂ 3

3 +x6
1x2+x4

1x3
2+x2

1x5
2+x2

1x3
2x2

3+x1x4
2x2

3+x6
2∂2+x2

1∂ 3
1 ∂ 2

2 +x6
1+x5

1x2+x4
1x2

2+

x3
1x3

2+x2
1x4

2+x1x5
2+x3

1x2x2
3+x1x2x4

3+x2
1x3

2∂1+x1x4
2∂1+x3

1x2
3∂1+x2

1x2x2
3∂1+x5

1∂2+x3
1x2

2∂2+

x1x4
2∂2 +x1x2

2x2
3∂2 +x2

1x2
2∂1∂2 +x2

1x3
2 +x1∂ 3

1 ∂3 +x1x3
2 +x4

2 +x2
1x2

3 +x1x2x2
3 +x3

1∂1 +x1x2
3∂1 +

x1x2
2∂2 + x1x2

2 +∂ 2
1 ∂3 + x2

1 + x2
3 + x1∂1 + x1∂3 + x1 +1.

(4) Example 6.4.4
The polynomials p1, p2 ∈A3 =F3[x1,x2,x3,∂1,∂2,∂3] of the public key Q are:

p1 = x31
3 ∂ 7

1 ∂ 7
2 −x31

3 ∂ 7
1 ∂ 4

2 −x19
3 ∂ 16

1 ∂ 7
2 +x7

3∂ 25
1 ∂ 10

2 +x3∂ 25
1 ∂ 10

2 ∂ 6
3 −x30

3 ∂ 5
1 ∂2∂ 5

3 −x1x18
3 ∂ 13

1 ∂ 4
2 ∂ 5

3 −

x18
3 ∂ 14

1 ∂ 4
2 ∂ 5

3 −x7
3∂ 22

1 ∂ 10
2 +x19

3 ∂ 12
1 ∂ 3

2 ∂ 5
3 −x3∂ 22

1 ∂ 10
2 ∂ 6

3 −x16
3 ∂ 7

1 ∂ 7
2 ∂ 9

3 +x4
3∂ 19

1 ∂ 7
2 ∂ 9

3 +x30
3 ∂ 5

1 ∂2∂ 2
3 −

x1x15
3 ∂ 16

1 ∂ 4
2 ∂ 2

3 −x15
3 ∂ 17

1 ∂ 4
2 ∂ 2

3 −x30
3 ∂ 2

1 ∂2∂ 5
3 −x31

3 ∂ 4
1 ∂2 −x3

1x16
3 ∂ 10

1 ∂ 7
2 −x19

3 ∂ 10
1 ∂ 7

2 +x16
3 ∂ 13

1 ∂ 7
2 −

x7
3∂ 22

1 ∂ 7
2 −x3

1x4
3∂ 19

1 ∂ 10
2 +x4

3∂ 22
1 ∂ 10

2 +x16
3 ∂ 15

1 ∂ 3
2 ∂ 2

3 +x3
3∂ 18

1 ∂ 12
2 ∂ 3

3 +x3∂ 19
1 ∂ 10

2 ∂ 6
3 +x30

3 ∂ 2
1 ∂2∂ 2

3 +

x1x18
3 ∂ 10

1 ∂2∂ 5
3 − x18

3 ∂ 11
1 ∂2∂ 5

3 + x1x15
3 ∂ 10

1 ∂ 4
2 ∂ 5

3 + x15
3 ∂ 11

1 ∂ 4
2 ∂ 5

3 + x1x6
3∂ 19

1 ∂ 4
2 ∂ 5

3 + x1∂ 19
1 ∂ 4

2 ∂ 11
3 −

x31
3 ∂1∂2 − x3

1x16
3 ∂ 7

1 ∂ 7
2 − x16

3 ∂ 10
1 ∂ 7

2 − x7
3∂ 19

1 ∂ 7
2 − x4

3∂ 19
1 ∂ 10

2 +∂ 21
1 ∂ 12

2 + x15
3 ∂ 6

1 ∂ 9
2 ∂ 3

3 − x19
3 ∂ 9

1 ∂ 5
3 −

x16
3 ∂ 9

1 ∂ 3
2 ∂ 5

3 −x7
3∂ 18

1 ∂ 3
2 ∂ 5

3 −x3∂ 19
1 ∂ 7

2 ∂ 6
3 −x3∂ 16

1 ∂ 10
2 ∂ 6

3 −x3∂ 16
1 ∂ 7

2 ∂ 9
3 −x3∂ 18

1 ∂ 3
2 ∂ 11

3 −x18
3 ∂ 11

1 ∂2∂ 2
3 −

x1x15
3 ∂ 13

1 ∂2∂ 2
3 − x15

3 ∂ 14
1 ∂2∂ 2

3 − x1x15
3 ∂ 10

1 ∂ 4
2 ∂ 2

3 − x15
3 ∂ 11

1 ∂ 4
2 ∂ 2

3 + x6
3∂ 20

1 ∂ 4
2 ∂ 2

3 − x1x6
3∂ 16

1 ∂ 4
2 ∂ 5

3 +

∂ 20
1 ∂ 4

2 ∂ 8
3 −x1∂ 16

1 ∂ 4
2 ∂ 11

3 −x1x15
3 ∂1∂2∂ 14

3 +x1x3
3∂ 13

1 ∂2∂ 14
3 −x3

1x4
3∂ 16

1 ∂ 7
2 −x4

3∂ 19
1 ∂ 7

2 +x3
1x3∂ 16

1 ∂ 10
2 +

x3∂ 19
1 ∂ 10

2 + x16
3 ∂ 12

1 ∂ 2
3 + x16

3 ∂ 9
1 ∂ 3

2 ∂ 2
3 − x3

3∂ 15
1 ∂ 9

2 ∂ 3
3 − ∂ 15

1 ∂ 12
2 ∂ 3

3 + x7
3∂ 15

1 ∂ 3
2 ∂ 5

3 + x3∂ 15
1 ∂ 3

2 ∂ 11
3 +

x16
3 ∂ 14

3 −x4
3∂ 12

1 ∂ 14
3 −x6

3∂ 17
1 ∂ 4

2 ∂ 2
3 −x1x18

3 ∂ 4
1 ∂2∂ 5

3 +x3
1x15

3 ∂ 5
1 ∂2∂ 5

3 −x1x15
3 ∂ 7

1 ∂2∂ 5
3 +x15

3 ∂ 8
1 ∂2∂ 5

3 −

x1x6
3∂ 16

1 ∂2∂ 5
3 −x4

1x3
3∂ 13

1 ∂ 4
2 ∂ 5

3 +x1x3
3∂ 16

1 ∂ 4
2 ∂ 5

3 −∂ 17
1 ∂ 4

2 ∂ 8
3 −x15

3 ∂ 2
1 ∂2∂ 11

3 +x3
3∂ 14

1 ∂2∂ 11
3 +x1∂ 13

1 ∂ 4
2 ∂ 11

3 +

x4
3∂ 16

1 ∂ 7
2 −∂ 18

1 ∂ 9
2 −x3∂ 16

1 ∂ 10
2 +∂ 15

1 ∂ 12
2 +x15

3 ∂ 3
1 ∂ 6

2 ∂ 3
3 +x19

3 ∂ 3
1 ∂ 5

3 +x16
3 ∂ 6

1 ∂ 5
3 +x7

3∂ 15
1 ∂ 5

3 +x3
1x4

3∂ 12
1 ∂ 3

2 ∂ 5
3 −

x4
3∂ 15

1 ∂ 3
2 ∂ 5

3 −x3∂ 13
1 ∂ 7

2 ∂ 6
3 +x3

1x3∂ 7
1 ∂ 7

2 ∂ 9
3 −x3∂ 12

1 ∂ 3
2 ∂ 11

3 −x3
1x15

3 ∂ 5
1 ∂2∂ 2

3 −x18
3 ∂ 5

1 ∂2∂ 2
3 −x1x15

3 ∂ 7
1 ∂2∂ 2

3 −

x6
3∂ 17

1 ∂2∂ 2
3 −x3

1x3
3∂ 14

1 ∂ 4
2 ∂ 2

3 +x3
3∂ 17

1 ∂ 4
2 ∂ 2

3 +x3
1x15

3 ∂ 2
1 ∂2∂ 5

3 +x1x15
3 ∂ 4

1 ∂2∂ 5
3 −x15

3 ∂ 5
1 ∂2∂ 5

3 −x1x6
3∂ 13

1 ∂2∂ 5
3 −

x1x3
3∂ 13

1 ∂ 4
2 ∂ 5

3 +∂ 14
1 ∂ 4

2 ∂ 8
3 −x1∂ 13

1 ∂2∂ 11
3 −x1∂ 10

1 ∂ 4
2 ∂ 11

3 −x1∂ 10
1 ∂2∂ 14

3 +x3
1x3∂ 13

1 ∂ 7
2 −x3∂ 16

1 ∂ 7
2 +

x16
3 ∂ 6

1 ∂ 2
3 −x15

3 ∂ 3
1 ∂ 3

2 ∂ 3
3 +x3

3∂ 12
1 ∂ 6

2 ∂ 3
3 −x3

1∂ 9
1 ∂ 9

2 ∂ 3
3 +∂ 12

1 ∂ 9
2 ∂ 3

3 −x16
3 ∂ 3

1 ∂ 5
3 +x7

3∂ 12
1 ∂ 5

3 +x4
3∂ 12

1 ∂ 3
2 ∂ 5

3 −

x3∂ 7
1 ∂ 7

2 ∂ 9
3 + x3∂ 12

1 ∂ 11
3 + x3∂ 9

1 ∂ 3
2 ∂ 11

3 + x3∂ 9
1 ∂ 14

3 − x3
1x15

3 ∂ 2
1 ∂2∂ 2

3 − x15
3 ∂ 5

1 ∂2∂ 2
3 − x6

3∂ 14
1 ∂2∂ 2

3 −

x3
3∂ 14

1 ∂ 4
2 ∂ 2

3 −x1x15
3 ∂1∂2∂ 5

3 −x15
3 ∂ 2

1 ∂2∂ 5
3 −x4

1x3
3∂ 10

1 ∂2∂ 5
3 −x1x3

3∂ 13
1 ∂2∂ 5

3 +x4
1∂ 10

1 ∂ 4
2 ∂ 5

3 +x1∂ 13
1 ∂ 4

2 ∂ 5
3 −

∂ 14
1 ∂2∂ 8

3 −∂ 11
1 ∂ 4

2 ∂ 8
3 −∂ 11

1 ∂2∂ 11
3 +∂ 15

1 ∂ 6
2 −x3

1x3∂ 10
1 ∂ 7

2 −x4
3∂ 10

1 ∂ 7
2 +∂ 12

1 ∂ 9
2 −x15

3 ∂ 3
2 ∂ 3

3 −x3
1∂ 6

1 ∂ 9
2 ∂ 3

3 +

∂ 9
1 ∂ 9

2 ∂ 3
3 +x16

3 ∂ 5
3 +x3

1x4
3∂ 9

1 ∂ 5
3 +x4

3∂ 12
1 ∂ 5

3 −x3
1x3∂ 9

1 ∂ 3
2 ∂ 5

3 −x3∂ 12
1 ∂ 3

2 ∂ 5
3 −x3

1x3
3∂ 11

1 ∂2∂ 2
3 −x3

3∂ 14
1 ∂2∂ 2

3 +

x3
1∂ 11

1 ∂ 4
2 ∂ 2

3 + ∂ 14
1 ∂ 4

2 ∂ 2
3 + x1x3

3∂ 10
1 ∂2∂ 5

3 − x1∂ 10
1 ∂ 4

2 ∂ 5
3 − x1∂ 7

1 ∂2∂ 11
3 + x4

1∂1∂2∂ 14
3 − x3

1x3∂ 7
1 ∂ 7

2 +

x3∂ 10
1 ∂ 7

2 −x3
1∂ 6

1 ∂ 6
2 ∂ 3

3 −∂ 9
1 ∂ 6

2 ∂ 3
3 +∂ 6

1 ∂ 9
2 ∂ 3

3 −x4
3∂ 9

1 ∂ 5
3 +x3∂ 9

1 ∂ 3
2 ∂ 5

3 +x3∂ 6
1 ∂ 11

3 −x3
1x3∂ 14

3 +x3
3∂ 11

1 ∂2∂ 2
3 −
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Appendix C. Examples Data

∂ 11
1 ∂ 4

2 ∂ 2
3 + x4

1∂ 7
1 ∂2∂ 5

3 − x1∂ 10
1 ∂2∂ 5

3 − ∂ 8
1 ∂2∂ 8

3 + x3
1∂ 2

1 ∂2∂ 11
3 − x1∂1∂2∂ 14

3 + ∂ 9
1 ∂ 6

2 − x3∂ 7
1 ∂ 7

2 −

x3
1∂ 3

1 ∂ 6
2 ∂ 3

3 +∂ 6
1 ∂ 6

2 ∂ 3
3 −x3

1x3∂ 6
1 ∂ 5

3 +x3∂ 9
1 ∂ 5

3 +x3∂ 14
3 +x3

1∂ 8
1 ∂2∂ 2

3 −∂ 11
1 ∂2∂ 2

3 −x4
1∂ 4

1 ∂2∂ 5
3 −x1x3

3∂ 4
1 ∂2∂ 5

3 −

∂ 2
1 ∂2∂ 11

3 +∂ 3
1 ∂ 6

2 ∂ 3
3 + x3

1x3∂ 3
1 ∂ 5

3 + x4
3∂ 3

1 ∂ 5
3 − x3

1∂ 5
1 ∂2∂ 2

3 − x3
3∂ 5

1 ∂2∂ 2
3 − x4

1∂1∂2∂ 5
3 + x1∂ 4

1 ∂2∂ 5
3 +

x3
1x3∂ 5

3 − x3∂ 3
1 ∂ 5

3 − x3
1∂ 2

1 ∂2∂ 2
3 +∂ 5

1 ∂2∂ 2
3 − x1∂1∂2∂ 5

3 −∂ 3
1 ∂ 3

2 + x3∂ 5
3 −∂ 2

1 ∂2∂ 2
3 +∂ 3

1 +1,

p2 = x2
1x4

3∂ 20
1 ∂ 12

2 +x2
1x16

3 ∂ 8
1 ∂ 9

2 +x4
3∂ 18

1 ∂ 12
2 +x2

1x4
3∂ 17

1 ∂ 9
2 −x2

1x3∂ 17
1 ∂ 12

2 +x16
3 ∂ 6

1 ∂ 9
2 −x10

1 x3
2x3∂ 11

1 ∂ 4
2 +

x10
1 x3

2x3∂ 10
1 ∂ 3

2 ∂ 2
3 +x2

1x3∂ 11
1 ∂ 6

2 ∂ 9
3 +x1x3∂ 11

1 ∂ 4
2 ∂ 12

3 −x1x3∂ 10
1 ∂ 3

2 ∂ 14
3 +x4

3∂ 15
1 ∂ 9

2 −x3∂ 15
1 ∂ 12

2 −x1x16
3 ∂ 7

1 ∂ 3
2 +

x9
1x3

2x3∂ 10
1 ∂ 4

2 −x1x4
3∂ 16

1 ∂ 6
2 −x10

1 x3
2∂ 10

1 ∂ 3
2 ∂3+x9

1x3
2x3∂ 9

1 ∂ 3
2 ∂ 2

3 −x3∂ 10
1 ∂ 4

2 ∂ 12
3 +x1∂ 10

1 ∂ 3
2 ∂ 13

3 −x3∂ 9
1 ∂ 3

2 ∂ 14
3 +

x1x6
2x3∂ 14

1 ∂ 4
2 +x1x3

2x4
3∂ 14

1 ∂ 4
2 −x2

1x3∂ 14
1 ∂ 9

2 −x1x6
2x3∂ 13

1 ∂ 3
2 ∂ 2

3 −x1x3
2x4

3∂ 13
1 ∂ 3

2 ∂ 2
3 −x1x16

3 ∂ 5
1 ∂2∂ 3

3 −

x1x4
3∂ 14

1 ∂ 4
2 ∂ 3

3 +x1x16
3 ∂ 4

1 ∂ 5
3 +x1x4

3∂ 13
1 ∂ 3

2 ∂ 5
3 +x2

1x3∂ 8
1 ∂ 6

2 ∂ 9
3 −x16

3 ∂ 6
1 ∂ 3

2 −x4
3∂ 15

1 ∂ 6
2 −x1x16

3 ∂ 4
1 ∂ 3

2 ∂3−

x9
1x3

2∂ 9
1 ∂ 3

2 ∂3−x1x4
3∂ 13

1 ∂ 6
2 ∂3−x1x16

3 ∂1∂ 3
2 ∂ 4

3 +x3∂ 9
1 ∂ 6

2 ∂ 9
3 +∂ 9

1 ∂ 3
2 ∂ 13

3 −x1x16
3 ∂ 4

1 ∂ 3
2 −x6

2x3∂ 13
1 ∂ 4

2 −

x3
2x4

3∂ 13
1 ∂ 4

2 + x1x6
2∂ 13

1 ∂ 3
2 ∂3 + x1x3

2x3
3∂ 13

1 ∂ 3
2 ∂3 − x6

2x3∂ 12
1 ∂ 3

2 ∂ 2
3 − x3

2x4
3∂ 12

1 ∂ 3
2 ∂ 2

3 + x16
3 ∂ 4

1 ∂2∂ 3
3 +

x4
3∂ 13

1 ∂ 4
2 ∂ 3

3 −x1x15
3 ∂ 4

1 ∂ 4
3 −x1x3

3∂ 13
1 ∂ 3

2 ∂ 4
3 +x16

3 ∂ 3
1 ∂ 5

3 +x4
3∂ 12

1 ∂ 3
2 ∂ 5

3 +x1x3∂ 10
1 ∂ 3

2 ∂ 9
3 −x2

1x16
3 ∂ 2

1 ∂ 3
2 −

x1x15
3 ∂ 4

1 ∂ 3
2 −x7

1x3∂ 11
1 ∂ 4

2 +x1x6
2x3∂ 11

1 ∂ 4
2 +x1x3

2x4
3∂ 11

1 ∂ 4
2 −x1x3

3∂ 13
1 ∂ 6

2 −x16
3 ∂ 3

1 ∂ 3
2 ∂3−x4

3∂ 12
1 ∂ 6

2 ∂3+

x7
1x3∂ 10

1 ∂ 3
2 ∂ 2

3 −x1x6
2x3∂ 10

1 ∂ 3
2 ∂ 2

3 −x1x3
2x4

3∂ 10
1 ∂ 3

2 ∂ 2
3 −x1x16

3 ∂ 2
1 ∂2∂ 3

3 −x1x15
3 ∂1∂ 3

2 ∂ 3
3 −x16

3 ∂ 3
2 ∂ 4

3 +

x1x16
3 ∂1∂ 5

3 +x2
1x3∂ 8

1 ∂ 3
2 ∂ 9

3 +x1x3∂ 8
1 ∂2∂ 12

3 −x1x3∂ 7
1 ∂ 14

3 −x16
3 ∂ 3

1 ∂ 3
2 −x3∂ 12

1 ∂ 9
2 −x1x16

3 ∂1∂ 3
2 ∂3 +

x6
2∂ 12

1 ∂ 3
2 ∂3+x3

2x3
3∂ 12

1 ∂ 3
2 ∂3−x15

3 ∂ 3
1 ∂ 4

3 −x3
3∂ 12

1 ∂ 3
2 ∂ 4

3 +x3∂ 9
1 ∂ 3

2 ∂ 9
3 +x3∂ 6

1 ∂ 6
2 ∂ 9

3 −x1x16
3 ∂ 4

1 −x15
3 ∂ 3

1 ∂ 3
2 +

x1x4
3∂ 13

1 ∂ 3
2 +x6

1x3∂ 10
1 ∂ 4

2 −x6
2x3∂ 10

1 ∂ 4
2 −x3

2x4
3∂ 10

1 ∂ 4
2 −x3

3∂ 12
1 ∂ 6

2 +x1x3∂ 13
1 ∂ 6

2 −x7
1∂ 10

1 ∂ 3
2 ∂3+x1x6

2∂ 10
1 ∂ 3

2 ∂3+

x1x3
2x3

3∂ 10
1 ∂ 3

2 ∂3+x6
1x3∂ 9

1 ∂ 3
2 ∂ 2

3 −x6
2x3∂ 9

1 ∂ 3
2 ∂ 2

3 −x3
2x4

3∂ 9
1 ∂ 3

2 ∂ 2
3 +x16

3 ∂1∂2∂ 3
3 −x15

3 ∂ 3
2 ∂ 3

3 −x1x15
3 ∂1∂ 4

3 +

x16
3 ∂ 5

3 −x3∂ 7
1 ∂2∂ 12

3 +x1∂ 7
1 ∂ 13

3 −x3∂ 6
1 ∂ 14

3 −x1x15
3 ∂1∂ 3

2 −x2
1x4

3∂ 11
1 ∂ 3

2 −x1x3∂ 14
1 ∂ 4

2 +x2
1x3∂ 8

1 ∂ 9
2 −

x16
3 ∂ 3

2 ∂3+x1x3∂ 13
1 ∂ 3

2 ∂ 2
3 −x1x4

3∂ 11
1 ∂2∂ 3

3 +x1x3∂ 11
1 ∂ 4

2 ∂ 3
3 +x1x4

3∂ 10
1 ∂ 5

3 −x1x3∂ 10
1 ∂ 3

2 ∂ 5
3 −x16

3 ∂ 3
1 −

x16
3 ∂ 3

2 +x4
3∂ 12

1 ∂ 3
2 +x3∂ 12

1 ∂ 6
2 −x6

1∂ 9
1 ∂ 3

2 ∂3+x6
2∂ 9

1 ∂ 3
2 ∂3+x3

2x3
3∂ 9

1 ∂ 3
2 ∂3−x1x4

3∂ 10
1 ∂ 3

2 ∂3+x1x3∂ 10
1 ∂ 6

2 ∂3−

x15
3 ∂ 4

3 +x3∂ 6
1 ∂ 3

2 ∂ 9
3 +∂ 6

1 ∂ 13
3 −x1x16

3 ∂1−x15
3 ∂ 3

2 +x3∂ 13
1 ∂ 4

2 −x1∂ 13
1 ∂ 3

2 ∂3+x3∂ 12
1 ∂ 3

2 ∂ 2
3 +x4

3∂ 10
1 ∂2∂ 3

3 −

x3∂ 10
1 ∂ 4

2 ∂ 3
3 −x1x3

3∂ 10
1 ∂ 4

3 +x1∂ 10
1 ∂ 3

2 ∂ 4
3 +x4

3∂ 9
1 ∂ 5

3 −x3∂ 9
1 ∂ 3

2 ∂ 5
3 −x1x3

3∂ 10
1 ∂ 3

2 −x1x3∂ 11
1 ∂ 4

2 +x1∂ 10
1 ∂ 6

2 −

x4
3∂ 9

1 ∂ 3
2 ∂3 +x3∂ 9

1 ∂ 6
2 ∂3 +x1x3∂ 10

1 ∂ 3
2 ∂ 2

3 +x2
1x3∂ 5

1 ∂ 9
3 −x16

3 −x4
3∂ 9

1 ∂ 3
2 +x3∂ 6

1 ∂ 9
2 +x10

1 x3
2x3∂1∂3 −

∂ 12
1 ∂ 3

2 ∂3 − x3
3∂ 9

1 ∂ 4
3 + ∂ 9

1 ∂ 3
2 ∂ 4

3 − x1x3∂ 4
1 ∂ 10

3 − x1x3∂1∂ 13
3 − x1x4

3∂ 10
1 − x3

3∂ 9
1 ∂ 3

2 − x1x3∂ 10
1 ∂ 3

2 +

x3∂ 10
1 ∂ 4

2 +∂ 9
1 ∂ 6

2 −x1∂ 10
1 ∂ 3

2 ∂3+x3∂ 9
1 ∂ 3

2 ∂ 2
3 −x1x3∂ 4

1 ∂ 9
3 +x10

1 x3
2∂1−x2

1x4
3∂ 8

1 +x2
1x3∂ 8

1 ∂ 3
2 +x9

1x3
2x3∂3+

x1x3∂ 8
1 ∂2∂ 3

3 −x1x3∂ 7
1 ∂ 5

3 −x1∂ 4
1 ∂ 9

3 −x3∂ 3
1 ∂ 10

3 −x1∂1∂ 12
3 −x3∂ 13

3 −x4
3∂ 9

1 −x3∂ 9
1 ∂ 3

2 −x1x6
2x3∂ 4

1 ∂3−

x1x3
2x4

3∂ 4
1 ∂3+x1x3∂ 7

1 ∂ 3
2 ∂3−∂ 9

1 ∂ 3
2 ∂3+x1x4

3∂ 4
1 ∂ 4

3 −x1x3∂1∂ 10
3 +x9

1x3
2−x1x3∂ 7

1 ∂ 3
2 −x3∂ 7

1 ∂2∂ 3
3 +

x1∂ 7
1 ∂ 4

3 −x3∂ 6
1 ∂ 5

3 −∂ 3
1 ∂ 9

3 −∂ 12
3 −x1x6

2∂ 4
1 −x1x3

2x3
3∂ 4

1 +x1∂ 7
1 ∂ 3

2 −x6
2x3∂ 3

1 ∂3−x3
2x4

3∂ 3
1 ∂3+x3∂ 6

1 ∂ 3
2 ∂3+

x1x3
3∂ 4

1 ∂ 3
3 −x1x3∂ 5

1 ∂2∂ 3
3 +x4

3∂ 3
1 ∂ 4

3 +x1x3∂ 4
1 ∂ 5

3 −x1∂1∂ 9
3 −x3∂ 10

3 −x4
3∂ 6

1 +x7
1x3∂1∂3−x1x6

2x3∂1∂3−

x1x3
2x4

3∂1∂3−x1x3∂ 4
1 ∂ 3

2 ∂3+∂ 6
1 ∂ 4

3 −x1x3∂1∂ 3
2 ∂ 4

3 −x6
2∂ 3

1 −x3
2x3

3∂ 3
1 +x1x3∂ 7

1 −x1x3∂ 4
1 ∂ 3

2 +∂ 6
1 ∂ 3

2 +

x3
3∂ 3

1 ∂ 3
3 +x3∂ 4

1 ∂2∂ 3
3 −x1∂ 4

1 ∂ 4
3 +x3∂ 3

1 ∂ 5
3 −∂ 9

3 +x7
1∂1−x1x6

2∂1−x1x3
2x3

3∂1+x2
1x3∂ 5

1 −x2
1x3∂ 2

1 ∂ 3
2 −
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C.3. Chapter 6

x1∂ 4
1 ∂ 3

2 +x6
1x3∂3−x6

2x3∂3−x3
2x4

3∂3−x3∂ 3
1 ∂ 3

2 ∂3−x1x3∂ 2
1 ∂2∂ 3

3 −x1∂1∂ 3
2 ∂ 3

3 −x3∂ 3
2 ∂ 4

3 +x1x3∂1∂ 5
3 +

x3∂ 6
1 − x3∂ 3

1 ∂ 3
2 + x1x3∂ 4

1 ∂3 − x1x3∂1∂ 3
2 ∂3 − x1x3∂1∂ 4

3 − ∂ 3
1 ∂ 4

3 + x6
1 − x6

2 − x3
2x3

3 − x1x3∂ 4
1 −

∂ 3
1 ∂ 3

2 + x3∂1∂2∂ 3
3 − ∂ 3

2 ∂ 3
3 − x1∂1∂ 4

3 + x3∂ 5
3 + x1∂ 4

1 − x1∂1∂ 3
2 + x3∂ 3

1 ∂3 − x3∂ 3
2 ∂3 − x1∂1∂ 3

3 −

x3∂ 4
3 − x3∂ 3

2 + x1x3∂1∂3 −∂ 4
3 − x1x3∂1 +∂ 3

1 −∂ 3
2 −∂ 3

3 + x1∂1 + x3∂3 − x3 +1.
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