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Abstract

Due to the immense advance of widely accessible information systems in industrial

applications, science, education and every day use, it becomes more and more difficult

for users of those information systems to keep track with new and updated information.

An approach to cope with this problem is to go beyond traditional search facilities and

instead use the users’ profiles to monitor data changes and to actively inform them

about these updates - an aspect that has to be explicitly developed and integrated

into a variety of information systems. This is traditionally done in an individual way,

depending on the application and its platform.

In this dissertation, we present a novel approach to model the semantic interrelations

that specify which users to inform about which updates, based on the underlying

model of the respective information system. For the first time, a meta-model that

allows information system designers to tag an arbitrary data model and thus specify

the event-handling semantics is presented. A formal specification of how to interpret

meta-models to determine the receivers of the events completes the presented concept.

For the practical realization of this new concept, model driven architecture (MDA)

shows to be an ideal technical means. Using our newly developed UML profile based

on data-modelling standards, an implementation of the event-handling specification

can automatically be generated for a variety of different target platforms, like e.g.

relational databases, using triggers. This meta-approach makes the proposed solution

ideal with respect to maintainability and genericity. Our solution significantly reduces

the overall development efforts for an event-handling facility. In addition, the enhanced

model of the information system can be used to generate an implementation that also

fulfils non-functional requirements like high performance and extensibility.

The overall framework, consisting of the domain specific language (i.e. the meta-

model), formal and technical transformations of how to interpret the enhanced infor-

mation system model and a cost-based optimizing strategy, constitutes an integrated

approach, offering several advantages over traditional implementation techniques: our

framework can be applied to new information systems as well as to legacy applications
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without having to modify existing systems; it offers an extensible, easy-to-use, generic

and thus re-usable solution and it can be tailored to and optimized for many use cases,

as the practical evaluation presented in this dissertation verifies.



Zusammenfassung

Bedingt durch die immer stärkere Durchdringung rechnergestützter Informationssyste-

me in Industrie, Forschung, Ausbildung und anderen Bereichen des täglichen Lebens

wird es für Anwender immer schwieriger, für sie relevante Änderungen an den dort

gespeicherten Datenbeständen nachzuverfolgen. Dem wird häufig dadurch begegnet,

dass über die Fähigkeiten traditioneller Suchmöglichkeiten hinaus gegangen wird und

Profile der Anwender verwendet werden, um sie aktiv über relevante Änderungen zu

informieren. Dieser Aspekt muss für unterschiedlichste Informationssysteme explizit

entwickelt und integriert werden, zudem meist abhängig von der fachlichen Domäne

der Anwendung und deren Plattform.

In dieser Dissertation präsentieren wir einen neuartigen Ansatz, mit dessen Hilfe die

semantischen Vorgaben, welche Anwender über welche Änderungen informiert werden

sollen, ausgehend vom zugrunde liegenden Datenmodell der Anwendung des jeweiligen

Systems modelliert werden können. Erstmalig wird ein Meta-Modell vorgestellt, das

Entwicklern und Architekten ermöglicht, ein beliebiges Modell eines Informations-

systems mit zusätzlichen Informationen auszuzeichnen und damit die Semantik der

Event-Handling-Komponente vorzugeben. Zudem wird ein formales Konzept präsen-

tiert, das spezifiziert wie diese Auszeichnungen für die Bestimmung der Informations-

empfänger zu interpretieren sind.

Im Hinblick auf die Realisierung dieses Konzepts erweist sich Model Driven Architec-

ture (MDA) als ideales technisches Mittel. Mit Hilfe eines eigens entwickelten UML

Profils, das sich auf existierende Standards zur Datenmodellierung stützt, kann au-

tomatisch eine Implementierung der Event-Handling-Komponenten für eine Vielzahl

unterschiedlichster Zielplattformen generiert werden. Als Beispiel wäre die Verwen-

dung relationaler Datenbanken zusammen mit Datenbanktriggern zu nennen. Dieser

Ansatz stellt eine ideale Lösung im Hinblick auf Wartbarkeit und Allgemeingültigkeit

dar, wodurch auch der Entwicklungsaufwand minimiert wird. Zudem bietet unser An-

satz auch die Möglichkeit, bei der Implementierung dieser Komponente auch nicht-

iii



funktionale Anforderungen - wie beispielsweise möglichst optimale Performanz und

Erweiterbarkeit - zu erfüllen.

Das hier präsentierte Framework, bestehend aus der domänen-spezifischen Sprache (in

Form des Meta-Modells), den formalen und technischen Transformationsvorschriften

für die Interpretation der Spezifikation sowie einer kostenbasierten Optimierungsstra-

tegie, stellt einen integrierten Ansatz dar, der im Vergleich zu traditionellen Ansätzen

einige Vorteile bietet: so kann dieser Ansatz ohne Modifikation existierender Systeme

verwendet werden, stellt eine erweiterbare, einfach benutzbare, und zugleich wieder-

verwendbare Lösung dar und kann für beliebige Anwendungsfälle maßgeschneidert und

optimiert werden, wie die Evaluation unserer Lösung anhand echter Szenarien in dieser

Dissertation zeigt.
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Part I

Problem Statement





“The beginning is the most important part of the work.”

Plato

1
Introduction

1.1 Motivation

During the last 20 years, computer-based information systems have pervaded our ev-

eryday lives more and more: almost any information that can be stored and main-

tained is managed using electronic storage facilities. The applications range from

small, integrated information systems like personal digital assistants (PDAs) up to

world-wide large-scale databases, for instance vital data pools of global enterprises.

Whilst personal information systems are designed to be used by a single user only,

global information systems are characterized by the concurrent usage by many differ-

ent stakeholders. The usage can be differentiated into two different use case categories:

clients modifying or creating data vs. clients consuming data, as visualized in figure

1.1.

Both types of users, depicted by ClientA and ClientB, use the same information system.

However, due to different responsibilities, each of them works on different subsets of

data. For instance, looking at a university information system, members of the various

chairs edit information about lectures, whilst administrative employees work with the

same system, modifying time schedules and room-planning information. In spite of the

separate responsibilities and tasks, the parts of the data the different users work with,
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CHAPTER 1. INTRODUCTION

Figure 1.1: Use case: Clients accessing and modifying data

which we call data clouds, overlap (cf. figure 1.2). Recalling the university system,

room planners might be interested in updates of the number of attendants of various

lectures, although the administration of lecture data is not their primary task.

Figure 1.2: Overlapping of individually maintained data

This leads to an interesting problem: how can users stay up-to-date about modifica-

tions of data belonging to their responsibility, especially if these updates are performed

spatially and temporally separate from their own location and time? It is obviously

impossible to solve this task by regularly scanning the data pool and using traditional

search functionality, trying to find relevant updates. Thus, event-handling solutions,

actively and autonomously informing users, are required.

The demand for a solution to this problem gains even more importance with the further

development of the World Wide Web: whilst web information traditionally used to

be maintained by a small amount of editors and webmasters, it is the collaborative
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approach of applications like Wikipedia [Wikb], Flickr [Yah], blogs, forums and many

more (briefly named as the “Web 2.0” [O’R05]) that makes the WWW a collaborative

work space for millions of users with millions of overlapping data clouds. Without tools

helping the users to keep an overview of relevant updates, they would literally be lost

in information space: either because of not recognizing updates that are important to

them, or because of being overwhelmed by irrelevant update information. Challenges

like this have already been foreseen more than ten years ago [BBC+98], where the

inversion of the search paradigm has been demanded, leading to systems that actively

notify their users: “Computers can augment human intelligence by [...] informing

people when interesting things happen.”.

Figure 1.3 visualizes the common requirements for such an event-handling system:

Figure 1.3: Requirements of an event-handling framework

• Specification of data clouds

For every user, a possibility to specify the individual data cloud representing his

or her responsibilities and/or interests has to be provided. As we will present

later, this can be done based on two principles: On the one hand side, there are

explicit specifications, i.e. the user himself tells the information system about

the particular fragment of data he wants to be informed about. On the other

hand, information about a user, which is already stored within the system, can

be used in conjunction with knowledge about the semantic interdependences of

the underlying data model to derive the user’s data cloud. This knowledge can

be used as an implicit specification of the user’s interest.
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• Determination of update events

Updates, performed by any arbitrary system client, have to be monitored to be

processed.

• Matching update events

After an update has been detected, it has to be matched with the individual

data clouds to determine all relevant users who have to be informed.

• Delivery of update events

Finally, the recorded update has to be delivered to those users.

• Support for developers

When considering the development and maintenance of such a system, a third

group of stakeholders comes into play: the developers and administrators of

an information system. Obviously, an approach to develop an event-handling

system should provide a framework that can be used for a variety of different

use cases. This framework should be easy to use, declarative, re-usable and

generic.

• Applicability to legacy systems

One last requirement serves an important demand: many legacy information

systems are already running in many different fields of applications and do not

yet support event-handling functionality. A generic framework should thus not

only support developers of a new information system, but also allow the extension

of existing systems with the needed notification components, ideally without

having to significantly modify the legacy systems.

Although many existing software systems already provide such notification function-

alities, there is, to our best knowledge, no comprehensive, simple and technologically

mature approach yet that fulfills all the above-mentioned requirements. Thus, this dis-

sertation aims to develop an integrated framework offering the possibility to enhance

arbitrary information systems with components to monitor update events, evaluate

them semantically and determine the target group that has to be informed about

those respective updates.
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1.2 Contribution of our Work

In this dissertation, we present a novel integrated, non-invasive and model-driven

framework to develop event-handling systems. Our work consists of the following

building blocks:

• An analysis of real-life use cases and existing notification approaches, leading to

a set of requirements that have to be fulfiled

• A formal concept for notification semantics, based on a representation of struc-

tured information systems

• A domain specific language, representing the above-mentioned formal concept,

to model event-handling functionalities for arbitrary applications

• A transformation from a declarative event-handling specification, based on this

domain specific language, into executable, imperative code

• An implementation of this transformation based on Model Driven Architecture,

which can be used for various target information systems

• A prototypic implementation using relational databases and database triggers

• An optimization strategy, based on a generic cost model, that can be used to

speed up the evaluation of updates by precomputing parts of the notification

results of an occured event

All these contributions are provided both as conceptual results, as well as in the form

of a generic, prototypic application development framework. As we will show in this

dissertation, this framework is the first to incorporate event-handling systems and the

declarative, model-driven approach. Further on, we will show that all functional and

non-functional requirements that have been identified during the analysis of various

use cases are satisfied by our solution and that our generative, non-invasive approach

is adequate.

1.3 Overview

This dissertation is organized as follows: chapter 2 contains a detailed analysis of

several use cases to determine the semantical and technical requirements that have to

be satisfied by an event-handling system. In chapter 3, we discuss existing approaches
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in the field of event-handling systems and show that no appropriate solution exists,

thus motivating us to develop the framework that is presented in this dissertation.

Part II deals with our non-invasive approach on a conceptual level: first, chapter 4

gives a bird’s-eye overview of the solution, which is detailed in chapter 5, presenting

the formal concept. The generic event-handler generation is then explained in chapter

6. This part concludes with a presentation of the optimization techniques that can be

applied (chapter 7).

The model driven realization of the concept using active database technology, the

second major contribution of this dissertation, is subject to part III. After a brief

introduction to the underlying technologies (chapter 8), the implementation specific

architecture, i.e. an instantiation of the generic system architecture, is presented in

chapter 9. A realization of the generic transformation and the respective optimization

techniques based on active database technology is then subject to chapter 10, which

concludes the implementation-specific part of this dissertation.

Finally, part IV is dedicated to the evaluation and assessment of our non-invasive

model driven approach (chapter 11) and a summary of the results of this dissertation,

together with a list of open ends that could be dealt with in the course of any follow-up

research efforts (chapter 12).
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“An undefined problem has an infinite number of solutions.”

Robert A. Humphrey

2
Problem Statement and Requirements

Analysis

While the previous chapter motivated our work, the next pages will analyze the prob-

lem more precisely: we will present several existing software systems (with and without

event-handling capabilities) and the respective use cases that led to the development

of the solution that is presented in this dissertation. We dissect those use cases and

collect their commonalities, which will later be used to develop a generic framework.

Based on the use cases, we also deduct the requirements concerning an event-handling

framework.

2.1 Use Cases

In the following, we will examine several information systems from various areas and

analyze how they reflect different event-handling use cases.

9



CHAPTER 2. PROBLEM STATEMENT AND REQUIREMENTS
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2.1.1 Stud.IP

The first analyzed system is a german information system for universities called

Stud.IP [Dat]. This system was introduced at the University of Passau during the

three year research and development project InteLeC [Uni] during the years 2005 to

2008.

2.1.1.1 System Overview

Stud.IP is an open-source, web-based learning information system. Its main purpose

is to coordinate and support the performance of courses and lectures at universities

and other educational institutions. Therefore, it contains various functionalities:

• Model of the organizational structure

Stud.IP stores a hierarchical representation of the unversity’s organizational

structure, i.e. the different faculties and their various sub-units, like chairs and

administrative departments. All employees can be assigned to one or more of

these organizational units.

• Lecture and event database

All events that take place (lectures, exercises, talks, ...) can be administered

using Stud.IP. They can be assigned to their respective lecturers and to the

organizational units these lecturers belong to. Additionally, Stud.IP manages

the time schedules of events, cares for the allocation of resources like rooms and

maintains lists of all participants of a particular event.

• Lecture and event administration

For every individual event, lecturers are supported in its implementation. All

kinds of learning material (scripts, exercises, slides, ...) can be uploaded and

thus be offered to the event participants. For communication purposes, per-

event forums and chat rooms are provided. In addition, the individual dates

and places when and where the event takes place can be maintained; updates

of these dates and other topical information can be spread using the integrated

news system.

• Further functionalities

Although the above-mentioned functionalities make up the core of Stud.IP, there

are many further capabilities, like the individual creation of lecture schedules for

each student, manyfold communication features (chat rooms, wikis, messaging
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system, ...), evaluation mechanisms, an integrated literature management sys-

tem, and many more.

Due to the importance of a timely and purposeful delivery of information to the

individual users, users of Stud.IP have an integrated event-handling system at their

disposal. This functionality, which we will describe in the following, is an important

part of Stud.IP.

2.1.1.2 A Spotlight on Stud.IP’s Notification System

Stud.IP contains a simple event-handling and notification system:

• By default, every user who is associated with an event (for instance by attending

a lecture, by organizing an appointment or by leading a discussion group), has

an individual portal page with an overview of his or her events. An exemplary

“My Lectures”-page is shown in figure 2.1.

• In his or her personal settings, every user can specify (for every event) if he or she

wants to be informed about updates. By using the checkbox grid (highlighted

in figure 2.2), it can be stated whether new or updated documents, posts, dates,

news etc. should lead to a notification or not. A scheduled task then automati-

cally sends emails to notify the users about the respective updates.

• In addition, the “My Lectures” screen displays highlighted icons if there have

been any updates which have not yet been confirmed by the user, as the high-

lighted section in figure 2.1 shows.

These simple functionalities represent the notification component of Stud.IP and en-

able the system’s users to stay up-to-date with respect to the events they might be

interested in. In the following, we will take a closer look at the technical realization

of this component.

2.1.1.3 Software-Technological Analysis

To analyze the realization of the notification component in Stud.IP, we recall the four

aspects from section 1.1:

• Specification of data clouds

Stud.IP strongly pre-structures the specification of interest: for every event the
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Figure 2.1: Screenshot: Lecture overview in Stud.IP

user takes part in, interest can be stated by checking or unchecking one of the

predefined update types. Both the functionality to specifiy interest as well as

the different update types are hard-coded; an individual interest matrix for every

user stores the respective specification in the underlying database.

• Determination of update events

The determination of update events, i.e. the computation of potential notifi-

cations, is also implemented unalterably in the source code: every time a user

accesses his personal portal page, the modification dates of all relevant pieces of

information are compared to the user’s last access to these documents, forum

12
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Figure 2.2: Screenshot: Notification settings in Stud.IP

posts, etc. If the modification date is newer than the last access, a highlighted

icon is shown to inform the user about an update he has not yet noticed.

For the determination of email notifications, system administrators have to

schedule a batch job that regularly compares modification dates against ac-

cess dates. If a user has signaled interest to this kind of update by selecting

the respective option in his personal settings, an email is automatically sent,

containing short information about the updates.

• Matching update events

Update events are matched against the user’s profile (i.e. his or her data cloud)

13
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by comparing the type and the associated event of the update to the user’s

interest matrix. If both match, the update is considered to be relevant and

causes a notification. Again, this check is hard-coded and strongly coupled to

the underlying data model of events and their documents.

• Delivery of update events

Update events are delivered to users via two possible channels: on their portal

page (by highlighting the respective icons) and by email. As we already stated,

email is sent by a recurrent batch process (usually once a day).

To further analyze the implementation of the notification functionality, we take a closer

look at the relevant sections of the data model.

Data Model Analysis Figure 2.3 shows an excerpt of Stud.IP ’s data model,1 focused

on the tables and attributes that are relevant to the notification component.

The following tables have been examined in detail. Coloured tables represent entities

that are mainly used for event-handling purposes, while the other tables contain central

information in Stud.IP.

• Table auth user md5 contains information about the system’s users, i.e. the

receivers of potential update notifications.

• Table institut stores information about the different represented organizational

units, i.e. the chairs, institutes, departments, etc.

• Users are assigned to organizational units via the association table user inst.

• Table seminare is another central component of the data model, representing

the different events taking place at the university: lectures, seminars, talks, and

many more.

• Via table seminar inst, events are assigned to particular institutions which are

involved in the organization of the event.

• To manage documents that can be uploaded for every event, table dokumente

is used, where every document can be assigned to a particular event using the

attribute seminar id.

1Since Stud.IP has initially been developed for an early version of MySQL that did not support
foreign key constraints, the foreign keys and associations between entities have been added to this
diagram as the result of a semantic reverse-engineering process.
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Figure 2.3: Excerpt from Stud.IP ’s data model
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• Since institutions represent the organizational hierarchy of the university, they

are organized in the hierarchical structure range tree, using the attribute par-

ent id as a pointer to the parent organizational unit. Via the attribute range id,

institutions are assigned to the structural unit.

• Similarly, events can be organized to represent hierarchical structures concerning

their contents. Table sem tree with attribute parent id as a parental pointer

represents this structure. Via table seminar sem tree, events are assigned to the

respective structural level.

• Another central table is px topics, storing a hierarchical system of topics, i.e.

semantical units, connected to each other using the attribute parent id. Each

topic can be assigned to an event, for instance to specify that a lecture deals

with the particular topic.

• news represents another central functionality of Stud.IP : users (i.e. authors) can

write news posts and assign a particular topic to the post.

• As a specialty (or, as one could say, as a consequence of incorrect design), table

news range is used to assign those news posts to either lectures or institutes. This

is done using the attribute range id, which does not constitute a real foreign key

constraint, but is joined against seminar ids and institut ids, which are disjoint.

• Additionally, users can write comments concerning arbitrary lectures, which are

then presented in the context of the respective event.

• Table seminar user takes over two alternative functions: first of all, it is used to

store information about users attending events. Second, this information is used

for notification purposes: the attribute notification stores in coded form if users

should be informed about updates of the event.

• Finally, table object user visits is merely used to make event handling possible:

whenever a user of the system accesses any event, this visit is stored together with

the kind of information he or she exactly accessed (forum posts, documents,...),

and when the access happened (visit date).

Most of the presented tables contain additional information about the creation date

and the most recent modification date, stored in the attributes mkdate and chdate,

which is also used to determine updates the users did not yet acknowledge.
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Further Analysis Another important aspect of Stud.IP concerns its typical data ac-

cess patterns. To verify the assumption that different phases in the system’s operation

lead to different access patterns, we analyzed the database logs to determine which

tables are updated frequently or infrequently. To get representative results, updates

were recorded during a whole week. The results have been purged by removing all

modifications of tables that are merely needed for notification purposes.

We analyzed the update behaviour during the semester break and during the beginning

of a new semester. Figure 2.4 represents the distribution of update, insert and delete

statements during the semester break.

Figure 2.4: Update distribution during semester break

As one would assume, the results yield that during the semester break, updates

mainly concern tables that represent administrative information like the assignment

of students to courses (seminar user), the organizational structure of the university

(range tree) or documents for upcoming events (dokumente). In contrast, informa-

tion that is typically changed while a lecture takes place (like news, for instance) are

seldomly updated during that phase. Figure 2.5 illustrates this aspect within the

data model: dark coloured entities turned out to be updated very frequently, while in

17



CHAPTER 2. PROBLEM STATEMENT AND REQUIREMENTS
ANALYSIS

contrast the brightly coloured tables tend to be very stable, i.e. they are subject to

changes very seldomly.

seminar_user

seminare institut

auth_user_md5

object_user_visits

comments

newspx_topics

news_range

range_treesem_tree

seminar_instseminar_sem_tree user_inst

dokumente

Figure 2.5: Write access during semester break

The same analysis has been repeated during the beginning of winter semester 2008/09:

again, a week’s logfiles were analyzed to obtain the distribution of updates over all

relevant tables. Figure 2.6 reveals that the pattern of usage is significantly different.

The most obvious difference concerns table dokumente, which is updated much more

frequently than during the semester break, which can easiliy be explained by lecturers

and students working on their lectures and thus storing documents in Stud.IP. Second,

many organizational tables, like seminar user, range tree, seminar inst and seminare are

modified by far less frequently, since these tables contain information that is usually

maintained during semester breaks and then remains stable for the ongoing term. The

different usage situation during the semester is displayed in figure 2.7.

Independent of the update probabilities, the number of instances for each entity (in-

dependent of the current phase) has been examined: we can observe that some of
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Figure 2.6: Update distribution during ongoing semester

the tables contain very few entries (institut, range tree), while other tables like semi-

nar sem tree, object user visits or dokumente contain significantly more tuples (cf. table

2.1). We also observe that the update probability and the amount of data per entity

are not correlated to each other.

2.1.1.4 Essential Cognitions

Our analysis yielded various results: first, we discovered several deficiencies of the

implementation. Beyond that, we also identified some interesting characteristics re-

garding a generic solution for the event-handling problem definition:

Drawbacks of Pull vs. Push Due to the implementation according to the pull-

paradigm (i.e. during every user access it is checked whether data has been modified

since the user’s last access), many unnecessary read accesses to the database are ex-

ecuted. In addition, the pull-based approach (both during the notification batch run
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Figure 2.7: Write access during ongoing semester

and in the course of the portal implementation) does not satisfy the users’ require-

ments of timely notifications. This could be resolved by using a push-based approach,

reacting to updates immediately.

Missing Flexibility of the Implementation Regarding the common non-functional

requirement “Anticipiation of Change”, the analyzed solution fails completely: the

implementation is completely hard-coded and tied to the underlying data model and

thus very hard to maintain. In addition, the different parts of implementation are

(due to the pull-paradigm) widely spread all over the source code, because updates

have to be detected in many different contexts. This strong cohesion between different

functionalities additionally hinders the system from being maintained, for instance by

adding a new and previously unconsidered type of “data cloud”.
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Table Number of tuples contained

auth user md5 11,685
comments 1
dokumente 31,937
institut 200
news 260
news range 614
object user visits 1,821,147
px topics 16,486
range tree 199
seminare 5,802
seminar inst 6,821
seminar sem tree 24,344
sem tree 690
user inst 12,397

Table 2.1: Number of tuples in selected tables of Stud.IP

Implicit Subscriptions Another discovery in the examined notification system is the

fact that for several use cases, an implicit subscription can be derived from the asso-

ciations between subscribers and subscribables. For instance, users are connected to

their respective events via an m : n association. Similarly, users are also related to the

institutions from which they want to receive update notifications. We therefore argue

that in many cases notification requirements can be directly derived from associations

in the data model, which is what we call implicit subscriptions.

Explicit Subscriptions In contrast, users of Stud.IP want to be kept informed about

updates of data entities which they are not related to at all. For instance, a student

who is in the phase of preparing his semester schedule might select several upcoming

events which he did not yet apply for, but nevertheless wants to be kept up-to-date

about any changes. We call this explicit subscriptions.

Transitive Notifications An additional observation we made is that in several cases,

the information system’s users need to be notified about updates of entities that are

indirectly connected to any other entitiy they subscribed to, be it explicitly or implic-

itly. As an example, consider the hierarchic structure of institutes: if one of the users

subscribes to a top-level institution, he very likely also wants to be informed about

updates of any subordinate institution, although he did not directly subscribe to the
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respective entity. Another similar situation can be observed regarding documents and

lectures: if some user subscribes to a lecture, he also wants to know about updates

of any associated documents, even if he did not directly choose those documents as

notification sources.

Coherence between Data Model and Notification Semantics Another meta-reco-

gnition can be derived from implicit subscriptions and transitive notifications: for

almost every way along which update events should be brought from subscribables to

subscribers, a corresponding association path exists in the information system’s data

model. Apart from explicit subscriptions, which can connect arbitrary subscribable

entities and arbitrary subscribers, every notification rule somehow corresponds to the

underlying data model.

Need for Attribute Monitoring From the use cases examined within Stud.IP, we

can also derive another requirement: a generic event-handling system must be able to

include and exclude individual attributes from the list of monitored attributes for any

entity: Consider for instance the entity for documents in Stud.IP : this database table

also contains an attribute storing the total number of downloads of this particular file,

although an update of this value has no effect with respect to its subscribers, since a

change of download frequency does not mean a semantic update of the document and

is nothing a user wants to be informed about.

Distribution of Update Probability and Cardinality Another interesting character-

istic, looking at the data model, is the heterogeneous distribution of cardinalities and

update probabilities. Depending on the particular entity, both properties must be pre-

cisely examined since they strongly affect the way an event-handling implementation

has to be designed.

Situation-Dependent Changes of Update Probabilities Finally, the comparison of

update characteristics during the different phases “semester break” and ”ongoing

semester” reveals that, depending on the current situation of the system’s use, update

probabilities are subject to change. If an optimization strategy uses index structures

to speed up the computation of queries because they assume that these index struc-

tures need to be updated seldomly (because of infrequent updates of the underlying

data), then this optimizer must be able to adapt to constantly changing situations.
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All these observations will later be used to determine the overall requirements for an

event-handling system. Before that, we will present another system which we evaluated

to get as general results as possible.

2.1.2 InfoWiss

The second software system we examined with respect to its notification facilities and

requirements is the knowledge management system InfoWiss which was developed in

the course of the author’s diploma thesis [Gup01].

2.1.2.1 System Overview

InfoWiss was designed as a prototype of a corporate knowledge management system.

Its main purpose is to store information and knowledge (documents, forum posts,

competency profiles, ...) in a structured way. The core of InfoWiss is made up of a

central multilingual taxonomy, which constitutes the organizational basis for informa-

tion classification. Figure 2.8 shows a screenshot of the taxonomy modelling tool. The

second building block of InfoWiss is a topic-based notification facility, which will be

evaluated in detail in the following.

2.1.2.2 A Spotlight on InfoWiss’ Event-Handling

In InfoWiss, the central taxonomy builds the basis for all subscriptions. Users are able

to subscribe to any topic and - if desired - to all subtopics as well. Modifications of

the taxonomy are automatically accounted for, i.e., if new subtopics are added to any

topic after a user subscribed to it, these new subtopics are automatically subscribed

to, too.

These subscriptions are evaluated whenever an information fragment (a document, a

news posting, ...) is updated in InfoWiss: since each of those knowledge items has

to be associated to at least one topic, thus classifying it, all users that subscribed to

one of these topics are automatically informed about the update. This information is

published to the users either per email (via a daily batch job) or on their individual

portal page.

On the next pages, we will describe the realization of this notification component in

detail.
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Figure 2.8: Screenshot: Taxonomy model in InfoWiss

2.1.2.3 Software-Technological Analysis

Again, we analyze the four aspects from section 1.1:

• Specification of data clouds

Figure 2.9 illustrates the specification of data clouds in InfoWiss: by subscribing

to topics from the central taxonomy, all adjacent documents are automatically

declared to be part of the user’s data cloud. Due to the generic implementation

of information items, this subscription mechanism can be applied to any kind of

stored knowledge.

• Determination of update events

In contrast to Stud.IP, where the application is responsible for monitoring up-

dates and creating the respective notifications, InfoWiss uses an active database
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Figure 2.9: Specification of data clouds in InfoWiss

approach: all relevant database tables are monitored by triggers. Thus, any

update of the data, independent of the source of the update, can be centrally

monitored. Modifications of the application (new ways of entering data, modi-

fying data from external systems via interfaces, ...) do not impose the need to

care for event-handling but leave this task to the central data storage, i.e. the

database.

• Matching update events

Since the users’ interest profiles are specified based on the taxonomy and all

information entities are connected to at least one topic within that taxonomy, the

matching between updated knowledge items and the respective subscribers can

be performed by joining information entities, the taxonomy and users’ profiles.

• Delivery of update events

Similar to Stud.IP, InfoWiss’ notification events are delivered to users via email

or on each user’s individual portal page. To send email notifications, a batch

job has to be scheduled which regularly checks for new notification entries and

informs the corresponding users.

Data Model Analysis To gain more insight into the realization of InfoWiss’ notifi-

cation functionality, the data model, which is presented in simplified form in figure
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2.10, has to be analyzed. Again, coloured tables are mainly used for event-handling

purposes.

Topic

PK topicId

TopicCatalogue

PK,FK1 relationshipid

PK,FK2 topicIdA

PK,FK3 topicIdB

TopicRelationship

PK relationshipid

Staff

PK userId

Information

PK infoid

FK1 infoTypeId

InfoType

PK infoTypeId

InvertedIndex

PK,FK1 infoid

 noOfAppearances

FK2 topicId

 

TopicSubscription

PK,FK1 userId

 subscribeToSubtopics

 inheritedFromTopic

PushInfoToUser

PK,FK1 userId

PK,FK2 infoid

 actionHappened

FK3 becauseOfTopic

Figure 2.10: Excerpt from InfoWiss data model

The following tables constitute the foundation of InfoWiss:

• Table Topic is used to store all topics that are part of the taxonomy. In InfoWiss,

topics are only identified by a unique id, while all terms (i.e. the words) that

represent that particular topic are stored in a dedicated multilingual table, which

is, however, not in the focus of this analysis.

• To build a taxonomy, these topics have to be put in relationship to each other.

The different types of relationships that can be used (“is-a”, “is opposite of”,

...) are maintained using table TopicRelationship.

• Finally, the taxonomy is completed by associating any two topics with each

other, represented by an entity of TopicCatalogue. By referencing the respective

TopicRelationship, the type of the relationship is specified.
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• Any kind of information that can be stored in InfoWiss is kept in table Informa-

tion. There are several different subclasses of Information for different types of

knowledge (documents, forum posts, ...) which are not relevant to our analysis.

• To represent the different subclasses, table InfoType is used, which is a standard

approach to model inheritance in relational databases.

• To assign any topic to any bit of information, an InvertedIndex is used. This

index is built by (manually or automatically) extracting keywords from the dif-

ferent information fragments, thus classifying the information. The index can

be queried to either determine all topics for a particular document or to find all

bits of information concerning a particular topic.

• Table Staff stores information identifying every user of the system, i.e. main-

taining the list of all possible subscribers within InfoWiss.

• As mentioned before, InfoWiss uses the subscriptions of users to their topics of

interest. The actual subscriptions are stored in table TopicSubscription. This

table contains a specialty: since users can subscribe to a particular topic and all

of its subtopics, the attributes subscribeToSubtopics and inheritedFromTopic are

necessary. subscribeToSubtopics stores a boolean value specifying whether the

subscription is to be valid for all subtopics. This information is then propagated

to all subtopics, so that all inherited subscriptions are materialized, referencing

the originating topic in attribute inheritedFromTopic.

• As a final component, table PushInfoToUser contains all notification events which

have to be sent to users. Besides the updated document, additional information

about the update event, together with information about the topic that was

relevant for the subscription, is stored.

Further Analysis Based on this insight into the data model semantics, we will further

analyze the realization of the event-handling system in InfoWiss in the following.

One of the details of InfoWiss that are worth mentioning is the overall design, choos-

ing to use the database as the central point of update detection. All updates of

data are monitored centrally using standard database triggers, thus realizing a real

push-mechanism triggered by the modifications of data. In contrast to the realization

within Stud.IP, which is closely tied to the application, this approach offers several

advantages:
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• The event-handling mechanism has to be realized only once; no matter which

components of the software modify data, the cross-cutting concern of subscrip-

tion and notification management does not have to be realized separately.

• Additionally, any third-party application working with this database can auto-

matically profit from the event-handling functionality by simply updating data

in the central storage.

• Finally, any modifications of the event-handling semantics (for instance, different

interpretations of topic subscriptions) have to be realized only once, instead of

having to modify a multitude of spots in the application’s code.

Another interesting aspect is the realization of subtopic-subscriptions. Basically, there

are two possibilities to do so: first, after every update of an arbitrary bit of infor-

mation, all subtrees of any topics assigned to this information could be checked for

potential subscribers. The diametral solution would be to pre-compute all transitively

subscribed subtopics and store the complete list in the users’ subscriptions profiles.

InfoWiss makes use of the fact that both the central taxonomy as well as the users’

subscriptions are updated rather seldomly, while in contrast different information frag-

ments are updated frequently. Based on this assumption and considering runtime

performance, it is obviously better to determine all descendants of a subscribed topic

and query this precomputed list instead of traversing the taxonomy after every moni-

tored update. However, this causes significant realization overhead, since changes of a

user’s subscription profile and/or of the taxonomy can make it necessary to recompute

the subtopic lists. Thus, InfoWiss uses designated database triggers to maintain the

subtopic subscription lists and keep them up-to-date after every modification of the

taxonomy.

2.1.2.4 Essential Cognitions

Similar to the analysis of Stud.IP, we can summarize our results with respect to the

following aspects:

Advantage of Push over Pull Due to the trigger-based realization, every data mod-

ification can immediately be transfered into the corresponding notification. Although

InfoWiss simply stores the notification entry in the database for later use, one could

easily extend the system to generate emails or react timely in any other appropriate

manner.
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Central Monitoring of Updates in Database The central trigger-based realization

of the event-handling component within the database makes it easy to extend the

system with respect to future requirements. The realization is not spread all over the

application and can easily and centrally be maintained and modified.

Realization of Explicit Subscriptions using Implicit Subscriptions In InfoWiss, ex-

plicit subscriptions of particular documents, posts, ... are not possible. Instead, all

subscriptions have to refer to one of the taxonomy’s topics. However, the subscription

to these topics is realized using the association TopicSubscription. This can also be

considered an implicit subscription, since every user who is related to one of the topics

is automatically informed in case anything related to that topic is updated.

Transitive Event Propagation As already discovered during the analysis of Stud.IP,

transitive event propagation can also be found in InfoWiss’ event-handling system:

whenever a piece of information is updated, this update information has to be prop-

agated to all associated topics and, transitively, to all of its subtopics, so that the

implicit subscribers of this topic (i.e. the users) can be notified about the update.

Hierarchical Structures Again, hierarchical structures can be identified: in this case,

the taxonomy constitutes the only, but central, hierarchy in the data model.

No Limit of Propagation Depth In InfoWiss, event propagation is not limited in

its range. This means that an update of a document related to a topic that is on

top of the hierarchy would be propagated through to all topics in the sub-tree below

the updated topic, no matter how deep the taxonomy hierarchy is. This might be

considered a deficiency, since on the one side it may lead to performance issues in

case of large taxonomies, and on the other side the semantic relevance of such a root

update may not be significant enough for a subscriber of one of the leaf topics to be

informed.

Only one Direction of Propagation Another drawback of InfoWiss’ event propaga-

tion system is the fact that it is only possible to propagate updates from supertopics

to subtopics, but not vice versa. In an ideal system, it should be possible to propagate

updates along all kinds of associations (e.g. also from topics to their counter topics, if

there is such an association type) and in any desired direction (e.g. also from subtopics

to their supertopics).
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Precomputation of Propagations Finally, the precomputation of subtopic lists to

allow faster queries represents an important aspect: whenever event propagations are

possible within data structures that seldomly change but are frequently queried, an

ideal event-handling system should be able to precompute most of its propagation

data, rather than evaluating the whole propagation path at query-time.

2.1.3 Further Use Cases in Brief

In the following, we briefly list several additional use cases and existing systems and

point out the respective notification aspect.

Document Management Systems Most document management systems are used

as a tool to collaborately manage company-wide documents. These documents are

usually stored in a hierarchical folder system. To keep users aware of modifications to

documents made by their co-workers, these systems, for instance Intland Codebeamer

[Int] with its integrated team collaboration features, often offer functionality to sub-

scribe to individual documents or folders. Similar to the subscription mechanism of

InfoWiss, the ability to subscribe to all subfolders of a given folder is also a desired

feature.

Metadata-Based Archive Systems A more generic approach to the storage, ad-

ministration and retrieval of information are metadata-based archive systems. These

systems are typically able to maintain a catalog of possible metadata for specific doc-

uments and allow the users of these systems to store and retrieve documents, classified

according to those metadata schemata. A very sophisticated instance of such a sys-

tem is the german remote sensing data center’s multi-mission ground segment Data

Information and Management System (DIMS) [Kie02] [KF07], which is based on a self-

descriptive metadata model. Those systems require notification functionality on two

layers: first and foremost, users want to be able to subscribe to all documents being

elements of the result set of particular metadata queries. Further on, administrators

could also want to be informed about modifications of the metadata schemata to stay

up-to-date with all modifications of the datamodel and thus be able to maintain a

consistent and redundancy free metadata catalogue.

Skill Management Systems Many companies support their human resources depart-

ments by introducing skill management systems, storing qualification profiles of their
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employees. Such systems also offer a lot of potential with respect to event-handling:

team leaders could be informed about new qualifications acquired by their team mem-

bers, while management and specialists might by interested in any new colleague who

gained knowledge in a field they are working on themselves.

Project Management Tools Similar situations and use cases can be observed in the

field of project management systems. Project managers most likely want to be au-

tomatically informed about any updates of the project state, the completion of their

team members’ tasks, unforeseen problems that are recorded in the project manage-

ment system, etc. Similarly, team members could profit from an immediate notification

about changes of their tasks, updates of the schedule, etc.

This list could be extended almost infinitely: from bug tracking systems over web

content management systems to stock-trading systems, nearly every computer based

information system could profit from the introduction of event-handling functional-

ity. Since the requirements are almost the same for every kind of such a system, we

will abstract from the concrete field of application and subsume those requirements,

based on the insights we gained from analyzing the above-mentioned examples. These

requirements are listed on the following pages.

2.2 Inferred Requirements

As a conclusion of the analysis presented in this chapter, we identified a list of re-

quirements that have to be fulfilled by an ideal event-handling system. We classify

these requirements into three categories: semantic requirements, prescribing what the

solution should be capable of, technical requirements, specifying how this functional-

ity has to be realized technically, and requirements considering software engineering,

demanding how developers and maintainers of an event-handling system should be

supported to simplify their work.

2.2.1 Semantic Requirements

First of all, we can reduce the semantic requirements that have to be fulfilled by the

event-handling system we want to design to the following requirements:
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/R1.1/ Entities must be markable as subscribable It must be guaranteed that

every entity class that is stored in the underlying information system can be marked

as subscribable, i.e. as an entity class that has to be monitored. An update of an

instance of this class must trigger the event processing.

/R1.2/ Entities must be markable as subscriber As a counterpart to subscribables,

every entity class must also be markable as a subscriber. Every instance of this class

can then be a potential receiver of update events.

/R1.3/ Monitoring of subscribables must be limitable to individual attributes It

must be possible to tag individual attributes of a subscribable entity as observed. Only

updates of these particular attributes may trigger the event processing, thus avoiding

reactions to meaningless update events.

/R1.4/ Implicit subscriptions must be supported It must be possible to specify that

relationships between subscribables and subscribers designate an implicit subscription.

In that case, any detected update of the participating subscribable must lead to a

notification of the corresponding subscriber.

/R1.5/ Explicit subscriptions must be supported At runtime, it must be possible

to maintain a list of explicit subscriptions between subscribers and subscribables, in-

dependent of any associations between them. Every entry in this list must lead to the

delivery of a notification to the subscribers in case the corresponding subscribable has

been updated.

/R1.6/ Transitive propagation of update events must be supported It must be

possible to specify that associations between two subscribables lead to a transitive

propagation of update events along this association. If an instance of the originating

subscribable is updated, all instances that are adjacent to this instance via such an

event-propagating association must be considered as updated, too.

/R1.7/ Impact of transitive propagation must be limitable Further it must be

possible to limit the impact of a transitive event-propagating association, especially in

case of reflexive associations. By limiting the impact to a maximum number of “hops”

along the association, the impact of an update can be reduced.

32



2.2. INFERRED REQUIREMENTS

/R1.8/ Transitive propagation along associations must be directed It must be

possible to specify the direction of event-propagating associations, i.e. the source and

the target of the propagation must be clearly defined.

As we were able to demonstrate during the analysis of Stud.IP and InfoWiss (and as

we will verify based on other real-life use cases in part IV), almost any event-handling

use case can be assembled using the constructs described above.

2.2.2 Technical Requirements

Independent of the semantic demands, several requirements concerning the technical

realization can be postulated:

/R2.1/ Updates must be monitored and handled centrally in data storages Instead

of realizing the update monitors across the whole application, the central data storage

(e.g. relational database, XML database, flat file, ...) must be monitored for changes.2

/R2.2/ Updates must be actively detected and pushed to subscribers Any updates

in the central data storage must be detected immediately (i.e., the event processing

must be actively triggered by the update itself), instead of regularily polling for up-

dates using a time stamp or anything similar.

/R2.3/ All event-handling constructs must be based on the system’s data model

The semantic constructs introduced in section 2.2.1 must be applicable as an extension

of a structured model of the information system, e.g. an ER diagram, UML model,

XML Schema, etc.

/R2.4/ Hierarchical structures must be supported efficiently Hierarchical data

structures, which mostly manifest themselves in the data model in the form of reflexive

associations, must efficiently be supported, especially regarding event propagation.

/R2.5/ Precomputation of event propagation has to be used, where appropriate

To efficiently handle large and tightly interwoven data structures, the event-handling

2We do not consider distributed data storage systems in our work. However, we will give a very brief
outline how our approach could be applied to distributed database systems in chapter 12.
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system must be able to precompute the impact of event propagation. The system has

to determine where this precomputation is appropriate, by estimating or analyzing

update behaviour and usage characteristics.

/R2.6/ The system has to adapt to different usage characteristics during lifetime

Since update behaviour and usage characteristics tend to change over time, the system

must be able to adapt itself to these changes dynamically and - where appropriate -

change the precomputation strategies, if necessary.

2.2.3 Software-Engineering Requirements

Although the technical requirements specify the system characteristics that the final

implementation of the event-handling component has to provide, they do not prescribe

how developers have to be supported in building and maintaining such a system. These

maintenance requirements are particularly important, since, according to common

knowledge, two thirds of the effort that are put into a software system are required

for its maintenance, while only one third goes into development.

/R3.1/ Specification of event-handling semantics has to be declarative The fun-

damental event-handling semantics, based on the above-mentioned constructs, must

be applicable in a declarative way. This simplifies development, maintenance and

modifications of an event-handling system and increases flexibility.

/R3.2/ The system must be open to future modifications The event-handling

framework must support modifications of an in-force event-handling component. Both

changes in the semantic specification as well as changes of the underlying information

system must be manageable.

/R3.3/ The semantics must be open to future modifications It must be possible

to change the semantics of an already specified event-handling component without

having to adapt the underlying information system (of course, this is only possible if

the semantic changes are compatible to the previous version). As an example, consider

the introduction of a new semantic construct or a change in the interpretation of

implicit subscriptions.
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/R3.4/ Concept must be applicable to existing systems in a non-invasive way

Finally, it must be possible to develop an event-handling component on top of an

already existing information system, without having to modify the legacy system.

If all these requirements are fulfilled, we can claim that the proposed solution is ade-

quate, technically mature, easy to build, non invasive and maintainable with minimum

effort - i.e., our general requirements are fulfilled.

2.3 Summary

In this chapter, we detailed the problem statement “How to enhance information sys-

tems with event-handling in a non-invasive way”. We did so by taking a detailed look

at two information systems that support event-handling in a basic, but state-of-the-art

way. Based on this analysis, we identified their weaknesses and the universally valid

characteristics of event-handling components. Finally, we unified all these recognitions

and derived a list of semantical, technical and software-technological requirements,

which will be the basis of the work presented in this dissertation.
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“Accept good advice gracefully – as long as it doesn’t interfere with

what you intended to do in the first place.”

Gene Brown

3
Existing Approaches

The following chapter takes a closer look at existing approaches in the field of event-

handling systems, also known as publish/subscribe paradigm. To classify the systems,

we first present an architectural classification scheme. Based on this scheme, we will

enumerate several existing concepts, solutions and software systems that handle one

or more of the architectural aspects of an event-handling system. These approaches

will be evaluated with respect to the requirements we postulated in chapter 2. As it

will become clear, none of the existing approaches is able to address all demands, so

that a new approach to this problem has to be developed.

3.1 Classification Scheme for Publish/Subscribe Systems

Publish/subscribe systems are a common technique used to couple different systems

and/or users by providing a possibility to inform arbitrary parties about updates that

take place in a different system and/or by a different party. Subscribers have the

ability to express their interest in a type of event, or a pattern of event types, and are

subsequently notified about any event, generated by a publisher, which matches their

registered interest. An event is then asynchronously propagated to all subscribers who

registered their interest in that given kind of event. The participating systems and
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parties are usually decoupled in three dimensions: space, time and synchronization

[EFGK03]. A simple publish/subscribe system can thus be divided into the following

components, as figure 3.1 shows:

EVENT SERVICE

PUBLISHER

PUBLISHER

P
ublish
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ub
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h

STORAGE AND MANAGEMENT OF SUBSCRIPTIONS

SUBSCRIBER

SUBSCRIBER

SUBSCRIBER
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Figure 3.1: Generic publish/subscribe architecture by Eugster et. al. [EFGK03]

• Publishers, who advertise arbitrary events (e.g. the modification of data) to a

central event service which receives those events

• Subscribers, who, as a counterpart to the publishers, signal their interest in

particular events by subscribing to the central event service. If these subscribers

lose their interest, they can undo their subscription by unsubscribing again

• A central event service, storing all subscriptions, accepting the notifications, de-

termining which subscribers to notify and finally notifying all relevant subscribers

about the particular events

Instead of going into more detail about these components, we will first refine the

architectural overview and tailor it to the needs of our use cases.

The use cases we focus on are characterized by the following additional properties:
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• Rather than developing a generic publish/subscribe system which is able to in-

tegrate and couple different heterogeneous software systems, we focus on an

event-handling functionality within one particular application.

• Further on, we assume that all data that can be subject to change is stored

within one (integrated) central data storage.

• As a consequence, subscriptions and notifications are also stored within the data

storage.

• Another characteristic of our approach distinguishing it from traditional pub-

lish/subscribe systems is the way updates are advertised: in publish/subscribe

systems, publishers usually classify the events they want to trigger, i.e. they

have to have knowledge about the semantic meaning of “their” event. In our

scenario, the classification of data updates has to be done by an application com-

ponent. All updates are performed on the application data, so that the central

event matching can be performed there. In particular, subscription semantics

are thereby made context sensitive.

• Before events can be matched, they have to be detected, i.e. the data storage

has to be monitored for any changes that could potentially lead to further event

processing.

• Finally, the matching of events has to be performed by comparing the detected

update events to the subscription specifications, i.e. to the interest of the sys-

tem’s subscribers.

In addition to the functional aspects discussed above, the following software techno-

logical requirements find their way into the architecture:

• As we demand that our approach has to be usable in a declarative way, we need

a description language for all subscriptions. In our approach, a meta-model has

to be developed that can be used as the specification language.

• Based on the meta-model, transformations rendering the model into an exe-

cutable form that suits the particular application system are necessary.

• The desired solution not only has to be able to match detected events against

the different subscription specifications, but it also has to be prepared for high

throughput and work efficiently. Thus, an optimization component that decides

how to optimally perform the matching has to be part of the architecture, too.
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• An often forgotten aspect is the security of the event-handling system: since most

information systems limit the direct and explicit access to the data (for instance

by assigning roles and rights), it must be assured that no one can access data

indirectly by placing subscriptions which would lead to notifications that contain

information which is usually hidden from the respective users. Thus, security

mechanisms have to be applied to both the subscription and the notification

delivery component. In this dissertation, we will however not deal with this

aspect.

All these preconditions, assumptions and requirements result in the architectural clas-

sification scheme shown in figure 3.2.
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Figure 3.2: Detailed architecture overview

This architecture, which follows the modular architecture proposal by Filho et. al.

[FdSR03], contains the following components:
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Applications As motivated above, we look at event-handling functionality that can

be used within different kinds of applications. We thus have to embed the overall

architecture into the respective application, i.e. the corresponding information system.

Meta-Modelling The above-mentioned meta-model (and the respective modelling

tools) to design the event-handling semantics constitute the top level of our architec-

ture. This layer also contains a precise, formal definition of the meta-model’s seman-

tics.

Model Transformation Since the generic meta-model has to be independent of the

actual implementation of the underlying event-handling system, corresponding model

transformations are needed. The transformations take the formal event-handling spec-

ification as an input and transfer it into the target system environment.

Subscription Specification Primary target of the model transformations is the sub-

scription specification. This layer contains the system-specific realization of the noti-

fication semantics, i.e. the rules whom to notify about which updates.

Event Matching An important part of the architecture is the layer which matches

detected events against the subscription specification. There is a variety of ways how

this matching can be performed, as we will see in the following overview of related

work.

Matching Optimization Finding the most efficient way of performing the matching

procedure is part of this architectural layer. The underlying concept, which will be

detailed in chapter 7, is applicable to any kind of implementation. However, the

concrete implementation of the optimizer has to be implementation specific.

Event Detection The detection of events is one of the most crucial parts of the

architecture. Depending on the type of data storage, all relevant modifications of the

data have to be monitored and propagated to the matching layer.

Data Source The central data storage (as we have mentioned previously, distributed

data storage systems are not in the focus of our work) contains all information that
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has to be monitored for modifications. The overall architecture does not depend on a

particular type of storage, i.e. the concept is applicable to relational databases, XML

databases, flat files, etc.

Subscription Storage This layer cares for the storage of subscription information (i.e.

the subscribers’ interest). In our scenario, this storage is integrated into the central

data storage, i.e., subscription information is stored together with payload data.

Notification Storage Likewise, notifications, which have not necessarily been post-

processed immediately after they were created, have to be stored in the central data

storage, which is done by the notification storage layer.

Publication Interface A lateral layer contains the publication interface: event pro-

ducers, i.e., in our scenario, updaters of data, need an interface to advertise their

events.

Subscription Interface The mirror image of the publication interface is the subscrip-

tion interface: subscribers’ interest has to be announced to the event-handling system

by subscribing and unsubscribing, similar to the generic classification by Eugster et.

al. [EFGK03].

The following two architectural layers are not in the focus of our work. However, for

the sake of completeness, they have to be mentioned, too.

Notification Delivery As soon as events have been detected and matched against

all known subscriptions, the corresponding subscribers have to be notified. Thus, an

important part of publish/subscribe systems is how to deliver those notifications to

the (usually spacially and temporally separated) subscribers.

Security Finally, security is an important issue: this layer has to assure that sub-

scriptions and notifications can not break the information system’s access restrictions.

Although all these layers basically work independently of each other, supporting a

strong separation of concerns, there are several building blocks that have to be coordi-

nated: Subscription Specification, Event Matching, Matching Optimization and Event

Detection make up the central block that is coupled tighter to each other than to
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the surrounding layers. In addition, Meta-Modelling and the respective Model Trans-

formations also have to be coupled. Finally, Subscription Storage and Notification

Storage both have to refer to the same data and thus are usually realized in a similar

way.

Starting from these building blocks of the architecture, we will present a survey of

existing approaches that cover one or more of these layers. They will be classified by

naming the role they play in our reference architecture and briefly evaluated against

the requirements we postulated for our given use cases in section 2.2.

3.2 Overview of Existing Approaches

All approaches we examined are presented on the following pages, distinguishing be-

tween research (which usually focuses on a very particular aspect) and existing software

systems, usually covering many of the different architectural layers.1

3.2.1 Research Projects

There exists a magnitude of research publications in the field of publish/subscribe

systems and event-based systems. In the following, we will try to give an overview,

ordered by the different architectural aspects the publications deal with. For a com-

prehensive paper on architectural aspects of building a publish/susbscribe system, cf.

Fiege et. al. [FMG02].

3.2.1.1 Applications

A short list of use cases for event based systems has already been presented in chapter 2.

In addition, literature offers many further use cases: generally speaking, the monitoring

of arbitrary web pages and the possibility to get notified about interesting updates

is an important scenario [PFLS00, PFL+00, RW97, FFM01]. Further on, groupware

systems supporting the collaborative work of several users are an interesting field of

application, too [HMJ+96, Rau96, KPdLB03], in particular if users modify a common

set of documents [Thu00, DB92] or share a set of bookmarks that might be interesting

1Even if many of the presented research solutions may have found their way into “real” software
systems, we decided to keep this differentiation for better comparability.
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to other groups of users [LVA+99]. Further well-known fields of applications are digital

libraries [BF06, FRS06] or web communities [FRS04].

A completely different field of application are location based services: both updates

of geographic information as well as updates of users’ locations can be subject to

monitoring and cause the triggering of notification events [CMD02, MG02]. This field

of application is even more important if it is applied to mobile devices [Zei04].

From an industrial view, events considering the movement of real-world entities, de-

tected using RFIDs, have also been handled using event-handling systems [RJK+05].

The overall importance and up-to-dateness of publish/subscribe applications is also

proved by the interest of the scientific community in tutorials about this topic, such

as e.g. at the VLDB ’05 [IK05] or at the SIGMOD ’07 [CG07].

3.2.1.2 Meta-Modelling and Model Transformation

The usage of modern meta-modelling techniques like Model Driven Design (MDD) or

Model Driven Architecture (MDA) has not yet extensively been applied to the field of

publish/subscribe systems. Thus, to our knowlege, there exists only a single approach

by Edwards et. al., who use model driven architecture for the high-level specification

of configurations for publish/subscribe systems [EDS+04]. However, this approach

does not present a solution of how to specify event-handling semantics based on the

data model of an application, as our solution does. Furthermore, Edwards et. al.

mainly focus on a model driven generation of configuration files and code fragments

that can be used to publish and transport events to different kinds of subscribers, but

the key question of how to detect those events in the publishing system, one of the

core contributions of our solution, is not part of their work.

Although the meta-model developed by Jun Wang [Wan08] has been designed for the

specification of event-based systems, his work focuses on the description of events that

are provided and consumed by components in a distributed software system. He does

not handle the aspect of how to describe the detection of relevant updates that cause

the events, which is what we are going to do in our work by proposing an adequate

event-handling concept, appropriate constructs based on the application’s data model

and the corresponding semantics.
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3.2.1.3 Subscription Specification

The way subscribers specify their interest in events (located in the subscription specifi-

cation layer, according to our architecture) constitutes a fundamental part of publish/-

subscribe systems. Eugster et. al. differentiate between three different approaches:

topic-based subscriptions, content-based subscriptions and type-based subscriptions

[EFGK03].

Topic-based subscriptions rely on the notion of topics, which are usually identified

by keywords. Subscribers specify their interest using those keywords, while publish-

ers tag their events with the respective keywords. A matching between subscribers

and publishers can thus be easily obtained by comparing the keywords of events and

subscriptions to each other.

A more sophisticated approach are content-based subscriptions. Instead of tagging

events with keywords, the content of the events themselves (attributes or meta-data of

the event) is evaluated, leading to a classification of the events. Consumers then specify

their interest by giving conditions (called filters) which the particular events must fulfil

in order to be considered as interesting. Obviously, content-based subscription implies

topic-based subscription, since topics can be modeled as part of the events’ content

[ASS+99].

Finally, type-based subscription filters events according to their type. Instead of con-

sidering the content of an event, clients can subscribe to different kinds of events (e.g.

“StockQuotes” or “StockRequests”). These types are usually organized in taxonomic

structures, so that subscriptions can be expressed referencing different parts of the

type hierarchy.

For a detailed overview of publish/subscribe systems, see Mühl’s work “Large-Scale

Content-Based Publish/Subscribe Systems” [Müh02] and “Distributed Event-Based

Systems” [MFP06] or, for recent work, the master’s thesis by Jun Wang [Wan08].

In this dissertation, we will present the concept of how to specify content-based sub-

scriptions. The novelty of our approach lies in the fact that we will be using the

application’s data model as a basis and provide appropriate yet simple constructs

which can be used to specify the subscription semantics - an approach that has not

yet been published previously.

Another part of the subscription specification is the specification of events themselves:

a formal concept, based on an algebra, can for instance be found in Hinze’s work

[HV02a, HV02b]. Early approaches also used temporal algebrae for the subscription
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specification languages, for instance Zhang and Unger [ZU96]. Again, none of these

approaches has been designed to be directly applicable to models of the information

system’s data, so that our solution breaks new ground in the field of subscription

specification.

3.2.1.4 Event Matching

The efficient matching of events against subscriptions has been in the focus of several

research projects. A good overview of this topic has been published by Fabret et. al.

[FJL+01].

One of the first publish/subscribe systems was developed by Krishnamurthy and

Rosenblum, called Yeast : based on simple event patterns, subscriptions and the corre-

sponding actions can be defined and are evaluated by a polling server process in order

to notifiy the respective subscribers [KR95]. Obviously, this pull-paradigm based pro-

posal does not fulfil our requirement to actively determine relevant updates.

Later, a more sophisticated matching algorithm for content-based subscriptions has

been proposed by Aguilera et. al. [ASS+99]. By precomputing a decision tree, which

is later used to decide whether an event matches a subscription, efficient matching can

be guaranteed. Using a system of distributed brokers which keep a local copy of so

called distributed hash tables, Tam et. al. showed that parallelization of the event

matching and thus an efficient processing of events can also be reached in distributed

environments [TAJ04]. Both publications provide a solution to the efficient matching

of subscriptions with publications; however, they do not provide an integrated solution

tailored to the needs that arise when enhancing “traditional” information systems with

adequate event-handling functionalities.

Another research project focusing on content-based subscriptions is Elvin4 [SAB+00],

which provides a software library (implemented in C ) to embed event-handling func-

tionality into various applications. However, this approach is neither of declarative

nature, nor does it consider the fact that much of the event-handling semantics can

be derived from (or at least based on) information that is already present in the data

model of the information system, so this is where our approach offers significant ad-

vantages when realizing use cases like the ones we have taken into account.

A different approach is followed by Siena, which uses a formal model of events, ad-

vertisments (= publications) and filters (= subscriptions) for the delivery of events

to their destinations [CRW98]. Such a model has also been developed by Wang et.

al., specialized on ontology-based publish/subscribe systems [WJL04]. Another ontol-
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ogy based publish/subscribe-middleware, called CREAM, serves to integrate heteroge-

neous information systems [CBB03]. Again, like most of the published approaches to

subscription matching, none of these solutions provides an integrated approach for use

cases in which relevant data updates in an information system have to be determined

and provided to the subscribers by considering relationships within the data model.

In a distributed, integrating approach, it is also important to know how to match

and combine events from different sources. A solution to this problem, called com-

posite events, has been proposed by Pietzuch and Shand [PS02], similar to the previ-

ously published concept of compound patterns, as they are used in Ready [GKP99].

This notion of composite events has later been rediscovered in the application field

of XML databases, where Bernauer et. al. extended the event-handling platform

Snoop [BKK04]. Similarly, Tian et. al. proposed a solution how to match XML

document publications by using relational databases [TRP+04]. In addition, Hong et.

al. evaluated how to support publish/subscribe over XML streams [HDG+07]. In an

object-oriented context, Eugster and Guerraoui proposed how to implement a pub-

lish/subscribe system on top of Java, using structural reflection in order to evaluate

and match events [EG01].

Further optimization potential can be exploited by grouping different topics, which

the users can subscribe to, into virtual topic-clusters, as prototypically realized in

the Tamara publish/subscribe system [MZV07]. A similar approach has also been

developed by Zhang and Hu [ZH05].

All of the listed solutions can be considered as a reasonable extension of an event-

handling system or as a specialized solution to particular sub-tasks, but do not handle

the central question of how to specify relevant updates in structured information sys-

tems in a declarative manner.

3.2.1.5 Matching Optimization

The architectural layer of matching optimization is specific to our integrated approach

and tightly coupled to the design decision of how to detect and process updates in the

data model. Thus, literature does not contain any solutions that are applicable to our

approach.
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3.2.1.6 Event Detection

The detection of events has been extensively studied for various data storage tech-

nologies. For the most common data storage, i.e. relational databases, the Snoop

system is the best known approach, using an event specification language for active

database technology [CM94]. Similarily, Zimmer et. al. support complex update

events, which are based on event-condition-action rules [ZMU97]. These approaches

support the declarative specification of subscription conditions, but do not propose a

high-level specification language based on semantic coherences within the data model.

Instead, these specifications are a different means of designing low-level database trig-

gers. Thus, our proposed solution resides on a higher level of abstraction and offers

significant advantages to the designers of the event-handling semantics, as we will see

when presenting our universal event-handling concept.

A more generic approach, stemming from software technological research, is the type-

based approach by Eugster et. al., who use a precompiler that extends any given Java

program with publish/subscribe functionality [EGD01]. Amongst other aspects, the

detection of events is also part of the research described by Chawathe et. al. [CGL+97,

CAW98]: by providing solutions for the detection of events and the subscription to

these events, semistructured data bases can be monitored. Again, like for all the

solutions we present in this chapter, none of them proposes an integrated concept, as

we do in our work.

CQ, a personalized update monitoring toolkit, also presents an approach to event de-

tection by continuously monitoring data sources in the World Wide Web [LPT+98].

The subscription to events in the World Wide Web is also part of Lee’s work, which

formally describes events and provides triggers to react to those events [LSL00, LSL04].

In contrast to this approach, Cho and Ntoulas investigated how to efficiently detect

changes by polling the respective web pages [CN02]. Similarly, Tang showed how to

monitor web sources by continously querying them [Tan03]. Due to the nature of web

documents (which are monitored by approaches like the above-mentioned), no under-

lying data model or structure of the respective documents can be taken into account

when specifying the subscription semantics. Thus, all the presented publications do

not base their semantics on any document structure or data model, which is one of

the key points of our approach.

An approach for the monitoring of relational databases has been proposed by Vargas et.

al. [VBM05]: based on an XML subscription definition, data updates are monitored

and sent to the respective subscribers. A similar approach, using XML as a generic

format for publications and XPath for the subscription specification has been presented
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by Pereira et. al. [PFJ+01]. Similar to most of the presented related work, these

proposals are tightly coupled to technical details of the underlying information system,

which is why our approach and the universal event-handling semantics we propose

operate on a higher level of abstraction, thus being hardly comparable to the related

work and providing an important advantage of generality over existing approaches.

3.2.1.7 Data Storage

Publish/subscribe systems are applied to a variety of different data storages, like re-

lational databases, XML databases, object databases, unstructured information, web

pages, etc. We therefore refer to appropriate text books and articles to get insight

into these technologies.

3.2.1.8 Subscription and Notification Storage

These aspects are tightly correlated to the subscription specification layer and can be

realized in a straight-forward way, following the way notifications and subscriptions

are designed. To our knowledge, there are no mentionable publications in this field of

interest.

3.2.1.9 Publication Interface

The publication interface, i.e. the way publishers may advertise their events, also

depends on the way events are formally described. As a consequence, this aspect of

publish/subscribe systems is implicitly dealt with in most publications. Because this

aspect is not explicitly in the focus of our work, solutions to provide a publication

interface have not been screened separately.

3.2.1.10 Notification Delivery

Considering the delivery of notifications, a number of sophisticated techniques has

been developed. Our approach does not consider the aspect of efficiently transporting

notifications to the subscribers, so we list several important publications in this field

of interest for the sake of completeness.
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Since subscribers are usually spatially separate from the event source, events are de-

livered using network technology. Instead of using static networks, Terpstra et. al.

propose a sophisticated peer-to-peer network system named Rebeca [TBF+03]. Al-

though this approach focuses on the delivery of notifications, its implicit mechanism

of forwarding events along brokers which inspect the event to decide where to for-

ward the notification also covers the field of event matching. SCRIBE is another

topic-based publish/subscribe system covering the delivery of events (based on the

framework Pastry) [RKCD01].

Apart from the concept of how to deliver notifications to the respective recipients, the

presentation of events can also be an important factor for an event-handling system.

Mainly in the field of human interface research, there are several proposals of how

to present events to clients: McCrickard et. al. give a nice overview of this area

[MCB03, MCSN03], as well as Wahid et. al. [WBL+06].

As soon as heterogeneous information systems, based on different data models, have to

be integrated by delivering notifications, particular problems, such as the mapping of

the different models onto one common model, have to be solved. Champagne provides

a prototypic solution to this challenge [RCHM02].

3.2.1.11 Security

Finally, several publications deal with the security of publish/subscribe systems. One

approach therefore puts a network of trust over the participating brokers of a dis-

tributed architecture, where public-/private-key pairs are used to encrypt the events

sent between the different network nodes [FZB+04], to name only one.

3.2.2 Commercial Systems

A proposal that fits well into our scenario has been patented by Oracle Corporation

[Deu04] for the Oracle Database: by providing the possibility to specify boolean filters

based on the SQL specification of any database schema, users are enabled to specify

their interest and can automatically be notified about relevant updates. However,

this approach does not fulfil all of our requirements, especially when it comes to the

semantic concepts like implicit subscriptions or event-propagating references.

A commercial approach using an architecture similar to our proposal is integrated

into Microsoft SQL Server from version 2005 on, called Microsoft SQL Server Noti-
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fication Services [Micb]. Based on a specification of subscriptions using SQL, events

can be detected and sent to subscribers along predefined channels. Although this

overall approach fits our technical use case descriptions, functional and non-functional

requirements like the ease-of-use or the possibility to describe subscription semantics

on a high level (i.e. as an enhancement of a model of the database tables) are not

fulfilled.

A solution developed by the third major database vendor, IBM, offers a middleware

framework for the detection and handling of events, called Amit [ABEYH00]. To-

gether with the respective authoring tool, so-called “situations” can be defined which

are then used to determine relevant subscribers and inform them about events that

match these situations. Although being an interesting solution with the maturity

of an established product, the underlying concepts do not provide universally appli-

cable concepts for the specification of event-handling semantics. In particular, this

approach lacks the abstraction level which is necessary to realize a general, vendor-

and technology-independent event-handling framework, as our approach does.

3.2.3 Comparison Against Requirements

Table 3.1 finally shows the results of our evaluation in a compressed form. Only pub-

lications from the above list fulfilling several of our requirements have been considered

in this table. 2

2Although our requirements /R1.1/ and /R1.2/ talk about entities and/or classes in general, the
presented solutions deal with different kinds of entities, such as web pages etc. Therefore, we
interpret the term “entity” individually, as it is appropriate.
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3.3. SUMMARY

As we can see, none of the evaluated approaches and systems completely fulfils our

requirements. Obviously, this is no urgent reason to completely develop a new ap-

proach, but instead re-use ideas and concepts from previous researches, which is what

we will do on a conceptual level. However, none of the above-mentioned approaches

focuses on information systems where publishers and subscribers “reside” within the

same data storage and use the same data model, so that reuse will be limited to a few

aspects.

In particular, none of the available solutions offers an integrated solution framework

considering the declarative specification of subscriptions based on an information sys-

tem’s data model and the automatic generation of the respective optimized update

event detectors, which is what has been developed during our research and makes up

the novelty of our approach.

3.3 Summary

Based on the common scientific classification of publish/subscribe systems in com-

bination with our particular use cases, we developed a detailed architectural model.

This model was used as a basis for the classification of several scientific and commer-

cial approaches. Those approaches were also compared against the requirements we

developed in the previous chapter. This comparison clearly yielded the need for the

development of a new solution, which will be presented in the following parts of this

dissertation.
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The Non-Invasive Approach





“If the only tool you have is a hammer, you tend to see every problem

as a nail.”

Abraham Maslow

4
Solution Overview and Generic

Architecture

In the following chapter, we give a bird’s eye view onto our solution. After motivating

why we chose to develop a generic, generative and declarative approach, we present

our solution: we show how a declarative specification can be transformed into an

event-handling runtime component that centrally monitors the data storage of an

information system and determines all relevant subscribers for detected updates. The

different layers of abstraction that are inherent to our solution will also be highlighted.

Next, the different architectural parts of the event-handling component are presented

in detail. Finally, we clarify the dynamic aspects of our solution’s lifecycle, looking

at both design time processes and runtime processes. This chapter concludes with a

brief summary, collecting the key features of our solution.

4.1 Motivation for the Generative Approach

Before presenting our approach, we are briefly going to explain why we chose a gener-

ative approach in conjunction with a suitable meta-model. Although this discussion

can be lead independent of any particular implementation strategy, we are going to
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illustrate our considerations by explaining the different aspects in the course of the

development of an event-handling system for active database systems, i.e. building a

notification system using database triggers.

The first argument for a generative approach is the observation that event handling

constitutes a typical cross cutting concern [TOHSMS99, BLS03]: since data updates

can stem from a multitude of spots in the application code, in a conventional approach

each of those spots would have to be monitored by writing the additional monitoring

and notification code fragments at the appropriate locations. Figure 4.1 visualizes this

multitude of modifications in a traditional three-tier architecture, affecting the data

access layer as well as the application layer itself.

DATA

DATA ACCESS

APPLICATION

GUI

DATA MAINTAINER

Update data
Get informed about

updates

Specify Categories

of Interest

DATA CONSUMER DEVELOPER

Develop Event

Feature

Modifications of legacy code

Figure 4.1: Event-handling as a cross cutting concern

Various techniques to handle cross cutting concerns exist, for instance Aspect Ori-

ented Programming (AOP) [Ecl]. Using AOP, the monitoring code can be automat-

ically “woven” into those fragments of the application where data modifications are

performed. However, we could show in [GF05] that AOP may solve the problem of

maintainability, but a problem of bad performance (because of the high-level of imple-

mentation) still remains: if source code is modified to detect updates, the monitoring

code is located at a very high level of abstraction, so that the application is notice-
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ably slowed down. In addition, even AOP requires access to and knowledge about the

application’s code, which can not always be assumed as given.

Instead, a central observation of the data store proved to be more suitable. But this

strategy causes an other problem: the multitude of different triggers (in case relational

databases are used), or similar monitoring fragments which have to be developed, must

be handled. Not only arises the need to develop such a trigger for every individual

observed entity, but - as soon as standard software has to be developed - also for every

target platform, i.e. for any database vendor, as illustrated in figure 4.2. Obviously,

it is almost impossible to develop and maintain all these triggers with adequate effort,

at least as soon as modifications of the application and/or the event semantics have

to be handled.

Data

DATA ACCESS

APPLICATION

GUI

DATA MAINTAINER

Update data
Get informed about

updates

Specify Categories

of Interest

DATA CONSUMER DEVELOPER

Develop Event

Feature

EVENT DATA-ACCESS

EVENT-APPLICATION

EVENT-GUI

Hand-coded triggers

Figure 4.2: Necessity for a multitude of database triggers

In addition, specialized knowledge in the field of trigger development is required to

write performant and maintainable trigger code - for every individual database sys-

tem. This again raises the need to use a generative approach so that this particular

knowledge can be centrally realized in the form of templates and transformations,

generating “good” code automatically and by design.
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If we consider a third aspect, the fact that event-handling semantics are usually

strongly correlated to the application’s underlying data model (as we found out during

the use case analysis), a generative approach that uses the data model as a basis and

automatically generates the monitoring triggers offers additional advantages.

Thus, we decided to develop a declarative and generative approach, which is introduced

in the following section.

4.2 The Declarative-Generative Approach

Our approach provides the possibility to generate event-handling code from a declar-

ative specification of the respective application semantics. This specification is based

on a precise formal model, specifying how updates should be monitored and interested

subscribers have to be found. Since we found out that the event-handling semantics are

strongly correlated to the underlying data model, we base our event-handling model

on a generic meta-model, as we will show in chapter 5.

As a counterpart to the meta-model, we also provide the ability to automatically

transform the abstract specification into the corresponding fragments of event-handling

code.

Before we explain the lifecycle steps, the four participating roles are briefly sketched:

• Framework Developers provide the meta-model mentioned above, as well as the

respective transformations. We will present the abstract model for such a meta-

model, i.e., the meta-meta-model, and provide an exemplary implementation of

the meta-model, based on UML, as well as a prototypic implementation of the

model-to-code-transformations for active database systems.

• Developers use a suitable meta-model (i.e. an instance of the meta-meta-model)

and the transformations to enrich the data model of any arbitrary information

system and automatically generate the respective event-handling code.

• Data Consumers are users of the underlying information system, using the pro-

vided event-handling functionality in addition to the regular functionality of the

system.

• Finally, Data Maintainers are also users of the information system, who modify

data using the application and thus may trigger event-handling functions, if

intended by the developers.
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Figure 4.3 illustrates our overall approach and the corresponding development lifecycle,

which will be explained in detail in the following.

4.2.1 Central Data Storage

According to our use case analysis, we assume that there is a central data storage

containing all data that have to be monitored (1). As we will see later, our solution

is completely independent of the type of storage, be it relational databases, XML

databases, flat files, or anything similar.

4.2.2 Information System’s Data Model as a Basis

The only prerequisite of our approach is that the storage contains (semi-)structured

data, i.e. that some model of the stored data exists or can at least be derived from the

information system. However, our approach is not limited to a particular formalism

for this model, i.e. ER-diagrams, UML models, XSchemata or any other type of formal

model that suits the data storage can be used. In figure 4.3, we use a small sample

UML model for illustration purposes (2).

4.2.3 Generic Meta-Model of Arbitrary Data Models

As long as the information system contains data in a structured form, so that a model

of the stored data exists, we can further assume that there is a suitable meta-model.

We do not rely on a particular kind of meta-model; as an example, figure 4.3 depicts

a UML meta-model illustration (3).

What we do demand, however, is the existence of concepts resembling Entities, At-

tributes and Associations within the chosen meta-model. Since all known meta-models

support this requirement, we do not consider this as a significant restriction to the

universality of our approach.

4.2.4 Enhancement of the Meta-Model by a Generic Event-Handling
Meta-Model

This step is where the framework developers come into play: The meta-model of the

information system has to be enhanced by a formalism for the additional constructs
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Figure 4.3: Illustration of the declarative-generative approach
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of our event-handling semantics, which will be presented in chapter 5 (4). It depends

on the type of meta-model how this can be done; an exemplary enhancement for UML

profiles will be presented in part III of this dissertation.

Corresponding to the enhanced meta-model, a set of transformation routines have

to be developed by framework developers. These transformations will later be used

to take the enhanced meta-model as an input and generate the event-handling code

fragements which actually realize the additional notification functionality in the in-

formation system under development. In this dissertation, we will present a suitable

prototypic implementation for active database systems in part III.

4.2.5 Enrichment of the Data Model

Developers can then use this enhanced meta-model to enrich the meta-model of the re-

spective information system with the adequate event-handling semantics, based on the

“vocabulary” which has been developed by framework developers. This additional tag-

ging of the meta-model creates the so-called event-handling overlays which constitute

the basis for the next step of our approach.

In our illustration (fig. 4.3), this enrichment is visualized by UML stereotypes, tagging

entities, attributes and associations (5).

4.2.6 Transformation of the Enriched Data Model into Event-Handling
Code

In a final step, the transformations provided by framework developers, which have

to be tailored to the type of data storage which is in use, can then be applied to

the tagged data model (6). The following additional components of the information

system, which are responsible for the notification facility, can be generated from the

descriptive semantic specification without the need for any hand-written code:

• The event monitoring component, responsible for the detection of updates in the

data storage,

• the event-handling component, realizing the matching of events and the deter-

mination of the respective subscribers and

• the event GUI, which serves as a user interface for data consumers and data

maintainers. This GUI is mainly responsible for the specification of subscriptions
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and the presentation of notifications, however, this component is not in the focus

of our work.

4.3 Genericity and Dimensions of Abstraction

Up to now, we only claimed the genericity of our solution. In the following, we

will discuss why our approach is truly generic by presenting the different dimensions

of abstraction leading to this genericity. Figure 4.4 illustrates the two abstraction

dimensions1.
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Figure 4.4: Dimensions of abstraction

We observe two dimensions of abstraction: the abstraction layer dimension and the

implementation dimension.

The first dimension represents the traditional software layer abstractions. From the

bottom up, we first encounter the data model of the information system, which con-

stitutes the basis for the event-handling system. On top of the data model resides our

generic event-handling concept, which will be presented in the next chapter. The dif-

ferent constructs of this concept then have to be transformed into the event-handling

code, which will be described on an abstract level in chapter 6 of this dissertation.

The top two layers contain a generic cost model for the event matching procedure,

as well as a generic way of how to optimize the matching. Both will be presented in

chapter 7. In brief, the leftmost column of figure 4.4 thus represents the generic and

implementation-independent part of our work.

1Coloured building blocks are described in this dissertation, whilst grey entities are possible exten-
sions and implementation alternatives which will not bepresented in the following.
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The second dimension of abstraction concerns the different ways in which these ab-

stract concepts can be implemented, visualized by the x-axis in figure 4.4. Each of the

abstraction layer elements can be realized in a variety of ways, wherein implementation

alternatives can - under certain circumstances - be recombined and re-used.

In our approach, which we will present in part III, we will use UML profiles in conjunc-

tion with Model Driven Architecture to specify the data model and the event-handling

semantics. However, different formalisms, for instance entity relationship models, as

well as different ways to extend these models and generate code from them, are pos-

sible, too. The generic transformation rules can also be applied to a variety of target

systems: besides the generation of relational database triggers, monitoring threads for

flat files, XML database monitors, and many more are imaginable. The same variety

of possibilities exists for the concrete cost model (in our case, we will use a model

based on database access plans) and for the way in which optimizations are realized -

materialized views are one possible solution which we will examine in detail.

These two layers of abstraction also enable different dimensions of extension to our

concept: while the five-tier architecture can be extended to add different functionality

(or modified at any layer), different implementations of all these concepts are realizable,

thus making the overall approach very powerful, extensible and adaptable to any new

requirements.

4.4 Details on the Architecture’s Components

Figure 4.4 implicitly reveals the basic building blocks of our event-handling system’s

architecture. In the following, we will zoom into these aspects and present the generic

refined software architecture of our approach. We will also show where the different

kinds of models are derived from, where they are used and which components undertake

the tasks we presented in the classification scheme in chapter 3.

Figure 4.5 presents the overall architecture, distinguishing between designtime com-

ponents (upper section) and runtime components (lower section).

4.4.1 Models

We can identify three different models: on the one side, the data model (which can

be extracted from the actual data storage or be specified by the developer) as well as

the event model (which is specified by the developer) represent the semantics of the
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Figure 4.5: System architecture

event-handling component. These two models constitute the input of the generator,

which creates all relevant components (coloured boxes in the runtime section of the

architecture graphic). On the other side, a scenario model contains information about

the actual usage statistics of the legacy application, which will serve as an input to the

optimizer and can either be automatically created by the scenario monitor or manually

be specified by the developer, as we will show in chapter 7.

4.4.2 Event-Handling Data Access Layer

The publish/subscribe component must be able to access legacy data (in order to ac-

cept subscriptions and present notifications, as we will see later on), so that a suitable

data access layer must be available. Since information about the data model is known,

it is easily possible to generate this data access layer from the model specification
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automatically: any information needed for this generation step is present in the (ex-

tracted or manually specified) data model. Depending on the type of data storage,

the respective layer implementation can easily be automatically created. Recalling our

classification scheme, this layer thus implements Subscription Storage and Notification

Storage.

4.4.3 Event Detection

Located between the legacy application, the publish/subscribe component and the data

storage, this component is responsible for the detection of relevant update events. It

is also automatically generated by the optimizer/generator and thus implements the

semantic specification for event-handling in an optimized way. This component there-

fore realizes the aspects Event Detection, Event Matching and Matching Optimization

of our classification scheme.

4.4.4 Scenario Monitoring

The scenario monitoring is located between the legacy application and its data storage.

It can be implemented in two ways: either as an additional layer between the legacy

application’s data access layer and the application (as a kind of “virtual” data access

facading the actual data access layer), or as a stand-alone component using data

storage hooks (e.g. triggers) to monitor access patterns. Its results are then stored in

the scenario model, containing information about read- and update frequencies. This

component plays a special role in the overall architecture, since there is no equivalent

in the classification scheme. However, it provides the necessary data for optimization

steps and can thus be also subsumed under Matching Optimization.

4.4.5 Publish/Subscribe Component

The publish/subscribe component is realized as a stand-alone component giving users

access to the event-handling functionality. This component’s main purpose is to allow

users to specify their subscriptions and to deliver the notifications to them, so that

we can match this component to the classification areas Subscription Interface and

Notification Delivery.

The user interfaces for subscription and notification delivery are mainly a particular

way to display entities of the application’s data model: subscriptions can be seen
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as the presentation of arbitrary entities, together with a flag “subscribe to”, while

notifications are nothing more than a presentation of the updated entity together

with status information (who modified the entity, when did he do so, what was the

modification). Thus, these GUIs can also be automatically generated by the generator,

taking the data and event model as an input, but this is not in the focus of our research.

4.4.6 Optimizer/Generator

At design time, the combined optimizer/generator represents the core of our approach:

using the three models as an input, every component of the event-handling system can

be generated. Both the generator as well as the implicit optimization techniques will

be described in detail in the remainder of this dissertation, so we will not go into detail

here.

4.4.7 Legacy Application

Finally, the legacy application constitutes the information system that has to be

enhanced with event-handling functionality. For our approach, it does not matter

whether it is an in-force system which is already used, or whether it is a software

system that is still under development.

4.5 Dynamic View on the System’s Lifecycle

To complete our overview, we will leave the static aspects and take a look at the

dynamic properties of our concept. To do so, we will briefly describe the designtime

and runtime lifecycle in order to give insight into its dynamic behaviour.

4.5.1 Designtime Lifecycle

Figure 4.6 visualizes the different steps and the input and output data that are relevant

during the design time lifecycle.

In case a (legacy) application already exists, the corresponding data model has to be

extracted. If there is no such application, the data model has to be specified manually
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Figure 4.6: Designtime lifecycle

by the developer. As a next step, the semantic event model has to be created by a

developer.

As we will see in chapter 7, information about the data access patterns, stored in the

scenario model, can be used to generate an efficient event matching component. If

the developer already has knowledge about these patterns at designtime, he can store
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this information in the respective scenario model. If no such model can be built, the

event-handling component will be created without any in-advance optimizations.

Finally, all architectural components are generated: the event-handling application

itself, based on the data model and the event model, the event data access layer using

information about the data model and the event model, the event detection component

which uses all three models, and finally the scenario monitor, using the data and event

model.

DESIGN TIME LIFECYCLE IN THE LARGE

FRAMEWORKDEVELOPER

APPLICATION 

OR EVENT 

SEMANTICS 

CHANGED

START RE-

GENERATION

DESIGN 

TIME 

LIFECYCLE

yes

Figure 4.7: Designtime lifecycle in the large

Since both the application as well as the event-handling semantics tend to change over

time, the subsequent applicability of our approach also finds its way into the designtime

lifecycle in the large, as visualized in figure 4.7: whenever the information system or

the desired event-handling semantics change, the re-generation of all artifacts can be

started by developers without any additional effort.

4.5.2 Runtime Lifecycle

Finally, the runtime lifecycle, presented in figure 4.8, has to be examined.

Even if the application and/or event model should not change over time, so do the data

access patterns. To find that out, the access patterns are constantly monitored by the

scenario monitor. As soon as a significant change is detected, an administrator can

then start the re-generation, so that the new insights can be used to generate a better

suited implementation of the event detection component. As a further improvement,

it would also be possible to programmatically detect significant changes by comparing
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Figure 4.8: Runtime lifecycle

the scenario model over time and automatically start the regeneration process, but

this is beyond the focus of our work.

4.6 Summary

In this section, we presented our generative approach from a high-level view and

showed its genericity and the different dimensions of abstraction. The architecture

was presented both from a static and a dynamic viewpoint to demonstrate its overall

behaviour.

In the following, we will go into more detail and present our meta-meta-model, the

algorithms to generate the monitoring functionality and a generic optimization ap-

proach.
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“If you can’t explain it in five minutes, either you don’t understand it

or it doesn’t work.”

Darcy McGinn

5
Conceptualization of Data and Event

Models

The following section presents the conceptualization of our approach. We will in-

troduce notations for information system models and for the representation of in-

stances of information systems, i.e. for entities and their attributes stored within

the system. Based on these representations, we will present the semantic concepts of

our event-handling approach, called implicit subscriptions, explicit subscriptions and

event-propagating associations. Furthermore, we will define how these event-handling

constructs have to be interpreted to handle data updates and determine the respective

subscribers. To illustrate the concepts, an example will be presented, along which we

will explain how to interpret the semantic concepts for several sample updates.
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5.1 Representation of Data Model and System Instance

5.1.1 Data Model

In the object oriented world, the model of a software system is basically represented

by classes, their attributes and associations between classes. Classes are denoted by

capitalized names, such as Lectures and Documents.

Attributes of classes are typed and represented using the dot-notation:

[classname].[attributename]:[type]

If class Lectures contains an attribute title of type String, this would be denoted by

Lectures.title:String.

Associations between classes are represented similarly to attributes, with the associ-
ation target class being the type of the attribute. If a 1 : n or m : n association
is represented, the type is usually represented by a collection type. The association
belongsTo between a document and zero or exactly one lecture is thus represented by

Documents.belongsTo:Lectures,

whereas the association attends between students and many lectures is denoted by

Students.attends:Collection<Lectures>.

Associations between classes are always binary and directed, i.e. the class containing

the attribute is the source class, while the attribute type (or the collection type) is

the target of the association. As a consequence, bi-directional associations have to be

represented by one attribute per class, where each class is once the source and once

the target of the association.

Lectures

 name

 room

 time

Documents

 title

 content

 noOfDownloads

Students

 firstName

 lastName

attendsbelongsTo

Figure 5.1: Sample data model
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Figure 5.1 shows a sample data model, where both associations belongsTo and attends

are bi-directional. The corresponding formalization of this model is:

Documents.title:String

Documents.content:URL

Documents.noOfDownloads:Integer

Documents.belongsTo:Collection<Lectures>

Lectures.name:String

Lectures.room:String

Lectures.time:Time

Lectures.belongsTo:Collection<Documents>

Lectures.attends:Collection<Students>

Students.firstName:String

Students.lastName:String

Students.attends:Collection<Lectures>

5.1.2 System Instance

Instances of a data model are represented by objects and their attribute values, which
implicitly also contain the references between objects. An instance of an arbitrary
class is denoted by

[ClassName]:[objectId].

For example, the objects doc1 of class Documents and lectureA of class Lectures are
represented by

Documents:doc1

Lectures:lectureA

Attribute values are described by

[ClassName]:[objectId].[attributeName] = [attributeValue]

To describe the contents of collections, we use a set-based notation:

[ClassName]:[objectId].[attributeName] = {[value1],[value2],...,[valueN]}
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doc1

title = „Script Databases“

content= „\\storage\doc1“

noOfDownloads = 235

doc2

title = „Exercise 1“

content= „\\storage\doc2“

noOfDownloads = 43

lectureA

name = „Databases“

room = „FIM 116“

time = Mon 9.00 a.m.

studentX

firstName = „John“

lastName = „Doe“

studentY

firstName = „Jane“

lastName = „Doe“

belongsTo belongsTo

attends attends

Figure 5.2: Sample system instance

The sample instance presented in figure 5.2, corresponding to the above-mentioned

data model, is thus represented by:

Documents:doc1.title = ’Script Databases’

Documents:doc1.content = ’\\storage\doc1’

Documents:doc1.noOfDownloads = 235

Documents:doc1.belongsTo = {Lectures:lectureA}

Documents:doc2.title = ’Exercise 1’

Documents:doc2.content = ’\\storage\doc2’

Documents:doc2.noOfDownloads = 43

Documents:doc2.belongsTo = {Lectures:lectureA}

Lectures:lectureA.name = ’Databases’

Lectures:lectureA.room = ’FIM 116’

Lectures:lectureA.time = Mon 9.00 a.m.

Lectures:lectureA.belongsTo = {Documents:doc1, Documents:doc2}
Lectures:lectureA.attends = {Students:studentX, Students:studentY}
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Students:studentX.firstName = ’John’

Students:studentX.lastName = ’Doe’

Students:studentX.attends = {Lectures:lectureA}

Students:studentY.firstName = ’Jane’

Students:studentY.lastName = ’Doe’

Students:studentY.attends = {Lectures:lectureA}

5.2 Event-Handling Constructs and Formal Event Model

Starting from this formalism, we will next introduce our event-handling concepts,

which are presented in the following section. For a brief illustration of the event-

handling constructs, we use the above-mentioned data model and the following se-

mantic requirement, visualized in figure 5.3:

“Whenever the content of a document is updated, any lecture referring to it has

to be considered as updated, too. Additionally, all attendees of a lecture should

automatically be informed about such an update.”

Lectures

 name

 room

 time

Documents

 title

 content

 noOfDownloads

Students

 firstName

 lastName

attendsbelongsTo

propagate notify

Figure 5.3: Sample event semantics

In our sample instance, this means that any update of the contents of doc1 or doc2

would automatically cause studentX and studentY (cf. figure 5.4) to be informed.

This scenario contains the elements described in the following:

5.2.1 Subscribers

All classes whose objects are meant to be able to receive events are called Subscribers.

By this means, requirement /R1.1/ is respected.
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doc1

title = „Script Databases“

content= „\\storage\doc1“

noOfDownloads = 235

doc2

title = „Exercise 1“

content= „\\storage\doc2“

noOfDownloads = 43

lectureA

name = „Databases“

room = „FIM 116“

time = Mon 9.00 a.m.

studentX

firstName = „John“

lastName = „Doe“

studentY

firstName = „Jane“

lastName = „Doe“

belongsTo belongsTo

attends attends

propagate propagate

notify notify

Figure 5.4: Impact of event semantics on the system instance

Definition 5.2.1 (Subscribers) Let [className] be a class in the object model that

should be a possible receiver of update events. We call [className] a subscriber and

denote this by

�Subscriber�[className].

If a class is marked as a subscriber, this means that every instance of this class is a

subscriber, i.e. we use the higher abstraction level of the data model to generically

handle all possible instances of this data model.

In our scenario, we write

�Subscriber�Students.

5.2.2 Subscribables

As a dual concept, Subscribables represent any class that can be the source of a handled

update event that has to be monitored, as requirement /R1.2/ demands.

Definition 5.2.2 (Subscribables) Let [className] be a class in the object model

that has to be monitored for updates. We call [className] a subscribable and represent

this by

�Subscribable�[className].

78



5.2. EVENT-HANDLING CONSTRUCTS AND FORMAL EVENT MODEL

Again, the class in the data model is tagged, meaning that all instances of this class

have to be considered as subscribables.

5.2.3 Observed Attributes

Due to requirement /R1.3/, only updates of individual attributes should be handled,

so we use a similar notation for such attributes:

Definition 5.2.3 (Observed Attributes) Let �Subscribable�[className] be a sub-

scribable class in the data model, as introduced in definition 5.2.2, let [observedAt-

tribute] be an attribute of this class that should be checked for modifications. We call

[observedAttribute] an observed attribute of class [className] and denote this by

�Subscribable�[className].�Subscribable�[observedAttribute].

In the above case, we write

�Subscribable�Documents.�Subscribable�content,

meaning that the attribute content of every instance of Documents has to be monitored.

5.2.4 Implicit Subscriptions

To express that instances of a particular subscriber class should implicitly be informed

about updated objects of an associated subscribable class (requirement /R1.4/), we

introduce implicit subscriptions.

Definition 5.2.4 (Implicit Subscriptions) Let [associationName] be an association

in the data model from a subscribable class �Subscribable�[sourceClass] to a subscriber
�Subscriber�[targetClass]. If updates of an instance of [sourceClass] should implicitly

lead to notifications of all instances of [targetClass] that are referencing the updated ob-

ject via [associationName], we call [associationName] an implicit subscription, denoted

by

�Subscribable�[sourceClass].�implicitSub�[associationName]:�Subscriber�[targetClass]

As with previous concepts defined on the data model, all instances of [targetClass] that

are linked to an updated instance of [sourceClass] via the association [associationName]

have to be notified implicitly.
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Due to this definition, we demand that only existing associations from subscribables

to subscribers can be declared to be implicit subscriptions.

The implicit subscription attends between Lectures and Students from figure 5.3 is thus

expressed by

�Subscribable�Lectures.�implicitSub�attends:�Subscriber�Students.

5.2.5 Event-Propagating Associations

If an update of a subscribable object should automatically cause all subscribable ob-

jects that are associated via a particular association (requirement /R1.6/), we intro-

duce the concept of event-propagating associations:

Definition 5.2.5 (Event-Propagating Associations) Let [associationName] be an

association in the data model from a subscribable class �Subscribable�[sourceClass] to

another subscribable class �Subscribable�[targetClass]. If updates of an instance of

[sourceClass] should automatically lead to an update of all instances of [targetClass]

that are linked to the updated object via the association [associationName], we call

[associationName] an event-propagating association, denoted by

�Subscribable�[sourceClass].�eventProp�[associationName]:�Subscribable�[targetClass].

This definition implies that only existing associations between two subscribables can

be tagged like this.

Further on, the impact of an event propagation has to be limited, as identified in

requirement /R1.7/. We therefore introduce the integer value attribute impactRange

for event-propagating associations.

Definition 5.2.6 (Impact Range) Let �eventProp�[associationName] be an event-

propagating association between the subscribable classes �Subscribable�[sourceClass]

and �Subscribable�[targetClass]. If the update event should be propagated from in-

stances of [sourceClass] to instances of [targetClass] along at most i references of type

[associationName] (the detailed semantics will be explained in section 5.5), this is ex-

pressed using the impact range of an event-propagating association, denoted by

�Subscribable�[sourceClass].�eventProp @impactRange=i�[associationName]:

�Subscribable�[targetClass].
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Representing figure 5.3, we write

�Subscribable�Documents.�eventProp @impactRange=1�belongsTo:�Subscribable�Lectures

5.2.6 Explicit Subscriptions

In contrast to the above constructs, explicit subscriptions between subscribables and

subscribers (requirement /R1.5/) are not expressed in the data model, but as tuples

of objects, i.e. they are part of the system instance.

Definition 5.2.7 (Explicit Subscriptions) Let

[sourceObject]:�Subscribable�[sourceClass]

be a subscribable object,

[targetObject]:�Subscriber�[targetClass]

be a subscriber object. If an update of the instance [sourceObject] should lead to a

notification of the subscriber instance [targetObject], this is represented by a tuple

(source:�Subscribable�[sourceClass], target:�Subscriber�[targetClass]),

called an explicit subscription.

The set of all explicit subscription in a system instance is denoted by

Subexplicit = {exp1, ..., expn},

with expi defined as above.

A set containing the single explicit subscription between document doc1 and student

studentX would thus be expressed by

Subexplicit = {(doc1:�Subscribable�Documents, studentX:�Subscriber�Students)}.

5.3 Overlays

The usage of subscribers, subscribables, implicit and explicit subscriptions and event-

propagating associations can only represent one particular aspect of an event-handling
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system at a time. Since real-life use cases may contain several different semantic

aspects, overlays are introduced.

An overlay has two functions:

• it describes which subscribable has to be monitored

• it describes how detected updates of this subscribable have to be handled, con-

sidering implicit subscriptions and event-propagating associations

An overlay can be represented as a 3-tuple, containing a subscribable class, a set of

implicit subscriptions and a set of event-propagating associations.

Definition 5.3.1 (Overlays) An overlay Oi is defined as a 3-tuple

Oi = ([subscribableClass], AimplicitSub , AeventProp)

where [subscribableClass] is the subscribable class that has to be monitored for updates,

AimplicitSub = {imp1, ..., impi}

denotes the set of implicit subscriptions that have to be considered within this overlay

and

AeventProp = {prop1, ..., propj}

represents all event-propagating associations that have to be handled in Oi.

The overlay from figure 5.3 monitoring documents, propagating updates from docu-

ments to lectures and implicitly notifying all attendants of a lecture is thus expressed

by

O1 = (�Subscribable�Documents,

{�Subscribable�Lectures.�implicitSub�attends:�Subscriber�Students},

{�Subscribable�Documents.�eventProp @impactRange=1�belongsTo:�Subscribable�Lectures}).

The overall semantics of an event-handling system can be expressed by a set of overlays

O = {O1, ...,On},

with one overlay representing exactly one aspect of the event-handling intention.
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5.4 Graph Representations for Data Model, Overlay and

Instance

The overall semantics of the above-mentioned constructs can be explained best using

graph-based representations of the data model, the event-handling overlays and an

arbitrary system instance, which will be introduced in the following.

5.4.1 Graph Representation of Data Model

The graph representation of a data model is expressed as the directed model graph

G = (C,A) consisting of a set of class vertices C = {c1, ..., cn} and association edges

A = {a1, ..., am}. To create the model graph for a given data model, a vertex ci labeled

with the class name and its tags, if any, has to be added to the graph for every class

within the data model. Similarly, for every association in the data model, a directed

edge aj between the corrsponding source class node and the target class node has to

be added. Associations are labeled with the name of the association.

Figure 5.5 shows the graph representation of the data model from the previous sec-

tions.1 Let us assume that the associations attends and belongsTo are navigable in

both directions, resulting in two opposed edges between Documents and Lectures and

between Lectures and Students.

belongsTo attends

belongsTo
attends

<<Subscribable>>

Documents

<<Subscribable>>

Lectures

<<Subscriber>>

Students

Figure 5.5: Sample graph representation

5.4.2 Graph Representation of System Instance

A similar representation is introduced for system instances, called the instance graph

g = (O,L) consisting of vertices O = {o1, ..., ok}, representing objects, and edges

L = {l1, ..., ll} representing links between objects. For every object, a vertex labeled

with the fully qualified object name (i.e. object name, class name and class tags) has

1To illustrate that the figures represent a graph model, and not one of the data- or instance graphs
from section 5.1, we use a different graphical notation.
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to be added to the instance graph. For every link between two objects, i.e. for every

typed attribute value

[sourceObject]:[sourceClass].[associationName] = [targetObject]:[targetClass]

or

[sourceObject]:[sourceClass].[associationName] = {[o1]:[targetClass],...,[oN]:[targetClass]}

for 1 : n and m : n associations, an edge from [sourceObject] to [targetObject] is added

to the graph. This linking edge is labeled with the association name.

Figure 5.6 shows the graph representation corresponding to the system instance from

the previous sections.

belongsTo

attends

belongsTo

attends

belongsTo

belongsTo

attends

attends

doc1:

<<Subscribable>>

Documents

doc2:

<<Subscribable>>

Documents

lectureA:

<<Subscribable>>

Lectures

studentX:

<<Subscriber>>

Students

studentY:

<<Subscriber>>

Students

Figure 5.6: Sample system instance graph representation

5.4.3 Graph Representation of Overlays

Given an overlay Oi = ([className], AimplicitSub , AeventProp), the corresponding graph

representation GOi = (COi , AOi) consists of edges for all implicit subscription asso-

ciations AimplicitSub and event-propagating associations AeventProp , together with the

respective tags. Additionally, all adjacent vertices of the data model graph are added

to the overlay graph.

Figure 5.7 shows the graph representation of overlay O1 of the example in section 5.3.
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<<eventProp>>belongsTo <<implicitSub>>attends

<<Subscribable>>

Documents

<<Subscribable>>

Lectures

<<Subscriber>>

Students

Figure 5.7: Sample overlay graph representation

5.4.4 Path Descriptions

Path descriptions are used to describe a path along classes in the graph representation

of the data model. In the following, we will explain how they are defined.

Definition 5.4.1 (Path Descriptions) Let a1, ..., an be associations in a model graph.

The tuple

p = (a1, ..., an)

is called a path description if it represents a connected path in the data model, i.e. for

every

i ∈ [1, n− 1],

ai = [sourceClassA].[associationNameA]:[targetClassA]

and

ai+1 = [sourceClassB].[associationNameB]:[targetClassB]

we demand that

[targetClassA] = [sourceClassB].

A sample path description p in the data model of figure 5.5 is

p = (�Subscribable�Documents.belongsTo:�Subscribable�Lectures,

�Subscribable�Lectures.attends:�Subscriber�Students).

Although path descriptions contain only associations, the corresponding class vertices

along the path can be inferred from the association sources and targets.

5.4.5 Path Instances

A path instance denotes the equivalent of path descriptions in an instance graph.
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Definition 5.4.2 (Path Instances) Let l1, ..., lm be links in a system instance graph.

The tuple

pi = (l1, ..., lm)

is called path instance, if it represents a connected set of links in the system instance,

i.e. if for every

j ∈ [1..m− 1],

pij = [sourceObjectA]:[sourceClassA].[associationNameA] = [targetObjectA]

and

pij+1 = [sourceObjectB]:[sourceClassB].[associationNameB] = [targetObjectB],

[targetObjectA] = [sourceObjectB]

holds.

Figure 5.6 contains several path instances, e.g.

pi =

(doc1:�Subscribable�documents.�eventProp�belongsTo = lectureA:�Subscribable�Lectures,

lectureA:�Subscribable�Lectures.�implicitSub�attends = studentY:�Subscriber�Students).

Definition 5.4.3 (Matching Path Descriptions and Path Instances) Given a

path description p = (a1, ..., an) and a path instance pi = (l1, ..., lm) with

ai = [sourceClassI].[associationNameI]:[targetClassI]

and

lj = [sourceObjectJ]:[sourceClassJ].[instanceAssociationNameJ] = [targetObjectJ]

we say that pi matches p, denoted by

pi ⊆matches p,

if and only if

m = n

and

∀i ∈ [1..n] : [associationNameI] = [instanceAssociationNameI].
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Given the path description

p = (Documents.belongsTo:Lectures, Lectures.attends:Students)

from figure 5.5 and the two path instances2

pi1 = (doc1:Documents.belongsTo = lectureA:Lectures,

lectureA:Lectures.attends = studentX:Students)

and

pi2 = (doc1:Documents.belongsTo = lectureA:Lectures,

lectureA:Lectures.belongsTo = doc2:Documents),

this means that

pi1 ⊆matches p

and

¬(pi2 ⊆matches p).

5.5 Interpretation

In the following, we will explain how to interpret our event-handling constructs. First,

we have to introduce several helper constructs.3

5.5.1 Definitions

Definition 5.5.1 (Event-Propagating Path Descriptions) Let p = (a1, ..., an)

be a path description in the model graph G, let

Ox = ([sourceClass], AimplicitSub , AeventProp)

be an arbitrary overlay. We say that p is an event-propagating path description in Ox
iff

∀j ∈ [1..n] : aj ∈ AeventProp .

2For better readability, tags have been omitted in the path description and the path instances.
3From now on, we abbreviate the names of classes, attributes and assocations with [. . . ] whenever

they are not relevant for the current definition or explanation.
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Definition 5.5.2 (Association Count Function) Let p = (a1, ..., an) be a path

description in the model graph G. The association count function fac counts the

occurrences of a particular association [associationName] in this path, i.e.

fac([associationName], p) :=

|{ai|ai = [. . . ].[associationName]:[. . . ]}|

Definition 5.5.3 (Valid Event-Propagating Path Descriptions) Let

p = (a1, ..., an)

be a path description in the model graph G. We call p a valid event-propagating path

description, if and only if p is an event-propagating path description (cf. definition

5.5.1) and

∀i ∈ [1..n]

with

ai = [. . . ].�eventProp @impactRange=r�[associationName]:[. . . ]

a maximum of r associations are contained in p, i.e.

fac([associationName], p) ≤ r

holds.

Example To illustrate the definitions introduced above, let us take a look at the

model graph shown in figure 5.8.

belongsTo attends

dealsWith

attends

<<Subscribable>>

Documents

<<Subscribable>>

Lectures

<<Subscriber>>

Students

<<Subscribable>>

Topics

dealsWith

isSubTopic

belongsTo

Figure 5.8: Sample graph representation to illustrate path definitions

Let us further consider the overlay

Oi = (Documents, {Documents.belongsTo:Lectures, Lectures.dealsWith:Topics,
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Topics.�eventProp @impactRange=2�isSubTopic:Topics},

{Lectures.attends:Students}).

In this scenario, let us take a look at three different path descriptions. We start with

path description

p1 = (Documents.belongsTo:Lectures, Lectures.attends:Students).

Since the second association attends is no event-propagating association, definition

5.5.1 is not fulfilled, i.e. p1 is no event-propagating path description and thus (cf. def.

5.5.3) no valid event-propagating path description either.

Looking at path description

p2 = (Documents.belongsTo:Lectures, Lectures.dealsWith:Topics,

Topics.isSubTopic:Topics,Topics.isSubTopic:Topics,Topics.isSubTopic:Topics)

we can state that all contained associations are event-propagating, so definition 5.5.1

holds. Association belongsTo has no explicit impact range, i.e. the default impact

range 1 is used. Since p2 contains exactly one instance of belongsTo, the requirement

of definition 5.5.3 is not violated. The same holds for dealsWith. However, 3 instances

of isSubTopic are contained in p2, while the maximum impact range is defined to be

2, so p2 is an event-propagating path description, but not a valid event-propagating

path description with respect to definition 5.5.3.

Considering the last path description

p3 = (Documents.belongsTo:Lectures, Lectures.dealsWith:Topics,

Topics.isSubTopic:Topics,Topics.isSubTopic:Topics),

only two instances of association isSubtopic are present, so definition 5.5.3 also holds

and p3 thus is a valid event-propagating path description.

5.5.2 Subscribers to Inform about Updates

Based on the above definitions, the semantically correct subscribers that have to be

notified about updates within an overlay are defined as follows:
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5.5.2.1 Implicit Subscribers

Implicit subscribers are defined as follows:

Definition 5.5.4 (Implicit Subscribers) Let g be an arbitrary instance graph, let

Oi = ([sourceClass], AimplicitSub , AeventProp)

be an arbitrary overlay as defined in def. 5.3.1. Let PI = {pi1, ..., pin} be the set of

all path instances in g. If an update on an instance

[subscribableObject]:[sourceClass]

is detected, an object

[targetObject]:[targetClName]

contained in g has to be informed about this update if there exists a path instance

pii = (l1, ..., lm) ∈ PI fulfilling the following requirements:

1. there exists at least one valid event-propagating path description in GOi match-

ing the sub-path (l1, ..., lm−1), i.e.

∃p : p is a valid event-propagating path description and(l1, ..., lm−1) ⊆matches p

2. the instance path starts from the monitored subscribable, i.e.

l1 = [subscribableObject]:�Subscribable�[sourceClass].[. . . ] = [. . . ]:[. . . ]

3. the last link in the instance path is an implicit subscription4 targeting at [tar-

getClName], i.e.

lm = [. . . ]:�Subscribable�[. . . ].�implicitSub�[. . . ] = [targetObject]:[targetClNameM]

The set of all implicit subscribers that have to be informed about an update of [sub-

scribableObject]:[sourceClass] is denoted by

CimplicitSubscriber ([subscribableObject],Oi).

Informally spoken, all implicit subscribers of an event-propagation starting from the

monitored subscribable have to be notified implicitly.

4In section 5.7.2 we will discuss why implicit subscriptions are not transitive and thus can only be
the last association link.
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5.5.2.2 Explicit Subscribers

Similarly, explicit subscribers are defined:

Definition 5.5.5 (Explicit Subscribers) Let g be an arbitrary instance graph, let

Oi = ([sourceClass], AimplicitSub , AeventProp)

be an arbitrary overlay as defined in def. 5.3.1. Let PI = {pi1, ..., pin} be the set of all

path instances in g. If a modification of [subscribableObject]:[sourceClass] is detected,

an object [targetObject]:[targetClName] contained in the instance graph g has to be

informed about this update, if there exists a path instance pii = (l1, ..., lm) ∈ PI

fulfilling the following requirements:

1. there exists at least one valid event-propagating path description p ∈ GOi match-

ing pii, i.e.

∃p : p is a valid event-propagating path description and pii ⊆matches p

2. pii starts from the monitored subscribable, i.e.

l1 = [subscribableObject]:�Subscribable�[sourceClass].[. . . ] = [. . . ]:[. . . ]

3. there exists an explicit subscription between the target of the event-propagation

and [targetObject]:[targetClName], i.e. for

lm = [. . . ]:[. . . ].[. . . ] = [targetObjectM]:[targetClassM]

there has to be an explicit subscription

exp ∈ Subexplicit

with

exp = ([targetObjectM]:[targetClassM], [targetObject]:[targetClName]).

The set of all explicit subscribers that have to be informed about an update of [sub-

scribableObject]:[sourceClass] is denoted by

CexplicitSubscriber ([subscribableObject],Ox)
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This definition states that all explicit subscribers of an event-propagation starting

from [subscribableClName] have to be notified explicitly.

An object [subscriberObject]:[subscriberClass] has to be notified if it either has to be

notified explicitly or implicitly:

Definition 5.5.6 (Subscribers to Notify in an Overlay) Let g be an arbitary in-

stance graph, let

Oi = ([sourceClass], AimplicitSub , AeventProp)

be an arbitrary overlay as defined in def. 5.3.1. If an update on [subscribableOb-

ject]:[sourceClass] is detected, all subscribers that have to be notified about this update

are

CallSubscriber ([subscribableObject],Oi) :=

CimplicitSubscriber ([subscribableObject],Oi) ∪ CexplicitSubscriber ([subscribableObject],Oi)

Finally, the subscribers that have to be notified for every overlay are united to get the

overall set of subscribers:

Definition 5.5.7 (Subscribers to Notify about an Update) Let

O = {O1, ...,On}

be the set of all overlays, let [sourceObject] be an updated object. The subscribers

that have to be notified are

CallSubscriber ([sourceObject],O) := ∪i∈[1..n]CallSubscriber ([sourceObject],Oi)

5.6 Real-Life Example

Next, we will present a real-life example together with its formal specification, and

show how to interpret this specification in case of an update.

5.6.1 Sample Scenario

As an example, we use a data model derived from figure 5.1 that has been slightly

modified: instead of storing the room as an attribute of lectures, we introduce a new
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entity Rooms which is associated to lectures. Additionally, rooms can be hierarchi-

cally organized, i.e. rooms (or buildings) can contain each other. A room may have a

maintainer who is responsible for its maintenance. Figure 5.9 shows the data model.

Lectures

 name

 time

Documents

 title

 content

 noOfDownloads

Students

 firstName

 lastName

attendsbelongsTo

Rooms Maintainers

takesPlaceIn

maintains

isPartOf

Figure 5.9: Real-life data model

Assume that the following requirements have been specified:

• Whenever the contents of a document are updated, all students attending a

lecture referring to this document have to be informed.

• Whenever a lecture is re-scheduled to a different starting time, the room’s main-

tainer and all maintainers of its parent rooms/buildings (up to two levels of

hierarchy above) have to be informed.

Figures 5.10 and 5.11 show these two use cases graphically.

Lectures

 name

 time

Documents

 title

 content

 noOfDownloads

Students

 firstName

 lastName

attendsbelongsTo

Rooms Maintainers

takesPlaceIn

maintains

isPartOf

propagate notify

Figure 5.10: First overlay

Let us take a look at the instance representation shown in figure 5.12, containing

several students, documents, lectures, rooms and maintainers. For better readability,
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Lectures

 name

 time

Documents

 title

 content

 noOfDownloads

Students

 firstName

 lastName

attendsbelongsTo

Rooms Maintainers

takesPlaceIn

maintains

isPartOf

propagate

propagate(2)

Figure 5.11: Second overlay

we do not consider the attribute values, since they are not needed for our explanation.

Classnames are also omitted for better readability.

5.6.2 Formal Representation

Represented using our formalism, the scenario can be expressed as follows. The data

model contains the following classes, attributes and associations:

• Class Documents with attributes title:String, content:URL, noOfDownloads:Integer

and belongsTo:Lectures,

• class Lectures with attributes name:String, time:Time, belongsTo:Documents, take-

sPlaceIn:Rooms and attends:Students,

• class Rooms with attributes isPartOf:Rooms, maintains:Maintainers and takesPla-

ceIn:Lectures,

• class Students with attributes firstName:String, lastName:String and attends:Lectures,

and finally

• class Maintainers with attribute maintains:Rooms.

Graphically, this is represented by figure 5.13. The event-handling constructs from

the first overlay (figure 5.10) monitoring �Subscribable�Documents are expressed as

�Subscribable�Documents

�Subscribable�Lectures
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doc1 doc2

lectureB

studentX studentY

room1

room2

maintainerM

maintainerN room3

lectureA

belongsTo belongsTo

attendsattendsattends

isPartOf

takesPlaceIn

takesPlaceIn

maintains

maintains

Figure 5.12: Sample instance graph

�Subscriber�Students

�Subscribable�Documents.�Subscribable�content

�Subscribable�Documents.�eventProp�belongsTo:�Subscribable�Lectures

�Subscribable�Lectures.�implicitSub�attends:�Subscriber�Students

The second overlay (figure 5.11) monitoring �Subscribable�Lectures is similarly ex-

pressed as

�Subscribable�Lectures

�Subscribable�Rooms

�Subscriber�Maintainers

�Subscribable�Lectures.�Subscribable�time

�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms

�Subscribable�Rooms.�eventProp @impactRange = 2�isPartOf:�Subscribable�Rooms

�Subscribable�Rooms.�implicitSub�maintains:�Subscriber�Maintainers
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<<Subscribable>>

Lectures

<<Subscribable>>

Rooms

<<Subscriber>>

Maintainers

takesPlaceIn

isPartOf

maintains

<<Subscribable>>

Students
<<Subscribable>>

Documents

maintains

takesPlaceIn

belongsTo

belongsTo

attends

attends

Figure 5.13: Graph representation of data model

To complete our scenario, we add an explicit subscription between lectureA and main-

tainerM:

Subexplicit = {(lectureA,maintainerM)}

5.6.3 Interpretation of the Event-Handling Specification

In the graph based representation, the two overlays from figure 5.10 and 5.11 are

visualized in figure 5.14 and 5.15.

<<eventProp>>belongsTo <<implicitSub>>attends

<<Subscribable>>

Documents

<<Subscribable>>

Lectures

<<Subscriber>>

Students

Figure 5.14: Graph representation of first overlay

<<Subscribable>>

Lectures

<<Subscribable>>

Rooms

<<Subscriber>>

Maintainers

<<eventProp>>takesPlaceIn

<<eventProp @impactRange=2>>isPartOf

<<implicitSub>>maintains

Figure 5.15: Graph representation of second overlay

Overlay O1 Since there is only one event-propagating association, the first overlay

contains only the following valid event propagating path description:
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p1,1 = (�Subscribable�Documents.�eventProp�belongsTo:�Subscribable�Lectures)

In the instance model (cf. figure 5.12) , the following set of path instances matches

this path description (we omit the class names for better readability):

PI1 = {(doc1.belongsTo = lectureA), (doc2.belongsTo = lectureA)}

The only implicit subscription in O1 is attends, so only the following path description

satisfies the requirement from definition 5.5.4:

pi1,1 = (�Subscribable�Documents.�eventProp�belongsTo:�Subscribable�Lectures,

�Subscribable�Lectures.�implicitSub�attends: �Subscriber�Students)

The following path instances match this description:

PIi1 = {(doc1.belongsTo = lectureA, lectureA.attends = studentX),

(doc2.belongsTo = lectureA, lectureA.attends = studentX)}

Overlay O2 Due to the reflexive event-propagating association isPartOf, the second

overlay contains an infinite number of event-propagating path descriptions, since every

path description containing class Rooms can always be extended by an additional

association edge isPartOf. However, the impact range of 2 limits the allowed number

of those associations in a valid event-propagating path description, so that only the

following valid event-propagating path descriptions remain:

p2,1 = (�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms)

p2,2 = (�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms,

�Subscribable�Rooms.�eventProp�isPartOf:�Subscribable�Rooms)

p2,3 = (�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms,

�Subscribable�Rooms.�eventProp�isPartOf:�Subscribable�Rooms,

�Subscribable�Rooms.�eventProp�isPartOf:�Subscribable�Rooms)

97



CHAPTER 5. CONCEPTUALIZATION OF DATA AND EVENT
MODELS

Given the instance from figure 5.12, the following paths match one of these descriptions

each:

PI2 = {(lectureA.takesPlaceIn = room3),

(lectureB.takesPlaceIn = room2, room2.isPartOf = room1)}

Due to the only implicit subscription maintains in O2, the following path descriptions

satisfy the requirement from definition 5.5.4:

pi2,1 = (�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms,

�Subscribable�Rooms.�implicitSub�maintains:�Subscriber�Maintainers)

pi2,2 = (�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms,

�Subscribable�Rooms.�eventProp�isPartOf:�Subscribable�Rooms,

�Subscribable�Rooms.�implicitSub�maintains:�Subscriber�Maintainers)

pi2,3 = (�Subscribable�Lectures.�eventProp�takesPlaceIn:�Subscribable�Rooms,

�Subscribable�Rooms.�eventProp�isPartOf:�Subscribable�Rooms,

�Subscribable�Rooms.�eventProp�isPartOf:�Subscribable�Rooms,

�Subscribable�Rooms.�implicitSub�maintains:�Subscriber�Maintainers)

The following path instances match one of these descriptions:

PIi2 = {(lectureA.takesPlaceIn = room3, room3.maintains = maintainerN),

(lectureB.takesPlaceIn = room2, room2.isPartOf = room1, room1.maintains = maintainerM)}

Let us take a look at three different possible kinds of updates:

Update of attribute title of a document Since title is not a monitored attribute in

any of the two overlays, no event handling is triggered at all.
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Update of attribute content of doc1 First of all, content is a monitored attribute of

Documents in overlay O1 only, so the detected update has to be handled according to

O1. As we already showed, PI1 contains the following path instance starting with doc1:

(doc1.belongsTo = lectureA) and PIi1 contains the following path instance starting with

doc1:

(doc1.belongsTo = lectureA, lectureA.attends = studentX).

To determine the explicit subscribers CexplicitSubscriber ([doc1],O1), all explicit subscriptions

between the path instance targets in PI1, i.e. lectureA, and any subscriber have to

be found. Obviously, there is only the explicit subscription (lectureA,maintainerM), so

that

CexplicitSubscriber (doc1,O1) = {maintainerM}.

Additionally, all implicit subscribers, i.e. the targets of PIi1 have to be determined:

CimplicitSubscriber (doc1,O1) = {studentX}.

Finally, all subscribers to notify are

CallSubscriber (doc1,O1) = CimplicitSubscriber (doc1,O1) ∪ CexplicitSubscriber (doc1,O1) =

= {studentX} ∪ {maintainerM} = {studentX,maintainerM}.

Update of attribute title of lectureB Lecture is a monitored subscribable in O2 only.

The targets of the paths in PI2 starting with lectureB are room2 and room1. However,

there are no explicit subscriptions between a subscriber and one of these targets, so

CexplicitSubscriber (lectureB,O2) = ∅.

To determine the implicit subscribers, we look at all paths in PIi2 starting with lectureB

and get maintainerM as a result, so

CexplicitSubscriber (lectureB,O2) = {maintainerM}.

Finally, all subscribers to notify are

CallSubscriber (lectureB,O2) = CimplicitSubscriber (lectureB,O2) ∪ CexplicitSubscriber (lectureB,O2) =

= {maintainerM} ∪ ∅ = {maintainerM}.
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5.7 Discussion on Design Decisions

The design decisions we made when developing the above-mentioned concept were not

always absolutely obvious. To answer questions which readers might ask, we pick a

few aspects of our concept and explain why they were designed as they are in the

following.

5.7.1 Handling Inheritance

Although not being explicitly covered by our concept, inheritance has to be implicitly

handled by the event-handling component according to the following rules:

• If superclass Super is tagged as subscribable, any subclass Sub is subscribable,

too.

• If superclass Super is tagged as subscriber, any subclass Sub is a subscriber, too.

• If superclass Super is the source or the target of an event-propagating association

or an implicit subscription, all subclasses are source / target of the respective

association, too.

Not all kinds of data models support inheritance. For instance, entity-relationship

diagrams offer no explicit possibility to define superclass-subclass relations. Thus,

it is the responsibility of the concrete implementation of our approach to correctly

support inheritance, if the data model contains super- and subclasses. Although this

is not part of our work, we will outline how inheritance can be supported when using

UML models and relational database triggers in part III.

5.7.2 Non-Transitive Implicit Subscriptions

In our concept, event-propagating references are transitive, while implicit subscriptions

are not. This has been designed like this on purpose: first of all, according to our

semantic understanding, an implicit subscription should always be a consequence of the

fact that the update of a subscribable A leads to a notification to the adjacent subscriber

B. Thus, B can not be the source of a second, transitive implicit subscription. Second, a

transitive implicit subscription between subscribers would mean that subscribers notify

other subscribers about update events, which is not what we want to express with
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implicit subscriptions. In this case, we would rather recommend to use entities that

group users (cf. organizational units in LDAP) and define those groups as subscribers.

However, there are imaginable scenarios where semantics that resemble transitive im-

plicit subscriptions might be needed. Let us assume the information system contains

a family tree with persons and their children or ancestors, respectively. Let us further

assume that the event-handling semantics we want to model are: “If information about

a direct or indirect ancestor is modified, all children have to be informed implicitly.”

Instead of requiring transitive implicit subscriptions, this requirement can be fulfilled

by using an overlay specification as depicted in figure 5.16.

<<eventProp>> <<implicitSub>>isChild

<<Subscribable>>

<<Subscriber>>

Person

Figure 5.16: Sample overlay for family tree notification

Class Person is tagged both as �Subscribable� and �Subscriber� and the reflexive

association isChild is designed to be �implicitSub� and �eventProp�. Thus, every

update of a person automatically transitively marks all children as updated, too, and

whenever a person is updated, its children are implicitly notified. Thus, all children of

an updated person are automatically implicitly notified, even if implicit subscriptions

are not transitive themselves.

5.7.3 Benefit of Overlays

Due to the separate evaluation of overlays, event-propagation within one overlay can

not affect any other overlay. This behaviour is intended, since every overlay is designed

to handle exactly one particular processing instruction for updates.

However, there is one situation in which this behaviour is not helpful: if several sub-

scribables have to be monitored and handled according to the same processing instruc-

tion, i.e. they have to share the same implicit subscriptions and event-propagating

associations, this intention can not be directly modelled using our approach. Instead

of specifying only one subscribable as the source of an overlay, a whole set of subscrib-

ables would be required.
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Although this is not possible in our solution, a simple workaround solves the problem:

by specifying multiple overlays, each of them having a different source subscribable

but the same implicit subscriptions and event-propagating associations, the intended

behaviour can be realized.

Formally, one would expect that for a multi-source overlay

Omulti = ({[sourceCl1], ..., [sourceCln]}, AimplicitSub , AeventProp)

and for several overlays

Oi = ([sourceCli], AimplicitSub , AeventProp)

the notification semantics is to be defined as

CallSubscriber ([sourceObject],Omulti) :=

CallSubscriber ([sourceObject],O1) ∪ ... ∪ CallSubscriber ([sourceObject],On)

Since the final result, considering all overlays, is the union of the subscribers deter-

mined when interpreting every overlay individually (cf. def. 5.5.7), the same effect

can also be obtained by specifying several separate overlays, one per source class each.

5.8 Summary

In this chapter, we presented the semantic concepts and a formal model as a foundation

of the data model and event model of our approach. Using these two models, we

explained how to interpret these specifications and determine which subscribers to

notify about updates. In the following chapter, we will introduce a generic algorithm

taking this specification as an input and derive an implementation that implements

the formal concept, thus realizing the event-handling component on an abstract level.
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“I have yet to see any problem, however complicated, which, when you

looked at it in the right way, did not become still more complicated.”

Poul Anderson

6
Generic Trigger Generation

In this chapter, we show how to generically generate triggers1 for an information

system, taking the event-handling specification, which has been introduced in the

previous chapter, as an input. The generation process is independent of the actual

information system implementation, i.e. we do not rely on particular implementation

techniques like e.g. relational database triggers. The generation algorithm itself is

formally presented and explained using a running example. The correctness of the

algorithm is proved. The results from this chapter thus serve as a basis for an actual

implementation. A sample implementation using active database technology will be

presented in part III of this dissertation.

6.1 Overview of the Generation Algorithm

Figure 6.1 shows the single steps within the overall generation process, classified ac-

cording to the different layers that are touched: the modelling layer, the event-handling

1In the following, we will use the term “trigger” for the executable code that monitors updates in
the information system and determines all subscribers to notify. Triggers, in that sense, are not
necessarily triggers as known from active database systems, but can be realized using any technique
that is suitable for the underlying information system.
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system that has to be created and the runtime information system containing the data

that will be monitored.

MODEL GRAPH

Model OVERLAYS

PATH DESCRIPTIONS

TRIGGERS

DATA

Event Handling 

Functionality

Information 

System

1

1

2

3

2

Figure 6.1: Generic generation procedure

In a first step, the specifications of the data model and of the overlays are taken, and

a set of path descriptions (cf. def. 5.4.1) are computed. These path descriptions

are then used in conjunction with the overlay information to generate triggers that

realize the event-handling functionality. At runtime, these triggers then monitor data

modifications in the actual information system.

6.2 Generation Algorithm in Detail

The overall generation procedure takes a set of overlays and a graph representation

of the data model as an input and returns a set of triggers which realize the event-

handling component. On an abstract level, we define a trigger as follows:

Definition 6.2.1 (Triggers) Let [monitoredClass] ∈ C be a class in the data model,

let Q = {q1, . . . , qn} be a set of selection queries, taking an object [input] ∈ O as an

input, so that for each q1 ∈ Q the evaluation of the query

eval(qi, [input]) = {r1, ..., rm}, ri ∈ O
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returns a set of resulting objects rj , representing all subscribers that result from the

update of [input]. A trigger

t = ([monitoredClass], Q)

detects modifications of instances input of class [monitoredClass] in the information

system and returns the results of each query in case such a modification is detected.

The results are the union of the evaluation of each contained query and denoted by

eval([input], t) = eval([input], q1) ∪ . . . ∪ eval([input], qn).

Algorithm 6.1 shows how these triggers are created.

Algorithm 6.1: GenerateTriggers

Input: Set of overlays O = {O1, . . . ,On}
Output: Set of triggers T = {t1, . . . , tm}

1 T ← ∅;
2 foreach Oi = ([sourceClass], AimplicitSub , AeventProp) ∈ O do

3 ExpPathDesc← ComputeExplicitPathDescriptions(Oi);
4 ImpPathDesc← ComputeImplicitPathDescriptions(Oi);
5 T ← T ∪ CreateExplicitTriggers(ExpPathDesc);
6 T ← T ∪ CreateImplicitTriggers(ImpPathDesc);
7 end

For every overlay, a set of explicit and implicit path descriptions is computed (cf.

algorithms 6.2 and 6.3). Then, triggers for the implicit path descriptions and for the

explicit path descriptions are created, monitoring the subscribable of the overlay and

containing queries as computed by algorithms 6.5 and 6.6.

To generate the explicit and implicit path descriptions, the algorithms 6.2 and 6.3 are

used. Both of them get an overlay as input and create a set of path descriptions as

introduced in definition 5.4.1.

The algorithm to create the explicit path descriptions simply returns the set of all valid

event-propagating path descriptions (cf. def. 5.5.3), which are computed according to

algorithm 6.4. This result will later be processed by the generation of explicit triggers

(alg. 6.5) and implicit triggers (alg. 6.6).
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Algorithm 6.2: ComputeExplicitPathDescriptions

Input: Overlay Oi = ([sourceClass], AimplicitSub , AeventProp)
Output: Set of path descriptions P = {p1, . . . , pn}

1 P ← ComputeV alidEventPropagatingPathDescriptions(Oi);

The computation of implicit path descriptions is also based on the valid event-propaga-

ting path descriptions in an overlay. For every valid event-propagating path description

that ends with a subscribable class, one path description per implicit subscription is

added to the result, i.e., the original description is extended by the implicit subscription

association. This procedure is shown in algorithm 6.3.

Algorithm 6.3: ComputeImplicitPathDescriptions

Input: Overlay Oi = ([sourceClass], AimplicitSub , AeventProp)
Output: Set of implicit path descriptions P = {p1, . . . , pn}

1 eventProp← ComputeV alidEventPropagatingPathDescriptions(Oi);
2 foreach (a1, . . . , am) ∈ eventProp with am = [A].[x] = [B] do

3 // find implicit subscriptions starting from the last class in the
4 // valid event-propagating path description
5 foreach aimp ∈ AimplicitSub with aimp = [B].[y] = [C] do

6 // extend this path description with the implicit subscription
7 P ← P ∪ (a1, . . . , am, aimp);

8 end

9 end

Next, we show how the valid event-propagating path descriptions are computed. This

is done using a modified version of depth-first search, formally shown in algorithm 6.4.

Starting with an arbitrary event-propagating path description current and the cur-

rently last subscribable in this path description [currentTarget], all outgoing event-

propagating associations a from [currentTarget] are evaluated. If current contains less

instances of a than the impact range of a (i.e., at least one more instance of a may be

added to the path description), the current path is extended with a and added to the

result. Recursively, the algorithm is then called with this extended path. Initially, the

algorithm is called with the following parameters to determine all event-propagating

path descriptions for an overlay Oi = ([sourceClass], AimplicitSub , AeventProp :

P ← GetEventPropPathDescriptions(Oi, [sourceClass], ∅, ())
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Algorithm 6.4: GetEventPropPathDescriptions

Input: Overlay Oi = ([sourceClass], AimplicitSub , AeventProp)
Input: Subscribable [currentTarget]
Input: Recursively found event-propagating path descriptions P
Input: Current event-propagating path description current = (c1, ..., cm)
Output: Set of valid event-propagating path descriptions P ′

1 foreach a ∈ AeventProp with a = [currentTarget].[...] = [target] do
2 r ← impact range of a;
3 if fac(a, current) < r then
4 P ′ ← P ∪ {current ∗ a};
5 P ′ ← P ∪GetEventPropPathDescriptions(Oi, [target], P ′, current∗a);

6 end

7 end

8 P ′ ← P ′ ∪ {([sourceClass])};

With this algorithm, similar to depth-first search, all paths in the graph of event-

propagating associations starting from the overlay’s source class and following the

rules of impact range, can be determined.

To complete the computation of the triggers, the algorithms for the generation of

implicit and explicit triggers still have to be defined. These algorithms are not part of

the generic generation procedure, but have to be realized during the implementation

of our approach, since they depend on the software architecture of the information

system that has to be enhanced with the event-handling functionality.

Thus, instead of describing the implementation details of the two generation algo-

rithms, we only present their interface, consisting of the algorithm’s signature and the

contracts they have to fulfil.

Algorithm 6.5: CreateExplicitTriggers

Input: Set of path descriptions P = {p1, . . . , pn}
Result: Set of triggers T = (t1, . . . , tm)

1 // algorithm is realized depending on the specific information system
2 // and must fulfil the contract from definition 6.2.2
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The interface of the algorithm for the explicit trigger generation is shown in alg. 6.5.

A correct implementation is defined as follows:2

Definition 6.2.2 (Correct Implementation of CreateExplicitTriggers) Let

P = {p1, . . . , pn}

be a set of path descriptions, each of them starting from the same class [A], i.e.

pi = ([A].[. . . ]:[. . . ], ai2, . . . , aix).

Let g be the graph representation of an arbitrary information system instance. Let PI

be the set of all path instances in g. Let Subexplicit be a set of explicit subscriptions

stored within this information system instance. Let CreateExplicitTriggers be an

implementation of algorithm 6.5, so that CreateExplicitTriggers(P ) = {t1, . . . , tm}.

CreateExplicitTriggers is a correct implementation of algorithm 6.5, if the following

conditions hold:

1. every computed trigger watches modifications of [A], i.e.

∀i ∈ [1..m] : ti = ([A], Qi)

2. for every input path description starting from source class [A],

pi = ([A].[. . . ] = [. . . ], ai2, . . . , aix),

there exists at least one trigger containing a query q ∈ Qi that determines all

explicit subscribers of all targets of path instances matching pi:

∀p ∈ P : ∀pi = (pi1, . . . , [. . . ]:[. . . ].[. . . ] = [targetObject]:[. . . ]) ∈ PI, pi ⊆matches p :

∀exp ∈ Subexplicit , exp = ([targetObject]:[. . . ], [subscriberObject]:[. . . ]) :

∃t ∈ T, t = ([A], Q) :

∃q ∈ Q : [subscriberObject] ∈ eval(q)

2For better readability, we omit class names, object names and association names that are irrelevant
and can have any value and simply write [. . . ] in those cases.
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Informally spoken, the definition of a correct implementation of the algorithm to create

explicit triggers means that the algorithm has to create trigger code which

• detects all relevant updates of an overlay’s source subscribable

• and determines all relevant explicit subscribers by correctly following all paths

that match the explicit path descriptions.

In a similar manner, we define the contract of a correct implementation of algorithm

6.6 for the generation of implicit triggers has to fulfil:

Algorithm 6.6: CreateImplicitTriggers

Input: Set of path descriptions P = {p1, . . . , pn}
Result: Set of triggers T = (t1, . . . , tm)

1 // algorithm is realized depending on the specific information system
2 // and must fulfil the contract from definition 6.2.3

Definition 6.2.3 (Correct Implementation of CreateImplicitTriggers) Let

P = {p1, . . . , pn}

be a set of path descriptions each of them starting from class [A], i.e.

pi = ([A].[. . . ]:[. . . ], ai2, . . . , aix).

Let g be the graph representation of an actual information system instance. Let PI be

the set of all path instances in g. Let CreateImplicitTriggers be an implementation

of algorithm 6.6, so that CreateImplicitTriggers(P ) = {t1, . . . , tm}.

CreateImplicitTriggers is a correct implementation of algorithm 6.6, if the following

conditions hold:

1. every computed trigger watches modifications of [A], i.e.

∀i ∈ [1..m] : ti = ([A], Qi)

2. for every input path description pi = ([A].[. . . ]:[. . . ], ai2, . . . , aix), there exists at

least one trigger containing a query that determines all targets of path instances

matching pi:
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∀p ∈ P : ∀pi = (pi1, . . . , [. . . ]:[. . . ].[. . . ] = [targetObject]:[. . . ]) ∈ PI, pi ⊆matches p :

∃t ∈ T, t = ([A], Q) :

∃q ∈ Q : [targetObject] ∈ eval(q)

Finally, two generated triggers have to form a correct trigger combination in order to

deliver correct results:

Definition 6.2.4 (Correct Trigger Combination) Let

t = ([sourceClassT], Qt), u = ([sourceClassU], Qu)

be two triggers as defined in def. 6.2.1. t and u are said to form a correct trigger

combination, if

eval(Qt) ∪ eval(Qu) = eval(Qt ∪Qu)

We will present correct implementations of both trigger generation algorithms, using

active database technology, in part III.

6.3 Sample Generation Process

Before proving the correctness of the described generation algorithm with respect to

the semantic specification from chapter 5, we will illustrate this generation process

giving an example.

Our example consists of one overlay: O = {O1 = (Lectures, AimplicitSub , AeventProp)}.
The graphic representation of O1 is shown in figure 6.2.

Algorithm 6.4 computes all valid path descriptions along event-propagating associa-

tions in the overlay starting from Lectures using depth-first search and returns3

P =

{(Lectures.takesPlaceIn:Rooms,Rooms.isPartOf:Rooms,Rooms.isPartOf:Rooms),

(Lectures.takesPlaceIn:Rooms,Rooms.isPartOf:Rooms),

(Lectures.takesPlaceIn:Rooms),

(Lectures)}.
3We omit the tags �Subscribable� and �eventProp� for better readability.
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<<Subscribable>>

Lectures

<<Subscribable>>

Rooms

<<Subscriber>>

Maintainers

<<eventProp>>takesPlaceIn

<<eventProp @impactRange=2>>isPartOf

<<implicitSub>>maintains

Figure 6.2: Sample overlay

Due to the specification of algorithm 6.2, this is also the result of the explicit path

description computation.

P is also the input for algorithm 6.3, computing the implicit path descriptions for

overlay O1. The algorithm iterates over all event-propagating path descriptions (ll.

2-9) and finds all implicit subscriptions in Oi starting with the target of the path’s

last association (ll. 3-8).

The following implicit subscriptions are found:

For the path description

(Lectures.takesPlaceIn:Rooms, Rooms.isPartOf:Rooms,Rooms.isPartOf:Rooms),

the implict subscription

Room2.maintains:Maintainer

is found, so the composite path description

(Lectures.takesPlaceIn:Rooms,Rooms.isPartOf:Rooms,Rooms.isPartOf:Rooms,

Rooms.maintains:Maintainer)

is added to the result. The remaining path descriptions in P are handled similarly,

leading to the overall result

{(Lectures.takesPlaceIn:Rooms,Rooms.isPartOf:Rooms,Rooms.isPartOf:Rooms,

Rooms.maintains:Maintainer),

(Lectures.takesPlaceIn:Rooms,Rooms.isPartOf:Rooms,Rooms.maintains:Maintainer),

(Lectures.takesPlaceIn:Rooms,Rooms.maintains:Maintainer)}.
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According to algorithm 6.1, these results are then passed to the generation of triggers,

which is implementation-specific and can thus not be applied to our example here but

will be presented for the prototypic active database implementation in part III.

6.4 Qualitative Analysis

In the following, we will present a qualitative analysis of the generic generation al-

gorithm: we will show that it generates triggers that are correct with respect to the

formal concept and that the generated triggers will not cause any cascading update

events.

6.4.1 Correctness

We start with the proof that algorithm 6.4 correctly computes all valid event-propa-

gating path descriptions.

Proposition 6.4.1 Let Oi = ([A], AimplicitSub , AeventProp) be an overlay. Algorithm

6.4 computes all valid event-propagating path descriptions as defined in def. 5.5.3.

Proof By construction (the recursive path determination in algorithm 6.4 follows

only event-propagating associations), all found paths are event-propagating path de-

scriptions according to definition 5.5.1. Furthermore, the algorithm inserts at most

r instances of an association with impact range r, so the returned path descriptions

are valid, according to definition 5.5.3. Finally, since algorithm 6.4 is a variant of

depth-first search, it is obvious that the algorithm terminates and finds all valid event-

propagating path descriptions.

Based on this result, we can show that the generated triggers for implicit and explicit

subscribers are correct for one overlay.

Proposition 6.4.2 Let Oi be an arbitrary overlay, let CreateExplicitTriggers be

an implementation of algorithm 6.5 that generates explicit triggers that are correct

according to definition 6.2.2. For a single-valued set of overlays O = {Oi}, algorithm

6.1 creates triggers that determine explicit subscribers correctly, as defined in def.

5.5.5.
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Proof Since the correctness of the computation of the valid event-propagating path

descriptions has been shown in proposition 6.4.1, CreateExplicitTriggers receives all

valid event-propagating path descriptions in Oi as input. In addition, we know from

definition 6.2.2 (2) that the trigger determines all explicit subscribers of the event-

propagating path description targets. Thus, requirements (1) and (3) from definition

5.5.5 are fulfilled.

Due to the depth-first search starting from the overlay’s monitored subscribable in

algorithm 6.4, every path description starts with the overlay’s monitored subscribable

and due to the fact that the query of any generated trigger determines only paths

matching the input path descriptions (fulfilled requirement (2) in 6.2.2), requirement

(2) from definition 5.5.5 is satisfied, too.

Since all three requirements for the correct determination of explicit subscribers are

satisfied and requirement (1) in def. 6.2.2 asserts that modifications of the overlay’s

source subscribable are detected, the postulated claim in proposition 6.4.2 holds.

Proposition 6.4.3 Let Oi be an arbitrary overlay, CreateImplicitTriggers an im-

plementation of algorithm 6.6 that generates implicit triggers and is correct, as defined

in def. 6.2.3. For a single-valued set of overlays O = {Oi}, algorithm 6.1 creates trig-

gers that determine implicit subscribers correctly, as defined in def. 5.5.4.

Proof The correctness of the computation of the valid event-propagating path de-

scriptions has been shown in proposition 6.4.1. Further, algorithm 6.3 computes all

path descriptions starting with a valid event-propagating path description and ex-

tended by adjacent implicit subscriptions, so the input to CreateImplicitTriggers

satisfies the requirements for the path descriptions in item (1) and (3) of definition

5.5.4. Due to requirement (2) in definition 6.2.3, we know that all instance objects

that can be reached from the overlay’s source subscribable along path descriptions

starting with a valid event-propagating path description and ending with an implicit

subscription are determined by one of the generated triggers, so requirements (1) and

(3) of definition 5.5.4 are completely satisfied.

Similarly to the proof of proposition 6.4.2, requirement (2) is satisfied, too.

As all three requirements for the correct determination of implicit subscribers are

satisfied and requirement (1) in def. 6.2.3 asserts that modifications of the overlay’s

source subscribable are detected, the postulated claim in proposition 6.4.3 holds.
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Proposition 6.4.4 (Overall Correctness of Algorithm 6.1) Let CreateExplicit-

Triggers be a correct (def. 6.2.2) implementation of algorithm 6.5, CreateImplicit-

Triggers a correct (def. 6.2.3) implementation of algorithm 6.6.

If both algorithms create correct trigger combinations (cf. def. 6.2.4), algorithm

GenerateTrigger (6.1) creates triggers that correctly determine all subscribers for

any arbitrary update, according to definition 5.5.6.

Proof Due to propositions 6.4.2 and 6.4.3, both algorithms create correct triggers for

one particular overlay.

Let [subscribableObject] be an arbitrary updated object, t be the result of CreateEx-

plicitTriggers and v be the result of CreateImplicitTriggers, Oi be an overlay. Due

to algorithm 6.1, a set consisting of both triggers {t, v} is returned for Oi. If both

algorithms create correct trigger combinations (cf. def. 6.2.4), their results are united,

so

eval({t, v}) = eval(t) ∪ eval(v) = CexplicitSubscriber (Oi) ∪ CimplicitSubscriber (Oi) = CallSubscriber (Oi).

Thus, for one overlay Oi, the generated triggers determine the correct subscribers.

Since the outer loop (ll. 2-7) in algorithm 6.1 collects the triggers for all overlays,

and as the triggers are correct combinations (def. 6.2.4), we further can derive that,

if the algorithm returns a set of triggers T = {t1, v1, . . . , tn, vn} for an input O =

{O1, . . . ,On},

eval(T ) = ∪i=1..n(eval(ti)∪eval(vi)) = CexplicitSubscriber (O)∪CimplicitSubscriber (O) = CallSubscriber (O).

Thus, proposition 6.4.4 holds.

6.4.2 Avoidance of Event Cascades

A phenomenon that is often observed when using triggers are cascading triggers, i.e.

triggers updating entities which are also monitored by triggers themselves, thus firing

the consecutive trigger, and so on. This is an unwanted effect: in the worst case,

endless cascades could occur. These problems can be avoided if the used triggers do

not cause cascades at all. We can show that our generation algorithm creates only

harmless triggers without cascades:
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Proposition 6.4.5 As long as there are no other triggers within the system instance

except those that are created by our approach, triggers generated as described above

do not cause cascades.

Proof To cause a cascade, one trigger has to modify data of an other monitored class

(or by itself). We know that the algorithm generates triggers only for the overlay’s

source entities tagged as Subscribable. By construction, every trigger only determines

subscribers to notify and does not modify any data at all. Thus, cascades are impos-

sible.

6.4.3 Discussion on Cycles

Due to our concept and because of the fact that the valid event-propagating path

descriptions are computed using depth first search, which by definition does not create

endless cycles, infinite cyclic paths can not occur. However, unnecessary “ping-pong”

path descriptions can be the result of our generic trigger generation algorithm.

To illustrate this, let us take a look at the excerpt of an overlay, depicted in figure 6.3:

this fragment expresses that rooms, which are neighbour to each other, are automati-

cally considered as updated if one of their neighbours (within a distance of four hops)

is updated.

<<Subscribable>>

Rooms

<<eventProp @impactRange=4>>isNeighbour

Figure 6.3: Sample overlay leading to ping-pong updates

Due to the reflexive nature of the assocation isNeighbour, for every room A which is

neighbour to B, B is neighbour of A, too. Thus, in conjunction with the impact range

of 4, event-propagating paths like

(A:Rooms.isNeighbour=B:Rooms,B:Rooms.isNeighbour=A:Rooms,

A:Rooms.isNeighbour=B:Rooms,B:Rooms.isNeighbour=A:Rooms)

are returned as a result by the above-mentioned algorithms.

It is obvious that these “extra” paths are not harmful to the overall correctness of the

generated triggers; however, they draw additional and unnecessary performance. It
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thus remains an open end of our work, as shown in chapter 12, to avoid such ping-

pong paths in order to further streamline our implementation and improve the overall

performance.

6.5 Summary

In this chapter, we presented the algorithms to generate triggers that can be used by

the event-handling component to automatically determine all relevant subscribers for

an arbitrary update. Besides their explanation, we also showed that they generate

triggers that are correct with respect to the formal event specification and that have

no unwanted side effects like trigger cascades or cycles.

Besides correctness, performance is another important issue: in the next chapter, we

will go into detail on how to optimize the subscriber-finding queries with respect to

their runtime performance, before we will present a prototypic implementation of the

above algorithms in part III of this dissertation.
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“Have no fear of perfection - you’ll never reach it.”

Salvador Daĺı

7
Generic Optimization Strategy

The following section shows in detail how the performance of the notification facility

(generated as shown in chapter 6) can be improved. The idea is to find an optimal in-

dexing strategy, i.e., an optimal mix between the precomputation of event-propagating

path instances and their online computation. To this end, implementation-independent

cost models will be introduced and used as a measure to determine the quality of an

indexing strategy. Examining a small example in different scenarios both theoretically

and empirically, we will show that different usage scenarios require different index-

ing strategies. The chapter concludes with a summary of the results obtained while

examining the optimization possibilities.

7.1 Optimization Idea

The most time-consuming part of the event-handling functionality is the computa-

tion of path instances matching the event-propagating path descriptions. Based on

an overlay, all elements of the information system instance that match one of the

event-propagating path descriptions have to be computed at runtime. The longer the

path descriptions are, the more expensive the determination of the respective path
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instances is. To optimize the performance of an implementation of our event-handling

functionality, we have to take a look at this part of our solution.

7.1.1 Computation of Matching Paths

Figure 7.1 shows an example of arbitrary path descriptions. Since several path descrip-

tions from Subscribable to the subscribers Subscriber1 and Subscriber2 are contained in

this example, the computation of all paths that conform to one of these path descrip-

tions is very time consuming.

Subscribable C1 C2 C2 Subscriber1

Subscriber2

Figure 7.1: Sample path descriptions

To compute all path instances that match the path description, several joins are neces-

sary. In the following, we will talk about joins, although our approach is independent

of relational database technology. However, no matter which technology the realiza-

tion of the event-handling component is based on, the underlying information system

has to execute queries. For the path description from Subscribable to Subscriber1 in

figure 7.1, the following query has to be evaluated:

σSubscribable = updatedSubscribable(Subscribable on C1 on C2 on C2 on Subscriber1)

In the following, we will not consider the selection, but take a closer look at the path

descriptions and the respective join queries that have to be evaluated to determine the

matching path instances.

7.1.2 Optimization by Precomputing Matching Paths

By precomputing (fragments of) these path instances, performance can significantly be

optimized. As an example, we propose to precompute all paths within the information

systems that conform to the path description

(C1.[. . . ]:C2),
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as well as to

(C1.[. . . ]:C2, C2.[. . . ]:C2]).

These precomputed results are stored in what we call event propagation indices epI1
and epI2, as figure 7.2 illustrates.

epI1

epI2

Subscribable C1 Subscriber2

Subscribable C1 C2 C2 Subscriber1

Subscribable C1 C2 Subscriber1

Subscribable C1 Subscriber1

Figure 7.2: Event propagation indices

Using these indices, the runtime system does for instance not have to compute joins

like

Subscribable on C1 on C2 on Subscriber1,

but instead can lookup epI1 and compute

Subscribable on epI1 on Subscriber1.

Indices realize a typical trade-off, sacrificing efficient and small-footprint storage for the

sake of faster data access. In the following, we will not consider the space consumption

of indices; we simply assume that they can be stored in an ideal storage area without

space limitations.

As indices have to be maintained as well, their usage offers advantages only if they

are used to speed up lookups for paths that seldomly change. In the following, we will

describe how to find an optimal strategy for the usage of event propagation indices.

7.2 Strategy for the Usage of Event Propagation Indices

Given an arbitrary path description p, consisting of a combination of associations ai
and event propagation indices epi within an overlay, we identify four different scenarios

in case of an update:
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• P1 - the update does not affect p at all

• P2 - the update activates the event-handling mechanism

• P3 - the update does not activate the event-handling mechanism, but causes the

need to update one of the indices epi

• P4 - the update activates the event-handling mechanism and induces the need

to update one of the indices epi

Each of these events causes different costs; joins along associations and/or indices have

to be computed, indices have to be queried and indices have to be maintained. Given

the likelihood of each of the events P1 to P4 and the costs these events cause, the

expected value of costs for an arbitrary path description and an arbitrary usage of

indices within this path description can be computed. By summing up the expected

values for every path within one overlay O, the overall expected costs (with the chosen

usage of indices) E(O) can be computed. To find the ideal usage of indices, we have

to find a combination of event propagation indices that returns the minimal overall

expected costs E(O).

We use the following definitions to explain the usage of event propagation indices:

Definition 7.2.1 (Event Propagation Indices) Let

p = (a1, ..., an), ai ∈ AeventProp

be part of an event-propagating path description. An event propagation index con-

flating the associations a1 to an into one index is denoted by epi(a1,...,an). The set of

all possible event propagation indices is denoted by EPI.

Definition 7.2.2 (Indexed Path Elements) An indexed path element

pe ∈ EPI ∪AeventProp

represents either an event-propagating association or an event propagation index. We

further introduce the function

fepiElements : EPI ∪AeventProp → {(a1, ..., an)|ai ∈ AeventProp},

returning the associations that are indexed by epii or the association itself, i.e.

fepiElements(epi(a1,...,an)) := (a1, ..., an)
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and

fepiElements(ai) := (ai).

These indexed path elements can then be used within indexed path descriptions, which

are defined as follows:

Definition 7.2.3 (Indexed Path Descriptions) Let

p = (a1, ..., an), ai ∈ AeventProp

be an event-propagating path description. If parts of this path description are re-

placed by one or more event propagation indices consisting of indexed path elements

pe1, . . . , pem as defined in def. 7.2.2, this is denoted by an indexed path description

ip = (pe1, ..., pem).

An indexed path description ip = (pe1, ...pem)is said to be a valid representation of an

event propagating path description p = (a1, ..., an) if

fepiElements(pe1) ∗ ... ∗ fepiElements(pem) = (a1, ..., an)

with ∗ being the concatenation of path description fragments.

7.3 Cost Model

To compute the overall expected costs, a cost model is required. Since our solution is

specified independent of any particular implementation technique, we define a generic

cost model that predefines the different cost factors that are relevant. For a particular

implementation technique like relational databases, XML databases, flat files, etc., the

cost model has to be instantiated concretely.

The generic costs can be divided into two groups: costs for the maintenance and access

to the event propagation indices and costs that originate from the computation of path

instances matching the event-propagating path descriptions have to be evaluated.

7.3.1 Costs of Event Propagation Indices

There are three relevant actions concerning event propagation indices. First, we define

the costs for a query to such an index.
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Definition 7.3.1 (Costs for epI -access) Let EPI be the set of all event propa-

gation indices. The costs that have to be beared whenever an index is queried are

denoted by

cepiAccess : EPI → N+

As indices have to be maintained, we need to consider the costs for the (re-)computation

of an index, too.

Definition 7.3.2 (Costs for epI -computation) Let EPI be the set of all event

propagation indices. The costs that rise whenever an index is (re-)computed are

denoted by

cepiComp : EPI → N+

Finally, during maintainance, a recomputed index also has to be stored, which causes

additional costs:

Definition 7.3.3 (Costs for epI -storage) Let EPI be the set of all event propa-

gating indeces. The costs arising whenever an index is stored within the index store

is denoted by

cepiStore : EPI → N+

7.3.2 Costs of Paths

To quantify the costs that are needed to compute the transitively updated subscrib-

ables along an indexed path description ip (which obvioulsy depends on the different

associations and indices within this path), we define the following cost function:

Definition 7.3.4 (Costs for Computation of Matching Path Instances) Let

IP be the set of all indexed path descriptions. The costs that are required to compute

all paths within the information system that match a path description ip ∈ IP are

denoted by

cpath : IP → N+

These four cost functions are contained in a cost model, defined as follows:

Definition 7.3.5 (Cost Model) Let cepiAccess , cepiComp , cepiStore , cpath be cost func-

tions as defined in definitions 7.3.1, 7.3.2, 7.3.3 and 7.3.4.

These functions constitute a cost model, denoted by
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Mc = (cepiAccess , cepiComp , cepiStore , cpath)

7.4 Probabilities

In addition to the costs of particular operations, the probabilites for the different

events that cause those operations have to be known. We will take a closer look

at three different probability models that can be used, shown in figure 7.3. In the

following, we will describe the abstract ProbabilityModel, i.e. the different generic

probabilities that have to be computed for every information system (in one of the

ways shown in figure 7.3).

ProbabilityModel

HeuristicProbabilityModel DesignTimeProbabilityModel EmpiricalProbabilityModel

Figure 7.3: Hierarchy of probability models

If we take a look at cases P1 to P4 from section 7.2, we identify the following two

likelihood functions.

Definition 7.4.1 (Probability for Notification Triggering) For every overlayO,

we denote the likelihood that an arbitrary update within the information system re-

quires that the path instances matching the path descriptions within this overlay have

to be evaluated (because of an update) by

PevalIP : O → [0..1]

We also define the likelihood of an update within an arbitrary event propagation index,

causing the need to recompute the index:
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Definition 7.4.2 (Probability for Index Updates) Let epi ∈ EPI be an event

propagation index. The probability that an arbitrary update within the information

system requires that the index is recomputed is denoted by

PrecompEpi : EPI → [0..1]

For any instantiation of the generic likelihoods PevalIP and PrecompEpi , we assume that

they are stochastically independent of each other, so that combined events (e.g. two

indices being touched by the same update transaction) can easily be handled.

Mapped to the scenarios from section 7.2, we can compute the likelihoods for these

four situations within an overlay O containing the indexed path descriptions ip1, ..., ipn
as follows (scenario P1 is not relevant):

The probability P (P2), i.e. that an overlay O has to be interpreted because of an

update of its source subscribable, has been defined as

P (P2) = PevalIP (O).

Further, the probability that at least one event propagation index has to be recomputed

can be computed using the counter-event: the probability that an index ipi needs no

update is 1−PrecompEpi(ipi), so the likelihood that none of the indices ip1 to ipn needs

an update can be computed as

n∏
i=1

(1− PrecompEpi(ipi)).

Thus, the probability that at least one index has to be updated is

P (P3) = 1−
n∏
i=1

(1− PrecompEpi(ipi)).

Finally, the probability of P4 can be computed as

P (P4) = 1− ((1− P (P2)) · (1− P (P3))).

These probabilities are represented in a probability model, defined as follows:
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Definition 7.4.3 (Probability Model) Let PevalIP and PrecompEpi be probability

functions as defined in definitions 7.4.1 and 7.4.2.

These two function constitute a probability model, denoted by

MP = (PevalIP , PrecompEpi)

7.5 Expected Costs of Path Descriptions

The quality of an indexed path description is evaluated using the expected value for

the overall costs of an update. Based on the previously presented generic cost- and

probability models, the expected value is computed as follows:

Definition 7.5.1 (Expected Value for Arbitrary Update Costs) Let

Mc = (cepiAccess , cepiComp , cepiStore , cpath)

be an arbitrary cost model as introduced in def. 7.3.5, let

MP = (PevalIP , PrecompEpi)

be an arbitrary probability model (cf. def. 7.4.3). Let O be an overlay containing the

indexed path descriptions ip1, ..., ipn where ipi = (pei1, ..., peim). We further denote

the set of all event propagation indices epi contained in ip1, ..., ipn by EPI.

The expected value for the costs of an arbitrary update is then denoted by

E(O)

and computed as

E(O) := PevalIP (O)·
n∑
i=1

cpath(ipi)+
∑

epi∈EPI
PrecompEpi(epi)·(cepiComp(epi)+cepiStore(epi))

Based on this expected value, the quality of the usage of event propagation indices

can be evaluated.

125



CHAPTER 7. GENERIC OPTIMIZATION STRATEGY

7.6 Probability Models

The three concrete implementations of the abstract model shown in figure 7.3 are

explained in the following.

7.6.1 Heuristic Probability Model

A very generic way of expressing likelihoods is the usage of heuristics. By assuming

equally distributed update probabilites for any attribute or association within the

information model, the probabilites PrecompEpi and PevalIP can be deferred.

In a heuristic model, we assume that updates are equally distributed over all classes

that are adjacent to the associations. Additionally, for every class c, updates activating

the event-handling mechanism and updates modifying any of the event propagation

indices are assumed to both be equally likely. All these events are assumed to be

stochastically independent of each other. Thus, for any overlay O in an information

system with a total of n classes1, we get

P heurevalIP (O) :=
1

2n

For any event propagation index epi = (a1, ..., ak), the probability for a recomputation

can be computed (using the counter-event ‘none of the classes is updated, affecting

the index’) as

P heurrecompEpi(epi) = 1− (1− 1

2(k + 1)
)
k+1

Although this model delivers very imprecise results (because the updates in real life

systems are usually not uniformously distributed), it can be used for systems that are

still under design and whose update behaviour is not yet known to developers.

7.6.2 Designtime Probability Model

If - in contrast to the heuristic model - the designer of an information system can

predict the update probabilities, he can specify them at design time. In our concept,

this can be expressed by discretely specifying the functions PevalIP and PrecompEpi (in

1Obviously, a path description consisting of a total of m associations contains n = m + 1 classes.
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section 10.1.2 we will show how this can be done using UML profiles). In this case,

we rely on the designer to assert stochastic independence.

Compared to the heuristic model, this approach requires more knowledge at design

time, however the results are expected to be more precise since the system designer’s

knowledge is assumed to be better than statistic considerations.

7.6.3 Empirical Probability Model

The most precise model can be determined by monitoring the information system

and recording the update statistics. By logging the individual updates together with

the respective update transaction and correctly deriving the individual likelihoods,

stochastic independence can easily be guaranteed. In this work, we will not elaborate

such an implementation, but keep this task in mind as an open end (cf. chapter 12).

From an overall view, this probability model delivers the most precise results and does

not require any designtime knowledge; however, optimizations at designtime are hardly

possible because an information system that is already in use is required. Addition-

ally, monitoring the system’s update behaviour during runtime can impose significant

performance drawbacks.

7.6.4 Comparison of Probability Models

Table 7.1 illustrates the (dis-)advantages of the probability models with respect to

four aspects: is the approach usable already at designtime, does it require knowledge

of the system designer considering the system behaviour, does it cause any impact

on the running system and, finally, how precise can the optimization be performed.

Each of these models can be used to optimize the performance of the event-handling

mechanism, depending on the prerequisites and requirements of the actual use case.

Design time Knowl. required Perform. impact Precision

Heuristic Model X - - poor
Probability Model X X - average
Empirical Model - - X good

Table 7.1: Comparison of probability models
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7.7 Cost Models

There are several possibilites of how to instantiate the generic cost functions (shown

in figure 7.4), depending on the desired precision and on the chosen realization of the

concept: a heuristic cost model, using expected costs for joins based on the classes’

cardinalities and the join selectivities, a database-based cost model which uses the

internal cost models of relational databases (thus being applicable to relational im-

plementations only) and an empirical cost model, based on observations of the actual

event-handling system.

CostModel

HeuristicCostModel ImplementationSpecificCostModel

DBCostModel

EmpiricalCostModel

Figure 7.4: Hierarchy of cost models

7.7.1 Heuristic Cost Model

To evaluate the usability and adequacy of particular event propagation indices, heuris-

tic cost models can be used. These cost models can be utilized using only a model

of the information system and an estimation about the cardinalities of classes and

about the join selectivities between classes. However, the lack of knowledge about the

concrete implementation of the event-handling system results in inaccurate and rough

evaluations and can thus only be used to quickly purge the search space of possible

index assignments, so that fewer alternatives have to be compared to find an optimal

solution.2

2To guarantee that the heuristic purge process does not remove potentially optimal solutions, we
would have to prove that the heuristic cost model induces the same order on the set of index
assignments as the empricial specific cost model does. We do not prove this, so we can only
propose the purge process as a heuristic without guaranteed correctness or a guaranteed limited
deviation of the optimum.
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Definition 7.7.1 (Cardinality of Classes) Let c ∈ C be an arbitary class. The

cardinality of this class (i.e. the number of instances of this class in the information

system) is denoted by

|c|.

Definition 7.7.2 (Join Selectivity) Let P be the set of all path descriptions, let

p = (a1, ..., an) ∈ P

be a path description, connecting the classes c1 to cn+1 via the associations a1 to an.

The join selectivity

seljoin : P → N+

defines the size of the result of the join c1 on ... on cn+1 for the path description p.

Since the costs to access an event propagation index are related to the size of the

index, which equals the join selectivity of the indexed classes, we further define the

following heuristic cost functions:

Definition 7.7.3 (Heuristic costs for epI -access) For an arbitrary event propa-

gation index epi, we define the heuristic access costs by

cheurepiAccess(epi) := seljoin(fepiElements(epi))

The costs for the computation of event propagation indices are estimated based on

the cardinalities of the individual joins. The join operator is associative, so some

information systems (like relational databases, e.g.) change the join order to find an

optimal reordering to minimize join costs. To consider this re-ordering in our cost

model, we introduce the following join reordering function.

Definition 7.7.4 (Join Reordering) Let ip = (pe1, ..., pen) be an indexed path de-

scription containing the path elements pe1 to pen. We use the join reordering function

φ : {1, ..., n} → {1, ..., n}

to express the join order. For a path containing 4 classes, the join reordering function

would be interpreted as follows:

For the trivial case of no join order optimization, we use the left-to-right ordering φlr ,

φlr (n) := n.

129



CHAPTER 7. GENERIC OPTIMIZATION STRATEGY

on

on

peφ(4)

peφ(3)

peφ(2)peφ(1)

Figure 7.5: Join order expressed by φ

The set of all valid join reorderings for an indexed path description ip is denoted by

Φip .

Definition 7.7.5 (Heuristic Costs for epI -computation) Let epi ∈ EPI be an

event propagation index, indexing the path description p = (a1, ..., am), connecting

the classes c1, ..., cn. Let φ be a valid join reordering for p. The heuristic computation

costs are defined recursively by

cheurepiComp(epi, φ) := cheurepiComp(epi, φ, n)

where

cheurepiComp(epi, φ, n) := cheurepiComp(epi, φ, n− 1) + |cφ(n)|+ cheurepiComp(epi, φ, n− 1) · |cφ(n)|

and

cheurepiComp(epi, φ, 2) := |cφ(1)|+ |cφ(2)|+ |cφ(1)| · |cφ(2)|

Although most cost models (especially in the area of relational databases) do not

consider storage costs, because they can hardly be set in relation to access and com-

putation costs [HR01], we decided to incorporate them because the storage of an index

significantly influences the overall runtime behaviour, independent of the concrete im-

plementation. We thus estimate the storage costs by the number of indexed paths

that have to be stored, multiplied by a factor krw approximating the cost relationship

between writing and reading access.
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Definition 7.7.6 (Heuristic costs for epI -storage) Let epi ∈ EPI be an event

propagating index. The costs for storing this index are heuristically defined by

cheurepiStore := krw · cheurepiAccess

where

krw > 1

The heuristic approximation of the path evaluation costs is again based on the assump-

tion that joins between path elements (i.e. classes or indices) are performed according

to the join reordering. Using the index access costs and the join selectivities, we define

the following heuristic cost function:

Definition 7.7.7 (Heuristic Costs for Path Computations) Let ip be an

indexed path description ip = (pe1, . . . , pen). Let φepi be a valid join reordering

for ip. The heuristic path evaluation costs are defined by

cheurpath (ip, φepi) := cheurpath (ip, φepi , n)

where

cheurpath (ip, φepi , n) :=

cheurpath (ip, φepi , n− 1) + cheuraccess(peφepi (n)) + cheurpath (ip, φepi , n− 1) · cheuraccess(peφepi (n))

and

cheurpath (ip, φepi , 2) := cheuraccess(peφepi (1))+c
heur
access(peφepi (2))+c

heur
access(peφepi (1))·cheuraccess(peφepi (2))

Based on these cost functions, we can define an optimal reordering :

Definition 7.7.8 (Optimal Join Reordering for Indexed Path Descriptions)

Let ip = (pe1, ..., pen) be an indexed path description. Let Φip be the set of all valid

join reorderings for ip, let φ ∈ Φip be one of those reorderings.

φ is said to be an optimal join reordering (denoted by φoptimal ), iff

cpath(ip, φ) = min{cpath(ip, φ′)|φ′ ∈ Φip}
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Using this cost model in conjunction with the formula for the overall expected value

from section 7.5, different scenarios of index usage can be compared to each other

without in-depth knowledge about the platform of the event-handling application. We

will present an example in section 7.8.

7.7.2 DBCostModel

In contrast to the heuristic cost model, implementation specific cost models know

about the actual costs for the mentioned operations using a particular implementation.

This cost model can be instantiated for XML databases, object databases, text files

or relational databases using a particular DBCostModel.

In case the event-handling system is built upon relational databases, the cost model can

be tailored to this use case by using a specific database adapted DBCostModel. Since

cost models for relational databases have been studied in detail, precise estimations

about different database operations can be computed.

7.7.3 Empirical Cost Model

Finally, the empirical cost model is based upon observations of the system in use:

every component of the cost model (i.e. costs for updating indices, ...) has to be

measured using the real event-handling system.

For relational database systems, optimizers can for instance be queried to return the

actual database costs for complex queries like the determination of event-propagating

paths or for index maintenance.

Obviously, this cost model returns the precisest results; however, it is often impossible

or too expensive to conduct measurements within a productive system. Moreover,

optimizations usually have to take place before an event-handling system goes into

production, so that no empirical results are present yet.

On the other hand, such observations can regulary be conducted while the system is

in use, so that the overall event-handling system can be auto-tuned by automatically

adapting to any changed costs (or to new usage statistics, resulting in different update

likelihoods). This aspect is, however, not in the focus of our work, so we will list this

task as an open end in chapter 12.
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7.8 Sample Comparison of Indexing Alternatives

To illustrate the defintions and to show the relevance of our optimization efforts, we

will compare two different ways of indexing path descriptions, based on the heuristic

cost model from section 7.7.1. The following example has already been presented as

one of the path descriptions in figure 7.2. Two ways of indexing this path description

are presented in figure 7.6.

epI2
Subscribable C1 C2 C2 Subscriber1

(a) Usage of index: Alternative A

epI2'
Subscribable C1 C2 C2 Subscriber1

(b) Usage of index: Alternative B

Figure 7.6: Alternative usage of indices

In this example, p = (C1.[. . . ]:C2,C2.[. . . ]:C2) is the event propagating path descrip-

tion between Subscribable and Subscriber1. This path can be represented in two ways:

either by

ipA = (epi2)

or by

ipB = (C1.[. . . ]:C2, epi2′),

where

fepiElements(epi2) = (C1.[. . . ]:C2,C2.[. . . ]:C2)

and

fepiElements(epi2
′) = (C2.[. . . ]:C2).

Besides the two indexing strategies shown above, we also evaluate a third alternative

without any event propagation indices at all. We evaluate four different scenarios,

differing in the update probability of every class, the cardinality of each class and

the respective join selectivities. Each scenario is examined under the premise that

the underlying information system either is able to determine an optimal join order

(φoptimal ), or that it does not optimize the join order at all (φlr ). We furthermore

assume a write-to-read factor krw = 1.5, i.e. storing a tuple causes 150 percent of

the costs of reading it. The expected costs for every scenario are computed using the

above-mentioned formula for the expected value.
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Independent of the scenario, there are two ways of computing C1 on C2 on C2. We thus

get join costs

cjoin((C1 on C2) on C2) = |C1| · |C2|+ seljoin(C1,C2) · |C2|

or

cjoin(C1 on (C2 on C2)) = |C1| · seljoin(C2,C2) + |C2| · |C2|,

depending on the join order. In the following, the optimal join order was used for

every scenario without explicitly presenting the mathematical comparison of both

alternatives.

To quickly visualize the different scenarios, we use the graphical representation shown

in figure 7.7. The thickness of the borders represent the update probability of a class:

a dotted border means low update probability, a normal border represents an average

probability and a fat border indicates high update likelihood. The cardinalities of each

class are represented by the sign above the class: ’+’ means high, ’o’ means average

and ’-’ represents low cardinality. The same signs are used for the indication of the join

selectivity between two classes (drawn below the association) and between all three

classes (below the bracket).

Subscribable C1 C2 C2 Subscriber1
o

- +

+

Figure 7.7: Graphical representation of scenarios

Based on these scenarios3, the expected values are computed and the results are pre-

sented in tabular form and explained briefly.

7.8.1 Scenario 1

In the first scenario, the update likelihoods of C1 and C2 are very low compared to

the update probability of the subscribable. The cardinalities and join selectivities are

given in table 7.2 and visualized in figure 7.8.

Computing the overall expected update costs for all three alternatives, we get the

results as listed in table 7.3. As the results show, the indexing alternative B performs

3To avoid the influence of the join Subscribable on C1, the cardinalities of Subscribable and C1 were
equally set for every scenario, with every Subscribable being connected to exactly one C1.
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Class c card seljoin Pupdate

C1 5,000 0.01
C2 5,000 0.01

C1 on C2 5
C2 on C2 500

C1 on C2 on C2 20
Subscribable 5,000 0.98

Table 7.2: Cardinalities and probabilities for figure 7.2, scenario 1

Subscribable C1 C2 C2 Subscriber1
-

o o

-

o

o

Figure 7.8: Graphical representation of scenario 1

best in case the information system does not support optimal join ordering. If an

optimal join strategy is determined by the information system, alternative A using

the large index performs best.

Alternative A Alternative B No EPIs

φoptimal 606,224 2,808,417 24,568,609

φlr 606,224 27,215,297 49,049,004

Table 7.3: Expected values for scenario 1

7.8.2 Scenario 2

The second scenario, shown in table 7.4 and figure 7.9, has slightly different probability

parameters: class C1 is much more likely to be updated than C2 or Subscribable.

The results presented in table 7.5 show that in this scenario, alternative B is best

in both cases. Since C1 is updated frequently, while C2 is updated infrequently, the

separate index for C2 on C2 performs better than the complete index. Finally, due

to the fact that Subscribable is not updated very often, the approach using the index

performs better than the alternative without indices at all.
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Class c card seljoin Pupdate

C1 50,000 0.30
C2 100 0.05

C1 on C2 250,000
C2 on C2 300

C1 on C2 on C2 2,000
Subscribable 50,000 0.10

Table 7.4: Cardinalities and probabilities for figure 7.2, scenario 2

Subscribable C1 C2 C2 Subscriber1
+

+ -

o

-

-

Figure 7.9: Graphical representation of scenario 2

7.8.3 Scenario 3

In the third scenario (table 7.6 and figure 7.10), the update probability for Subscribable

is significantly lower than the other update probabilities. In addition, the selectivity

of C2 on C2 is very high, thus minimizing the use of an index for this join.

As a result (cf. table 7.7), both indexing strategies perform worse than the non-

indexed approach, even if the information system does not determine the optimal join

strategy. This can be explained by two factors: first, the high selectivity of C2 on C2

and C1 on C2 on C2 makes access to both index alternatives almost as expensive as an

online computation; second, the low update probability of Subscribable leads to many

unnecessary (and, due to the cardinalities of C1 and C2, expensive) updates of the

index, because the index is queried seldomly.

Alternative A Alternative B No EPIs

φoptimal 15,503,377 11,510,762 11,511,250

φlr 21,065,868 251,515,562 253,040,020

Table 7.5: Expected values for scenario 2
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Class c card seljoin Pupdate

C1 1,000 0.2
C2 1,000 0.2

C1 on C2 800
C2 on C2 8,500

C1 on C2 on C2 200,000
Subscribable 1,000 0.02

Table 7.6: Cardinalities and probabilities for figure 7.2, scenario 3

Subscribable C1 C2 C2 Subscriber1
0

o o

+

o

+

Figure 7.10: Graphical representation of scenario 3

7.8.4 Scenario 4

Scenario 4 (table 7.6 and figure 7.10) differs from the previous scenarios in two aspects:

first, the overall selectivity of C1 on C2 on C2 is very low. Second, updates of C1 and

C2 are much less likely than updates of Subscribable.

The results, presented in table 7.9, yield that alternative B is by far better than any

other solution (the significance of the advantage is much higher than in scenario 2),

independent of the join order. This is easily explainable, since the index is queried very

often (updates of Subscribable are very likely) and small enough to offer a significant

advantage being queried.

Alternative A Alternative B No EPIs

φoptimal 4,929,692 393,180 52,112

φlr 4,929,692 393,180 56,116

Table 7.7: Expected values for scenario 3
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Class c card seljoin Pupdate

C1 1,000 0.05
C2 1,000 0.05

C1 on C2 1,000
C2 on C2 1,000

C1 on C2 on C2 2,000
Subscribable 1,000 0.40

Table 7.8: Cardinalities and probabilities for figure 7.2, scenario 4

Subscribable C1 C2 C2 Subscriber1
o

o o

-

o

o

Figure 7.11: Graphical representation of scenario 4

7.8.5 Empirical Validation of the Results

To validate the theoretical results, we implemented the four scenarios using the rela-

tional database system Microsoft SQL Server 2005 [Micc]. Since SQL Server does not

support materialized views containing self referencing joins (C2 on C2 in our example),

the event propagation indices were realized using regular tables that were filled using

database triggers (see appendix B.2). All scenarios were built according to their spec-

ification, and every alternative was measured using 1000 updates, distributed among

the different classes according to the specified probabilities. As a final result, the

average time per update was measured and the average of three measurements was

recorded.4 SQL Server internally optimizes the order of the joins, so the results had

to be compared to the respective expected optimal reordering φoptimal .

4The scenarios were run on a virtual server under Windows XP, 2.2 GHz Core2Duo with 1.5 GB of
RAM.

Alternative A Alternative B No EPIs

φoptimal 1,006,917 851,775 1,202,400

φlr 1,006,917 851,775 1,202,400

Table 7.9: Expected values for scenario 4
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To validate the assumed write-to-read factor of 1.5 we ran several tests comparing

update costs against the corresponding read costs, which resulted in an actual average

write-to-read factor of 1.43, thus confirming our assumptions.

The overall results are presented in table 7.10.

Expected Costs Actual Costs
(cost units / update) (ms / update)

Scenario A B C A B C

1 606,224 2,808,417 24,568,609 10.3 23.8 58.9

2 15,503,377 11,510,762 11,511,250 96.2 61.4 68.4

3 4,929,692 393,180 52,112 828.2 25.1 1.9

4 1,006,917 851,775 1,202,400 7.2 6.9 7.3

Table 7.10: Empirical Validation of Expected Costs per Update

These empirical results first and foremost show that the actual costs behave as ex-

pected: the theoretically best indexing strategy is actually the ideal solution. How-

ever, the differences between the alternatives are not as significant as predicted. This

can be explained by the internal use of caching mechanisms and specialized join al-

gorithms within the database system, which lead to better performance whilst not

improving the maintenance of the indices. Thus, especially the non-indexed solution

mostly performs better than expected.

Altogether, our tests showed clearly that the theoretical cost model that we proposed

resembles the real life behaviour of the event-handling system, thus making it a pow-

erful means of evaluating different index stragies with respect to their performance.

Therefore, we decided to use this cost model in our prototypic implementation, which

will be presented in part III of this dissertation.

7.8.6 Sophisticated Index Maintenance Algorithms

In our approach, the maintenance of the event propagation indices has either been

left completely to the underlying platform (if the platform provides any means of

view materialization) or been hand-built by re-building the index whenever one of the

participating entities is updated.

Obviously, this is the worst possible solution to maintain the indices. To improve

maintainance performance, sophisticated index maintenance are necessary, so that we

can identify an open task which is presented in section 12 of this dissertation. Thus,
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we do not go into detail regarding these improvements but postulate that such modifi-

cations can only improve the performance of any event propagation index. Thus, our

approach of finding an optimal indexing strategy can be used without modifications;

we assume that sophisticated maintenance algorithms do not affect the proportions

between different strategies, so that the best solution remains best, also when making

use of such improvements.

7.8.7 Results

We can summarize the following results:

• As we already expected, due to the different scenarios with different parameters

in real-life use cases, we can state that the general use of indexes is not appro-

priate. Instead, the contextual situation has to be analyzed individually and

tailored indexing strategies - which can be determined with our approach - have

to be applied.

• According to our model, the relevant parameters to determine the ideal index

usage are: cardinalities of the classes, the join selectivities between those classes

along the path description and the update likelihoods of all participating classes.

• The proposed cost model is suitable in so far that the expected costs are able

to predict the actual runtime behaviour, at least in a relational database model,

which is what we verified.

• There are scenarios in which indices should not be used at all, because online

computation is more efficient.

Since - as we were able to show when analyzing the use cases - all of these different

scenarios are present in practice, and since the parameters also tend to change over

time, we can also conclude that an approach to automatically determine the optimal

indexing strategy is in fact necessary. In the next section, we will show how to not only

evaluate strategies under different scenarios, but how to also find an optimal indexing

strategy for a given use case.
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7.9 Determining the Optimal Index Usage

With the above-mentioned approach, different indexing strategies can be compared to

each other and the best of those strategies can be chosen. To find an optimal strategy

for a given (non-indexed) path description p, all possible partitionings of the path

description into indices have to be evaluated, i.e. the whole search space has to be

evaluated with respect to the cost model.

To approximate the complexity of this search space, we look at the number of valid

partitionings of a path description.

Definition 7.9.1 (Number of Partitionings of a Path Description) Let

p = (a1, ..., an)

be a (non-indexed) path description with n−1 associations, i.e. containing a total of n

classes. We denote the number of path partitionings into classes and event propagation

indices by

part : P → N+

Thesis 7.9.2 Let p = (a1, ..., an) be a (non-indexed) path description with n − 1

associations, i.e. containing a total of n classes. The number of valid path partitionings

is

part(n) = 2n−1

Proof The proof is lead inductively: figure 7.12 shows an arbitrary path with n > 2

classes.

c1 c2 c3 c4 cn...

epi1 part (n-1) possibilities

epi1 part (n-2) possibilities

...

epi1

Figure 7.12: Recursive construction of valid path partitionings

Obviously, the first partition (starting with C1) can be of length i, 1 < i < n. For the

remaining classes, part(n− i) possibilities remain. Thus, we get

part(n) = part(n− 1) + part(n− 2) + ...+ part(2) + part(1) + 1
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We define part(0) := 1, so we get

part(n) =

n−1∑
i=0

part(i)

With part(0) = 1 (by definition), part(1) = 1 and part(2) = 2, it remains easy to

show that the formula can be simplified to

part(n) = 2n−1.

For an overlay O with m paths, each of them with a maximum amount of n classes, a

total of

O(m · 2n−1) = O(2n)

possibilities in the search space have to be evaluated.

Although this means exponential complexity with respect to the longest path descrip-

tion within an overlay, we decided not to use any specific optimization techniques like

dynamic programming for two reasons: first of all, our research showed that the maxi-

mal length and the number of path descriptions in one overlay are bounded by design:

path descriptions longer than four or five classes do not appear in real-life scenarios,

so that the search space remains maintainably small. Second - and most important -

the evaluation of the different alternatives is done once, at design time, and thus does

not affect runtime behaviour, which means that the duration of this optimization is

irrelevant for the target system at all.

7.10 Estimated Behaviour Depending on Path Length

In the following, we will finally analyze the response-time behaviour of the event-

handling component depending on the length of an event-propagating path description.

The results were determined using the heuristic cost model from section 7.7.1. For

this analysis, we differentiate between highly connected and sparsely connected object

graphs.
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7.10.1 Highly Connected Object Graphs

As an example for a highly connected object graph, we consider the model of a graph

containing n classes (with n being the overall path length). Each of those classes is

assumed to be of cardinality 100, where each join selectivity between two classes is

specified as 10, 000, i.e. each object is connected to each other. Thus, the overall

number of paths conforming to the path description is n10000.

Two indexing strategies are compared to each other: no index vs. the use of a total

index, i.e. an index that precomputes the whole path description. We analyze two

cases for each strategy: in the first case, 10 percent of all accesses to the event-handling

system are read accesses, i.e. all relevant subscribers have to be determined. The other

90 percent are update transactions, updating the index (if any) and not leading to a

determination of subscribers.

1,00E+00

1,00E+02

1,00E+04

1,00E+06

1,00E+08

1,00E+10

1,00E+12

1,00E+14

1,00E+16

1,00E+18

1,00E+20

2 3 4 5 6 7 8 9 10

No Index With Index

Figure 7.13: Average time per update in highly connected graph, few read and many
update transactions (logarithmic scale)
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Figure 7.13 shows the estimated average costs per transaction: obviously both alter-

natives scale exponentially. This is due to the exponential growth of paths conforming

to the path description. The non-indexed strategy performs slightly better because

the extra costs for the index maintenance are not compensated, since the index is

“complete”.

In the contrary scenario (90 percent read and 10 percent update transaction), the same

behaviour can be observed (figure 7.14). In this case, both alternatives are equally bad

because accessing the index is only neglibly faster than computing all relevant paths.

1,00E+00

1,00E+02

1,00E+04

1,00E+06

1,00E+08

1,00E+10

1,00E+12

1,00E+14

1,00E+16

1,00E+18

1,00E+20

2 3 4 5 6 7 8 9 10

No Index With Index

Figure 7.14: Average time per update in highly connected graph, many read and few
update transactions (logarithmic scale)

Although the proposed optimizer chooses the solution with minimal expected costs

per update for any particular scenario (i.e. for a given n), highly connected graph

structures represent the worst situation, because exponential behaviour can not be

prevented.
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7.10.2 Sparsely Connected Object Graphs

In contrast to highly connected graph structures, the response-time behaviour of a

sparsely connected object graph is evaluated: each of the n classes is again assumed to

be of cardinality 100, but the join selectivity between two classes is only 1, i.e. there

is only one join between two neighboured classes. We further assume that the total

join returns only 1 result, i.e. there is only one event-propagating path at all.

Again, we distinguish between two usage statistics. Figure 7.15 shows the expected

results for 10% read and 90% update transaction.

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

2 3 4 5 6 7 8 9 10

No index With index

Figure 7.15: Average time per update in sparsely connected graph, few read and many
update transactions

This time, both approaches scale linear. Due to the high rate of updates causing an

index recomputation, the indexed solution is significantly slower.

A different result is yielded for the contrary case in figure 7.16: this time, an index

offers significant advantage because it can be used in 90% of all cases (with only very
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0,00
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Figure 7.16: Average time per update in sparsely connected graph, many read and few
update transactions

low access costs), whilst having to be rebuilt only in 10% of all transactions. However,

both solutions again scale linear.

7.10.3 Consequences

As a consequence of these results, we conclude that - in real-life scenarios without fully

connected graph structures - the overall scalability is acceptable. Developers applying

our approach have to consider that long path descriptions for event propagation heavily

impact the overall performance. However, since event-propagating path descriptions

are usually of limited length (the real-life scenarios we encountered contained event-

propagating path descriptions of a maximum length of three to four only), the overall

behaviour is applicable for productive use.
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7.11 Summary

In this chapter, we motivated why to use indices for the computation of event-propa-

gating paths. Using a heuristic cost- and probability model, we also proved that under

different contexts, i.e. with different parameters like cardinalities, update probabilities

and join selectivities, different strategies can be optimal. We were also able to show

that there are O(2n) different ways of how to partition a path description into different

indices. Examining this search space in a brute force way, we showed how an optimal

strategy can be found.

As a first conclusion, we can argue that the heuristic probability model can be used

as a rule-of-thumb to evaluate practical applications, although scenarios with uni-

formous update likelihoods usually do not appear in real life use cases. For better

results, the real (or estimated) update probabilities should be taken into account (ei-

ther being specified by the system designer or being derived from the actual system).

Nevertheless, the heuristic probability model proved to return plausible results when

applied to different scenarios and can thus be used for design-time approximations of

the later costs. However, this model also requires designers’ knowledge concerning the

cardinalities and the join selectivities which have to be specified at design time.

From a comprehensive view, we were able to show that the index optimizer is an

important fragment of the overall architecture that has to be included in the design

process by default and can even - if the overhead for regularily determining the context

parameters can be coped with - be used, in conjunction with the runtime lifecycle from

chapter 4, to regularily auto-tune the system and adjust it to new usage scenarios.

These results will be applied in the context of relational databases and MDA in part

III, where the whole optimization concept will be realized using materialized views.
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The Model Driven Implementation
for Active Databases





“For a list of all the ways technology has failed to improve the quality

of life, please press three.”

Alice Kahn

8
Technology Selection

To start the description of our prototypic implementation of the generic approach

presented in the previous part of this dissertation, we are going to give an overview of

the technologies we chose. After briefly motivation our selection, we will introduce the

reader to the key concepts of Model Driven Architecture, Active Database Technology

and Materialized Views, limited to those aspects that are required to understand the

remainder of this dissertation. In addition, some traditional fields of application for

the presented technologies will be named. Like for all chapters, we end our overview

with a short summary.

8.1 Motivation for Technology Selection

The selection of technologies was mainly motivated by our major use case Stud.IP,

which was already introduced in chapter 2. Since Stud.IP stores its data in rela-

tional databases, the usage of technologies in the field of databases suggested itself.

Whenever it comes to the detection and handling of updates in relational databases,

Active Database Technology can be considered the most suitable means to develop an

adequate solution.
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However, this selection only predetermines the target technology for the runtime event-

handling component; what remained to choose was a technology for the specification

of the event-handling meta-model and of actual event-handling models based on this

meta-model, as well as for the development of transformations of event-handling mod-

els into runtime components. Both aspects are ideally covered by a technology cur-

rently in the focus of both practitioners and researches: Model Driven Architecture

(MDA).

Finally, our generic optimization approach had to be implemented, too. A technology

that proved suitable for the pre-computation and storage of queries (which is what

the event-propagating indices, introduced in the previous chapters, actually do) when

working with relational databases are Materialized Views, which constitute the third

building block of our prototypic implementation.

In the following, we will present the three selected technologies.

8.2 Model Driven Architecture

Our introduction to MDA will be divided into two parts: a description of the model

driven architecture paradigm as promoted by the Object Management Group (OMG)

and an overview of AndroMDA, an open-source implementation of the MDA paradigm.

We will start with a description of MDA in general1.

8.2.1 MDA in General

MDA [Objb] is a framework for the development of software, defined by the Object

Management Group (OMG) [Objc]. Key feature of MDA is the usage of models,

i.e. the software development process is driven by modelling software systems and

generating code or code fragments from these models.

8.2.1.1 The MDA Development Life Cycle

The MDA development life cycle is shown in figure 8.1. A significant difference to

traditional development processes lies in the different artifacts that are created during

1The following section is mainly taken from [KWB04].
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the different phases. According to MDA, most of the artifacts are formal models, of

which the following three are most important.

Requirements

Analysis

Low-level design

Coding

Testing

Deployment

Text

PIM

PSM

Code

Code

Figure 8.1: MDA development process

Platform Independent Model (PIM) The PIM is a model on a high level of ab-

straction, independent of any technology - be it a mainframe system with relational

databases or an EJB application server. The system is modeled from the viewpoint

of how it best supports the business that has to be supported by the software system

that is developed, disregarding any technical details.

Platform Specific Model (PSM) The PIM is then transformed into a platform spe-

cific model (PSM), specifying the system in terms that are available in a particular

implementation technology. A PSM for an JEE-based system would for instance con-

tain EJB specific terms like “session bean” and “entity bean”, while a PSM for a
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relational database system might include terms like “table”, “column” or “foreign

key”.

For each target technology, an individual PSM has to be created. However, in practice,

the PSM is usually omitted and PIMs are directly transformed into the next type of

model, i.e. into code.

Code Actual code or at least code fragments are the final artifacts during the MDA

development process, representing the executable form of the PIM that has initially

been designed.

The key concept behind the three types of models is the increase of abstraction from

lower levels to higher levels: developers are thus able to work on a higher level of

abstraction, thus being able to cope with more complex systems with less effort.

8.2.1.2 Automation of the Transformation Steps

Further on, the crucial difference between MDA and traditional software development

is the transformation between different types of models: while in traditional processes

the transformations are mainly done by hand, MDA automates these steps by auto-

matically generating a PSM from a PIM, and Code from the PSM. Current tools,

such as AndroMDA (which will be presented in the following), are able to generate

executable code from a high-level model specification at the click of a button. This

leads to several major benefits of MDA:

• Since PIM developers do not have to cope with technical details, but focus

on the business modelling instead, they can pay more attention to solving the

business problems. More important, a large part of technical code (e.g. accessing

databases, checking authorizations, ...) is automatically generated and does not

have to be written by hand, leading to much higher productivity.

• Due to the fact that PIMs are (by definition) platform-independent, one single

PIM can be transformed into PSMs (or code) for a variety of target platforms.

Everything specified on the PIM level is completely portable. Since transforma-

tion tools are available for a variety of target platforms (or can additionally be

self-developed, if necessary), this results in higher portability of the developed

software system than with traditional development processes.
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• A PIM implicitly fulfils the function of a high-level documentation for the soft-

ware system. In addition, the PIM is not abandoned after writing: instead,

any changed requirements are worked into the PIM (instead of simply changing

code in traditional approaches), so that the parts of the application that have

to be changed can be re-generated from the modified PIM. In addition, several

tools allow the extraction of PIMs or PSMs from (legacy) applications, so that

the quality of maintenance and documentation can significantly be improved by

using MDA.

These benefits of MDA are not only claimed by the OMG; in fact, experience shows

that the usage of MDA can significantly improve the software development process.

For an in-depth evaluation of MDA in practice, we refer to the work of Pastor and

Molina [PM07]. The applicability of MDA in several fields of applications has also

extensively been evaluated, for instance for the integration of learning management

systems [GBD05], the generation of database access applications [RLS05] and web

applications [PH03], schema integration [KGF06, QKC05] or data warehousing [DL05,

LMTS02, MTSP05].

8.2.1.3 Building Blocks of MDA

The following building blocks constitute the heart of MDA: the different models and

the language they are written in, the transformation rules between different kinds of

models together with a language in which to write those transformations, and the tools

that execute the model transformations.

Models and Modelling Languages Any kind of model describes a particular system

and is written in a particular language, and so are models in the MDA context. Al-

though, by definition, MDA is not restricted to a particular model formalism, MDA

models are usually written using UML [Obje].

In the following, we will only describe those aspects of UML that are important for

our application of MDA; we assume that the reader has basic knowledge about UML.

For detailed information, cf. the official UML specification [Obj04b, Objd, Obje] or

appropriate textbooks [KWB04, Fra03, MSUW04] and papers, like [KdM05], to name

but a few.

UML contains several different types of diagrams, e.g. class diagrams, sequence dia-

grams, statechart diagrams, etc. For our approach, only class diagrams are relevant.
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Class diagrams mainly consist of classes (containing attributes) and associations be-

tween those classes. Figure 8.2 shows a sample class diagram.

Figure 8.2: Sample class diagram in UML

Although UML offers a big variety of diagram types and many constructs for these

diagrams, it is usually necessary to extend UML in order to introduce new constructs

that are necessary for the business case modelling. In other words, a specific meta-

model has to be developed based on the default UML possibilities.

A meta-model is defined as a model of a model, specifying the language for all possible

models, so that each model can be seen as an instance of the meta-model. This is

visualized in figure 8.3: a model is written in a particular language, which is defined

by its corresponding meta-model.

Figure 8.3: Model, language and meta-model

One way to extend UML and build a meta-model is called Meta Object Facility (MOF).

We are not going to highlight MOF in this dissertation; for an overview cf. the official

website [Obja], containing the detailed MOF specification.

A second way for the construction of meta-models for UML are UML profiles. Due to

the broad support for UML profiles in numerous modelling tools, such as Magic Draw

[NoM], Poseidon UML [Gen], Microsoft Visio Professional [Mica], and many more,

we decided to use UML profiles, which we will describe in the following.

UML profiles are defined as an “extension mechanism that can be used to customize

UML for different platforms and domains without supporting a complete metamod-

elling capability” [Obj04a]. In contrast to the heavyweight MOF, UML profiles con-

stitute a lightweight mechanism which is integrated into UML and its meta-model.

Technically, UML profiles are collections of adaptions of the UML constructs, tailored
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to specific business case relevant needs. According to the OMG, a UML profile is “a

stereotyped package that contains model elements that have been customized for a

specific domain or purpose using extension mechanisms, such as stereotypes, tagged

definitions and constraints” [Obj04a]. Summarized very briefly, a UML profile can

be used to define specializations of the basic UML constructs (like classes, attributes,

etc.), using stereotypes and tagged values. Thus, a language for arbitrary UML models,

suited to the specific business needs, can be defined. By referencing to such a UML

profile, any UML model can make use of the new language constructs.

We will illustrate this by a short example. Let us assume that developers should be

able to design models containing special classes that represent persistable entities. In

addition, it should be possible to specify an attribute tableName for every persistable

entity, naming the database table the entity should be stored in. A profile defining this

language is visualized in figure 8.4: persistable entities can be marked by the stereotype

DatabaseEntity. They are a specialization of standard UML classes (denoted by the

keyword “Class” in brackets) with an additional attribute tableName.

Figure 8.4: Sample UML profile

This profile can then be used in any UML model, i.e. the model may contain classes

that are stereotyped as DatabaseEntity. Each of those classes can be further detailed

by specifying the value of the attribute tableName. This value is called tagged value

and denoted by the attribute name together with the attribute value. A sample UML

class diagram using the profile from figure 8.4 is shown in figure 8.5.

Similar to classes, all existing UML constructs can be specialized using stereotypes. In

our implementation, we will extend UML classes and attributes (associations between

classes are a special form of attributes since UML 2.0) to define a meta-model for our

event-handling system, as we will show in chapter 10.
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Figure 8.5: Sample UML model using a UML profile

Transformations and Transformation Languages An arbitrary model, built using a

predefined meta-model, can then be given to a transformation as an input. Trans-

formations are processes automatically converting one model to another model of the

same system; in our case, they transform a platform independent model (PIM) into

executable code. Therefore, transformation rules, written in a particular transforma-

tion language, are necessary: they define how one or more constructs in the source

language (i.e. the model) can be transformed into one or more constructs in the target

language (i.e. the code). Transformation rules are usually defined using templates:

transformation tools take templates as an input and fill them with actual data from

the source model, deriving the target source code. A sample template, generating a

DDL-file to create a database instance for a UML model using the sample profile from

figure 8.4 is shown in listing 8.1.

1 #foreach{$entity in $databaseEntities}

-- creating table for $entity

CREATE TABLE $entity.tableName;

#end

Listing 8.1: Sample transformation template

To achieve a mapping between stereotypes and the respective templates, a transfor-

mation tool then has to be configured so that it passes the set of all classes tagged as
�DatabaseEntity� to the transformation. As a result, the transformation would yield

the DDL file shown in listing 8.2.

-- creating table for ClassA

CREATE TABLE tableNameA;

-- creating table for ClassB

CREATE TABLE tableNameB;

5 -- creating table for ClassC

CREATE TABLE tableNameC;

Listing 8.2: Sample transformation result
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Depending on the template language and the tool that is used to transform models,

many different programming constructs can be used within the templates: for-each

statements, conditional sections, even calls to complex functions that may be written

in a high-level programming language can be issued from a template. In chapter 10, we

will present the templates that generate the database triggers for our event-handling

system realized using AndroMDA, a common MDA-tool that is briefly introduced in

the next section.

8.2.2 AndroMDA

AndroMDA [Andb] is an open-source model-to-code transformator. UML models,

which can be enhanced using one or more UML profiles, have to be designed with an

arbitrary modelling tool, such as Magic Draw [NoM], and saved using the exchange

format XMI (XML Metadata Interchange) [Objf]. The transformations from models

to code are implemented using metafacades, templates and configuration files:

• Metafacades represent the stereotyped model elements during the transforma-

tion. For each stereotype in a UML profile, a corresponding metafacade-class has

to exist. At runtime, AndroMDA creates one instance of the metafacade class

for every UML element that is tagged with this stereotype. These instances can

then be used within the transformation templates, for instance by accessing the

metafacade’s attributes (i.e. the tagged values in the UML model) or by calling

method logic that has been implemented by the metafacade developers.

• Templates are the blueprints for the code that has to be generated. AndroMDA

uses the template scripting language Velocity [Apa] to define templates. Besides

the extensive language constructs offered by Velocity, metafacade methods can be

called from Velocity templates, so that any algorithm that is needed to generate

code can be implemented in the Java programming language.

• Configuration files finally bring together UML profiles, metafacades and tem-

plates: developers can configure the mapping between stereotypes and the re-

spective metafacade classes as well as the mapping between metafacades and

templates.

By running AndroMDA, an arbitrary UML model that has been extended using a

UML profile can thus be transformed into code, as long as the respective metafacades,

templates and configuration files have been developed.
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To provide a solution to our problem, we developed these artifacts to generate database

triggers and materialized views, as we will show in the following chapters. Before we

will do so, the foundations of those technologies are briefly presented.

8.3 Active Database Technology

As an extension to relational database systems, active database technology provides

the ability to react to updates of the stored data. This capability is traditionally used

for a variety of applications: enforcing integrity constraints, monitoring and alerting,

checking authorizations, maintaining views, and many more. The desired reaction to

detected updates is specified using event-condition-action rules (ECA-rules):

• The specification of the event describes the type of update the system should

respond to,

• the condition defines a constraint that must be fulfilled for the action to be

executed

• and the action finally states the reaction to the detected modification.

In the following, we will only present the capabilities of active database technology

that are important for our solution; for a detailed overview of active database systems,

cf. [WC96] or [CCW00].

Most commercial database systems provide constructs to create such ECA rules, called

triggers. Triggers are user-defined procedures that are automatically started by the

database management system if the specified conditions are fulfilled. The (simplified)

syntax to create triggers in DB2 [IBM] is shown in listing 8.3:

Since triggers are not part of the SQL-92 standard, but have been introduced with

SQL:1999, the syntax may vary between different vendors. However, all database

systems provide similar constructs:

• Each trigger is given an identifying name, allowing to modify or delete a created

trigger by accessing it using its name.

• The trigger action time states whether the action has to be executed before or

after the detected modification operation.
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• The trigger event is tied to a table. Only modifications of data stored in this

table are monitored by the trigger. A trigger can either react to insert, update

or delete operations. Additionally, the monitoring can be limited to one or more

columns of this table.

• Using the REFERENCING clause, the body of the trigger (i.e. the trigger action)

can access the content of the modified table or the updated column as it was

BEFORE the detected update or AFTER it.

• If a detected update modifies several rows, the trigger can either be fired once

(FOR EACH STATEMENT) or once per updated row (FOR EACH ROW)

• The condition under which the trigger action should be executed can optionally

be specified using standard SQL conditions.

• Finally, the action that should be performed as a reaction to the detected update

can be specified in the triggered SQL statement. The full vocabulary of SQL

is available; i.e. the action can be described using data modification language

constructs, such as INSERT, UPDATE or DELETE statements, as well as by for

instance calling stored procedures for more complex actions.

<DB2 -trigger > ::= CREATE TRIGGER <trigger -name >

<trigger -action -time >

<trigger -event > ON <table -name >

4 [ REFERENCING <references > ]

<trigger -granularity >

[ <trigger -condition > ]

<triggered -SQL -statement >

9 <trigger -action -time > ::= BEFORE | AFTER

<trigger -event > ::= INSERT | DELETE | UPDATE [ OF <column -name > ]

<references > ::= OLD AS <identifier > | NEW AS <identifier >

14 OLD_TABLE AS <identifier > | NEW_TABLE AS <identifier >

<trigger -granularity > ::= FOR EACH { ROW | STATEMENT }

<trigger -condition > ::= WHEN ( <SQL -condition > )

Listing 8.3: Trigger syntax in DB2

As an example, let us assume that triggers should be responsible of storing the number

of rows in tableA in the attribute count of table tableB. This can be achieved by pro-

viding two triggers, listening for insert- and delete-statements on tableA and updating

tableB. Listing 8.4 shows these sample triggers.
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As this example shows, triggers can - amongst other use cases - be used to keep

computed derivations of the current data up to date. A more sophisticated technology

that has been developed for this requirement are materialized views, which will be

presented in the following.

-- listen to inserts and increase count

2 CREATE TRIGGER insertListener

AFTER INSERT ON tableA

UPDATE tableB

SET tableB.count = tableB.count + 1;

7 -- listen to deletes and decrease count

CREATE TRIGGER deleteListener

AFTER DELETE ON tableA

UPDATE tableB

SET tableB.count = tableB.count - 1;

Listing 8.4: Sample triggers

8.4 Materialized Views

Views in relational databases offer “virtual” relations, showing only an excerpt of the

data model. In this context, virtual means that the definition of a view does not create

new tables; instead, the content of the views is computed for every query accessing

the view. Views are defined by specifying SQL queries which are evaluated every time

the view is accessed. Listing 8.5 shows a sample view definition together with the data

definition statement to create the underlying tables.

-- create base tables

CREATE TABLE tableA (

attributeA Integer ,

4 attributeB Integer ,

attributeC Varchar );

CREATE TABLE tableB (

attributeX Integer ,

9 attributeY Varchar ,

attributeZ Varchar );

-- create view for join between tableA and tableB

CREATE VIEW myView AS

14 SELECT attributeB , attributeC , attributeZ

FROM tableA , tableB

WHERE tableA.attributeA = tableB.attributeX;

Listing 8.5: Sample view definition
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Views can be used in queries instead of tables. Everytime the view is accessed, the

result of the underlying query is computed. Listing 8.6 shows a possible usage of

myView.

-- statement with direct table access

SELECT attributeB , attributeC , attributeZ

FROM tableA , tableB

4 WHERE tableA.attributeA = tableB.attributeX;

-- equivalent statement using predefined view

SELECT * from myView;

Listing 8.6: Sample view usage

While “traditional” views are re-computed during every query, many database systems

offer the possibility to define materialized views. Views can be materialized by storing

the tuples of the view in the database, so that, for instance, index structures can

be built upon the materialized view. As a consequence, database accesses to these

materialized views can be by far faster than accesses to views that are computed at

runtime. Thus, a materialized view is like a cache - a (possibly aggregated) copy of

the data [GM99b].

As a drawback, just like a cache, data stored in materialized views can become “dirty”

when the tuples of the underlying base relations are updated, so that the view content

has to be recomputed. The process of updating a materialized view in response to

updates of the underlying data is called view maintenance and causes additional costs

for write accesses to the base relations of a view. However, most current database

systems support so-called incremental view maintenance, i.e. they do not re-compute

the whole view content from scratch, but try to modify only those view fragments

that are affected by an update, thus reducing computation effort and speeding up

view maintenance [GM99b].

As a sample database system, DB2 [IBM] supports materialized views. To underline

the fact that materialized view contents are actually stored in database tables, the

syntax (shown in listing 8.7) is similar to the creation of tables.

<DB2 -materialized -view > ::= CREATE TABLE <view -name > AS (<sql -query >)

[ <intial -defer -option > ]

3 [ <refresh -options > ]

<initial -defer -option > ::= DATA INITIALLY DEFERRED

<refresh -option > ::= REFRESH { DEFERRED | IMMEDIATE }

Listing 8.7: Simplified syntax to create materialized views in DB2
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In addition to the definition of the materialized view by specifying the underlying SQL

query, it is possible to define when the contents of the view have to be updated:

• If the option DATA INITIALLY DEFERRED is issued, the contents of the view are

not computed at the time the view is created, but at the first time a query tries

to read the contents of the materialized view.

• If the option REFRESH IMMEDIATE is specified, the contents of the view are

updated every time the underlying base relations are updated.

• In contrast, if the contrary option REFRESH DEFERRED is specified, the contents

of the view are recomputed only if a query accesses the view data.

Depending on the actual usage scenario of the view and the underlying base relations,

this may lead to improvements (or deteriorations) of the runtime performance. In brief,

if the base relations are updated often but the view is accessed seldomly, deferred view

maintenance should lead to better results than immediate refreshment.

A last fact worth mentioning about materialized views are their limitations: depending

on the database system, the definition of materialized views can be restricted. For

instance, several database systems forbid view definitions that contain recursive or

self-joining queries due to performance reasons. As we will show when presenting our

solution, we had to find work-arounds for several of these shortcomes.

At this point, we only wanted to give a very brief overview of materialized views;

for a detailed description, traditional fields of applications, techniques to maintain

materialized views etc., cf. [GM99a].

8.5 Summary

This chapter tried to give an overview of the technologies we selected for our pro-

totypic implementation of a model-driven event-handling framework, namely Model

Driven Architecture (MDA), Active Database Systems and Materialized Views. The

basic concepts of these technologies which are needed to understand our solution were

presented together with references to detailed information.

In the following chapter, we will present how these technologies are used and combined

to realize a generic, generative and non-invasive event-handling framework.
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“There are two ways of constructing a software design: One way is to

make it so simple that there are obviously no deficiencies, and the other

way is to make it so complicated that there are no obvious deficiencies.”

C.A.R. Hoare

9
Reference Architecture and

Implementation

In chapter 4, we introduced the generic architecture of our approach and the respec-

tive components that have to be implemented. In the following, we will present an

actual implementation of this architecture, using the previously introduced technolo-

gies: MDA for the specification of the event-handling semantics and the generation

process, active database technology for the detection and processing of updates and

materialized views for the storage of event propagation indices, i.e. for optimization

purposes. A short summary concludes this chapter.

9.1 Substantiating the Abstraction Layers

In chapter 4, the different layers of abstraction (cf. figure 4.4) were presented. In

the following, we will substantiate the implementation abstraction and present our

UML profiles, the transformations of models into triggers as well as the optimization

approach using materialized views. As we showed in chapter 5, our solution is based

on a formal representation of the information system’s data model and the event-

handling semantics. Thus, for the approach to be applicable, a language is needed to
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specify data and event-handling models that can be interpreted by the transformation

tools to generate event-handling triggers. In our approach, we use UML profiles to

provide such a modelling language, containing all concepts that are needed to define

the database design, the event-handling constructs and the probability model. This

language, an extension of the standard UML concepts (as shown in chapter 8), is then

used by information system designers to create appropriate models of event-handling

systems. In the following, we will describe the different aspects we designed into our

profile, while the profile itself will be presented as a whole in chapter 10.

9.1.1 UML Profiles and MDA

As we already motivated, we decided to use UML as a starting point for the description

of the data model. UML innately provides constructs to represent classes, attributes

and associations, so no further work has to be done to develop a language (i.e. a

meta-model) for these concepts. As an extension to this basic model, a description of

the database data model that contains all information that is required to derive the

appropriate triggers and SQL statements is needed. Instead of re-inventing the wheel,

we use the UML profile shipped with the AndroMDA Hibernate Cartridge [Anda].

This cartridge was initially developed to design UML models that are meant to be

persisted to a relational database. Thus, the profile contains, amongst many others,

stereotypes for persistable classes. Entities can be tagged to specify the name of the

corresponding database table and attributes can be tagged to represent the name of the

corresponding column. Additionally, many-to-many associations can also be tagged to

specify which table the many-to-many association has to be stored in. These simple

constructs provide enough information for the MDA transformations, i.e. the data

model the triggers are based on is known well enough.

For the representation of the event-handling constructs that have been introduced in

chapter 5, new stereotypes and tagged values had to be introduced, containing rep-

resentations of the concepts Subscribers, Subscribables, event-propagating associations

and implicit subscriptions. Since UML models do not offer possibilities to separate

multiple stereotyped classes and attributes into different groups, all constructs that

can be part of an overlay were given an additional tagged value, containing the id(s)

of the overlay(s) the respective construct belongs to. Like that, we are able to group

subscribables, event-propagating associations and implicit subscriptions into overlays,

which completes the representation of the semantic possibilities we presented in chap-

ter 5.
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The optimization approach we introduced in chapter 7 needs - amongst other informa-

tion - data about the cardinalities of the different entities. As we already showed, the

respective data can either be collected from the actual information system or be spec-

ified by developers at designtime. For the designtime specification, tagged values that

allow model developers to enter the expected number of entities that are contained in

the information system have been introduced.

Finally, as a last aspect of the event-handling model, the update probabilities of classes

and associations are required, too. As we already proposed in chapter 7, this informa-

tion can either be collected during runtime or be specified at design time by developers.

For the latter case (which we use), additional (optional) tagged values that can be ap-

plied to entities (i.e. classes stereotyped as entity) were introduced, representing the

update probability of the respective table the class or many-to-many association is

stored in. A complete designtime probability model can be represented this way.

9.1.2 Transforming Models into Triggers

For the transformation of enhanced models we use the MDA transformation tool An-

droMDA, which was introduced in the previous chapter. As a result, we generate

triggers that monitor updates of the information system and create notification items

for all relevant subscribers. The triggers implicitly contain our optimization solution

by using materialized views to store event propagation indices, i.e. fragments of all

event-propagating paths. Additionally, triggers that are able to monitor the usage

behaviour of the data, i.e. to determine the probabilities of read- and write-accesses

to the data, can be created.

9.1.2.1 Using Materialized Views for Optimization Purposes

As we already showed in chapter 7, a possibility to improve the runtime behaviour

of the event-handling system is to use event propagation indices. In our architecture,

the functionality to determine relevant subscribers is encoded into the respective trig-

gers. The SELECT statements of those triggers that compute the targets of the event

propagation and the relevant subscribers partly access materialized views containing

fragments of the event-propagation indices in a precomputed form. In section 9.2, we

will show in detail how this is done.
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9.1.2.2 Cost Model for Relational Databases

The cost model remains as a last part of the abstraction layers that have to be con-

cretized. Since our prototypic implementation is based on relational database access,

a cost model that resembles the actual costs has to be used. For ideal results, detailed

insight about the costs that arise for the read- and write operations is required. Most

commercial database systems offer interfaces to access the database optimizer directly

and evaluate queries with respect to their expected costs. By querying the optimizer

directly, the actual costs could be determined.

However, since subsection 7.8.5 yielded that the heuristic cost model from section 7.7.1

returns results that are close enough to the actual costs, we decided to use the heuristic

cost model for our prototypic implementation. Since the cost model implementation

is hidden behind a clearly defined interface in our prototypic implementation (taking

the query as an input and returning the expected costs), it is easy to exchange this

implementation and query the database optimizer instead.

With this brief overview about the prototypic architecture in mind, we will next take

a closer look at the different components of our implementation.

9.2 System Architecture Components in Detail

Although the overall architecture has already been presented, it remains to show how

the individual parts of the event-handling component, i.e. the target(s) of the genera-

tion process, have to be implemented. Due to the MDA development cycle, this step is

known as creating a reference implementation: all fragments of the system that later

have to be generated using appropriate transformations once have to implemented “by

hand” so that one can abstract from this concrete implementation and divide it into

fixed parts (this is what later on becomes templates) and variable parts (depending

on the model of the system under development).

9.2.1 Event-Handling Data Access Layer

A prerequisite for any event-handling system is the possibility to store notifications.

In addition, our approach includes the use of explicit subscriptions, so - in contrast to

the implicit subscriptions inherent to the data model - these subscriptions have to be

stored, too.
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Both subscriptions and notifications are stored generically in a relational database,

either in the same instance as the information system (if allowed by security policies)

or in a different instance. As we thus cannot assume that the information system’s data

and the event-handling system’s data are in the same instance, foreign keys between

event-handling data and “real” data are not possible. Therefore, we use a generic data

model that allows references without using foreign keys, but instead identifies tuples

using unique IDs (which every legacy data tuple has to contain) and a unique identifier

for the table the tuple is stored in, e.g. the table name.

This generic referencing mechanism is used to store subscribers and subscribables

for explicit subscriptions as well as subscribers and updated tuples for notifications.

Figure 9.1 shows the corresponding data model.

Figure 9.1: Data model for explicit subscriptions and notifications

If we recall the sample scenario from section 5.6, the explicit subscription between

lectureA and maintainerM would thus be stored as a tuple

(′lectureA′,′ Lectures′,′maintainerM ′,′Maintainers′)

in the database table that is used to store explicit subscriptions. Further, a notification

for maintainerM after an update of lectureB would lead to the tuple

(′lectureB′,′ Lectures′,′maintainerM ′,′Maintainers′)

in the database table for notifications.

By using this generic reference mechanism for both subscriptions and notifications,

this part of the event-handling schema is generic and can be used for all use cases, i.e.

for any arbitrary information system.
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9.2.2 Event Processing using Triggers

In our architecture, triggers are used to monitor the database tables of the informa-

tion system for modifications, automatically compute the subscribers that have to be

informed about the detected update and store the respective notifications within the

database, from where they can be presented to the subscribers, e.g. using a designated

event-handling application with an appropriate GUI. This is visualized in figure 9.2.

(Legacy) Application

X R Y

Application Data

Event-Handling Application

A z B

Event-Handling Data

Triggers

Figure 9.2: Architectural view: Triggers

This implies that the event-handling logic has to be coded into the database triggers.

In the following, we will show how these triggers - which have to be generated from

the event-handling model - are built. This implies a description of which tables to

monitor, how to derive the respective subscriber and how to integrate our optimization

approach.

9.2.2.1 Database Tables to Monitor

According to our concept (cf. chapter 5), every overlay in the event-handling model

contains one subscribable that has to be monitored for modifications. However, in an

implementation based on relational databases, it is not always sufficient to have only

one trigger for the respective database table. Instead, we have to take a closer look at

the monitored attribute(s) of the subscribable.1

Monitored Attribute is of Primitive Type Whenever a monitored attribute is of a

primitive type, i.e. its value can be stored in a column of the database table, one

UPDATE trigger for the respective column is enough. If a subscribable contains sev-

eral monitored primitive attributes, they can share a common trigger containing the

1In the following, we only present one trigger for each scenario, detecting UPDATEs. Actually, three
triggers that differ only in the monitored operation (UPDATE, INSERT, DELETE) are necessary
whenever we talk about UPDATE triggers.
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section “... AFTER UPDATE ON Subscribable OF <monitoredAttribute1>, ..., <moni-

toredAttributeN> ...”.

The determination of the correct triggers is more complex if the monitored attribute is

of a complex type, i.e. the value of the attribute is stored in a separate database table

and associated to the subscribable using a foreign key reference. Figure 9.3 shows the

different possibilities in case an attribute X is stored in a separate table.

Subscribable X
1 1

(a) 1:1

Subscribable X
1 n

(b) 1:n

Subscribable X
m 1

(c) m:1

Subscribable XJoin
m n

(d) m:n

Figure 9.3: Cardinalities for associated entities

In the following, these four situations are examined to find the attributes that have to

be monitored to detect an update of an arbitrary attribute X’s value.2

Monitored Attribute is of Complex Type with 1:1 Cardinality To examine this case,

let Subscribable be connected to X via a 1:1 association. A relational design for this

scenario is represented in figure 9.4.

Sub

PK id

FK1 Xid

X

PK id

FK1 Subid

Figure 9.4: Relational model of 1:1 association

The value of Sub’s attribute X can be caused by updating any attribute value of X,

so any attribute of X has to be monitored by a trigger. In addition, the foreign key

Subid must be observed, because a change of Subid indicates that X is assigned to a

different Sub. As we can assume that the application handles foreign key references

2The graphical representations are simplified; for every scenario, we assume that there are attribute
values in Sub and X that contain the actual data, in addition to the primary- and foreign keys
that are depicted in the illustrations. Whenever we refer to “any attribute” of X or Sub, those
additional attributes are meant.
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correctly, we do not have to monitor Sub.Xid, because new assignments between Sub

and X always lead to symmetric updates on both sides.

Monitored Attribute is of Complex Type with 1:n Cardinality This scenario is

depicted in figure 9.5.

Sub

PK id

X

PK id

FK1 Subid

Figure 9.5: Relational model of 1:n association

Similar to the previous case, all attributes of X plus the foreign key references X.Subid

have to be monitored to detect all modifications.

Monitored Attribute is of Complex Type with m:1 Cardinality Our third scenario

is shown in figure 9.6.

Sub

PK id

FK1 Xid

X

PK id

Figure 9.6: Relational model of m:1 association

Again, any attribute of X has to be observed for modifications. In addition to the

previous cases, Sub has to be monitored too, since assignments of a new instance of X

are handled by updating the foreign key reference Sub.Xid.

Monitored Attribute is of Complex Type with m:n Cardinality Finally, the most

complex case, i.e. a m : n association, is shown in figure 9.7.

In this situation, relationships between Sub and X are realized using a third table

Join, holding foreign key references to Sub and X. Thus, Join has to be monitored for

updates to detect new assignments. Further, any attribute of X, holding the actual

content of X, must be monitored, too.3

3In practice, this situation becomes even more complex, since adding a new instance of X that is
related to Subscribable leads to inserts on table X and table Join. Triggers fire immediately after an

172



9.2. SYSTEM ARCHITECTURE COMPONENTS IN DETAIL

Sub

PK id

X

PK id

Join

FK1 Subid

FK2 Xid

Figure 9.7: Relational model of m:n association

Table 9.2.2.1 finally collects these thoughts and shows which tables to monitor in a

given scenario, and how to determine the id of the semantically updated instances of

Sub if we assume that the respective trigger stores the reference to the updated tuple

in a variable called new, while the old value of the updated tuple is represented as old.

Cardinality Figure Table(s) to monitor Condition for updated Sub

1:1 9.4 X.all, X.Subid Sub.id = new.Subid

Sub.id = old.Subid

1:n 9.5 X.all, X.Subid Sub.id = new.Subid

Sub.id = old.Subid

m:1 9.6 X.all Sub.Xid = new.id

Sub.Xid Sub.id = new.id

m:n 9.7 Join.all Sub.id = new.Subid

Sub.id = old.Subid

X.all Sub.id = Join.Subid AND Join.Xid = new.id

Sub.id = Join.Subid AND Join.Xid = old.id

Table 9.1: Tables to monitor

To determine the overall set of tables that have to be monitored (i.e. the set of triggers

that are necessary) regarding a subscribable, the following two rules must be followed:

• All observable attributes of Subscribable of a primitive type can be collected and

commonly handled by one trigger. This trigger observes table Subscribable and

all of its primitive-valued observed attributes.

• For each additional complex-typed observed attribute, up to four additional

triggers (according to table 9.2.2.1) have to be used.4

update. However, to determine the respective instance of Subscribable the update “belongs to”, the
event-handling trigger has to see the new data after both updates. This can be achieved by asserting
that both triggers are executed within the transaction context of the modifying transaction.

4As an optimization, it is possible to collect those triggers from table 9.2.2.1 that monitor an attribute
of Subscribable and handle them analogously to primitive-typed attributes.
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For illustration purposes, we take a look at the small data model depicted in figure 9.8.

Let us assume that the entity Documents is the subscribable that has to be monitored

by triggers. To be precise, the simple attribute content has to be observed, as well as

the attribute belongsTo, i.e. the lectures that this document is used in. Let us further

assume that the association between Documents and Lectures is a m : n association.

Lectures

 name

 time

Documents

 title

 content

 noOfDownloads

belongsTo

Figure 9.8: Subscribable entity with simple and complex observed attributes

In a normalized database design, the above-mentioned situation would be realized as

shown in figure 9.9.

Lectures

PK id

 name

 time

Documents

PK id

 title

 content

 noOfDownloads

belongsTo

FK2 docId

FK1 lectId

Figure 9.9: Normalized representation of entity with simple and complex attributes

In addition to the two entities, a third table belongsTo with foreign key references to

Documents and Lectures is used to model the m : n relationship. Thus, according to the

results from table 9.2.2.1, a total of five triggers is required; one for the monitoring of

the attribute content and four for the correct and complete monitoring of the complex

attribute belongsTo. Listing 9.1 shows the resulting triggers in pseudo-SQL code.5

-- monitor simple attribute ’content ’

CREATE TRIGGER trigger1

3 AFTER UPDATE OF content

ON documents

REFERENCING NEW AS new

-- handle update of document where

-- documents.id = new.id

8 ;

5Again, we only present the AFTER UPDATE triggers for better readability. Additionally, AFTER
INSERT and AFTER DELETE triggers are required, too.
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-- monitor complex attribute ’belongsTo ’ (join table , new associated entity)

CREATE TRIGGER trigger2

AFTER UPDATE

13 ON belongsTo

REFERENCING NEW AS new

-- handle update of document where

-- documents.id = new.docId

;

18
-- monitor complex attribute ’belongsTo ’ (join table , old associated entity)

CREATE TRIGGER trigger3

AFTER UPDATE

ON belongsTo

23 REFERENCING OLD AS old

-- handle update of document where

-- documents.id = old.docId

;

28 -- monitor complex attribute ’belongsTo ’ ( referenced table , new associated

entity)

CREATE TRIGGER trigger4

AFTER UPDATE

ON lectures

REFERENCING NEW AS new

33 -- handle update of document where

-- documents.id = belongsTo.docId AND belongsTo.lectId = new.id

;

-- monitor complex attribute ’belongsTo ’ ( referenced table , old associated

entity)

38 CREATE TRIGGER trigger5

AFTER UPDATE

ON lectures

REFERENCING OLD AS old

-- handle update of document where

43 -- documents.id = belongsTo.docId AND belongsTo.lectId = old.id

;

Listing 9.1: Triggers to monitor attributes

In this listing, we only showed the structure of the triggers and how the actually

update entity can be determined. In the following, we will present the “heart” of the

triggers, i.e. the pseudo-SQL code of the reference implementation that determines all

implicit and explicit subscribers and stores the respective notifications.

9.2.2.2 Determining Relevant Subscribers using Triggers

To actually determine all relevant subscribers (explicit and implicit) of an updated

entity, the path descriptions for explicit and implicit subscribers, computed according
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to algorithms 6.2 and 6.3 have to be known. Based on these path descriptions, the

respective trigger content is constructed as follows:

Queries to Determine Explicit Subscribers For a sample path description from

source Source, along subscribables Sub1 to SubN to target Target, the query to deter-

mine all explicit subscribers that have to be notified about an update of an instance

of Source with id sourceId is shown in listing 9.2.

1 SELECT idOfSubscriber

FROM ExplicitSubscription ,

Source ,

Sub1 ,

...,

6 SubN ,

Target

WHERE Source.id = sourceId

AND Source.rightFK = Sub1.leftFK

AND Sub1.rightFK = Sub2.leftFK

11 AND ... // follow the path description along all subscribables

AND SubN.rightFK = Target.leftFK

AND Target.id = ExplicitSubscription.idOfSubscribable

AND ExplicitSubscription.typeOfSubscribable = ’Target ’

;

Listing 9.2: Sample query to determine explicit subscribers

As we can see, this query simply evaluates the path description and finds all targets

of paths respecting this description, and joins the result with all matching explicit

subscriptions stored in table Subscription (cf. fig. 9.1).

As we will show in our example later on, queries like this one are then used in every

monitoring trigger, i.e. for every explicit path description. Furthermore, for each path

description, a set of n triggers (depending on the amount of tables to monitor, cf.

section 9.2.2.1) is necessary.

Queries to Determine Implicit Subscribers The queries for implicit subscribers are

built likewise. However, instead of joining the explicit subscription table, the join

against the implicit subscriber is already contained in the path description (cf. alg.

6.3), so the id of the target of the path description represents the id of the subscriber.
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Listing 9.3 shows such a query for a sample path description from source Source, via

the subscribables Sub1 to SubN to target Target.

SELECT Target.id

FROM Source ,

Sub1 ,

...,

5 SubN ,

Target

WHERE Source.id = sourceId

AND Source.rightFK = Sub1.leftFK

AND Sub1.rightFK = Sub2.leftFK

10 AND ... // follow the path description along all subscribables

AND SubN.rightFK = Target.leftFK

;

Listing 9.3: Sample query to determine implicit subscribers

Again, queries like this are used in every necessary trigger.

9.2.2.3 Example Without Optimization

To present a comprehensive example of the above-mentioned concepts, we recall the

sample overlay from figure 5.11. Let us assume that the assocation between Lectures

and Rooms is a n : 1 association, let us further assume that the reflexive association

between Rooms is of cardinality n : 1 and that Rooms are maintained by several

Maintainers and vice-versa, i.e. this association is of cardinality m : n. Finally, we

assume that all simple attributes of Lectures are observed, as well as the complex

attribute attends. This leads to the entity-relationship model as presented in figure

9.10.6

As we showed in section 6.3, the following implicit subscription path descriptions are

computed (shown in simplified form)

Lectures,Rooms,Rooms,Rooms,Maintainers

Lectures,Rooms,Rooms,Maintainers

Lectures,Rooms,Maintainers

as well as the following explicit subscription paths:

Lectures,Rooms,Rooms,Rooms

6For better readability, we only show the relevant tables and omit entities Documents and belongsTo.
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Lectures

PK id

 name

 title

FK1 roomId

Rooms

PK id

FK1 isPartOf

maintains

FK2 roomId

FK1 maintainerId

 id

Maintainer

PK id

Students

PK id

 firstName

 lastName

attends

FK2 studentId

FK1 lectureId

Figure 9.10: Sample entity-relationship model

Lectures,Rooms,Rooms

Lectures,Rooms

Lectures

This situation finally leads to the triggers shown in listing 9.4. To shorten the list,

we only present all triggers monitoring Lectures’ simple attributes completely. For

the complex attribute observing triggers, we only present the trigger for the first

implicit subscription path; the remaining triggers are built analogously. Furthermore,

only AFTER UPDATE triggers are presented here, while AFTER INSERT and AFTER

DELETE triggers are also necessary and have to be implemented analogously.

--

-- triggers monitoring Lectures ’ simple attributes

3 --

-- implicit path 1

CREATE TRIGGER triggerImplicit1Simple

AFTER UPDATE OF name , time

8 ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

13 SELECT new.id,

’Lectures ’,

’Maintainers ’,

Maintainers.id
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FROM Lectures ,

18 Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

maintains ,

Maintainers

23 WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND r2.isPartOf = r3.id

AND r3.id = maintains.roomId

28 AND maintains.maintainerId = Maintainers.id

;

-- implicit path 2

CREATE TRIGGER triggerImplicit2Simple

33 AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

typeOfSubscriber ,

38 idOfSubscriber)

SELECT new.id,

’Lectures ’,

’Maintainers ’,

Maintainers.id

43 FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

maintains ,

Maintainers

48 WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND r2.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

53 ;

-- implicit path 3

CREATE TRIGGER triggerImplicit3Simple

AFTER UPDATE OF name , time

58 ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

63 SELECT new.id,

’Lectures ’,

’Maintainers ’,

Maintainers.id

FROM Lectures ,

68 Rooms r1 ,

maintains ,

Maintainers
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WHERE Lectures.id = new.id

73 AND Lectures.roomId = r1.id

AND r1.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

;

78 -- explicit path 1

CREATE TRIGGER triggerExplicit1Simple

AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

83 typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

88 ’ExplicitSubscriber ’,

ExplicitSubscription.idOfSubscriber

FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

93 Rooms r3 ,

ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

98 AND r2.isPartOf = r3.id

AND ExplicitSubscription.idOfSubscribable = r3.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

;

103 -- explicit path 2

CREATE TRIGGER triggerExplicit2Simple

AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

108 typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

113 ’ExplicitSubscriber ’,

ExplicitSubscription.idOfSubscriber

FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

118 ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND ExplicitSubscription.idOfSubscribable = r2.id

123 AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

;
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-- explicit path 3

128 CREATE TRIGGER triggerExplicit3Simple

AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

133 typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

’ExplicitSubscriber ’,

138 ExplicitSubscription.idOfSubscriber

FROM Lectures ,

Rooms r1 , ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

143 AND ExplicitSubscription.idOfSubscribable = r1.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

;

-- explicit path 4

148 CREATE TRIGGER triggerExplicit4Simple

AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

153 typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

’ExplicitSubscriber ’,

158 ExplicitSubscription.idOfSubscriber

FROM Lectures ,

ExplicitSubscription

WHERE ExplicitSubscription.idOfSubscribable = new.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

163 ;

--

-- triggers monitoring Lectures ’ complex attribute ’attends ’

--

168 -- implicit path 1

CREATE TRIGGER triggerImplicit1Complex1

AFTER UPDATE OF studentId , lectureId

ON attends

INSERT INTO notifications (idOfUpdatedObject ,

173 typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

178 ’Maintainers ’,

Maintainers.id
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FROM Lectures ,

183 Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

maintains ,

Maintainers ,

188 attends

WHERE attends.studentId = new.studentId

AND Lectures.id = attends.lectureId

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

193 AND r2.isPartOf = r3.id

AND r3.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

;

198 CREATE TRIGGER triggerImplicit1Complex2

AFTER UPDATE OF studentId , lectureId

ON attends

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

203 typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

’Maintainers ’,

208 Maintainers.id

FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

213 maintains ,

Maintainers ,

attends

WHERE attends.studentId = new.studentId

AND Lectures.id = attends.lectureId

218 AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND r2.isPartOf = r3.id

AND r3.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

223 ;

...

-- implicit path 2

228 CREATE TRIGGER triggerImplicit2Complex1

...

Listing 9.4: Triggers for sample entity-relationship model
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By using a set of triggers like the ones shown in listing 9.4 for every overlay, the

implicit and explicit subscribers can be determined and stored in table Notifications,

from where they can be read and processed afterwards.

9.2.2.4 Processing Notification Entries

Due to the structure of the event-handling triggers, notifications are uniformously

stored in table Notifications. Further on, it is very likely that this table contains

duplicate entries (e.g. if a Maintainer is responsible for more than one Room and at

least two of his or her rooms are affected by an update of Lectures). Although this

is no ideal solution, we accept this minor deficit and solve the problem of redundant

entries by using SELECT DISTINCT statements to determine all notifications for a

particular user, as the following listing shows:

1 --

-- read notifications for subscriber with id <subId >

--

SELECT DISTINCT *

FROM Notifications

6 WHERE Notifications.idOfSubscriber = <subId >

;

Listing 9.5: SQL query to read notifications for a particular user

Although the resulting notifications are correct with respect to the concept presented

in part II, as we will show in chapter 10, there is still optimization potential, which

we will explain in the following.

9.2.2.5 Optimization

Two aspects of our approach can further be optimized with respect to the runtime

behaviour: first of all, distinct triggers reacting to the same event (i.e. with the same

trigger header) can be combined into one trigger; second, the optimization approach

from chapter 7 has to be integrated into the trigger code.

Grouping Triggers with the Same Header Instead of using up to n triggers reacting

to the same update event and separately evaluating n path descriptions, these triggers

can be grouped into one trigger using the SQL UNION statement to collect all results.
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Listing 9.6 shows (in abbreviated form) what our example from listing 9.4 looks like

with consideration of this optimization.

--

-- triggers monitoring Lectures ’ simple attributes

3 --

-- implicit path 1

CREATE TRIGGER triggerImplicit1Simple

AFTER UPDATE OF name , time

8 ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

13 SELECT new.id,

’Lectures ’,

’Maintainers ’,

Maintainers.id

FROM Lectures ,

18 Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

maintains ,

Maintainers

23 WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND r2.isPartOf = r3.id

AND r3.id = maintains.roomId

28 AND maintains.maintainerId = Maintainers.id

UNION

SELECT new.id,

’Lectures ’,

’Maintainers ’,

33 Maintainers.id

FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

maintains ,

38 Maintainers

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND r2.id = maintains.roomId

43 AND maintains.maintainerId = Maintainers.id

UNION

SELECT new.id,

’Lectures ’,

’Maintainers ’,

48 Maintainers.id
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FROM Lectures ,

53 Rooms r1 ,

maintains ,

Maintainers

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

58 AND r1.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

;

-- explicit path 1

63 CREATE TRIGGER triggerExplicit1Simple

AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

68 typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,

’ExplicitSubscriber ’,

73 ExplicitSubscription.idOfSubscriber

FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

78 ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND r2.isPartOf = r3.id

83 AND ExplicitSubscription.idOfSubscribable = r3.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

UNION

SELECT new.id,

’Lectures ’,

88 ’ExplicitSubscriber ’,

ExplicitSubscription.idOfSubscriber

FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

93 ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

AND ExplicitSubscription.idOfSubscribable = r2.id

98 AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

UNION

SELECT new.id,

’Lectures ’,

’ExplicitSubscriber ’,

103 ExplicitSubscription.idOfSubscriber

FROM Lectures ,

Rooms r1 ,

ExplicitSubscription
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WHERE Lectures.id = new.id

108 AND Lectures.roomId = r1.id

AND ExplicitSubscription.idOfSubscribable = r1.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

UNION

SELECT new.id,

113 ’Lectures ’,

’ExplicitSubscriber ’,

ExplicitSubscription.idOfSubscriber

FROM Lectures ,

ExplicitSubscription

118 WHERE ExplicitSubscription.idOfSubscribable = new.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms ’

;

--

123 -- triggers monitoring Lectures ’ complex attribute ’attends ’

--

-- implicit path 1

CREATE TRIGGER triggerImplicit1Complex1

128 AFTER UPDATE OF studentId , lectureId

ON attends

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

typeOfSubscriber ,

133 idOfSubscriber)

SELECT new.id,

’Lectures ’,

’Maintainers ’,

Maintainers.id

138 FROM Lectures ,

Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

maintains ,

143 Maintainers ,

attends

WHERE attends.studentId = new.studentId

AND Lectures.id = attends.lectureId

AND Lectures.roomId = r1.id

148 AND r1.isPartOf = r2.id

AND r2.isPartOf = r3.id

AND r3.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

UNION

153 SELECT new.id,

’Lectures ’,

’Maintainers ’,

Maintainers.id

158
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FROM Lectures ,

163 Rooms r1 ,

Rooms r2 ,

Rooms r3 ,

maintains ,

Maintainers ,

168 attends

WHERE attends.studentId = new.studentId

AND Lectures.id = attends.lectureId

AND Lectures.roomId = r1.id

AND r1.isPartOf = r2.id

173 AND r2.isPartOf = r3.id

AND r3.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

UNION ...

178 ...

-- implicit path 2

CREATE TRIGGER triggerImplicit2Complex1

...

Listing 9.6: Triggers for sample entity-relationship model using SQL UNION

Materialized Views as Event-Propagation Indices In addition to the previously

presented technical optimization, it remains to show how the optimization approach

presented in chapter 7 has been integrated into our reference implementation.

Due to our optimization approach, for every relevant path description an optimal par-

titioning into regular path fragments and event propagation indices can be determined.

Looking at the path

Lectures,Rooms,Rooms,Rooms,Maintainers

let us assume that the optimization algorithm revealed that an optimal solution is

to use an event propagation index index for the fragment Rooms,Rooms,Rooms. In

an implementation for active database technology, this can be realized by creating a

materialized view that precomputes all paths matching this path description. Listing

9.7 shows a simplified SQL statement to create this view.7

7Actually, commercial database systems are unable to automatically maintain materialized views
with self-joins. Therefore, in appendix B we show how index maintenance can be realized using
separate triggers.
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--

-- materialized view to precompute paths matching the

3 -- description Rooms , Rooms , Rooms

--

CREATE TABLE index

AS

SELECT r1.id AS leftId , r3.id AS rightId

8 FROM Rooms r1 , Rooms r2, Rooms r3

WHERE r1.isPartOf = r2.id

AND r2.isPartOf = r3.id

DATA INITIALLY DEFERRED

REFRESH IMMEDIATE

13 ;

Listing 9.7: Sample statement to create a materialized view as an event propagation

index

Views are then integrated into the triggers’ queries to determine implicit and explicit

subscribers. Listing 9.8 shows the query for path

Lectures,Rooms,Rooms,Rooms,Maintainers

using the materialized view from listing 9.7 as an event propagation index.

--

2 -- query to determine all paths matching the path description

-- Lectures , Rooms , Rooms , Rooms , Maintainers

--

SELECT Maintainers.id

FROM Lectures , index , Maintainers , maintains

7 WHERE Lectures.id = <updated id>

AND Lectures.roomId = index.leftId

AND index.rightId = maintains.roomId

AND maintains.maintainerId = Maintainers.id

;

Listing 9.8: Query to determine subscribers, using event propagation index

Assuming that two event propagation index views index3Rooms (for the path-description

fragment Rooms, Rooms, Rooms) and index2Rooms (for the path-description fragment

Rooms, Rooms) are available, the trigger code from listing 9.6 is shown in listing 9.9.

--

-- triggers monitoring Lectures ’ simple attributes

--

4
-- implicit path 1

CREATE TRIGGER triggerImplicit1Simple

AFTER UPDATE OF name , time
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ON Lectures

9 INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

14 ’Lectures ’,

’Maintainers ’,

Maintainers.id

FROM Lectures ,

index3Rooms ,

19 maintains ,

Maintainers

WHERE Lectures.id = new.id

AND Lectures.roomId = index3Rooms.leftId

AND index3Rooms.rightId = maintains.roomId

24 AND maintains.maintainerId = Maintainers.id

UNION

SELECT new.id ,

’Lectures ’,

’Maintainers ’,

29 Maintainers.id

FROM Lectures ,

index2Rooms ,

maintains ,

Maintainers

34 WHERE Lectures.id = new.id

AND Lectures.roomId = index2Rooms.leftId

AND index2Rooms.rightId = maintains.roomId

AND maintains.maintainerId = Maintainers.id

UNION

39 SELECT new.id ,

’Lectures ’,

’Maintainers ’,

Maintainers.id

FROM Lectures ,

44 Rooms r1 ,

maintains ,

Maintainers

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

49 AND r1.id = maintains.roomId

AND maintains.maintainerId = Maintainers.id

;

-- explicit path 1

54 CREATE TRIGGER triggerExplicit1Simple

AFTER UPDATE OF name , time

ON Lectures

INSERT INTO notifications (idOfUpdatedObject ,

typeOfUpdatedObject ,

59 typeOfSubscriber ,

idOfSubscriber)

SELECT new.id,

’Lectures ’,
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’ExplicitSubscriber ’,

64 ExplicitSubscription.idOfSubscriber

FROM Lectures ,

index3Rooms ,

ExplicitSubscription

WHERE Lectures.id = new.id

69 AND Lectures.roomId = index3Rooms.leftId

AND index3Rooms.rightId = ExplicitSubscription.

idOfSubscribable

AND ExplicitSubscription.typeOfSubscribable = ’Rooms’

UNION

SELECT new.id ,

74 ’Lectures ’,

’ExplicitSubscriber ’,

ExplicitSubscription.idOfSubscriber

FROM Lectures ,

index2Rooms ,

79 ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = index2Rooms.leftId

AND index2Rooms.rightId = ExplicitSubscription.

idOfSubscribable

AND ExplicitSubscription.typeOfSubscribable = ’Rooms’

84 UNION

SELECT new.id ,

’Lectures ’,

’ExplicitSubscriber ’,

ExplicitSubscription.idOfSubscriber

89 FROM Lectures ,

Rooms r1 , ExplicitSubscription

WHERE Lectures.id = new.id

AND Lectures.roomId = r1.id

AND ExplicitSubscription.idOfSubscribable = r1.id

94 AND ExplicitSubscription.typeOfSubscribable = ’Rooms’

UNION

SELECT new.id ,

’Lectures ’,

’ExplicitSubscriber ’,

99 ExplicitSubscription.idOfSubscriber

FROM Lectures ,

ExplicitSubscription

WHERE ExplicitSubscription.idOfSubscribable = new.id

AND ExplicitSubscription.typeOfSubscribable = ’Rooms’

104 ;

--

-- triggers monitoring Lectures ’ complex attribute ’attends ’

--

109 -- implicit path 1

CREATE TRIGGER triggerImplicit1Complex1

AFTER UPDATE OF studentId , lectureId

ON attends

INSERT INTO notifications (idOfUpdatedObject ,

114 typeOfUpdatedObject ,

typeOfSubscriber ,
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idOfSubscriber)

SELECT new.id,

’Lectures ’,

119 ’Maintainers ’,

Maintainers.id

FROM Lectures ,

index3Rooms ,

maintains ,

124 Maintainers ,

attends

WHERE attends.studentId = new.studentId

AND Lectures.id = attends.lectureId

AND Lectures.roomId = index3Rooms.leftId

129 AND index3Rooms.rightId = maintains.roomId

AND maintains.maintainerId = Maintainers.id

UNION

SELECT new.id,

’Lectures ’,

134 ’Maintainers ’,

Maintainers.id

FROM Lectures ,

index3Rooms ,

maintains ,

139 Maintainers ,

attends

WHERE attends.studentId = new.studentId

AND Lectures.id = attends.lectureId

AND Lectures.roomId = index3Rooms.leftId

144 AND index3Rooms.rightId = maintains.roomId

AND maintains.maintainerId = Maintainers.id

UNION ...

...

149 -- implicit path 2

CREATE TRIGGER triggerImplicit2Complex1

...

Listing 9.9: Optimized triggers for sample entity-relationship model

This listing shows the final optimized version of triggers as they are used in our refer-

ence implementation.

9.2.2.6 Inheritance Revisited

In section 5.7.1, we briefly outlined how inheritance, a central concept of object-

oriented modelling, can be integrated into our approach. In the following, we will

briefly describe how inheritance could be handled in our prototypic implementation.
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Object-oriented inheritance is no immanent concept of relational databases and thus

has to be realized by using appropriate relational models which resemble the object-

oriented inheritance. To overcome this deficit, also known as the object-relational

impedance mismatch, different strategies are known (for a detailed discussion on the

impedance mismatch, cf. [EN04]). If inheritance regarding a superclass A and several

subclasses B1 to Bn has to be handled, the following four solutions are alternatively

possible:

• For an arbitrary superclass A, a designated database table is designed, containing

all attributes of A. Further, for all subclasses B1 to Bn, an additional table,

containing the primary key of A (which is, due to the semantics of the inheritance,

also primary key of B1 to Bn) and all additional attributes of the respective

subclass, is necessary.

• For each subclass B, a designated table, containing all attributes of superclass A

plus the attributes of the subclass B is created, but no designated table to store

instances of superclass A is required.

• Only one database table is created, containing the union of all attributes of the

superclass A and of all subclasses, plus a designated column to store the the type

of the actual instance that is represented in this row.

• Similarly, onle one database containing the union of all attributes of all classes is

created. In contrast to the third option, boolean flags indicate the membership

of a tuple to any of the super- or subclasses, making this approach more suitable

if overlapping subclassing has to be modeled.

One thing that is common to all of the four approaches is the fact that

• depending on the used approach, all tables that contain instances of any super-

or subclass can clearly be determined,

• each of the necessary tables contains the primary key of the super- or subclass,

• and it can clearly be determined in which table the different attributes are con-

tained.

Thus, triggers could automatically be generated, knowing which columns of which

tables to monitor and where to find the attributes that are needed for the subscriber

determination. Thus, it remains an open issue of our prototypic implementation to

implement the support of inheritance, but the principal capability of our approach to

deal with inheritance is clearly present.
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9.3 Summary

This chapter presented the reference implementation for our event-handling approach,

based on active database technology. We showed how the different abstraction lay-

ers were instantiated for this particular technology, how explicit subscriptions and

notifications are modeled, and - most important - what the triggers that detect all

updates and determine the relevant subscribers look like. As it is the purpose of a

MDA reference implementation, all the artifacts that are identified within this exem-

plary realization are used as a blueprint for the automatic generation process. Thus,

we will show in the next chapter how UML profiles and transformation templates are

used to be able to automatically generate event-handling triggers from the respective

information system model.
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“The shortest route to getting things done is just do it.”

Takayuki Ikkaku, Arisa Hosaka and Toshihiro Kawabata

10
From UML Models to Optimized Triggers

According to the MDA development paradigm, the step following the reference imple-

mentation is to design UML profiles that represent the meta-model. Next, transforma-

tion templates and transformation rules that are able to generate the actual runtime

system have to be developed.

In this chapter, we will present the UML profile and the transformations into event-

handling triggers. Furthermore, we will explain how the optimization approach has

been realized. The chapter concludes with the proof that the generated triggers are

correct, i.e. that they fulfil the requirements we postulated in chapter 6, followed by

a comprehensive example.

10.1 UML Profile

The UML profile, i.e. the meta-model for the design of an arbitrary event-handling

system, constitutes the heart of our model driven solution. In the following, we will

present our UML profile for event-handling systems in detail.

As we have learned from our studies of the application domain, the knowledge that

is required to specify all relevant aspects of the event-handling system can be divided
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into three categories. First, information about the object-relational mapping, i.e.

about how the object-oriented model is represented in its relational implementation,

is needed. Second and most important, the event-handling constructs contained in our

generic concept need a representation within the UML profile. These aspects implic-

itly constitute the domain specific language of our event-handling approach. Finally,

as a possibility to pass statistic information to the optimizer, knowledge about the

cardinalities of entities that are stored in the information system, as well as informa-

tion about the expected update behaviour, has to be contained in the event-handling

system’s model and thus needs a representation in the meta-model.

Before we will illustrate the different aspects, we present a complete picture of the

UML profile in figure 10.1.

Figure 10.1: UML profile for the MDA implementation using active databases

10.1.1 Object-Relational Mapping

The object-relational mapping, i.e. the conversion from object-oriented design into

relational database mapping is an important part of our approach: to generate correct
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trigger code, it is necessary to know about the realization of the corresponding entities

in the entity-relationship model. Table names, column names, foreign key constraints

and the respective attributes and/or join tables have to be known for the trigger

generation to work.

In our approach, we re-use the persistence profile supplied by AndroMDA [Andb]. In

figure 10.1, these stereotypes are depicted in the blue profile in abbreviated form. The

profile contains (amongst others) the following stereotypes containing a multitude of

attributes, of which we will show only those that are important for our solution:

• Stereotype �persistentClass�

Instances of classes tagged with this stereotype are designed to have persistent

representations in the relational database.

– Attribute andromda persistence table

The value of this attribute specifies which database table the instances have

to be stored in.

• Stereotype �persistentProperty�

A persistent property denotes a persistent attribute of a persistent class, i.e. an

attribute that has to be stored in a column of the persistent classes table. In

contrast, attributes without this tag are designed to be transient, i.e. they are

for instance derived from persistent attributes at runtime.

According to UML 2.0, associations between classes are also treated as proper-

ties, i.e. this stereotype can also be applied to association ends, thus representing

the column in which a foreign key reference is stored.

– Attribute andromda persistence column

This attribute specifies the name of the column the attribute (or foreign

key reference) should be stored in.

• Stereotype �persistentAssociation�

Associations that should be persisted can be tagged with this stereotype. It is

solely used for m : n associations, i.e. associations that need a join table in their

relational representation.

– Attribute andromda persistence table

Similar to persistent classes, this attribute specifies the name of the table

the foreign keys for the m : n association are stored in.
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Although the above-mentioned stereotypes denote only a small excerpt from the possi-

bilities AndroMDA offers, they constitute the basis on which the event-handling profile

elements are built on. We will present these stereotypes in the following.

10.1.2 Event-Handling Profile Elements

All of the event-handling profile elements are specializations of the persistence elements

we presented in section 10.1.1. They combine a representation of the event-handling

constructs we introduced in chapter 5 and of the runtime behaviour specification as

proposed in chapter 7. In detail, the following stereotypes are available for use in our

profile eventHandlingProfile:

• Stereotype �Subscriber�

According to our concept, subscribers represent the potential receivers of update

notifications. The stereotype �Subscriber� can be used to tag all classes in the

information system model which actually should be interpreted as a subscriber.

– Attribute overlayId

In our concept, overlays play an important part. To specify which overlay(s)

a particular subscriber belongs to, the attribute overlayId is used. Due to its

cardinality (one or more values) we can assert that every subscriber belongs

to at least one overlay.

– Attribute updateProbability

For our optimization approach, the update probability of all subscribable

classes is required. If this information should already be specified at design-

time (as proposed in section 7.6.2), it can be specified via the float value

updateProbability.

– Attribute estimatedCardinality

Finally, the cost model needs information about the cardinality, i.e. the

number of instances of this class that are persisted to the database. To

represent this information at design time, the attribute estimatedCardinality

can be used.

• Stereotype �Subscribable�

Similar to subscribers, this stereotype can be used to denote all subscribables in

an event-handling model. This stereotype’s attributes are equal to the attributes

of subscribables, so they are not explained again. In addition, the attribute
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overlayId denotes the id of the overlay in which this subscribable is the source

subscribable.

• Stereotype �ObservedAttribute�

Since we do not want to monitor all attributes of a subscribable but only selected

ones, it is necessary to offer a possibility to tag those attributes that have to be

monitored. This can be done using the stereotype �ObservedAttribute�, which

can be applied to any persistent property and thus also to any association end

(to observe complex attributes as introduced in the previous chapter).

– Attribute overlayId

Subscribables can be part of several overlays. In addition, in different con-

texts (i.e. in different overlays) it is possible that different attributes have

to be observed. Therefore, one or more overlayIds can be specified for any

observed attribute.

• Stereotype �eventProp�

For another major construct in our concept, event-propagating associations, this

stereotype can be used. It has to be applied to association ends, which, in the

UML jargon, are persistent properties, too.1 By tagging association ends instead

of associations, it is possible to specify the direction of the event propagation:

the untagged end of an association represents the source, while the tagged end

represents the target of the event propagation.

– Attribute overlayId

As for all of our stereotypes, this attribute represents the overlay assign-

ment(s).

– Attribute impactRange

The attribute impactRange is used to represent the propagation distance of

an update event, as proposed by our concept. Since event propagating asso-

ciations may have different impact ranges in different overlays, the impact

range is specified as an array, containing the impact ranges for all assigned

overlays.

• Stereotype �implicitSub�

For specifying implicit subscription, the stereotype �implicitSub� is provided.

1To limit this stereotype’s usage to association ends only, according OCL constraints would be
necessary. However, we do not regard any constraints in this chapter, but define an open end of
our work in chapter 12 instead.
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It is used similarly to �eventProp�: the tagged association end represents the

direction of the implicit subscription.

– Attribute overlayId

Again, this attribute denotes the overlay assignment(s).

• Stereotype �EventAssociation�

Finally, for the cost model to work properly, it is necessary to have information

about the join selectivity of associations. To be able to specify this, the respective

associations can be tagged as an �EventAssocation�.

– Attribute joinSelectivity

This attribute contains information about the actual join selectivity of an

association, so that this value can be specified at designtime, if required.

Using these stereotypes, all of our event-handling constructs have a representation in

our UML profile and can thus be applied to any (new or legacy) information system

model.

10.2 Model Template

Besides the dynamic parts of an event-handling information system, a static part

containing the data model for explicit subscriptions and notifications is required. As

we already explained in the previous chapter, these entities are modeled using the

above-mentioned stereotypes for persistent entities. By providing a UML template on

which the actual information system can be built, information system designers are

supported during this task. Figure 10.2 shows this template.

Figure 10.2: UML template model containing explicit subscriptions and notifications
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Like this, we make sure that the tables for explicit subscriptions and notifications are

present in every information system’s data model, and thus the generated triggers

work correctly.

10.3 Metafacades and Transformation Helper Classes

Profiles contain the stereotypes and tagged values that are required to enhance static

models at design time. To transform this static information into artifacts like, in our

case, database triggers, additional transformation logic is needed. As for AndroMDA,

this logic is coded in so-called metafacades; classes that represent model elements

and contain additional logic. The methods of the metafacades, in which this logic is

contained, can then be called (from the transformation templates) during the model-

to-code transformation.

According to good object-oriented design, these metafacades realize their transforma-

tion logic using additional helper classes. These classes are no metafacades themselves,

but are created and used from within the metafacades’ coding.

The metafacades that have been developed for our solution and the helper classes they

make use of are depicted in figure 10.3. The diagram shows a simplified view of the

implemented classes, just to give an idea of how the transformation has been built.2

10.3.1 AndroMDA Base Metafacades

The metafacades we describe in the following are part of the AndroMDA persistence

cartridge. As they correspond the persistence profile (which we reuse, too) and contain

methods to access all persistence-related information, they are used as a basis for our

event-handling metafacades, which are derived from these base classes.

• Metafacade Entity

This metafacade class is instantiated once per class in the UML model which is

stereotyped as Entity and allows access to its properties.

2For instance, all getter-methods that allow access to the actual values of the stereotypes’ attributes,
for instance a method getImpactRange() to determine the tagged value impactRange of an associa-
tion end that has been stereotyped as event propagating) are not shown in this figure.
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Figure 10.3: Metafacades and helper classes for model-to-code transformation

– Attribute tableName

This attribute holds the name of the table in which actual entities in the

UML model are stored.

– Attribute schema

The schema name of the respective database instance is kept in this at-

tribute.

– Method getIdentifiers()

Using this method, a collection containing all identifying attributes of this
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entity, i.e. the primary keys in the respective relational model, can be

obtained. The method returns a collection of EntityAttributes.

– Method getAttributes()

Analogously, this method returns all attributes of the corresponding entity

as a collection of EntityAttributes, including also the primary keys.

– Method getIdentifierAssociationEnds()

Since primary keys in the underlying entity-relationship model do not nec-

essarily have to be simple attributes, but can also be associated entities

(modeled in UML by associations), this method can be used to return all

foreign keys to associated entities which act as identifiers.

• Metafacade EntityAttribute

As already mentioned, this class facades access to all model elements that are

stereotyped as an entity’s attributes.

– Attribute columnName

This attribute holds the name of the column in which the attribute’s values

are stored in the relational model.

– Attribute sqlType

This attribute represents the SQL type of the attribute, for instance INTE-

GER or VARCHAR.

– Attribute identifier

Finally, this attribute holds a boolean flag whether the attribute is an iden-

tifier or not.

• Metafacade EntityAssociationEnd

According to the UML standard, both ends of associations between classes can

be accessed separately from the association itself. Thus, the metafacade En-

tityAssociationEnd represents one end of any association between two entities.

– Attribute columnName

This attribute contains the name of the column in which the association

end is stored, i.e. the name of the respective foreign key column.

– Attribute foreignIdentifier

If the foreign key column is part of an entity’s primary key, this can be

found out by accessing this flag.
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– Attribute sqlType

Similar to simple EntityAttributes, the SQL type of the foreign key column

is stored in this attribute.

• Metafacade EntityAssociation

In AndroMDA, associations between entities are stored using instances of the

metafacade class EntityAssociation. Since all information that is needed to handle

1 : 1, 1 : n and m : 1 associations is available from the respective association

ends, this metafacade is required only for m : n associations, as the metafacade’s

attributes reveal:

– Attribute tableName

This attribute holds the name of the table in which the m : n association

is stored, i.e. of the join table holding the foreign key references to both

associated entities.

– Attribute schema

Additionally, the name of the schema in which the association is stored is

contained in this attribute.

• ModelFacade

Finally, the metafacade ModelFacade represents a UML model as a whole.

10.3.2 Event-Handling Metafacades

The transformations we implemented use the following subclasses of the AndroMDA

metafacades, inheriting all database-relevant information from their parent classes.

As mentioned above, getter-methods to access the tagged values are omitted in this

metafacade presentation. Instead, we name the respective stereotype in the UML

profile and thus imply that all tagged values of this stereotype are accessible via the

metafacade.

• Metafacade SubscribableFacade

This metafacade, inheriting from metafacade Entity and corresponding to stereo-

type �Subscribable�, can be used to handle all of the UML model’s classes that

are tagged as subscribable and to access the respective tagged values overlayId,

updateProbability and estimatedCardinality.

• Metafacade SubscriberFacade

Like SubscribableFacade, this metafacade, also inheriting from metafacade Entity
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and corresponding to stereotype �Subscriber�, can be used to handle all classes

that are tagged as subscriber and to access tagged values overlayId, updateProb-

ability and estimatedCardinality.

• Metafacade ObservedAttributeFacade

This metafacade, inheriting from EntityAttribute and corresponding to �Observe-

dAttribute� can be used to access observed attributes of subscribable entities,

for instance to determine their overlayId.

• Metafacade EventPropFacade

To access all event-propagating associations in the UML model, i.e. the associa-

tion ends that are stereotyped with �eventProp�, this metafacade has been de-

signed. Inheriting from metafacade EntityAssociationEnd, all tagged values that

describe the relational model of this association end are accessible; additionally,

access to overlayId and impactRange is possible.

• Metafacade ImplicitSubFacade

The metafacade ImplicitSubFacade has been designed similarly to EventPropFa-

cade, except for the fact that only the tagged value overlayId is accessible.

• Metafacade EventAssociationFacade

Counterpart to stereotype �EventAssociation�, this metafacade represents all

associations in the UML model that have been tagged with this stereotype. In

addition to an EntityAssociationFacade’s properties, access to the association’s

joinSelectivity is possible.

• Metafacade EventModelFacade

Finally, the metafacade Model has been extended to represent any arbitrary

UML model which has been enhanced with event-handling stereotypes. This

metafacade is used by the transformations as an entry point to compute all

required materialized views and all overlays contained in the model. This is the

only metafacade with no corresponding stereotype in our UML profile.

– Method getViews()

This method computes all required materialized views (i.e. the optimiza-

tion indices) according to the algorithms from chapter 7. The result is

returned as a collection of MaterializedView instances; this helper class will

be described in the next section.

– Method getOverlays()

As a second helper method, getOverlays() returns all overlays that are con-
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tained in the UML model by evaluating all overlayIds from the different

stereotyped classes. As a result, a collection of Overlay instances is re-

turned.

10.3.3 Transformation Helper Classes

In line with good object-oriented design, the metafacade classes should not implement

all transformation logic themselves, but rely on additional classes that represent parts

of the transformation logic and contain appropriate business logic. Therefore, the

following classes have been implemented and are used within the metafacades’ method

implementations:

• Class MaterializedView

This helper class is used to represent materialized views which work as event

propagation indices. Internally, an ordered list consisting of persistent entities

and associations, representing path fragments in the UML model, is kept as an

instance of PathDescription. This description is used to determine the definition

of the materialized view.

– Method getName()

This method computes the name of the materialized view which is unique

within the whole UML model.

– Method getQuery()

Using the internal list of connected persistent entities, together with the

information about their relational representation (i.e. table names, primary

keys, foreign keys, ...), a query that can be used in the definition of this

materialized view is computed by method getQuery(), which internally uses

PathDescription.getSelectUnionQuery() for this purpose.

• Class TableToMonitor

Helper class TableToMontor is used to represent any table in the database model

that needs to be monitored when observing a particular subscribable.

– Method getTableName()

This method simply returns the name of the database table that is repre-

sented by this helper class.

• Class Overlay

According to our concept, all event-handling constructs are grouped into over-

206



10.3. METAFACADES AND TRANSFORMATION HELPER CLASSES

lays. Helper class Overlay represents such an overlay, i.e. it groups all event-

handling constructs having the same overlayId in the UML model.

– Method getSourceSubscribable()

Since overlays contain a designated subscribable that is monitored for changes,

this method has been developed to return this source subscribable for an

arbitrary overlay.

• Class PathDescription

As already mentioned during the description of MaterializedView, descriptions of

paths (and path fragments) are represented using helper class PathDescription.

This class encapsulates an ordered collection of entities and their associations.

– Method getSelectUnionQuery()

This method returns a query in the form of SELECT ... UNION ... UNION,

which can be used to compute all paths that match the represented path

description.

• Class ImplicitPathDescription

This subclass of PathDescription is used to describe implicit path descriptions.

• Class ExplicitPathDescription

In contrast to ImplicitPathDescription, this subclass of PathDescription is used to

describe explicit path descriptions.

• Class SourceSubscribable

Finally, this class is used to represent a subscribable being the source of an

overlay. Since overlays (and thus their source subscribable) represent the starting

point for every event-handling trigger, several methods containing the event-

handling transformation logic are realized within this class:

– Method getTablesToMonitor()

As we explained in section 9.2.2.1, a source subscribable may have several

database tables that need to be monitored in order to record an update

properly. Thus, this method computes and returns all instances of Table-

ToMonitor that have to be monitored.

– Method getImplicitPathDescriptions()

All implicit path descriptions that are required to determine the implicit

subscribers of an update are computed and returned by this method. It

realizes algorithm 6.3 and returns the resulting path descriptions. Further-
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more, the path description can contain event propagation indices instead

of entity path elements, i.e. method getImplicitPathDescriptions() implic-

itly makes use of the optimization results that were obtained by method

getViews() in class EventModelFacade.

– Method getImplicitTriggerName()

As we will see in the next section, implicit path descriptions are evaluated

within the triggers. Thus, a unique name for the implicit trigger is needed,

which is computed by this method.

– Method getObservedAttributesString()

Since only selected attributes of the source subscribable are to be mon-

itored for changes, the respective trigger has to be limited to those at-

tributes. Therefore, method getObservedAttributesAsString() returns the

names of these attributes in a SQL conform manner.

– Method getExplicitPathDescriptions()

Similarly to implicit path descriptions, the explicit path descriptions (again

containing optimiziation information) are required. They are computed

according to algorithm 6.2 by this method.

– Method getExplicitTriggerName()

As a last method of this helper class, getExplicitTriggerName() returns a

unique name for the trigger which is going to monitor the respective source

subscribable and determine all of its explicit subscribers.

All of these metafacade and helper classes have been realized in Java, making use of

the AndroMDA transformation framework. As we already mentioned, their purpose is

to be called from the transformation template, which we will present in the following.

10.4 MDA Transformations

Within the AndroMDA framework, transformation templates are written using the

Velocity template engine [Apa]. In conjunction with an appropriate configuration,

these templates are evaluated once per UML model.

To generate the event-handling triggers, two templates form the building blocks of our

solution; one for the materialized views working as event-propagating indices and one

for the triggers themselves have been developed.
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Listing 10.1 shows the template which is used to generate SQL code that creates the

materialized views. It simply consists of a #foreach-loop iterating over all necessary

materialized views as computed by method getViews() in the metafacade EventMod-

elFacade. Inside the loop (ll. 7-10), the materialized view is created, using the helper

class MaterializedView to compute the unique name and, most important, the SQL

statement to define the underlying view.

-- create all required materialized views (event - propagating indices) which

-- are computed by the metafacade for the event -handling model

#foreach ($view in $model.getViews ())

4
-- view name and respective query are

-- specific to every materialized view

CREATE TABLE ${view.getName ())

AS ${view.getQuery ())

9 DATA INITIALLY DEFERRED

REFRESH IMMEDIATE;

#end

Listing 10.1: Transformation template to create materialized views

As one can see (and as we tried to explain above), the important parts of the gener-

ation algorithm are coded in the metafacade- and helper classes. The same holds for

template 10.2 which is used to generate all trigger SQL code. The outer #foreach-loop

iterates over all overlays that are present in the UML model (computed by the re-

spective helper-class). For each of the overlays, the corresponding source subscribable

is determined (l. 3) - this iteration corresponds to the foreach-loop in algorithm 6.1.

Based on this source subscribable, all tables that need to be monitored (cf. complex

attributes as described in section 9.2.2.1) are considered and the inner part (ll. 10-49)

is evaluated for each of the tables to monitor.

In this inner section, first all implicit path descriptions starting from the source sub-

scribable are handled (ll. 10-28): for each implicit path description, one trigger de-

termining all implicit subscribers and storing the respective notification in case of

an UPDATE, as well as one analogous trigger for the detection of INSERTS are cre-

ated. Each of those triggers only considers updates of observed attributes, as they

are returned by the metafacade class SourceSubscribable, depending on the currently

evaluated table to monitor.

In the second major part of the template (ll. 32-49), the same kind of trigger generation

is coded, but for explicit subscribers, respectively.
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-- iterate over all overlays that are part of the model

#foreach ($overlay in $model.getOverlays ())

3 #set ($sourceSub = $overlay.getSourceSubscribable ())

-- iterate over all tables that need to be monitored

#foreach ($ttm in ${sourceSub.getTablesToMonitor ())

8 -- determine all implicit path descriptions that need to be handled for

-- this subscribable and iterate over them

#foreach ($ip in ${sourceSub.getImplicitPathDescriptions ())

-- create trigger detecting updates , for the current implicit path

13 -- description and the current table to monitor

CREATE TRIGGER ${sourceSub.getImplicitTriggerName($ip)}U

AFTER UPDATE OF ${sourceSub.getObservedAttributesString($ttm)}

ON ${ttm.getTableName ()}

INSERT INTO notifications (idOfUpdatedObject , typeOfUpdatedObject ,

18 typeOfSubscriber , idOfSubscriber)

${ip.getSelectUnionQuery($ttm)};

-- create similar trigger detecting inserts

CREATE TRIGGER ${sourceSub.getImplicitTriggerName($ip)}I

23 AFTER INSERT OF ${sourceSub.getObservedAttributesString($ttm)}

ON ${ttm.getTableName ()}

INSERT INTO notifications (idOfUpdatedObject , typeOfUpdatedObject ,

typeOfSubscriber , idOfSubscriber)

${ip.getSelectUnionQuery($ttm)};

28 #end

-- determine all explicit path descriptions that need to be handled for

-- this subscribable and iterate over them

#foreach ($ep in ${sourceSub.getExplicitPathDescriptions ())

33
-- create trigger detecting updates , for the current explicit path

-- description and the current table to monitor

CREATE TRIGGER ${sourceSub.getExplicitTriggerName($ep)}U

AFTER UPDATE OF ${sourceSub.getObservedAttributesString($ttm)}

38 ON ${ttm.getTableName ()}

INSERT INTO notifications (idOfUpdatedObject , typeOfUpdatedObject ,

typeOfSubscriber , idOfSubscriber)

${ep.getSelectUnionQuery($ttm)};

43 -- create similar trigger detecting inserts

CREATE TRIGGER ${sourceSub.getExplicitTriggerName($ep)}I

AFTER INSERT OF ${sourceSub.getObservedAttributesString($ttm)}

ON ${ttm.getTableName ()}

INSERT INTO notifications (idOfUpdatedObject , typeOfUpdatedObject ,

48 typeOfSubscriber , idOfSubscriber)

${ep.getSelectUnionQuery($ttm)};

#end

#end

#end

Listing 10.2: Transformation template to create triggers
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Of course, this description only reveals a brief overview of the realized metafacades,

helper classes and templates. However, since the foundations of the underlying algo-

rithms and techniques have already been presented in the previous chapters of this

dissertation, we decided not to go into more detail here but instead focus on an easily

understandable high-level software design. However, we briefly want to illustrate that

this implementation actually generates triggers that are correct with respect to the

definitions from chapter 5.

10.5 Correctness

In the following, we will present the key points of our implementation’s correctness

proof. As we showed in chapter 6, the presented trigger generation procedure is correct

if

• the generation algorithms from chapter 6 are implemented

Although we did not present the implementations of all metafacades’ and helper

classes’ methods, we claim that the respective methods and templates implement

the given algorithms correctly. For instance, the loop over all overlays in template

10.2 corresponds to the loop in algorithm 6.1. Furthermore, the algorithms to

compute explicit and implicit paths have been implemented exactly as specified

in chapter 6.

• the explicit triggers are correct according to definition 6.2.2

The correctness of explicit triggers can easily be shown:

1. Each of the triggers that are created using template 10.2 obviously moni-

tors modifications of the source subscribable of the input paths - either by

directly monitoring the respective table’s observed attributes, or by moni-

toring one of the additional tables that have to be monitored. By creating

two complementary triggers, one for all UPDATEs and one for the INSERTs,

all relevant modifications are detected. Thus, condition 1 of definition 6.2.2

is fulfilled.

2. As one can see from the example above, due to the created SELECT-

statement within the view describing the path descriptions, the explicit

subscribers of the path description targets are determined. Since all pos-

sible path descriptions are handled by method getSelectUnionQuery(), all

targets of any path description are joined against explicit subscribers and

thus condition 2 of definition 6.2.2 is fulfilled, too.
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• the implicit triggers are correct according to definition 6.2.3

The fulfilment of this requirement can be shown similarly to the previous re-

quirement concerning explicit triggers and is thus left to the reader.

• the combination of generated triggers forms a correct trigger combi-

nation with respect to definition 6.2.4

This final postulation can easily be proved: due to the additive character of

the trigger action, a new entry is added to the notifications table for every de-

tected update and every implicit or explicit subscriber. In combination with a

duplicate-eliminating access to this notification table (SELECT DISTINCT ...),

the union-set semantics which are required by definition 6.2.4 are provided.

Considering all these properties of the model-driven trigger generation together with

the universal proof from chapter 6, we can postulate that our MDA solution creates

triggers which are correct with respect to the underlying formal concept.

10.6 Comprehensive Sample Model

To complete this chapter describing our MDA solution, we end with a comprehensive

sample model illustrating all of the above-mentioned concepts, profiles and stereo-

types and showing the resulting SQL trigger code. The following example has been

taken from a slightly adapted model of Stud.IP3 and contains different event-handling

overlays, fulfilling several event-handling requirements each.

The example is shown using different levels of abstraction: starting with the (slightly

simplified) object-oriented UML model of the application, giving insight into the re-

lational representation showing the appropriate entity-relationship model and finally

presenting the database triggers that are created from the UML model using our

transformation.

The following entities are part of the model:

• Studiengaenge represents all courses of study that are available

• AuthUserMd5 holds information about Stud.IP’s users (i.e. students)

• Seminare contains the stored lectures

3Since Stud.IP uses the relational database system mySql which does not support foreign key con-
straints, the respective foreign key references have been added to the model manually.
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• SeminarUser stores the assignment of students to lectures, enriched by an at-

tribute holding the status of this assignment

• Dokumente represents the documents that have been stored and possibly assigned

to their corresponding lectures

• Comments contains all comments that have been made concerning a particular

document

• SemTree models a simple taxonomy of terms, so that lectures (Seminare) can

be arranged hierarchically by assigning them to the respective element of the

SemTree

• Institute finally represent all institutes (or chairs) within Stud.IP

Figure 10.4 shows the corresponding UML model. Furthermore, by using our event-

handling profile, the following overlay information has been added to the model (pre-

sented in figure 10.5 which contains only the event-handling stereotypes):4

1. Every user shall be informed if one of the lectures (Seminare) he attends is

modified.

2. Every user shall be informed if one of the documents assigned to one of the

lectures he attends is modified.

3. Every user shall be informed if a category or a super-category of one of the lec-

tures he attends is modified. Notifications shall only be created if the taxonomic

relationship is at most two levels higher in the taxonomy.

According to AndroMDAs object relational mapping, this object-oriented model is

transformed into the entity-relationship model depicted in figure 10.6.

Finally, applying the transformations we described in this chapter, we receive the

listings 10.3 to 10.5 as a result.

---

-- view definitions for event - propagating indices

3 ---

-----------

-- overlay1

-----------

8

4Due to a bug in the UML tool, the update probability values are displayed like string values,
although they are actually of type double.
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Figure 10.4: UML model of Stud.IP

-- view 1

CREATE TABLE view1

AS (SELECT SEMINARE.SEMINAR_ID AS left ,

AUTH_USER_MD5.USER_ID AS right

13 FROM SEMINARE ,

SEMINAR_USER ,

AUTH_USER_MD5

WHERE SEMINARE.SEMINAR_ID = SEMINAR_USER.SEMINAR_ID

AND SEMINAR_USER.USER_ID = AUTH_USER_MD5.USER_ID )
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Figure 10.5: Stereotyped UML model for Stud.IP’s event-handling

18 DATA INITIALLY DEFERRED

REFRESH DEFERRED;

-----------

-- overlay2

23 -----------

-- view2
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CREATE TABLE view2

AS (SELECT SEMINARE.SEMINAR_ID AS left ,

28 AUTH_USER_MD5.USER_ID AS right

FROM SEMINARE ,

SEMINAR_USER ,

AUTH_USER_MD5

WHERE SEMINARE.SEMINAR_ID = SEMINAR_USER.SEMINAR_ID

33 AND SEMINAR_USER.USER_ID = AUTH_USER_MD5.USER_ID )

DATA INITIALLY DEFERRED

REFRESH DEFERRED;

-----------

38 -- overlay3

-----------

-- view3

CREATE TABLE view3

43 AS (SELECT SEM_TREE.SEM_TREE_ID AS left ,

AUTH_USER_MD5.USER_ID AS right

FROM SEM_TREE ,

SEMINAR_SEM_TREE ,

SEMINARE ,

48 SEMINAR_USER ,

AUTH_USER_MD5

WHERE SEM_TREE.SEM_TREE_ID = SEMINAR_SEM_TREE.SEM_TREE_ID

AND SEMINAR_SEM_TREE.SEMINAR_ID = SEMINARE.SEMINAR_ID

AND SEMINARE.SEMINAR_ID = SEMINAR_USER.SEMINAR_ID

53 AND SEMINAR_USER.USER_ID = AUTH_USER_MD5.USER_ID

UNION

SELECT st1.SEM_TREE_ID AS left ,

58 AUTH_USER_MD5.USER_ID AS right

FROM SEM_TREE st1 ,

SEM_TREE st2 ,

SEMINAR_SEM_TREE ,

SEMINARE ,

63 SEMINAR_USER ,

AUTH_USER_MD5

WHERE st1.SEM_TREE_ID = st2.PARENT_ID

AND st2.SEM_TREE_ID = SEMINAR_SEM_TREE.SEM_TREE_ID

AND SEMINAR_SEM_TREE.SEMINAR_ID = SEMINARE.SEMINAR_ID

68 AND SEMINARE.SEMINAR_ID = SEMINAR_USER.SEMINAR_ID

AND SEMINAR_USER.USER_ID = AUTH_USER_MD5.USER_ID

UNION

73 SELECT st1.SEM_TREE_ID AS left ,

AUTH_USER_MD5.USER_ID AS right

FROM SEM_TREE st1 ,

SEM_TREE st2 ,

SEM_TREE st3 ,

78 SEMINAR_SEM_TREE ,

SEMINARE ,

SEMINAR_USER ,
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AUTH_USER_MD5

WHERE st1.SEM_TREE_ID = st2.PARENT_ID

83 AND st2.SEM_TREE_ID = st3.PARENT_ID

AND st3.SEM_TREE_ID = SEMINAR_SEM_TREE.SEM_TREE_ID

AND SEMINAR_SEM_TREE.SEMINAR_ID = SEMINARE.SEMINAR_ID

AND SEMINARE.SEMINAR_ID = SEMINAR_USER.SEMINAR_ID

AND SEMINAR_USER.USER_ID = AUTH_USER_MD5.USER_ID )

88 DATA INITIALLY DEFERRED

REFRESH DEFERRED;

-- view4

CREATE TABLE view4

93 AS (SELECT SEM_TREE.SEM_TREE_ID AS left ,

SEMINARE.SEMINAR_ID AS right

FROM SEM_TREE ,

SEMINAR_SEM_TREE ,

SEMINARE

98 WHERE SEM_TREE.SEM_TREE_ID = SEMINAR_SEM_TREE.SEM_TREE_ID

AND SEMINAR_SEM_TREE.SEMINAR_ID = SEMINARE.SEMINAR_ID

UNION

103 SELECT st1.SEM_TREE_ID AS left ,

SEMINARE.SEMINAR_ID AS right

FROM SEM_TREE st1 ,

SEM_TREE st2 ,

SEMINAR_SEM_TREE ,

108 SEMINARE

WHERE st1.SEM_TREE_ID = st2.PARENT_ID

AND st2.SEM_TREE_ID = SEMINAR_SEM_TREE.SEM_TREE_ID

AND SEMINAR_SEM_TREE.SEMINAR_ID = SEMINARE.SEMINAR_ID

113 UNION

SELECT st1.SEM_TREE_ID AS left ,

SEMINARE.SEMINAR_ID AS right

FROM SEM_TREE st1 ,

118 SEM_TREE st2 ,

SEM_TREE st3 ,

SEMINAR_SEM_TREE ,

SEMINARE ,

WHERE st1.SEM_TREE_ID = st2.PARENT_ID

123 AND st2.SEM_TREE_ID = st3.PARENT_ID

AND st3.SEM_TREE_ID = SEMINAR_SEM_TREE.SEM_TREE_ID

AND SEMINAR_SEM_TREE.SEMINAR_ID = SEMINARE.SEMINAR_ID )

DATA INITIALLY DEFERRED

REFRESH DEFERRED;

128
-- view5

CREATE TABLE view5

AS (SELECT st1.SEM_TREE_ID AS left ,

st2.SEM_TREE_ID AS right

133 FROM SEM_TREE st1 ,

SEM_TREE st2 ,

WHERE st1.SEM_TREE_ID = st2.PARENT_ID
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UNION

138
SELECT st1.SEM_TREE_ID AS left ,

st3.SEM_TREE_ID AS right

FROM SEM_TREE st1 ,

SEM_TREE st2 ,

143 SEM_TREE st3 ,

WHERE st1.SEM_TREE_ID = st2.PARENT_ID

AND st2.SEM_TREE_ID = st3.PARENT_ID)

DATA INITIALLY DEFERRED

REFRESH DEFERRED;

148

---

-- Indices to speed up view access

---

153 CREATE Index index1view ON view1 (left);

CREATE Index index2view ON view2 (left);

CREATE Index index3view ON view3 (left);

CREATE Index index4view ON view4 (left);

CREATE Index index5view ON view5 (left);

Listing 10.3: Materialized view definition resulting from sample model

---

-- Triggers to refresh views

3 ---

--------

-- view1

--------

8 CREATE TRIGGER IT_V1_seminar

AFTER INSERT ON SEMINARE

FOR EACH STATEMENT

CALL refresher (’view1’);

13 CREATE TRIGGER UT_V1_seminar_user

AFTER UPDATE ON SEMINAR_USER

FOR EACH STATEMENT

CALL refresher (’view1’);

18 CREATE TRIGGER IT_V1_seminar_user

AFTER INSERT ON SEMINAR_USER

FOR EACH STATEMENT

CALL refresher (’view1’);

23 --------

-- view2

--------

CREATE TRIGGER IT_V2_seminar

AFTER INSERT ON SEMINARE

28 FOR EACH STATEMENT

CALL refresher (’view2’);
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CREATE TRIGGER UT_V2_seminar_user

AFTER UPDATE ON SEMINAR_USER

33 FOR EACH STATEMENT

CALL refresher (’view2’);

CREATE TRIGGER IT_V2_seminar_user

AFTER INSERT ON SEMINAR_USER

38 FOR EACH STATEMENT

CALL refresher (’view2’);

--------

-- view3

43 --------

CREATE TRIGGER UT_V3_sem_tree

AFTER UPDATE ON SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view3’);

48
CREATE TRIGGER IT_V3_sem_tree

AFTER INSERT ON SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view3’);

53
CREATE TRIGGER UT_V3_seminar_sem_tree

AFTER UPDATE ON SEMINAR_SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view3’);

58
CREATE TRIGGER IT_V3_seminar_sem_tree

AFTER INSERT ON SEMINAR_SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view3’);

63
CREATE TRIGGER UT_V3_seminar_user

AFTER UPDATE ON SEMINAR_USER

FOR EACH STATEMENT

CALL refresher (’view3’);

68
CREATE TRIGGER IT_V3_seminar_user

AFTER INSERT ON SEMINAR_USER

FOR EACH STATEMENT

CALL refresher (’view3’);

73

--------

-- view4

--------

78 CREATE TRIGGER UT_V4_sem_tree

AFTER UPDATE ON SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view4’);

83 CREATE TRIGGER IT_V4_sem_tree

AFTER INSERT ON SEM_TREE
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FOR EACH STATEMENT

CALL refresher (’view4’);

88 CREATE TRIGGER UT_V4_seminar_sem_tree

AFTER UPDATE ON SEMINAR_SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view4’);

93 CREATE TRIGGER IT_V4_seminar_sem_tree

AFTER INSERT ON SEMINAR_SEM_TREE

FOR EACH STATEMENT

CALL refresher (’view4’);

98 --------

-- view5

--------

CREATE TRIGGER UT_V5_sem_tree

AFTER UPDATE ON SEM_TREE

103 FOR EACH STATEMENT

CALL refresher (’view5’);

CREATE TRIGGER IT_V5_sem_tree

AFTER INSERT ON SEM_TREE

108 FOR EACH STATEMENT

CALL refresher (’view5’);

Listing 10.4: Triggers to refresh materialized views

---

-- Triggers for actual update monitoring

---

5 ---

-- implicit subscriptions

---

---

10 -- overlay1

---

CREATE TRIGGER implicitSimple1U

AFTER UPDATE of name , ort , start_time

ON SEMINARE

15 REFERENCING NEW AS new

FOR EACH ROW

BEGIN ATOMIC

INSERT INTO NOTIFICATIONS (idOfUpdatedObject ,

typeOfUpdatedObject ,

20 idOfSubscriber ,

typeOfSubscriber)

SELECT new.seminar_id ,

’SEMINARE ’,

view1.right ,

25 ’AUTH_USER_MD5 ’

FROM view1
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WHERE view1.left = new.SEMINAR_ID;

END;

30 CREATE TRIGGER implicitSimple1I

AFTER INSERT

ON SEMINARE

REFERENCING NEW AS new

-- remainder equal to implicitSimple1U

35 ---

-- overlay2

---

CREATE TRIGGER implicitSimple2U

AFTER UPDATE OF description , filename

40 ON DOKUMENTE

REFERENCING NEW AS new

FOR EACH ROW

BEGIN ATOMIC

INSERT INTO NOTIFICATIONS (idOfUpdatedObject ,

45 typeOfUpdatedObject ,

idOfSubscriber ,

typeOfSubscriber)

SELECT new.dokument_id ,

’DOKUMENTE ’,

50 view2.right ,

’AUTH_USER_MD5 ’

FROM view2

WHERE view2.left = new.DOKUMENT_ID;

END;

55
CREATE TRIGGER implicitSimple2I

AFTER INSERT

ON DOKUMENTE

REFERENCING NEW AS new

60 -- remainder equal to implicitSimple2U

---

-- overlay3

65 ---

CREATE TRIGGER implicitSimple3U

AFTER UPDATE OF info , name

ON SEM_TREE

REFERENCING NEW AS new

70 FOR EACH ROW

BEGIN ATOMIC

INSERT INTO NOTIFICATIONS (idOfUpdatedObject ,

typeOfUpdatedObject ,

idOfSubscriber ,

75 typeOfSubscriber)

SELECT new.SEM_TREE_ID ,

’SEM_TREE ’,

view3.right ,

’AUTH_USER_MD5 ’

80 FROM view3

WHERE view3.left = new.SEM_TREE_ID;
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END;

CREATE TRIGGER implicitSimple3I

85 AFTER INSERT

ON SEM_TREE

REFERENCING NEW AS new

-- remainder equal to implicitSimple3U

90
---

-- explicit subscriptions

---

95 ---

-- overlay1

---

CREATE TRIGGER explicitSimple1U

AFTER UPDATE of name , ort , start_time

100 ON SEMINARE

REFERENCING NEW AS new

FOR EACH ROW

BEGIN ATOMIC

INSERT INTO NOTIFICATIONS (idOfUpdatedObject ,

105 typeOfUpdatedObject ,

idOfSubscriber ,

typeOfSubscriber)

SELECT new.seminar_id ,

’SEMINARE ’,

110 es.idOfSubscriber ,

es.typeOfSubscriber

FROM ExplicitSubscription es

WHERE es.idOfSubscribable = new.SEMINAR_ID

AND es.typeOfSubscribable = ’SEMINARE ’;

115 END;

CREATE TRIGGER explicitSimple1I

AFTER INSERT

ON SEMINARE

120 REFERENCING NEW AS new

-- remainder equal to explicitSimple1U

---

-- overlay2

125 ---

CREATE TRIGGER explicitSimple2U

AFTER UPDATE OF description , filename

ON DOKUMENTE

REFERENCING NEW AS new

130 FOR EACH ROW

BEGIN ATOMIC

INSERT INTO NOTIFICATIONS (idOfUpdatedObject ,

typeOfUpdatedObject ,

idOfSubscriber ,

135 typeOfSubscriber)

SELECT new.dokument_id ,
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’DOKUMENTE ’,

es.idOfSubscriber ,

es.typeOfSubscriber

140 FROM ExplicitSubscription es

WHERE es.idOfSubscribable = new.DOKUMENT_ID

AND es.typeOfSubscribable = ’DOKUMENTE ’

UNION

SELECT new.dokument_id ,

145 ’DOKUMENTE ’,

es.idOfSubscriber ,

es.typeOfSubscriber

FROM ExplicitSubscription es ,

seminare

150 WHERE new.SEMINAR_ID = seminare.SEMINAR_ID

AND es.idOfSubscribable = new.SEMINAR_ID

AND es.typeOfSubscribable = ’SEMINARE ’;

END;

155 CREATE TRIGGER explicitSimple2I

AFTER INSERT

ON DOKUMENTE

REFERENCING NEW AS new

-- remainder equal to explicitSimple2U

160
---

-- overlay3

---

CREATE TRIGGER explicitSimple3U

165 AFTER UPDATE OF info , name

ON SEM_TREE

REFERENCING NEW AS new

FOR EACH ROW

BEGIN ATOMIC

170 INSERT INTO NOTIFICATIONS (idOfUpdatedObject ,

typeOfUpdatedObject ,

idOfSubscriber ,

typeOfSubscriber)

SELECT new.SEM_TREE_ID ,

175 ’SEM_TREE ’,

es.idOfSubscriber ,

es.typeOfSubscriber

FROM ExplicitSubscription es

WHERE es.idOfSubscribable = new.SEM_TREE_ID

180 AND es.typeOfSubscribable = ’SEM_TREE ’

UNION

SELECT new.SEM_TREE_ID ,

’SEM_TREE ’,

es.idOfSubscriber ,

185 es.typeOfSubscriber

FROM ExplicitSubscription es ,

view4

WHERE view4.left = new.SEM_TREE_ID

AND es.idOfSubscribable = view4.right

190 AND es.typeOfSubscribable = ’SEMINARE ’;

UNION
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SELECT new.SEM_TREE_ID ,

’SEM_TREE ’,

es.idOfSubscriber ,

195 es.typeOfSubscriber

FROM ExplicitSubscription es ,

view5

WHERE view5.left = new.SEM_TREE_ID

AND es.idOfSubscribable = view5.right

200 AND es.typeOfSubscribable = ’SEM_TREE ’;

END;

CREATE TRIGGER explicitSimple3I

205 AFTER INSERT

ON SEM_TREE

REFERENCING NEW AS new

-- remainder equal to explicitSimple3U

Listing 10.5: Trigger definition resulting from sample model

10.7 Summary

In this chapter, we finally presented the UML profile representing all proposed event-

handling constructs as well as a brief description of the transformations, transforming

models (enriched with elements from the UML profile) into event-handling database

triggers. Giving this information, together with a proof that the transformations work

correctly, the model-driven realization of our concept has been described. Thus, our

model-driven implementation of the non-invasive event-handling approach can now be

evaluated qualitatively and quantitatively, which is subject to the remaining last part

of this dissertation.
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Studiengaenge

PK studiengang_Id

 name

 beschreibung

Comments

PK comment_Id

 content

FK1 dokument_Id

Auth_User_MD5

PK user_Id

 username

 vorname

 nachname

 email

User_Studiengang

FK1 user_Id

FK2 studiengang_Id

Seminar_User

FK1 user_Id

FK2 seminar_Id

 status

Seminare

PK seminar_Id

 veranstaltungsnummer

 name

 ort

 start_Time

Institute

PK institut_Id

 name

 strasse

 plz

 url

 telefon

Seminar_Institut

FK1 seminar_Id

FK2 institut_Id

Sem_Tree

PK sem_Tree_Id

 priority

 info

 name

FK1 parent

Seminar_Sem_Tree

FK1 sem_Tree_Id

FK2 seminar_Id

Dokumente

PK dokument_Id

 name

 description

 filename

 downloads

 url

FK1 seminar_Id

Figure 10.6: Entity-relationship model for Stud.IP’s object-oriented data model
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Part IV

Résumé





“Experience is that marvelous thing that enables you to recognize a

mistake when you make it again.”

Franklin P. Jones

11
Critical Evaluation

As for any good research project, finding and implementing a solution to a given

problem is only half the battle: equally important is an objective evaluation and a

presentation of the lessons learnt. In this chapter, we will therefore evaluate our pro-

posed solution using objective criteria. To do so, we divide the evaluation into three

parts, ordered in increasing level of abstraction: first, we rate our prototypic imple-

mentation based on Model Driven Architecture, database triggers and materialized

views. Next, our event-handling concept and comprehensive architectural proposal is

evaluated. Finally, on the highest level of abstraction, we rate the usage of a genera-

tive approach in general. In addition to objectively evaluating our approach against all

relevant requirements and criteria, we compare various elements of our solution with

related technologies and approaches, where appropriate. Last, and most important,

we present our insights about the circumstances and conditions under which the usage

of generative approaches, such as MDA, should be encouraged.

11.1 Evaluation of the Prototypic Implementation

The evaluation of the prototypic active database implementation with MDA is divided

into two parts: first, we apply the objective criteria of the international standard
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for software quality ISO 9126 [Wika]. Second, experiments measuring the actual

performance and scalability of the generated database triggers were conducted. The

results of these experiments are presented in the second part of this section.

11.1.1 Software Quality According to ISO 9126

The international standard ISO 9216 [Wika] defines a set of requirements that should

be used to evaluate software quality. These requirements are divided into six cate-

gories, addressing different aspects of software quality, each containing several charac-

teristics. Although ISO 9126 has been replaced by the more comprehensive standard

ISO/IEC 25000 since 2005, its quality model can still act as a guide to evaluate soft-

ware quality.

Thus, in the following, our MDA solution is briefly checked against the requirements

of ISO 9126.

11.1.1.1 Functionality

This category contains aspects that bear on the functions realized within the software

system to be evaluated and comprises several requirements.

First of all, there is the question of Suitability: Does the software satisfy the func-

tional requirements? In our case, this question rather applies to the event-handling

concept than to the MDA implementation. However, as we will show in section 11.2,

the concept itself fulfils all of our functional requirements for event-handling system.

Thus, the implementation (which has been proven to correctly implement the concept)

also satisfies this requirement.

Furthermore, Accuracy has to be taken into account: Does the software deliver

correct results? Since we consider the results of our MDA solution to be correct if

it delivers results that cohere to our formal concept and since correctness has been

proven in chapter 10, this requirement is fulfilled, too.

The next requirement concerns Interoperability: Does the software interoperate

with legacy systems? In our context, interoperability can mainly be defined as the

possibility to integrate our concept with legacy systems. Since this is mainly an ar-

chitectural/conceptual requirement, we will show in section 11.2 why this requirement

can be considered as satisfied.
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A requirement which might be important in other fields of application is the question of

Compliance: Does the software comply to the appropriate legal and/or application-

specific standards? This requirement is not applicable to our scenario and thus has

not been evaluated.

Finally, Security issues must be considered: Does the software restrict unauthorized

access to its data? The aspect of security is an important matter in our scenario: by

allowing users to subscribe to sensitive data and/or sending them notifications about

updated data, existing security mechanisms can possibly be undermined. However,

security mechanisms were not in the focus of our work, so we have to admit that this

requirement is not fulfilled. However, this topic has been identified as an open issue

and is listed as an open end in chapter 12. Thus, it should be treated in the course of

future research.

11.1.1.2 Reliability

In this category, the ability of the software to maintain its level of performance for a

stated period of time is considered. This is expressed by the requirements Maturity,

Recoverability and Fault Tolerance. Since our solution has been developed as a

prototype to prove the adequacy of our concept, no effort has been put into matters

of reliability.

11.1.1.3 Usability

Aspects of usability are also important criteria for the quality of software. ISO 9126

mentions three very similar requirements: can users learn, understand and operate

the software system with minimal effort? In our case, these requiremens have to be

evaluated with respect to two different user groups: information system designers and

users of the respective system.

Users of the generated system have a very small and very simple interface to the

event-handling functionality: they can explicitly subscribe to particular entities and

they get notifications about updates, containing information about the updated bit of

information. Being this the only two functionalities the user comes in touch with, it

is rather easy to learn, understand and operate the system. The interesting parts of

our software, i.e. the implicit notifications and event-propagations, remain invisible to

regular users and thus need no effort from the users.
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Designers of the event-handling system, however, have to learn and understand the

different constructs of our concept and the underlying event-handling semantics. How-

ever, the required effort is minimal: on the one hand, standardized, well-known tech-

nologies, such as UML and MDA have been used, minimizing the need to become

acquainted with new technologies. On the other hand, only a handful of constructs

have been incorporated into our concept, so that both the initial effort to learn as well

as the effort to operate our framework are minimal.

11.1.1.4 Efficiency

The aspect of efficiency comprises the two domains Time Behaviour and Resource

Behaviour. Since the efficiency of our approach is of central importance in real-

life information systems, we will take a closer look at the runtime performance and

scalability of our generated database triggers in section 11.1.2.

11.1.1.5 Maintainability and Portability

Since the two aspects maintainability and portability are closely related to each other,

we evaluate them together. Their most important requirements are Changeability

and Adaptability: the easier a software system can be adopted to new functional

and non-functional requirements and/or (technical) platforms, the better it is. This is

where our approach profits from its universality. As we already presented in chapter

4, several layers of abstraction allow the easy adaption of our framework to different

needs. For instance, instead of generating triggers for relational databases, monitors for

the observation of text files could be generated, using the same semantic declarations.

Similarly, object-oriented databases or XML databases could be the target platform

for our solution.

Furthermore, maintainability and extendability concerning new functional require-

ments is broadly supported: as soon as a new event-handling construct has to be

incorporated into our framework, this is easily possible by adding those new con-

structs to the formal model, defining clear semantics of how to interpret them, add

them to the UML profile and develop appropriate transformations to generate the

respective code fragments afterwards. Although this might sound easier than it actu-

ally is, anticipation of change can not be supported any better than by providing the

appropriate levels of abstraction and the interfaces in between, as we did.
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11.1.2 A Detailed View on Performance and Scalability

To get results about the performance and scalability of our approach, we did several

experiments. They can be divided into three catagories: in the first category, we

evaluated the scalability of our database triggers without optimiziation. The second

category evaluated how the introduction of materialized views improves the overall

performance under certain boundary conditions. Finally, using a copy of the actual

Stud.IP data of the University of Passau and a series of typical update statements

within this application, real-life applicability and adequacy were evaluated.

11.1.2.1 Performance and Scalability in General

Now that important qualitites of our solution have been shown, we take a closer look

at the performance of the generated trigger based solution. We therefore constructed a

reference model containing all relevant concepts.1 This reference model is depicted in

figure 11.1 and models part of a digital library system: users can specify their interest

in specific topics (realized as Terms), which themselves are related to each other via the

isSubtopic association, thus forming a taxonomy. All documents can deal with several

of these terms. Whenever a document is updated or created, the respective term(s)

are considered as updated as well (using the event-propagating association dealsWith).

Along the implicit subscription isInterested, all library users are automatically informed

about relevant updates.

Figure 11.1: UML model used to measure the efficiency of our approach

1Since different overlays within one information system’s model are treated independently, the size of
the overall model and the number of overlays is not critical to performance. Instead, the relevant
factor is the size of the database and the specification of the overlay. It is thus sufficient to use a
model containing all event-handling concepts, containing a realistic number of entities.
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In our test scenario, a taxonomy resembling a tree of degree degree and depth depth

was built. For every term in this taxonomy, an isInterested association for each sim-

ulated user had been stored in ten percent of all cases. To measure the efficiency

of our approach based on these artificial scenarios, 10 percent of all taxonomy terms

were updated by random and the response time required for this update (including

the trigger execution time) was measured.

Scalability was considered along three different dimensions: the number of simulated

users, i.e. scalability with respect to the number of subscribers and with respect to

the size of the taxonomy (regarding depth and degree of the taxonomy tree). Each of

these test series were conducted using three different UML models which differed from

each other only in the impactRange (1, 3 or 5) of the reflexive association isSubtopic.

To get a feeling for the actual costs of the event-handling triggers, the update times

were also measured without any triggers at all.

All measurements were conducted on a 2.4 GHz PC with 1GB of ram. To get repre-

sentative results, all tests were run four times; the result of the first run was ignored

in order to avoid any initializing effects. The average result of runs two to four was

then used as the final result.

On the following pages, these results are presented and interpreted.

Scalability with the amount of users To determine the scalability with the amount

of users, we used a taxonomy of depth 4 and degree 3. Between 10 and 10,000 users

were simulated. Table 11.2(a) shows the results:

The results are presented graphically in figure 11.2(b): the curves indicate the time

per update in milliseconds, the average time per update normalized by the amount of

notifications that were caused, and the time per update without triggers as a reference.

As one would expect, the time per update without triggers remains constant, because

only the terms are updated, i.e. the number of users does not affect the updates

at all. More interestingly, the time per update levels off around 7 ms per update,

so that a larger amount of users does not significantly influence the performance per

update, which is a good indication for linear performance with respect to the number of

subscribers. As more and more notifications have to be stored for an increased amount

of users (remember that each user had a 10 percent probability to be interested in an

arbitrary topic) while the time per update remains constant, the average time per

update decreases which again is a good sign for the overall scalability.
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No Triggers Triggers

#users ms/update ms/update ms/notification

10 20 3 n/a
1010 15 13.83 0.360
2010 31 4.75 0.062
3010 20 4.75 0.041
4010 26 5.67 0.036
5010 15 7.33 0.039
6010 21 4.75 0.020
7010 31 6.92 0.026
8010 31 6.08 0.019
9010 31 7.33 0.022

(a) Test results
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(b) Graphical Representation

Figure 11.2: Scalability with number of users - ImpactRange 1

The same situation can be observed when applying our tests to a model with an

impactRange of 3, as shown in table 11.3(a) and figure 11.3(b).

Again, the time per update slightly increases linearly while raising the number of users,

thus also leading to a rather constant update time per notification. However, the

required update times are slightly higher than in the previous case with impactRange

1, since a higher impactRange means that more terms are transitiveley considered to

be updated, thus causing more subscribers to be notified.
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No Triggers Triggers

#users ms/update ms/update ms/notification

10 20 7.42 n/a
1010 36 24.67 0.377
2010 26 3.92 0.030
3010 21 6.92 0.033
4010 26 5.17 0.019
5010 15 6.50 0.019
6010 15 8.67 0.021
7010 21 7.75 0.016
8010 25 9.08 0.016
9010 15 13.50 0.023

(a) Test results
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(b) Graphical Representation

Figure 11.3: Scalability with number of users - ImpactRange 3

Looking at the results for the model with impactRange 5 (table 11.4(a) and figure

11.4(b)), the same tendency is visible. Even more interesting is that the average

update times do not significantly increase compared to impactRange 3.

Those results give evidence to the claim that the proposed solution scales very well

with the amount of subscribers - the most common case in real-life scenarios.

Another important aspect is the scalability with the number of subscribables, i.e. the

size of the taxonomy. As our test-taxonomy consists of a complete n-ary tree, we can
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No Triggers Triggers

#users ms/update ms/update ms/notification

10 20 16.00 n/a
1010 15 23.83 0.324
2010 20 4.33 0.031
3010 16 9.92 0.047
4010 21 5.17 0.019
5010 15 9.50 0.025
6010 21 7.33 0.017
7010 15 8.67 0.018
8010 15 12.58 0.022
9010 16 12.58 0.021

(a) Test results
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(b) Graphical Representation

Figure 11.4: Scalability with number of users - ImpactRange 5

measure overall performance with respect to two dimensions: depth of the taxonomy

and degree of the taxonomy.

To be able to better interpret the results, it is important to know that the overall

number of nodes (i.e. terms, in our case) within the taxonomy can be expressed as

depth∑
i=0

degreei
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Thus, a linear increase of the depth obviously leads to an exponential growth of terms

whilst a linear increase of the degree leads to a linear/quadratic/cubic/... growth,

depending on the depth of the taxonomy.

Scalability with the Degree of the Taxonomy We simulated a taxonomy of depth 4

and 5000 users. The degree of the taxonomy was variied between 1 and 5. Again, the

experiments were conducted on three models differing in the value of the impactRange.

Table 11.5(a) and figure 11.5(b) show the results for the model with impactRange 1,

revealing a slight and almost linear growth of the average update times.

No Triggers Triggers

degree ms/update ms/update ms/notification

1 n/a 62.00 0.373
2 5 67.67 0.345
3 21 15.58 0.080
4 46 34.00 0.161
5 124 71.97 0.367

(a) Test results
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(b) Graphical Representation

Figure 11.5: Scalability with degree of taxonomy - ImpactRange 1

The same tendency can be recognized in tables 11.6(a) and 11.7(a) and the corre-

sponding diagrams 11.6(b) and 11.7(b) - a higher impact range obviously increases
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the response times, but not the tendency of the results. This can be explained by the

fact that the depth of the taxonomy was kept constant at 4: thus, increasing the im-

pact range from 3 to 5 is not significantly influencing the effort for the determination

of subscribers, because at most paths of length 4 from leaf nodes to the root node are

contained in the data.

No Triggers Triggers

degree ms/update ms/update ms/notification

1 n/a 104.00 0.727
2 5 62.33 0.227
3 15 28.17 0.082
4 47 65.71 0.179
5 114 139.36 0.367

(a) Test results
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Figure 11.6: Scalability with degree of taxonomy - ImpactRange 3

Scalability with the Depth of the Taxonomy Finally, for the scalability with the

depth of the taxonomy, we used a taxonomy of degree 2 and 2000 users. The depth

was varied between 2 and 8. The results for impactRanges of 1 to 5 are shown in

figures 11.8(b) to 11.10(b) and tables 11.8(a) to 11.10(a).
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No Triggers Triggers

degree ms/update ms/update ms/notification

1 n/a 229.00 0.674
2 n/a 41.67 0.135
3 15 39.92 0.122
4 46 96.19 0.262
5 109 210.81 0.571

(a) Test results
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(b) Graphical Representation

Figure 11.7: Scalability with degree of taxonomy - ImpactRange 5

In all three scenarios, the average time per update decreases as the depth of the

taxonomy increases. Since the impact range limits the effect of the event propagation,

there is a taxonomy depth from which on the average times per update remain almost

constant. As an additional result to the previous scenarios, we can thus state that the

depth of a taxonomy only influences the average update times as long as the impact

range, following the taxonomy from root to leaf (or vice-versa) is higher than the

maximum depth of a taxonomic structure.
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No Triggers Triggers

depth ms/update ms/update ms/notification

2 10 31.00 0.525
3 n/a 23.50 0.435
4 5 20.67 0.310
5 15 9.50 0.128
6 15 3.15 0.042
7 46 3.81 0.048
8 67 3.16 0.040

(a) Test results
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Figure 11.8: Scalability with depth of taxonomy - ImpactRange 1

11.1.2.2 Benefit of Optimization

To evaluate the benefit of the optimization approach using materialized views as event

propagation indices, a series of additional tests were run. The test setup consisted of

the same data model that was used for the previous experiments, however, an event

propagation index view had been created, storing all paths from documents along the

taxonomy to the implicit subscribers. An impact range of 5 was used throughout all

of the following experiments.

Furthermore, in our test scenario, the updates only updated documents but did not

update any of the taxonomic associations isSubtopic. Thus, the event propagation
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No Triggers Triggers

depth ms/update ms/update ms/notification

2 n/a 26.00 0.456
3 n/a 21.00 0.336
4 n/a 46.67 0.440
5 10 3.50 0.025
6 20 8.38 0.056
7 41 8.00 0.051
8 73 5.29 0.034

(a) Test results
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Figure 11.9: Scalability with depth of taxonomy - ImpactRange 3

index did not have to be updated in any of the cases, so that we were able to show

the maximum potential of the optimization approach. In real-life use cases, however,

the actual benefit can be expected to be less significant.

Optimization With Respect to Taxonomy Depth To evaluate the tendency of the

optimization benefit with an increasing taxonomy depth, our scenario was evaluated

with a taxonomy of degree 3 and depth between 2 and 5, simulating a total of 10,000

users. The results of these experiments are shown in table 11.11(a) and figure 11.11(b).
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No Triggers Triggers

depth ms/update ms/update ms/notification

2 5 n/a n/a
3 n/a 31.00 0.333
4 n/a 39.67 0.322
5 15 5.17 0.033
6 15 7.54 0.036
7 52 7.00 0.032
8 68 7.76 0.036

(a) Test results
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Figure 11.10: Scalability with depth of taxonomy - ImpactRange 5

As we can see, the optimized and the non-optimized scenario show the same scalability

tendency. However, the optimized approach leads to an improvement factor of about

20, i.e. the optimized queries ran up to 20 times faster than their non-optimized

alternatives. However, the notification functionality still has to be paid by update

queries that are about 4 times slower than the updates without any optimization.

Optimization With Respect to Taxonomy Degree Similar results were obtained

during the tests evaluating the scalability with the degree of the taxonomy. Using

a constant depth of 3 and degrees between 2 and 5 (again with 10,000 users), the

optimized approach again leads to queries about 20 times faster, while the optimized
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depth ms/update ms/update ms/update
w/ views w/o views w/o triggers

2 20.0 306.0 5
3 13.0 86.5 3.3
4 10.6 53.5 3.3
5 11.8 74.9 3.0

(a) Test results
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Figure 11.11: Benefit of optimization (Dimension: depth of taxonomy)

approach still is 3 to 4 times slower than updates without any notification functionality,

as shown in table 11.12(a) and figure 11.12(b).

Optimization With Respect to User Count As a final scenario, the optimization

impact regarding a growing number of simulated users was evaluated. Using a taxon-

omy of depth 3 and degree 3, up to 20,000 users were simulated and the responding

update times were recorded, shown in table 11.13(a) and figure 11.13(b). Like in the

previous two cases, we observe similar linear scaling in all three cases, again yielding

an optimization factor of about 20 between optimized and non-optimized triggers.
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degree ms/update ms/update ms/update
w/ views w/o views w/o triggers

2 17.5 146.5 4
3 13.0 86.5 3.3
4 11.6 47.9 3.3
5 10.8 41.6 3.2

(a) Test results
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Figure 11.12: Benefit of optimization (Dimension: degree of taxonomy)

11.1.2.3 Real-Life Scenario

For a final evaluation of the practical applicability of our prototypic implementation,

a copy of the actual Stud.IP data was transferred into a DB2 database and the three

different overlays from figure 10.5 were applied to the database. Using this test setup,

four different kinds of typical updates were executed and the average response times

were recorded.

The different updates can be classified into two categories: on the one side, updates

that potentially lead to notifications but do not modify any of the materialized views

(i.e. the event propagation indices) were issued; on the other side, updates that lead

to a rebuild of the materialized views were evaluated, too. Since the actual response

times (in milliseconds) are strongly dependent on the used hardware, we also issued
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# users ms/update ms/update ms/update
w/ views w/o views w/o triggers

10 4.0 74.8 3.5
2010 5.3 76.5 3.5
4010 5.8 78.5 5.0
6010 29.5 86.5 3.3
8010 14.3 83.5 3.5
10010 13.0 86.5 3.3
12010 15.3 86.5 3.5
14010 15.0 89.0 5.3
16010 16.8 101.8 3.5
18010 16.3 110.0 3.5

(a) Test results
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Figure 11.13: Benefit of optimization (Dimension: user count)

the same updates without any triggers, so that the results can be compared to each

other.

Updates Leading to Notifications To determine the impact of our notification trig-

gers to the response time of subscriber determination, two kinds of typical updates

were evaluated:
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• Random elements of table Dokumente were updated, so that the respective over-

lay implementation leads to a number of notifications (in average, 357 notifica-

tions were created during our test runs).

• Random elements of table Seminare were updated too, also leading to a set of

notifications (214 in average).

The results of the evaluation can be found in figure 11.1.2.3.

No Triggers Triggers

updated entity ms/update ms/update

Dokumente 1.1 1.2
Seminare 1.0 2.6

(a) Test results
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Figure 11.14: Performance of updates leading to notifications only

As we can learn from this evaluation, the results confirm the tendencies from the pre-

vious experiments: as long as no views are affected by the updates, the notification

functionality leads to a two to three times worse performance than without any no-

tification functionality. The different update times for Dokumente and Seminare can

further be explained by the different number of notifications that were caused by the

respective updates.
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Updates Leading to Materialized View Updates In contrast, two scenarios where

updates do not only trigger notifications but also lead to a recomputation of the

materialized views were evaluated, too:

• Random elements of table SeminarUser were inserted, leading to the need to

recompute materialized views.

• Random elements of table SemTree were inserted too, also causing view refresh

triggers to be fired plus an average of 1,238 notifications.

The results, shown in figure 11.1.2.3, reveal an unacceptable decrease of performance

- updates take up to 10,000 times longer than without any triggers.

No Triggers Triggers

updated entity ms/update ms/update

SeminarUser 3.5 34,820.9
SemTree 3.3 12,909.6

(a) Test results
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Figure 11.15: Performance of updates leading to notifications and view updates

However, we assume that this performance flaw is caused by the fact that our view

maintenance algorithm has been realized in a simple, but ineffective way: the whole

materialized view is recomputed whenever one of the underlying entities is updated,

248



11.1. EVALUATION OF THE PROTOTYPIC IMPLEMENTATION

leading to a large and - in most cases - unnecessary maintenance overhead. To im-

prove this behaviour, it would be necessary to implement a more sophisticated index

maintenance algorithm which is able to recompute only those parts of the materialized

view which actually have to be changed due to the underlying update. However, we

did not realize such a strategy in our prototypic implementation, but refer to this issue

as an open end in chapter 12. Furthermore, we know that updates leading to view

recomputations occur rather seldomly, since the underlying tables which constitute

the basis of the view are updated seldomly themselves - which is the reason why they

were chosen by the optimizer as candidates for precomputations. Thus, we consider

this performance an issue that has to be handled, but not a significant deficit of our

overall approach in general.

11.1.2.4 Overall Performance Results

Summing up all previously presented results, we can state that our approach scales

properly (i.e. linear) with respect to the most important scalability factors in real-life

use cases: the number of users, the depth and the degree of taxonomic structures,

which can often be observed in information systems. We can also observe that the

optimization in fact leads to a significant performance boost, at least if the data

underlying the event propagation indices remain constant, so that the indices do not

have to be updated (a theoretical evaluation and its verification of the different update

scenarios has already been presented in chapter 7).

However, we must admit that the event-handling functionality, as presented in our

prototypic implemention, leads to updates which are about 3 to 4 times slower than

without the notification triggers. As a result, we propose to implement and evaluate

an offline notification system decoupling the actual updates and the determination

of subscribers, so that the updates of in-business data are not slowed down, since

the determination of subscribers takes place asynchronously. Therefore, we take this

proposal as a starting point for future research and list it as an open end in chapter

12.

11.1.3 Applicability in Distributed Environments

Large information systems are almost always part of a distributed software landscape.

On the presentation layer, users at different locations and possibly using different

clients access the information system, whilst on the storage layer, distributed database

systems, possibly even with different schemata, may each contain separate parts of
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the overall data pool, as figure 11.16 illustrates. Thus, the possibility of an adequate

monitoring of changes in such a distributed environment can significantly improve the

usefulness of a distributed information system.

Figure 11.16: Applicability in distributed environments

Although not initially designed for such scenarios, our approach also supports this

requirement: the presentation layer is out of the focus of our work; however, standard

technologies such as web applications or web portals easily allow distributed access to

the event-handling system.

Existing technologies can also be used to support distribution on the storage layer.

Protocols like two-phase-commit guaranteeing transactional access to distributed da-

tabases are well-known and can easily be integrated into our approach, so that access

to the databases is handled consistently.

What remains to evaluate is how to handle the different data models and schemata

of the single storage instances. This can for instance be done as presented in figure

11.17: in the field of data integration [SPD92, BKLW99, Con02], a common integrated

data model has to be designed and the individual models have to be mapped onto this

common data model. To realize this mapping, we developed a solution using MDA

[KGF06].

Since the application for distributed databases was not in the focus of our work, we can

only give a brief solution outline for this scenario: to use our event-handling approach

in a distributed, integrative environment, it is necessary to specify the event-handling

semantics upon the integrated schema. Following the mapping between integrated
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Figure 11.17: Integration of heterogeneous data models

schema and legacy schemata, it is then possible to generate an integrative view onto

the legacy databases; furthermore, the necessary triggers to monitor updates within the

legacy databases can be derived from the event-handling specification in combination

with the mapping information.

To actually realize such an integrative event-handling system, further research is defini-

tively necessary; however, from an abstract view we can state that our approach is

theoretically applicable to distributed information systems; an issue that will be listed

as an open end of our work in chapter 12.

11.1.4 Technological Alternatives

If technological alternatives to our prototypic implementation shall be evaluated, they

have to be compatible (and thus comparable) to the technologies we chose. This

means that we have to evaluate alternative code-generating approaches which support

the event-handling concept we developed and the target architecture we proposed. We

therefore evalute alternatives to MDA, database triggers and materialized views.

11.1.4.1 Alternatives to MDA

Model Driven Architecture has been developed by the OMG as a standardized proce-

dure for the model driven software development (MDSD). However, different ways to

implement MDSD are possible: proprietary solutions using custom-developed meta-

meta-models and domain specific languages, proprietary code generators and propri-

etary template languages are actually in use in many companies.
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At first appearance, it seems that the usage of MDA has no advantage over proprietary

solutions: the domain specific language representing our event-handling concept can

be designed using any arbitary formalism and the code generating templates can also

be implemented gratuitously. Mokum [vdR08], a more than 25 year old approach

to design information systems and generate implementations from it, would be an

example for such a development framework which could be used similar to MDA. In

addition, the significant difference between MDA and proprietary MDSD approaches

is not used in our solution: instead of transforming the platform independent model

(PIM) into a platform specific model (PSM) and then to code, we skip the PSM and

transform directly to code.

However, using MDA and thus working with UML models and profiles offers a series of

advantages that cannot be disregarded: UML and UML profiles, being state-of-the-art

standards, are supported by a variety of modelling tools. This means that no effort is

necessary to develop editors for our event-handling DSL. Another advantage of MDA is

that most legacy information systems’ models are available as UML models, so that our

event-handling constructs can be built directly on top of those UML models without

any technological disruption. Finally, as we already showed, the MDA community

already developed a lot of support to describe the object-relational mapping from

UML models to database languages, so this is another important advantage that one

can make use of if MDA is used instead of an arbitrary code-generating solution.

11.1.4.2 Alternatives to Database Triggers

If we take a closer look at the potential alternatives to database triggers, there is hardly

a technology or programming paradigm that could be used instead. If one would accept

to switch from the “active push” paradigm to a polling solution, regularly scheduled

queries to the database, comparing the current state with the previously detected

state, could determine differences and thus detect updates. However, it is obvious

that such an approach is harder to implement and performs worse than the active

push solution using triggers. Thus, polling is no valid alternative.

The second kind of potential alternative is a modification of the information system’s

code itself. However, as we already illustrated in chapter 4, this is no promising

alternative, even if software-technological tools such as aspect oriented programming

(AOP) are used [GF05].
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Thus, according to our research and to our best knowledge, there is no sensible alter-

native to the usage of database triggers when updates in information systems which

store their data in relational databases have to be monitored.

11.1.4.3 Alternatives to Materialized Views

In the field of relational databases, there is no reasonable alternative to materialized

views for the storage of event propagation indices. The application of database indices

is limited to single tables and/or views, so more complex index structures, like the event

propagation indices, have to be built individually - either by using materialized views,

or, if the database system does not support them, by maintaining index tables using

triggers to keep them up-to-date. However, this is only a technological workaround

to emulate the behaviour of materialized views, so that we do not consider it an

alternative to the usage of materialized views.

Hence, in our opinion, there is no reasonable alternative to materialized views for the

realization of our optimization concept.

11.2 Rating of the Event-Handling Concept

On the next level of abstraction, the event-handling concept and the presented archi-

tecture are evaluated. Therefore, the requirements we identified in chapter 2 are re-

called and checked for fulfilment, as well as the functional adequacy of our solution. In

addition, special attention is paid to the non-functional requirements non-invasiveness,

subsequent applicability and genericity, which play a central role in our work.

11.2.1 Fulfilment of Basic Postulated Requirements

In chapter 2 we postulated a total of 18 functional, technical and software-technological

requirements which have to be fulfilled by an event-handling framework. In the fol-

lowing, we will show that our solution satisfies all of these demands.
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11.2.1.1 Functional Adequacy

An important quality of a realized software solution is its functional adequacy: does

the software or framework provide all desired functionalities, making it an appropriate

tool for the use cases it should be used in?

This question can be answered in two steps: first, an indication that the functional

adequacy is given is the discovery that all use cases that we tried to solve with our

approach could be handled. One of the most detailed use cases we analyzed is Stud.IP:

the previous chapters should give enough evidence that our approach is suitable for

this particular use case. To further substantiate this claim, we briefly list a few use

cases and give a simplified outline solution on the following pages.

One simple hypothetical use case stems from the universitary world, as Stud.IP does:

using a room planning system, every lecture or event that has to be held must be

assigned a suitable room. Once a room has been assigned to the lecture and the

number of estimated attendants changes, the responsible person for the respective

room has to be informed, so that the room schedule can possibly be modified. Figure

11.18 gives an outline how this use case could be modeled.

Figure 11.18: Solution outline for use case Room Planning

Another use case arises in the domain of location based services: assuming that the

current location of an arbitrary user is stored in a database, he might want to be

informed about all interesting “news” about the location he is currently at. In the

solution outline presented in figure 11.19, we assume that there might be new or

updated events, as well as special offers in shops at the various locations.

The last sample use case we examined originates in the research project MonArch

[FS09], a digital library for the management of restauration information about ancient

buildings. These buildings are hierarchically organized in a comprehensive partonomy.

A possible use case in this area of application might be that any worker who restaurated

an element of this partonomy (e.g. a particular brick) might want to be informed about

all added or modified documents that concern this particular element of the partonomy,

a sub-part of this element, or a more general element of the partonomy containing the
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Figure 11.19: Solution outline for use case Location Based Services

part she or he worked on. Such a situation could for instance be realized using the

design shown in figure 11.20.

Figure 11.20: Solution outline for use case MonArch

Although many imaginable scenarios can be handled with our approach, it is easy to

find examples that require a more complex subscription specification. For instance in

the application domain of stock trading, users should maybe only be informed if the

updated value (price of particular shares) differs significantly from its value before the

update. Such complex conditions can - at the moment - not be handled using our

approach, so that this possible improvement shold be realized in a follow-up project

(see open ends in chapter 12.

255



CHAPTER 11. CRITICAL EVALUATION

However, there are more indications that our solution is suitable in many cases: in

chapter 2, we derived a series of universally valid functional requirements from the

use cases we analyzed. In the following, we recapitulate those requirements and check

them for their fulfilment.2

/R1.1/ Entities must be markable as subscribable By providing the stereotype
�Subscribable� in our profile, which can be applied to any persistent entity, this

requirement is clearly fulfilled.

/R1.2/ Entities must be markable as subscriber Similarly, the stereotype �Sub-

scriber� satisfies this requirement.

/R1.3/ Monitoring of subscribables must be limitable to individual attributes Ob-

viously, the stereotype �ObservedAttribute�, applicable to persistent attributes of

persistent entities, has been designed to comply with this requirement.

/R1.4/ Implicit subscriptions must be supported Implicit subscriptions can be re-

alized by applying the stereotype �implicitSub� to associations in the data model.

/R1.5/ Explicit subscriptions must be supported By providing a generic storage

schema for explicit subscriptions (cf. figure 9.1) and incorporating the logic to deter-

mine all explicit subscribers of an update into the trigger code, this requirement can

be considered as fulfilled, too.

/R1.6/ Transitive propagation of update events must be supported The transitive

propagation of update events can be achieved by tagging the respective association

ends with the stereotype �eventProp�. Thus, this functional requirement is satisfied.

/R1.7/ Impact of transitive propagation must be limitable Furthermore, the stereo-

type �eventProp� can be parametrized with the tagged value impactRange, which is

considered when determining the maximum distance between an updated object and

2All of the following requirements are fulfiled both by our concept as well as by our protoypic
implementation. However, we will simply refer to the corresponding stereotype or tagged value,
knowing that all of these stereotypes are representations of formal concepts in our approach.
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all related objects which should be considered as updated, too. Accordingly, this

requirement is also fulfilled.

/R1.8/ Transitive propagation along associations must be directed Since the

stereotype �eventProp� has to be applied to association ends, the direction of the

transitive event propagation is implicitly directed.

11.2.1.2 Technical / Architectural Adequacy

Besides the functional adequacy of our approach, its technical and architectural suit-

ability has to be checked, too. Therefore, we take a retrospective look at the technical

requirements that were identified during the use case analysis and check their fulfil-

ment.

/R2.1/ Updates must be monitored and handled centrally in the data storage Ac-

cording to our system architecture (cf. fig. 4.5), the event detection layer is located

centrally on top of the data storage. By creating database triggers, the prototypic

implementation corresponds to the architecture blueprint, thus fulfilling this require-

ment.

/R2.2/ Updates must actively be detected and pushed to subscribers In our refer-

ence implementation, updates are actively detected by the generated database triggers.

However, the trigger body reacts to those detections by simply storing notification tu-

ples, but does not really push the notifications to subscribers. However, this is not

a fundamental flaw of our approach, but could easily be corrected by changing the

triggers’ behaviour. All major database systems allow the execution of stored proce-

dures or similar coding from the trigger body, so active publication (for instance by

sending eMail) can be provided by our framework, although not implemented within

the prototype.

/R2.3/ All event-handling constructs must be based on the system’s data model

This requirement is fulfilled obviously, as all event-handling stereotypes are applied to

classes and associations representing the data model.
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/R2.4/ Hierarchical structures must be supported efficiently As we showed in

various examples throughout this dissertation, hierarchical event-handling structures

are supported using the concept of event propagation. In combination with the usage

of event propagation indices (i.e. materialized views in our reference implementation),

these structures can also be handled efficiently, as our experiments (cf. section 11.1.2)

showed.

/R2.5/ Precomputation of event propagation has to be used, where appropriate

By introducing event propagation indices and realizing them using materialized views,

this requirement has been taken into account and is thus fulfilled.

/R2.6/ The system has to adapt to different usage characteristics during lifetime

Although our prototypic reference implementation does not contain any functionality

to monitor the read- and write-access statistics at runtime, the proposed architecture

allows for the continuous adaption of the monitoring triggers to the changed behaviour.

For instance, the materialized view and trigger definitions could be modified at any

time in order to respond to new access characteristics. Thus, we consider this require-

ment fulfilled - however, the reference implementation would have to be extended,

which remains an open end of our work.

11.2.1.3 Software-Technological Adequacy

What remains to show is that the requirements that were postulated from a software-

technological view are satisfied, too.

/R3.1/ Specification of event-handling semantics has to be declarative The first

software-technological requirement is fulfilled implicitly: MDA is declarative by its

nature. Event-handling systems can be built using our approach without writing a

single line of imperative code.

/R3.2/ The system must be open to future modifications Both our architecture

as well as the model-driven paradigm itself have been designed to support the often

cited anticipation of change. Since this requirement is fulfilled due to the fact that we

used a generative approach, this discussion will be led in more depth in section 11.3.
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/R3.3/ The semantics must be open to future modifications Similarly, this re-

quirement is satisfied because a generative solution has been implemented. Thus, this

discussion is also lead in section 11.3.

/R3.4/ Concept must be applicable to existing systems in a non-invasive way As

a final requirement, the claimed non-invasiveness of our approach has been fulfilled

due to the combination of the generative approach with an appropriate technical ar-

chitecture. This fulfilment is mainly due to the following key-point of our proposed

architecture: as figure 4.5 shows, the publish-subscribe component is completely sep-

arated from the legacy application - by using database triggers that are independent

of the actual information system implementation. This separation is also achieved in

our prototypic implementation. Thus, the legacy system does not have to be modi-

fied to introduce event-handling functionality. However, a complete separation of the

publish-subscribe component from the legacy application is not always desired: for

instance, the GUI of the publish-subscribe component should possibly be integrated

into the application’s GUI, so that the user does not have to switch between different

applications. However, this challenge is out of our focus and remains an open end of

our work.

Hand in hand with the non-invasiveness goes the subsequent applicability of our event-

handling concept. Besides the non-invasiveness, a second factor is important: any in-

formation that is necessary for the generation of the new components can subsequently

be derived from an existing application and/or specified by developers. This can be

done without the need to know about implementation details or even source code, as

the process in figure 4.6 already showed.

In practice, the subsequent applicability has been proven by the use case Stud.IP which

was successfully and subsequently enhanced with event-handling functionality. Thus,

there are apparently no barriers for the retrofitting of our event-handling component

to an arbitrary existing system.

11.2.2 Technological and Conceptual Alternatives

To evaluate alternatives to our event-handling concept and the proposed reference

architecture, the search space in which potential alternatives could be found has to be

limited. In order to be comparable to our solution, an alternative approach at least

should somehow tie event-handling declarations to the data model of the information

system and should thus allow a declarative specification of the desired event-handling
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functionality. However, as we already showed in chapter 3, there is - to our know-

ledge and after intensive research - no comparable approach, so that an evaluation of

conceptual alternatives is not possible.

11.3 Review of the Generative Approach in General

In retrospective, the decision to choose a generative approach can be evaluated with

respect to many different criteria, like necessary development efforts, support for the

anticipation of change or technical and conceptual extensibility, to name but a few. In

the following, we try to give an overview of the assets and drawbacks of the generative

approach we chose.

11.3.1 Assets and Drawbacks

According to our experience, the generative approach offers a lot of advantages to

traditional software development:

First of all, development costs can be significantly reduced, once the domain specific

language and the respective transformations have been developed and tested thor-

oughly. During our work, we found out that the design of an event-handling model

like the one from figure 10.5 takes about 30 minutes for an experienced modeler. In

contrast, the manual development of the triggers and materialized views, as presented

in listings 10.3 and 10.5 takes at least two to three hours and is rather error prone.

Although these results do not stem from sound statistic experiments, they give evi-

dence that the usage of a generative approach leads to reduced development efforts in

our scenario.

Furthermore, the quality of the developed software, i.e. in our case of the views and

triggers, is much higher than in manually developed solutions. Since the generation

and optimization process is completely automated, there is no possible error source

apart from the modelling itself. Especially when the models (and thus the necessary

triggers) become large and complicated, as for instance in our sample scenario from

section 10.6, the ensured correctness is of great value.

However, there is one significant deficit: model driven software development can only

be as flexible as the domain specific language and the transformations. New require-

ments, which would usually be fulfilled by a manual implementation of the desired

functionality, can not be realized easily. Instead, they first have to be generalized,
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parametrized and put into the meta-model and the transformations. Although this

can be considered as a deficit, it is also a chance - if newly identified requirements find

their way into the model driven software development framework, they are automat-

ically available for all users of the framework. As an example, we briefly developed

a strategy of how to extend our concept so that only updates of observed attributes,

where the delta between new and old value extends a given threshold, trigger the event

handling. In principle, all that was necessary to achieve this is the introduction of a

new tagged value for observed attributes named delta and the transformation of the

new condition abs (old.value - new.value) < delta into the generated triggers by ex-

tending the transformation templates. Further, the disadvantage of missing flexibility

can be compensated by allowing developers to modify the generated sources. If this

is done adequately, e.g. by using the generation gap pattern, the whole development

process remains almost as flexible as the traditional, manual software development

process.

Especially if manual modifications of the generated code are not necessary, the final

advantage of model-driven software development scores: if the model from which the

code is generated changes, the resulting modifications of the generated software (in our

case the database triggers) can be performed without any manual effort - changing

the model and re-generating the artifacts is enough. Especially during the initial

development of software or during rapid protoyping, this saves a great amount of

work for the developers. But also during software maintenance, if information system

models are modified or extended, all modifications can ideally be made by updating

the specification and re-generating the artifacts only.

Since we evaluated the model-driven approach only within the context of our business

case “event handling”, we can not generalize all the advantages we presented above.

Instead, we tried to extract a few underlying conditions, under which its usage should

be encouraged.

11.3.2 Factors for the Successful Usage of the Generative Paradigm

As we learned during our work, there are a handful of factors which indicate that

the generative paradigm can successfully be used. First of all, it is necessary that

a domain specific language can be built at all, i.e. that one can abstract from the

desired functionality, identify fixed parts and variable, parametrized parts, and derive

the respective fragments of the code that has to be generated. This is usually done

building a reference implementation and analyzing it thoroughly.
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If an abstraction can be identified, it is important that the derived domain specific

language does not contain any elements that are specific to the analyzed use case.

In our scenario Stud.IP, for instance, stereotypes with a meaning like “attends and

thus needs to be informed” are inappropriate - instead, the more universal construct

of implicit subscriptions was introduced. With that in mind, the domain specific

language that is developed will be usable for a variety of use cases, but of course limited

to the application domain it was developed for (in our case the domain of “event-

handling”). A good example for such a generic meta-model, for instance, is MML

[HH04], a multidimensional meta model for the design of data warehouse schemata.

To reduce the necessary specification effort when using the developed framework, it

is further important to re-use as many elements of existing domain specific languages

(and the respective transformations) as possible. In our scenario, we saved a lot of

development effort by reusing the persistence elements of AndroMDA. In addition

to the reduced effort when developing the framework, the effort that users of the

framework have to make is reduced, too, as they do not have to specify the same or

similar information (table and column names, in our example) twice.

If possible, the benefit of the developed framework can further be increased if the

concept is flexible and comprehensive enough so that the generated artifacts do not

have to be modified by later users of the framework. This enables them to (re-)generate

the code at any time without the fear of losing any manual modifications, and thus

both encourages them to use the generators as often as possible - an important factor

for the success of the framework.

The final key to success of course is not a technical, but economic one: the business case

for which the domain specific language and transformation templates are developed

should be as universal and as broadly applicable as possible - by using the framework

as often as possible, the initial effort for its development can soon be amortized and

lead to both technical and economical advantages during software development.

11.4 Summary

In this chapter, we evaluated our solution on three different levels of abstraction with

respect to objective criteria. As we could show, all major requirements are fulfiled,

making our proposal an appropriate solution for the given task formulation. We further

discussed the pros and cons of the generative approach in general and showed under

which circumstances the model-driven approach is suitable. However, many open ends
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and possible starting points for subsequent research projects have been identified in

the course of our work. Therefore, we conclude this dissertation with an overview of

our contribution and the open ends, which is subject to the remaining last chapter.
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12
Contribution and Open Ends

In the previous eleven chapters, our work has been presented and many of our results

have been shown. On the following pages, we will finally summarize the experiences

we made, present the contribution of our work in condensed form and list some of the

open ends that remain and that could be picked up by follow-up research projects.

12.1 Contribution of Our Work

In this dissertation, we developed a non-invasive approach to integrate event-handling

functionality into information systems. In the course of our work, we made the fol-

lowing contributions.

First, we did a detailed analysis of event-handling requirements in state-of-the-art

information systems, leading to a list of functional and non-functional requirements.

To fulfil these requirements, an innovative event-handling concept and a suitable ar-

chitecture with the following qualities has been developed:
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• The concept provides simple, yet generic constructs that can be assembled to

define common event-handling semantics, together with a formal specification of

their semantics.

• These constructs are based on the traditional object-oriented model.

• The proposed approach uses the model-driven design paradigm, generating event-

handling code from respective models.

• To realize event-handling models, a domain specific language expressing the

event-handling semantics has been developed.

• The concept and the proposed architecture contain integrated optimization fa-

cilities.

• The whole approach is platform-independent.

As a proof of concept, a reference-implementation, using MDA as development paradigm

and relational databases with triggers as a target platform, has been developed and

evaluated. The evaluation of our work revealed that our concept

• provides sufficient performance for productive usage,

• is functionally adequate,

• can easily be extended to suit additional needs,

• can be applied non-invasively and subsequently to legacy systems

• and fulfills most of the commonly accepted criteria of good software quality.

From a more abstract point of view, the usage of the code-generating approach in our

business case was evaluated and the following advantages were identified:

• Development efforts can significantly be reduced by using model-driven software

development.

• The quality of the software that is built using code generation is higher than

manually developed software.

• Although software development based on domain specific models is less flexible

than traditional software development, well-designed meta-models, domain spe-

cific languages and transformations give enough flexibility for the integration of

new functionalities.
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• The simple generation of code from a given model supports developers in quickly

developing prototypes, even if the requirements for those prototypes, and thus

the respective models, are subject to frequent changes during this development

stage.

Finally, as a meta-result of this analysis, we worked out the following factors which

should encourage the usage of a code-generating, model-driven approach, so that the

above-mentioned advantages can actually be fully exploited:

• Elements of the domain specific language should be independent of any actual

business case,

• existing (and maybe de-facto standard) modelling concepts should be reused, if

possible and appropriate,

• ideally, code artifacts should be generated as comprehensive as possible, so that

manual modifications or extensions to the generates are unnecessary

• and finally, the development framework should be as universally applicable as

possible, so that the development costs for the framework amortize quickly.

Although we presented a comprehensive approach “from concept over realization to

evaluation”, we encountered several problems and questions. Those aspects were taken

out of the focus of our work and will be listed as “open ends” in the following.

12.2 Open Ends

As final part of this dissertation, we briefly list the open ends of our work as a start-

ing point for follow-up research projects, divided into technological improvements,

conceptual improvements and visionary ideas.

12.2.1 Technological Improvements

The prototypic implementation of our concept could still be improved in various ways.

A few of those potential improvements are listed in the following.

Scenario Monitoring Using Triggers As proposed by our architectural concept, the

actual usage scenario of the information system’s underlying database could constantly
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be monitored in order to give up-to-date information to the optimizer. To achieve

this, appropriate triggers detecting and counting the read and write accesses could be

developed.

Auto-Tuning of the Event-Handling System If this up-to-date scenario information

is present at any time, the system could further be improved by automatically adapting

to a new scenario: triggers and materialized views could be redefined and recreated

whenever the information system usage significantly changes. In the course of this

work, existing technologies for the automatic selection and maintenance of materialized

views and indices, as for instance developed by researchers at Microsoft [ACN01,

BC06], should be evaluated and possibly used for the system’s automatic tuning.

Generation of the Graphical User Interface In our reference implementation, sub-

scriptions and notifications are simply stored in database tables. Since all required

information about the subscribables and subscribers are contained in the information

system’s model, however, it would be possible to automatically generate a graphical

user interface which serves as the users’ interface for the specification of subscriptions

and presentation of notifications and updated data. Further, our proposal does not in-

tegrate the event-handling GUI and functionality with the legacy application, but only

with its data storage, so for a successful integration of our solution into real informa-

tion systems, it has to be evaluated how the required user interface for the specification

of subscriptions and presentation can be tightly integrated with the legacy system’s

GUI.

Asynchronous Subscriber Determination An important possibility to improve the

performance of the information system’s database would be to asynchronously deter-

mine all relevant subscribers of an update: triggers would only detect and store the

update, while the determination of subscribers would take place in a second, decou-

pled phase (e.g. during batch processing at night). This strategy could improve the

performance of the online database system at the cost of less timely notifications and

possibly outdated information during the second phase.

Sophisticated Index Maintenance Another way how to optimize performance could

be a more sophisticated way of storing event propagation indices: by using more

efficient algorithms to maintain the index, like e.g. labelled spanning trees as proposed

by Agrawal, Borgida and Jagadish [ABJ89], the 2-hop-approach proposed by Cohen et

268



12.2. OPEN ENDS

al. [CHKZ02] or the compact reachability labeling invented by He et al. [HWYY05],

the determination of relevant subscribers could be sped up.

OCL Constraints From a usability point of view, the correct application of the stereo-

types and tagged values could be supported better. UML profiles by default offer no

possibility to restrict the usage of stereotypes according to given rules. However, the

Object Management Group proposed another standard to model such constraints: the

Object Constraint Language (OCL) [Obj06], which is part of the UML 2.0 specifica-

tion. Using this constraint language, it would be possible to specify invariants that

are required for the correct use of all event-handling constructs, such as “associations

may only be tagged as event propagating, if they connect two subscribables”.

12.2.2 Conceptual Improvements

Besides the implementation specific tasks, several issues on a conceptual layer remain

open.

Security issues As we already detected during our evaluation, security restrictions

are an important part of an event-handling system, but are completely out of the

focus of our work. Thus, an important follow-up project should introduce a concept of

how to integrate the event-handling specification and security mechanisms to restrict

access to notifications appropriately.

Determination of Distributed Updates As we briefly sketched in section 11.1.3, the

applicability of our approach is basically adequate for the application in distributed

environments. However, it remains to research how the detection of events across

distributed, heterogeneous data storages actually could be realized.

Optimiziation of Cyclic Path Fragments In section 6.4.3, we already explained why

unnecessary, but “harmless” paths that match a path description containing cycles

can occur. Thus, as an open end of our work, overall performance could be improved

by implementing an algorithm that purges superfluous paths.

Complex subscription conditions Although most of the subscription use cases we

encountered could be solved with our concept, there are many scenarios in which
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more complex subscription conditions could be necessary. Thus, it would be a reason-

able follow-up research project to further refine and extend the concept and domain

specific language and show how to transform the specification automatically into the

corresponding code.

12.2.3 Visionary Ideas

While the latter improvement possibilities could be realized in the short term, our

work also revealed “visionary ideas” which could be elaborated within larger scale

projects.

Architectural Alternatives A research project could evaluate several architectural

alternatives to our solution. For instance, it would be interesting to know how data

warehouses could be used to realize the event-handling functionality: regular ETL

processes could extract the data to the warehouse, while the actual subscriber de-

termination could be processed by the data warehouse, which could also contain the

event-propagation indices. Of course, further architectural alternatives that we are

currently not aware of could be researched - not only to find an ideal solution, but

to offer different alternatives to companies who already use certain architectures and

systems.

Extending SQL to Integrate Notification Aspects into the DDL Finally, a very

promising idea could try to bring the event-handling concept and relational databases

even closer together: by directly integrating the notification semantics into the data

description language (DDL), the database system itself could be aware of the event-

handling specification. For instance, a foreign key definition could be marked by an

additional keyword IMPLICIT or EVENTPROP. On the one side, this would simplify

the usage of our event-handling concept, on the other side, the direct consideration of

the event-handling specification within the database system might lead to significant

performance benefits. Thus, we would firmly recommend to further investigate this

possibility.
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12.3 Summary

In summary, it can be stated that our work provides a solid solution for the model-

driven development of event-handling functionalities. Although many aspects have not

yet been explored and many problems and questions remain open, we can certainly

claim that our work provides a sound basis for the further refinement of a non-invasive,

code generating framework for the development of event-handling functionalities in

information systems.

271





A
Bibliography

[ABC+00] Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar

Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young Whang, edi-

tors. Proceedings of the 26th International Conference on Very Large

Data Bases. Morgan Kaufmann, September 2000.

[ABEYH00] Asaf Adi, David Botzer, Opher Etzion, and Tali Yatzkar-Haham. Push

technology personalization through event correlation. In Abbadi et al.

[ABC+00], pages 643–645.

[ABJ89] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of

transitive relationships in large data and knowledge bases. In SIGMOD

’89: Proceedings of the 1989 ACM SIGMOD international conference

on Management of data, pages 253–262, New York, NY, USA, 1989.

ACM.

[ACN01] Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Materialized

view and index selection tool for microsoft sql server 2000. In SIGMOD

’01: Proceedings of the 2001 ACM SIGMOD international conference

on Management of data, page 608, New York, NY, USA, 2001. ACM.

273



A Bibliography

[Anda] AndroMDA. AndroMDA hibernate cartridge. http://galaxy.

andromda.org/docs/andromda-hibernate-cartridge/index.html.

last visited: 2010-05-05.

[Andb] AndroMDA. Homepage of the AndroMDA project. http://www.

andromda.org. last visited: 2010-05-05.

[Apa] Apache Software Foundation. Velocity. http://velocity.apache.

org/. last visited: 2010-05-05.

[ASS+99] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark

Astley, and Tushar Deepak Chandra. Matching events in a content-

based subscription system. In Symposium on Principles of Distributed

Computing, pages 53–61, 1999.

[BBC+98] Philip A. Bernstein, Michael L. Brodie, Stefano Ceri, David J. DeWitt,

Michael J. Franklin, Hector Garcia-Molina, Jim Gray, Gerald Held,

Joseph M. Hellerstein, H. V. Jagadish, Michael Lesk, David Maier, Jef-

frey F. Naughton, Hamid Pirahesh, Michael Stonebraker, and Jeffrey D.

Ullman. The asilomar report on database research. SIGMOD Record,

27(4), December 1998.

[BC06] Nicolas Bruno and Surajit Chaudhuri. To tune or not to tune?: a

lightweight physical design alerter. In VLDB ’06: Proceedings of the

32nd international conference on Very large data bases, pages 499–510.

VLDB Endowment, 2006.

[Ber02] Phil Bernstein, editor. Proceedings of the 28th International Conference

on Very Large Data Bases. Morgan Kaufmann, August 2002.

[BF06] Hanen Belhaj-Frej. Personnalisation services for digital libraries. Pre-

sented at the ECDL 2006 - Doctoral Consortium, September 2006.

[BFRS06] H. Belhaj-Frej, P. Rigaux, and N. Spyratos. User notification in tax-

onomy based digital libraries. Proceedings of the 24th annual ACM

international conference on Design of communication, pages 180–187,

2006.

[BKK04] Martin Bernauer, Gerti Kappel, and Gerhard Kramler. Composite

events for xml. In Proceedings of WWW2004, New York, USA, May

17–22 2004. ACM.

274

http://galaxy.andromda.org/docs/andromda-hibernate-cartridge/index.html
http://galaxy.andromda.org/docs/andromda-hibernate-cartridge/index.html
http://www.andromda.org
http://www.andromda.org
http://velocity.apache.org/
http://velocity.apache.org/


A Bibliography

[BKLW99] Susanne Busse, Ralf-Detlef Kutsche, Ulf Leser, and Herbert Weber. Fed-

erated information systems: Concepts, terminology and architectures.

Technical Report Forschungsberichte des Fachbereichs Informatik 99-9,

TU Berlin, 1999.

[BLS03] Don Batory, Jia Liu, and Jacob Neal Sarvela. Refinements and multi-

dimensional separation of concerns. Proceedings of the 9th European

software engineering conference held jointly with 11th ACM SIGSOFT

international symposium on Foundations of software engineering, pages

48–57, 2003.

[CAW98] Sudarshan S. Chawathe, Serge Abiteboul, and Jennifer Widom. Rep-

resenting and querying changes in semistructured data. In Proceedings

of the 14th International Conference on Data Engineering (ICDE’98),

page 4, 1998.
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B
Technical Details

In this part of the appendix we present some technical, implementation-specific details

for the sake of completeness.

B.1 Automatically Refreshing Materialized Views in DB2

In chapter 10 we explained how to use materialized views to realize the event propa-

gation indices. Usually, the declaration of such a view would be done using REFRESH

IMMEDIATE so that the view is refreshed after every modification of an underlying

table and thus up-to-date whenever it is queried. However, due to restrictions in DB2

(c.f. documentation about the CREATE TABLE statement in the DB2 documentation

[Cor]), immediate refreshing is not possible whenever the underlying query contains

self-joins. We also tried several different approaches that did not work: using trig-

gers in combination with stored procedures to refresh the materialized view as well as

dropping and recreating the view from a trigger. None of them works due to DB2s

restrictions.

To overcome these restrictions, a stored procedure has to be used in combination with

an extra trigger. Listing B.1 shows the source code of this stored procedure, refreshing
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a materialized view with a given name by executing the appropriate REFRESH TABLE

statement.

CREATE PROCEDURE refresher (IN tablename VARCHAR (255))

2 MODIFIES SQL DATA

EXTERNAL ACTION

NOT DETERMINISTIC

LANGUAGE SQL

BEGIN

7 DECLARE v_s varchar (255);

SET v_s = CONCAT(’REFRESH TABLE ’, tablename);

EXECUTE IMMEDIATE v_s;

end

Listing B.1: Procedure for materialized view maintenance in DB2

As a counterpart, a regular update trigger like the one in listing B.2 has to be added

for every table that influences the materialized view.

CREATE TRIGGER refreshme <tabName >

AFTER UPDATE OF <attributes >

ON <tableName >

FOR EACH STATEMENT

5 BEGIN ATOMIC

CALL refresher (’<tableName >’);

end

Listing B.2: Trigger to call the routine for view refreshment

In addition, whenever materialized views are used, it is important in which order the

triggers are created. DB2 processes triggers in the order of their creation, so the

following order is necessary to get correct results:

1. Create trigger(s) to refresh views

2. Create trigger(s) accessing views for event-handling

B.2 Maintaining Event Propagation Indices with SQL Server

Although SQL Server 2005 [Micc] supports materialized views (called indexed views),

like DB2 does, they cannot be automatically maintained if they contain self-referencing

joins. To nevertheless realize the event propagation indices for the empirical validation

in section 7.8.5, the index was programmed using regular database tables. Maintenance

of the index was realized using refreshing triggers. Listing B.3 exemplarily shows a

trigger for index maintainance.
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CREATE TRIGGER epiA1 ON join2A

AFTER INSERT , UPDATE , DELETE AS

3 BEGIN

DELETE FROM epiA;

INSERT INTO epiA (le, ri)

SELECT c1a.id AS le, join3A.RI AS ri

FROM c1a AS c1a , c2a AS c2a , c2a AS c22a , join2A , join3A

8 WHERE c1a.ID = join2A.LE

AND join2A.RI = c2a.ID

AND join3A.LE = c2a.ID

AND join3A.RI = c22a.id;

END

Listing B.3: Exemplary trigger to refresh event propagation index in SQL Server
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