
Optimal vector quantization in terms of Wasserstein

distance

Wolfgang Kreitmeier

Wolfgang Kreitmeier, University of Passau, Department of Informatics and
Mathematics, D-94032 Passau, Germany

Abstract

The optimal quantizer in memory-size constrained vector quantization in-
duces a quantization error which is equal to a Wasserstein distortion. How-
ever, for the optimal (Shannon-)entropy constrained quantization error a
proof for a similar identity is still missing. Relying on principal results
of the optimal mass transportation theory, we will prove that the optimal
quantization error is equal to a Wasserstein distance. Since we will state
the quantization problem in a very general setting, our approach includes
the Rényi-α-entropy as a complexity constraint, which includes the special
case of (Shannon-)entropy constrained (α = 1) and memory-size constrained
(α = 0) quantization. Additionally, we will derive for certain distance func-
tions codecell convexity for quantizers with a finite codebook. Using other
methods, this regularity in codecell geometry has already been proved earlier
by György and Linder [12, 13].
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1. Introduction

Optimal quantization often arises in electrical engineering in connection
with signal processing and data compression. The survey article of Gray and
Neuhoff [9] provides a comprehensive overview of this subject. In mathemati-
cal terms, quantization is concerned with the approximation of a given proba-
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bility by another probability which is induced as an image under a quantizer.
In doing so, the complexity of the quantizer must not exceed a certain bound.
Optimal quantization is achieved if the quantization error between the origi-
nal distribution and the approximation is, subject to the given bound, mini-
mal. A first rigorous treatment of this problem in a higher dimensional space
apparently goes back to Steinhaus [30]. The complexity of a quantizer can be
measured by different mappings. Standard choices are the support cardinal-
ity of the approximating distribution [8] or its (Shannon-)entropy [12, 13]. In
the first case, we are talking about memory-size (or fixed-rate) quantization,
the second one is called (Shannon-)entropy constrained quantization. Re-
cently, Rényi-α-entropy has been suggested as complexity mapping [16, 17],
which contains the special case of (Shannon-)entropy constrained (α = 1)
and memory-size constrained (α = 0) quantization. Alternatively, the quan-
tization error between the original probability and its approximation can be
interpreted as the costs arising out of the mass transport between these two
distributions. Indeed, in case of α = 0 and for distance mapping l(x) = xr

with r ≥ 1, it is well-known (see e.g. [8, Lemma 3.4], [24]) that the optimal
quantization error is equal to the Wasserstein distance between original and
(optimal) approximation, which reflects these costs and is a key term in the
theory of optimal mass transportation. Our main goal is to prove that this
identity remains valid also for general complexity and distance mappings.

By using principal results in optimal mass transportation theory, we will
show in this paper for a fairly large class of distance mappings l that the
optimal quantization error is equivalent to the minimization of a Wasser-
stein distance (cf. Thm. 3.2). Because we make only very few assumptions
regarding the complexity mapping (cf. Definition 2.1), the case of Rényi-
α-entropy and, therefore, the special cases of memory-size and (Shannon-)
entropy constrained optimal quantization are included. Results from mass
transportation theory yield that the codecells, i.e. the preimages of the quan-
tizer, have the shape of convex polytopes if the distance mapping is quadratic.
Moreover, the codecells are intervals for a large class of distance mappings in
the one-dimensional setting. Using other methods, this regularity in codecell
geometry has already been proved earlier by György and Linder [12, 13].

The rest of this paper is organized as follows: The second section con-
tains the setup of optimal quantization and mass transportation theory. In
the third section, we introduce different types of quantization errors and
Wasserstein distances. Our main result (Theorem 3.2) shows that these
different notions coincide under very general assumptions on distance and
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complexity mapping. In particular, we obtain codecell regularity for special
distance mappings. Additionally, for distance mapping l(x) = xr with r ≥ 1,
we will generalize a consistency result for the optimal quantization error (cf.
Corollary 3.9). The last section introduces Rényi-α-entropy as complexity
mapping and compares the results of this paper with known results for the
cases α ∈ {0, 1}. Most of our proofs are given in the appendix.

2. Setup and notation

2.1. Optimal quantization

We begin with a very general definition of optimal quantization. Let
d ∈ N = {1, 2, ..} and µ be a Borel probability measure on Rd. Let I ⊂ N and
S = {Si : i ∈ I} be a countable and measurable partition of Rd. Moreover,
let C = {ci : i ∈ I} be a countable set of points in Rd. Now (Si, ci)i∈I defines
a quantizer q : Rd → C with

q(x) = ci if and only if x ∈ Si.

We call C a codebook consisting of codepoints ci. Every Si ∈ S is called a
codecell. Clearly, C = q(Rd). Moreover, if we assume w.l.o.g. that ci 6= cj
for every i, j ∈ I, i 6= j, then

S = {q−1(z) : z ∈ q(Rd)}.

Denote by Qd the set of all quantizers and by δa the Dirac measure in a ∈ Rd.
For every q ∈ Qd, the image measure

µ ◦ q−1(·) =
∑
i∈I

µ(Si)δci(·)

has a countable support and defines an approximation of µ, the so-called
quantization of µ by q. Now let P be the space of all probability vectors on
[0, 1]N, i.e., for every p = (pi)i∈N ∈ P we have pi ∈ [0, 1] and

∑∞
i=1 pi = 1.

Definition 2.1. We call a mapping P 3 p → H(p) ∈ [0,∞] a complexity
mapping if

(a) for any bijection τ : N → N and (pi)i∈N ∈ P we have H((pi)i∈N) =
H((pτ(i))i∈N), and
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(b) for every p ∈ P and k ≥ 2 with pk = (p1, .., pk−1,
∑

i≥k pi, 0, ..) ∈ P we

have H(pk) ≤ H(p).

With any enumeration {i1, i2, ...} of I we define

Hµ(q) = H((µ(Si1), µ(Si2), ...))

as the H−complexity of q w.r.t µ. Now we intend to quantify the distance
between µ and its approximation under q. To this end, let ‖ · ‖ be the
Euclidean norm on Rd and l : [0,∞) → [0,∞) a strictly increasing (and
therefore Borel-measurable) distance mapping with l(0) = 0. For q ∈ Qd we
define as the distance between µ and µ ◦ q−1 the quantization error

Dµ(q) =

∫
l(‖ x− q(x) ‖)dµ(x). (1)

For any R ≥ 0 we denote

DH
µ (R) = inf{Dµ(q) : q ∈ Qd, Hµ(q) ≤ R} (2)

as the optimal quantization error of µ under H-complexity bound R. We call
a quantizer q optimal for µ under H-complexity bound R if Dµ(q) = DH

µ (R).
Denote by Q∗d the set of all quantizers whose range is finite. It is essential

for this paper and also of principal interest that we can replace Qd with Q∗d
in relation (2) under a moment condition on µ. To this end, let M(Rd) be
the set of all Borel probability measures on Rd with finite l−moment, i.e.∫
l(‖x‖)dµ(x) <∞ for every µ ∈M(Rd). The following statement is proved

in the appendix.

Proposition 2.2. Let µ ∈ M(Rd). For every complexity mapping H and
bound R ≥ 0 we have

DH
µ (R) = inf{Dµ(q) : q ∈ Q∗d, Hµ(q) ≤ R}.

As already stated in the introduction, two choices for the complexity
mapping are of great practical importance. Quantization with the complexity
mapping

P 3 p→ H(p) = log(
∑
i∈N

1(0,1](pi)) (3)
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is called memory-size constrained quantization if we denote by 1A the char-
acteristic function on a set A ⊂ Rd. If

P 3 p→ H(p) = −
∑
i∈N

pi log(pi), (4)

then we are talking of (Shannon-)entropy constrained quantization. Rényi-α-
entropy as a more general complexity constraint is discussed in section 4. For
memory-size constrained quantization, optimal quantizers exist under weak
assumptions on µ (see e.g. [8, Thm. 4.12], [24]). If µ is non-atomic, György
and Linder [12, Thm. 3] have shown for (Shannon-)entropy constrained
quantization in the one-dimensional case that always optimal quantizers ex-
ist. If µ is absolutely continuous with respect to the Lebesgue measure and
l(x) = x2, then this existence results holds also for higher dimensions (cf.
[13, Thm. 3]). Unfortunately, optimal quantizers do not exist in general.
There are complexity mappings H which lead to the non-existence of opti-
mal quantizers (cf. [16, Thm. 3.1]).

2.2. Transportation theory and its relation to quantization and the Wasser-
stein distance

The problem of optimal transportation in the sense of Kantorovich [15]
can be stated on finite dimensional spaces as follows: Let X and Y be closed
and non-empty subsets of Rd. Let µ be a Borel probability measure on X and
ν be a Borel probability measure on Y . Consider the set Γ(µ, ν) of all Borel
probability measures on X ×Y with first marginal µ and second marginal ν.
Kantorovich’s problem was to determine the minimal transport cost

w(µ, ν) = inf{
∫
X×Y

c(x, y)dγ(x, y) : γ ∈ Γ(µ, ν)} (5)

with the measurable cost function c(·, ·) : X × Y → [0,∞). We call γ ∈
Γ(µ, ν) an optimal transport plan if

w(µ, ν) =

∫
X×Y

c(x, y)dγ(x, y).

Because the cost function has only non-negative values in our setting, an
optimal solution always exists (cf. [31, Thm. 4.1]). Now we specify for the
rest of this paper

c(x, y) = l(‖x− y‖) for every (x, y) ∈ X × Y.
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Definition 2.3. A transport plan γ ∈ Γ(µ, ν) is said to be deterministic
if a measurable mapping q : X → Y exists, such that γ = µ ◦ φ−1 with the
mapping

X 3 x→ φ(x) = (x, q(x)).

The mapping q is called Monge mapping or transport mapping.

Consequently, every deterministic transport plan is induced by a Monge
mapping q which is µ-almost surely uniquely defined (when the transport plan
has been fixed). Moreover, ν = µ ◦ q−1. Roughly speaking, one could say
that the Monge mapping q transports the mass represented by the measure
µ to the mass represented by the measure ν.

If we restrict the transport plans in (5) to be deterministic, the problem
of optimal transport turns into the so-called Monge transportation problem,
where we have to determine the optimal Monge mapping q, such that∫

l(‖x− q(x)‖)dµ(x)

= inf{
∫
l(‖x− t(x)‖)dµ(x) : t measurable , µ ◦ t−1 = ν}

= inf{
∫
X×Y

c(x, y)dγ(x, y) : γ ∈ Γ(µ, ν), γ deterministic }. (6)

Now, if we compare (5), (6) and (1), it turns out that the optimal total
cost of transportation would be a quantization error if the optimal transport
plan would be deterministic and the related optimal Monge map would be a
quantizer. The following Theorem 2.6 states that this is the case if the target
distribution ν is discrete and the source distribution µ satisfies a certain
continuity assumption. Our proof of this fundamental statement relies on
principal results in the theory of optimal mass transportation. We need the
following definition:

Definition 2.4. [31, Definition 5.2 and Remark 5.6] A mapping f : X → R
is said to be c−convex if there exists a mapping g : Y → R such that

f(x) = sup{g(y)− c(x, y) : y ∈ Y } for every x ∈ X.

Moreover, the c−subdifferential or c−subgradient ∂cf(x) of the mapping f at
the point x ∈ X is defined by

∂cf(x) = {y ∈ Y : f(x) + c(x, y) ≤ f(z) + c(z, y) for every z ∈ X}.
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We rely in this paper on the following fundamental result. Recall defini-
tion (5) of w(µ, ν). Denote by card the cardinality of a set.

Theorem 2.5. [31, Theorem 5.30] Assume that w(µ, ν) < ∞. If for any
c−convex mapping f : X → R the set

{x ∈ X : card(∂cf(x)) > 1}

is contained in a µ−measure-zero set, then there exists a unique optimal
transport plan γ which is deterministic. The Monge map q which induces γ
is characterized by the existence of a c−convex function f̃ such that

q(x) ∈ ∂cf̃(x) for µ− a.e. x ∈ X.

Now we intend to apply Theorem 2.5 to a discrete target distribution ν
on Rd. To be precise, let m ∈ N and a1, .., am ∈ Rd be m different points in
Rd. Let p1, .., pm ∈ (0, 1] be such that

∑m
i=1 pi = 1 and let

ν =
m∑
i=1

piδai (7)

For (λ1, .., λm) ∈ Rm and i ∈ {1, ..,m}, we define the set

Ai = Ai(λ1, .., λm) (8)

= {x ∈ Rd : l(‖x− ai‖)− λi = min{l(‖x− aj‖)− λj : j ∈ {1, ..,m}}}.

Moreover, let

Q(ν) = {q ∈ Q∗d : q(Rd) = {a1, .., am}
with µ(q−1(ai)) = pi for every i ∈ {1, ..,m}}

Theorem 2.6. Let ν be a discrete probability on Rd as defined in (7). As-
sume that µ vanishes on the boundary of Ai(β1, .., βm) for every (β1, .., βm) ∈
Rm and i ∈ {1, ..,m}. If w(µ, ν) < ∞, then a quantizer q ∈ Q(ν) and
(λ1, .., λm) ∈ Rm exist, such that

w(µ, ν) =

∫
l(‖x− q(x)‖)dµ(x)

= min{
∫
l(‖x− q̃(x)‖)dµ(x) : q̃ ∈ Q(ν)}
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and

q−1(ai) = Ai(λ1, .., λm) µ− almost surely for every i ∈ {1, ..,m}.

The quantizer q is µ−almost surely uniquely defined, i.e. we have µ ◦ q−1 =
µ ◦ q̃−1 for every q̃ ∈ Q(ν) which attains the above minimum .

Theorem 2.6 is proved in the appendix by applying Theorem 2.5. If r ≥ 1
and l(x) = xr, then the mapping

ρr(·, ·) = l−1 ◦ w(·, ·) = w(·, ·)1/r (9)

is a metric onM(Rd)×M(Rd) (see e.g. [31, Definition 6.1]) and often called
Wasserstein distance. In this paper, we are generally interested in such
continuous distance mappings l, where l−1◦w satisfies the triangle inequality,
i.e. if for every µ1, µ2, µ3 ∈M(Rd) with w(µ1, µ3) <∞ the relation

l−1(w(µ1, µ3)) ≤ l−1(w(µ1, µ2)) + l−1(w(µ2, µ3))

holds. Even if the triangle inequality is satisfied, it is not clear if the mapping
l−1◦w has always finite values. Thus l−1◦w does not satisfy a priori all axioms
of a metric, even if the triangle inequality is in force. For a historical overview
of Kantorovich’s problem and further aspects of transportation theory, the
reader is referred to Rüschendorf [28] and the references therein. Ambrosio
et.al. [4] is also a good source of information for Wasserstein distances.

3. The optimal quantization error in terms of a Wasserstein dis-
tortion

Recall M(Rd) as the set of all Borel probability measures on Rd with
finite l−moment. We denote by supp(µ) the support of µ ∈ M(Rd) and
define

M∗(Rd) = {µ ∈M(Rd) : card(supp(µ)) <∞},
M∞(Rd) = {µ ∈M(Rd) : card(supp(µ)) ≤ card(N)}.

Let ν ∈ M∞(Rd) and denote supp(ν) = {ai : i ∈ I} with I ⊂ N. By
adding zeros - if necessary - the distribution ν induces a probability vector
pν ∈ P , where

∑∞
i=1 p

ν
i =

∑
i∈I ν(ai) = 1. According to property (a) of H

the mapping ν → H(pν) is well-defined. For µ ∈ M(Rd) and R ≥ 0 we
define

V H
µ (R) = inf{w(µ, ν) : ν ∈M∞(Rd), H(pν) ≤ R}
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as the optimal total cost of transportation for source distribution µ, where the
target distributions ν have countable support and induce a H−complexity
which is lower or equal than the bound R. If l ◦ w−1 satisfies the triangle
inequality or l is bounded, then we can replace M∞(Rd) by M∗(Rd) in the
definition of V H

µ (R). The following statement is proved in the appendix.

Proposition 3.1. Let µ ∈M(Rd) and assume that l is continuous and l−1◦w
satisfies the triangle inequality or assume that l is bounded and continuous.
For every complexity mapping H and bound R ≥ 0 we have

V H
µ (R) = inf{w(µ, ν) : ν ∈M∗(Rd), H(pν) ≤ R}. (10)

Because we are interested in the case where the target distributions ν are
induced by a quantizer whose range is finite, we also define

WH
µ (R) = inf{w(µ, µ ◦ q−1) : q ∈ Q∗d, Hµ(q) ≤ R}. (11)

Obviously,
V H
µ (R) ≤ WH

µ (R). (12)

Example 4.3 will show that inequality (12) can be strict. Recall definition
(2) of the optimal quantization error DH

µ (R). In view of Proposition 2.2
and Proposition 3.1 it is natural to ask under which conditions (if any) the
quantities WH

µ (R), V H
µ (R) and DH

µ (R) coincide. In addition to this question
(which will be answered in Theorem 3.2), we want to know more about
the codecell geometry of the quantizers. Such knowledge has proved very
useful in analyzing optimal scalar and vector quantizer performance [9]. Of
particular interest is the question if it suffices to consider in definition (2)
only quantizers whose image has finite cardinality and whose codecells are
convex polytopes. To be precise, let a ∈ Rd and b ∈ Rd, a 6= b. We define the
closed halfspace

T (a, b) = {x ∈ Rd : ‖x− a‖ ≤ ‖x− b‖}. (13)

We call a set P ⊂ Rd a convex polytope, if P is a finite intersection of closed
or open halfspaces. Let Qcd ⊂ Q∗d be the set of all quantizers where each
codecell is a convex polytope and every codepoint of such codecell lies in the
closure of the codecell. We define

DH,c
µ (R) = inf{Dµ(q) : q ∈ Qcd, Hµ(q) ≤ R}.
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From the definition we immediately obtain for any R ≥ 0 that

DH
µ (R) ≤ DH,c

µ (R). (14)

Inequality (14) can be strict (cf. [12, Example 1]), but Theorem 3.2 below
states conditions under which (14) turns into an equation. We are interested
in two subclasses of distance functions, namely

(C1) l is continuous, twice continuously differentiable with l′′ ≥ 0 in (0,∞)
and l−1 ◦ w satisfies the triangle inequality

(C2) l is continuous, twice continuously differentiable with l′′ ≤ 0 in (0,∞)
and bounded.

Now we can state the main result of this paper. Theorem 3.2 will be
proved in the appendix.

Theorem 3.2. Let µ ∈ M(Rd) and assume that µ vanishes on continu-
ously differentiable (d− 1)-dimensional submanifolds of Rd. Let the distance
function l be of type (C1) or (C2). For every R ≥ 0 we have

V H
µ (R) = WH

µ (R) = DH
µ (R). (15)

Additionally, if

(a) d = 1 and l is of type (C1), or
(b) d > 1 and l(x) = x2 for every x ≥ 0, then

DH,c
µ (R) = DH

µ (R). (16)

As already stated, (cf. 9) the distance mappings l(x) = xr satisfy con-
dition (C1). Now we state a criterion for distance mappings ensuring that
they satisfy condition (C1). To this end, we need the following definition.

Definition 3.3. A mapping f : [0,∞)→ [0,∞) is called superadditive, if

f(x+ y) ≥ f(x) + f(y) for every x, y ∈ [0,∞).

Remark 3.4. Consider the following classes of distance functions

(D1) l is continuous, twice continuously differentiable with l′′ > 0 in (0,∞)
and the mapping l′

l′′
is superadditive in (0,∞)
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(D2) l(x) = x for every x ∈ [0,∞).

Lemma A.2 states that every distance mapping which satisfies (D1) or (D2)
also satisfies condition (C1). Insofar, Theorem 3.2 holds also for distance
mappings which satisfy (D1) or (D2).

Example 3.5. The function l(x) = x exp(−1/x) for x > 0, l(0) = 0 lies in
class (D1) and thus according to Remark 3.4 also in class (C1). Theorem
3.2 is also applicable for the concave distance mappings l(x) = arctan(x) or
l(x) = tanh(x) as elements of class (C2).

Remark 3.6. Common distance mappings are those who satisfy an Orlicz’s
condition (see e.g. [25, Example 2.2.1])

sup{l(2x)/l(x) : x > 0} <∞. (17)

It is not difficult to construct distance mappings which are continuous, twice
continuously differentiable with l′′ ≥ 0 in (0,∞) and satisfying (17), but are
not superadditive. It remains open whether Theorem 3.2 is still true if we
replace the triangle inequality for l−1 ◦ w in (C1) by condition (17).

Example 4.3 will show that Theorem 3.2 becomes invalid in general if
we drop that µ vanishes on continuously differentiable (d − 1)-dimensional
submanifolds of Rd. We denote by λd the d−dimensional Lebesgue measure
on Rd.

Remark 3.7. Every Borel measure µ on Rd which is absolutely continuous
with respect to λd, vanishes on continuously differentiable (d−1)-dimensional
submanifolds of Rd. By a result of Mattila [23], also the Hausdorff measure
restricted to a self-similar set whose span equals Rd and satisfies the open set
condition, vanishes on continuously differentiable (d − 1)-dimensional sub-
manifolds of Rd.

Remark 3.8. The boundedness of the distance mapping in the definition of
class (C2) and the triangle inequality in (C1) is only needed in the proof of
Proposition 3.1. These are sufficient conditions to ensure that equation (10)
is true. It remains open to characterize those distance mappings l for which
equation (10) is true.

The identity (16) has already been shown by György and Linder [12, 13].
Although they investigate only the case of (Shannon-)entropy constrained
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quantization, their proof works also in our more general setting, because
their construction of a (finite) quantizer with convex codecells always starts
from an arbitrary one by redefining the codecells to convex ones but having
the same probability.

For the special distance mapping l(x) = xr with fixed norm exponent
r ≥ 1, we can easily derive a consistency result for the optimal quantization
error. In the special case of memory-size constrained quantization, the result
is well-known (see e.g. [8, p. 57], [24, Thm. 9]). Recall the definition (9) of
Wasserstein distance ρr.

Corollary 3.9. Let µ1, µ2 ∈M(Rd) and assume that µi vanishes on contin-
uously differentiable (d − 1)-dimensional submanifolds of Rd for i ∈ {1, 2}.
Let r ≥ 1 and assume that l(x) = xr for every x ≥ 0. Let R ≥ 0. Then

|(DH
µ1

(R))1/r − (DH
µ2

(R))1/r| ≤ ρr(µ1, µ2). (18)

Proof. We distinguish two cases.

1. DH
µ1

(R) ≥ DH
µ2

(R).

Let ε > 0. According to Theorem 3.2, let ν2 ∈M∞(Rd), such that H(pν2) ≤
R and

(DH
µ2

(R))1/r ≥ ρr(µ2, ν2)− ε.

Again by Theorem 3.2, we obtain

|(DH
µ1

(R))1/r − (DH
µ2

(R))1/r|
= (DH

µ1
(R))1/r − (DH

µ2
(R))1/r

≤ inf{ρr(µ1, ν)− ρr(µ2, ν2) : ν ∈M∞(Rd), H(pν) ≤ R}+ ε

≤ inf{ρr(µ1, µ2) + ρr(ν, ν2) : ν ∈M∞(Rd), H(pν) ≤ R}+ ε

= ρr(µ1, µ2) + ε.

By letting ε→ 0, we obtain (18).

2. DH
µ1

(R) < DH
µ2

(R).

This case is handled similarly to the first one.

Corollary 3.9 becomes invalid if we drop the condition that µi vanishes
on continuously differentiable (d − 1)-dimensional submanifolds of Rd for
i ∈ {1, 2}. For a (counter-)example, the reader is referred to [12, Example
2]. Insofar we cannot apply Corollary 3.9 to the important case, where
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µ2 = µ
(n)
2 is the empirical (n−sample) version of µ1. Although we know

that consistency in this empirical case holds for memory-size constrained
quantization ([8, Corollary 4.24]), it remains open if this is true in general.

Nevertheless, Corollary 3.9 could also be of practical relevance for algo-
rithmic quantizer design. Algorithms for designing optimal quantizers often
converge to a local error minimum which is not a global one. To avoid this
effect, a perturbation approach has been proposed [1, 19] in case of memory-
size constrained quantization. The original distribution µ is approximated
(in a weak sense) by µn = (1 − an)µ + anν, where (an) ⊂ (0, 1) is a se-
quence decreasing to zero. ν represents a distribution which has a unique
local (and global) optimal quantizer. Now if an optimal quantizer for µn is
used as the initial (suboptimal) quantizer for µn+1, the algorithm is likely to
converge to a (global) optimal quantizer for µn+1. Corollary 3.9 ensures that
the quantization errors of these (global) optimal quantizers converge towards
the optimal quantization error for µ. It needs further research to determine
if this approach also works for general complexity mappings.

4. Rényi-α-entropy as complexity and comparison with known re-
sults

Let us give an exact definition of Rényi-α-entropy [26, 29]. Let N :=
{1, 2, ..}. Let α ∈ [−∞,∞] and p = (p1, p2, ...) ∈ P . The Rényi-α-entropy
Hα(p) ∈ [0,∞] is defined as (cf. [3, Definition 5.2.35], see also [14], p.1)

Hα(p) =


−
∑∞

i=1 pi log(pi), if α = 1

− log (sup{pi : i ∈ N}), if α =∞
− log (inf{pi : i ∈ N, pi > 0}), if α = −∞

1
1−α log (

∑∞
i=1 p

α
i ) , if α ∈ (−∞,∞)\{1}.

We use the conventions 0·log(0) := 0 and 0x := 0 for all real x ≥ 0. Moreover,
1/0 :=∞. The logarithm log is based on e.

Remark 4.1. With these conventions we obtain

H0(p) = log(
∑
i∈N

1(0,1](pi)).

Using l’Hospital’s rule it is easy to see, that the case α = 1 will be reached
from α 6= 1 by taking the limit α → 1. (see e.g. [3, Remark 5.2.34]).
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Moreover, one has

lim
α→∞

Hα(·) = H∞(·) and lim
α→−∞

Hα(·) = H−∞(·).

Now let us show thatHα is a complexity mapping in the sense of definition
2.1.

Proposition 4.2. The mapping Hα is a complexity mapping for every α ∈
[−∞,∞].

Proof. Clearly, Hα satisfies condition (a) of a complexity mapping. To show
that condition (b) of a complexity mapping is also satisfied, we distinguish
several cases.

1. α ∈ {−∞, 0,∞}
In this case, we deduce immediately from the definition that Hα satisfies
condition (b).

2. α = 1.

Let p ∈ P and k ≥ 2 with pk = (p1, .., pk−1,
∑

i≥k pi, 0, ..) ∈ P . If H1(p) =∞,
then we have nothing to prove. So, let us assume that H1(p) < ∞. From
recursivity of Shannon entropy (cf. [3, relation (1.2.8)]), we obtain

H1(pk) ≤ H1(pk+1)

Due to H1(pk) → H1(p) < ∞ if k → ∞ we obtain that condition (b) is
satisfied.

3. α ∈ (−∞, 1)\{0}.
Let p ∈ P and k ≥ 2. Due to α < 1 we obtain with the convention 1/0 :=∞
that

∞∑
i=k

pαi ≥ (
∞∑
i=k

pi)
α, (19)

yielding Hα(pk) ≤ Hα(p).

4. α ∈ (1,∞).

In this case, inequality (19) holds in reversed order, yielding again Hα(pk) ≤
Hα(p).

In view of relation (3) memory-size constrained quantization is quantiza-
tion with complexity H0 and according to (4) Shannon-entropy constrained
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quantization uses H1 as complexity mapping. Quantization with Rényi-α-
entropy as complexity has been investigated in [16, 17, 18].

As already announced in section 3 we will now give an example show-
ing that Theorem 3.2 becomes invalid in general if µ does not vanish on
continuously differentiable (d− 1)-dimensional submanifolds of Rd.

Example 4.3. Let l(x) = x2 for x ≥ 0 and d = 1. Let z ∈ (1/2, 1) and

µ = (1/3) · (δ0 + δz + δ1).

Let α > 0 and p = (1/3, 2/3, 0, ..) ∈ P. Define R0 = Hα(p). Now let

ν = (1/5) · δ0 + (4/5) · δ(1+z)/2.

It is plain to see that Hα(pν) < R0. Now let R ∈ (0, R0). Let q ∈ Q1 with
Hα
µ (q) ≤ R. From the definition of R0 we obtain that q consists of only one

codecell. As shown in [8, Example 2.3(b)], the optimal codepoint {c} = q(R)
equals the centre of mass, i.e.

c =
1 + z

3
.

We calculate

Dµ(q) =
1

3
((0− c)2 + (z − c)2 + (1− c)2)

=
2

9
(1− z + z2) = DHα

µ (R′)

for every R′ ≤ R. Because q consists of only one codecell, we obtain

WH
µ (R) = Dµ(q) = DHα,c

µ (R). (20)

On the other hand we have

ρ2
2(µ, ν) ≤ 1

5
· 02 + (

1

3
− 1

5
) · (1 + z

2
)2 + 2 · 1

3
(
1 + z

2
− z)2

=
1

5
(1− 4

3
z + z2).

Together with (12) and (20) we deduce

V H
µ (R) < WH

µ (R) = DHα

µ (R) = DHα,c
µ (R).
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Remark 4.4. For distance mapping l(x) = x2 and Shannon-entropy as com-
plexity (α = 1), an identity similar to (15) has been proved by Linder [20,
Lemma 1] for the so-called Lagrangian distortion. But for an entropy bound
R > 0, this modified distortion only coincides with the quantization error (2)
if the point (R,DH1

µ (R)) lies on the lower convex hull of the mapping DH1

µ (·),
which is not the case in general (cf. [11, 16]).

Remark 4.5. Assume that l is of class (D2), i.e. equals the identity, and
α = 1. Moreover, assume that µ is absolutely continuous with respect to λd

and has a compact support. In this special case, Matloub et.al. [22] have
shown for every ε > 0 that

DH1

µ (R + ε) ≤ V H
µ (R) ≤ DH1

µ (R). (21)

This result follows from Theorem 3.2. If α = 0 and l(x) = xr with r ≥ 1,
then it is well-known (see e.g. [8, Lemma 3.3, Lemma 3.4], [24]) that the
equations (15) and (16) are true.

Remark 4.6. If α = 1 and l is of type (D2), then we could immediately
deduce equation (15) from relation (21) if the mapping DH1

µ (·) would be con-
tinuous. Although Theorem 3.2 is true for every α ∈ [−∞,∞], the mapping
DHα

µ (·) is generally non-continuous for α ≤ 0 (see e.g. [18, Lemma 7.2],
[8, Example 5.5]). In case of α > 0, the mapping DHα

U([0,1])(·) has been com-

pletely determined and is Lipschitz continuous if U([0, 1]) denotes the uniform
distribution on [0, 1] (cf. [16]). It remains open if DHα

µ (·) is Lipschitz con-
tinuous for α > 0 and distributions µ which are vanishing on continuously
differentiable (d− 1)-dimensional submanifolds of Rd.

Remark 4.7. In view of (8), optimal codecells for finite quantizers are no
polytopes in general if l(x) 6= x2. For illustrations of such codecells, the reader
is referred to [27, chapter 1.2], [6, Fig. 2] and [2]. For a detailed study of the
topological properties of the codecells defined by (8), the author recommends
[5]. If l(x) = x2, then the polytopes defined in (8) are often called Laguerre
tesselations in the literature (cf. [10]).

A. Appendix

Recall 1A as the characteristic function on a set A ⊂ Rd.

16



Proof of Proposition 2.2.
Obviously, we can assume w.l.o.g. that DH

µ (R) < ∞. Let ε > 0. According
to relation (2), let q ∈ Qd with Hµ(q) ≤ R and DH

µ (R) ≥ Dµ(q)− ε. Denote
q(Rd) = {ai : i ∈ I} with a countable set I ⊂ N and points ai ∈ Rd, such
that ai 6= aj for every i, j ∈ I with i 6= j. Because

∫
l(‖x‖)dµ(x) < ∞ and

due to

∞ > Dµ(q) =
∑
i∈I

∫
q−1(ai)

l(‖x− ai‖)dµ(x),

a finite set J ⊂ I exists, such that∫
∪i∈I\Jq−1(ai)

l(‖x− ai‖)dµ(x) < ε (22)

and ∫
∪i∈I\Jq−1(ai)

l(‖x‖)dµ(x) < ε. (23)

Now we define the quantizer

qJ =
∑
j∈J

aj1q−1(aj) + 0 · 1∪i∈I\Jq−1(ai).

Let M <∞ be the cardinality of J and {j1, .., jM} be an enumeration of J .
Let us first assume that 0 ∈ {aj : j ∈ J}, i.e. a k ∈ {1, ..,M} exists, such
that ajk = 0. Applying property (a) and (b) of H from definition 2.1, we
obtain

Hµ(qJ) = H(µ(q−1(aj1)), .., µ(q−1(ajk−1
)), µ(∪i∈{jk}∪I\Jq

−1(ai)),

µ(q−1(ajk+1
)), .., µ(q−1(ajM )), 0, ..)

≤ H(µ(q−1(aj1)), .., µ(q−1(ajM )), µ(∪i∈I\Jq−1(ai)), 0, ..). (24)

If 0 /∈ {aj : j ∈ J}, then (24) turns into an equation. Again, by property (a)
and (b) of H from definition 2.1, we deduce in any case that

Hµ(qJ) ≤ H(µ(q−1(aj1)), .., µ(q−1(ajM )), µ(∪i∈I\Jq−1(ai)), 0, ..)

≤ Hµ(q) ≤ R.
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Now we derive from (22) and (23) that

DH
µ (R) ≥ Dµ(q)− ε

≥ Dµ(qJ)− |Dµ(q)−Dµ(qJ)| − ε

≥ Dµ(qJ)− |
∫
∪i∈I\Jq−1(ai)

(l(‖x− q(x)‖)− l(‖x‖))dµ(x)| − ε

≥ Dµ(qJ)− 3ε.

By letting ε→ 0 we get

DH
µ (R) ≥ inf{Dµ(q) : q ∈ Q∗d, Hµ(q) ≤ R}

≥ inf{Dµ(q) : q ∈ Qd, Hµ(q) ≤ R} = DH
µ (R),

which yields the assertion.

Proof of Theorem 2.6.
From definition (5) we obtain

w(µ, ν) = inf{
∫

Rd×Rd
l(‖x− y‖)dγ(x, y) : γ ∈ Γ(µ, ν)}.

For every γ ∈ Γ(µ, ν), the second marginal of γ equals ν and, therefore,
has support {a1, .., am}. Let ν̃ be the restriction of ν to {a1, .., am}. Recall
(cf. [31, Thm. 4.1]) that an optimal solution always exists, i.e. choose
γ̃ ∈ Γ(µ, ν), such that w(µ, ν) =

∫
Rd×Rd l(‖x− y‖)dγ̃(x, y). Because the

support of γ̃ is concentrated on Rd × {a1, .., am} (see also [31, Thm. 5.19]),
we deduce that

w(µ, ν) = inf{
∫

Rd×{a1,..,am}
l(‖x− y‖)dγ(x, y) : γ ∈ Γ(µ, ν̃)}

=

∫
Rd×{a1,..,am}

l(‖x− y‖)dγ0(x, y)

with γ0 as the restriction of γ̃ to Rd × {a1, .., am}. If we denote by c̃ the
restriction of c to Rd × {a1, .., am}, then γ0 is also an optimal solution of the
Kantorovich problem for source µ and target ν̃ on Rd×{a1, .., am}. Now let f
be a c̃−convex mapping on Rd. According to Definition 2.4, let β1, .., βm ∈ R
such that

f(x) = max{βi − l(‖x− ai‖) : i ∈ {1, ..,m}} for every x ∈ Rd.
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Next we will show that

Ai(β1, .., βm) = {x ∈ Rd : ai ∈ ∂c̃f(x)}. (25)

To this end, let x ∈ Ai(β1, .., βm). Applying (8) we obtain for every z ∈ Rd

that

f(x) = βi − l(‖x− ai‖)
= l(‖z − ai‖) + βi − l(‖z − ai‖)− l(‖x− ai‖)
≤ l(‖z − ai‖) + max{βj − l(‖z − aj‖) : j ∈ {1, ..,m}} − l(‖x− ai‖)
= c̃(z, ai) + f(z)− c̃(x, ai).

Consequently, ai ∈ ∂c̃f(x) according to Definition 2.4. Now let x ∈ Rd, such
that ai ∈ ∂c̃f(x). Let z ∈ Rd. Choose ix, iz ∈ {1, ..,m}, such that

f(z) = βiz − l(‖z − aiz‖) and f(x) = βix − l(‖x− aix‖). (26)

Using ai ∈ ∂c̃f(x) we deduce

f(x) + l(‖x− ai‖) ≤ f(z) + l(‖z − ai‖). (27)

Combining (26) and (27) we obtain

l(‖x− ai‖)− βiz ≤ l(‖x− aix‖)− βix − l(‖z − aiz‖) + l(‖z − ai‖). (28)

Now specialize z ∈ Rd, such that iz = i. Because Ai(β1, .., βm) is non-empty
for every i ∈ {1, ..,m} such a choice for z is always possible. From (28) we
get

l(‖x− ai‖)− βi ≤ l(‖x− aix‖)− βix
= min{l(‖x− aj‖)− βj : j ∈ {1, ..,m}}.

Thus, x ∈ Ai(β1, .., βm) which proves (25). Now let x ∈ Rd with card(∂c̃f(x)) >
1. In view of (25), we know that i, j ∈ {1, ..,m} exist with i 6= j such that
x ∈ Ai(β1, .., βm) ∩ Aj(β1, .., βm). Hence,

l(‖x− ai‖)− βi = l(‖x− aj‖)− βj

Because ai 6= aj, we will assume w.l.o.g. that x 6= aj. According to Definition
(8), we can find for every ε > 0 a point z ∈ Rd such that

‖z − x‖ < ε, ‖x− aj‖ = ‖z − aj‖ and ‖x− ai‖ < ‖z − ai‖.
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Because l is strictly increasing, we obtain

l(‖z − ai‖)− βi > l(‖z − aj‖)− βj,

yielding that z lies in the complement of Ai(β1, .., βm). This implies that
x is an element of the boundary of Ai(β1, .., βm), i.e. the set {x ∈ Rd :
card(∂c̃f(x)) > 1} is contained in a µ−measure zero set by our assumption.
Now we can apply Theorem 2.5 which implies that γ0 is deterministic. Let
q0 be the Monge map which induces γ0 and let f̃ be the c̃−convex function,
such that

q0(x) ∈ ∂c̃f̃(x) for µ− a.e. x ∈ Rd.

From above and Definition 2.4 we deduce that for µ−almost every x ∈ Rd

exactly one i ∈ {1, ..,m} exist, such that ai ∈ ∂c̃f̃(x), i.e. q0(x) = ai. Now
let B1, .., Bm be a partition of Rd with

Bi = {x ∈ Rd : ai ∈ ∂c̃f̃(x)} µ− almost surely.

According to Definition 2.4 and relation (25), we obtain that (λ1, .., λm) ∈ Rm

exist such that for every i ∈ {1, ..,m} the set Bi equals µ−almost surely the
set Ai(λ1, .., λm). Consequently, we can assume w.l.o.g. that Bi is measurable
for every i ∈ {1, ..,m}. Now we define the quantizer q with q(x) = ai
if x ∈ Bi. Because q(x) = q0(x) for µ−almost every x ∈ Rd and q0 is
a Monge map for γ0 ∈ Γ(µ, ν̃) we obtain that µ ◦ q−1 = ν, which yields
µ ◦ q−1(ai) = ν({ai}) = pi for every i ∈ {1, ..,m}. We get

w(µ, ν) =

∫
l(‖x− q0(x)‖)dµ(x) =

∫
l(‖x− q(x)‖)dµ(x).

Now let q̃ ∈ Q(ν). Because q̃ induces a transport plan π ∈ Γ(µ, ν̃), we
have w(µ, ν) ≤

∫
l(‖x − q̃(x)‖)dµ(x). If w(µ, ν) =

∫
l(‖x − q̃(x)‖)dµ(x),

then π = γ0 according to Theorem 2.5. Thus, we obtain again from above
considerations that q̃(x) = q(x) for µ-almost every x ∈ Rd, which finally
proves the assertion.

We denote with ∇F the gradient of a differentiable mapping F : Rd → R.

Lemma A.1. Let µ ∈ M(Rd) and assume that µ vanishes on continu-
ously differentiable (d − 1)-dimensional submanifolds of Rd. Let m ∈ N
and a1, .., am ∈ Rd be m different points in Rd. Let λ1, .., λm ∈ R and
Aj = Aj(λ1, .., λm) as defined in (8). If l is of type (C1) or (C2), then
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the boundary of Aj has zero µ−measure. Additionally, if d = 1 and l is of
type (C1), then Aj is an interval.

If d > 1 and l(x) = x2 for every x ≥ 0, then Aj is a convex polytope.

Proof. Let j ∈ {1, ..,m}. Obviously, we can write

Aj = ∩mi=1,i 6=j{x ∈ Rd : l(‖x− aj‖)− l(‖x− ai‖) ≤ λj − λi} (29)

For every i ∈ {1, ..,m}\{j} we define

Gj,i = {aj + λ(aj − ai) : λ ∈ R}

and for every x ∈ Rd let

Ψj,i(x) = l(‖x− aj‖)− l(‖x− ai‖).

Let Gj = ∪mi=1,i 6=jGj,i. In order to show that the boundary of Aj has zero
µ−measure, we distinguish several cases.

1. d = 1.

1.1. l is of type (C1).

We proceed as in the proof of [12, Lemma 1]. Let i ∈ {1, ..,m}\{j} and
assume w.l.o.g. that ai > aj. If x < aj, then

Ψ′j,i(x) = l′(ai − x)− l′(aj − x).

Due to l′′ ≥ 0 we obtain that Ψj,i is monotone increasing on (−∞, aj). If
x > ai, then we deduce by similar considerations that Ψ′j,i(x) ≥ 0, i.e. Ψj,i is
monotone increasing on (ai,∞). If aj < x < ai, then we obtain that

Ψ′j,i(x) = l′(ai − x) + l′(x− aj).

Due to l′ > 0 we get that Ψ′j,i is strictly increasing on (aj, ai). Obviously,

Ψj,i is continuous on R. Hence, Ψ−1
j,i ((−∞, λj − λi]) is an (possibly empty

or degenerate) interval. Due to (29), Aj is a finite intersection of intervals,
yielding that the boundary of Aj consists of a finite set. Because µ is non-
atomic, the assertion is proved in this case.

1.2. l is of type (C2).

Due to l′′ ≤ 0, we obtain similar to above that Ψj,i is monotone decreasing
on (−∞, aj) and (ai,∞). Moreover, Ψj,i is strictly increasing on (aj, ai) and
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continuous on R. Note also that Ψj,i is negative on (−∞, aj) and positive on
(ai,∞). Hence, Ψ−1

j,i ((−∞, λj−λi]) consists of at most two intervals. Hence,
the assertion is proved as in case 1.2.

2. d > 1.

Let i ∈ {1, ..,m}\{j}. Let x ∈ Rd\Gj. The mapping Ψj,i is differentiable on
Rd\Gj and we obtain

∇Ψj,i(x) = l′(‖x− aj‖)
x− aj
‖x− aj‖

− l′(‖x− ai‖)
x− ai
‖x− ai‖

.

Because x /∈ Gj, we know that x−aj and x−ai are linearly independent and
min(‖x − aj‖, ‖x − ai‖) > 0. Because l′ has no zeros on (0,∞), we obtain
∇Ψj,i(x) 6= 0. If λj − λi ∈ Ψj,i(Rd\Gj), then the submersion theorem yields
that Ψ−1

j,i (λj − λi)\Gj is covered by a continuously differentiable (d − 1)-

dimensional submanifold of Rd\Gj. Because Gj as a finite union of lines can
be covered by a finite union of (d − 1)-dimensional hyperplanes, we finally
obtain that Ψ−1

j,i (λj − λi) is always covered by a finite union of continuously

differentiable (d−1)-dimensional submanifolds of Rd. Note that the boundary
of Aj is contained in ∪mi=1,i 6=jΨ

−1
j,i (λj − λi), which yields the assertion also in

this case.

Now let d = 1 and assume that l is of type (C1). From 1.1. we obtain that
Aj is an interval. Finally assume that d > 1 and l(x) = x2 for every x ≥ 0.
For any i ∈ {1, ..,m}\{j} let λ = (λj − λi)/(2‖ai − aj‖2) and

bi = ai + λ(ai − aj), bj = aj + λ(ai − aj).

Now recall the definition (13) of a closed halfspace. A simple calculation
shows that

Aj = ∩mi=1,i 6=jT (bj, bi)

is a finite intersection of closed halfspaces and, therefore, a convex polytope.

Lemma A.2. If the distance mapping l is of type (D1) or (D2), then the
triangle inequality holds.

Proof. Let µi ∈ M(Rd), i ∈ {1, 2, 3} and w(µ1, µ3) < ∞. We have to show
that

l−1(w(µ1, µ3)) ≤ l−1(w(µ1, µ2)) + l−1(w(µ2, µ3)). (30)
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We are following the standard argumentation for ρr to satisfy the triangle
inequality (see e.g. [31, p.94]) or [7, Proposition 2]) and apply a generalization
of the Minkowski inequality (cf. [21, Thm. 3]). Obviously, we can assume
w.l.o.g. that w(µ1, µ2) <∞ and w(µ2, µ3) <∞. If l is of type (D2), then the
assertion follows immediately from the triangle inequality of the Wasserstein
distance. Hence, let us assume that l is of type (D1). Because l is continuous,
we deduce from general existence results in optimal transportation theory (cf.
[31, Thm. 4.1]) that distributions P1 and P2 on Rd × Rd exist, such that

w(µ1, µ2) =

∫
Rd×Rd

l(‖x− y‖)dP1(x, y) (31)

and

w(µ2, µ3) =

∫
Rd×Rd

l(‖x− y‖)dP2(x, y), (32)

where P1 has marginals µ1 and µ2 and P2 has marginals µ2 and µ3. Moreover,
let P be a distribution on Rd ×Rd ×Rd with marginal distribution P1 when
projecting on the first two components and P2 when projecting on the last
two components. Regarding the existence of such a distribution, see e.g.
[4, Remark 5.3.3] or [31, chapter 1]. Denote P3 as the marginal of P by
projecting on the first and the last component. The first marginal of P3

equals µ1 and the second marginal of P3 equals µ3. Because l and l−1 are
increasing we deduce

l−1(w(µ1, µ3)) ≤ l−1

(∫
Rd×Rd

l(‖x− y‖)dP3(x, y)

)
= l−1

(∫
Rd×Rd×Rd

l(‖x− z‖)dP (x, y, z)

)
≤ l−1

(∫
Rd×Rd×Rd

l(‖x− y‖+ ‖y − z‖)dP (x, y, z)

)
.

Now let (un)n∈N and (vn)n∈N be sequences of step functions on Rd×Rd×Rd

with un ≤ un+1, vn ≤ vn+1 and

sup
n∈N

un(x, y, z) = ‖x− y‖, sup
n∈N

vn(x, y, z) = ‖y − z‖.

Note that l is continuous, monotone increasing and l−1 is continuous. Thus,
by monotone convergence we obtain

l−1(w(µ1, µ3)) ≤ lim
n→∞

l−1

(∫
Rd×Rd×Rd

l(un(x, y, z) + vn(x, y, z))dP (x, y, z)

)
.
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Now we distinguish two cases. Let us first assume that µi(A) ∈ {0, 1} for
every measurable A ⊂ Rd and i ∈ {1, 2, 3}. Consequently, ai ∈ Rd exist,
such that µi = δai . But then relation (30) follows immediately from the
triangle inequality. Hence, we can assume that a measurable set A ⊂ Rd

and j ∈ {1, 2, 3} exists with µj(A) ∈ (0, 1). Let B =
∏

i∈{1,2,3}Ai with

Aj = A and Ai = Rd for every i 6= j. Hence, P (B) = µj(A) ∈ (0, 1). Due
to the assumptions on l we can apply a generalized version of the Minkowski
inequality [21, Thm. 3] and deduce

l−1(w(µ1, µ3))

≤ lim
n→∞

l−1

(∫
Rd×Rd×Rd

l(un(x, y, z) + vn(x, y, z))dP (x, y, z)

)
≤ lim

n→∞

(
l−1

(∫
Rd×Rd×Rd

l(un(x, y, z))dP (x, y, z)

)
+l−1

(∫
Rd×Rd×Rd

l(vn(x, y, z))dP (x, y, z)

))
= l−1

(∫
Rd×Rd

l(‖x− y‖)dP1(x, y)

)
+ l−1

(∫
Rd×Rd

l(‖y − z‖)dP2(y, z)

)
Applying the identities (31) and (32), we obtain inequality (30).

Proof of Proposition 3.1. Obviously, we can assume w.l.o.g. that V H
µ (R) <

∞. Let ν ∈ M∞(Rd)\M∗(Rd) with H(pν) ≤ R and w(µ, ν) < ∞. Let
{a1, a2, ..} = supp(ν) and define for every k ≥ 2 the distribution

νk =
k−1∑
i=1

ν(ai)δai +
∑
i≥k

ν(ai)δ0.

Property (b) of the mapping H implies

H(pνk) ≤ H(pν) ≤ R.

1. Let us first assume that l is continuous and l−1 ◦ w satisfies the triangle
inequality.
We define the transport mapping

qk =
k−1∑
i=1

ai1{ai} + 0 · 1Rd\{a1,..,ak−1}.
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with ν ◦ q−1
k = νk. Denote πk ∈ Γ(ν, νk) as the (deterministic) transport plan

which is induced by qk. Thus, we get

w(ν, νk) ≤
∫
l(‖x− y‖)dπk(x, y) =

∑
i≥k

ν(ai)l(‖ai‖). (33)

Because ν ∈ M(Rd) we obtain
∫
l(‖x‖)dν(x) =

∑∞
i=1 ν(ai)l(‖ai‖) < ∞

which together with (33) yields that w(ν, νk) → 0 as k → ∞. Using the
triangle inequality for l−1 ◦ w we conclude that

∞ > l−1(w(µ, ν)) ≥ l−1(w(µ, νk))− l−1(w(νk, ν)).

Letting k →∞, we obtain from the continuity of l and l−1 that

w(µ, ν) ≥ lim inf
k→∞

w(µ, νk).

This implies

V H
µ (R) ≥ inf{w(µ, κ) : κ ∈M∗(Rd), H(pκ) ≤ R} (34)

and yields the assertion in this first case.
2. Now we assume that l is bounded.
Note that νk weakly converges to ν. Moreover,

lim inf
k→∞

w(µ, νk) ≤ sup
x∈[0,∞)

l(x) <∞.

Denote by πk an optimal transport plan for source µ and target νk, i.e.

w(µ, νk) =

∫
l(‖x− y‖)dπk(x, y).

Applying a stability result for optimal transport plans (cf. [31, Thm. 5.20])
we obtain a subsequence of (πk), also denote by (πk) such that (πk) weakly
converges to an optimal transport plan π for source µ and target ν, i.e.

w(µ, ν) =

∫
Rd×Rd

l(‖x− y‖)dπ(x, y).

Because l is bounded, weak convergence implies

w(µ, νk) =

∫
l(‖x− y‖)dπk(x, y)

→
∫
l(‖x− y‖)dπ(x, y) = w(µ, ν), as k →∞.
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As an immediate consequence we obtain

w(µ, ν) ≥ inf{w(µ, κ) : κ ∈M∗(Rd), H(pκ) ≤ R},

which yields (34) and, hence, proves the assertion also in this second case.

For any set A ⊂ Rd we denote
◦
A as the interior of A. Recall 1A as the

characteristic function on A. Now we can prove the main result of this paper.

Proof of Theorem 3.2. We will proceed in several steps.

1. We will prove that WH
µ (R) ≤ DH

µ (R).

Let q ∈ Q∗d with Hµ(q) ≤ R. With the measurable mapping

Rd 3 x 7→ φ(x) = (x, q(x)) ∈ Rd × Rd

and in view of (5), we obtain

Dµ(q) =

∫
Rd
l(‖x− q(x)‖)dµ(x)

=

∫
Rd×Rd

l(‖x− y‖)dµ ◦ φ−1(x, y) ≥ w(µ, µ ◦ q−1).

Hence, relation (11) and Proposition 2.2 imply that WH
µ (R) ≤ DH

µ (R).

2. We will prove that V H
µ (R) ≥ DH

µ (R).

Let us assume w.l.o.g. that V H
µ (R) < ∞. Let m ∈ N and ν ∈ M∗(Rd)

with card(supp(ν)) = m, H(pν) ≤ R and w(µ, ν) < ∞. Let us denote
supp(ν) = {a1, .., am}. For any shifts β1, .., βm ∈ R recall the definition (8)
of the set Aj(β1, .., βm). We obtain from Lemma A.1 that the boundary of
Aj(β1, .., βm) has zero µ−measure. Thus, we deduce from Theorem 2.6 that
a quantizer q and uniquely determined constants λ1, .., λm ∈ R exist, such
that q(Rd) = {a1, .., am} and

w(µ, ν) = Dµ(q) =
m∑
j=1

∫
Aj(λ1,..,λm)

l(‖x− aj‖)dµ(x), (35)

where

µ(q−1(aj)) = µ(Aj(λ1, .., λm)) = ν(aj) > 0 for every j ∈ {1, ..,m}.

26



Note that
Hµ(q) = H(pν) ≤ R.

Using (35) we obtain

w(µ, ν) = Dµ(q) ≥ DH
µ (R).

Because l satisfies (C1) or (C2), the assertion of step 2 follows from Propo-
sition 3.1.

3. Rest of the proof.

Combining (12) with step 1 and step 2, we obtain

V H
µ (R) ≤ WH

µ (R) ≤ DH
µ (R) ≤ V H

µ (R)

which proves equation (15). Now, additionally, assume that condition (a) or
(b) in our assumptions of this theorem is satisfied. In view of (14) and (15)
it suffices to prove that V H

µ (R) ≥ DH,c
µ (R). Again, we can assume w.l.o.g.

that V H
µ (R) <∞. Let ν ∈ M∗(Rd) and q as in step 2. Due to Lemma A.1,

the source distribution µ vanishes on the boundary of Aj(λ1, .., λm). Thus,
we can assume w.l.o.g. that

◦
Aj(λ1, .., λm) ⊂ q−1(aj) ⊂ Aj(λ1, .., λm), j ∈ {1, ..,m},

and that q−1(aj) is either an interval (d = 1) or a convex polytope (d > 1).
If d = 1, then we can clearly assume w.l.o.g. that aj is contained in Aj.
Moreover, if d > 1 let us assume w.l.o.g. according to [8, Example 2.3(b)]
that aj is the centroid and therefore optimal for µ restricted to Aj, i.e.∫

Aj

‖x− aj‖2dµ(x) = inf{
∫
Aj

‖x− b‖2dµ(x) : b ∈ Rd}}.

Because we are operating with the Euclidean norm, we obtain by exactly the
same argument as in the proof of [8, Lemma 2.6 (a)] that aj is contained in
Aj, which is the closure of q−1(aj). By (35) we get

w(µ, ν) = Dµ(q) ≥ DH,c
µ (R).

Because l is of type (C1) or (C2), Proposition 3.1 yields V H
µ (R) ≥ DH,c

µ (R),
which finishes the proof.
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