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Abstract

The subject of this thesis is checking the content consistency of web documents along
reading paths.

Web documents are typically not read linearly but by following different alternative
paths through the content. Manually ensuring the consistency of content along the
possible reading paths is difficult, time-consuming, and error-prone. Tool support is
highly desirable.

This thesis presents a new formal framework for the representation and verification of
consistency criteria concerning the reading structure and content of web documents.
The content of documents is modelled by description logic knowledge bases. The
narrative structure of documents is represented by a state transition system. The tem-
poral description logic ALCCTL is defined for the representation of semantic crite-
ria on documents. The combination of description logics and temporal logics allows
for addressing structural properties as well as semantic interrelationships within the
content of the document. The proposed formalism exceeds existing approaches in ex-
pressiveness while preserving decidability, low computational complexity, and high
compatibility with the knowledge representation standards of the semantic web effort.

For the verification of properties, existing methods of reasoning in description logics
and model checking temporal logics are combined and enhanced. Formal properties
such as the decidability and complexity of the verification problem, as well as the
soundness, completeness, and runtime complexity of the proposed verification algo-
rithms are shown.

Case studies on eLearning documents demonstrate the performance and adequacy of
the proposed methods. The experimental results confirm that the developed methods
scale to application relevant problem sizes and exceed existing approaches in perfor-
mance, expressive power, and flexibility regarding the type of criteria and documents
being handled.
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1. Introduction

1.1. Motivation

This thesis aims at automatically checking the consistency of the structure and con-
tent of digital documents. We restrict ourselves to documents composed of different
identifiable components that contain sufficient metadata about their content and struc-
ture. Such documents are frequently used in the domains of eLearning and technical
documentation.

As an example, consider a web-based training (WBT) about the operation and main-
tenance of industrial robots (Figure 1.1). This document aims at teaching the neces-
sary foundations and skills for operating and programming different types of industrial
robots.

Home

L1: WBT 

Guide

L2: Robot 

Types

L3: Robot 

Functions

L1.1: WBT 

Basics

L1.3: UI 

Navigation

L1.2: UI 

Symbols

L1.4: Getting 

Help

L1.5: Try It!

L2.1: Basic 

Types

L2.3: Self 

Test

L2.2: Robot 

Identifiers

L2.4: 

Exercise

L2.5: 

Solution

L2.1a Special 

Types

L 3.1 

Handling

L3.2 Pro-

gramming

L2.1b Special 

Types

Final 

Remarks

Figure 1.1.: a web-based training about robots

The document is composed of several web pages, for instance ”Home”, ”L1: WBT
Guide”, ”L2: Robot Types”. The user can navigate through the document by following
links between web pages, for instance from page ”Home” to page ”L1: WBT Guide”.

15



1. Introduction

Web documents usually have a highly branching structure: they are not meant to be
read linearly from the beginning to the end but offer many alternative reading paths
depending on the information demands, pre-knowledge, and individual preferences of
the reader. The document needs to make sense to reader on any of the many possible
reading paths.

For instance, the following criteria should be met by the WBT depicted in Figure 1.1:

1. Each major topic of the document has to be addressed by some lesson within the
document.

2. At the end of each lesson, an exercise must be solved.

3. In the sequel of each exercise task, a sample solution is provided.

4. Sample solutions are accessible to teachers only.

5. Concepts required to solve exercise tasks have been trained before.

Ensuring the consistency of the document along any of the possible reading paths by
manual inspection is infeasible even for moderately large publications because the
number of reading paths usually grows exponentially with the document size. For
non-linearly structured documents, tool support in maintaining the consistency of the
content along reading paths becomes vital.

Existing techniques for maintaining the consistency of structure and content focus on
technical aspects such as absence of dangling hyperlinks or validity w.r.t. the docu-
ment format. However, a proper mechanism for checking content-related consistency
criteria needs to take the argumentation structure and relationships of concepts in the
document’s domain of discourse into account.

Content-related consistency criteria address the following aspects.

1. Structural dependencies: requirements on the composition structure and order
of functional units of the document, e.g. as suggested by a standard for technical
documentation [DIN89]. Structural dependencies follow the pattern:

A content unit of type A occurs at location x relative to the location y of a
content unit of type B.

Example:

Each chapter starts with an introduction stating the objectives of the chapter.
After the introduction, new concepts are explained and trained. Each chapter
ends with a conclusion containing a summary of major concepts.

2. Content dependencies: requirements on the way and order of discussing topics
within the document. Content dependencies follow the pattern:

Concepts, which are discussed in the way A at location x, are discussed in the
way B at a location y related to x.

16



1.2. Summary of Goals and Requirements

Example:

Each question within a self test refers to concepts only that have been explained
previously.

3. Domain dependencies: compliance with an expert model of the domain of dis-
course. Domain dependencies follow the pattern:

Concepts of type A are discussed in a certain way B at a location x in the
document.

Example:

In the overview section, every important function of each robot type must be
listed. The basic knowledge necessary to activate the function must be covered
within the quick start section of the manual.

Structural and content dependencies are internal dependencies while domain depen-
dencies are instances of external dependencies. Internal dependencies require a certain
type of relationship between different parts of the document. In contrast, external de-
pendencies relate parts of the document to external structures such as the document’s
domain of discourse. Both types of requirements are supported by the verification
methods presented in chapter 6.

1.2. Summary of Goals and Requirements

The core targets of this work are 1) the design of a formal specification language ad-
equate for representing criteria on internal and external dependencies as stated above,
and 2) the development of a method for checking the specification on documents. The
following general requirements should be met.

1. Format independency and general applicability: the specification and verifica-
tion methods need to work independently from the kind of criteria and document
being checked. Even documents being assembled from heterogeneous sources
using different document formats and media types should be accounted for. The
methods need to work with existing documents without needing to change them.
Changes within the document format should not necessarily lead to changes of
the specification or verification framework and vice versa.

2. Adequacy and focus: the specification formalism should be focussed on seman-
tic criteria on the level of content structure and topics of the document. Specifi-
cations should be free from technical details about how these structures are rep-
resented within the document or metadata format. This should lead to compact
specifications that are easy to create, change, and adapt to different application
scenarios.

17



1. Introduction

3. High expressiveness: the specification formalism needs to be expressive enough
to allow for the representation of a wide range of relevant semantic consis-
tency criteria. Internal and external dependencies, as stated above, should be
accounted for. The specification language needs to be capable of addressing
types of content, topics, and ways of discussing them. In addition, means are
to be provided for defining locations relative to other locations on reading paths
through the document. Further, it needs to be possible to relate document struc-
tures to external structures such as domain models.

4. Scalable precision and avoidance of over-specification: the specification formal-
ism should enable loose specifications that allow for a wide range of possible
solutions. At the same time, highly specific properties should also be express-
ible.

5. Compatibility to existing knowledge representation standards: as a prerequi-
site for verifying content-related criteria, some machine-processible information
about the document’s content needs to be available. Manual semantic annota-
tion of documents is costly and prone to errors. Therefore, it should be possible
to make use of existing information sources about the document’s content and
its domain of discourse. Metadata annotations in RDF (Resource description
framework [W3C04b]), XML markup or other kind of tagging, and available
ontologies in OWL (Web Ontology Language) [W3C04a] should be exploited
for checking document properties.

6. Soundness and completeness: The applied verification methods should be prov-
ably sound and complete. The system should find all and only the violations
of the given specification within the given document. A prerequisite of the ex-
istence of sound and complete algorithms is the decidability of the according
verification problem.

7. Efficiency: since the proposed methods are targeted at large and complex publi-
cations, the performance of the implementation needs to scale up to large prob-
lem sizes. A prerequisite for efficient algorithms is the polynomial complexity
of the according verification problem.

The complete assessment of the correctness of a document cannot be the ultimate goal
in most application cases. This would require 1) the complete and correct formal-
ization of the document’s content and 2) a complete and correct formalization of an
widely accepted expert model of the domain of discourse as a reference for assessing
the correctness of the document’s content. Both tasks are, except for very formal do-
mains such as mathematics, not feasible in general. In addition, any formalization is
costly.

Consequently, not the most powerful techniques for checking semantic criteria on doc-
uments are the ultimate goal but methods that offer the best compromise between
power and cost of applying them in existing documentation scenarios and technical
infrastructures.

18



1.3. Assumptions and Approach

1.3. Assumptions and Approach

Crucial for the applicability of any verification method is the amount and precision
of information available about the content and the structure of the document. For the
presented approach to be applicable, the following minimal requirements need to be
fulfilled.

• The content of the document is coherent in the sense that it is possible to identify
some preferable ways of how to read the document. The presented verification
methods can be applied to completely incoherent data but a large part of the
expressive power would remain unused.

• Some distinct units larger than sentences can be identified and referred to un-
ambiguously within the document. Examples of suitable units are chapters, sec-
tions, paragraphs, learning units, test questions, etc.

• There is some discrete information about each document unit available or ex-
tractable by some text analysis tool [BCRS06, KT03, UCI+06]. The information
could concern the type or function of the unit (e.g. definition, example, remark),
the topic of the unit (as provided by keywords, index terms, etc) or media type
(e.g. text, image, animation).

Structured documents formats such as SCORM [Adv04b], DocBook [WMS05], and
DITA [TC05] satisfy these requirements. Further information sources are external
metadata e.g. on the basis of RDF [W3C04c] and metadata extracted by intelligent
information extraction tools [KT03, UCI+06].

Figure 1.2 shows the basic components of the presented framework.

We assume a document to be composed of several fragments and tagged by some meta-
data (MD, fig. 1.2 rhs bottom), e.g. on the basis of standards for structured documents
such as SCORM [Adv04b] or DITA [TC05].

The knowledge extraction component (fig. 1.2 rhs bottom) collects the information
required for verifying content-related criteria from several information sources and in-
tegrates it into a consolidated semantic model (fig. 1.2 rhs center). The semantic model
serves as an abstraction from implementation details irrelevant for the verification task
and provides a unified access to information from different sources.

The semantic model is related to background knowledge about the document repre-
sented by a description logic (DL) knowledge base (fig. 1.2 rhs center). Ontological
background knowledge is adopted for modelling and verifying external dependencies
(cf. section 1.1). In addition, ontologies help to align the vocabulary used in specifi-
cations with the vocabulary used in the representation of the document’s content. This
leads to simpler specifications and higher robustness against specification errors and
inconsistent metadata.
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integr. doc.

component component

semantic model

background 
knowledge

implementation

verification model

knowledge 
extraction

TDL model 

checker

TDL 
specification

result 
interpreter

error report

verification 
result

MD

MDMD

DL knowledge base

model 
generator

Figure 1.2.: knowledge-based verification of integrated documents

introduction

theory

exercise

application 

examples

solutions

discussion

summary

Figure 1.3.: part of the narrative structure of a web-based training

Web documents typically have some sort of coherent, possibly branching narrative
structure that guides the user in reading the document (fig. 1.3). The narrative structure
defines, which content units are sensibly read ahead or after other content units. In
many cases, consistency criteria refer to sensible ”reception sequences” of content
units. Hence, we consider, in accordance to [dA01, SFC98], a temporal formalism as
adequate for the representation of consistency criteria.

More precisely, we propose the new temporal description logics (TDL) ALCCTL
(chapter 6) as a suitable formal basis. Temporal description logics are expressive for
representing content- and structure-related criteria [WF04, WF06] while remaining
decidable under certain conditions [AF01, HWZ02].
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1.4. Contribution and Relevance of the Results

The modular structure of the specification formalism ALCCTL allows for separating
different concerns of criteria: the structure dimension and the content dimension of
criteria can be treated separately, which reduces the complexity of specifications.

Finally, a result interpreter component (fig. 1.2 lhs center) takes the verification results
(counterexamples) from the model checker and builds an error report pinpointing error
locations within the document.

In summary, the major components of the proposed framework are:

• ontology- and graph-based semantic document model;

• temporal description logics as a formal basis for representing criteria;

• verification by model checking;

1.4. Contribution and Relevance of the Results

We propose a technical framework for representing and verifying semantic criteria on
structured documents.

From the application-oriented perspective, the major contribution is the realization of
a flexible, efficient, and precise tool to represent and verify a new type of criteria on the
content and argumentation structure of documents. The presented approach exceeds
existing methods for document verification in terms of expressiveness and efficiency.
More complex criteria can be checked in less time than using state-of-the-art verifica-
tion systems for temporal logics or validation techniques for XML documents.

From the theoretical perspective, the major contribution is the definition and analysis
of the temporal description logic ALCCTL, which is proposed as a formal basis for
the representation and verification of semantic criteria. Important properties such as
the decidability and complexity of the ALCCTL model checking problem are proven.
The first model checking algorithm for a temporal description logic is defined, exam-
ined, and evaluated. The superior expressive power and efficiency of ALCCTL model
checking as compared to existing model checking techniques is demonstrated in the
domain of document management. The developed formalism and algorithms are mo-
tivated by but not limited to an application in document management.

The innovative aspects of the proposed framework are in detail.

• Document properties are checked based on a new semantic model of the narra-
tive structure and covered topics of documents. A graph-based model is com-
bined with description logics to represent both structural aspects and semantic
interrelationships within the content of the document. The logic-based approach
allows for

21



1. Introduction

– the abstraction from irrelevant implementation details and, consequently,
for compact specifications.

– the integration of ontological background knowledge and, consequently,
high expressive power and flexibility regarding the document and metadata
format.

• Description logics and temporal logics are combined to a new specification
language ALCCTL that maintains a good balance between relevant expressive
power and low computational complexity. Document verification is modelled
as an ALCCTL model checking problem that is shown to be decidable and in
polynomial time.

• Reasoning methods for description logics and model checking methods for tem-
poral logics are combined to enable the verification of content-related properties
along reading paths in documents. It is shown how non-temporal and temporal
reasoning can be combined to achieve high flexibility, efficiency, and accuracy.
The proposed algorithms are shown to be sound, complete, and optimal. In addi-
tion, the high performance of their prototypical implementation is demonstrated
in a number of case studies.

1.5. Overview

This thesis consists of three parts of three chapters each. In part I, the foundations
of document consistency checking are covered. Part II presents the formal aspects
of the proposed approach. The document model, the specification formalism, and
the verification algorithms are defined and relevant properties such as decidability,
computational complexity, soundness, and correctness are shown. Part III discusses
the results obtained in practical experiments.

In the sequel of this chapter, a short introduction to the application domain of this thesis
– checking the consistency of documents – is given. The state of the art in document
consistency checking is summarized and the focus, goals, an approach of this thesis
are justified.

Chapter 3 shortly introduces the reader to description logics and temporal logics, which
are the fundamental methods of the presented approach.

In chapter 4, a brief overview of the proposed framework is given.

Chapter 5 formally defines the semantic document model that represents relevant
knowledge about the content and structure of the document to be verified.

Chapter 6 defines the specification formalismALCCTL. The model checking problem
of ALCCTL and a model checking algorithm are defined and analyzed. Based on
ALCCTL model checking and DL reasoning, an algorithm for verifying documents is
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presented and studied. The results are related to existing work in the field of temporal
logics.

Chapter 7 sketches the implementation of the formal framework and reports on eval-
uation results obtained in case studies on real and synthetic document bases. The
performance, expressive power, and adequacy of the approach is demonstrated and
compared with CTL model checking.

Chapter 8 compares the presented approach with existing methods for XML docu-
ments. The chapter discusses the major results of a comparative study with XSLT
[W3C99b] and XPath [W3C99a].

Finally, chapter 9 summarizes the core contributions of this thesis.
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2. Introduction to Checking
Document Consistency

2.1. General Goals of Consistency Checking and
Management

In this work, we regard documents as structured data objects composed of several
components (Figure 2.1 bottom), for instance, chapters, sections, web pages, and para-
graphs. Both, documents and their components, are resources, that are identified by a
unique ID and are described by some metadata (Figure 2.1 top). In addition, compo-
nents can refer to other components of the document by some referencing mechanism
such as hyperlinks in HTML documents or XLink [XLi01] in XML documents (Figure
2.1 lhs bottom). Typical examples of such documents are web documents (Figure 2.1
rhs bottom), i.e. documents that are published on the world wide web.

Resource ID

1 1

Metadata
identifies

DocumentComponent

*

*

representsPropertiesOf

1*

**

WebDocument

*

*

refersTo

*

*

Figure 2.1.: basic document model

In document management, the consistency of a document or a collection of documents
is defined as the conformance to a set of rules or constraints [NCEF02, Sch04] that are
expected to be met at any or at certain times within the document’s life cycle. In con-
trast to knowledge bases or databases, the goal is not the exclusion of inconsistencies
but the detection, report, precise location, and appropriate treatment of inconsistent
parts of documents in interaction with the user [Fin00]. Often, inconsistencies do not
need to be corrected immediately but can be tolerated for a certain time [Sch04]. Ap-
propriate responds to detected inconsistencies include the analysis of its root cause, the
correction of the document, the correction of the consistency rules, and documenting
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2. Introduction to Checking Document Consistency

but (temporarily) tolerating the error. The set of measures for detection, analysis, and
reaction on inconsistent structures is called consistency management [SZ01].

The general goals of consistency management are increasing the quality of artefacts
within the development process and reducing the cost of quality assurance. Whenever
documents are developed in larger teams, assembled from different sources, updated
frequently, and adapted to different subjects, target groups, and contexts of use, tool
support for consistency management becomes vital [KBHL+03].

2.2. Aspects of Document Consistency

The following different aspects of document consistency can be distinguished.

Completeness and Correctness

Consistency plays a major role in software development [NER00]. One aspect of
software consistency is the correctness and completeness of the implementation. In
[KBHL+03, TL97], the terms correctness and completeness are applied to collections
of documents. A collection of documents is considered as correct iff its content con-
forms to a formal (expert) model of its domain of discourse, i.e. no document contains
a wrong statement about some entity of its domain of discourse. A collection of doc-
uments is considered as complete iff it contains appropriate content for each of the
intended contexts of use (cf. [KBHL+03]).

Automatically checking correctness and completeness of collections of documents is
expensive to realize because this requires a correct and complete expert model of the
domain of discourse and contexts of use.

Static and Dynamic Consistency

In databases, there is often a distinction between static consistency and dynamic con-
sistency or integrity [CER01, ER98, KE06].

Static consistency rules express constraints on a collection of documents w.r.t. single
points in time while dynamic consistency rules express constraints w.r.t. the allowed
changes to a collection of documents.

An example of a static consistency rule is: all targets of references within the document
are existing (referential integrity) [Sch04].

An example of a dynamic consistency rule is: the name and type of major documents
should never be changed [Sch04].
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2.2. Aspects of Document Consistency

Data-level and Content-level Consistency

From a system’s perspective, documents are structured data objects. From a reader’s
perspective, documents are structured presentations of content. The consistency of
documents is desirable at both the data- and content-level. Consistency at the data-
level is the conformance to some document format or schema definition and aims at
ensuring the correct processing of the document by excluding unexpected structures.
Examples of data-level consistency are the absence of dangling references, the correct
nesting of elements in XML documents and the conformance to data type definitions.

Content-level consistency is the conformance of the information represented by docu-
ment data with a set of requirements. The major goal is to ensure that the content of
the document meets the intentions of the authors and makes sense to the readers.

[Sch04] distinguishes the following aspects of content-level consistency:

• referential: the targets of (semantic) references within the document’s content
exist.

• unique: some content is unique within the document or within a collection of
documents.

• naming: certain terms used within the document are conforming to some naming
conventions.

• calculation: numeric constraints on properties of the document content are sat-
isfied.

• linguistic: requirements regarding readability and semantic similarity of content
are met.

• logic: these are requirements on the logical consistency of statements within the
document.

We identify further important aspects of content-level consistency:

• requirements on the topics and interrelationships of topics that are covered by
the content of the document.

Example: ”the manual needs to address all functions and related operation in-
structions of the documented technical system.”

• requirements on the mode of presentation of certain topics:

Example: ”Safety critical functions need to be marked as such within the
overview and covered by detailed handling instructions within the safety in-
structions of the manual.”
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• requirements on the structure and order of presentation:

Examples:

” Safety critical functions always need to be presented ahead of other functions.”

”The learning document starts with an introduction presenting the objectives of
the document, continues with a presentation of concepts, provides study tasks to
solve towards the end of each lesson, and ends with a summary and a final test.”

• requirements regarding the coherence of content of the document. Coherence
requirements refer to semantic interrelationships of content along reading paths
through the document (cf. Definition 2.3.1).

Examples:

”All functions listed in the overview of the manual need to be explained in detail
later on.”

”New concepts need to be defined before they are used.”

”Each defined concept should be used somewhere later.”

”Information required to solve training tasks should be given before.”

”For each training task there should be a sample solution available but not before
having tried to solve the training task”.

2.3. Focus and Goals of this Work

2.3.1. Focus

This work aims at checking the static content-level consistency of documents. Within
this class of consistency criteria, we focus on coherence criteria on documents along
standard reading paths.

Definition 2.3.1 (Coherence Criterion)

Coherence criteria are the set of properties regarding the reading structure of a docu-
ment, which contain a combination of the following type of requirements:

• there is a (semantic) relation R of objects within a component of the document
c1 to objects within another component of the document c2 6= c1 (cf. Figure
2.1).

• component c1 should be read either before or after component c2 on some or all
suggested reading paths through the document.

2
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Example 2.3.2 (Coherence Criteria)

Typical examples of coherence criteria are:

1. ”Every theorem must be proven immediately.”

2. ”A solution to every task to solve is presented eventually.”

3. ”The information required to solve a task has previously been presented.”

4. ”Defined concepts need to be used later on and used new concepts need to be
defined before.”

5. ”For every robot function presented in the overview of the manual, a detailed
handling instruction must be provided later on.”

6. ”Every objective mentioned in an introduction needs to be addressed by some
related content later on but before its major aspects are summarized in a conclu-
sion.”

7. ”The user cannot access protected content until she/he has read and accepted an
according end user license agreement.”

The listed criteria have in common that they relate some property of a currently visited
part of the document to properties of a previously visited or subsequent part of the
document.

2

Checking the coherence of content along reading paths has not yet been addressed
within the field of document checking (cf. section 2.4), although content coherence
is an important prerequisite for the readability of the text structures [GG95, MT87,
SSS00]. In addition, web documents are typically not structured linearly but offer
many alternative reading tracks. Hence, manually checking the coherence of content
along reading paths in web documents is particularly difficult, error-prone, and time-
consuming.

The presented work is a valuable contribution to reducing the cost of quality assurance
and increasing the quality of documents because the checking of an important class of
criteria is automated, which are very hard to check manually or using existing methods
(cf. chapters 7 and 8).

The presented approach is meant to complement but not to substitute existing methods.
There are various important aspects of document consistency such as data-level con-
sistency or dynamic consistency that are better handled by dedicated existing methods
[ISO06, Sch04, W3X04]. These methods do not require a semantic document model
and hence can be more efficient for checking simple data-level properties.
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2.3.2. Goals and Requirements

For checking the coherence of documents, the document’s content and reading struc-
ture need to be represented. Further, an expressive language for specifying content-
related criteria as well as efficient algorithms for checking the document model against
the specification need to be provided. The following sub-goals arise:

• requirements for the semantic document model:

– the document’s content structure needs to be modelled from the perspec-
tive of the reader. Not the composition structure of document data (e.g. the
XML document tree) but the document’s high-level ”narrative structure”
is relevant for checking the coherence of content. The model of the doc-
ument’s narrative structure should represent sensible paths of reading the
document in standard situations. It needs to be ensured that the content
along such paths is coherent and makes sense to the reader (cf. Definition
5.2.19).

– content-related consistency criteria refer to what is presented and how it is
presented. Hence, checking content-related criteria requires the represen-
tation of topics and interrelationships of topics of documents as well as the
representation of content types and modes of presentation.

– content-related criteria refer to background knowledge about the domain
of discourse. For instance, checking a criterion such as ”all major topics
need to be addressed” requires some definition of what ”major topics” are.
Hence, it should be possible to represent general background knowledge
and apply it to the verification of criteria.

– for reducing application cost, the document model should be automatically
generated. Manual modelling effort should only be required for necessary
background knowledge not being represented within the document.

– the document model should abstract from the implementation structure of
the document and irrelevant details w.r.t. the criteria to check. This should
result in simpler specifications and higher performance of the system.

– the document model should be compatible with existing knowledge rep-
resentation and metadata standards such as RDF [W3C04b] and OWL
[W3C04a]. This should allow for making use of existing information
sources and extraction tools [KT03, UCI+06] and thus for reducing the
cost of modelling and knowledge extraction.

– the document model should be independent of the type and data format of
the document and should be applicable to any kind of document satisfying
the following conditions:
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∗ some information about the content of the document is available,
i.e. the document’s content is not a black box.

∗ the content of the document can be divided into discrete, uniquely
identifiable units at some level of granularity, i.e. the document’s con-
tent is not completely unstructured.

∗ sensible orders of reading the units of the document’s content can be
determined, i.e. the document’s content is not a completely incoherent
collection of information.

Most structured documents or collections of documents meet the condi-
tions above.

• requirements for the specification formalism:

– the specification language should be adequate and focussed on coherence
criteria. It should allow for concise specifications that are as simply struc-
tured as possible.

– properties of structured objects and relationships between objects of the
document’s content and its domain of discourse need to be expressible.

– constructs for representing loose criteria on the order of properties along
reading paths through the document need to be provided.

– to avoid over-specification, different levels of abstraction from implemen-
tation and content details should be supported (scalable precision of spec-
ifications).

– for reducing the complexity of specifications, it should be possible to refer
to externally represented background knowledge.

– a prerequisite for sound and complete verification procedures is a precise
unambiguous semantics and the decidability of the specification language.

– to ensure that the checking of specifications scales to application rele-
vant problem sizes, the verification problem of the specification formalism
should have a polynomial runtime complexity.

• requirements for the verification procedure:

– the verification algorithms should be sound and complete w.r.t. the seman-
tics of specifications.

– the verification procedure should precisely locate errors within the docu-
ment in the case of specification violations.

– since automatic consistency checks are of most use in complex scenarios
the verification procedure needs to be sufficiently efficient for checking
large documents.
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– for supporting interactive use, the overall verification procedure should
have a stable and predictable runtime for different documents and spec-
ifications.

– incremental checking of documents should be supported such that a sig-
nificant portion of runtime can be saved when parts of the document and
parts of the specification remain unchanged.

– the overall verification procedure should be modular such that parts of the
system can independently be modified and tuned towards the specific set-
ting and requirements of an application scenario.

– the verification procedure should be robust in the sense that potential errors
in the specification or in the available document metadata and background
knowledge can be detected.

2.4. Existing Methods for Checking Document
Consistency

In the sequel, we summarize existing work and methods for checking document con-
sistency and outline the contribution of this work to the field of document verification.

2.4.1. Validation of XML Documents

For the process of finding errors in XML documents the term validation has been
coined. XML validation in the original sense amounts to checking the conformance of
an XML document with some document type definition (DTD) [W3C06] or schema
definitions [W3X04]. Validation mainly aims at excluding unexpected data structures
for ensuring that the document can be correctly processed by different systems.

Some approaches [Jel02, NCEF02] enhance the notion of validity towards content-
level consistency criteria. They enforce business rules that can address complex se-
mantic interrelationship within and between XML documents.

Validation techniques can be roughly divided into grammar and rule-based approaches
[DSD04]. [Abs06] gives an overview of XML validation methods and tools.

2.4.1.1. Grammar-based Document Validation

Grammar-based schema languages use some form of tree grammar [DSD04] for defin-
ing an XML document format. The most relevant grammar-based schema languages
are DTD [W3C06], XSchema [W3X04], and RelaxNG [OAS01].
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Grammar-based schema languages typically define the nesting of XML elements and
attributes, referential integrity constraints, and constraints regarding the data types of
elements and attributes [Vli01]. Some schema languages support the definition of
default values that can be seen as a basic mechanism of automatic repairs in the case
of incomplete information (cf. [NEF03, Sch04]).

Grammar-based schema languages usually describe the allowed XML structures com-
pletely in a constructive manner. They adopt a closed content model, i.e. everything,
which is not explicitly allowed by the schema definition, is considered as an error. In
addition, grammar-based schema definitions are usually interpreted strictly such that
invalid documents are considered technically corrupt and not acceptable to the pro-
cessing system.

As a result, the constraints of grammar-based schema languages are rather general
and abstract from the content of the document. A document, which is valid w.r.t. a
grammar-based schema definition, does not necessarily make sense to a human reader.

”Business rules” [Vli01], which address complex semantic interrelationships within
the data of the XML document, are beyond the scope of standard schema languages
and require a more flexible approach.

2.4.1.2. Rule-based Document Validation

Rule-based schema languages have been proposed to complement grammar-based
schema languages for complex content-related business rules [Jel02]. They typically
adopt an open content model, i.e. every structure, which is not excluded by the formu-
lated rules, is considered as correct.

Content-related consistency rules are not always enforced strictly but violations can
often be tolerated without jeopardizing the reliability of the processing system. As a
result, some rule-based approaches do not aim at excluding inconsistent structures in
documents but rather at discovering and reporting them to the user [NCEF02].

Our approach compares best to rule-based approaches applying an open content model.
In the sequel, we briefly introduce the most relevant and powerful methods for rule-
based validation of XML documents: Schematron [ISO06] and CLiX [MN04]. A
detailed comparison of the presented work with Schematron and CLiX is given in
chapter 8.

Schematron

Schematron has been developed in 1999 by Rick Jelliffe [Jel02] and has just recently
become an ISO standard [ISO06] as a result of the Document Schema Definition Lan-
guages (DSDL) initiative [DSD04]. Schematron is free and supported by a range of
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free as well as commercial tools. Its technical simplicity and low system requirements
support the easy integration of Schematron in XML processing environments.

Schematron uses XPath [W3C99a, W3C07b] and selected XSLT-constructs [W3C99b,
W3C07d] for the representation of consistency rules [ISO06]. Consistency criteria can
be formulated positively (assert) or negatively (report), grouped to rules and patterns,
and assigned to specific stages of the document’s life cycle. The separation of consis-
tency condition and evaluation context – each represented by an XPath expression –
allows for a precise localization of errors within the document.

A Schematron schema is translated into an XSLT stylesheet that is applied to the doc-
ument to check using a standard XSLT processor.

CLiX

CLiX (Constraint Language in XML) has been developed in 2000 at the University
College London as a rule language for the consistency checking and smart link gener-
ation service xlinkit [NCEF02]. Later, systemwire, a new spin-off of the University
College London, has further developed the xlinkit system to an industrial product.
In 2006, systemwire has been acquired by messageAUTOMATION. The xlinkit
system and related development tools have been integrated into messageAUTOMA-
TION’s product validator [mes06]. The xlinkit system and its descendent validator are
protected by copyrights and not available for free use.

CLiX uses a combination of predicate logic and XPath for the specification of con-
sistency rules. The structure and expressiveness of CLiX rules do not differ much
from Schematron rules. Similar to Schematron, CLiX rules specify both a consistency
condition and a context for evaluating the condition. The validation environments for
CLiX focus on checking the consistency of XML documents with external data, for
instance, in relational databases. The validation system xlinkit [W3C01] can generate
examples of a specification violation as well as examples for XML data satisfying the
specification.

Schematron and CLiX are very powerful tools for expressing constraints on the XML
representation of a document. In contrast, the presented approach focuses on validat-
ing criteria related to the content and ”high-level” narrative structure of the document
independent as perceived by the reader. The narrative structure of documents differs
from the XML structure in the following aspects:

• the narrative structure of web documents is typically not linear, i.e. there may be
many sensible ways of reading the document and the content along each reading
track should make sense to the reader. In contrast, the XML data model assumes
a linear ”document” order of elements.
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• the narrative structure of web documents is typically not acyclic. It may make
sense to return to previously visited parts of the document, for instance, for look-
ing up some information or for getting an overview of the document’s content.
In contrast, documents are represented as trees in the XML data model.

In addition, content-related criteria often refer to some general background knowledge
about document structures and concepts of the domain of discourse. In the case of
XML-based document validation, this background knowledge needs to be encoded
into the specification, which violates the principle of separation of concerns and leads
to complex, hard to maintain specifications.

As a result, criteria related to the ”high-level” content and narrative structure of the
document are hard to check directly on the XML-representation of the document
(cf. evaluation results in chapter 8).

We propose a model-based approach to document verification that exceeds XML-
based validation techniques in the following aspects:

• the proposed methods are not limited to XML documents but can be applied to
any document satisfying some basic assumptions (section 2.3).

• a DL-based representation of the document’s content and background knowl-
edge makes it possible to detect logically inconsistent information and deriving
implicit knowledge by ontological reasoning.

• a specification formalism based on temporal logics allows for a compact repre-
sentation and efficient verification of properties related to reading paths within
the narrative structure of the document.

2.4.2. Verification of Hypertext and Hypermedia

There is a body of work for the verification of hypertext and hypermedia.

A hypertext verification method based on temporal logic has been developed by Stotts,
Furuta et al. [SFC98, SFR92]. A hypertext is modelled as a finite state machine
(browsing automata). Its states represent hypertext nodes, its transitions hypertext
links. Boolean state variables represent local properties of nodes such as the availabil-
ity of certain buttons, menu options, and content fragments. The temporal logic HTL*
(hypertext temporal logic), a syntactical extension of CTL* (computation tree logic)
[Eme90], is used as a specification language for global properties of browsing histo-
ries such as reachability of certain pages from other pages and availability of certain
functions on pages. In [SN02], the method has been enhanced for the verification of
quasi-parallel browsing activities in framesets.

[SDM+05] extends the work of Stotts and Furuta towards the verification of dynami-
cally generated web content. Web-applications are modelled by a specific UML pro-
file. UML models are then automatically translated into the modelling language of the
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CTL model checker SMV [McM93]. Criteria on web sites are represented in CTL and
verified by SMV. Missing components of the web application are determined by model
checking and visualized by a web application graph.

[HH06] extends the approach of Stotts and Furuta towards the verification of web
applications with adaptive navigation. In such a web application, the set of reachable
pages depends on the current page, previously visited pages, and the current state of
the user model. Navigation models are represented by Statecharts [Har87] that are
translated into the modelling language of the CTL model checker SMV [McM93].
Consistency criteria on the adaptive navigation structure of a web site are expressed
as CTL formulae. The categories of verified properties include reachability of web
pages and states of the user model, constraints on browsing sequences and sequences
of states of the user model, and restrictions on the state of the user model for certain
types of visited pages.

In the McWeb project [dA01], a restricted version of the µ-calculus [Koz83] is used to
express and verify properties of frame-based web pages. The frameset and link struc-
ture of web sites is modelled as a propositional Kripke structure [CGP02b]. Properties
of web pages are modelled by atomic propositions. A variant of the µ-calculus called
constructive µ-calculus is proposed to enable the verification of web sites that are
not completely known a-priori. Criteria related to the reachability of pages, maximal
length of paths, and the composition structure of framesets can be verified.

Propositional temporal logics such as CTL and the related µ-calculus enable the
specification of complex properties along browsing paths in hypermedia structures.
However, the applied propositional formalisms cannot express semantic relationships
across different objects within the modelling domain and hence are not sufficient for
expressing coherence criteria (Corollary 6.5.8). We extend the approach of Stotts and
Furuta in the following aspects:

• the content and narrative structure rather than its hypertext or frameset structure
is modelled. This simplifies the checking of content coherence along standard
reading paths through the document.

• the combination of the document model with terminological background knowl-
edge increases the expressive power of specifications and reliability of verifica-
tion results.

• temporal description logics as a specification formalism provide higher expres-
siveness regarding content-related and coherence criteria than propositional tem-
poral logics.

Dong [Don00] applies the µ-calculus [Koz83] for the specification and verification
of designs of hypermedia application that are composed of different design patterns
of object oriented programming. Knowledge about design patterns is represented in
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Prolog [Llo87]. Desired properties such as ”whenever a link is followed the showpage-
method is eventually invoked” are specified using the µ-calculus and verified against
the model of the design using the model checker XMC [RRS+00].

Santos et al. propose an approach to verification of hypermedia presentations
[SCSD98, SSC99, SSdC98]. The goal is to discover possible inconsistencies in inter-
active, synchronized presentations of multimedia content such as multiple access on
exclusive resources (audio) and deadlock situations. The nested context model is used
to model relevant aspects of an interactive multimedia presentation. The specifica-
tion language RT-LOTOS (Real Time Language of Temporal Ordering Specification)
[CdO95] is used to specify desired properties of the interactive presentation process.

The approaches of Dong and Santos aim at the technical correctness of the design or
the implementation of a hypermedia application. Technical correctness, however, does
not imply that the presented content makes sense to a human recipient.

[FFLS99] suggests Datalog extended with path expressions for modelling and verify-
ing the structure and content of web sites. Integrity constraints such as the existence
of navigation paths between certain types of pages can be expressed and checked for.
Both the web site structure and integrity constraints are represented as a set of Datalog
rules complemented with regular path expressions. A sound and complete verification
algorithm based on the transformation into a Datalog query containment problem is
presented. The given verification problem is NP-complete and hence scales poorly in
the problem size. In addition, the need for extensive manual modelling increases the
application cost and reduces the reliability of the approach.

In the presented approach, we minimize manual modelling effort by automatically con-
structing the semantic document model from document markup and external metadata.
The proposed verification algorithms have a polynomial runtime complexity and scale
up to very large documents.

2.4.3. Checking Content-related Consistency of Documents

”Semantically” structured document formats based on XML [Koh00, LTV03, SF02,
WMS05] or LATEX [KBHL+03, LWR01], metadata standards [Lea02], and intelligent
annotation tools [HS03, UCI+06] set the ground for taking ”semantic” properties such
as types of content units or discussed topics into account when processing documents.

An early attempt to guarantee the soundness and completeness of user manuals for
technical systems has been described in [TA96] and [TL97]. The consistency of man-
uals is defined as the close correspondence of the manual’s content to a formal specifi-
cation of the system’s behaviour. In [TA96], an annotated finite state machine, which
models the behaviour of a technical system, is used as a basis to automatically con-
struct a manual consistent with the specification. In [TL97] properties of the system
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and the corresponding manual are expressed in a temporal logic of actions and verified
using Prolog.

The MMiSS-project [KBHL+03] aims at providing a web-based adaptive educational
system in the domain of Safe Systems. Consistency and completeness of dynami-
cally assembled or frequently changed learning documents are a major concern of the
project. Therefore, the semantic interrelationships of learning content are represented
on a fine grained level based on ontologies of structural units and concepts used in
the documents [KBLL+04]. A rule-based approach for the specification of constraints
on semantic interrelationships is sketched but not defined in detail. Learning content,
metadata that describes the content, and ontologies that describe the logical structure
of the content are represented using a proprietarily extended LATEX format. As a result,
the integration of external web resources requires a considerable re-engineering effort.

The mathematical knowledge management system MBase [KF01] represents mathe-
matical knowledge in both a human-readable and a machine-processible way. Mathe-
matical knowledge objects (symbols, definitions, assertions, proofs, and examples) are
represented by the XML language OMDoc [Koh00]. The formal semantics of defini-
tions, assertions, and proofs is defined based on an extended sorted λ-calculus. Logic
morphisms [KF01] are introduced to enable the integration of different mathematical
tools such as theorem prover and computer algebra systems. Development graphs are
used to manage the change of formal knowledge representations and maintain their
logical consistency [AHMS02, Hut00, HS01b]. MBase is specialized on maintaining
the consistency of mathematical theories rather than the consistency of mathematical
(or other) documents for which further aspects such as didactic considerations are a
major concern [KA03].

The HCT help-checker-tool [SK04] is specialized on checking online help systems for
Siemens medical systems such as magnetic resonance tomographs. The customization
of medical devices results in many variants of the product. The corresponding manual
must describe all and only the features of the system as delivered to the customer.
To ensure this, documentations are modularized to small help packages, structured in
terms of a product taxonomy, and tagged with Boolean constraints using XML. The
system compiles a product online help automatically in correspondence to the specific
features of a customized system and verifies by satisfiability checking if a compiled
documentation is complete and without redundancy.

The approaches listed above are limited to a specific application domain. In contrast,
proposed methods are applicable to structured documents of any domain as long as
discrete units and coherent paths within the document can be identified and a minimum
of content-related information is available.

A formal consistency management component [ESS05] based on description logics is
proposed as an extension to the content management system for technical documen-
tation Schema ST4 [Gru06]. Models of the domain of discourse and the structure
of documentation projects are represented by DL TBoxes (Definition 3.1.12). These

38



2.4. Existing Methods for Checking Document Consistency

models scaffold the development of technical documentations in a way that a close
relationship between the content of the documentation and the documented artefact
can be ensured within the document’s life cycle. Description logics, however, are not
sufficiently expressive for representing coherence criteria along reading paths through
the document (cf. section 6.1).

A powerful and flexible framework for checking the consistency of collections of in-
terrelated documents is proposed by [Sch04]. The system focuses on controlling the
evolution of a document repository over time and checking the dynamic consistency
of a document repository (cf. section 2.2). For instance, consistency rules can express
that certain documents must not be deleted or that certain parts of document must not
be modified. In contrast, our approach is restricted to checking the static consistency
at a certain time and cannot compare different versions of a document.

The formal basis of the system in [Sch04] is full first order logic interpreted on a
language defined in terms of the functional programming language Haskell. For pre-
serving decidability, all variables in formulae are quantified over finite sets (cf. CLiX
in section 8.2). Path-related criteria, which are relevant for ensuring the consistency
of content along reading paths through the document, are hard to represent and expen-
sive to verify using first order logics [Pil06]. Moreover, a general restriction to finite,
completely known domains can be inadequate when representing the content of a doc-
ument. This is because the document’s domain of discourse may contain infinite or
partially known structures.

The formalisms suggested in [Sch04] are complex both in terms of computation and
application cost. The presented proprietary specification formalism is not trivial. For
each application case, a dedicated specification language has to be implemented in
terms of Haskell functions.

The proposed verification framework offers a better compromise between expressive-
ness, application cost, and performance for large documents. The proposed specifica-
tion language combines the standard formalisms description logic and temporal logic,
which are both well supported by powerful tools and a large base of pre-defined solu-
tions to common specification problems [BBF+01, FMPR04] (so called specification
patterns [DAC99, KC05]). Moreover, the comparably simple structure of the pro-
posed specification language sets the ground for advanced methods for user guidance
and support [Jak06].
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The methods and algorithms developed in this work base on two fundamental for-
malisms: description logics (DL) [BCM+03] and temporal logics (TL) [Eme90].

A decidable description logic is used for the representation of (background) knowledge
about the document’s content. Description logics are powerful for the representation of
terminological knowledge about partially known and possibly infinite domains such as
the domain of discourse of a document. The decidability of logical implication allows
for deriving new implicit knowledge from the available knowledge about the document
by combining schema-level background information and instance-level information
about data objects of the document and objects of the document’s domain of discourse.

A temporal logic is used for the representation of consistency criteria on documents.
Temporal logics such as computation tree logic (CTL) [Eme90] are expressive for rep-
resenting properties of possibly infinitely running processes. Propositional temporal
logics have been applied to modelling, reasoning, and verifying the behaviour of sys-
tems and protocols [MP92, PM95]. They are expressive for representing loose criteria
on the sequence of events in processes [BBF+01, DAC99]. Propositional temporal
logics have also been applied to verifying browsing processes along the link structure
of hypertext documents [dA01, HH06, SDM+05, SFC98, SFR92, SN02]. However,
the expressiveness of propositional temporal logics for representing content-related
criteria is limited because propositional logics cannot capture structured properties of
document objects at a fixed state within the browsing process. Modelling semantic
interrelationships between different parts of the document or its domain of discourse
require some means for representing relations between (certain types of) objects.

Various combinations of description logics and temporal logics have been suggested
in literature [AF01, BKW03, HWZ01, WZ00]. The DL part of temporal descrip-
tion logics (TDL) contributes high expressiveness for schema-level knowledge and
relationships of objects at given points in time. The temporal part of a TDL con-
tributes expressiveness for the change of properties of objects in time [AF01]. As a
result, TDL are a powerful tool for modelling and reasoning about time-varying struc-
tured domains, for instance actions and plans [AF98, AF01] or temporal databases
[AFM03, AFM+01, AFWZ02].

We define a new temporal description logic tailored to the representation of criteria on
the structure and content of documents (chapter 6). The reception of a document is
modelled as a (reading) process on structured and interrelated objects: the document
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parts and their content. Temporal description logics are a powerful tool for checking
properties of such processes.

In the subsequent sections, we introduce description logics and temporal logics as the
basic formalisms fundamental to our approach.

3.1. Description Logics

3.1.1. Introduction

Description logics (DL) are a family of knowledge representation formalisms for defin-
ing the terminology used for specifying properties of objects of an application domain
[BN03].

Applications of description logics include conceptual modelling, software engineering,
configuration management, medical systems, digital libraries, web-based information
systems, natural language processing, and reasoning on databases [BCM+03].

DL have gained some importance as the formal basis for representing ontologies within
the semantic web effort [BLHL01]. Ontologies are formal, explicit specifications of a
shared conceptualization [Gru98].

DL typically share two important properties:

1. they have a precise and unambiguous logic-based semantics.

2. logical implication and satisfiability is decidable.

These properties set the ground for application-independent, sound and complete in-
ference services for knowledge represented in a DL.

The represented knowledge is organized in a DL knowledge base. DL knowledge
bases consist of two components: a TBox, which is a definition of terminology, and an
ABox consisting of assertions on the individuals of a domain of discourse [BN03]. The
terminology defined in a DL TBox comprises concepts, which represent classes of ob-
jects, and roles which represent binary relations on objects of the domain. Individuals,
properties of which are defined in the ABox, represent single objects of the domain.

Example 3.1.1 (TBox, Concept, Role)

The following terminological axiom defines the concept of ”web document” as a ”doc-
ument” that is ”delivered” by some ”web server”.

WebDocument
.= Document u ∃deliveredBy.WebServer

WebDocument is a concept representing the class of objects that are ”web docu-
ments”. Document is a concept representing the class of ”documents”. Concept
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WebServer represents the class of ”web servers”. deliveredBy is a role represent-
ing the binary relation between documents and delivering systems, for instance, web
servers.
.= is an equivalence definition on two concepts. The axiom above defines the set

of instances of concept WebDocument as equal to the set of instances of concept
Document u ∃deliveredBy.WebServer.

u expresses the conjunction of concepts. ∃deliveredBy.WebServer represents the
concept the instances of which are related to some instance of concept WebServer
via the role deliveredBy.

In section 3.1.2, we will define the precise semantics of terminological axioms. 2

Example 3.1.2 (ABox, Individual, Assertion)

The following ABox assertions define some instances of concepts Document and
WebServer as well as fillers of the role deliveredBy.

Document(d) d is an instance of concept WebDocument
WebServer(s) s is an instance of concept WebServer
deliveredBy(d, s) d is in the deliveredBy relation with s

In section 3.1.2, we define the precise semantics of ABox assertions. 2

DL allow to define an important reasoning service: classification of concepts along
their subsumption hierarchy. A more general concept D subsumes a more specific
concept C, denoted as C v D, iff all instances of concept C are also instances of con-
cept D. Further reasoning services such as concept equivalence (two or more concepts
have the same set of instances), disjoint concepts (two or more concepts do not have
common instances), and concept satisfiability (some concept may have instances) can
be reduced to concept subsumption.

Example 3.1.3 (Subsumption)

Let KB be a DL knowledge base containing the axiom of Example 3.1.1:

WebDocument
.= Document u ∃deliveredBy.WebServer

Then the knowledge base KB implies that concept WebDocument is subsumed
by concept Document, i.e. each instance of WebDocument is an instance of
Document. 2

Further reasoning services available for DL knowledge bases are classification of in-
dividuals (i.e. determining the set of concepts which an individual is an instance-of),
instance retrieval (i.e. determining the set of individuals of a concept) and (ABox)
satisfiability (see section 3.1.3).
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3.1.2. Syntax and Semantics

The DL family of knowledge representation formalism comprises many languages
which differ considerably in expressiveness and computational complexity. Descrip-
tion logics differ in the available constructors for the definition of concepts and roles
for terminological axioms and ABox assertions.

The minimal description logic of practical relevance is ALC (attribute language with
complement). ALC offers negation, conjunction, and disjunction of concepts as well
as universal and existential quantification of roles. The terminological axiom of Ex-
ample 3.1.1 is in ALC.

3.1.2.1. ALC Syntax

Description logics define a knowledge representation language based on application
dependent and application independent symbols. The application dependent symbols
consist of a set of atomic concepts representing classes of objects, a set of atomic
roles representing binary relations on objects, and a set of individuals representing
single objects of the application domain. Application independent symbols are the set
of connectives for building formulae. While application dependent symbols can be
arbitrarily chosen, the set of connectives is fixed for a given DL. The expressiveness
of a DL is determined by the available constructors for specifying concepts and roles.

Definition 3.1.4 (Application Dependent Symbols)

The countable set AS denotes the set of application dependent symbols of a description
logics.

AS is partitioned into three pairwise disjoint subsets:

• IV := AS\(AC ∪AR), the set of individuals,

• AC := AS\(IV ∪AR), the set of atomic concepts,

• AR := AS\(IV ∪AC), the set of atomic roles.
2

Example 3.1.5 (Application (In)dependent Symbols)

The application dependent symbols used in Examples 3.1.1 and 3.1.2 are:

AC = {WebDocument, Document,WebServer}
AR = {deliveredBy}
IV = {d, s}
AS = AC ∪AR ∪ IV

= {WebDocument, Document,WebServer, deliveredBy, d, s}
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The application independent symbols of Example 3.1.1 are

.= (concept equivalence)
u (concept conjunction or intersection)
∃· .· (existential quantification)

2

Definition 3.1.6 (ALC Concept Description)

Let A ∈ AC be an atomic concept and R ∈ AR an atomic role. Then the set of ALC
concept descriptions (or simply concepts) CALC is the minimal set of expressions that
are generated by the following syntax rule:

C, D −→ A | (atomic concept)
> | (top or universal concept)
⊥ | (bottom or empty concept)
¬C | (negation or complement)
C uD | (conjunction or intersection)
C tD | (disjunction or union)
∀R.C | (universal quantification or value restriction)
∃R.C (existential quantification)

2

Remark 3.1.7 (ALC Concept Description)

A concept description specifies a class of objects intensionally by describing the com-
mon properties of its instances. The semantics of ALC concept descriptions are de-
fined in Definition 3.1.22.

2

Example 3.1.8 (ALC Concept Description)

Let the set of atomic concepts AC and the set of atomic roles AR be as follows:

AC = {Document, WebDocument, WebServer}
AR = {delivers, deliveredBy}

Then the following are ALC concept descriptions:

Document (atomic concept)
∃deliveredBy.WebServer (existential quantification)
Document u ∃deliveredBy.WebServer (conjunction, ...)
∀delivers.(¬Document tWebDocument) (universal quantification, ...)
¬∃deliveres.∀deliveredBy.WebServer (negation, ...)
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The following are not ALC concepts:

deliveredBy (deliveredBy is not an atomic concept)
deliveredBy.WebServer (missing quantification)
∃¬deliveredBy.WebServer (negation of roles not allowed in ALC)
∃(deliveredBy t delivers).> (union of roles not available in ALC)
∀Document.WebDocument (quantification of concepts not allowed)

2

Remark 3.1.9 (Role Constructors)

There are description logics allowing for complex role expressions such as negation
and union of rules as shown in Example 3.1.8 [CG03].

Since complex role expressions are not supported by most available reasoning systems
(see section 3.1.5), we refrain from using such constructs in the course of this work.

2

Concept descriptions are the basic building blocks of terminological axioms and ABox
assertions.

Definition 3.1.10 (Terminological Axioms)

Let CALC be the set of ALC concepts for atomic concepts AC and atomic roles AR.
Then f is a terminological axiom iff f = C v D or f = C

.= D for some concepts
C, D ∈ CALC .

TAALC := {C v D | C, D ∈ CALC} ∪
{C .= D | C, D ∈ CALC}

denotes the set of ALC terminological axioms. 2

Remark 3.1.11 (Terminological Axioms)

In ALC, there are just two possible types of terminological axioms: concept implica-
tions or inclusions (C v D) and concept equivalences or equalities (C .= D).

C v D expresses that all instances of concept description C are also instances of
concept description D.

C
.= D expresses that the set of instances of concept description C is equal to the set

of instances of concept description D. The precise semantics is given in Definition
3.1.24.

Example 3.1.1 shows an instance of a terminological axiom. 2

46



3.1. Description Logics

Definition 3.1.12 (ALC TBox)

A TBox is a finite, possibly empty set of terminological axioms.

Let TAALC be the set of all ALC terminological axioms. Then T is an ALC TBox iff
T is a finite subset of TAALC .

2

Remark 3.1.13 (ALC TBox)

TBoxes represent schema-level knowledge about the domain of discourse. A TBox
defines general relationships between concepts (or classes), which hold at any time
for all possible objects of knowledge domain. Hence, a TBox can be considered as a
logic-based representation of an entity-relationship diagram or an UML class diagram.
It represents the static structure of the domain of discourse.

Other description logics support, in addition, the definition of role implications and
equivalences and further types of axioms. The set of axioms on roles is sometimes
called RBox.

2

Definition 3.1.14 (ABox Assertion)

Let CALC be the set of ALC concept descriptions, AR the set of atomic roles, and IV
the set of individuals. Then for C ∈ CALC , R ∈ AR, and a, b ∈ IV

• C(a) is a concept assertion.

• R(a, b) is a role assertion.

• nothing else is a concept or role assertion.

An ALC ABox assertion is either a concept assertion or a role assertion. AAALC
denotes the set of ALC ABox assertions.

2

Definition 3.1.15 (ALC ABox)

An ABox is a finite, possibly empty set of ABox assertions.

Let AAALC be the set of ALC ABox assertions. Then A is an ALC ABox iff A is a
finite subset of AAALC . 2

Definition 3.1.16 (ALC Knowledge Base)

KB is an ALC knowledge base iff there are an ALC TBox T and an ALC ABox A
such that KB := T ∪A.

2

47



3. Fundamental Methods

Example 3.1.17 (ALC TBox, ABox, Knowledge Base)

The following is anALC knowledge base about the domain of documents and servers:

KB = {
> v ∀deliveredBy.Server, 1)
∃deliveredBy.> v Document, 2)
Server uDocument v ⊥, 3)
WebDocument

.= Document u ∃deliveredBy.WebServer 4)
WebServer(s1) 5)
deliveredBy(d1, s1) 6)
deliveredBy(d1, s2) 7)
deliveredBy(d2, s2) 8)

}
Expressions 1) to 4) are terminological axioms comprising the TBox of KB. Expres-
sions 5) to 8) are assertions comprising the ABox of KB.

Axiom 1) is a range definition of role deliveredBy. It specifies that each object
(>) is only ”delivered by” an instance of concept Server, i.e. all individuals, which
appear in the range of role deliveredBy, are instances of Server. This is the case for
individuals s1 and s2 in assertions 6), 7), and 8), respectively.

Axiom 2) is a domain definition of role deliveredBy. It specifies that all objects,
which are delivered by something (∃deliveredBy.>), are instances of Document,
i.e. all individuals, which appear in the domain of role deliveredBy, are instances of
Document. This is the case for individuals d1 and d2 in assertions 6), 7), and 8),
respectively.

Axiom 3) is a disjointness axiom. It specifies, that no object is both an instance of
Server and an instance of Document.

Axiom 4) is a terminological definition. It defines the concept WebDocument as
being equal to documents that are delivered by at least one web server. As a result,
d1 is an instance of WebDocument since d1 is an instance of Document because of
Axiom 2) and, in addition, d1 is delivered by some web server as a consequence of
assertions 5) and 6). 2

Remark 3.1.18 (ALC TBox, ABox, Knowledge Base)

Most DL reasoning systems support a simplified syntax for the definition of domain,
range, and disjointness axioms.

ALC is not expressive enough for representing the function property of roles (e.g. each
document is delivered by exactly one server) or cardinality restrictions (e.g. each doc-
ument is delivered by at least two and at most three different servers). There are ex-
tensions toALC that enable the representation of the function property and cardinality
restrictions (see section 3.1.2.3). 2
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3.1.2.2. ALC Semantics

DL concept descriptions, terminological axioms, and ABox assertions are interpreted
w.r.t. a possibly infinite set of objects called interpretation domain and an associa-
tion of atomic concepts, atomic roles, and individuals to objects of the interpretation
domain. The semantics definition of a DL assigns to each terminological axiom and
ABox assertion a truth-value under a given interpretation. Hence, terminological ax-
ioms and ABox assertions can be seen as closed formulae that evaluate to true or false
within a given interpretation.

Definition 3.1.19 (DL Interpretation)

Let AC be the set of atomic concepts, AR the set of atomic roles, and IV the set of
individuals. A DL interpretation I is a pair (∆I , ·I ) where

• ∆I is a countable set of objects called interpretation domain.

• ·I is a function assigning each atomic concept A ∈ AC a set of objects AI ⊆
∆I , each atomic role R ∈ AR a binary relation RI ⊆ ∆I × ∆I , and each
individual a ∈ IV an object aI ∈ ∆I .

2

Example 3.1.20 (DL Interpretation)

Let AC = {Drama, Theater}, AR = {shownAt}, and IV = {ham,mac, shake,
kings}.

Let I = (∆I , ·I ) where

∆I = {Shakespeare, Hamlet, Othello,Macbeth,

KingsTheater,NationalP layhouse}
DramaI = {Hamlet, Othello, Macbeth}
TheaterI = {KingsTheater,NationalP layhouse}

shownAtI = {(Hamlet, KingsTheater), (Macbeth,NationalP layhouse)}
hamI = Hamlet

macI = MacBeth

shakeI = Shakespeare

kingsI = KingsTheater

Then I is a (possible) DL interpretation. 2
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Remark 3.1.21 (Unique Name Assumption)

Many reasoning systems for description logics apply the unique name assumption
(UNA) for the interpretation of individuals [BN03, HM01]. Under the unique name
assumption, the following holds for each interpretation I:

∀a, b ∈ IV : aI = bI → a = b

i.e. two different individuals are always interpreted as different objects of the interpre-
tation domain.

The interpretation of Example 3.1.23 meets the unique name assumption. If the inter-
pretation macI of individual mac were changed to macI = Hamlet, the UNA would
be violated. In the sequel, we always apply the UNA.

2

The semantics of concept descriptions is defined by extending the interpretation func-
tion ·I to concept descriptions by inductively defining the extended interpretation for
all concept constructors of the respective DL.

Definition 3.1.22 (Semantics of ALC Concept Descriptions)

Let I = (∆I , ·I ) be a DL interpretation for atomic concepts AC and atomic roles
AR. Let C,D ∈ CALC be ALC concepts. Then the extension of I to ALC concepts
descriptions is inductively defined as:

(>)I := ∆I

(⊥)I := ∅
(¬C)I := ∆I\CI

(C tD)I := CI ∪DI

(C uD)I := CI ∩DI

(∃R.C)I := {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I := {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI → b ∈ CI}

2
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Example 3.1.23 (Semantics of ALC Concept Descriptions)

Under the interpretation I of Example 3.1.20 we get:

>I = ∆I = {Shakespeare,Hamlet, Othello, Macbeth,

KingsTheater,NationalP layhouse}
⊥I = ∅

(Theater uDrama)I = TheaterI ∩DramaI = ∅
¬(Theater tDrama)I = ∆I\(TheaterI ∪DramaI) = {Shakespeare}

(∃shownAt.>)I = {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ shownAtI ∧ b ∈ >I}
= {Hamlet,Macbeth}

(∀shownAt.Theater)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ shownAtI →
b ∈ TheaterI} = ∆I

(∀shownAt.¬Theater)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ shownAtI →
b ∈ ∆I\TheaterI}

= {Shakespeare,Othello, KingsTheater,

NationalP layhouse}

Note that ∀shownAt.¬Theater is equivalent to ¬∃shownAt.Theater and hence
is interpreted as the set of objects of the interpretation domain ∆I that are not
shown at any theater. Since the set of objects, which are shown at some theater, is
{Hamlet,Macbeth} (see Example 3.1.20), we get

(∀shownAt.¬Theater)I

= (¬∃shownAt.Theater)I = ∆I\{Hamlet, Macbeth}
= {Shakespeare,Othello, KingsTheater,NationalP layhouse}

2

Based on the extended interpretation, it is possible to define when a terminological
axiom or ABox assertion holds w.r.t. a given interpretation.

Definition 3.1.24 (Semantics of Axioms and Assertions)

Let C,D ∈ CALC be ALC concept descriptions, R ∈ AR an atomic role, and a, b ∈
IV individuals. Let I be an interpretation extended to concept descriptions.

Then

I |= C v D iff CI ⊆ DI

I |= C
.= D iff CI = DI

I |= C(a) iff aI ∈ CI

I |= R(a, b) iff (aI , bI) ∈ RI
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For an axiom or assertion f , I |= f is read as ”f is true in I” or ”f holds in I” or ”f
is valid in I” or ”I satisfies f” or ”I is a model of f” . 2

Example 3.1.25 (Semantics of Axioms and Assertions)

Let I be the interpretation as of Example 3.1.20. Then the following holds:

I |= Drama(ham) because hamI ∈ DramaI

I 6|= shownAt(mac, kings) because (macI , kingsI) 6∈ shownAtI

I |= (∃shownAt.>)(mac) because macI ∈ (∃shownAt.>)I (cf. Exam-
ple 3.1.23)

I |= Drama u Theater v ⊥ because (DramauTheater)I ⊆ ⊥I (cf. Ex-
ample 3.1.23)

I |= > .= ∀shownAt.Theater because >I = (∀shownAt.Theater)I

(cf. Example 3.1.23)
I 6|= Drama v ∃shownAt.> because DramaI 6⊆ (∃shownAt.>)I

(cf. Examples 3.1.20 and 3.1.23)
2

The |= relationship between interpretations and axioms/assertions can be extended to
knowledge bases in the following way.

Definition 3.1.26 (Models of DL Knowledge Bases)

Let KB be an ALC knowledge base and I an interpretation.

Then I |= KB (read I is a model of KB or I satisfies KB) iff I |= f for each
axiom/assertion f ∈ KB. 2

Example 3.1.27 (Models of DL Knowledge Bases)

Consider the following TBox and ABoxes:

T = {Drama u Theater v ⊥,

> .= ∀shownAt.Theater}
A1 = {shownAt(ham, kings)}
A2 = {Drama(kings)}

Let I be the interpretation of Example 3.1.20. Then

I |= T (cf. Example 3.1.25)
I |= T ∪A1 (cf. Examples 3.1.25 and 3.1.20)
I 6|= A2 (cf. Example 3.1.20)
I 6|= T ∪A1 ∪A2 because I 6|= Drama(kings)

2
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Not all knowledge bases actually have a model. If a knowledge base contains logical
contradictions there is no interpretation that satisfies every axiom and assertion of the
knowledge base.

Definition 3.1.28 (Consistent Knowledge Base)

Let KB be an ALC knowledge base. Then KB is consistent (or satisfiable) iff it has
a model I |= KB.

2

Example 3.1.29 (Consistent Knowledge Base)

Consider the TBox T and ABoxes A1 and A2 of Example 3.1.27. Then T ∪A1 is con-
sistent because the interpretation of Example 3.1.20 is a model of T ∪A1 (cf. Example
3.1.27).

Also, T ∪ A2 is consistent because I = (∆I , ·I ) where ∆I = {KingOfBeggars},
DramaI = {KingOfBeggars}, TheaterI = ∅, shownAtI = ∅, kingsI =
KingOfBeggars is a model of T ∪A2.

In contrast, T ∪ A1 ∪ A2 is not consistent. Assume, there were an interpretation
I |= T ∪A1 ∪A2.

Then A2 implies kingsI ∈ DramaI . As a consequence of ABox A1 and axiom
> .= ∀shownAt.Theater in T , it holds: kingsI ∈ TheaterI .

The fact, that kingsI ∈ DramaI and kingsI ∈ TheaterI , violates axiom Drama u
Theater v ⊥, i.e. I 6|= Drama u Theater v ⊥.

This is a contradiction to the assumption I |= T ∪ A1 ∪ A2 and thus T ∪ A1 ∪ A2 is
shown to be inconsistent.

2

Remark 3.1.30 (Consistency of Knowledge Bases)

There are sound and complete algorithms for checking the consistency of knowledge
bases in ALC and most relevant description logics (see section 3.1.4).

2

Definition 3.1.31 (Logical Implication)

Let KB be an ALC knowledge base and f be an ALC axiom or assertion. Then
KB |= f (read KB logically implies f or KB entails f ) iff all models of KB are
models of f :

∀I : I |= KB → I |= f

2
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Example 3.1.32 (Logical Implication)

Let T be the TBox and A1, A2 be the ABoxes of Example 3.1.27. Then

T |= Theater v ¬Drama

T 6|= Drama v ∃shownAt.Theater

T ∪A1 |= Theater(kings)
T ∪A1 |= ¬Drama(kings)
T ∪A1 |= (∃shownAt.Theater)(ham)
T ∪A1 6|= Drama(ham)
T ∪A1 6|= ¬Drama(ham)

T ∪A1 ∪A2 |= Drama(kings)
T ∪A1 ∪A2 |= ¬Drama(kings)
T ∪A1 ∪A2 |= > .= ⊥

Since knowledge base T ∪ A1 ∪ A2 does not have a model, it trivially implies any
axiom or assertion.

2

Remark 3.1.33 (Logical Implication)

Axioms and assertions not contained in a given knowledge base KB but logically
implied by KB are called implicit knowledge represented by KB.

Example 3.1.32 shows that inconsistent knowledge bases are not suitable for deriving
implicit knowledge because they logically imply any axiom or assertion.

2

It is shown that satisfiability and logical implication are decidable for ALC and also
most other relevant description logics [BN03, CG03, Don03]. Sound and complete
algorithms for deciding logical implication exist [BN03].

Satisfiability and logical implication form the basis for standard inference services for
description logics (section 3.1.3). These are powerful concepts since they are abstract
from a given interpretation I of a DL knowledge base but are defined w.r.t. all possible
interpretations. As a result, logical implications also hold for interpretation domains
that are infinite or only partially known.
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3.1.2.3. Expressive Description Logics

Expressive description logics extendALC by adding various concept constructors and
introducing role constructors. Expressive description logics such as SHIQ [HST00]
and SHOQ(D) [HS01a, PH02] have gained relevance in the context of the semantic
web because they build the formal foundations of the W3C standards for web ontology
languages (OWL) [W3C04a]. Possible additional constructors for concept descrip-
tions include [BCM+03, CG03]:

• qualified number restrictions on roles:

∃≤nR.C represents the set of objects that have at most n R role fillers being
instances of C:

(∃≤nR.C)I := {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n}
∃≥nR.C represents the set of objects that have at least n R role fillers being
instances of C:

(∃≥nR.C)I := {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n}
• transitive roles: let R be a role. Then R+ is interpreted as the transitive closure

of the interpretation of R, i.e. (R+)I := {(a, b) ∈ ∆I ×∆I | ∃a0, ..., an ∈ ∆I :
a0 = a ∧ an = b ∧ ∀i ∈ {1..n} : (ai−1, ai) ∈ RI}.

• inverse roles: R− denotes the inverse of role R ∈ AR such that

R−I := {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}.

• role hierarchies: For roles S, R ∈ AR, the axiom S v R expresses

I |= S v R iff SI ⊆ RI for some interpretation I .

• nominals: nominals enable constructing concepts by enumerating finite sets of
individuals.

{i1, i2, ..., in}, where i1, i2, ..., in ∈ IV , denotes a concept that is interpreted as
{i1, i2, ..., in}I := {iI1, iI2, ..., iIn}.

• and others (cf. [BN03, CG03]).

Some of the most relevant expressive description logics are SHIQ and SHOIQ
[Tob01]. SHIQ is ALC extended by transitive closure of roles, role hierarchies,
inverse roles and qualified number restrictions. SHIQ is supported by many DL rea-
soning systems [HM01, Hor98, SPG+07]. SHOIQ adds nominals to SHIQ and
closely resembles the expressiveness of the knowledge representation standard OWL-
DL [W3C04a].

Note that there are subtle restrictions to the use of qualified number restrictions in
SHIQ and SHOIQ. These are put in place to preserve satisfiability [Don03].
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3.1.3. Inference Services

Inference or reasoning services for description logics can be divided into reasoning
services for knowledge bases with an empty ABox on the one hand and a nonempty
ABox on the other. In the sequel,DL denotes an arbitrary decidable description logics
such as ALC , SHIQ, or SHOIQ.

3.1.3.1. Inference Services for TBoxes

Standard inference services for a DL TBox T include [BN03]:

• satisfiability check: a concept description C ∈ CDL is satisfiable w.r.t. T iff
there is a model I |= T such that CI 6= ∅. Unsatisfiable concepts within a TBox
usually indicate a severe modelling error that can easily lead to inconsistent
knowledge bases when adding ABox assertions.

• subsumption check or classification of concepts: subsumption check is deciding
if T |= C v D for DL concept descriptions C,D ∈ CDL. If T entails C v D
then D subsumes C w.r.t. T , i.e. all instances of C are also instances of D. D
can be seen as a generalization of C or, conversely, C as a specialization of D.

It can easily be shown that the subsumption relation on concepts w.r.t. a TBox is
a partial order and hence defines a directed acyclic graph on concepts of a TBox.
Arranging concepts of a TBox along their subsumption order is called classifi-
cation of concepts. The generalization/specialization hierarchy of concepts of
a TBox provides useful information on the structure of the represented domain
and can be used for speeding up queries.

• equivalence check: equivalence check is deciding if T |= C
.= D for DL con-

cepts C,D ∈ CDL. Concepts, which describe the same class of objects, can be
seen as synonyms. Synonyms may indicate unintended redundancies within the
knowledge base. Equivalences are useful for simplifying concept descriptions
and speeding up queries.

• checking for disjoint concepts: this is deciding if T |= C u D
.= ⊥ for DL

concepts C, D ∈ CDL. It can be important to prove that two different concepts
cannot share any instances.

It is shown that all inference services can be reduced to either satisfiability or sub-
sumption [BN03]. Hence, if satisfiability is decidable then all standard inference tasks
are decidable.
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3.1.3.2. Inference Services for TBoxes and ABoxes

When combining a TBox T with an ABox A, further reasoning services may be useful.
Let KB := T ∪ A be a knowledge base containing both a TBox and an ABox. Then
the following standard inference services for KB can be distinguished:

• consistency check: KB is consistent, if there is a model I |= KB (cf. Definition
3.1.28). It is important to discover inconsistent knowledge bases since they
logically imply any statement (cf. Example 3.1.32) and hence cannot be used for
reasoning services based on logical implications as listed in the previous section
3.1.3.1. Note thatALC TBoxes cannot be inconsistent because the interpretation
I with empty domain ∆I is a model of any TBox. However, TBoxes can contain
unsatisfiable concepts, which may lead to an inconsistent knowledge base when
adding an ABox. Hence, it is important to discover unsatisfiable concepts in
TBoxes (section 3.1.3.1).

• instance check: this is deciding whether KB |= C(a) or KB |= R(a, b) for a
DL concept description C ∈ CDL, a role R ∈ RDL, and individuals a, b ∈ IV .
RDL denotes the set of role expressions of description logic DL. RALC is
equal to the set of atomic roles AR because ALC does not provide any role
constructors.

• instance retrieval: let IVKB denote the set of individuals that appear in some
axiom or assertion of knowledge base KB. Then instance retrieval determines
the set {a ∈ IVKB |KB |= C(a)} for a DL concept description C ∈ CDL.

• classification of individuals: this is determining the set of concepts an individual
is an instance of. Let ACKB be the set of atomic concepts that appear in some
axiom or assertion of knowledge base KB. Then classification of individuals
is determining the set {A ∈ ACKB | KB |= A(a)} for an individual a ∈
IV . A variant of classification is realization [BN03, Don03]. Realization is
determining the set of most specific concepts an individual a ∈ IV is instance
of. This is the set

{A ∈ ACKB |KB |= A(a) ∧ ∀A′ ∈ ACKB\{A} : KB |= A′ v A → KB 6|=
A′(a)}.

Realization is used for determining the most specific terms for characterizing
properties of a certain object.

• role filler retrieval: let IVKB denote the set of individuals that appear in knowl-
edge base KB. Then role filler retrieval is determining the set

{b ∈ IVKB |KB |= R(a, b)} for a DL role R ∈ RDL and an instance a ∈ IV .

The inference services instance retrieval and role filler retrieval are often used as stan-
dard query mechanisms to DL knowledge bases. All of the inference services above
can be reduced to consistency checking [BCM+03].
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3.1.4. Properties of Relevant Description Logics

An important property of most relevant description logics is the decidability of satis-
fiability of concept descriptions and the decidability of knowledge base consistency.
Any other standard inference service as listed in sections 3.1.3.1 and 3.1.3.2 can be
reduced to concept satisfiability or knowledge base consistency [BN03].

Decidable description logics include:

• ALCN which is ALC with unqualified number restrictions [BN03].

• SHIQ [Tob01]

• SHOIQ [Tob01]

• and many more [BCM+03]

There are a number of sound and complete algorithms for checking knowledge base
consistency. Most current reasoning systems implement some form of tableau algo-
rithm [BN03]. Tableau calculi consist of a sound and complete set of transformation
rules for exhaustively expanding the ABox of a given knowledge base to equivalent
ABoxes in which logical contradictions become obvious. A new approach claimed to
be more efficient for knowledge bases with large ABoxes reduces DL knowledge bases
to disjunctive Datalog [HMS04a, HMS04b].

Besides the decidability, the computational complexity of DL inference services is
most relevant for practical applications. Unfortunately, checking the satisfiability of
quite simple description logics is already exponential in the size of the knowledge
base. On the other hand, adding more expressiveness does not add much to the com-
putational complexity of a description logic.

Some complexity results for relevant description logics are:

• checking satisfiability of AL concept descriptions w.r.t. a nonempty TBox is
EXPTIME-hard [Don03]. AL isALC without complement and with a restricted
form of existential quantification [BN03].

• checking consistency of SHIQ knowledge bases (including a TBox) is
EXPTIME-complete [Tob01].

• checking consistency of ALCFIO [Lut04] knowledge bases is NEXPTIME-
hard [CG03, Tob00]. ALCFIO isALC extended with functional roles, inverse
roles, and nominals (see section 3.1.2.3).

• reasoning in SHOIQ knowledge bases is NEXPTIME-complete [Tob01].

• reasoning in OWL-Lite [W3C04a] is EXPTIME-complete. This is because
OWL-Lite contains AL and is contained in SHIQ.
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• reasoning in OWL-DL [W3C04a] – a widely supported knowledge represen-
tation standard – is NEXPTIME-complete. This is because OWL-DL contains
ALCFIO and is contained in SHOIQ.

In summary, reasoning in most relevant description logics is at least EXPTIME-hard.
Fortunately, in practical applications an exponential blow up can often be avoided.
However, much care must be taken in structuring the knowledge base for avoiding an
exponential blow up.

3.1.5. Reasoning Systems

There are a number of free and commercial systems offering standard inference ser-
vices for expressive description logics. Most of them apply tableau calculi. In the
sequel, we briefly introduce state-of-the-art reasoning systems adopted for the imple-
mentation and evaluation of this work.

• Racer, a DL reasoning server implemented in LISP, has been developed in 1997
and since then continuously improved at the Concordia University Montreal and
Hamburg University of Technology [HM01]. An extended commercial version
of Racer, called RacerPro, has become available recently [Rac07].

Both systems support knowledge bases in SHIQ extended with concrete do-
mains and constraint reasoning. The standard inference services of Racer and
RacerPro base on tableau calculi with many optimizations. Racer and especially
RacerPro provide a number of non-standard inference services such as rules,
constraint reasoning, and conjunctive queries with negation as failure and ag-
gregation.

Racer and RacerPro support the DIG interface [BMC03] and other interfaces
for the communication with client applications. DIG is a standard HTTP- and
XML-based protocol for submitting knowledge bases and queries to a reason-
ing system and receiving reasoning results. RacerPro supports, in addition, the
RDF-query language SPARQL [W3C07a] and different completeness levels that
enable reducing the completeness of reasoning results in favour of performance.

• Pellet [SPG+07] is an open source reasoning system developed at the Uni-
versity of Maryland’s Mindswap Lab. Pellet is implemented in Java and ap-
plies different tableau algorithms and optimizations. Pellet supports, at cur-
rent, SHOIQ(D), which is SHOIQ extended with concrete domains (such as
string, integer). In addition, Pellet handles full OWL-DL [W3C04a] and many
features of OWL 1.1 [PSH07]. SPARQL [W3C07a] is supported as query lan-
guage to OWL and RDF data. Clients can communicate with Pellet by DIG and
other standard interfaces.
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3.2. Temporal Logics

3.2.1. Introduction

Temporal logics are a special type of modal logic [Eme90] for representing time-
dependent properties of domains. Standard logics express statements that hold (or
do not hold) independently from time such as ”a web document is a document that is
delivered by a web server” (cf. Example 3.1.1).

In contrast, temporal logics provide a set of temporal operators for describing the
change of truth of statements over time. An example of such a statement is ”when-
ever a web server is off-line it will be on-line again by the next day.” This statement
can be represented in propositional linear temporal logic (LTL) as

G (¬WebServerOnline → X WebServerOnline)

The informal interpretation of this formula is: at any time (G) holds: if statement
¬WebServerOnline holds then statement WebServerOnline holds at the next (X)
point in time.

G (globally) and X (next) are temporal connectives that specify the points in time at
which a proposition or formula holds.

In 1977, temporal logics have been discovered as a particular useful formalism for
representing properties of infinitely running concurrent processes of operating systems
and network communications [Pnu77]. After the advent of efficient verification meth-
ods [BCMH92, McM92], temporal logics are routinely applied for verifying properties
of hardware, software, and business processes [BBF+01, BDSV05]. Further applica-
tions include the specification of reactive and concurrent systems [MP92], the verifi-
cation of hardware/software protocols [McM92], the support of manual and automatic
program composition [FSMZ95, SFC+94], and, finally yet importantly, the verifica-
tion of documents and hypermedia applications [HH06, SDM+05, SFC98, SFR92,
SN02, TA96, TL97].

3.2.2. Syntax and Semantics of CTL

There is a variety of approaches to defining a temporal logics. [Eme90] gives a char-
acterization of different types of temporal logics. Most relevant in the context of this
work is computation tree logic (CTL).

CTL is a propositional, branching time, future tense temporal logic evaluated w.r.t. dis-
crete points of time. In CTL, time is modelled as a structure with deterministic past
and non-deterministic future, i.e. at each moment the flow of time may take one of sev-
eral possible directions. CTL allows to distinguish properties, which should hold at all
paths, from properties, which should hold at some path within a given structure. This
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is particularly useful for representing criteria for non-linearly structured documents.
As a result, CTL is frequently adopted in document verification (section 2.4.2).

CTL defines a language over a set of application dependent symbols and a set of appli-
cation independent symbols. In the case of CTL, there is only one kind of application
dependent symbols: the countable set of atomic propositions denoted as AP . Atomic
propositions represent atomic statements, which can be either true or false at a given
point in time. Application independent symbols comprise a fixed set of connectives as
defined by the syntax of CTL [HR04].

Definition 3.2.1 (CTL Syntax)
The set of CTL formulae is the minimal set of expressions, which are generated by the
following syntax rule for atomic propositions a ∈ AP :

p, q −→ a | (atomic formula)
> | (true)
⊥ | (false)
¬p | (negation)
p ∧ q | (conjunction)
p ∨ q | (disjunction)
p → q | (implication)
AX p | EX p | (all paths / some path next p)
AF p | EF p | (all paths / some path future p)
AG p | EG p | (all paths / some path globally p)
A(p U q) | E(p U q) (all paths / some path p until q)

2

Remark 3.2.2 (Extended CTL Syntax)
The derived connectives W (weak until) and B (before) are commonly used. They are
defined as follows:

A(p W q) := ¬E(¬q U (¬q ∧ ¬p)) (all paths p weak until q)
E(p W q) := E(p U q) ∨ EG p (some path p weak until q)
A(p B q) := ¬E(¬p U q) (all paths p before q)
E(p B q) := ¬A(¬p U q) (some path p before q)

2

CTL can be used for representing properties of web sites (cf. [SFC98], for instance).
A web site can be modelled as a hypertext graph (P, L) where the set of nodes P
represents the pages of the web site and the set of edges L ⊆ P × P represents the
hyperlinks between the pages of the web site. Interesting properties of browsing paths
within such a hypertext graph (P, L) can be represented by CTL as demonstrated by
the subsequent example of CTL formulae.
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Example 3.2.3 (CTL Syntax)

For modelling properties of pages of a web site, let for the set AP of atomic proposi-
tions hold

AP ⊇ {home, impressum, help, public, submit, cancel, acknowledge, login,

logout}

Then the following are CTL formulae:

> true
home atomic formula: home holds (at current)
EF impressum on some path impressum holds eventually,

i.e. the ”impressum” of a web site is reachable
from the current page.

EG public there is some path such that in every state
public is true, i.e. the user can remain within
the public part of a web site forever.

AG EF home on all paths holds globally that there is
some path on which home is true eventually,
i.e. at any point within a web site home is
reachable.

AG EX help on all paths holds globally that at some next
state help is true, i.e. at any point help is
reachable within one step.

AG (login → AF logout) whenever the user logs in, he/she must even-
tually log out.

AG (login → AG EF logout) whenever the user logs in, he/she may remain
logged in forever but has always the possibil-
ity to eventually log out.

AG(submit → EX cancel whenever the user submits some data, it can
∧ EX acknowledge) be cancelled in some next step and acknowl-

edged in some (other) step.
¬E(¬login U ¬public) there is no path on which the user has never

logged in until a non-public part of the web
site is reached.

The following are not CTL formulae because in CTL the temporal connectives
X,F, G, U always need to paired with a path quantifier E or A.

E¬G public
AFG public
AG(submit → X cancel ∨ X acknolwedge)

These latter formulae are expressible in an extension of CTL called CTL∗ [Eme90]. 2
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CTL formulae are interpreted on labelled state transition systems of the following
form.

Definition 3.2.4 (CTL Temporal Structure)

A CTL temporal structure is a triple M = (S, R, L) where

• S is a nonempty set of states.

• R ⊆ S × S is a left-total binary transition relation on S.

• L : S → P(AP ) is a labelling of states such that L(s) is the set of atomic
propositions that hold at state s ∈ S. 2

Remark 3.2.5 (CTL Temporal Structure)

Labelled finite state transition systems (S,R, L) are also referred to as Kripke struc-
tures [BBF+01, CGP02c]. 2

The semantics of temporal connectives is defined w.r.t. full paths within a temporal
structure (S, R,L).

Definition 3.2.6 (Full Paths in Temporal Structures)

Let S be a set of states and R ⊆ S × S a left-total state transition relation.

Then an infinite sequence of states (s0, s1, s2, ...) is a full path in (S,R) iff (si, si+1) ∈
R for i ∈ N.

FPs := {(s0, s1, s2, ...) ∈ S∞ | s0 = s ∧ ∀i ∈ N : (si, si+1) ∈ R} denotes the set of
full paths starting from a state s ∈ S. 2

CTL temporal structures model processes in terms of states and state transitions.
Properties of states (for instance values of variables) are represented by sets of
atomic propositions or Boolean variables, which are true at a given state. This way,
also browsing processes in hypertext documents can be represented [dA01, HH06,
SDM+05, SFC98, SFR92, SN02] as shown by the following example.

Example 3.2.7 (CTL Temporal Structure)

Let M = (S, R,L) where

S = {s0, s1, s2, s3}
R = {(s0, s1), (s1, s2), (s1, s0), (s2, s3), (s3, s0)}
L = {s0 7→ {public, home}, s1 7→ {public, login},

s2 7→ {welcome, help}, s3 7→ {logout}}
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s0

s1

s2

public

home

public

login 

welcome

help

s3 logout

Figure 3.1.: a simple temporal structure

Figure 3.1 depicts the temporal structure M as defined above.

The temporal structure models part of a web site consisting of a public home page s0, a
login window s1, a welcome page s2 with help on what can be done next, and a logout
window s3.

The truth of CTL formulae such as AG EF home and AG(login → AF logout) (cf. Ex-
ample 3.2.3) can be evaluated w.r.t. M . Whether the CTL structure M satisfies a
CTL formula p is determined by the formal semantics of CTL connectives (Definition
3.2.8).

2

The semantics of CTL defines when a CTL formula p is true in a structure M =
(S, R,L) at a state s ∈ S, in symbols: M, s |= p.

Definition 3.2.8 (Semantics of CTL)

Let M = (S, R,L) be a temporal structure (Definition 3.2.4), and s0 ∈ S a state. Let
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a ∈ AP be an atomic proposition and p, q CTL formulae. |= is inductively defined as

M, s0 |= >
M, s0 6|= ⊥
M, s0 |= a iff a ∈ L(s0)
M, s0 |= p ∧ q iff M, s0 |= p and M, s0 |= q
M, s0 |= ¬p iff M, s0 6|= p
M, s0 |= p ∨ q iff M, s0 |= ¬(¬p ∧ ¬q)
M, s0 |= p → q iff M, s0 |= ¬p ∨ q
M, s0 |= EX p iff ∃(s0, s1, ...) ∈ FPs0 : M, s1 |= p
M, s0 |= AX p iff ∀(s0, s1, ...) ∈ FPs0 : M, s1 |= p
M, s0 |= E(p U q) iff ∃(s0, s1, ...) ∈ FPs0 ∃i ∈ N : (M, si |= q

and ∀j ∈ {0, ..., i− 1} : M, sj |= p)
M, s0 |= A(p U q) iff ∀(s0, s1, ...) ∈ FPs0 ∃i ∈ N : (M, si |= q

and ∀j ∈ {0, ..., i− 1} : M, sj |= p)
M, s0 |= EF p iff M, s0 |= E(> U p)
M, s0 |= AF p iff M, s0 |= A(> U p)
M, s0 |= EG p iff M, s0 |= ¬AF ¬p
M, s0 |= AG p iff M, s0 |= ¬EF ¬p

A temporal structure M = (S,R, L) together with a state s ∈ S is a (temporal) model
of a CTL formula p iff M, s |= p.

2

Example 3.2.9 (Semantics of CTL)

Let M be the temporal structure of Example 3.2.7. Then

M, s0 |= home (3.1)

M, s1 6|= home (3.2)

M, s2 |= ¬public ∧ help (3.3)

M, s0 |= EG public (3.4)

M, s0 |= AG EF home (3.5)

M, s0 |= AG AF home (3.6)

M, s0 |= AG(login → EF logout) (3.7)

M, s0 6|= AG(login → AF logout) (3.8)

M, s0 |= AG(login → AG EF logout) (3.9)

M, s0 |= ¬E(¬login U ¬public) (3.10)

M, s2 6|= ¬E(¬login U ¬public) (3.11)
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The first three of the equations above are a direct result of the labelling L of states.

The formula of Equation (3.4) holds in s0 because p = (s0, s1, s0, s1, ...) is a full path
in (S,R) such that for each state s of p holds public ∈ L(s).

Equation (3.5) holds because s0 (the state where atomic proposition home holds) is
reachable from any of the other states s1, s2, and s3.

Equation (3.6) holds because s0 is eventually reached on any path from any state s ∈ S.

Equation (3.7) holds because state s3, in which logout holds, is reachable from state
s1, in which login holds.

Equation (3.8) does not hold because an infinite path (s1, s0, s1, s0, s1, ...) starts from
s1 (in which login holds) such that s3 is never reached and hence atomic proposition
logout never holds. This is a counterexample to the formula AG(login → AF logout).

Equation (3.9) holds because s3 (logout) is reachable from every state that is reachable
from s1 (login).

Equation (3.10) holds because there is no path starting from s0, which reaches state
s2 or s3 (in which ¬public holds) without passing through state s1 (in which login
holds).

Equation (3.11) does not hold because ¬public holds in state s2 and thus also M, s2 |=
E(¬login U ¬public) which contradicts M, s2 |= ¬E(¬login U ¬public). 2

3.2.3. Other Temporal Logics

If path quantifiers E and A are omitted in the syntax definition of CTL (Definition
3.2.1), we get LTL (propositional linear temporal logic). LTL is usually interpreted
w.r.t. single time lines isomorphic to (N, <) [Eme90]. However, LTL formulae can
also be interpreted w.r.t. Kripke structures (S, R,L). A LTL formula p is satisfied by a
Kripke structure (S,R, L) at state s ∈ S iff p holds for all full paths f ∈ FPs within
(S, R) originating from s [CGP02d, HR04].

Surprisingly, the complexity of LTL model checking is higher than the complexity of
CTL model checking [Eme90, Sch03] and neither CTL contains LTL nor vice versa
[CGP02d, HR04]. A relevant class of criteria, which are expressible in LTL but not in
CTL, are fairness properties [BBF+01].

A branching temporal logic that contains both LTL and CTL is CTL∗ [CGP02d].
As opposed to CTL, CTL∗ allows temporal connectives in formulae also without
pairing them with a path quantifier E or A (see Example 3.2.3). For instance,
AFG terminated (”on all paths eventually a state is reached from which on the process
will be terminated forever”) is in CTL∗ but not in CTL (cf. [CGP02d]).

Unfortunately, the increased expressiveness of CTL∗ also results in a higher compu-
tational complexity and more complex model checking algorithms as compared to
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CTL [Eme90, Sch03]. As a result, CTL∗ is not well-supported by verification systems
[Sch03].

There are also various temporal extensions to description logics [AF01]. First point-
based temporal extensions of the description logics have been suggested by Schild
[Sch93]. Schild’s logic ALCT extends ALC by temporal connectives 2 (always in
the future), 3 (eventually in the future), © (next moment), U (until), and U (reflex-
ive until) in concept descriptions and terminological axioms [AF01]. A much cited
example of Schild’s temporal description logic is [AF01, BKW03]:

Mortal
.= LivingBeing u (LivingBeing U 2¬LivingBeing)

”Mortals are living beings and they are living begins until they are dead forever.”

Point-based linear temporal description logics are interpreted on structures M =
〈T, I〉 where T is a countable linearly ordered set representing a single flow of time
and the temporal interpretation I is a function associating every point t ∈ T with an
interpretation I(t) = 〈∆I,t, ·I,t〉 [BKW03].

The semantics of temporal concept descriptions is then defined w.r.t. structures M at
a point t ∈ T. For instance, the semantics of the until operator U applied to concept
descriptions C and D is [BKW03]:

x ∈ (C U D)I,t iff there is t′ ∈ T, t′ > t such that x ∈ DI,t′ and for each t′′ ∈ T,
t < t′′ < t′ holds: x ∈ CI,t′′ .

CI,t denotes the (temporal) interpretation of concept C at time t ∈ T in structure
M = 〈T, I〉.
The validity of terminological axioms can be ”temporalized”, too. For instance, for
concept descriptions C, D, E, F , the temporal axiom (C v D) U (E v F ) holds in
M at time t, in symbols M, t |= (C v D) U (E v F ), iff EI,t′ ⊆ F I,t′ for some
t′ ∈ T, t′ > t and CI,t′′ ⊆ DI,t′′ for each t′′ ∈ T, t < t′′ < t′.

Branching time extensions to description logics are described in [HWZ01, HWZ02]. A
detailed comparison of existing temporal description logics with the temporal descrip-
tion logic ALCCTL, which is proposed for the specification of semantic document
properties, is given in section 6.5.

3.2.4. Model Checking CTL

3.2.4.1. The Model Checking Problem

Determining whether a given finite temporal structure is a model of a given CTL for-
mula as demonstrated in Example 3.2.9 is called model checking.

CTL model checking is feasible for temporal structures with more than 1020 states
[BCMH92] by using a compact symbolic representation of the temporal structure M
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[CGP02c, McM92]. CTL model checking has become a widely adopted method in
hardware/software verification as soon as efficient algorithms for model checking CTL
have been available. In contrast, standard applications of description logics are based
on satisfiability or logical entailment (cf. section 3.1.3).

Definition 3.2.10 (CTL Model Checking Problem)

Let M = (S, R, L) be a CTL temporal structure such that S is nonempty and finite.
Let p ∈ CTL be a finite CTL formula. Then the CTL model checking problem is to
determine the set {s ∈ S |M, s |= p} [CGP02e].

2

Remark 3.2.11 (CTL Model Checking Problem)

Sometimes, the CTL model checking problem is restricted to a chosen nonempty set
of initial states S0 ⊆ S (cf. [HR04]). Then a temporal structure (S,R, L) satisfies a
CTL formula p iff S0 ⊆ {s ∈ S | (S,R, L), s |= p}.

2

Theorem 3.2.12 (CTL Model Checking Complexity)

The CTL model checking problem for a CTL formula p and a finite CTL structure
(S, R,L) can be solved inO(|p| ·(|S|+ |R|)) time [CGP02e, HR04] where |p| denotes
the number of sub-expressions in formula p.

2

Remark 3.2.13 (CTL Model Checking Complexity)

CTL model checking scales linearly in the sizes of the temporal structure M and for-
mula p and hence can be efficiently solved even for large formulae and structures.

However, in many hard-/software verification problems the size of the temporal struc-
ture grows exponentially in the size of the ”high level description” of a process/algo-
rithm. This is referred to as state explosion problem in literature [BBF+01]. When
representing programs in terms of a CTL temporal structure, a state represents a pos-
sible assignment of variables during the execution of a program and the set of states
represents the possible combinations of variable assignments that can occur during the
program’s execution. As a result, every new Boolean variable may double the number
of states of the program in execution.

The problem becomes even worse in the case of loosely coupled concurrent processes
[McM92]. Suppose, a system runs n instances of a process P each of which can be
in one of |S| different states. If the state transitions of each process are independent
of the state transitions of the other processes, the total number of states of the system
is |S|n (cf. [BBF+01]). In such a scenario, the explicit representation of the temporal
structure as a graph of states and transitions becomes quickly intractable.

2
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An important feature of CTL model checking is the availability of finite counterex-
amples if a formula p ∈ CTL is violated in a verified temporal structure M at state s
[CGP02c].

Counterexamples are finite violating paths within the state transition system, also
called execution trace [CCJ+07]. An execution trace is a finite prefix of a full path
within the model (S, R, L) from a starting state s ∈ S.

Definition 3.2.14 (Execution Trace)

Let S 6= ∅ be a finite set of states, R ⊆ S × S a left-total state transition relation, and
s ∈ S a state. Let FPs be the set of full paths in (S, R) starting from s (Definition
3.2.6).

The set of execution traces in (S, R) starting from s, denoted as ETS,R,s, is the set of
finite prefixes of some full path (si)i∈N ∈ FPs:

ETS,R,s := {(s′0, ..., s′n) ∈ Sn+1 | ∃(si)i∈N ∈ FPs ∀i ∈ {0..n} : si = s′i}
2

Remark 3.2.15 (Execution Trace)

It is shown that a violation of a CTL formula p in a finite temporal structure M can
always be demonstrated by a finite prefix of a violating full path [CGP02c].

2

Example 3.2.16 (Counterexample)

Let M = (S, R, L) be the temporal structure of Example 3.2.7. Consider the formula
AG(login → AF logout) that does not hold in M at state s0 (cf. Equation (3.8) of
Example 3.2.9):

M, s0 6|= AG(login → AF logout)

Then (s0, s1, s0) ∈ ETS,R,s0 is a counterexample to

M, s0 |= AG(login → AF logout)

This is because (s0, s1, s0) demonstrates that there must be a full path (s′i)i∈N =
(s0, s1, s0, s1, s0, s1, ...) ∈ FPs0 such that login holds at state s′1 = s1 in (s′i)i∈N
but logout does not hold at any state in (s′i)i∈N (cf. Example 3.2.9).

2
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3.2.4.2. Model Checking Algorithms

Early model checking algorithms for CTL [CE81, CES86, Eme81] are based on an
explicit representation of the temporal structure (S,R, L) being checked against a set
of CTL formulae [CGP02e]. These algorithms are of theoretical relevance because
they provide an upper bound of runtime complexity of CTL model checking (Theorem
3.2.12). The state explosion problem 3.2.13 excludes an explicit representation of the
state transition system for many relevant use cases and problem sizes.

There are various strategies for avoiding an exponential explosion of the representation
of a temporal structure (S,R, L).

The most prominent class of algorithms saves space by constructing a compact sym-
bolic representation of the temporal structure using binary decision diagrams (BDD)
[BBF+01, CGP02c, McM92]. Symbolic model checking has been applied success-
fully to models of more than 1020 states [BCMH92]. However, also a BDD-based
representation of temporal structure may grow exponentially in size of the system de-
scription under certain conditions [BCC+03] and thus the state explosion problem is
not completely resolved.

A recently proposed alternative to symbolic model checking is bounded model check-
ing [BCC+03] (also called SAT-based model checking [BCCZ99]). Bounded model
checking transforms the CTL model checking problem into a satisfiability problem
for propositional logic (SAT) [BCC+03] and applies advanced methods for checking
satisfiability of propositional formulae. The term bounded stems from the general
strategy of searching for counterexamples the length of which does not exceed some
chosen constant k ∈ N. If no such counterexample can be found, k is iteratively in-
creased until a pre-known upper bound for the length of counterexamples is reached
[BCC+03].

A recent variant of bounded model checking bases on a transformation of the CTL
model checking problem into the consistency problem of a knowledge base in the
decidable description logicsALCI [BDTW06, BDTW07]. This allows for solving the
CTL model checking problem by checking concept satisfiability w.r.t. a TBox using
an off-the-shelf DL reasoner. Although DL reasoning is exponential and thus more
expensive than CTL model checking, a higher performance can be achieved in certain
cases because the state explosion problem is avoided [BDTW07].

3.2.4.3. Model Checking Systems

The first system that implements symbolic CTL model checking, is SMV (symbolic
model verifier) [McM93]. SMV has been developed in 1992 at the Carnegie Mellon
University and maintained until 1998. SMV supports CTL and additionally allows the
specification of certain fairness constraints that are not in CTL.
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Since 1998, SMV has been continued under the name NuSMV (new symbolic model
verifier) as a joint project of the Center for Scientific and Technological Research
(Trento, Italy), the Carnegie Mellon University, the University of Genova, and the
University of Trento [CCGR00]. NuSMV is implemented in C and is open source.

Version 2 of NuSMV [CCG+02] supports SAT-based model checking in addition to
symbolic model checking algorithms [CGP+02a]. Also, NuSMV2 adds support of
LTL (linear temporal logics) and other temporal formalism [CCJ+07].

In SMV and NuSMV, Kripke structures are defined indirectly in terms of a basic pro-
gramming language-like modelling language allowing for the definition of modules
(encapsulated program units with interface), variables of various types (Boolean, in-
teger, enumerations, sets, arrays), and expressions for a (non-)deterministic change of
variable values. In the case of specification violations, NuSMV constructs a coun-
terexample in the form of an execution trace that demonstrates the violation of some
formula of the specification (Example 3.2.16).
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4. General Overview on the Proposed
Solution

In this chapter, we give a brief informal outline and motivation of our approach to
consistency checking.

4.1. Basic Principles and Goals

The general approach is characterized as model-based as illustrated by Figure 4.1.

The implementation of a document is not checked directly against a specification but
an abstract model of the document’s content is constructed and verified.

Information about the document is available either within the implementation of
the document (e.g. an XML-file) or in the form of external metadata (e.g. RDF-
Annotations). Relevant information is automatically extracted and structured as a se-
mantic document model.

Document

Data

Consistency

Criteria

Document

Model

Specification

Model

Checker

External 

Metadata

Figure 4.1.: model-based verification

Consistency criteria are often part of the tacit knowledge communicated among au-
thors and reviewers. First, consistency criteria need to be made explicit as part of the
authoring and reviewing guidelines, for instance. Consistency criteria are usually ex-
pressed in natural language. For automated checking they need to be formalized using
a specification language with a precise unambiguous semantics. This is done by some
quality assurance expert.
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Finally, the document model is checked against the formal specification by some model
checking technique.

The advantages of a model-based approach are:

• decoupling of the specification and verification of content-related criteria from
implementation-related aspects (separation of concerns): The document model
abstracts from irrelevant implementation details and models the content and
structure of the document from the user’s perspective. Criteria are formalized
w.r.t. the document model and are independent of the way the content of the
document is implemented. This leads 1) to compact specifications, 2) to appli-
cability of the proposed methods to a wide range of document types and formats,
and 3) to less maintenance overhead when either the implementation of the doc-
ument or the criteria are changed.

• performance: since the document model can be restricted to relevant information
the verification of the criteria can be sped up.

• support of evolving documents: it is desirable to discover possible inconsisten-
cies as early as possible within the development process of a document. A useful
document model can be constructed from a skeleton or first draft of the structure
and content of a document. As a result, inconsistencies can be discovered and
corrected prior to the full implementation of a document (cf. [FFLS99]). This
results in lower development cost and higher quality of the final product.

• integration of various information sources. The document data is just one pos-
sible source of information for constructing a document model. In addition, ex-
ternal sources such as RDF annotations or metadata returned by information ex-
traction methods can be exploited for constructing a rich semantic model about
the document’s content. As a result, a higher flexibility and precision in check-
ing criteria can be achieved.

• integration of background knowledge: the document model can be combined
with ontological background knowledge as shown below. Ontologies help to
consolidate the terminology which is particularly relevant in the case of inte-
grating information from heterogeneous sources. Furthermore, the integration
of background knowledge increases the expressiveness of the specification for-
malism.

4.2. An Introductory Example

In the sequel, we illustrate the overall approach using a simple scenario. Consider
a manual about the operation and maintenance of industrial robots published as a
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web-based training (WBT). This interactive web document aims at teaching the neces-
sary foundations and skills for operating and programming different types of industrial
robots. Section 7.4 covers technical details about the document.

Figure 4.2 depicts a simplified part of the basic narrative structure of the sample WBT.

The narrative structure of a document determines recommended but not necessarily en-
forced ways of reading the document in standard situations. It guides the user through
the content along coherent narrative paths. Complex web documents such as manuals,
text books, or web-based trainings usually offer alternative narrative paths for different
target groups or information demands. Hence, the narrative structure of a document
is represented by a directed graph of content units (vertices) and narrative relations
(edges). Since it has to be guaranteed that the document makes sense along narrative
paths, the narrative structure is an appropriate basis for determining the content-related
consistency of documents.

Home

L1: WBT 

Guide

L2: Robot 

Types

L3: Robot 

Functions

L1.1: WBT 

Basics

L1.3: UI 

Navigation

L1.2: UI 

Symbols

L1.4: Getting 

Help

L1.5: Try It!

L2.1: Basic 

Types

L2.3: Self 

Test

L2.2: Robot 

Identifiers

L2.4: 

Exercise

L2.5: 

Solution

L2.1a Special 

Types

L 3.1 

Handling

L3.2 Pro-

gramming

L2.1b Special 

Types

Final 

Remarks

Figure 4.2.: sample narrative structure of a document

The narrative structure depicted in Figure 4.2 contains the following content units:
The home page (”Home”) of the WBT lists the learning objectives and covered con-
cepts. After ”Home”, the user can proceed with a general introduction to web-based
trainings (lesson L1) or moving on immediately to lesson L2 about ”robot types” or
lesson L3 about ”robot functions” (Figure 4.2 top). Each lesson contains information
units introducing and explaining new concepts (e.g. L2.1 and L2.2 in Figure 4.2), self
test units (L2.3 in Figure 4.2), and exercises (L2.4 in Figure 4.2) which are followed
by solutions (L2.5 in Figure 4.2) in the trainers variant of the WBT. For increased
convenience, exercises provide references to units containing information related to
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the exercise tasks. A lesson may contain side tracks (L2.1a and L2.1b in Figure 4.2)
covering topics beyond the immediate learning objectives of the WBT.

Let us assume that in our scenario the narrative structure is extracted automatically by
analyzing the XML markup of the document (see section 7.4).

To make sure that the document has the desired consistent structure, the following
criteria should be met.

1. Each major topic of the document has to be addressed by some lesson within the
document.

2. At the end of each lesson, an exercise must be solved.

3. In the sequel of each exercise task, a sample solution is provided.

4. Sample solutions are accessible to teachers only.

5. Concepts required to solve exercise tasks have been trained before.

These properties can be formalized in the proposed specification formalism ALCCTL
that is a combination of the description logic ALC (section 3.1.2) and the temporal
logic CTL (section 3.2.2).

Recall that ALC formulae are axioms C v D where C and D are concepts com-
posed by using the constructors: ¬ (complement), u (intersection), t (union), ∃R.C
(existential quantification) and ∀R.C (universal quantification) (cf. Definition 3.1.6).

InALCCTL, the concept constructors ofALC are complemented by the temporal con-
nectives of CTL that are E (on some path), A (on all paths), X (next moment in time),
F (eventually), G (globally), U (until), W (weak until), and B (before) (cf. Definition
3.2.1 and Remark 3.2.2).

The syntax and semantics of ALCCTL is defined in section 6.2. For now, we infor-
mally illustrate the expressiveness ofALCCTL for documents using the sample criteria
1. to 5. given above. These criteria can be represented in ALCCTL as follows:

1. a) MajorTopic v AF ∃addressedBy.Lesson

For each major topic holds (majorTopic v): on all paths eventually
(AF) a content unit is reached such that the topic is addressed by a lesson
(∃addressedBy.Lesson). In short: every major topic is addressed by a les-
son on all paths through the document. An alternative weaker formalization
is:

b) MajorTopic v EF ∃addressedBy.Lesson

every major topic is addressed by a lesson on some path through the document.
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2. a) AG(Lesson v A(∃contains.Exercise u EX LessonEnd B LessonEnd))

Anywhere within the document holds (AG): a lesson is an object (Lesson v)
such that on all paths (A(...)) holds: before the end of the lesson is reached
(...B LessonEnd) there must be a content unit which contains an exercise
(∃contains.Exerise) and in some next step the end of the lesson is reached
(u EX LessonEnd). Based on this formalization an exercise must be taken
immediately before the end of the lesson. A weaker formalization is:

b) AG(Lesson v E(∃contains.Exercise u EX LessonEnd B LessonEnd))

There is some path such that an exercise occurs immediately before the end of
the lesson, i.e. an exercise can be taken in each lesson but the exercise may be
skipped on some other path.

3. AG(Exercise v ∀hasTask.EX ∃addressedBy.Solution)

Anywhere within the document holds (AG): an exercise is an object
(Exercise v) such that each exercise task (∀hasTask.) is – in some next con-
tent unit (EX) – addressed by some solution (∃addressedBy.Solution). The
solution is optional, i.e. the reader may skip the solution to an exercise task.

4. AG(Solution v ∀accessibleTo.Teacher)

Anywhere within the document holds (AG): every solution (Solution v) is
accessible to teachers only (∀accessibleTo.Teacher).

5. Concept v ¬E(¬∃topicOf.Training U ∃topicOf.Exercise)

For any concept holds (Concept v): there is no such path (¬E(...)) that the
concept is never topic of a training object (¬∃topicOf.Training) until (U) it is
topic of some exercise (∃topicOf.Exercise).

ALCCTL offers temporal connectives of CTL in combination with ALC concept de-
scriptions and terminological axioms. This enables the expression of semantic interre-
lationships of parts of the document along different reading paths as demonstrated by
specifications 3 and 5.

For checking content-related specifications, knowledge about the document’s content
needs to be represented. This is done by means of DL knowledge bases:

As an example let us assume that lesson ”L2: Robot Types” in Figure 4.2 addresses
the robots of type R180. This can be represented by the following ABox assertions

ABL2 = {Lesson(L2),
RobotType(R180),
addresses(L2, R180)}
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As part of the background knowledge about the document’s domain of discourse it is
known that robot types are major topics. Moreover, role addressedBy may be defined
as inverse of role addresses. This can be represented by the terminological axioms

TB = {RobotType v MajorTopic

addresses− .= addressedBy}

By combining knowledge bases ABL2 and TB, new implicit knowledge can be de-
rived. For instance, ABL2 ∪ TB imply that R180 is a major topic which is addressed
by a lesson:

ABL2 ∪ TB |= MajorTopic(R180)
ABL2 ∪ TB |= (∃addressedBy.Lesson)(R180)
ABL2 ∪ TB |= (MajorTopic u ∃addressedBy.Lesson)(R180)

Let us assume that R180 is the only major topic of the document and R180 is just
addressed in unit L2: Robot Types (Figure 4.2).

Then specification 1b) MajorTopic v EF ∃addressedBy.Lesson is satisfied within
the narrative structure of Figure 4.2 because there is a path from starting unit ”Home”
to unit L2: Robot Types in which R180 is addressed. In contrast, specification 1a)
MajorTopic v AF ∃addressedBy.Lesson is not satisfied since there is a path from
”Home” immediately proceeding with unit L3: Robot Functions and never reaching
unit L2: Robot Types. As a consequence, R180 is not addressed on all paths starting
from ”Home”.

Such proofs of the validity of specifications w.r.t. a given document are automated by
transforming the narrative graph and the DL-based knowledge representation of the
document’s content into a finite ALCCTL temporal structure and applying ALCCTL
model checking.

4.3. Basic Components of the Framework

Figure 4.3 depicts the basic components and their interaction with user roles in our
framework.

We distinguish three different user roles: a) the author, b) the quality assurance expert,
and c) the knowledge engineer.

The framework consists of four basic components: 1) the knowledge extractor, 2) the
model generator, 3) the TDL model checker, and 4) the result interpreter.
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Figure 4.3.: basic components of the framework

The users interact with the system components in the following roles.

One or more authors (a) implement a document using some authoring tool. The doc-
ument may consist of one or more distributed components, each of them possibly im-
plemented in a different document format. In addition, external metadata (MD) about
the document may be provided by the author directly or by applying some text analysis
tool.

Prior to the implementation of the document, a quality assurance team (b) defines, in
accordance with the authoring team (a), some authoring guidelines part of which are
a set of consistency criteria being met by the result. The quality assurance experts (b)
formalize the consistency criteria to a specification in the temporal description logic
(TDL) which is proposed as the formal specification language of the system.

In a pre-processing step, the knowledge extraction component (1) extracts relevant
information from the document and external information sources. After the informa-
tion has been assembled, filtered, and aggregated, an integrated semantic model about
the narrative structure and content of the document is constructed.
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Within the general framework, the ”knowledge extractor” is an abstract component that
needs to be instantiated for each application scenario. In the course of this work, the
issue of knowledge extraction is not discussed. The feasibility of suitable knowledge
extraction components is demonstrated in various case studies in chapters 6 and 8. The
technical details of these components are described in [Rad05b] and [Lü06] but have
been omitted in this thesis for brevity.

The semantic model represents the narrative structure of the document as a graph and
the content of the document as a set of description logic ABoxes.

The semantic model may be backed up by some ontologies representing general back-
ground knowledge about document structures and domain of discourse. The back-
ground knowledge is formalized by a knowledge engineer (c) using some ontology
editing tool for OWL (Web Ontology Language [W3C04a]).

The temporal formulae of a specification cannot be checked against the DL knowledge
base directly but a suitable temporal verification model, which bridges the gap be-
tween non-temporal DL-based knowledge representation and temporal specifications,
needs to be constructed. This is done by the model generator component (2). The
model generator (2) constructs a temporal verification model from the DL knowledge
representation by using inference services of a DL reasoning system.

In the next step the verification model is checked against the specification: the TDL
model checker component (3) verifies if the verification model is a model of a set of
TDL formulae.

The TDL model checker constructs detailed verification results for every violated
formula. The result interpreter component (4) filters and structures the verification
results and outputs a comprehensive problem report.

Finally, the author (a) analyzes the problem report. If the problem report indicates
relevant errors, the author modifies the implementation of the document.

The central methods of the presented approach are:

• representation of information about the document and it’s background using de-
scription logics.

• representation of specifications using temporal description logics.

• verification of TDL specifications by model checking.
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5.1. Introduction

This chapter presents a formal meta-model for the representation information about a
document’s content and structure by means of a semantic document model. This meta-
model bases on the notion of documents as described in section 2.1 and depicted in the
UML model of Figure 2.1.

The document model is responsible for a large part of the flexibility and power of
the approach. It decouples verification methods from the document format in a dou-
ble sense: it is an abstraction of document structures on the documents side and an
abstraction from different verification models and methods on the specification side.
Furthermore, it sets the ground for a precise and scalable verification of semantic prop-
erties by relating document metadata/specifications to ontologies.

Overview

Figure 5.1 gives an overview of the representation of knowledge about a document.

Assume that there is a hypermedia document d that refers to the external resources
”fragment e” and ”fragment f” (Figure 5.1 bottom). Although these external resources
may be presented to the reader as part of document d, they still may adhere to different
document and metadata formats as well as a different ”style” of metadata tagging.

Relevant information is extracted by knowledge extractor components tailored to a
specific document source (Figure 5.1 center). As already sketched in section 4.3, the
knowledge extractors build up a semantic model of the document consisting of two
parts: 1) a graph of content units (nodes) and narrative relations (edges) representing
the narrative structure of the document (Figure 4.2), and 2) a set of DL ABoxes each
representing extracted facts such as discussed topics or type and function of the content
(Figure 5.1 center).

The facts represented as ABoxes correspond to general background knowledge consist-
ing of one or more ontologies represented by terminological axioms (TBox) (Figure
5.1 top). The structure of the document is described in terms of a structure ontology
which represents a general content model for a certain type of documents (e.g. teach-
ware [SFB99]). The topics of the document are described in terms of a domain ontol-
ogy representing entities and relationships across entities in the domain of discourse
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Figure 5.1.: document model overview

[KBHL+03, NP01]. Depending on the type of document other ontologies may be
used to represent models of further aspects which might be relevant for determining
the document’s consistency such as learning objectives, prerequisites, and processes
[AM03, IM04, KYNM04].

In the following example, we illustrate how ontologies help to integrate information
from different sources and to derive implicit knowledge.

Example 5.1.1 (Knowledge Representation)

Assume, a document d in context Cd contains a paragraph defBTree defining the
term ”BayerTree” and imports a fragment e from context Ce containing an example
of ”BayerTree” exaBTree. From the XML syntax or external metadata, certain facts
about the document are derived and represented in the semantic model using DL as-
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sertions:

Paragraph(defBTree) (5.1)

defines(defBTree, bayertree) (5.2)

Example(exaBTree) (5.3)

hasTopic(exaBTree, b−tree) (5.4)

The assertions (5.1) and (5.3) describe the fragments defBTree and exaBTree in
terms of the structure ontology. The assertions (5.2) and (5.4) describe the fragments
in terms of the domain ontology.

We assume that the domain ontology for the document contains the assertions
BTree(bayertree) and BTree(b−tree) representing that both terms bayertree and
b−tree are instances of concept BTree.

In the structure ontology, further knowledge about the concepts Paragraph and
Example, and the roles defines and hasTopic of Equations (5.1) to (5.4) is rep-
resented.

Definitions are paragraphs that define some topic:

Definition
.= Paragraph u ∃defines.Topic

Examples are paragraphs that exemplify some topic:

Example
.= Paragraph u ∃exemplifies.Topic

defines and exemplifies are sub-roles of hasTopic:

defines v hasTopic

exemplifies v hasTopic

The domain ontology represents further information about topics and relationships of
topics:

Every B-tree is a tree and an index structure:

BTree v Tree u IndexStructure

Index structures are used in databases:

IndexStructure v ∃usedIn.DataBases

Let KB be a knowledge base containing the facts of the semantic model, the structure
ontology, and domain ontology as sketched above. We now can reason in a uniform
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way about the two fragments and infer, for instance, that fragment defBTree is a
Definition and that both fragments deal with something used in databases:

KB |= (Definition u ∃hasTopic.BTree)(defBTree)
KB |= (∃hasTopic. ∃usedIn.DataBases)(defBTree)
KB |= (∃hasTopic. ∃usedIn.DataBases)(exaBTree)

Knowledge derived by use of logical implications from the knowledge base about a
document is used for verifying semantic criteria.

2

5.2. Modelling the Narrative Structure of Documents

The document model as introduced in the course of this section is suitable for docu-
ments that have a formal internal structure such that a) distinct relatively self-contained
parts can be identified, b) the parts of the document are in a narrative relationship in
the sense that there are certain preferred sequences of reading them, and c) discrete
machine-processable information about the type and topics of document parts is avail-
able. Such kind of documents appear frequently in eLearning and technical documen-
tation and are typically implemented in XML.

Documents such as novels or other kind of literature, which do not have a formal
structure or formal properties, are not in the focus of this work.

5.2.1. Content Units

We assume that the content of a document can be represented in a relational way,
i.e. content objects are in certain relations with each other or with other structures. In
this chapter, we will introduce the concept of content units, which represent coherent
chunks of the documents content, and the concept of the narrative relation, which en-
ables to determine recommended reading paths through the document (cf. section 4.2).
Content units and narrative paths will play a major role in expressing and verifying se-
mantic properties of the document’s content.

Definition 5.2.1 (Content Unit)

The nonempty, finite set CUd of content units denotes the set of cohesive, self-
contained parts of the content of a document d.

2
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Remark 5.2.2 (Content Unit)

Definition 5.2.1 of content units is rather informal. In fact, we do not pose formal
requirements on the choice of content units.

However, not an arbitrary choice of content units is sensible in a specific application.
An appropriate selection of CUd is an important modelling task when applying the pro-
posed framework. When modelling content units the following non-technical ”soft”
criteria should be considered.

• Content units should be aligned with the content structure of the document. The
content of most documents is structured in terms of larger chunks such as parts,
modules or chapters, which in turn are recursively divided into sub-chunks such
as sections, lessons, learning units, pages, paragraphs, tables, etc. Content units
should correspond to one of the ”natural” modularization levels of the document
such as sections, pages, or paragraphs.

• Content units should be chosen such that narrative relations to other content
units exist (see also Definition 5.2.4 and subsequent remarks). The narrative
relation for a content unit U defines the set of content units which can be sensibly
read immediately after reading U . Hence, it is probably not sensible to choose
content units to be overlapping, i.e. (part of) the content of one content unit
should not be already covered by the content of another content unit.

• The set of content units CUd should cover the content that is meant to be read in
standard situations by some target group. A document may contain some sort of
support content, which can be accessed on demand but reading is not required
by default. Examples of support content are indices, glossaries, references, help
pages, and additional explanations and materials.

Support content is not represented by content units but by means of the content
knowledge base (section 5.3.1). Hence, CUd typically does not comprise the
entire content of the document.

2

Example 5.2.3 (Content Unit)

Consider a technical manual d about a video recorder. The technical manual comprises
the following parts:

U1 preface

U2 important safety instructions

U3 first steps

U4 table of contents

U5 front and rear panel
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U6 remote control

U7 maintenance

U8 glossary of technical terms

U9 specifications

Then a sensible set of content units is

CUd = {U1, U2, U3, U5, U6, U7}

U4 (table of contents), U8 (glossary of technical terms), and U9 (specifications) contain
support content that is not meant to be read in standard situations but serves as a ref-
erence for looking up specific information. Hence U4, U8, and U9 are not included in
CUd in this example. However, other situations are imaginable that require to include
support content.

2

5.2.2. Narrative Relationships

As mentioned in Remark 5.2.2, we assume that content units are in a narrative rela-
tionship to each other.

Definition 5.2.4 (Narrative Relation)

A pair of content units (U1, U2) ∈ CUd × CUd are in narrative relationship iff it
is sensible in standard situations to proceed with content unit U2 immediately after
having read U1.

proceed ⊆ CUd × CUd denotes the narrative relation on content units of document
d.

proceed(U) = {U ′ ∈ CUd | (U,U ′) ∈ proceed} denotes the successors of content
unit U ∈ CUd.

proceed−1(U) = {U ′ ∈ CUd | (U ′, U) ∈ proceed} denotes the predecessors of
content unit U ∈ CUd.

2

Remark 5.2.5 (Narrative Relation)

Within the scope of this thesis we consider the narrative relation proceed as given.
The way, the narrative relation is generated by the knowledge extractor component of
the system, depends on the document format, the available metadata, and the target
criteria to be verified,

In many cases, the narrative relation is closely related to the structure of the docu-
ment’s implementation. In the case of XML documents, the narrative relation among
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content units is probably closely related to the document order of elements within the
XML data model. In addition, the presence of hyperlinks (e.g. on the basis of XLink
[W3C01]) or other kinds of references can give rise to a narrative relation among the
respective content units.

In document standards for eLearning there are several ways of how narrative relations
among content units can be represented (see section 7.4). By interpreting these struc-
tures it is possible to derive the proceed relation among content units without manual
modelling effort.

Although the narrative relation proceed introduces a notion of ”before” and ”after”
among content units it is neither a strict nor partial order in general. More precisely,
proceed is in general neither reflexive nor irreflexive nor antisymmetric nor asymmet-
ric nor transitive.

proceed is typically not reflexive because it is not necessarily sensible to read every
content unit twice. Also, proceed might not be irreflexive because it can be sensible to
read a content unit twice. As an example consider a test unit. Here it might be sensible
to repeat the test immediately after a failing attempt.

As a counterexample for transitivity consider three content units U1, U2, U3 such that
after U1 is sensible to proceed with U2 and after U2 it is sensible to proceed with
U3. Moreover, U3 relies on a concept introduced in U2 such that it is not sensible to
proceed with U3 immediately after having read U1. Hence, (U1, U2) ∈ proceed and
(U2, U3) ∈ proceed but (U1, U3) 6∈ proceed.

Note further that (U1, U2) ∈ proceed does not necessarily mean that having read U1 is
required for reading U2, i.e. that the content of U2 depends on the content of U1. As an
example consider two different units U1 and U2 which should both be read but which
can be read in arbitrary order, i.e. U2 does neither depend on having read U2 nor vice
versa. This can be modelled by (U1, U2) ∈ proceed and (U2, U1) ∈ proceed. Thus
proceed is neither asymmetric nor antisymmetric in general.

As a consequence, proceed does not represent an order on parts of the document as a
whole such as, for instance, the document-order in the case of XML. ”Before-after”-
relationships between content units are always interpreted relative to a given path
through the document, i.e. it depends on the choice of reading the document which
unit comes before or after another unit. We consider this notion of order - although a
bit more complex and not intuitive at first - more flexible and appropriate especially
in the case of web documents, where a global order among resources would not be an
adequate representation of sensible ways of browsing the content.

2

The set of content units CUd and the binary relation proceed define a graph on the
content of a document.
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Definition 5.2.6 (Narrative Graph)

Let CUd be the set of content units of document d and proceed ⊆ CUd × CUd the
respective narrative relation.

Then NGd := (CUd, proceed) denotes the narrative graph of document d.
2

Remark 5.2.7 (Narrative Graph)

The narrative graph represents sensible flows of reading the document. Note that espe-
cially web documents are neither read nor meant to be read in a linear way. In addition,
it may be sensible to visit parts of the document repeatedly for example after failing
to answer a test question in learning documents or looking up some previously read
concept. Hence, the narrative graph of a document is not assumed to be acyclic in
general.

2

Within the narrative graph, we distinguish a unit which is a sensible starting point for
reading the document.

Definition 5.2.8 (Beginning of Document)

We assume that within the set of content units there is a distinct uniquely defined
content unit BODd ∈ CUd representing the beginning of the document such that it is
sensible to start reading the document at unit BODd when accessing the document for
the first time. 2

Definition 5.2.9 (End Unit)

Let (CUd, proceed) be the narrative graph of document d. Then

EUd := {U ∈ CUd | ∀U ′ ∈ proceed(U) : U ′ = U}
denotes the set of end units of document d.

2

Remark 5.2.10 (End Unit)

An end unit is a content unit without a successor other than itself. As a consequence,
when reaching unit U it is not sensible to read any other content unit of document d
and hence the reading process can be considered as terminated.

Modelling end units as reflexive nodes w.r.t. the proceed relation allows to assume
proceed to be left-total, i.e. any content unit is assumed to have some successor unit.
The left-totality of proceed simplifies the application of temporal logics as a specifi-
cation formalism.

2
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5.2.3. Narrative Paths

Of special interest for expressing and verifying semantic criteria are paths in the nar-
rative graph, which represent sensible flows of reading the document in standard situ-
ations.

Definition 5.2.11 (Narrative Path)

Let CUd be the set of content units, proceed the narrative relation on content units,
and BODd the beginning of document d.

A finite sequence (U0, U1, ..., Un) ∈ CUn+1
d for n ∈ N is a finite narrative path iff

U0 = BODd and (Ui−1, Ui) ∈ proceed for each i ∈ {1..n}.

NPd denotes the set of finite narrative paths of document d.

NPU,d := {(U0, U1, ..., Un) ∈ NPd | Un = U} denotes the set of finite narrative paths
from BODd to content unit U ∈ CUd.

An infinite sequence (U0, U1, ...) ∈ CU∞
d is an infinite narrative path iff U0 = BODd

and (Ui−1, Ui) ∈ proceed for each i ∈ N1.

A finite narrative path fp = (U0, U1, ..., Un) is maximal iff fp cannot be continued,
i.e. ¬∃U ∈ CUd : (Un, U) ∈ proceed.

A narrative path is a full (narrative) path iff it is maximal or infinite.

FPd denotes the set of full narrative paths of document d.

FP∞
d denotes the set of infinite narrative paths of document d. 2

Remark 5.2.12 (Narrative Path)

Since the narrative graph of a document can be cyclic, narrative paths may be infinite.
By allowing infinite paths, the number of times a certain narrative unit can be visited
is not limited in principal by the document model.

Of special interest for the specification and verification of semantic criteria are full
narrative paths within the document, i.e. paths which either cannot be continued or
return to a previously visited unit. The set of full paths represent all sensible ways of
reading the document. Any other narrative path is contained as a sub-path in some full
path.

By definition, full paths can be both finite or infinite. As a simplification of the tech-
nical framework we assume all full paths to be infinite in the sequel. This is not a
limitation because any finite full path (U0, ..., Un) ∈ FPd can be extended to an infi-
nite full path by one of the following constructions.

Let (CUd, proceed) be such that FPd\FP∞
d 6= ∅ and let FEUd := {U ∈

CUd | ∃(U1, ..., Un) ∈ FPd : U = Un} be the set of end units of finite full narra-
tive paths.
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1. We define proceed′ := proceed ∪ {(U,U) ∈ FEUd × FEUd} and CU ′
d :=

CUd.

2. We introduce a new ”virtual” content unit EODd 6∈ CUd, which represents the
end of the document and define CU ′

d := CUd ∪ {EODd} and proceed′ :=
proceed ∪ FEUd × {EODd} ∪ {(EODd, EODd)}.

In both cases, all full narrative paths are infinite within the modified narrative graph
(CU ′

d, proceed′). It depends on the document and criteria to check, which of the two
options above is preferable. In most documents, natural end units can be identified.
In these cases, the first option is preferable because the introduction of an artificial
content unit can be avoided. The second option, i.e. introducing a distinct end-of-
document unit EODd, has the advantage that it may be easier to address criteria to
narrative paths only which actually come to the end of the document such as:

”On all narrative paths of the document any central topic must be covered before the
end of the document is reached.”

In the criterion above, the property of ”covering all central topics” does not need to
hold on narrative paths which do not reach the end of the document because they are
”caught” in a local cycle. 2

These considerations justify the following simplifying assumption.

Assumption 5.2.13 (Infinite Full Narrative Paths)

We assume the narrative graph (CUd, proceed) of a document d to be such that FPd =
FP∞

d , i.e. any full path in (CUd, proceed) is infinite. 2

As a second simplifying assumption we postulate for the narrative graph of a document
(CUd, proceed) that any content unit CUd can be reached on some narrative path in
document d, i.e. there are no content units that are unreachable from a starting unit of
a document. We call this property of the narrative graph coherence:

Assumption 5.2.14 (Narrative Graph is Coherent)

We assume the narrative graph (CUd, proceed) of a document d to be coherent in the
sense that ∀U ∈ CUd : NPU,d 6= ∅. 2

Remark 5.2.15 (Narrative Graph is Coherent)

The assumption of coherence (5.2.14) is not a limitation in practical applications and
can easily be met.

A narrative graph (CUd, proceed) being not coherent can be considered as a modelling
flaw because in such narrative graphs there are content units that cannot be reached on
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any flow of reading from a starting point of the document. These content fragments
are then irrelevant w.r.t. standard flows of reading the document and therefore should
not be represented within the set of content units CUd (cf. Remark 5.2.2). If such
content fragments are relevant for checking criteria they can still be represented within
the knowledge bases of the semantic model (see section 5.3.1).

An alternative way of handling a document without a coherent narrative graph is split-
ting the document up into sub-documents having a coherent narrative graph. Then
each of the sub-documents is represented and checked independently.

2

As a consequence of Assumptions 5.2.13 and 5.2.14, proceed is left-total:

Proposition 5.2.16 (proceed is Left-Total)

Let (CUd, proceed) be a coherent narrative graph. Then any full narrative path is
infinite iff proceed is left-total.

Proof:

”⇒”:

Let (CUd, proceed) be a coherent narrative graph such that any full narrative path is
infinite.

We show that proceed is left-total: ∀U ∈ CUd∃U ′ ∈ CUd : (U,U ′) ∈ proceed.

Let U ∈ CUd. Then, because (CUd, proceed) is coherent, there is (U0, U1, ..., Un) ∈
NPU,d such that U = Un. Assume, there is no U ′ ∈ CUd such that (Un, U ′) ∈
proceed. Then (U0, U1, ..., Un) is maximal and hence a finite full path (Definition
5.2.11) which is a contradiction. Thus the assumption fails and there is U ′ ∈ CUd

such that (Un, U ′) ∈ proceed and, since U = Un, also (U,U ′) ∈ proceed.

”⇐”:

Let (CUd, proceed) be a coherent narrative graph such that proceed is left-total.

We show any full narrative path to be infinite: Let fp ∈ FPd be a full narrative
path. Assume that fp were finite, i.e. fp = (U0, ..., Un) and ¬∃U ∈ CUd such that
(Un, U) ∈ proceed. Then this is a contradiction to proceed being left-total. Hence,
our assumption must have been wrong and fp is infinite.

2

Proposition 5.2.17 (The Narrative Graph is Cyclic)

Let (CUd, proceed) be a coherent narrative graph such that proceed is left-total. Then
(CUd, proceed) contains a cycle.

Proof: Assume, (CUd, proceed) is acyclic. Let (Ui)i∈N ∈ FPd be an infinite full
narrative path. Such a path exists since proceed is left-total (Proposition 5.2.16). Then,
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because (CUd, proceed) is acyclic, it holds for j, i ∈ N : i 6= j ⇒ Ui 6= Uj . Hence,
there is an injection f : N → CUd : f(i) = Ui. This is a contradiction to CUd being
finite (Definition 5.2.1) and thus the assumption of (CUd, proceed) being acyclic must
have been wrong.

2

Remark 5.2.18 (proceed is not a Strict Order)

Proposition 5.2.17 implies that proceed is not a strict order. Further, it is unlikely but
possible for proceed to be an order relation. This requires (U,U) ∈ proceed for all
U ∈ CUd and the narrative graph not to contain cycles other than (U,U) (antisymme-
try).

2

5.2.4. Narrative Structure

We call a coherent narrative graph (CUd, proceed) with a distinct starting unit BODd

and a left-total relation proceed the narrative structure of a document. Since the
narrative structure guides the reader through the document’s content, it is a major
reference structure for expressing and verifying content-related criteria.

Definition 5.2.19 (Narrative Structure)

Let (CUd, proceed) be the coherent narrative graph of document d such that proceed
is left-total. Let BODd ∈ CUd be the beginning of the document d.

Then NSd := (CUd, BODd, proceed) denotes the narrative structure of document
d.

2

Corollary 5.2.20 (Full-Paths in Narrative Structures)

Let (CUd, BODd, proceed) be a narrative structure. Then, because BODd ∈ CUd

and proceed is left-total, it holds for the set of full paths that FPd 6= ∅.

Since (CUd, proceed) is coherent and proceed is left-total it holds by Proposition
5.2.16 that every full path f ∈ FPd is infinite.

2

Example 5.2.21 (Narrative Structure)

The narrative structure NSd = (CUd, BODd, proceed) depicted in Figure 5.2 is:

CUd = {startOfStory, introduction, basicDefinitions, theorem,

proof, applicationExamples, conclusion, endOfStory}

BODd = startOfStory
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introduction

basic definitions
theorem „max

height“

application

examples
proof

conclusion end of story

start of

story

Figure 5.2.: a simple narrative structure

proceed = {(startOfStory, introduction),
(introduction, basicDefinitions),
(basicDefinitions, theorem),
(basicDefinitions, applicationExamples),
(theorem, proof), (proof, applicationExamples),
(applicationExamples, conclusion),
(conclusion, endOfStory), (endOfStory, endOfStory)}

The set of full narrative paths is

FPd = {(startOfStory, introduction, basicDefinitions,

applicationExamples, conclusion, endOfStory, endOfStory, ...),
(startOfStory, introduction, basicDefinitions, theorem, proof,

applicationExamples, conclusion, endOfStory, endOfStory, ...)}
2

In summary, we have modelled the narrative structure of content in terms of a narra-
tive graph based on content units CUd, starting unit BODd, and the relation proceed
which represents sensible ways of proceeding through the content of the document. In
addition, it is necessary for expressing and verifying content-related criteria to repre-
sent properties of content units and fragments such as topics, intended target groups,
objectives, or difficulty level.

Therefore, we introduce a relational model for representing content properties based
on description logics.
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5.3. Representing Content Properties

5.3.1. Representation of Instance-level Knowledge

We distinguish between global properties of the document as a whole and local prop-
erties of distinct content units U ∈ CUd. Examples of global properties are the size
and type of the document, the authors, target groups, intent of the document, and the
major topics and keywords. Examples of local properties of a content unit U ∈ CUd

are the parts of U and their content types and topics. Separating global from local
properties enables compact and focussed knowledge representations, which increase
tractability of errors and efficiency of reasoning.

Definition 5.3.1 (Global / Local Fact Base)

The global fact base of document d, denoted as gABd, is a possibly empty ABox
representing global information about a document d.

The set of local fact bases of document d, denoted as lABd, is a set of ABoxes such
that there is a surjective function

content : CUd → lABd : content(U) = ABU

where ABU is an ABox representing information about content unit U .

cABd := gABd ∪
⋃

AB∈lABd

AB

denotes the combined fact base of document d.
2

Remark 5.3.2 (Combined Fact Base)

Note that the term combined fact base is an entirely technical term that is used as an
abbreviation of the union of the global fact base and all local fact bases. The term
”combined” does not imply or require that the fact bases of a document are integrated
on the semantic level.

2
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Example 5.3.3 (Global and Local Fact Base)
Consider a global fact base gABd representing the major topics of the document, e.g. in
the form:

gABd ⊇ {KeyWord(TDL)
KeyWord(CTL)
KeyWord(ModelChecking)}

The local fact base of a certain content unit u1 contains a representation of the topics
covered in paragraph p1 of u1:

ABu1 ⊇ {hasTopic(p1, LTL),
hasTopic(p1, CTL)}

By combining the global fact base gABd and the local fact base ABu1, we can infer
that p1 covers a major topic of document d, i.e.

gABd ∪ABu1 |= (∃hasTopic.KeyWord)(p1)

Generally speaking, all instance-level knowledge relevant to inferring properties of a
certain content unit U ∈ CUd are considered to be represented in gABd ∪ABU . 2

Remark 5.3.4 (Scalable Modularity of Fact Base)
The mapping content of content units onto ABoxes is surjective. Hence, all
ABoxes of the local fact base lABd are related to at least one content unit,
i.e. content−1({AB}) 6= ∅ for any AB ∈ lABd.

However, content is not necessarily injective. As a result, an ABox AB ∈ lABd can
represent information about several content units. Moreover, ABoxes within the fact
base may or may not be pairwise disjoint, i.e. they may share some assertions. This
way, information about content units that share some or all properties can be compactly
represented. 2

Corollary 5.3.5 (Fact Base is Nonempty and Finite)
The cardinality of the local fact base ranges from 1 to the cardinality of content units,
i.e. the following holds:

1 ≤ |lABd| ≤ |CUd| (5.5)

This is a consequence of the existence of a surjective mapping between CUd and lABd

and the non-emptyness of CUd (Def. 5.2.1).

Since, by definition, an ABox is a finite set of assertions and CUd is finite (Definition
5.2.1) the combined fact base cABd is finite. 2
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5.3.2. Representation of Background Knowledge

So far, we have investigated how instance level knowledge about the document’s con-
tent is represented in terms of a fact base - a set of ABoxes.

A major reason for choosing a DL-based knowledge representation is the possibility
to combine instance- and schema-level knowledge. Examples of schema-level knowl-
edge are models of the domain of discourse or document structures that are relatively
independent of a single document but valid for a certain class of documents.

Schema-level knowledge enables checking for abstract criteria such as ”any major
topic must be handled at a central location of the document”. For checking such cri-
teria, the system needs to be able to determine, which ”topics” are ”major topics” and
which ”locations” of the document are ”central”. This can be done based on an on-
tology about document structures and topics represented in terms of a DL knowledge
base.

Abstraction allows for formulating simple, general criteria that can be applied in a
wide range of use cases because they do not address specific implementation-related
properties of a single document. In this way, abstraction allows for decoupling criteria
from the implementation of a document.

Even if abstraction is not the major concern within a specific use case, schema-level
knowledge can be beneficial. Ontologies of topics and structures of the document
serve as a definition of the vocabulary used for both representing knowledge about a
document and formalizing criteria. As such, they help to ensure that the checking of
criteria does not fail because of inconsistent vocabulary of specification and verifica-
tion model. Further, contradictive metadata can be discovered prior to model checking.
In summary, ontologies help to increase the robustness of the system against specifi-
cation errors and faulty metadata.

Finally yet importantly, ontologies can help to integrate metadata from several sources
and derive implicit knowledge about the document’s content, which simplifies knowl-
edge extraction methods and enables compact knowledge representations.

Definition 5.3.6 (Reference Ontology)

The reference ontology, denoted as RO, is a DL knowledge base representing a com-
monly agreed upon reference model for content structures, domain of discourse, learn-
ing objects, and other aspects necessary to describe the content and structure of a cer-
tain class of documents. Concepts and roles of the reference ontology form the base
vocabulary for specifications.

2
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Remark 5.3.7 (Reference Ontology)

Note that RO can be empty in simple cases (no heterogeneous or distributed metadata,
no abstraction of criteria required).

RO represents schema-level knowledge independent of instances of objects found
within the current document d. Consequently, RO should mostly consist of a TBox
containing axioms about concepts and roles used for representing properties of the
content.

2

Example 5.3.8 (Reference Ontology)

A possible reference ontology may contain the following axioms:

topicOf
.= hasTopic− role topicOf is the inverse of role

hasTopic.
keyWord v majorTopic every key word of the document is a

major topic of the document.
∃≥3topicOf.> v majorTopic every topic that is topic of more than

2 different fragments is a major topic.

∃hasTopic.majorTopic
.= centralContent a fragment covering a major Topic is

a central content of the document.
...

2

Remark 5.3.9 (Structure of Reference Ontology)

The reference ontology may be structured into sub-ontologies for different aspects of
the content of a document. I.e. there may be a ”structure ontology” SO ⊆ RO which
represents general content types and structural units of a document. Also, there may be
a ”domain ontology” DO ⊆ RO representing topics and relationships of topics within
the domain of discourse of the document. Further, specific ”mediator ontologies” may
be provided for aligning the vocabulary used in the fact base about the document to
the vocabulary used in specifications.

We assume that these ”special-purpose-ontologies” are aligned to each other such that
RO is consistent (Definition 3.1.28).

2

For reasoning about the content of a document d, instance-level knowledge represented
by the fact bases and schema-level knowledge represented by the reference ontology
are combined as follows.
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Definition 5.3.10 (Local Knowledge Base and Knowledge Representation)

Let RO be a reference ontology, gABd a global fact base of a document d, U ∈ CUd

a content unit of document d, and ABU ∈ lABd the local fact base of U . Let further
cABd denote the combined fact base of d. Then

• KBU := (RO ∪ gABd ∪ ABU ) denotes the local knowledge base of content
unit U .

• cKBd := RO ∪ cABd denotes the combined knowledge base of document d.

• KBd = {KBU | U ∈ CUd} denotes the DL knowledge representation of the
content of document d.

• kmap : CUd → KBd : kmap(U) = KBU denotes the knowledge mapping of
content units onto their respective local knowledge base.

2

Remark 5.3.11 (Combined Knowledge Base)

Note that similar to the term combined fact base (Definition 5.3.1) , combined knowl-
edge base is an entirely technical term that does not imply or require that the knowl-
edge bases of a document are integrated on the semantic level (cf. Remark 5.3.2).

2

Corollary 5.3.12 (Combined Knowledge Base)

cKBd =
⋃

KB∈KBd

KB

as a consequence of Definition 5.3.1 (cABd).
2

Corollary 5.3.13 (Finite Knowledge Representation)

1. |KBd| ≤ |CUd| by Definition 5.3.10. Since CUd is finite (Definition 5.2.1) also
KBd is finite.

2. Each local knowledge base KBU ∈ KBd of a document knowledge represen-
tation is finite as a consequence of RO being finite (Definition 5.3.6) and gABd

as well as ABU being finite (Definition 5.3.1).

3. As a consequence of 1.) and 2.) and Corollary 5.3.12 also the combined knowl-
edge base cKBd is finite.

2

100



5.3. Representing Content Properties

Remark 5.3.14 (Local Knowledge Base and Knowledge Representation)

KBd represents the entire symbolic knowledge about the document. KBd, in com-
bination with the narrative structure NSd (Definition 5.2.19) and the knowledge map-
ping kmap, is used to construct a temporal verification model about the document’s
content. The temporal verification model is verified against anALCCTL specification
by model checking.

2

The set of individuals, which appear in some local knowledge base, is called knowl-
edge domain (see Definition 5.3.15). The knowledge domain is the set of objects
representing the content of the document. It is an important structure for the definition
of the verification procedure in section 6.4.

Definition 5.3.15 (Knowledge Domain)

Let KB be a DL knowledge base, AS the set of application dependent symbols and
IV ⊆ AS the set of individuals (Definition 3.1.4). Then

KB|α := {φ ∈ KB | α appears in φ} denotes the set of statements in KB about an
application dependent symbol α ∈ AS.

Let KBU be a local knowledge base of content unit U ∈ CUd and cKBd be the
combined knowledge base of document d (Definition 5.3.10).

Then

IVKBU
:= {i ∈ IV | KBU |i 6= ∅} denotes the local knowledge domain of content

unit U and

IVcKBd
:= {i ∈ IV | cKBd|i 6= ∅} denotes the knowledge domain of document d.

2

Corollary 5.3.16 (Knowledge Domain is Finite)

The knowledge domain IVcKBd
of a document d is finite.

This is a direct consequence of cKBd being finite (Corollary 5.3.13) and the fact that
each statement of cKBd is finite and thus contains finitely many individuals.

2

Corollary 5.3.17 (Knowledge Domain)

IVcKBd
=

⋃

U∈CUd

IVKBU

This is a direct consequence of Corollary 5.3.12 and Definition 5.3.15.
2
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Corollary 5.3.18 (Local Knowledge Domain is Finite)

Each local knowledge domain IVKBU
for U ∈ CUd is finite.

This is the consequence of IVcKBd
being finite (Corollary 5.3.16) and Corollary

5.3.17. 2

Remark 5.3.19 (Knowledge Domain)

The local knowledge domain IVKBU
of content unit U ∈ CUd represents the set

of objects that we have knowledge about in the context of the content unit U . The
assertions in KBU represent properties of these objects.

The knowledge domain IVcKBd
of document d represents the set of objects that we

have knowledge about in the context of the entire document. The assertions in cKBd

represent properties of these objects.

The elements of the document’s knowledge domain can be constrained by specifica-
tions. Hence, the appropriate selection of the knowledge domain is a major concern
for representing the content of the document within the semantic model.

Elements of the knowledge domains are representatives of all sort of concrete or ab-
stract objects that can be addressed by specifications. They may represent content
fragments such as media objects, paragraphs, sections, but also resources related in
some sense to the document’s content such as topics, level of difficulty, target groups
etc. 2

5.3.3. Knowledge Representation - Some Remarks

We use assertions and axioms of a description logic for the representation of the doc-
ument’s content. The choice of the DL is determined by the complexity of back-
ground knowledge and respective terminological axioms. Any description logic can
be used that has a decidable satisfiability problem. For being of practical use, the
chosen description logic should be supported by some reasoning system. Most rea-
soning systems support very expressive DL such as SHIQ [HST00] or SHOQ(D)
[HS01a, PH02]. As our framework does not make any assumptions on the DL lan-
guage besides decidability, future extensions to descriptions logics can be adopted
whenever it is beneficial for the application scenario.

The representation of the entire instance- and schema-level knowledge about a docu-
ment within a single knowledge base KB would cause several problems:

• the likelihood of logical inconsistency of the knowledge base grows in the size
of the knowledge base. Since inconsistent knowledge bases imply any logical
statement they cannot be used for the verification of semantic criteria (cf. Re-
mark 3.1.33).
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• reasoning is exponential in the size of the knowledge base for most relevant
description logics (section 3.1.4). As a result, the reasoning performance would
not scale well to larger documents when representing the entire knowledge about
the document within a single knowledge base.

• finding errors in large knowledge bases is a difficult task [BFH00, LH05, PSK05,
WHR+05]. The consistency and soundness of smaller knowledge bases is easier
to establish and maintain.

Therefore, we partition the knowledge about a document into several knowledge bases.
We distinguish:

• the fact base: a set of ABoxes representing instance-level knowledge about the
document.

• the reference ontology: the reference ontology represents schema-level knowl-
edge about document structures and content and defines the vocabulary used in
specifications.

The modular structure of the knowledge representation leads to high scalability, adapt-
ability to different verification scenarios and criteria, and low maintenance cost.

5.3.4. Consistency of Content Knowledge Representations

When combining knowledge from several sources and about different aspects of a
document d, inconsistencies may arise from contradictive metadata or interpretation
of metadata. For example, consider a definition which is attributed as difficult by one
set of metadata and as easy by another. Obviously, not both can be the case at the same
time. Contradictions may also arise indirectly. For instance, consider that a definition
is attributed as easy and formal. The reference ontology contains the axiom that any
formal content is difficult. As a result, content that is attributed as easy and formal has
contradictive properties.

Obviously, contradictive metadata indicates an error in the implementation of a docu-
ment and should be discovered and corrected.

Contradictive metadata leads to inconsistent knowledge bases. Recall, a knowledge
base is inconsistent iff it is not satisfiable (Definition 3.1.28). An inconsistent knowl-
edge base implies any logical statement. Hence, reasoning results based on inconsis-
tent knowledge bases are meaningless. As a result, there is also a technical necessity
for maintaining a certain degree of consistency of the knowledge representation.

Regarding the knowledge representation of a document we distinguish local and global
(in-)consistency:

103



5. Document Model

Definition 5.3.20 (Global and Local Consistency)

A knowledge representation KBd of document d is locally consistent iff KB is satis-
fiable for each KB ∈ KBd. Otherwise KBd is locally inconsistent.

KBd is globally consistent iff the corresponding combined knowledge base cKBd is
satisfiable. Otherwise KBd is globally inconsistent. 2

Remark 5.3.21 (Global and Local Consistency)

When a document is assembled from different sources, the global consistency of the
entire knowledge about the document is usually quite hard to maintain [BGvH+03].
Consequently, we do not require global consistency but just local consistency of the
knowledge representation KBd of document d. Since the knowledge about the doc-
ument is partitioned along content units, the maintenance of local inconsistency is
significantly simplified. Recall, assertions of KBU represent only knowledge relevant
to a content unit U ∈ CUd, which is usually a rather small portion of the document’s
content.

The differences between of local vs. global consistency are illustrated by Example
5.3.22 and discussed in the subsequent remark. 2

Example 5.3.22 (Global and Local Consistency)

Let CUd = {U1, U2, U3} be the set of content units of document d and RO be a
reference ontology as follows:

Plant uDatastructure
.= ⊥ (5.6)

NatTree v Plant u Tree (5.7)

DSTree v Datastructure u Tree (5.8)

BinTree v DSTree (5.9)

...

Equation 5.6 expresses that Plant and Datastructures are disjoint concepts, i.e. no
individual can be both an instance of Plant and an instance of Datastructure. Equa-
tion 5.7 defines the class of ”natural trees” as ”trees” which are ”plants”. Equation 5.8
defines the class of ”data structure trees” as ”trees” which are ”data structures”. Fi-
nally, Equation 5.9 defines BinTree as specialization of DSTree.

Further, let gABd = ∅ and lABd = {ABU1 , ABU2 , ABU3} with

ABU1 = {DSTree(tree)} (5.10)

ABU2 = {NatTree(tree)} (5.11)

ABU3 = {BinTree(tree)} (5.12)
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This expresses that the term tree represents a ”data structure” in content unit U1, a
”natural tree” in content unit U2 and a ”binary tree” in content unit U3, i.e. the meaning
of the term tree changes within the document.

Then the combined fact base of document d is

cABd = {DSTree(tree), NatTree(tree), BinTree(tree)}

and the combined knowledge base is cKBd = RO ∪ cABd.

cKBd is not satisfiable because

{DSTree(tree), DSTree v DatastructureuTree} |= Datastructure(tree)

and

{NatTree(tree), NatTree v Plant u Tree} |= Plant(tree)

but Plant and Datatstructure are defined as disjoint concepts in RO Equation 5.6.
Hence, the inconsistent use of term tree leads to a globally inconsistent fact base.

However, KBd is locally consistent because RO∪gABd∪ABU is satisfiable for each
ABU ∈ lABd.

2

Remark 5.3.23 (Global and Local Consistency)

Global consistency is not required for the verification of the document and hence not
enforced by our method by default. Still, a globally consistent knowledge representa-
tion can be desirable. This is because a globally inconsistent knowledge representation
indicates some inconsistent use of terminology within the metadata descriptions of the
document as illustrated by the term tree in Example 5.3.22.

For documents composed of heterogeneous sources, inconsistent use of terminology
may be tolerable. This is the case, for instance, if different parts of the document apply
different metadata standards. For documents that apply a single standard for metadata
descriptions, a globally inconsistent knowledge representation may indicate an error
in the content of the document that should be accounted for.

If desirable, global consistency can be enforced within the given framework by adding
appropriate axioms or assertions to the reference ontology. For instance, adding the
assertion DSTree(tree) to RO ensures that the term tree is used consistently as a data
structure within the scope of the document. This expresses that in any content unit of
the document the term tree represents a data structure. Then RO ∪ gABd ∪ ABU2

is not satisfiable for the same reason as RO ∪ cABd and hence KBd is not locally
consistent.

2
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Another technical requirement for the knowledge representation KBd of document d
is that the knowledge domain IVcKBd

is not empty. Recall that the knowledge domain
represents the set of objects that we have knowledge about in the context of the doc-
ument d (Definition 5.3.15 and subsequent Remark 5.3.19). IVcKBd

= ∅ means that
no individuals occur in any of the statements of the knowledge bases KBU ∈ KBd.
This in turn implies that none of the local knowledge bases contains an ABox and,
consequently, all fact bases about the document are empty.

If no facts about the document are available properties of the document cannot be ver-
ified. Therefore, we require for technical reasons that IVcKBd

6= ∅ for any knowledge
representation KBd of document d (see Definition 5.3.24). Note that the condition
IVcKBd

6= ∅ can always be satisfied by adding the assertion >(d) to the global fact
base gABd of the document d. >(d) represents the fact that (document) d is some
known object.

Definition 5.3.24 (Semantic Model)

Let NSd = (CUd, BODd, proceed) be the narrative structure of a document d (Defi-
nition 5.2.19).

Let KBd be a locally consistent knowledge representation of document d such that its
knowledge domain IVcKBd

is not empty. Let kmap : CUd → KBd be the knowledge
mapping of content units onto the knowledge representation of the content of document
d (Definition 5.3.10).

Then SMd := (NSd,KBd, kmap) denotes the semantic model of a document d.
2

Example 5.3.25 (Semantic Model)

Consider a document d consisting of three content units CUd = {sec1, sec2, sec3}
where BODd = sec1 is the beginning of the document. Further there is a narrative
relation proceed = {(sec1, sec2), (sec1, sec3), (sec2, sec3), (sec3, sec3)}, i.e. start-
ing from sec1 the user may go to sec2 or go immediately to sec3 that is the end unit
of the document.

Then, by Definition 5.2.19, NSd := (CUd, BODd, proceed) is the narrative structure
of document d.

Assume that knowledge about each content unit is represented in a set of local fact
bases lABd = {ABsec1, ABsec2, ABsec3} where

ABsec1 = {hasObjective(intro,R180), hasObjective(intro,R180 Handling)}
ABsec2 = {teaches(L1, R180)}
ABsec3 = {teaches(L2, R180 Handling)}
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I.e. content unit sec1 contains an introduction, represented by the individual intro,
which states two objectives: ”robot type R180” represented by the individual R180
and ”Handling of robots of type R180” represented by the individual R180 Handling.
Unit sec2 contains Lesson 1 of the document represented by individual L1. L1 teaches
topic R180. Unit sec3 contains Lesson 2 represented by individual L2. L2 teaches
topic R180 Handling.

Assume further that no global facts about the document are available, i.e. gABd = ∅.

As a reference ontology consider

RO = { objectiveOf
.= hasObjective−, objectiveOf is the inverse

of role hasObjective.
addressedBy

.= addresses−, addressedBy is the in-
verse of role addresses.

> v ∀addresses.Topic, Topic is the range of role
addresses.

teaches v addresses, teaches is a sub-role of
addresses.

∃teaches.Topic
.= Lesson, Lesson is the class of ob-

jects that teach some topic.
∃objectiveOf.> v MajorTopic, MajorTopic is the do-

main of role objectiveOf .
MajorTopic v Topic Every major topic is a

topic.
}

By Definition 5.3.10, we get for the knowledge representation KBd of document d:

KBd = {KBsec1,KBsec2, KBsec3}

where

KBsec1 = RO ∪ gABd ∪ABsec1

= RO ∪ {hasObjective(intro, R180),
hasObjective(intro, R180 Handling)}

KBsec2 = RO ∪ gABd ∪ABsec2

= RO ∪ {teaches(L1, R180)}
KBsec3 = RO ∪ gABd ∪ABsec3

= RO ∪ {teaches(L2, R180 Handling)}
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For the knowledge mapping kmap : CUd → KBd, we get by Definition 5.3.10:

kmap(sec1) = KBsec1

kmap(sec2) = KBsec2

kmap(sec3) = KBsec3

The knowledge domain (Definition 5.3.15) of document d is the set of individuals
mentioned in any of the local knowledge bases of KBd and hence

IVcKBd
= {intro, L1, L2, R180, R180 Handling} 6= ∅

In addition, each of the local knowledge bases KBsec1, KBsec2, KBsec3 is satisfiable
and hence KBd is locally consistent (Definition 5.3.20).

Hence SMd := (NSd,KBd, kmap) is a semantic model of document d by Definition
5.3.24.

2

The semantic model is verified against an ALCCTL specification as shown in section
6.4.

5.4. Semantic Modelling - Related Work

We apply DL to the representation of knowledge about web documents. The semantic
model can be implemented using the semantic web standard OWL [BvHH+04] which
has a DL semantics. Various tools for editing [BHGS01, NSD+01] and reasoning with
OWL [HM01, HMS04b, SPG+07] exist and can be used as component of the proposed
system.

We adopt a graph- and logic-based approach to model the discourse domain and
content structure of documents. Similar approaches can be found in [BFGHS04],
[DHN03], [ESS05], [KF01], and [KBLL+04].

The Living Book system [BFGHS04] aims at intelligent management of personal-
ized and scenario-based teaching material. Parts (so called slices) of documents are
associated with learning objectives. Further, semantic dependencies between slices,
scenario-specific composition rules, and models of the individual knowledge and goals
of each user are represented based on a first-order logic with default negation. A model
generating theorem prover is applied for automatically assembling personalized learn-
ing documents.

[DHN03] describes a logic-based approach to the automated generation of personal-
ized hypertext structures from distributed metadata. Information provided by markup
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within documents, by external metadata files, and by ontologies is used to derive per-
sonalized relations between information units. As a unifying framework for different
knowledge representation formats the rule language TRIPLE [SD02] is suggested.

[ESS05] suggests DL knowledge bases for aiding the compilation of technical doc-
umentation from a base of documentation modules. Modules are annotated by the
covered concepts. Based on these annotations, the systems offers a concept-based
search of the document base and provides recommendations of which text modules
may fit to the current documentation context. Moreover, an ontology-based model of
the discourse domain is used to give hints on how to structure larger documentations.

Within the MMiSS project [KBHL+03, KBLL+04] LATEXdocuments are annotated by
ontologies modelling the entities and interrelationships of the discourse domain of the
document. This way the terminology used within the documents is standardized and
related to the represented general concept(s). This enables ”semantic” referencing and
automated compilation of documents.

Further approaches to automated hypertext generation based on semantic docu-
ment models are described in [Boc03, CW01, Dah01, GBvOH03, Hüb00, OBOC04,
See03, SSS01]. In contrast to these approaches, we do not aim at automated con-
struction of hypertext but on the verification of given documents. This simpli-
fies the requirements on knowledge representation and reasoning. As opposed to
[ESS05, KBLL+04, KF01, See03, SSS01] we do not use ontologies as complete spec-
ifications of the document’s structure and content but for representing necessary back-
ground knowledge that otherwise would have to be encoded into specifications (cf. sec-
tion 7.4.1.4). This helps to keep both the ontologies and the specifications small and
limits the manual effort for semantic modelling. In addition, ontologies are partitioned
into small units. This prevents an exponential explosion of reasoning time and supports
the debugging and maintenance of ontologies.

Moreover, in contrast to [BFGHS04, KF01, KBLL+04, See03, SSS01], W3C stan-
dards are adopted for the knowledge representation of documents which enable the
easy integration of existing metadata sources as well as the application of existing tools
for semantic annotation [HS03, KPT+04, UCI+06], information extraction [BCRS06,
CHS04, PKO+03], creation and management of ontologies [BHGS01, NSD+01], and
ontological reasoning [HM01, SPG+07].

Many approaches, for instance [BFGHS04, Hüb00, OBOC04, See03, SSS01], model
semantic dependencies between document parts or covered concepts of the form
”part/concept X is a prerequisite for part/concept Y ”. Representing semantic depen-
dencies on the level of document parts or concepts is expensive in general because the
required manual modelling effort may scale quadraticly in the document size and/or
concept space. Moreover, in many domains a fixed, generally valid prerequisite rela-
tionship between topics is hard to define because the choice of an appropriate order
of topics highly depends on individual didactic considerations of the author, the back-
ground and focus of the reader, and other properties of the reading context.
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In the presented approach, prerequisite relationships are not modelled explicitly within
the content model of a document. Instead, such kind of dependencies are represented
as general coherence criteria using the specification language which we will introduce
in the next chapter. The decoupling of the representation of prerequisite relationships
from the document model leads to simpler content models and less manual tagging
effort.

5.5. The Semantic Model - Summary of Structures

The semantic model SMd = (NSd,KBd, kmap) consists of a model of the narrative
structure of the document NSd, a set of DL knowledge bases KBd, and a mapping
kmap between content units of the document and their local knowledge representation.

The narrative structure NSd = (CUd, BODd, proceed) is a directed graph which
models the content structure of the document in terms of a set of content units CUd

with a distinct first unit BODd and the narrative relation proceed.

The knowledge representation KBd = {KBU |U ∈ CUd} is a set of knowledge bases
such that the content of each content unit U ∈ CUd is represented by a local knowledge
base KBU = kmap(U). A local knowledge base KBU = RO ∪ gABd ∪ ABU

contains the reference ontology RO representing general background knowledge about
the document, the global fact base gABd representing information about the document
as a whole, and ABU representing information about content unit U .

The semantic model will be transformed into anALCCTL temporal structure that will
be verified against a set of ALCCTL formulae by model checking.
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ALCCTL

6.1. Introduction

In the sequel, we define ALCCTL – a temporal description logic tailored to represent
criteria on the semantic document model as introduced in chapter 5. ALCCTL is
targeted at achieving the best compromise between high expressiveness for criteria on
documents and low computational complexity.

Problem Description (Motivating Example)

Consider the following criteria:

1. ”In the overview section, every important function of each robot type must be
listed.”

2. ”For each concept defined in a definition there should be a matching example in
some next content unit.”

The first criterion expresses an external dependency of the document’s content with
its domain of discourse while the second criterion expresses an internal dependency
between parts of the document (cf. section 1.1). Both criteria require to represent sets
of objects and relations between objects, namely the concepts of definitions and ex-
amples. Such relations among sets of objects can be expressed well in the description
logic ALC:

A proper ALC formalization of the first criterion is:

ImportantFunctionu∃functionOf.RobotType v ∃listedIn.OverviewSection

Note that this formalization relies on some background knowledge about the instances
of ImportantFunction of some RobotType. This background knowledge is repre-
sented in the reference ontology (Definition 5.3.6) and accessed within the verification
process.

While ALC, in combination with ontologies, is obviously sufficiently expressive to
represent (simple) external dependencies, we run into problems in the case of internal
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dependencies along reading paths such as criterion 2) above. Using ALC, we can just
approximate criterion 2) as follows:

Definition v ∀defines.∃illustratedBy.Example

”For any definition holds: everything, which is defined by the definition, is illustrated
by at least one example.”

While description logics allow for the specification of sets of objects (such as defini-
tions) and relationships between objects such as the ”defines” relation between defini-
tions and concepts, they cannot express temporal properties of objects. As for criterion
2), it is not possible to express that the required example of each defined concept should
appear in some next content unit.

Temporal logics are expressive for such temporal properties. For instance, the widely
adopted temporal logic CTL (section 3.2.2) can represent the required temporal aspect
of criterion 2) as:

AG(definition → EX example)

”Whenever (AG) a definition occurs there is an example in some of the next content
units (EX).”

Due to the lack of variables, propositional temporal logics such as CTL cannot rep-
resent relations among sets of objects. Consequently, it is not possible to represent
the relation between definitions and defined concepts and between examples and illus-
trated concepts.

ALCCTL combines CTL and ALC in a way such that combinations of semantic and
temporal relations between objects of the modelling domain can be expressed:

AG(Definition v ∀defines.EX ∃illustratedBy.Example)

”Whenever (AG) a definition occurs, each defined concept needs to be illustrated by
an example in some of the next content units (EX).”

The combination ofALC and CTL allows to express semantic relationships of content
objects along paths within the narrative structure, which allows to check the coherence
of the content along standard reading paths.

For the verification of temporal specifications there are two basic approaches: theorem
proving and model checking. We have opted for modelling the document verification
problem as an ALCCTL model checking problem. It is adequate to model document
verification as a model checking problem because the narrative structure of documents
can be considered finite and completely known. Moreover, theorem proving of tem-
poral description logics is at least EXPTIME-hard [AF01, AFM03, AFWZ02] and thus
intractable for large structures (cf. [Sch94]). In the course of this chapter we will show
that the ALCCTL model checking problem is in polynomial time and thus can be
solved efficiently.
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Overview of the Chapter

In the sequel we define the syntax and semantics of ALCCTL. We then define the
ALCCTL model checking problem and show basic properties such as decidability and
computational complexity. Since model checking temporal description logics has not
yet been considered in literature, a new model checking algorithm forALCCTL had to
be developed. This new algorithm is presented and its soundness, completeness, and
computational complexity are proven.

We then show how the verification of documents can be modelled as an ALCCTL
model checking problem. We define a new verification algorithm for documents,
which combines DL reasoning and ALCCTL model checking, and prove its sound-
ness and completeness as well as its computational complexity in different scenarios.

6.2. The Specification Language ALCCTL

ALCCTL is a combination of the description logicALC (section 3.1.2) and the branch-
ing time temporal logic CTL (section 3.2.2).

6.2.1. Syntax

For the definition of syntax and semantics of ALCCTL, we adopt the notations and
style of [Eme90].

Definition 6.2.1 (Syntax of ALCCTL)

Let AC be a countably infinite set of atomic concepts and AR be a countably infi-
nite set of atomic roles. The set of ALCCTL concepts on AC and AR, denoted as
CALCCTL, is the minimal set of concepts generated by the following rules:

(C1) each atomic concept A ∈ AC is a concept;
(C2) if C, D are concepts then so are ¬C and C uD;
(C3) if C is a concept and R ∈ AR is an atomic role then ∃R.C is a concept;
(C4) if C is a concept then AX C and EX C are concepts.
(C5) if C and D are concepts then A(C U D) and E(C U D) are concepts.

The set of ALCCTL formulae, denoted as ALCCTL, is the minimal set of formulae
generated by the following rules:

(F1) if C, D are ALCCTL concepts then C v D is a formula;
(F2) if p and q are formulae then ¬p and p ∧ q are formulae;
(F3) if p is a formula then AX p and EX p are formulae;
(F4) if p and q are formulae then A(p U q) and E(p U q) are formulae. 2
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Remark 6.2.2 (Syntax of ALCCTL)

In the ALCCTL language, two similarly structured levels can be identified – the con-
cept level and the formula level. Concept terms are – much the same as in non-temporal
DL – interpreted as sets whereas formulae are interpreted as sentences which may or
may not hold in an interpretation.

Similar to CTL, temporal connectives such as X and U always need to be paired with
path quantifiers E or A.

It is known that a language over a countable alphabet is countable (cf. [EFT96], for
instance). Hence, the set of ALCCTL concepts CALCCTL and the set of ALCCTL
formulae are countable. 2

The syntax definition of ALCCTL is minimal in the sense that further connectives
can be expressed in terms of the base connectives of Definition 6.2.1. The distinction
between base and extended syntax simplifies subsequent definitions, algorithms, and
proofs since only base connectives need to be considered.

Definition 6.2.3 (Extended Syntax of ALCCTL)

Let C, D be ALCCTL concepts, R ∈ AR be an atomic role, p, q be ALCCTL formu-
lae, and α, β be ALCCTL concepts or formulae. Then

⊥ := C u ¬C ”bottom” or ”empty” concept
> := ¬⊥ ”top” or ”universal” concept

C tD := ¬(¬C u ¬D) C ”or” D
∀R.C := ¬∃R.¬C ”universal quantification” on role R

C
.= D := C v D ∧D v C C ”equal” D

false := p ∧ ¬p constant
true := ¬false constant
p ∨ q := ¬(¬p ∧ ¬q) p ”or” q

p → q := ¬p ∨ q p ”implies” q
AF C := A(> U C) ”all paths future” C
AF p := A(true U p) ”all paths future” p
EF C := E(> U C) ”some path future” or ”reachable” C
EF p := E(true U p) ”some path future” or ”reachable” p
AG α := ¬EF ¬α ”all paths globally” or ”always” α
EG α := ¬AF ¬α ”some path globally” α

A(C W D) := ¬E(¬D U (¬D u ¬C)) ”all path” C ”weak until” D
A(p W q) := ¬E(¬q U (¬q ∧ ¬p)) ”all path” p ”weak until” q

E(C W D) := E(C U D) t EG C ”some path” C ”weak until” D
E(p W q) := E(p U q) ∨ EG p ”some path” p ”weak until” q
A(α B β) := ¬E(¬α U β) ”all path” α ”before” β
E(α B β) := ¬A(¬α U β) ”some path” α ”before” β
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The binding precedence of connectives introduced above is as follows: all connectives
used as concept constructors (rules C1 through C5 in Definition 6.2.1) have higher
binding power than the connectives used to build formulae (rules F1 through F4 in Def-
inition 6.2.1). The precedence of concept constructors from highest to lowest binding
power is as follows: path quantifiers A, E, temporal connectives X,F, G, U,W,B, non-
temporal concept constructors ∀, ∃,¬,u,t. The binding precedence of connectives
in formulae is: path quantifiers A, E, temporal operators F, G, X,U, B, non-temporal
formula connectives v,

.=,¬,∧,∨,→. 2

Example 6.2.4 (Syntax of ALCCTL)

The following are valid ALCCTL formulae:

Introduction v ContentUnit Every introduction is a content unit.

Overview v ∃hasT itle. Every overview has a title
(ShortT itle t FullT itle) that is a short or full title.

¬(Definition v Formal) Not all definitions are formal.

¬Definition v Formal Everything, which is not a definition, is
formal.

Theorem v Formal → If every theorem is formal then
Proof v Formal every proof must be formal, too.

Theorem u Formal v Every formal theorem
∃shownBy.(Proof u Formal) must be shown by a formal proof.

AG(Theorem u Formal v On all paths holds globally that every
EX ∃shownBy.(Proof u Formal)) formal theorem must be shown by a for-

mal proof in one of the next states.

EG(Difficult v ⊥) There is a path such that in every state
there is no difficult object.

EF Difficult v ⊥ There is no object that is on some path at
some state classified as difficult.

EF Defined v Everything, which is defined eventually
A(¬Applied W Defined) on some path, is on all paths not applied

(weak) until it is defined.

AG(Definition v On all paths in all states, it holds for any
∀defines.EF ∃appliedIn.>) definition that every concept defined is

on some path eventually applied in some-
thing.
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The following expressions are not valid:

> v Fragment ∨ Topic ∨ can only be applied to formulae but not to concepts.

AF Conclusion This is an ALCCTL concept but not an ALCCTL
formula.

∃EF hasTopic.Tested Modal operators such as EF are not allowed for roles.

> v A(X Help U Test) Temporal connectives X, U, F, G, B,U, W need to be
paired with a path quantifier E or A.

A(Test v EX Solution) Test v EX Solution is a formula. However, path
quantifier E or A can only be applied to path formulae.

2

Remark 6.2.5 (Syntax of ALCCTL)

Example 6.2.4 demonstrates that the non-temporal part of ALCCTL alone already
exceeds ALC. This is because Boolean connectives such as ∧,∨,→ and negation of
formulae are available in ALCCTL but not in ALC.

In contrast, the syntax definition of ALCCTL implies that ALCCTL contains ALC,
i.e. every ALC formula is also a syntactically correct ALCCTL formula.

2

6.2.2. Semantics

ALCCTL formulae are interpreted over temporal structures which are closely related
to the semantic model of a document. The semantics of ALCCTL defines when an
ALCCTL formula holds in a given temporal structure.

There are several different approaches to defining the semantics of a first order branch-
ing time logic. Our definition is based on state transition graphs and thus is closely
related to [Eme90] and [vB95].

Definition 6.2.6 (Temporal Structure)

ALCCTL formulae are interpreted on temporal structures M = (S,R,∆, I) such that

• S is a nonempty set of states.

• R ⊆ S×S is a left-total binary relation on S assigning to each state in S at least
one successor in S.

• ∆ is a set of objects – the interpretation domain.
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• I is a function S → LI associating each state s ∈ S with a local interpretation
I(s) ∈ LI , with LI being the set of local ALC interpretations. Each local
interpretation I(s) ∈ LI is a function associating each atomic conceptA ∈ AC
with a set of domain objects AI(s) ⊆ ∆ and each atomic Role R ∈ AR with a
set of pairs RI(s) ⊆ ∆×∆.

MALCCTL denotes the set of ALCCTL temporal structures.

fMALCCTL := {(S, R,∆, I) ∈ MALCCTL | |S| ∈ N1 ∧ |∆| ∈ N1} denotes the set of
finite and nonempty ALCCTL temporal structures

2

Example 6.2.7 (Temporal Structure)

s0

s1

s2

MajorTopic I(s0)  = {R180, R180_Handling}

Lesson
I (s0)

 = {L1}

addressedBy I(s0) = {(R180, L1)}

MajorTopic I(s1)  = {R180}

Lesson
I(s1)

 = { }

addressedBy
I(s1)

 = { }

MajorTopic
I(s2)  

= {R180_Handling }

Lesson
I(s2)

 = {L2}

addressedBy I(s2) = {(R180_Handling, L2)}

Figure 6.1.: sample temporal structure

Consider the set of atomic concepts AC = {MajorTopic, Lesson} and the set of
atomic roles AR = {addressedBy}. MajorTopic is interpreted as the set of ma-
jor topics of a document. Lesson is interpreted as the set of lessons of a learning
document. addressedBy is interpreted as {(a, b) | topic a is addressed by fragment
b}.

Consider the temporal structure M = (S, R,∆, I) depicted in Figure 6.1 with

• the set of states S := {s0, s1, s2};

• the left-total relation R := {(s0, s1), (s0, s2), (s1, s2), (s2, s2)} ⊆ S × S;

• the domain of objects ∆ := {L1, L2, R180, R180 Handling};
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• the interpretation of concepts in AC:

MajorTopicI(s0) = {R180, R180 Handling} R180 and R180 Handling are
the major topics in state s0.

LessonI(s0) = {L1} L1 is the (only) lesson in state
s0.

MajorTopicI(s1) = {R180} R180 is the (only) major topic
in state s1.

LessonI(s1) = ∅ there is no lesson in state s1.
MajorTopicI(s2) = {R180 Handling} R180 Handling is the (only)

major topic in state s2.
LessonI(s2) = {L2} L2 is the (only) lesson in state

s2.

• and the interpretation of roles in AR:

addressedByI(s0) = {(R180,L1)} R180 is addressed by L1 in state
s0.

addressedByI(s1) = ∅ there is no topic addressed in state
s1.

addressedByI(s2) = {(R180 Handling,L2)} R180 Handling is addressed by
L2 in state s2.

The truth of an ALCCTL formula such as

MajorTopic v AF ∃addressedBy.Lesson

– every major topic is eventually addressed by a lesson on all paths – can be evaluated
in the structure (S, R,∆, I) (see Example 6.2.11). 2

Similar to CTL, the semantics of temporal connectives of ALCCTL are defined
w.r.t. full paths in the state transition system (S, R) (Definition 3.2.6). Recall that
FPs denotes the set of full paths {(s0, s1, ...) | s0 = s ∧ ∀i ∈ N : (si, si+1) ∈ R}
within (S,R) starting from state s ∈ S.

Definition 6.2.8 (Semantics of ALCCTL)

Let M = (S, R,∆, I) be a temporal structure (Definition 6.2.6), AC be a set of atomic
concepts, AR be a set of atomic roles, s ∈ S a state, R(s) := {s′ ∈ S | (s, s′) ∈ R} be
the set of successor states of s in R, and FPs be the set of full paths in (S,R) starting
from s.

Let C, D be ALCCTL concepts, A ∈ AC an atomic concept, and R ∈ AR an atomic
role.
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Then the semantics ofALCCTL concepts w.r.t. M, s, in symbols (M, s)(C), is defined
as follows:

(C1) (M, s)(A) := AI(s)

(C2) (M, s)(C uD) := (M, s)(C) ∩ (M, s)(D)
(M, s)(¬C) := ∆\(M, s)(C)

(C3) (M, s)(∃R.C) := {a ∈ ∆ | ∃b ∈ ∆ : (a, b) ∈ RI(s) ∧ b ∈ (M, s)(C)}
(C4) (M, s)(AX C) :=

⋂
s′∈R(s)(M, s′)(C)

(M, s)(EX C) :=
⋃

s′∈R(s)(M, s′)(C)
(C5) (M, s)(A(C U D)) :=

⋂
(s0,s1,...)∈FPs

{a ∈ ∆ | ∃i ∈ N : a ∈ (M, si)(D)∧
∀j ∈ {0, ..., i− 1} : a ∈ (M, sj)(C)}

(M, s)(E(C U D)) :=
⋃

(s0,s1,...)∈FPs
{a ∈ ∆ | ∃i ∈ N : a ∈ (M, si)(D)∧

∀j ∈ {0, ..., i− 1} : a ∈ (M, sj)(C)}

(M, s)(C) is abbreviated as CI(s) if M is understood from the context.

The following rules determine when anALCCTL formula p is true in M, s, in symbols
M, s |= p. Let p, q be ALCCTL formulae. Then

(F1) M, s |= C v D iff CI(s) ⊆ DI(s0)

(F2) M, s |= ¬p iff M, s 6|= p
M, s |= p ∧ q iff M, s |= p and M, s |= q

(F3) M, s |= AX p iff M, s′ |= p for each s′ ∈ R(s)
M, s |= EX p iff M, s′ |= p for some s′ ∈ R(s)

(F4) M, s |= A(p U q) iff ∀(s0, s1, ...) ∈ FPs ∃i ∈ N : M, si |= q and
∀j ∈ {0, ..., i− 1} : M, sj |= p

M, s |= E(p U q) iff ∃(s0, s1, ...) ∈ FPs ∃i ∈ N : M, si |= q and
∀j ∈ {0, ..., i− 1} : M, sj |= p

2

Remark 6.2.9 (Semantics of ALCCTL)

The semantics ofALCCTL is defined on two layers: the concept layer and the formula
layer. Formulae p ∈ ALCCTL hold or do not hold in a temporal structure M at a state
s which is denoted as M, s |= p (or M, s 6|= p, respectively).

In contrast to formulae, the interpretation of ALCCTL concepts yields subsets of the
interpretation domain ∆. For instance, the interpretation of the temporal concept
EX Defined at a state s ∈ S yields the subset of domain objects in ∆, which are
instances of concept Defined at some next state s′, in symbols (EX Defined)I(s) =⋃

s′∈R(s) DefinedI(s′).
2
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Definition 6.2.10 (Validity and Temporal Models)

Let M = (S,R,∆, I) be an ALCCTL temporal structure, s ∈ S a state, and p an
ALCCTL formula.

Then M, s is a (temporal) model of p (or alternatively, M satisfies p at s or p holds in
M at s) iff M, s |= p.

2

Example 6.2.11 (Interpretation and Validity of ALCCTL Formulae)

Consider theALCCTL formula f := MajorTopic v AF ∃addressedBy.Lesson and the
temporal structure M = (S,R,∆, I) of Example 6.2.7 as depicted in Figure 6.1.

The validity of the formula f in M can be determined as follows.

By rule (C3) of the ALCCTL semantics (Definition 6.2.8) it holds:

(∃addressedBy.Lesson)I(s0) = {R180}
(∃addressedBy.Lesson)I(s1) = ∅
(∃addressedBy.Lesson)I(s2) = {R180 Handling}

i.e. the temporal interpretation of the ALCCTL concept ∃addressedBy.Lesson yields
{R180} in state s0, ∅ in state s1, and {R180 Handling} in state s2.

By application of Definition 6.2.3, the expression AF ∃addressedBy.Lesson in f ex-
pands to A(> U ∃addressedBy.Lesson).

Using rule (C5) of Definition 6.2.8 we get:

(AF ∃addressedBy.Lesson)I(s0) = {R180, R180 Handling} (6.1)

(AF ∃addressedBy.Lesson)I(s1) = {R180 Handling} (6.2)

(AF ∃addressedBy.Lesson)I(s2) = {R180 Handling} (6.3)

Equation (6.1) can be seen as follows:

(AF ∃addressedBy.Lesson)I(s0)

= (M, s0)(A(> U ∃addressedBy.Lesson))

=
⋂

(s0,s1,...)∈FPs0

{a ∈ ∆ | ∃i ∈ N : a ∈ (M, si)(∃addressedBy.Lesson) ∧

∀j ∈ {0, ..., i− 1} : a ∈ (M, sj)(>)}
=

⋂

(s0,s1,...)∈FPs0

{a ∈ ∆ | ∃i ∈ N : a ∈ (M, si)(∃addressedBy.Lesson)}

120



6.3. Model Checking ALCCTL

Hence (AF ∃addressedBy.Lesson)I(s0) yields the set of objects which are addressed by
a lesson at some state on all paths from state s0.

In (S, R) there are exactly two paths p = (p0, p1, ...) := (s0, s1, s2, s2, ...) and p′ =
(p′0, p

′
1, ...) := (s0, s2, s2, ...) starting from s0 and hence FPs0 = {p, p′}. Thus we get

⋂

(s0,s1,...)∈FPs0

{a ∈ ∆ | ∃i ∈ N : a ∈ (M, si)(∃addressedBy.Lesson)}

= {a ∈ ∆ | ∃i ∈ N : a ∈ (M, pi)(∃addressedBy.Lesson)} ∩
{a ∈ ∆ | ∃i ∈ N : a ∈ (M, p′i)(∃addressedBy.Lesson)}

= (
⋃

i∈N
(M, pi)(∃addressedBy.Lesson)) ∩ (

⋃

i∈N
(M,p′i)(∃addressedBy.Lesson))

= ((∃addressedBy.Lesson)I(s0) ∪ (∃addressedBy.Lesson)I(s1) ∪
(∃addressedBy.Lesson)I(s2))
∩((∃addressedBy.Lesson)I(s0) ∪ (∃addressedBy.Lesson)I(s2))

= ({R180} ∪ ∅ ∪ {R180 Handling}) ∩ ({R180} ∪ {R180 Handling})
= {R180, R180 Handling}

Equations (6.2) and (6.3) can be shown analogously.

Since MajorTopicI(s0) = {R180, R180 Handling} and hence MajorTopicI(s0) ⊆
(AF ∃addressedBy.Lesson)I(s0) we get by rule (F1) in Definition 6.2.8:

M, s0 |= MajorTopic v AF ∃addressedBy.Lesson

Analogously we get M, s1 6|= f and M, s2 |= f . 2

6.3. Model Checking ALCCTL

6.3.1. Definition of the ALCCTL Model Checking Problem

Verification of document structures is based on the model checking problem of
ALCCTL.

Definition 6.3.1 (ALCCTL Label Set)
Let M = (S, R,∆, I) ∈ fMALCCTL be a finite temporal structure, i.e. S and ∆ are
finite, nonempty sets. Let f ∈ ALCCTL be a formula.

Then

LSM,f := {s ∈ S |M, s |= f}
denotes the label set of f in M . 2
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Definition 6.3.2 (ALCCTL Model Checking Problem)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite temporal structure and f ∈ ALCCTL
be a formula.

Then the ALCCTL model checking problem, denoted as MCALCCTL(M, f), is deter-
mining the label set LSM,f of f in M . 2

6.3.2. Properties of the ALCCTL Model Checking Problem

Decidability

TheALCCTL model checking problem can be reduced to the model checking problem
of propositional CTL. The reduction to CTL shows the decidability and an upper
bound of computational complexity of the ALCCTL model checking problem. Also,
the CTL reduction of ALCCTL sets the ground for a sound and complete ALCCTL
model checking algorithm.

Proposition 6.3.3 (CTL Reducibility of ALCCTL)

TheALCCTL model checking problem is reducible to the CTL model checking prob-
lem in the following way.

Let fMALCCTL be the set of finiteALCCTL temporal structures (Definition 6.2.6) and
fMCTL be the set of finite CTL temporal structures (Definition 3.2.4).

Then there is a structure mapping sm : fMALCCTL × ALCCTL → fMCTL and a
formula mapping fm : fMALCCTL × ALCCTL → CTL such that for each finite
ALCCTL temporal structure (S, R,∆, I) ∈ fMALCCTL, state s ∈ S, and formula
f ∈ ALCCTL holds:

M, s |=ALCCTL f ⇔ sm(M, f), s |=CTL fm(M, f) (6.4)

2

The general idea for proving Proposition 6.3.3 is as follows: since the interpretation
domain ∆ of M is finite, the temporal interpretation I can be encoded in terms of a
propositional labelling function L. As a consequence, ALCCTL temporal structures
can be encoded by means of CTL temporal structures. Moreover, in the case of finite
domains, the explicit and implicit first order quantifications inALCCTL formulae can
be unfolded to finite Boolean expressions. For ∆ = {a1, ..., an} the formula C v D
can be expanded to (C(a1) → D(a1))∧ (C(a2) → D(a2))∧ ...∧ (C(an) → D(an))
=

∧
a∈∆(C(a) → D(a)).
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To prove Proposition 6.3.3 we define suitable structure and formula mappings sm and
fm and then show that sm and fm satisfy the assertion of Proposition 6.3.3.

As for the definition of the structure mapping sm, consider a finiteALCCTL temporal
structure (S, R,∆, I) ∈ fMALCCTL. Since the interpretation domain ∆ is finite, the
interpretation function I can be encoded in terms of a propositional labelling function
L assigning each state in S a set of atomic propositions satisfied in S in the following
way.

For each state s ∈ S, objects a, b ∈ ∆, atomic concept A ∈ AC, and atomic role
R ∈ AR: if a ∈ AI(s) then add the atomic propositionA(a) to L(s); if (a, b) ∈ RI(s)

then add the atomic proposition R(a, b) to L(s). More formally:

Definition 6.3.4 (ALCCTL to CTL Structure Mapping)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, f an
ALCCTL formula, AC the set of atomic concepts, AR the set of atomic roles, AC|f ⊆
AC be the set of atomic concepts occurring in f , and AR|f ⊆ AR the set of atomic
roles occurring in f .

Let AP be a set of atomic propositions such that

AP ⊇ {A(a) | A ∈ AC|f ∧ a ∈ ∆} ∪ {R(a, b) | R ∈ AR|f ∧ a, b ∈ ∆}

The relevant part of the interpretation function I w.r.t. f is transformed into a proposi-
tional labelling LI,f of states S in the following way:

LI,f := S → P(AP ) : LI,f (s) = {A(a) ∈ AP | A ∈ AC|f ∧ a ∈ AI(s)} ∪
{R(a, b) ∈ AP | R ∈ AR|f ∧ (a, b) ∈ RI(s)}

Then (S,R, LI,f ) is a finite CTL temporal structure and

sm : fMALCCTL ×ALCCTL → fMCTL : sm((S, R,∆, I), f) := (S, R, LI,f )

denotes a CTL structure mapping of ALCCTL temporal structures w.r.t. ALCCTL
formulae.

2

Remark 6.3.5 (ALCCTL to CTL Structure Mapping)

The structure mapping sm in Definition 6.3.4 is well defined because it is restricted to
finite ALCCTL temporal structures fMALCCTL.

2
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Example 6.3.6 (ALCCTL to CTL Structure Mapping)

Consider the ALCCTL temporal structure (S, R,∆, I) as of Example 6.2.7 and the
ALCCTL formula f := MajorTopic v AF ∃addressedBy.>.

Then the result of the structure mapping sm((S, R,∆, I), f) is (S, R, LI,f ) with

LI,f (s1) = {MajorTopic(R180),MajorTopic(R180 Handling),
addressedBy(R180, L1)}

LI,f (s2) = {MajorTopic(R180)}
LI,f (s3) = {MajorTopic(R180 Handling),

addressedBy(R180 Handling, L2)}

2

For the definition of a mapping of ALCCTL formulae onto CTL formulae consider
an ALCCTL formula f interpreted w.r.t. finite ALCCTL temporal structures. Again,
since the interpretation domain ∆ is finite, f can be reduced to an equivalent CTL
formula f ′ by a finite Boolean encoding of each quantified expression appearing in f
and recursively replacing the DL connectives with Boolean expressions as follows:

Definition 6.3.7 (ALCCTL to CTL Formula Mapping)

fm : fMALCCTL × ALCCTL → CTL is a mapping of ALCCTL temporal structures
and formulae onto CTL formulae inductively defined as follows:

Let M = (S, R,∆, I) be an ALCCTL temporal structure, C,D ALCCTL concepts,
and p, q ALCCTL formulae. Then

fm(M, C v D) :=
∧

a∈∆

(C[a]∆ → D[a]∆) (Def. C[a]∆ see below)

fm(M,¬p) := ¬fm(M,p)
fm(M, p ∧ q) := fm(M,p) ∧ fm(M, q)
fm(M, EX p) := EX fm(M,p)
fm(M, AX p) := AX fm(M,p)

fm(M, E(p U q)) := E(fm(M, p) U fm(M, q))
fm(M, A(p U q)) := A(fm(M, p) U fm(M, q))

For the definition of fm(M, C v D) we inductively define a concept mapping C[a]∆
as follows.
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LetA ∈ AC be an atomic concept,R ∈ AR an atomic role, C, D ALCCTL concepts,
and a ∈ ∆ a domain object. Then

>[a]∆ := true

⊥[a]∆ := false

A[a]∆ := A(a)
(C uD)[a]∆ := C[a]∆ ∧D[a]∆

(¬C)[a]∆ := ¬(C[a]∆)

(∃R.C)[a]∆ :=
∨

b∈∆

(R(a, b) ∧ C[b]∆)

(EX C)[a]∆ := EX C[a]∆
(AX C)[a]∆ := AX C[a]∆

(E(C U D))[a]∆ := E(C[a]∆ U D[a]∆)
(A(C U D))[a]∆ := A(C[a]∆ U D[a]∆)

2

Remark 6.3.8 (ALCCTL to CTL Formula Mapping is Well-Defined)

The formula mapping fm as defined in Definition 6.3.7 replaces everyALCCTL con-
nective not available in CTL by a finite expression over Boolean connectives. Connec-
tives coinciding in ALCCTL and CTL remain unchanged by fm.

ALCCTL connectives not available in CTL are v,>,⊥,u, ∃R.C. fm maps ”v”
onto an expression consisting of ”∧” and ”→” connectives, ”>” is mapped onto the
Boolean constant ”true”, ”⊥” onto the Boolean constant ”false”, ”u” onto ”∧”, and
the existential role quantification ”∃R.C” onto an expression consisting of ”∨” and
”∧” connectives.

Since ∆ is finite and nonempty (Definition 6.2.6), the mappings of ”v” and ”∃R.C”
result in finite and nonempty expressions. Also, all other mappings are finite. With
A(a) ∈ AP and R(a, b) ∈ AP for each atomic concept A ∈ AC, atomic role R ∈
AR, domain objects a, b ∈ ∆ and AP being the set of atomic propositions, we get by
induction on the structure of f that fm(M, f) results in a finite CTL formula over the
set of atomic propositions AP . As a result fm(M, f) ∈ CTL for M ∈ fMALCCTL

and f ∈ ALCCTL and thus fm is well-defined. 2

Example 6.3.9 (ALCCTL to CTL Formula Mapping)

Consider the ALCCTL temporal structure M = (S,R,∆, I) as of Example 6.2.7 and
the ALCCTL formula f := MajorTopic v ∃addressedBy.>.

Recall that in Example 6.2.7 ∆ = {L1, L2, R180, R180 Handling}, which is abbre-
viated as ∆ = {l1, l2, r1, r2} for convenience within the scope of this example.
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The formula mapping fm(M, f) can be constructed in a bottom-up manner as follows:

>[l1]∆ = >[l2]∆ = >[r1]∆ = >[r2]∆ = true

(∃addressedBy.>)[l1]∆ =
∨

b∈∆

(addressedBy(l1, b) ∧ >[b]∆)

=
∨

b∈∆

(addressedBy(l1, b) ∧ true)

=
∨

b∈∆

addressedBy(l1, b)

= addressedBy(l1, l1) ∨ addressedBy(l1, l2)
∨addressedBy(l1, r1) ∨ addressedBy(l1, r2)

(∃addressedBy.>)[l2]∆ = addressedBy(l2, l1) ∨ addressedBy(l2, l2)
∨addressedBy(l2, r1) ∨ addressedBy(l2, r2)

(∃addressedBy.>)[r1]∆ = addressedBy(r1, l1) ∨ addressedBy(r1, l2)
∨addressedBy(r1, r1) ∨ addressedBy(r1, r2)

(∃addressedBy.>)[r2]∆ = addressedBy(r2, l1) ∨ addressedBy(r2, l2)
∨addressedBy(r2, r1) ∨ addressedBy(r2, r2)

Finally, fm(M,MajorTopic v ∃addressedBy.>)

=
∧

a∈∆

(MajorTopic[a]∆ → (∃addressedBy.>)[a]∆)

= (MajorTopic(l1) → (∃addressedBy.>)[l1]∆) ∧
(MajorTopic(l2) → (∃addressedBy.>)[l2]∆) ∧
(MajorTopic(r1) → (∃addressedBy.>)[r1]∆) ∧
(MajorTopic(r2) → (∃addressedBy.>)[r2]∆)

= (MajorTopic(l1) → (addressedBy(l1, l1) ∨ addressedBy(l1, l2)
∨ addressedBy(l1, r1) ∨ addressedBy(l1, r2))) ∧

(MajorTopic(l2) → (addressedBy(l2, l1) ∨ addressedBy(l2, l2)
∨ addressedBy(l2, r1) ∨ addressedBy(l2, r2))) ∧

(MajorTopic(r1) → (addressedBy(r1, l1) ∨ addressedBy(r1, l2)
∨ addressedBy(r1, r1) ∨ addressedBy(r1, r2))) ∧

(MajorTopic(r2) → (addressedBy(r2, l1) ∨ addressedBy(r2, l2)
∨ addressedBy(r2, r1) ∨ addressedBy(r2, r2)))

2
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Remark 6.3.10 (Example ALCCTL to CTL Formula Mapping)

Example 6.3.9 shows that the CTL mapping of an ALCCTL formula w.r.t. a temporal
structure M can become large. As a worst case for the size of the CTL mapping,
consider a finite temporal structure M = (S, R,∆, I) and anALCCTL formula of the
following shape:

fwc = > v ∃R1.∃R2....∃Rn.C

The size |fm(M,f)| of the CTL mapping fm(M, f) can be approximated as follows:
let a ∈ ∆ be an atomic object. Then

|(∃Rn.C)[a]∆| = |∨b∈∆(Rn(a, b) ∧ C[b]∆)| ≥ |∆|.
|(∃Rn−1.∃Rn.C)[a]∆| = |∨b∈∆(Rn−1(a, b) ∧ (∃Rn.C)[b]∆)| ≥ |∆|· |∆| = |∆|2.

|(∃Rn−2.∃Rn−1.∃Rn.C)[a]∆| = |∨b∈∆(Rn−2(a, b) ∧ (∃Rn−1.∃Rn.C)[b]∆)| ≥
|∆|· |∆|2 = |∆|3.

...

|fm(M, fwc)| ≥ |(∃R1.∃R2....∃Rn.C)[a]∆| ≥ |∆|n

Hence, in the worst case, the size of the CTL mapping fm(M, f) is exponential in
the size of f and linear in the size of ∆, i.e. |fm(M, f)| ∈ Ω(|∆|p(|f |)) with M ∈
fMALCCTL and f ∈ ALCCTL, and p a polynomial N→ R+ of degree higher than 0.
This suggests that the complexity of model checkingALCCTL formulae is exponential
in the size of the formula |f | to check. Fortunately, this is not the case as shown in
Proposition 6.3.14.

2

Next, it is shown that the mappings sm and fm as defined in Definitions 6.3.4 and
6.3.7 are sound and complete, i.e.

M, s |=ALCCTL f ⇔ sm(M, f), s |=CTL fm(M,f)

for any finite temporal structure M = (S,R,∆, I) ∈ fMALCCTL, state s ∈ S, and
formula f ∈ ALCCTL.

As a first step we show that the concept mapping · [a]∆ is sound and complete in the
following sense:

Lemma 6.3.11 (Correctness of Concept Mapping)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, s ∈ S
a state, f an ALCCTL formula, C ′ an ALCCTL concept occurring in f , and M ′ :=
(S,R, LI,f ) = sm(M, f) the CTL structure mapping of M w.r.t. f . Then

∀a ∈ ∆ : a ∈ (M, s)(C ′) ⇔ M ′, s |=CTL C ′[a]∆ (6.5)

127



6. Document Verification with ALCCTL

Proof:

Assume C ′ = >. Let a ∈ ∆. Then it holds by Definitions 6.2.3 and 6.2.8, that
a ∈ (M, s)(>). Since C ′[a]∆ = true, also M ′, s |=CTL C ′[a]∆. Since the case
a 6∈ (M, s)(>) does not occur for any a ∈ ∆, the equivalence (6.5) is shown in the
case of C ′ = >. For C ′ = ⊥, the equivalence (6.5) holds analogously.

Assume C ′ = A with A ∈ AC being an atomic concept. Then

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(A)
⇔ a ∈ AI(s) (ALCCTL Semantics)
⇔ A(a) ∈ LI,f (s) (Def. of LI,f in Definition 6.3.4)
⇔ M ′, s |= A(a) (Def. of M ′, CTL Semantics)
⇔ M ′, s |= A[a]∆ (Def. of A[a]∆ in Definition 6.3.7)
⇔ M ′, s |= C ′[a]∆

The remaining cases follow by induction on the structure of C ′:

Assume C ′ = C uD. Then

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(C uD)
⇔ a ∈ (M, s)(C) and a ∈ (M, s)(D) (ALCCTL Sem. ’u’)
⇔ M ′, s |= C[a]∆ and M ′, s |= D[a]∆ (Induction Hypothesis)
⇔ M ′, s |= C[a]∆ ∧D[a]∆ (CTL Semantics ’∧’)
⇔ M ′, s |= (C uD)[a]∆ (Definition of · [a]∆)
⇔ M ′, s |= C ′[a]∆

For C ′ = ¬C we get analogously:

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(¬C)
⇔ a 6∈ (M, s)(C) (ALCCTL Sem. ’¬’)
⇔ M ′, s 6|= C[a]∆ (Induction Hypothesis)
⇔ M ′, s |= ¬(C[a]∆) (CTL Semantics ’¬’)
⇔ M ′, s |= (¬C)[a]∆ (Definition of · [a]∆)
⇔ M ′, s |= C ′[a]∆
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Furthermore, we get for C ′ = ∃R.C

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(∃R.C)
⇔ ∃b ∈ ∆ : (a, b) ∈ RI(s) ∧ b ∈ (M, s)(C) (ALCCTL Semantics)
⇔ ∨

b∈∆((a, b) ∈ RI(s) ∧ b ∈ (M, s)(C)) (because ∆ is finite)
⇔ ∨

b∈∆(R(a, b) ∈ LI,f (s) ∧M ′, s |= C[b]∆) (Def. LI,f , Ind. Hypothesis)
⇔ ∨

b∈∆(M ′, s |= R(a, b) ∧M ′, s |= C[b]∆) (CTL Semantics)
⇔ ∨

b∈∆ M ′, s |= R(a, b) ∧ C[b]∆ (CTL Semantics of ’∧’)
⇔ M ′, s |= ∨

b∈∆(R(a, b) ∧ C[b]∆) (CTL Semantics of ’∨’)
⇔ M ′, s |= (∃R.C)[a]∆ (Definition of · [a]∆)
⇔ M ′, s |= C ′[a]∆

The remaining cases are concepts formed by the temporal connectives
EX, AX, EU, AU. Since the structure mapping sm does not affect the transition
system S, R, the concept mapping · [a]∆ does not affect the temporal connectives, and
the semantics of temporal connectives is analogous in ALCCTL and CTL, Equation
(6.5) holds also in the cases with the temporal connectives as shown in detail for the
case of C ′ = E(C U D):

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(E(C U D))
⇔ a ∈ ⋃

(s0,s1,...)∈FPs
{a′ ∈ ∆ | ∃i ∈ N : a′ ∈ (M, si)(D)∧

∀j ∈ {0, ..., i− 1} : a′ ∈ (M, sj)(C)} (ALCCTL Semantics)
⇔ ∃(s0, s1, ...) ∈ FPs∃i ∈ N : (a ∈ (M, si)(D) ∧

∀j ∈ {0, ..., i− 1} : a ∈ (M, sj)(C))
⇔ ∃(s0, s1, ...) ∈ FPs∃i ∈ N : (M ′, si |= D[a]∆ ∧

∀j ∈ {0, ..., i− 1} : M ′, sj |= C[a]∆) (Ind. Hypothesis)
⇔ M ′, s |= E(C[a]∆ U D[a]∆) (CTL Semantics,

S,R same in M , M ′)
⇔ M ′, s |= (E(C U D))[a]∆ (Definition of · [a]∆)
⇔ M ′, s |= C ′[a]∆

For C ′ = A(C U D) we can prove analogously

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(A(C U D))
⇔ M ′, s |= A(C[a]∆ U D[a]∆) (ALCCTL Sem. + Ind. Hyp. + CTL Sem.)
⇔ M ′, s |= (A(C U D))[a]∆
⇔ M ′, s |= C ′[a]∆
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and for C ′ = EX C

a ∈ (M, s)(C ′)
⇔ a ∈ (M, s)(EX C)
⇔ M ′, s |= EX(C[a]∆) (ALCCTL Sem. + Ind. Hyp. + CTL Sem.)
⇔ M ′, s |= (EX C)[a]∆
⇔ M ′, s |= C ′[a]∆

The remaining case C ′ = AX C is along the same lines. Thus, the equivalence (6.5)
has been shown for all concepts C ′ ∈ CALCCTL. 2

We now show Proposition 6.3.12 by induction on the structure of anALCCTL formula
f . Proposition 6.3.3 follows from Proposition 6.3.12.

Proposition 6.3.12 (Correctness of Structure and Formula Mapping)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, s ∈
S a state, f an ALCCTL formula, M ′ := (S, R, LI,f ) = sm(M, f) be the CTL
mapping of the ALCCTL structure M w.r.t. formula f , and f ′ := fm(M, f) be the
CTL mapping of the ALCCTL formula f w.r.t. structure M . Then

M, s |=ALCCTL f ⇔ M ′, s |=CTL f ′ (6.6)

M,s       |=ALCCTL f

M’,s        |=CTL f’

fm(M,f)sm(M,f)

Figure 6.2.: validity-equivalent mappings from ALCCTL to CTL

Figure 6.2 depicts the relationship between ALCCTL structures M, f and their CTL
mappings M ′, f ′ as expressed by equivalence (6.6).
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Proof:

Let f = C v D with C,D ALCCTL being concepts. Then

M, s |= f
⇔ M, s |= C v D
⇔ (M, s)(C) ⊆ (M, s)(D) (ALCCTL Sem. of ’v’)
⇔ ∀a ∈ ∆ : a ∈ (M, s)(C) → a ∈ (M, s)(D) ((M, s)(C) ⊆ ∆ and

(M, s)(D) ⊆ ∆)
⇔ ∧

a∈∆(a ∈ (M, s)(C) → a ∈ (M, s)(D)) (because ∆ is finite)
⇔ ∧

a∈∆((M ′, s |= C[a]∆) → (M ′, s |= D[a]∆)) (Lemma 6.3.11)
⇔ ∧

a∈∆ M ′, s |= C[a]∆ → D[a]∆ (CTL Sem. ’→’)
⇔ M ′, s |= ∧

a∈∆(C[a]∆ → D[a]∆) (CTL Sem. ’∧’)
⇔ M ′, s |= fm(M, C v D) (Definition 6.3.7)
⇔ M ′, s |= fm(M, f)

The remaining cases follow by induction on the structure of f . Assume f = ¬p with
p ∈ ALCCTL. Then

M, s |= f
⇔ M, s |= ¬p
⇔ M, s 6|= p (ALCCTL Sem. ’¬’)
⇔ M ′, s 6|= fm(M, p) (Ind. Hypothesis)
⇔ M ′, s |= ¬fm(M, p) (CTL Sem. ’¬’)
⇔ M ′, s |= fm(M,¬p) (Definition 6.3.7)
⇔ M ′, s |= fm(M, f)

In the case of f = p ∧ q we get analogously:

M, s |= f
⇔ M, s |= p ∧ q
⇔ M, s |= p and M, s |= q (ALCCTL Sem. ’∧’)
⇔ M ′, s |= fm(M, p) and M ′, s |= fm(M, q) (Ind. Hypothesis)
⇔ M ′, s |= fm(M, p) ∧ fm(M, q) (CTL Sem. ’∧’)
⇔ M ′, s |= fm(M, p ∧ q) (Definition 6.3.7)
⇔ M ′, s |= fm(M, f)

Also the cases of temporal connectives are straight forward as demonstrated in detail
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for the case of f = A(p U q):

M, s |= f
⇔ M, s |= A(p U q)
⇔ ∀(s0, s1, ...) ∈ FPs∃i ∈ N : (M, si |= q

∧∀j ∈ {0, ..., i− 1} : M, sj |= p) (ALCCTL Sem. ’A(·U · )’)
⇔ ∀(s0, s1, ...) ∈ FPs∃i ∈ N : (M ′, si |= fm(M, q)

∧∀j ∈ {0, ..., i− 1} : M ′, sj |= fm(M, p)) (Ind. Hypothesis)
⇔ M ′, s |= A(fm(M, p) U fm(M, q)) (CTL Sem. A(·U · ),

S, R same in M, M ′)
⇔ M ′, s |= fm(M, A(p U q)) (Definition 6.3.7)
⇔ M ′, s |= fm(M, f)

The remaining cases f = E(p U q), f = EX p, and f = AX p can be proven analo-
gously:

M, s |= E(p U q)
⇔ M ′, s |= E(fm(M, p) U fm(M, q)) (ALCCTL Sem. EU + Ind. Hyp. +

CTL Sem. EU)
⇔ M ′, s |= fm(M, E(p U q)) (Definition 6.3.7)

Finally,

M, s |= EX/AX p
⇔ M ′, s |= EX/AX fm(M, p) (ALCCTL Sem. EX/AX + Ind. Hyp. +

CTL Sem. EX/AX)
⇔ M ′, s |= fm(M, EX/AX p) (Definition 6.3.7)

In total, we have proven the equivalence (6.6) and, consequently, Propositions 6.3.12
and 6.3.3.

2

Corollary 6.3.13 (Decidability of MCALCCTL)

The ALCCTL model checking problem is decidable, i.e. it is decidable for a given
finite temporal structure M = (S, R,∆, I) ∈ fMALCCTL, state s ∈ S, and formula
f ∈ ALCCTL if M, s |= f .

This is a direct consequence of Proposition 6.3.3 and the decidability of the CTL model
checking problem [Eme90]. 2
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Computational Complexity

Besides decidability, the computational complexity of the model checking problem
is most relevant for practical applications because it gives a bound for the optimal
runtime complexity of a sound and complete model checking algorithm.

Proposition 6.3.14 (Complexity of MCALCCTL)

The runtime complexity of theALCCTL model checking problem MCALCCTL(M, f)
(Definition 6.3.2) is in polynomial time w.r.t. the size of the model M and the size of
the formula f .

Proof (Sketch):

The polynomial time complexity of the model checking problem is somewhat surpris-
ing since the CTL formula mapping fm betweenALCCTL and CTL (Definition 6.3.7)
generates CTL formulae of exponential size (Remark 6.3.10).

The general idea of showing the polynomial complexity of theALCCTL model check-
ing problem is as follows.

Let f ∈ ALCCTL be an ALCCTL formula and M = (S, R,∆, I) a finite ALCCTL
temporal structure.

According to Proposition 6.3.12, M, s |=ALCCTL f can be decided by solving the CTL
model checking problem sm(M, f), s |=CTL fm(M,f).

Hence, the complexity of the ALCCTL model checking problem is not higher than
the complexity of the structure mapping sm(M, f) plus the complexity of the formula
mapping fm(M,f) plus the complexity of deciding the CTL model checking problem
sm(M, f), s |=CTL fm(M, f).

Assume that all concepts in f are atomic. Then any subsumption expression A v B
in f can be mapped onto an equivalent Boolean expression

∧
a∈∆(A(a) → B(a)) of

length O(|∆|). The CTL mappings of the remaining connectives do not change the
size of the expression and thus each are in O(1). f contains at most |f | subsumptions
and |f | other connectives and hence, the size of the formula mapping fm(M, f) results
in a CTL expression of size |fm(M, f)| ∈ O(|f |· |∆|) which is also the complexity
of the formula mapping fm. Recall, the size |f | of a formula f is the number of
sub-expressions in f (cf. Theorem 3.2.12).

It can be shown that the structure mapping sm(M, f) is in O(|f |· |S|· |∆|) time if f
contains atomic concepts only.

Deciding sm(M, f), s |=CTL fm(M, f) for each s ∈ S is known to be in
O((|S| + |R|)· |fm(M,f)|) (Theorem 3.2.12) and hence the time complexity of de-
ciding sm(M, f), s |=CTL fm(M,f) for each s ∈ S is in O((|S|+ |R|)· |f |· |∆|).
As a result, in the case of f containing atomic concepts only, we get the overall com-
plexity of
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O(|f |· |S|· |∆|) +O(|f |· |∆|) +O((|S|+ |R|)· |f |· |∆|) ⊆ O(|f |· (|S|+ |R|)· |∆|)
If f contains complex concepts we can reduce the problem of checking M, s |=ALCCTL

f to M ′, s |=ALCCTL f ′ with f ′ containing atomic concepts only. This can be done by
extending the interpretation I in M successively to complex concepts in a bottom up
manner which takes at most |f | steps each of which is in O((|S|+ |R|)· |∆|2).
In total, the elimination of complex concepts in f is in O(|f |· (|S|+ |R|)· |∆|2).
The overall complexity O(|f |· (|S| + |R|)· |∆|2) of the ALCCTL model checking
problem for M and f sums up from

• the time for calculating the complex concept reduction M ′, f ′ from M, f , which
is in O(|f |· (|S|+ |R|)· |∆|2),

• the complexity of deciding M ′, s |=ALCCTL f ′ which is in O(|f ′|· (|S| +
|R|)· |∆|).

2

In the sequel, we introduce the necessary formal constructs for proving the complexity
of reducing an ALCCTL structure M and formula f to a structure M ′ and a formula
f ′ without any complex concepts.

Definition 6.3.15 (Sub-Concept, Simple / Complex Concept)

bCc denotes the set of direct sub-concepts of an ALCCTL concept C ∈ CALCCTL, i.e.

bCc :=





∅ iff C ∈ AC ∪ {>,⊥}
{C1} iff C ∈ {¬C1, ∃R.C1,EX C1, AX C1}
{C1, C2} iff C ∈ {C1 u C2, E(C1 U C2), A(C1 U C2)}

where C1, C2 are ALCCTL concepts.

If bCc = ∅ then C is a simple ALCCTL concept otherwise C is called complex.
2

Example 6.3.16 (Sub-Concept)

Consider the ALCCTL concepts C = EX ∃R.> u ¬D and C ′ = EX (∃R.> u ¬D).

Then bCc = {EX ∃R.>,¬D} and bC ′c = {∃R.> u ¬D}
2

Definition 6.3.17 (Mapping onto Atomic Concepts)

Let atom : CALCCTL → AC be a fixed injective mapping of ALCCTL concepts onto
atomic concepts. Such a mapping exists since the set of ALCCTL concepts is count-
able (cf. Remark 6.2.2) and the set of atomic concepts is countably infinite (Definition
6.2.1).
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Then for C ∈ CALCCTL

〈C〉 := atom(C)

denotes the atomic substitute for C ∈ CALCCTL.

C〈〉 ∈ CALCCTL denotes the semi-atomic substitute of C, which is C with all its direct
sub-concepts being replaced by their atomic substitute: for a concept C ∈ CALCCTL

C〈〉 :=





C[C1/〈C1〉] if bCc = {C1}
C[C1/〈C1〉][C2/〈C2〉] if bCc = {C1, C2}
C otherwise

where C[x/y] denotes the substitution of term x by term y in expression C.
2

Example 6.3.18 (Mapping onto Atomic Concepts)

Consider the ALCCTL concepts C = EX ∃R.> u ¬D and C ′ = EX (∃R.> u ¬D).

Then 〈C〉 = 〈EX ∃R.> u ¬D〉 and 〈C ′〉 = 〈EX (∃R.> u ¬D)〉 are atomic concepts
such that 〈C〉 6= 〈C ′〉.
Further,

C〈〉 = 〈EX ∃R.>〉 u 〈¬D〉 and

C ′〈〉 = EX 〈∃R.> u ¬D〉
with 〈EX ∃R.>〉, 〈¬D〉, and 〈∃R.>u¬D〉 being pairwise different atomic concepts.

2

Regarding the mapping 〈· 〉 of complex onto atomic concepts we want to ensure that
the interpretation of an atomic concepts 〈C〉 in a structure M remains equal to the
interpretation of the original complex concept C in M as defined by the semantics of
the connectives in C.

Definition 6.3.19 (Extended Interpretation)

Let M = (S,R,∆, I) ∈ MALCCTL be an ALCCTL temporal structure and C ⊆
CALCCTL be a finite, nonempty set of ALCCTL concepts.

Then IC,M denotes the extension of I to C w.r.t. M iff for each s ∈ S holds:

〈C〉IC,M (s) = (M, s)(C) for each C ∈ C and RIC,M (s) = RI(s) for each atomic role
R ∈ AR.

MC := (S, R,∆, IC,M ) denotes the temporal structure M with an interpretation ex-
tended to all concepts in C.

2
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If an interpretation is extended to all sub-concepts bCc of C, the semi-atomic mapping
C〈〉 evaluates under the extended interpretation IbCc,M to the same set as C under the
original interpretation I:

Lemma 6.3.20 (Extended Interpretation of ALCCTL Concepts)

Let C ∈ CALCCTL be a complex ALCCTL concept, M = (S, R,∆, I) ∈ MALCCTL

an ALCCTL temporal structure, and s ∈ S a state. Let M bCc = (S, R,∆, IbCc,M )
be the temporal structure M with an interpretation extended to all sub-concepts of C
(Definition 6.3.19).

Then (M bCc, s)(C〈〉) = (M, s)(C).

C C
semi-atomic 

substitute

(M,s)(C)

(M 
C 

,s)(C   )

Interpretation of C

extended to direct sub -

concepts  C  of C

Interpretation 
of concept C

at state s in M

(M,s)(C)

Figure 6.3.: equivalence between interpretations (M, s)(C) and (M bCc, s)(C〈〉)

Proof:

By Definition 6.3.17, the top level connective of C〈〉 is equal to the top level connective
of C but each direct sub-concept C ′ ∈ bCc is replaced by 〈C ′〉 in C〈〉. S,R, and ∆ are
equal in M and M bCc (Definition 6.3.19). If S, R, and ∆ are fixed, the interpretation
of a complex concept only depends on the interpretation of its direct sub-concepts and
atomic roles (Definition 6.2.8) at all states s ∈ S. As a consequence,

(M bCc, s)(C〈〉) = (M, s)(C) for each s ∈ S if for each state s ∈ S, concept C ′ ∈
bCc, and atomic role R ∈ AR holds:

〈C ′〉IbCc,M (s) = (M, s)(C ′I(s)) and RIbCc,M (s) = RI(s).

Exactly this is the case by Definition 6.3.19 and thus Lemma 6.3.20 is shown. 2

Lemma 6.3.20 is the basis of an incremental ”bottom-up” reduction of complex con-
cepts in an ALCCTL formula f to atomic concepts.

A support structure for showing the complexity of the atomic concept reduction of a
complex concept is the label set of a concept.
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Definition 6.3.21 (Label Set of a Concept)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, a ∈ ∆ a
domain object, and C ∈ CALCCTL an ALCCTL concept.

Then LSa,C,M := {s ∈ S | a ∈ (M, s)(C)} denotes the label set of C for a w.r.t. M .

lsC,M : ∆ → P(S) : lsC,M (a) = LSa,C,M denotes the mapping of domain objects
onto their label set w.r.t. C and M . 2

The mapping lsC,M is essentially an alternative representation of the interpretation of
C in a structure M .

Corollary 6.3.22 (Equivalence of Label Set and Interpretation of a Concept)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, s ∈ S a
state, and C ∈ CALCCTL an ALCCTL concept.

Then (M, s)(C) = {a ∈ ∆ | s ∈ LSa,C,M} = {a ∈ ∆ | s ∈ lsC,M (a)} =: ls−1
C,M (s).

This is a direct consequence of Definitions 6.3.21 and 6.2.8. 2

Hence, computing the label set LSa,C,M for each a ∈ ∆ determines the interpretation
of a complex concept C. In contrast to the case of ALCCTL , the complexity of
calculating such a label set for CTL formulae is known (Theorem 3.2.12). Using the
structure mapping sm (Definition 6.3.4) and concept mapping · [a]∆ (Definition 6.3.7)
an ALCCTL label set can be mapped onto a CTL label set.

Corollary 6.3.23 (CTL Representation of a Label Set)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, a ∈ ∆
a domain object, C ∈ CALCCTL an ALCCTL concept, and f an ALCCTL formula
containing C.

Let LSa,C,M be the label set of C for a w.r.t. M (Definition 6.3.21).

Then LSa,C,M = {s ∈ S | sm(M,f), s |=CTL C[a]∆}.

This is a direct consequence of Definition 6.3.21 and Lemma 6.3.11. 2

Determining the ALCCTL label set LSa,C,M by using its CTL representation as de-
fined in Corollary 6.3.23 is inefficient because the concept mapping C[a]∆ can result
in a CTL expression of exponential size as compared to the size of C (Remark 6.3.10).

More efficiently, the ALCCTL label set is calculated incrementally from the semi-
atomic substitute C〈〉 of complex concepts since the CTL mapping C〈〉[a]∆ of the
semi-atomic substitute C〈〉 does not grow exponentially in the size of C.

Lemma 6.3.20 provides the ground for representing label sets based on the semi-atomic
mapping of concepts:

137



6. Document Verification with ALCCTL

Corollary 6.3.24 (Label Set of the Extended Interpretation)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, a ∈ ∆
a domain object, C ∈ CALCCTL a complex ALCCTL concept, C〈〉 its semi-atomic
substitute (Definition 6.3.17), and M bCc = (S, R,∆, IbCc,M ) the temporal structure
M with an interpretation extended to all sub-concepts of C (Definition 6.3.19).

Then as a direct consequence of Definition 6.3.21 and Lemma 6.3.20 holds:

LSa,C,M = {s ∈ S | a ∈ (M, s)C} = {s ∈ S | a ∈ (M bCc, s)C〈〉} = LSa,C〈〉,MbCc

2

Joining the results of Corollaries 6.3.23 and 6.3.24, we get:

Corollary 6.3.25 (Extended CTL Representation of a Label Set)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, a ∈ ∆
a domain object, C ∈ CALCCTL a complex ALCCTL concept, C〈〉 its semi-atomic
substitute (Definition 6.3.17), f an ALCCTL formula containing C〈〉, and M bCc =
(S, R,∆, IbCc,M ) the temporal structure M with an interpretation extended to all sub-
concepts of C (Definition 6.3.19).

Then, as a consequence of Corollaries 6.3.24 and 6.3.23 holds:

LSa,C,M = LSa,C〈〉,MbCc = {s ∈ S | sm(M bCc, f), s |=CTL C〈〉[a]∆}

Note that this formula holds for arbitrary ALCCTL formulae f containing C〈〉. 2

This means that a label set LSa,C,M can be calculated from an efficient (i.e. non-
exponentially large) CTL representation if the interpretation IbCc,M extended to all
direct sub-concepts of concept C is given.

The following lemma shows an upper bound for the size of the CTL mapping of the
semi-atomic substitute of C. This will be important for showing the complexity of the
atomic-concept reduction of a complex concept.

Lemma 6.3.26 (Size of CTL Mapping of Semi-atomic Concepts)

Let ∆ be a finite, nonempty ALCCTL domain, a ∈ ∆ a domain object, and C ∈
CALCCTL a complex ALCCTL concept.

Then for the size |C〈〉[a]∆| of the CTL mapping of the semi-atomic substitute C〈〉

holds:

|C〈〉[a]∆| ∈ O(|∆|)
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Proof:

Assume C = ∃R.C ′ for some atomic role R ∈ AR and concept C ′ ∈ CALCCTL.

Then C〈〉 = ∃R.〈C ′〉 with 〈C ′〉 ∈ AC being an atomic concept and, by Definition
6.3.7,

C〈〉[a]∆ =
∨

b∈∆

(R(a, b) ∧ 〈C ′〉[b]∆)

=
∨

b∈∆

(R(a, b) ∧ 〈C ′〉(b))

C〈〉[a]∆ consists of |∆| − 1 disjunctions, |∆| conjunctions and 2|∆| atomic proposi-
tions which sum up to |C〈〉[a]∆| ∈ O(|∆|) sub-expressions.

In all other cases (i.e. C 6= ∃R.C ′)) holds by Definitions 6.3.7 and 6.3.17:

|C〈〉[a]∆| = |C〈〉| ≤ 3 and hence in all cases |C〈〉[a]∆| ∈ O(|∆|).
2

Using the results of Corollary 6.3.25 and Lemma 6.3.26 we can show that having
knowledge about the interpretation IbCc,M extended to all direct sub-concepts of C
w.r.t. M we can compute the interpretation of C w.r.t. M inO((|S|+ |R|)· |∆|2) time.

Lemma 6.3.27 (Complexity of Extended Interpretation of ALCCTL Concepts)

Let C be a complex ALCCTL concept, M = (S,R,∆, I) ∈ fMALCCTL a finite
ALCCTL temporal structure, and IbCc,M the interpretation I extended to all direct
sub-concepts bCc of C. Assume that IbCc,M is known.

Then the interpretation I{C},M extended to C w.r.t. M can be obtained in O((|S| +
|R|)· |∆|2) time.

Proof:

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite temporal structure and C a complex
ALCCTL concept.

By Definition 6.3.19, I{C},M is an interpretation such that 〈C〉I{C},M (s) = (M, s)(C)
for each s ∈ S and RI{C},M (s) = RI(s) for each atomic role R ∈ AR and state
s ∈ S. Since the interpretations of atomic roles are fixed, I{C},M is determined by
the mapping iC,M : S → P(∆) : iC,M (s) = (M, s)(C) of states s ∈ S onto the
respective interpretation (M, s)(C) of C in M at s.

Let lsC,M : ∆ → P(S) : lsC,M (a) = LSa,C,M be the mapping of domain objects
a ∈ ∆ onto their respective label set LSa,C,M ⊆ S w.r.t. C in M (Definition 6.3.21).
Then, by Corollary 6.3.22, it holds:

iC,M (s) = (M, s)(C) = {a ∈ ∆ | s ∈ lsC,M (a)} for each s ∈ S.
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I.e. given the mapping lsC,M of domain objects a ∈ ∆ onto their respective label sets
LSa,C,M and given that the element containment check s ∈ lsC,M (a) can be done
in constant time (by using hash tables, for instance), iC,M (s) can be calculated in
time O(|∆|) for each s ∈ S and hence the entire mapping iC,M can be calculated in
O(|S|· |∆|) time.

As a result, I{C},M can also be obtained from lsC,M in O(|S|· |∆|) ⊆ O((|S| +
|R|)· |∆|2) time and, as a consequence, it is sufficient to show that lsC,M can be con-
structed in O((|S|+ |R|)· |∆|2) using the knowledge about IbCc,M .

By Corollary 6.3.25, lsC,M (a) = LSa,C,M = {s ∈ S | sm(M bCc, f), s |=CTL

C〈〉[a]∆} for each a ∈ ∆ with f being an (arbitrary) ALCCTL formula containing
C〈〉 (w.l.o.g. we can assume f = ⊥ v C〈〉).

Hence, when sm(M bCc, f) is given, LSa,C,M can be computed in time

T (LSa,C,M ) = T (C〈〉[a]∆) + T (|=CTL)

for each a ∈ ∆ where T (C〈〉[a]∆) is the time for computing the concept mapping
C〈〉[a]∆ and T (|=CTL) the total time of deciding sm(M bCc, f), s |=CTL C〈〉[a]∆ for
each s ∈ S.

To compute the mapping lsC,M we need to determine sm(M bCc, f) just once and
LSa,C,M for each a ∈ ∆ which takes

T (lsC,M ) = T (sm(M bCc, f)) + |∆|·T (LSa,C,M )

= T (sm(M bCc, f)) + |∆|· (T (C〈〉[a]∆) + T (|=CTL)) (6.7)

time.

According to Definition 6.3.4, sm(M bCc, f) maps the interpretations of every atomic
concept and role in f onto a propositional labelling LIbCc,M ,f : S → P(AP ) such that

LIbCc,M ,f (s) = {A(a) ∈ AP | A ∈ AC|f ∧ a ∈ AIbCc,M (s)} ∪ (6.8)

{R(a, b) ∈ AP | R ∈ AR|f ∧ (a, b) ∈ RIbCc,M (s)}

Hence,

T (sm(M bCc, f)) = T (LIbCc,M ,f ) (6.9)

with T (LIbCc,M ,f ) being the time for calculating the propositional labelling function
LIbCc,M ,f .

Note that LIbCc,M ,f (s) just depends on AC|f , AR|f , and ·IbCc,M (s). Since ·IbCc,M (s)

is given by assumption, the time of calculating LIbCc,M ,f (s) depends on the time for
determining AC|f and AR|f and the size of LIbCc,M ,f (s).
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For determining AC|f and AR|f we assume w.l.o.g. that f = ⊥ v C〈〉 such that
AC|f = bC〈〉c, i.e. the set of atomic concepts in f is the set of direct sub-concepts
of C〈〉. Since all sub-concepts of C〈〉 are atomic by Definition 6.3.17, C〈〉 contains at
most two atomic concepts 〈C1〉, 〈C2〉 ∈ AC|f and at most one atomic role R ∈ AR|f
by ALCCTL syntax (Definition 6.2.1). Thus both AC|f and AR|f can be determined
in constant time.

Moreover, AIbCc,M (s) ⊆ ∆ for A ∈ AC and RIbCc,M (s) ⊆ ∆ × ∆ for R ∈ AR by
Definition 6.2.8.

Thus we can approximate Equation (6.8) by

LIbCc,M ,f (s) ⊆ {A(a) ∈ AP | A ∈ {〈C1〉, 〈C2〉} ∧ a ∈ ∆} ∪
{R(a, b) ∈ AP | R ∈ {R} ∧ (a, b) ∈ ∆×∆}

with {〈C1〉, 〈C2〉} being the maximal set of atomic concepts in f and {R} being
the maximal set of atomic roles in f . For the size of the propositional labelling
LIbCc,M ,f (s) we get

|LIbCc,M ,f (s)| ≤ |{A(a) ∈ AP | A ∈ {〈C1〉, 〈C2〉} ∧ a ∈ ∆}|
+|{R(a, b) ∈ AP | R ∈ {R} ∧ (a, b) ∈ ∆×∆}|

= 2|∆|+ |∆2|
∈ O(|∆|2)

for each s ∈ S and, in total, |LIbCc,M ,f | ∈ O(|S|· |∆|2).
Since AC|f and AR|f can be determined in constant time (see above), the time for de-
termining the labelling LIbCc,M ,f is approximately equal to its size |LIbCc,M ,f |. Hence,
T (LIbCc,M ,f ) is in O(|LIbCc,M ,f |) = O(|S|· |∆|2) and, because of Equation 6.9,

T (sm(M bCc, f)) ≤ k· |S|· |∆|2 (6.10)

for some k ∈ R+ and sufficiently large sets S and ∆.

Similar to sm(M bCc, f), the time required for calculating the CTL mapping C〈〉[a]∆
grows linearly in its size |C〈〉[a]∆| because the mapping · [a]∆ involves elementary
operations only.

By Lemma 6.3.26, |C〈〉[a]∆| ∈ O(|∆|) and thus

T (C〈〉[a]∆) ≤ k′· |∆| (6.11)

for some k′ ∈ R+ and a sufficiently large set ∆.

If sm(M bCc, f) and C〈〉[a]∆ are given, the label set

LSa,C,M = {s ∈ S | sm(M bCc, f), s |=CTL C〈〉[a]∆}
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can be calculated in

T (|=CTL) ∈ O((|S|+ |R|)· | C〈〉[a]∆|)

time (Theorem 3.2.12).

By Lemma 6.3.26, |C〈〉[a]∆| ∈ O(|∆|).
As a result, we get for T (|=CTL):

T (|=CTL) ≤ k′′· (|S|+ |R|)· |∆| (6.12)

for some k′′ ∈ R+ and sufficiently large sets S, R, and ∆.

Applying Equations (6.10), (6.11), (6.12) to Equation (6.7) we get

T (lsC,M ) = T (sm(M bCc, f)) + |∆|· (T (C〈〉[a]∆) + T (|=CTL))
≤ k· |S|· |∆|2 + |∆|· (k′· |∆|+ k′′· (|S|+ |R|)· |∆|)
≤ (k + k′ + k′′)((|S|+ |R|)· |∆|2)
∈ O((|S|+ |R|)· |∆|2)

which proves Lemma 6.3.27. 2

Lemma 6.3.27 shows that calculating the interpretation of a complex concept C
w.r.t. M from a given interpretation IbCc,M of all direct sub-concepts of C takes
O((|S| + |R|)· |∆|2) time. By repeating this ”lifting step” starting from the atomic
concepts in a complex concept C, the interpretation (M, s)(C) can be calculated in
less than |C| steps each of them takingO((|S|+ |R|)· |∆|2). This results in the overall
time complexity of O(|C|· (|S| + |R|)· |∆|2) for calculating the interpretation of C
from the interpretation of its atomic concepts as shown in the subsequent lemma.

Lemma 6.3.28 (Cumulative Complexity of ALCCTL Concept Interpretation)

Let C ∈ CALCCTL be a (simple or complex) ALCCTL concept and M =
(S, R,∆, I) ∈ fMALCCTL a finite ALCCTL temporal structure.

Then the interpretation I{C},M extended to C can be obtained from I inO(|C|· (|S|+
|R|)· |∆|2) time.

Proof:

Let T (I{C},M ) be the time complexity of determining I{C},M .

We show by induction on the structure of C that there is k ∈ R+ such that

T (I{C
′},M ) ≤ k· |C ′|· (|S|+ |R|)· |∆|2

for any concept C ′ occurring in C.
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By Lemma 6.3.27, I{C′},M can be obtained from IbC′c,M in O((|S|+ |R|)· |∆|2).
For a complex concept C ′ occurring in C let T (IbC′c,M → I{C′},M ) denote the time
for determining I{C′},M from IbC′c,M .

Since C contains finitely many complex concepts C ′ and T (IbC′c,M → I{C′},M ) ∈
O((|S| + |R|)· |∆|2) for each complex concept C ′ in C there is k ∈ R+ such that
T (IbC′c,M → I{C′},M ) ≤ k· (|S| + |R|)· |∆|2 for any complex concept C ′ in C.
W.l.o.g. we can assume k > 1.

Let C ′ be a (simple or complex) concept in C.

• Let |C ′| = 1. Then C ′ ∈ AC ∪ {>,⊥}.

I{C′},M is determined by the set 〈C ′〉I{C′},M (s) for each s ∈ S. For C ′ ∈
AC ∪ {>,⊥} we have by Definitions 6.3.19 and 6.2.8

〈C ′〉I{C′},M (s) = (M, s)(C ′) = C ′I(s)

C ′I(s) is given by definition of M . Hence, I{C′},M can, for |C ′| = 1, be deter-
mined without any calculation and thus:

T (I{C
′},M ) < k· (|S|+ |R|)· |∆|2

• Let |C ′| > 1. Then C ′ is a complex concept and, by Lemma 6.3.27, I{C′},M

can be obtained from IbC′c,M in O((|S|+ |R|)· |∆|2). By choice of k it holds:

T (IbC
′c,M → I{C

′},M ) ≤ k· (|S|+ |R|)· |∆|2

By ALCCTL syntax (Definition 6.2.1), bC ′c contains one or two concepts.

Assume bC ′c = {C1}. Then |C ′| = |C1| + n with n = 2 if C ′ = ∃R.C1 and
n = 1 in the remaining cases C ′ = ¬C1, C

′ = EX C1, or C ′ = AX C1.

Since C1 is a concept occurring in C ′ and thus also in C, and, in addition,
|C1| < |C ′|, we can apply the induction hypothesis and get

T (IbC
′c,M ) = T (I{C1},M ) ≤ k· |C1|· (|S|+ |R|)· |∆|2)

= k· (|C ′| − n)· (|S|+ |R|)· |∆|2
because |C1| = |C ′| − n.

By choice of k, I{C′},M can be obtained from IbC′c,M in time
T (IbC′c,M → I{C′},M ) ≤ k· (|S|+ |R|)· |∆|2 and hence we get for T (I{C′},M )
in total:

T (I{C
′},M ) = T (IbC

′c,M ) + T (IbC
′c,M → I{C

′},M )
≤ k· (|C ′| − n)· (|S|+ |R|)· |∆|2 + k· (|S|+ |R|)· |∆|2
= k· (|C ′| − n + 1)· (|S|+ |R|)· |∆|2
≤ k· |C ′|· (|S|+ |R|)· |∆|2
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Assume bC ′c = {C1, C2}. Then IbC′c,M = I{C1,C2},M and |C ′| = |C1| +
|C2|+ 1.

By Definition 6.3.19, I{C1,C2},M is determined by I{C1},M and I{C2},M . Hence,
T (I{C1,C2},M ) = T (I{C1},M ) + T (I{C2},M ).

Since |C1| < |C ′| and |C2| < |C ′| and C1, C2 are both concepts occurring in C
we can assume by the induction hypothesis that

T (I{C1},M ) ≤ k· |C1|· (|S|+ |R|)· |∆|2
T (I{C2},M ) ≤ k· |C2|· (|S|+ |R|)· |∆|2

and, as a consequence,

T (IbC
′c,M ) = T (I{C1,C2},M )

= T (I{C1},M ) + T (I{C2},M )
≤ k· (|C1|+ |C2|)· (|S|+ |R|)· |∆|2

In total we get for T (I{C′},M ):

T (I{C
′},M ) = T (IbC

′c,M ) + T (IbC
′c,M → I{C

′},M )
≤ k· (|C1|+ |C2|)· (|S|+ |R|)· |∆|2 + k· (|S|+ |R|)· |∆|2
= k· (|C1|+ |C2|+ 1)· (|S|+ |R|)· |∆|2
= k· |C ′|· (|S|+ |R|)· |∆|2

We have shown by induction on the structure of the ALCCTL concept C that for any
concept C ′ occurring in C and thus also for C ′ = C holds:

T (I{C′},M ) ≤ k· |C ′|· (|S|+ |R|)· |∆|2.

Consequently, it holds in general that T (I{C},M ) ∈ O(|C|· (|S|+ |R|)· |∆|2).
2

Lemma 6.3.28 shows that the interpretation extended to complex concepts can be cal-
culated from the interpretation of atomic concepts inO(|C|· (|S|+ |R|)· |∆|2) time. f
can be treated as containing atomic concepts only if the interpretation of all complex
concepts in an ALCCTL formula f w.r.t. an ALCCTL structure M is given.

More formally, the formula f and the structure M can easily be mapped onto f ′ and
M ′ such that f ′ contains atomic concepts only and f ′ is satisfied in the same set of
states w.r.t. M ′ as f does w.r.t. M , i.e. the label sets LSf,M and LSM ′,f ′ (Definition
6.3.2) are identical.

In the sequel, we assume that all concepts in an ALCCTL formula f are atomic and
examine the time complexity of the respective model checking problem.
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Proposition 6.3.29 (Model Checking ALCCTL Restricted to Atomic Concepts)

Let f ∈ ALCCTL be an ALCCTL formula such that all concepts in f are atomic. Let
M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure.

Then the label set LSM,f = {s ∈ S |M, s |= f} of f for M (Definition 6.3.2) can be
computed in O(|f |· (|S|+ |R|)· |∆|) time.

Proof:

As a consequence of Proposition 6.3.12 it holds that

LSM,f = {s ∈ S |M, s |= f}
= {s ∈ S | sm(M, f), s |=CTL fm(M,f)}

Let T (sm(M,f)) be the time for determining sm(M, f), let T (fm(M, f)) be the
time for calculating fm(M, f), and let T (|=CTL) be the time for calculating {s ∈
S | sm(M, f), s |=CTL fm(M, f)} from given mappings sm(M,f) and fm(M, f).

Then LSM,f can be calculated in time

T (LSM,f ) = T (sm(M, f)) + T (fm(M,f)) + T (|=CTL) (6.13)

By Definition 6.3.4, sm(M, f) = (S, R,LI,f ) with

LI,f (s) = {A(a) ∈ AP | A ∈ AC|f ∧ a ∈ AI(s)} ∪
{R(a, b) ∈ AP | R ∈ AR|f ∧ (a, b) ∈ RI(s)}

Since all concepts in f are atomic and roles occur in complex concepts only, no roles
occur in f and hence AR|f = ∅. As a result,

LI,f (s) = {A(a) ∈ AP | A ∈ AC|f ∧ a ∈ AI(s)}

Since |AI(s)| ≤ |∆| as a consequence of Definition 6.2.8 and |AC|f | ≤ |f | we get
|LI,f (s)| ≤ |f |· |∆| for each s ∈ S and, in total, |LI,f | ≤ |f |· |S|· |∆|.
Since LI,f can directly be obtained from I and f , the time complexity T (LI,f ) of
calculating LI,f is approximately equal to the size of LI,f and hence

T (sm(M, f)) = T (LI,f ) ∈ O(|LI,f |) = O(|f |· |S|· |∆|) ⊆ O(|f |· (|S|+|R|)· |∆|)
(6.14)

By Definition 6.3.7, for any sub-formula f ′ in f holds that fm(M,f ′) does not change
the top level connective in f ′ in all cases but f ′ = C v D with C, D being atomic
concepts in f . In the latter case

fm(M,f ′) =
∧

a∈∆

(C[a]∆ → D[a]∆) =
∧

a∈∆

(C(a) → D(a))
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fm(M,f ′) contains |∆− 1| conjunctions, |∆| implications and 2|∆| atomic proposi-
tions and hence |fm(M, f ′)| ∈ O(|∆|).
f contains less than |f | sub-formulae of type C v D, each of them being mapped by
fm(M,f) onto Boolean expressions the length of which each is inO(|∆|). Hence, the
total length of the mappings of all sub-formulae of kind C v D in f is in O(|f |· |∆|).
Since all connectives other than v remain unaffected by the formula mapping
fm(M,f) of f and there are less than |f | sub-formulae built on connectives other
than v we get

|fm(M, f)| ∈ O(|f |· |∆|+ |f |) = O(|f |· |∆|)
Calculating fm(M, f) requires a single traversal of the expression tree of f . Further,
fm(M,f) results in a CTL formula that is larger than the corresponding ALCCTL
formula f . Hence the time for calculating fm(M, f) grows linearly with the output
size |fm(M, f)| and we get:

T (fm(M, f)) ∈ O(|f |· |∆|) ⊆ O(|f |· (|S|+ |R|)· |∆|) (6.15)

Given sm(M, f) and fm(M, f), the time T (|=CTL) required for calculating the set
LSM,f = {s ∈ S | sm(M,f), s |=CTL fm(M, f)} is in O(|fm(M,f)|· (|S|+ |R|))
(Theorem 3.2.12). Since |fm(M, f)| ∈ O(|f |· |∆|) we get

T (|=CTL) ∈ O(|f |· |∆|· (|S|+ |R|)) (6.16)

Combining Equations (6.13), (6.14), (6.15), and (6.16) we have proven that

T (LSM,f ) ∈ O(|f |· (|S|+ |R|)· |∆|)
2

In the sequel, we introduce the required formal concepts for reducing an ALCCTL
formula f to an equivalent formula f ′ without any complex concepts. Using Lemma
6.3.28 and Proposition 6.3.29, we then show that any ALCCTL formula can be model
checked in O(|f |· (|S|+ |R|)· |∆|2) time.

Definition 6.3.30 (Elimination of Complex Concepts in ALCCTL Formulae)
Let f ∈ ALCCTL be an ALCCTL formula.

Then Cf := {C ∈ CALCCTL | C v D occurs in f or D v C occurs in f for some
concept D ∈ CALCCTL} denotes the set of top level concepts occurring in f . Since f
is finite, Cf is finite as well.

f 〈〉 ∈ ALCCTL denotes the atomic concept mapping of f which is defined as follows.
Let {C1, ..., Cn} := Cf . Then

f 〈〉 := f [C1/〈C1〉][C2/〈C2〉]...[Cn/〈Cn〉]
where f [x/y] denotes f with each occurrence of term x being substituted by term y.

2
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Remark 6.3.31 (Elimination of Complex Concepts)

By Definitions 6.3.17 and 6.2.1, f 〈〉 is a formula containing atomic concepts only. 2

Example 6.3.32 (Elimination of Complex Concepts)

Consider the ALCCTL formulae

f1 = AG (¬C v EF ∃R.D) and
f2 = A((C v ⊥) U AG(¬C v EF ∃R.D)).

Then

Cf1 = {¬C, EF ∃R.D}
Cf2 = {C,⊥,¬C, EF ∃R.D}

and

f
〈〉
1 = AG(〈¬C〉 v 〈EF ∃R.D〉)

f
〈〉
2 = A((〈C〉 v 〈⊥〉) U AG(〈¬C〉 v 〈EF ∃R.D〉))

2

For the atomic concept mapping f 〈〉 of an ALCCTL formula f we require that f 〈〉

holds in a respective structure MCf at the same states as f does in M . This is the case
as shown in the following lemma:

Lemma 6.3.33 (Elimination of Complex Concepts)

Let f be anALCCTL formula, M = (S, R,∆, I) ∈ MALCCTL anALCCTL temporal
structure, and s ∈ S a state. Let MCf = (S, R,∆, ICf ,M ) be the temporal structure
M with I being extended to all top level concepts Cf of f (Definition 6.3.19).

Then M, s |= f ⇔ MCf , s |= f 〈〉.

Proof:

f and f 〈〉 are equal except for each expression C v D in f being replaced by 〈C〉 v
〈D〉 in f 〈〉.

Let C, D ∈ Cf be top level concepts in f and s ∈ S a state.

Then, by Definition 6.3.19, it holds that

(MCf , s)(〈C〉) = 〈C〉ICf ,M
(s) = (M, s)(C) and

(MCf , s)(〈D〉) = 〈D〉ICf ,M
(s) = (M, s)(D)
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By the semantics of ”v” (Definition 6.2.8), we have

MCf , s |= 〈C〉 v 〈D〉 ⇔ M, s |= C v D

for each formula C v D in f .

Since MCf and M share the same state transition system (S, R) and the sub-formula
structures of f 〈〉 and f coincide, we get by induction on the structure of f 〈〉:

MCf , s |= f 〈〉 ⇔ M, s |= f

2

Lemma 6.3.33 shows that MCf and f 〈〉 are a validity-equivalent representation of M, f
with f 〈〉 containing atomic concepts only.

Corollary 6.3.34 (Equivalence with CTL Mapping)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure and f an
ALCCTL formula.

Then

M, s |=ALCCTL f ⇔ sm(MCf , f 〈〉), s |=CTL fm(MCf , f 〈〉)

for each s ∈ S.

This a direct consequence of the combination of Lemma 6.3.33 which says that

MCf , s |=ALCCTL f 〈〉 ⇔ M, s |=ALCCTL f for each s ∈ S

and Proposition 6.3.12 stating that

MCf , s |=ALCCTL f 〈〉 ⇔ sm(MCf , f 〈〉), s |=CTL fm(MCf , f 〈〉) for each s ∈ S

2

Using the results of Lemma 6.3.33, Lemma 6.3.28, and Proposition 6.3.29 we can
show:

Proposition 6.3.35 (Complexity of Model Checking ALCCTL Formulae)

Let f be an ALCCTL formula and M = (S, R,∆, I) ∈ fMALCCTL a finite ALCCTL
temporal structure.

Then the label set LSM,f = {s ∈ S | M, s |= f} of f for M can be computed in
O(|f |· (|S|+ |R|)· |∆|2) time.
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Proof:

As a consequence of Lemma 6.3.33 we have

LSM,f = {s ∈ S |M, s |= f} = {s ∈ S |MCf , s |= f 〈〉} = LS
M
Cf , f〈〉

Hence, LSM,f can be computed by computing MCf from M and f , f 〈〉 from f , and
LS

M
Cf , f〈〉 from MCf and f 〈〉. The respective computation cost sum up to

T (LSM,f ), T (MCf ), T (f 〈〉), and T (LS
M
Cf , f〈〉) and it holds:

T (LSM,f ) = T (MCf ) + T (f 〈〉) + T (LS
M
Cf , f〈〉) (6.17)

Let {C1, ..., Cn} = Cf for some n ∈ {0, ..., |f |}.

By Lemma 6.3.28, I{C′},M can be obtained from I in T (I{C′},M ) ∈ O(|C ′|· (|S| +
|R|)· |∆|2) time for each C ′ ∈ Cf . Since Cf is finite there is k ∈ R+ such that
T (I{C′},M ) ≤ k· |C ′|· (|S|+ |R|)· |∆|2 for each C ′ ∈ Cf .

By Definition 6.3.19, ICf ,M is directly determined by {I{C′},M | C ′ ∈ Cf} and thus:

T (ICf ,M ) =
∑

C′∈Cf

T (I{C
′},M )

≤
∑

C′∈Cf

k· |C ′|· (|S|+ |R|)· |∆|2

= k· (|S|+ |R|)· |∆|2·
∑

C′∈Cf

|C ′|

≤ k· (|S|+ |R|)· |∆|2· |f |

because
∑

C′∈Cf
|C ′| ≤ |f | since each C ′ ∈ Cf is a concept in f by Definition 6.3.30.

MCf can be obtained from M in T (MCf ) = T (ICf ,M ) because M and MCf coincide
in S,R, and ∆. As a result,

T (MCf ) ≤ k· |f |· (|S|+ |R|)· |∆|2 (6.18)

f 〈〉 can be obtained from f in

T (f 〈〉) = k′· |f | (6.19)

time with k′ ∈ R+ since f 〈〉 is a simple term substitution (Definition 6.3.30).

By Proposition 6.3.29 and Remark 6.3.31, LS
M
Cf , f〈〉 can be obtained in

T (LS
M
Cf , f〈〉) ∈ O(|f 〈〉|· (|S|+ |R|)· |∆|) time and hence there is k′′ ∈ R+ such that

T (LS
M
Cf , f〈〉) ≤ k′′· |f 〈〉|· (|S|+ |R|)· |∆|

≤ k′′· |f |· (|S|+ |R|)· |∆| (6.20)
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because |f 〈〉| ≤ |f |.
Applying Equations (6.18), (6.19), and (6.19) in Equation (6.17) we get

T (LSM,f ) = T (MCf ) + T (f 〈〉) + T (LS
M
Cf , f〈〉)

≤ k· |f |· (|S|+ |R|)· |∆|2 + k′· |f |+ k′′· |f |· (|S|+ |R|)· |∆|
≤ (k + k′ + k′′)· |f |· (|S|+ |R|)· |∆|2

since |S| ≥ 1 and |∆| ≥ 1 by Definition 6.2.6 and, as a result,

T (LSM,f ) ∈ O(|f |· (|S|+ |R|)· |∆|2)
2

Remark 6.3.36 (Complexity of Model Checking ALCCTL Formulae)
The proof of Proposition 6.3.35 also shows the validity of Proposition 6.3.14.
The moderate polynomial complexity of the ALCCTL model checking problem gives
rise to the assumption that verification based on ALCCTL model checking scales to
application relevant problem sizes. As compared to model checking CTL, which is in
O(|f |· (|S|+ |R|)) (Theorem 3.2.12), model checkingALCCTL is more expensive by
the factor |∆|2. This is not surprising sinceALCCTL contains roles that are interpreted
as subsets of ∆ × ∆ in every state s ∈ S, i.e. the input size of the model checking
problem is already in O(|S|· |∆|2).
For determining the runtime complexity O(|f |· (|S|+ |R|)· |∆|2) of ALCCTL model
checking, the worst case assumption is applied. In many application scenarios, a better
scaling of runtime in the problem size can be achieved (see evaluation results in section
7.5). 2

6.3.3. Model Checking Algorithm

The analysis of the runtime complexity of the ALCCTL model checking problem
in the previous section provides the foundations for a sound, complete, and efficient
model checking algorithm.

Recall that the ALCCTL model checking problem is defined in Definition 6.3.2 as:
given a finite ALCCTL model M = (S, R,∆, I) ∈ fMALCCTL and a formula f ∈
ALCCTL, calculate the label set LSf,M = {s ∈ S |M, s |= f}.

The general structure of the ALCCTL model checking algorithm closely resembles
the proof structure for the runtime complexity of computing LSf,M in the previous
section:
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1. Successively extend the interpretation I of atomic concepts in f to an interpreta-
tion ICf ,M of the top-level concepts Cf w.r.t. M by a mapping onto an equivalent
CTL model checking problem.

2. Reduce all top-level concepts in f to atomic concepts in f 〈〉 and generate a
CTL representation fCTL := fm(MCf , f 〈〉) of f 〈〉 w.r.t. the structure MCf =
(S, R,∆, ICf ,M ).

3. Reduce the extended temporal structure MCf to a CTL structure MCTL :=
sm(MCf , f 〈〉).

4. Determine LSM,f = {s ∈ S |MCTL, s `CTL fCTL} using a CTL model check-
ing algorithm `CTL.

The algorithm consists of two major functions:

• verify: takes a finite ALCCTL structure M = (S,R,∆, I) and an ALCCTL
formula f as input and returns the set LSM,f = {s ∈ S |M, s |= f} of states at
which formula f holds in M .

• getInterpretation: takes a finite ALCCTL structure M = (S, R,∆, I) and an
ALCCTL concept C as input and returns a representation of the interpretation
I{C},M extended to concept C w.r.t. M .

6.3.3.1. Algorithm for Checking Formulae

Algorithm 6.3.37 (ALCCTL Model Checking)

The following pseudo code sketches the function verify that is the main function of
the ALCCTL model checking algorithm.
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function verify(S, R, ∆, I, f) {

M := (S, R, ∆, I); For a more compact access to structure M .
Cf := f .getTopLevelConcepts(); Initialize the set Cf of top level concepts in f .
ICf ,M := ∅; Initialize the extended interpretation ICf ,M of

concepts Cf w.r.t. M .
for each C ′ ∈ Cf { Construct the extended interpretation ICf ,M .

iC′,M := getInterpretation(M, C ′); Get the interpretation iC′,M : S → P(∆) :
iC′,M (s) = (M, s)(C ′) of concept C ′ at all
states in M .

ICf ,M := ICf ,M ∪{〈C ′〉 7→ iC′,M}; Add a mapping of the atomic substitute 〈C ′〉 of
} C ′ onto its interpretation iC′,M in M to ICf ,M .

MCf := (S, R, ∆, ICf ,M ); Build a temporal structure MCf with an interpre-
tation ICf ,M extended to all top level concepts
Cf of formula f .

f ′ := fm(MCf , f 〈〉); Translate f to its CTL representation f ′ accord-
ing to the definition of fm(MCf , f 〈〉).

M ′ := sm(MCf , f 〈〉); Generate a CTL structure M ’ according to the
definition of sm(MCf , f 〈〉).

return {s ∈ S |M ′, s `CTL f ′} Model check f ′ for M ′ using `CTL.
}

2

verify uses the following sub-routines:

• f .getTopLevelConcepts();

returns the set of top-level concepts Cf in the ALCCTL formula f as defined in
Definition 6.3.30.

• getInterpretation(M, C ′);

returns a mapping iC′,M : S → P(∆) : iC′,M (s) = (M, s)(C ′) of states s ∈ S
onto the interpretation of (M, s)(C ′) of concept C ′ in M at s. By Definition
6.3.19, (M, s)(C ′) is equal to 〈C ′〉I{C′},M (s) .

iC′,M is a sufficient representation of the interpretation I{C′},M in the context
of verify.

Recall, I{C′},M is defined as an interpretation such that for each s ∈ S :
〈C ′〉I{C′},M (s) = (M, s)(C ′) and RI{C′},M (s) = RI(s) for each atomic role
R ∈ AR (Definition 6.3.19).

Since the interpretation of roles is not referred to within verify it is sufficient
for the representation of I{C′},M to calculate the mapping iC′,M : S → P(∆) :
iC′,M (s) = (M, s)(C ′).
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• ICf ,M := ICf ,M ∪ {〈C ′〉 7→ iC′,M};

this adds a new mapping of the atomic substitute 〈C ′〉 of concept C ′ onto its
temporal interpretation function iC′,M : S → P(∆) : iC′,M (s) = (M, s)(C ′)
to ICf ,M .

Let 〈Cf 〉 := {〈C ′〉 | C ′ ∈ Cf}.

Then note that within verify ICf ,M is represented as a mapping of 〈Cf 〉 →
P(S → P(∆)) : (ICf ,M (〈C ′〉))(s) = (M, s)(C ′) whereas formally ICf ,M

defines a mapping S → P(〈Cf 〉 → P(∆)) : 〈C ′〉ICf ,M
(s) = (M, s)(C ′).

Both representations are equivalent since both associate the atomic substitute
〈C〉 of every concept C ′ ∈ Cf and every state s ∈ S with the interpretation
(M, s)(C ′) of C ′ in M at state s.

The former representation of ICf ,M has been chosen because it better suits the
structure of the verify algorithm.

• fm(MCf , f 〈〉);

returns the CTL representation of f 〈〉 w.r.t. MCf according to Definitions 6.3.7,
6.3.19, and 6.3.30. Recall, f 〈〉 is an ALCCTL formula f the top-level con-
cepts of which are treated as atomic (Definition 6.3.30) and MCf is the temporal
structure M the interpretation of which is extended to all top-level concepts Cf

of formula f (Definition 6.3.19).

• sm(MCf , f 〈〉);

returns the CTL representation of the part of the temporal structure MCf that is
relevant for determining the validity of f 〈〉 according to Definition 6.3.4. Recall,
sm(MCf , f 〈〉) is equal to MCf except that the interpretation of atomic concepts
in f 〈〉 (i.e. the interpretation ICf ,M of the top-level concepts Cf of f ) are encoded
in terms of a labelling L

I
Cf ,M

, f〈〉 : S → P(AP ) of states s ∈ S with sets of
atomic propositions L

I
Cf ,M

, f〈〉(s) ⊆ AP which hold at s.

• M ′, s `CTL f ′;

`CTL denotes a sound and complete algorithm for deciding M ′, s |=CTL f ′. It
checks whether the CTL formula f ′ holds in the finite CTL temporal structure
M ′ at state s.
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Example 6.3.38 (Algorithm verify)

Consider a slightly simplified version of the ALCCTL temporal structure of Example
6.2.7: M = (S, R,∆, I) where

• S := {s0, s1, s2};

• R := {(s0, s1), (s0, s2), (s1, s2), (s2, s2)} ⊆ S × S;

• ∆ := {L1, L2, R1, R2}.

• I is an interpretation of atomic concepts AC as follows

MajorTopicI(s0) = {R1, R2} Topic R180, abbreviated as R1, and topic
R180 Handling, abbreviated as R2 are the
major topics in state s.

MajorTopicI(s1) = {R1} R180 is the (only) major topic in state s1.
MajorTopicI(s2) = {R2} R180 Handling is the (only) major topic in

state s2.

and I is an interpretation of atomic roles AR as follows

addressedByI(s0) = {(R1,L1)} R180 is addressed by lesson L1 in state s.
addressedByI(s1) = ∅ There is no topic addressed in state s1.
addressedByI(s2) = {(R2,L2)} R180 Handling is addressed by lesson L2

in state s2.

Further, consider the ALCCTL formula MajorTopic v AF ∃addressedBy.> - ev-
ery major topic is eventually addressed on all paths (cf. Example 6.2.11).

Then a call of verify(S,R,∆, I, f ) runs as follows:
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function verify(S,R, ∆, I, f) {

M := (S, R, ∆, I);
Cf := f .getTopLevelConcepts(); Cf = {MajorTopic, AF ∃addressedBy.>}
ICf ,M := ∅;
for each C ′ ∈ Cf {

iC′,M := getInterpretation(M,C ′); iMajorTopic,M = {s0 7→ {R1, R2},
s1 7→ {R1}, s2 7→ {R2}}

iAF ∃addressedBy.>,M = {s0 7→ {R1, R2},
s1 7→ {R2}, s2 7→ {R2}}

ICf ,M := ICf ,M ∪{〈C ′〉 7→ iC′,M}; ICf ,M = {〈MajorTopic〉 7→ iMajorTopic,M ,
〈AF ∃addressedBy.>〉 7→

} iAF ∃addressedBy.>,M}

MCf := (S, R, ∆, ICf ,M );
f ′ := fm(MCf , f 〈〉);

f ′ = (〈MajorTopic〉(L1) →
〈AF ∃addressedBy.>〉(L1))

∧ (〈MajorTopic〉(L2) →
〈AF ∃addressedBy.>〉(L2))

∧ (〈MajorTopic〉(R1) →
〈AF ∃addressedBy.>〉(R1))

∧ (〈MajorTopic〉(R2) →
〈AF ∃addressedBy.>〉(R2))

M ′ := sm(MCf , f 〈〉); M ′ = (S,R, LICf ,M , f〈〉) where LICf ,M , f〈〉 =
{
s0 7→ {〈MajorTopic〉(R1),

〈MajorTopic〉(R2),
〈AF ∃addressedBy.>〉(R1),
〈AF ∃addressedBy.>〉(R2)},

s1 7→ {〈MajorTopic〉(R1),
〈AF ∃addressedBy.>〉(R2)},

s2 7→ {〈MajorTopic〉(R2),
〈AF ∃addressedBy.>〉(R2)}

}
return {s ∈ S |M ′, s `CTL f ′} {s ∈ S |M ′, s `CTL f ′} = {s0, s2}

}

2

Proposition 6.3.39 (Soundness and Completeness of verify)

Assume that all sub-routines called in verify are sound and complete, i.e. for a finite
ALCCTL temporal structure M = (S,R,∆, I) ∈ fMALCCTL and ALCCTL formula
f holds:

• f .getTopLevelConcepts() = Cf according to Definition 6.3.30;
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• getInterpretation(M, C ′) = iC′,M : S → P(∆) : iC′,M (s) = (M, s)(C ′);

• the sub-routine implementing fm(MCf , f 〈〉) adheres to Definitions 6.3.7,
6.3.19, and 6.3.30;

• the sub-routine implementing sm(MCf , f 〈〉) adheres to Definitions 6.3.4,
6.3.19, and 6.3.30;

• and `CTL is a sound and complete model checking procedure for finite CTL
temporal structures and CTL formulae.

Then

verify(S, R,∆, I, f ) = LSM,f = {s ∈ S |M, s |=ALCCTL f}.

Proof:

In the for-loop of verify, a representation of ICf ,M is calculated, which consists of
a mapping 〈C ′〉 7→ iC′,M of the atomic substitute 〈C ′〉 of concepts C ′ ∈ Cf onto
their interpretation iC′,M that is a function S → P(∆) : iC′,M (s) = (M, s)(C ′).
Hence, the representation of ICf ,M as calculated in the for-loop defines a mapping
f : 〈Cf 〉 × S → P(∆) : f(〈C ′〉, s) = (ICf ,M (〈C ′〉))(s) = (M, s)(C ′) where 〈Cf 〉 :=
{〈C ′〉 | C ′ ∈ Cf}.

Recall, ICf ,M is defined as an interpretation such that the following holds:

for each s ∈ S and C ′ ∈ Cf : 〈C ′〉ICf ,M
(s) = (M, s)(C ′) and for each state s ∈ S and

atomic role R ∈ AR: RI
Cf ,M

(s) = RI(s) (Definition 6.3.19).

Hence, regarding the interpretation of concepts, ICf ,M is determined by a mapping of
pairs (〈C ′〉, s) ∈ 〈Cf 〉×S onto the interpretation (M, s)(C ′) of concept C ′ in structure
M at state s. As a result, the mapping ICf ,M as calculated by verify is complete and
sound w.r.t. the interpretation of concepts in Cf .

Regarding the interpretation of roles we observe the following:

f is not accessed directly in the sequel of the for-loop in verify since the mappings
fm and sm are based on f 〈〉 instead of f . Recall, f 〈〉 is the formula f except that
the top-level concepts are substituted by atomic concepts. Since atomic roles occur
in complex concepts only, f 〈〉 does not contain any atomic roles and thus the formula
and structure mappings fm and sm are independent of the interpretation of roles in f .
As a result, within the context of verify it is sufficient to address the interpretation of
concepts C ′ ∈ Cf in the representation of ICf ,M and hence the representation of ICf ,M

as calculated in the for-loop of verify is sound and complete.

By Corollary 6.3.34, it holds:

M, s |=ALCCTL f ⇔ sm(MCf , f 〈〉), s |=CTL fm(MCf , f 〈〉) for each s ∈ S.
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Hence,

LSM,f

= {s ∈ S |M, s |=ALCCTL f} Def. LSM,f

= {s ∈ S | sm(MCf , f 〈〉), s |=CTL fm(MCf , f 〈〉)} Corollary 6.3.34
= {s ∈ S |M ′, s |=CTL f ′} Assignment of M ′ and f ′

in verify
= {s ∈ S |M ′, s `CTL f ′} because `CTL is sound and

complete w.r.t. |=CTL

= verify(S, R,∆, I, f)
2

Remark 6.3.40 (Soundness and Completeness of verify)

Proposition 6.3.39 shows the soundness and completeness of verify under the assump-
tion that all sub-routines used in verify are sound and complete.

This assumption is justified in the case of f .getTopLevelConcepts(), fm(MCf , f 〈〉),
and sm(MCf , f 〈〉) because they can be implemented directly based on their formal
definitions which involve finite structures only.

The assumption is also justified in the case of `CTL since sound and complete
model checking algorithms for finite CTL temporal structures and CTL formulae exist
[CES86] and efficient implementations are available [CCG+02, CCGR00].

As of getInterpretation(M, C ′), the existence of a sound and complete algorithm is still
to be shown. This will be done in section 6.3.3.2.

2

Proposition 6.3.41 (Runtime Complexity of verify)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure and f an
ALCCTL formula.

Let T (S, R,∆, I, f) denote the runtime required for a call to verify(S,R,∆, I, f).

If all sub-routines used in verify are optimal then T (S,R,∆, I, f) ∈ O(|f |· (|S| +
|R|)· |∆|2).
Proof:

Let

• T (f .getTopLevelConcepts()) be the time required for getting the top-level con-
cepts of f . This requires a recursive traversal of the term structure of f which
can be done in

T (f .getTopLevelConcepts()) ∈ O(|f |).
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• T (getInterpretation(M, C ′)) be the time required for getting the interpre-
tation iC,M : S → P(∆) : iC,M (s) = (M, s)(C ′) by a call to
getInterpretation(M, C ′). This is equivalent to getting the interpretation I{C},M

extended to C w.r.t. M which is in

T (getInterpretation(M, C ′)) ∈ O(|C ′|· (|S|+ |R|)· |∆|2) (Lemma 6.3.28).

• T (fm(MCf , f 〈〉)) be the time required for calculating fm(MCf , f 〈〉). This can
be done in O(|f 〈〉|· |∆|) as shown in the proof of Proposition 6.3.29, Equation
(6.15). Since |f 〈〉| ≤ |f |, we get:

T (fm(MCf , f 〈〉)) ∈ O(|f |· |∆|).
• T (sm(MCf , f 〈〉)) be the time required for calculating sm(MCf , f 〈〉). This

can be done in O(|f 〈〉|· |S|· |∆|) as shown in the proof of Proposition 6.3.29,
Equation (6.14). Since |f 〈〉| ≤ |f |, we get:

T (sm(MCf , f 〈〉)) ∈ O(|f |· |S|· |∆|).
• T (`CTL) be the time required for calculating the set {s ∈ S | M ′, s `CTL f ′}.

This is inO(|f ′|· (|S|+|R|)) (Theorem 3.2.12). Since |f ′| = |fm(MCf , f 〈〉)| ∈
O(|f 〈〉|· |∆|) (proof of Proposition 6.3.29) and |f 〈〉| ≤ |f | we get:

T (`CTL) ∈ O(|f |· (|S|+ |R|)· |∆|).
• k ∈ R+ be the cumulative runtime of all other statements in verify (all of them

can be done in constant time).

For the overall runtime of verify(S, R,∆, I, f ) holds:

T (S,R,∆, I, f) = T (f .getTopLevelConcepts())

+
∑

C′∈Cf

T (getInterpretation(M,C ′))

+T (fm(MCf , f 〈〉)) + T (sm(MCf , f 〈〉))
+T (`CTL) + k

≤ k1· |f |
+

∑

C′∈Cf

k2· |C ′|· (|S|+ |R|)· |∆|2

+k3· |f |· |∆|+ |k4|· |f |· |S|· |∆|
+k5· |f |· (|S|+ |R|)· |∆|+ k

It holds for the term
∑

C′∈Cf
k2· |C ′|· (|S|+ |R|)· |∆|2:

∑

C′∈Cf

k2· |C ′|· (|S|+ |R|)· |∆|2 = k2· (|S|+ |R|)· |∆|2·
∑

C′∈Cf

|C ′|

≤ k2· (|S|+ |R|)· |∆|2· |f |
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since all C ′ ∈ Cf are sub-expressions in f . Hence, we get

T (S, R,∆, I, f) ≤ k1· |f |
+k2· (|S|+ |R|)· |∆|2· |f |
+k3· |f |· |∆|+ |k4|· |f |· |S|· |∆|
+k5· |f |· (|S|+ |R|)· |∆|+ k

≤ (k1 + k2 + k3 + k4 + k5 + k)· |f |· (|S|+ |R|)· |∆|2
∈ O(|f |· (|S|+ |R|)· |∆|2)

2

Remark 6.3.42 (Runtime Complexity of verify)

Proposition 6.3.41 implies the termination of verify for any finite input S, R,∆ and f
if all sub-routines are sound and complete and thus terminate.

Proposition 6.3.41 shows that verify is optimal w.r.t. the complexity of the ALCCTL
model checking problem shown in Proposition 6.3.35.

In contrast to the CTL model checking problem, which is inherently sequential and
thus cannot be efficiently solved using parallel computation [Sch03], the verify algo-
rithm for model checkingALCCTL can easily be parallelized. The instances of the for
loop of verify, which contribute most to the overall runtime of verify, can be executed
in parallel because the interpretations iC′,M for C ′ ∈ Cf can be computed indepen-
dently. Hence, the runtime can be sped up by factor n on a machine with as many
processors as there are top-level concepts n = |Cf | in formula f .

Since typically |Cf | < 10, this is not a large but still relevant source of parallelism.
2

6.3.3.2. Algorithm for Computing Concept Interpretations

The algorithm verify delegates a large part of the model checking work to the sub-
routine getInterpretation(M, C ′) that actually belongs to the core of model checking
ALCCTL. In the sequel, we sketch an abstract implementation of getInterpretation.
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Algorithm 6.3.43 (Interpretation of ALCCTL Concepts)
function getInterpretation(S, R, ∆, I, C) {

if C.isAtomic() then If C ∈ AC
return {s 7→ CI(s) | s ∈ S}; return a mapping of s onto the interpretation

CI(s) of C in state s for each s ∈ S.
if C = > then If C = >

return {s 7→ ∆ | s ∈ S}; return a mapping of states S onto ∆ since
>I(s) := ∆ for each s ∈ S.

if C = ⊥ then If C = ⊥
return {s 7→ ∅ | s ∈ S}; return a mapping of states S onto ∅ since

⊥I(s) := ∅ for each s ∈ S.
M := (S, R, ∆, I); For a more compact access to structure M .
bCc := C.getDirectSubConcepts(); Initialize the set bCc of direct sub-concepts of

C.
IbCc,M := ∅; Initialize the interpretation IbCc,M extended to

direct sub-concepts bCc of C w.r.t. M .
for each C ′ ∈ bCc { Construct the extended interpretation IbCc,M .

iC′,M := getInterpretation(M, C ′); Get the interpretation iC′,M : S → P(∆) :
iC′,M (s) = (M, s)(C ′) of concept C ′ at each
state of M .

IbCc,M := IbCc,M∪{〈C ′〉 7→ iC′,M}; Add a mapping of the atomic substitute 〈C ′〉
of C ′ onto its interpretation iC′,M in M to

} IbCc,M .

IbCc,M := IbCc,M∪ Copy the interpretations of atomic roles in I

I .getRoleInterpretations(); to IbCc,M , i.e. RIbCc,M (s) = RI(s) for each
state s ∈ S and atomic role R ∈ AR.

MbCc := (S,R, ∆, IbCc,M ); Assign to the temporal structure MbCc an in-
terpretation IbCc,M extended to all direct sub-
concepts bCc of C.

M ′ := sm(MbCc,⊥ v C〈〉); Generate a CTL structure M ’ according to the
definition of sm(MbCc,⊥ v C〈〉).

lsC,M := ∅; Initialize the mapping lsC,M : ∆ → P(S) :
lsC,M = LSa,C,M where LSa,C,M is the label
set of C for a w.r.t. M . lsC,M is iteratively
computed in the subsequent for loop.

for each a ∈ ∆ { Construct the label set LSa,C,M by reduction
to CTL model checking.

f ′ := C〈〉[a]∆ ; Generate a CTL formula f ′ according to the
definition of C〈〉[a]∆.

LSa,C,M := {s ∈ S |M ′, s `CTL f ′}; Model check f ′ for M ′ using `CTL which re-
sults in LSa,C,M = {s ∈ S | a ∈ (M, s)(C)}.

lsC,M := lsC,M ∪ {a 7→ LSa,C,M}; Add a mapping of a onto its label set LSa,C,M

} to lsC,M .

iC,M := {s 7→ {a ∈ ∆ | Convert the mapping lsC,M to a mapping
s ∈ lsC,M (a)} | s ∈ S}; iC,M : S → P(∆) : iC,M (s) = {a ∈ ∆ | s ∈

lsC,M (a)} = (M, s)(C) of states s ∈ S onto
their intepretation (M, s)(C) of C in M at s.

return iC,M ; Return the interpretation function iC,M .
} 2
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getInterpretation uses the following sub-routines:

• C.isAtomic();

returns true if C ∈ AC.

• C.getDirectSubConcepts();

returns the set bCc of direct sub-concepts of a complex concept C (Definition
6.3.15).

• I .getRoleInterpretations();

returns the mapping AR → P(S → P(∆×∆)) of atomic roles R ∈ AR onto
their temporal interpretation s 7→ RI(s) in each state s ∈ S.

• sm(M bCc,⊥ v C〈〉);

returns the CTL representation of the temporal structure M bCc w.r.t. the formula
⊥ v C〈〉 according to Definitions 6.3.4, 6.3.15, 6.3.19, and 6.3.17.

Recall, sm(M bCc,⊥ v C〈〉) is equal to M bCc except that the interpretation
of atomic concepts in ⊥ v C〈〉 (which are {〈C ′〉|C ′ ∈ bCc}) and the in-
terpretation of atomic roles in ⊥ v C〈〉 are encoded in terms of a labelling
LIbCc,M , ⊥v C〈〉 : S → P(AP ) of states s ∈ S with sets of atomic propositions
LIbCc,M , ⊥v C〈〉(s) ⊆ AP satisfied at s.

• C〈〉[a]∆;

returns the CTL mapping of concept C〈〉 for a domain object a ∈ ∆ according
to Definitions 6.3.7 and 6.3.17. Recall, C〈〉 is concept C except that the direct
sub-concepts of C are treated as atomic (Definition 6.3.17).

• M ′, s `CTL f ′;

`CTL denotes a sound and complete algorithm for deciding M ′, s |=CTL f ′. It
checks whether the CTL formula f ′ holds in the finite CTL temporal structure
M ′ at state s.
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Example 6.3.44 (Algorithm getInterpretation)

We illustrate a call to getInterpretation on the scenario of Example 6.3.38 which is

• S := {s0, s1, s2};

• R := {(s0, s1), (s0, s2), (s1, s2), (s2, s2)} ⊆ S × S;

• ∆ := {L1, L2, R1, R2}.

• an interpretation of atomic concepts AC:

MajorTopicI(s0) = {R1, R2} Topic R180, abbreviated as R1, and topic
R180 Handling, abbreviated as R2, are
the major topics in state s0.

MajorTopicI(s1) = {R1} R180 is the (only) major topic in state s1.
MajorTopicI(s2) = {R2} R180 Handling is the (only) major topic in

state s2.

and an interpretation of atomic roles AR:

addressedByI(s0) = {(R1,L1)} R180 is addressed by lesson L1 in state s0.
addressedByI(s1) = ∅ There are no topics addressed in state s1.
addressedByI(s2) = {(R2,L2)} R180 Handling is addressed by lesson L2

in state s2.

Let C = AF ∃addressedBy.> - the set of topics that are eventually addressed on all
paths.

Then a call of getInterpretation(S,R,∆, I, C) yields the following results:
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function getInterpretation(S, R, ∆, I, C) {

if C.isAtomic() then C.isAtomic() is false
return {s 7→ CI(s) | s ∈ S};

if C = > then C = > is false
return {s 7→ ∆ | s ∈ S};

if C = ⊥ then C = ⊥ is false
return {s 7→ ∅ | s ∈ S};

M := (S, R, ∆, I);
bCc := C.getDirectSubConcepts(); bCc = {∃addressedBy.>}
IbCc,M := ∅;
for each C ′ ∈ bCc {

iC′,M := getInterpretation(M,C ′); i∃addressedBy.>,M = {s0 7→ {R1},
s1 7→ ∅, s2 7→ {R2}}

IbCc,M := IbCc,M∪{〈C ′〉 7→ iC′,M};
} IbCc,M = {

〈∃addressedBy.>〉 7→ i∃addressedBy.>,M}.
IbCc,M := IbCc,M∪ IbCc,M = {

I .getRoleInterpretations(); 〈∃addressedBy.>〉 7→ i∃addressedBy.>,M ,
addressedBy 7→ {s0 7→ {(R1, L1)},

s1 7→ ∅, s2 7→ {(R2, L2)}}
}.

MbCc := (S, R, ∆, IbCc,M );
M ′ := sm(MbCc,⊥ v C〈〉); Let f = ⊥ v C〈〉

= ⊥ v AF 〈∃addressedBy.>〉.
Then M ′ = (S, R,LIbCc,M ,f ) where
LIbCc,M ,f = {

s0 7→ {〈∃addressedBy.>〉(R1)},
s1 7→ ∅
s2 7→ {〈∃addressedBy.>〉(R2)}

}
lsC,M := ∅;
for each a ∈ ∆ { ∆ = {L1, L2, R1, R2}

f ′ := C〈〉[a]∆ ; C〈〉[L1]∆ = AF (〈∃addressedBy.>〉(L1))
C〈〉[L2]∆ = AF (〈∃addressedBy.>〉(L2))
C〈〉[R1]∆ = AF (〈∃addressedBy.>〉(R1))
C〈〉[R2]∆ = AF (〈∃addressedBy.>〉(R2))

LSa,C,M := {s ∈ S |M ′, s `CTL f ′}; LSL1,C,M = ∅
LSL2,C,M = ∅
LSR1,C,M = {s0}
LSR2,C,M = {s0, s1, s2}

lsC,M := lsC,M ∪ {a 7→ LSa,C,M};
} lsC,M = {L1 7→ ∅, L2 7→ ∅,

R1 7→ {s0}, R2 7→ {s0, s1, s2}}
iC,M := {s 7→ {a ∈ ∆ |

s ∈ lsC,M (a)} | s ∈ S}; iC,M = {s0 7→ {R1, R2}, s1 7→ {R2},
s2 7→ {R2}}

return iC,M ;
}
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The mapping iC,M = {s0 7→ {R1, R2}, s1 7→ {R2}, s2 7→ {R2}} as re-
turned by getInterpretation(S, R,∆, I, C) represents the interpretation of concept
C = AF ∃addressedBy.> in the states s ∈ S of M = (S, R,∆, I) which is

(M, s0)(AF ∃addressedBy.>) = {R1, R2}
(M, s1)(AF ∃addressedBy.>) = {R2}
(M, s2)(AF ∃addressedBy.>) = {R2}

(cf. Examples 6.3.38 and 6.2.11).
2

In the sequel, we prove the termination, soundness, completeness, and runtime com-
plexity of getInterpretation. We start with an approximation of the total number of
recursive calls to getInterpretation for a concept C ∈ CALCCTL.

Lemma 6.3.45 (Total Number of Recursive Calls to getInterpretation)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure and
C ∈ CALCCTL an ALCCTL concept.

Then a call to getInterpretation(S, R,∆, I, C) results in at most |C| total calls to
getInterpretation.

Proof:

The prove is by induction on the term structure of C.

• If C ∈ AC ∪ {>,⊥} then getInterpretation(S,R,∆, I, C) terminates without
recursive calls, i.e. getInterpretation is called once in total.

• If C 6∈ AC ∪ {>,⊥} then bCc 6= ∅ and hence getInterpretation calls itself for
every direct sub-concept C ′ ∈ bCc.
By induction hypothesis we can assume that each call of getInterpretation for
C ′ ∈ bCc results in at most |C ′| recursive calls to getInterpretation in total.

Hence, the total number of calls to getInterpretation is at most

1 +
∑

C′∈bCc
|C ′| ≤ |C|

since the size |C| of concept C is the sum of the sizes |C ′| of its direct sub-
concepts C ′ ∈ bCc plus one additional connective plus potentially an additional
role.

2
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Corollary 6.3.46 (Termination of getInterpretation)

getInterpretation terminates when called for a finite temporal structure (S,R,∆, I) ∈
fMALCCTL and a finite concept C ∈ CALCCTL.

This is a direct consequence of Lemma 6.3.45 and the fact that every loop in getInter-
pretation ranges over finite sets according to Definitions 6.3.15 and 6.2.6.

2

Proposition 6.3.47 (Soundness and Completeness of getInterpretation)

Assume, all sub-routines called in getInterpretation are sound and complete, i.e. for
a finite ALCCTL temporal structure M = (S, R,∆, I) ∈ fMALCCTL and ALCCTL
formula f holds:

• C.isAtomic() is true ⇔ C ∈ AC.

• C.getDirectSubConcepts() = bCc according to Definition 6.3.15.

• I .getRoleInterpretations() = {R 7→ {s 7→ RI(s) | s ∈ S} | R ∈ AR}.

• the sub-routine implementing sm(M bCc,⊥ v C〈〉) adheres Definitions 6.3.4,
6.3.15, 6.3.19, and 6.3.17.

• the sub-routine implementing C〈〉[a]∆ adheres Definitions 6.3.7 and 6.3.17.

• and `CTL is a sound and complete model checking procedure for finite CTL
temporal structures and CTL formulae.

Then getInterpretation(S, R,∆, I, C) = iC,M : S → P(∆) : iC,M (s) = (M, s)(C).

Proof:

The proof is by induction on the structure of C.

• Assume C ∈ AC.

Then getInterpretation(S, R,∆, I, C) = {s 7→ CI(s) | s ∈ S} = {s 7→
(M, s)(C) | s ∈ S} = iC,M by Definition 6.2.8.

• Assume C = >.

Then getInterpretation(S, R,∆, I, C) = {s 7→ ∆ | s ∈ S} = {s 7→
(M, s)(>) | s ∈ S} = iC,M by Definitions 6.2.3 and 6.2.8.

• Assume C = ⊥.

Then getInterpretation(S,R,∆, I, C) = {s 7→ ∅ | s ∈ S} = {s 7→
(M, s)(⊥) | s ∈ S} = iC,M by Definitions 6.2.3 and 6.2.8.
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• Assume C 6∈ AC ∪ {>,⊥}. Then C is a complex concept and bCc 6= ∅. By
induction hypothesis, we can assume that getInterpretation(M, C ′) = iC′,M =
{s 7→ (M, s)(C ′) | s ∈ S} for each C ′ ∈ bCc.
In the first for-loop of getInterpretation a mapping
f := {〈C ′〉 7→ iC′,M | C ′ ∈ bCc} of the atomic substitutes 〈C ′〉 of direct sub-
concepts C ′ ∈ bCc onto their interpretation function iC′,M is computed where
iC′,M = getInterpretation(S, R,∆, I, C ′).

f determines a mapping
g : 〈bCc〉 × S → P(∆) : g(〈C ′〉, s) = (f(〈C ′〉))(s) = iC′,M (s) where
〈bCc〉 := {〈C ′〉 | C ′ ∈ bCc}.

By induction hypothesis iC′,M (s) = (M, s)(C ′) for each s ∈ S.

Hence, f determines a function g : 〈bCc〉 × S → P(∆) such that g(〈C ′〉, s) =
(M, s)(C ′) for each C ′ ∈ bCc and s ∈ S.

Recall, IbCc,M is defined in Definition 6.3.19 as an interpretation such that

i) for each C ′ ∈ bCc and s ∈ S holds: 〈C′〉IbCc,M (s) = (M, s)(C)

ii) for each R ∈ AR and s ∈ S holds: RIbCc,M (s) = RI(s).

Regarding i), it holds for each C ′ ∈ bCc and s ∈ S:

(f(〈C ′〉))(s) = g(〈C ′〉, s) = (M, s)(C) = 〈C′〉IbCc,M (s)

Hence, the mapping f as computed by getInterpretation is a sound and com-
plete representation of IbCc,M regarding the interpretation of concepts.

Also, regarding the interpretation of roles ii), IbCc,M , as computed in getInter-
pretation, is sound and complete since all interpretations of roles are copied
without modification from I to IbCc,M .

By Corollary 6.3.25, it holds for each a ∈ ∆:

LSa,C,M = LSa,C〈〉,MbCc = {s ∈ S | sm(M bCc, f), s |=CTL C〈〉[a]∆}
where f is anALCCTL formula containing C〈〉 and M bCc = (S, R,∆, IbCc,M ).

Since ⊥ v C〈〉 is an ALCCTL formula containing C〈〉, M ′ is assigned
sm(M bCc,⊥ v C〈〉), f ′ is assigned C〈〉[a]∆, and `CTL is sound and complete
w.r.t. |=CTL in getInterpretation, it holds for each a ∈ ∆:

LSa,C,M = {s ∈ S | a ∈ (M, s)(C)} Definition 6.3.21
= {s ∈ S | sm(M bCc,⊥ v C〈〉), s

|=CTL C〈〉[a]∆} Corollary 6.3.25
= {s ∈ S |M ′, s |=CTL f ′} Assignment of M ′ and f ′

in getInterpretation
= {s ∈ S |M ′, s `CTL f ′} because `CTL is sound and

complete w.r.t. |=CTL
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Hence, LSa,C,M as calculated in the second for-loop of getInterpretation is
sound and complete w.r.t. its Definition 6.3.21 for each a ∈ ∆ and, consequently,
the label mapping lsC,M as calculated in getInterpretation is a sound and com-
plete mapping ∆ → P(S) : lsC,M (a) = LSa,C,M = {s ∈ S | a ∈ (M, s)(C)}
of domain objects a ∈ ∆ onto their label set LSa,C,M .

By Corollary 6.3.22, (M, s)(C) = {a ∈ ∆ | s ∈ LSa,C,M} = {a ∈ ∆ | s ∈
lsC,M (a)} for each s ∈ S.

As result, getInterpretation(S,R,∆, I, C) = {s 7→ {a ∈ ∆ | s ∈ lsC,M (a)}} =
{s 7→ (M, s)(C) | s ∈ S} = iC,M which proves getInterpretation to be sound
and complete.

2

Proposition 6.3.48 (Runtime Complexity of getInterpretation)

Let M = (S, R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure and
C ∈ CALCCTL an ALCCTL concept.

Let T (S, R,∆, I, C) denote the runtime required for a call to
getInterpretation(S,R,∆, I, C).

If all sub-routines (other than getInterpretation itself), which are called by getInter-
pretation, are optimal then T (S, R,∆, I, C) ∈ O(|C|· (|S|+ |R|)· |∆|2).
Proof:

Let T (getInterpretation) be the time required for a single call to getInterpretation
without the time required for recursive sub-calls.

Assume that T (getInterpretation) ∈ O((|S|+ |R|)· |∆|2).
Then this implies T (S, R,∆, I, C) ∈ O(|C|· (|S| + |R|)· |∆|2) since a call of
getInterpretation(S,R,∆, I, C) results at most |C| calls to getInterpretation (Lemma
6.3.45) each of them taking T (getInterpretation) ∈ O((|S|+ |R|)· |∆|2) time.

Hence, it is sufficient to show:

T (getInterpretation) ∈ O((|S|+ |R|)· |∆|2) (6.21)

Assume |C| = 1.

Then C ∈ AC ∪ {>,⊥} and the runtime T (getInterpretation) is in
O(|getInterpretation(S, R,∆, I, C)|) = O(|iC,M |) = O(|S|· |∆|) ⊆ O((|S| +
|R|)· |∆|2) which shows Equation (6.21).

Assume |C| > 1.

Then C is a complex concept and hence C 6∈ AC ∪ {>,⊥}.

By ALCCTL syntax |bCc| ≤ 2 and hence the first for loop in getInterpretation runs
at most twice.
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If we neglect the time required for the recursive call of getInterpretation, all state-
ments except
M ′ := sm(M bCc,⊥ v C〈〉),
f ′ := C〈〉[a]∆,
LSa,C,M := {s ∈ S |M ′, s `CTL f ′}, and
iC,M := {s → {a ∈ ∆ | s ∈ lsC,M (a) | s ∈ S}
can be done in constant time because all of them can be implemented based on a con-
stant number of simple pointer accesses and assignments. Also, the unions of sets ”∪”
can be done in constant time by concatenation since the unified sets are disjoint and
hence a duplicate check and elimination does not need to be performed.

Let

• T (sm(M bCc,⊥ v C〈〉)) be the time required for calculating
sm(M bCc,⊥ v C〈〉),

• T (C〈〉[a]∆) be the time required for calculating C〈〉[a]∆,

• T (`CTL) be the time required for calculating {s ∈ S |M ′, s `CTL f ′}, and

• T (iC,M ) be the time required for calculating {s → {a ∈ ∆ | s ∈
lsC,M (a)} | s ∈ S}.

Then C〈〉[a]∆ and {s ∈ S |M ′, s `CTL f ′} are calculated |∆| times within the second
for-loop of getInterpretation while sm(M bCc,⊥ v C〈〉) and {s → {a ∈ ∆ | s ∈
lsC,M (a)} | s ∈ S} are calculated just once.

In total we get for the runtime of a single run of getInterpretation:

T (getInterpretation) =
k + T (sm(M bCc,⊥ v C〈〉)) + |∆|(k′ + T (C〈〉[a]∆) + T (`CTL)) + T (iC,M )

where k′ ∈ R+ is the total time required for all ”constant time operations” within the
second for-loop of getInterpretation and k ∈ R+ the total time required for all other
”constant time operations” in getInterpretation.

It holds:

• sm(M bCc,⊥ v C〈〉) can be calculated in

T (sm(M bCc,⊥ v C〈〉)) ≤ k1· |S|· |∆|2

with k1 ∈ R+ as shown in the proof of Lemma 6.3.27, Equation 6.10.

• C〈〉[a]∆ can be calculated in

T (C〈〉[a]∆) ≤ k2· |∆|

with k2 ∈ R+ as shown in the proof of Lemma 6.3.27, Equation 6.11.
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• For calculating {s ∈ S |M ′, s `CTL f ′}, a sound and complete model checking
algorithm `CTL exists [CES86, CGP02d], the runtime of which is
T (`CTL) ∈ O(|f ′|· (|S|+ |R|)).
Since |f ′| = |C〈〉[a]∆| ∈ O(|∆|) (Lemma 6.3.26) we get
T (`CTL) ∈ O(|∆|· (|S|+ |R|).
Hence, there is k3 ∈ R+ such that for sufficiently large sets S, R, and ∆ it holds:

T (`CTL) ≤ k3· (|S|+ |R|)· |∆|

• Finally, iC,M = {s → {a ∈ ∆ | s ∈ lsC,M (a)} | s ∈ S} can be calculated
simply by two nested loops: the outer one ranges over the set S and the inner
one ranges over the set ∆ for each interation of the outer loop. This results
in |S|· |∆| iterations each of which performs a table lookup lsC,M (a) and an
element check s ∈ lsC,M (a), which both can be done in constant time using
hash tables.

As a result, T (iC,M ) = k4· |S|· |∆| with some constant k4 ∈ R+.

In total, we get for the runtime of a single call to getInterpretation:

T (getInterpretation) = k + T (sm(M bCc,⊥ v C〈〉)) + T (iC,M ) +

|∆|(k′ + T (C〈〉[a]∆) + T (`CTL))
≤ k + k1· |S|· |∆|2 + k4· |S|· |∆|+

|∆|(k′ + k2· |∆|+ k3· (|S|+ |R|)· |∆|)
= k + k1· |S|· |∆|2 + k4· |S|· |∆|+

k′· |∆|+ k2· |∆|2 + k3· (|S|+ |R|)· |∆|2
≤ (k + k′ + k1 + k2 + k3 + k4)· (|S|+ |R|)· |∆|2
∈ O((|S|+ |R|)· |∆|2)

Hence, Equation (6.21) is shown for each |C| ∈ N1, which proves Proposition
6.3.48. 2

Remark 6.3.49 (Runtime Complexity of getInterpretation)
Proposition 6.3.41 shows that getInterpretation is optimal w.r.t. the complexity of
calculating the interpretation of ALCCTL concepts as shown in Lemma 6.3.28.

The algorithm for getInterpretation is well suited for parallel computation. This is
because every iteration of both for-loops in getInterpretation can be executed inde-
pendently. In addition, the calculation of the structure mapping sm(M bCc,⊥ v C〈〉)
and of the interpretation function iC,M can be done in at least |∆| independent threads.
This leads to a speed up by factor |∆| on a machine with |∆| processors. Since |∆|
is between 100 and 100000 in application relevant scenarios, this is a large source of
parallelism. 2
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6.3.3.3. Optimizations

Some optimizations can further speed up the performance of verify and getInterpre-
tation in practical applications.

Avoiding Recalculation of Common Sub-Expressions
verify calls getInterpretation for every top-level concept C in the formula f to check.
getInterpretation recursively calls itself for every sub-concept in C. If a formula
f contains the same concept C several times, getInterpretation is called for each
occurrence of C in f and hence the interpretation of C is calculated several times.
Since the interpretation of C does not depend on the context, in which C occurs in f , it
is sufficient to calculate the interpretation of every concept C in f once and then reuse
the result for each further occurrence of C in f by applying dynamic programming
[CLRS01].

Looking at a single formula f , recurrent complex concepts in f may appear to be
rare. This is certainly not the case when checking a larger set of formulae which is
typically done in application scenarios. Hence, a dynamic programming technique is
particularly efficient when enhancing verify / getInterpretation towards checking a
set of ALCCTL formulae within a single call.

Avoiding Inefficient CTL Mappings
To make correctness and runtime analysis easier all validity checks in verify and
getInterpretation are delegated to a given CTL model checking method `CTL us-
ing sound and complete mappings of ALCCTL structures onto CTL structures and
ALCCTL expressions onto CTL formulae.

Most of the validity checks are actually quite easy. For instance, consider the formula
C v D. If the interpretation of concepts C and D is known at all states s ∈ S, the
set of states, at which C v D holds in a model M = (S, R,∆, I) ∈ fMALCCTL, can
easily be determined. By ALCCTL semantics (Definition 6.2.8), it holds:

LSM,CvD = {s ∈ S |M, s |= C v D} = {s ∈ S | CI(s) ⊆ DI(s)}
I.e. computing the label set LSM,CvD can be done by a subset check CI(s) ⊆ DI(s)

for all states s ∈ S. Considering such a simple task, it appears a tremendous over-
head to translate the formula C v D to a large CTL formula fm(M,C v D) =∧

a∈∆(C(a) → D(a)) as well as the ALCCTL structure M to a CTL structure
sm(M,C v D) and then to calculate the set LSM, CvD = {s ∈ S | sm(M, C v
D), s `CTL fm(M, C v D)} via CTL model checking `CTL.

In an implementation of verify and getInterpretation, dedicated validity checking
methods can be combined with checks via a CTL reduction. It is possible to do the
easy cases, e.g. checks of non-temporal connectives, internally and delegate the checks
of complex temporal connectives to an external CTL model checker.
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6.3.4. Counterexamples

If the verification of a formula p for a temporal structure M fails, a counterexample is
provided that indicates the error location within the document.

Recall that theALCCTL model checking problem is reduced to a CTL model checking
problem in theALCCTL model checking algorithm verify (Algorithm 6.3.37). Recall
further that for CTL model checking always a finite counterexample ce ∈ ETS,R,s

(Definition 3.2.14) can be provided if a CTL formula p is violated at some state s ∈ S
of a finite CTL temporal structure (S, R,L) (Remark 3.2.15). Since the CTL reduction
of the ALCCTL model checking problem is sound and complete (Proposition 6.3.39),
a counterexample for the CTL reduction is also a valid counterexample for the corre-
sponding ALCCTL model checking problem.

The subsequent propositions formalize the considerations above.

Proposition 6.3.50 (ALCCTL Counterexample Soundness)

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, f ∈
ALCCTL a formula, and s ∈ S a state.

Let f ′ = fm(MCf , f 〈〉) and M ′ = sm(MCf , f 〈〉) be the CTL reductions of formula
f and temporal structure M as applied in the ALCCTL model checking algorithm
verify (Algorithm 6.3.37).

Then every counterexample ce ∈ ETS,R,s for M ′, s |=CTL f ′ (Definition 3.2.14) is
also a counterexample for M, s |=ALCCTL f .

Proof:

Let ce = (s0, ..., sn) ∈ Sn+1 be a counterexample for M ′, s |=CTL f ′. Since S, R are
identical in M ′ and M (Definitions 6.3.4 and 6.3.19) the path (s0, ..., sn) is also an
execution trace in M starting from state s0 = s. Since M ′, s |=CTL f ′ is equivalent
to M, s |=ALCCTL f (Corollary 6.3.34) and the syntax and semantics of ALCCTL
and CTL coincide at the level of formulae when interpreting subsumption expressions
C v D as atomic propositions, ce is a counterexample for M, s |=ALCCTL f .

2

Proposition 6.3.51 (ALCCTL Counterexample Completeness)

There is a finite counterexample for any finite ALCCTL temporal structure M and
violated ALCCTL formula p.

Let M = (S,R,∆, I) ∈ fMALCCTL be a finite ALCCTL temporal structure, s ∈ S
a state, and f an ALCCTL formula such that M, s 6|= f . Then there is an execution
trace ce ∈ ETS,R,s (Definition 3.2.14) such that ce is a counterexample for M, s |= p.
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Proof:

M, s 6|=ALCCTL f implies by Corollary 6.3.34 that M ′, s 6|=CTL f ′ with M ′ =
sm(MCf , f 〈〉) being a finite CTL temporal structure and f ′ = fm(MCf , f 〈〉) be-
ing a CTL formula.

Then there is a finite execution trace ce ∈ ETS,R,s such that ce is a counterexample
for M ′, s |=CTL f ′ [CGP02c]. By Proposition 6.3.50, ce is also a counterexample for
M, s |=ALCCTL f which shows the proposition.

2

In the sequel, the major components of the ALCCTL model checking procedure, in-
cluding the generation of counterexamples, are demonstrated in a sample scenario.

Example 6.3.52 (ALCCTL Model Checking and Counterexamples)

Consider the ALCCTL temporal structure M = (S, R,∆, I) where

• S = {intro, defTree, exaTree, concl}
• R = {(intro, defTree), (intro, exaTree),

(defTree, concl), (exaTree, concl), (concl, concl)}
• ∆ = {Tree,BinTree}
• I is a temporal interpretation of atomic concepts definedTopic,

exemplifiedTopic ∈ AC at states s ∈ S as follows:

definedTopicI(intro) = exemplifiedTopicI(intro) = ∅
definedTopicI(defTree) = exemplifiedTopicI(exaTree) = {Tree, BinTree}
definedTopicI(exaTree) = exemplifiedTopicI(defTree) = ∅

definedTopicI(concl) = exemplifiedTopicI(concl) = ∅

Figure 6.4 depicts the sample temporal structure M .

intro

exaTree

concl

exemplifiedTopic
I(exaTree )

 = {Tree, BinTree}defTreedefinedTopic
I(defTree )

 = {Tree, BinTree}

Figure 6.4.: temporal structure for illustrating counterexamples
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Assume, M is checked against the ALCCTL formula

f = AG (definedTopic v EF exemplifiedTopic)

”Everywhere within the document: each defined topic is eventually exemplified at
some path.”

Then M, intro 6|= f because from state intro state defTree is reachable,
definedTopicI(defTree) = {Tree, BinTree}, and from state defTree no state other
than concl is reachable.

As a result, (EF exemplifiedTopic)I(defTree) = ∅ and thus

(EF exemplifiedTopic)I(defTree) 6⊇ definedtopicI(defTree)

which is equivalent to

M,defTree 6|= definedTopic v EF exemplifiedTopic

Since state defTree can be reached on some path from state intro, we get

M, intro 6|= AG(definedTopic v EF exemplifiedTopic)

verify checks M, intro |= f via the CTL reduction M ′, intro `CTL f ′ with M ′ =
sm(MCf , f 〈〉) and f ′ = fm(MCf , f 〈〉).

MCf = (S, R,∆, ICf ,M ) is the temporal structure M with an interpretation ICf ,M

extended to the top-level concepts Cf of formula f .

For the given scenario, we get:

• Cf = {definedTopic,EF exemplifiedTopic}
• ICf ,M is a temporal interpretation of atomic concepts 〈definedTopic〉,
〈EF exemplifiedTopic〉 ∈ AC at states s ∈ S as follows:

〈definedTopic〉ICf ,M
(s) = definedTopicI(s) for each s ∈ S

〈EF exemplifiedTopic〉ICf ,M
(intro) = (EF exemplifiedTopic)I(intro)

= {Tree,BinTree}
〈EF exemplifiedTopic〉ICf ,M

(defTree) = (EF exemplifiedTopic)I(defTree)

= ∅
〈EF exemplifiedTopic〉ICf ,M

(exaTree) = (EF exemplifiedTopic)I(exaTree)

= {Tree,BinTree}
〈EF exemplifiedTopic〉ICf ,M

(concl) = (EF exemplifiedTopic)I(concl)

= ∅
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f 〈〉 is formula f with all top-level concepts being interpreted as atomic concepts:

f 〈〉 = AG (〈definedTopic〉 v 〈EF exemplifiedTopic〉)

The structure mapping sm(MCf , f 〈〉) translates theALCCTL temporal structure MCf

to an equivalent CTL temporal structure M ′ = (S,R, L
I
Cf ,M

, f〈〉) w.r.t. formula f 〈〉

where L
I
Cf ,M

, f〈〉 is a labelling S → P(AP ) of states with sets of atomic propositions
such that

L
I
Cf ,M

, f〈〉(s) = {A(a) ∈ AP | A ∈ AC|f〈〉 ∧ a ∈ AI
Cf ,M

(s)} ∪
{R(a, b) ∈ AP | R ∈ AR|f〈〉 ∧ (a, b) ∈ RI

Cf ,M
(s)}

(Definition 6.3.4).

As for our sample case the set of atomic concepts AC|f〈〉 of formula f 〈〉 is

AC|f〈〉 = {〈definedTopic〉, 〈EF exemplifiedTopic〉}

The set of atomic roles in f 〈〉 is AR|f〈〉 = ∅. Hence,

L
I
Cf ,M

, f〈〉(s) = {A(a) ∈ AP | A ∈ AC|f〈〉 ∧ a ∈ AI
Cf ,M

(s)}

for s ∈ S.

The relevant set of atomic propositions AP are

{ 〈definedTopic〉(Tree), representing ”Tree is a defined topic at
the current state”.

〈definedTopic〉(BinTree) representing ”BinTree is a defined
topic at the current state”.

〈EF exemplifiedTopic〉(Tree) representing ”on some path starting
from the current state, Tree is eventu-
ally an exemplified topic”.

〈EF exemplifiedTopic〉(BinTree) representing ”on some path starting
from the current state, BinTree is
eventually an exemplified topic”.

}
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For the propositional labelling of states, we get (cf. Figure 6.5):

L
I
Cf ,M

, f〈〉(intro) = {A(a) ∈ AP | A ∈ AC|f〈〉 ∧ a ∈ AI
Cf ,M

(intro)}
= {〈EF exemplifiedTopic〉(a) ∈ AP |

a ∈ 〈EF exemplifiedTopic〉ICf ,M
(intro)}

= {〈EF exemplifiedTopic〉(Tree),
〈EF exemplifiedTopic〉(BinTree)}

L
I
Cf ,M

, f〈〉(defTree) = {A(a) ∈ AP | A ∈ AC|f〈〉 ∧ a ∈ AI
Cf ,M

(defTree)}
= {〈definedTopic〉(a) ∈ AP |

a ∈ 〈definedTopic〉ICf ,M
(defTree)}

= {〈definedTopic〉(Tree), 〈definedTopic〉(BinTree)}
L

I
Cf ,M

, f〈〉(exaTree) = {A(a) ∈ AP | A ∈ AC|f〈〉 ∧ a ∈ AI
Cf ,M

(exaTree)}
= L

I
Cf ,M

, f〈〉(intro)

= {〈EF exemplifiedTopic〉(Tree),
〈EF exemplifiedTopic〉(BinTree)}

L
I
Cf ,M

, f〈〉(concl) = {A(a) ∈ AP | A ∈ AC|f〈〉 ∧ a ∈ AI
Cf ,M

(concl)}
= ∅

intro

exaTree

concl

EF exemplifiedTopic  (Tree) 
EF exemplifiedTopic  (BinTree) 

EF exemplifiedTopic  (Tree) 
EF exemplifiedTopic  (BinTree) 

definedTopic  (Tree) 
definedTopic  (BinTree)

defTree

Figure 6.5.: propositional labelling L
I
Cf ,M

, f〈〉 of temporal structure sm(MCf , f 〈〉)

The formula mapping fm(MCf , f 〈〉) translates the ALC connectives in f 〈〉 to equiv-
alent Boolean expressions for finite domains ∆. The only ALC connective in f 〈〉 is v
since all concepts in f 〈〉 are atomic by definition.
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Hence,

f ′ = fm(MCf , f 〈〉)
= AG (

∧
a∈∆(〈definedTopic〉[a]∆ → 〈EF exemplifiedTopic〉[a]∆))

= AG (
∧

a∈∆(〈definedTopic〉(a) → 〈EF exemplifiedTopic〉(a)))
= AG ((〈definedTopic〉(Tree) → 〈EF exemplifiedTopic〉(Tree))∧

(〈definedTopic〉(BinTree) → 〈EF exemplifiedTopic〉(BinTree)))

Then M ′, intro 6|=CTL f ′, which is demonstrated by the counterexample ce =
(intro, defTree) with ce ∈ ETS,R,intro.

ce is a path from state intro to state defTree, at which

M ′, defTree 6|=CTL

(〈definedTopic〉(Tree) → 〈EF exemplifiedTopic〉(Tree))∧
(〈definedTopic〉(BinTree) → 〈EF exemplifiedTopic〉(BinTree))

This because 〈definedTopic〉(Tree) ∈ L
I
Cf ,M

, f〈〉(defTree)
i.e. 〈definedTopic〉(Tree) holds in M ′ at state defTree, but

〈EF exemplifiedTopic〉(Tree) 6∈ L
I
Cf ,M

, f〈〉(defTree)
i.e. 〈EF exemplifiedTopic〉(Tree) does not hold in M ′ at state defTree

(cf. Figure 6.5).

By Proposition 6.3.50 ce, is also a counterexample to M, intro |=ALCCTL f : ce is
path from state intro to the state defTree ∈ S, at which

definedTopicI(defTree) 6⊆ (EF exemplifiedTopic)I(defTree)

Hence, ce demonstrates that

M, intro 6|= AG(definedTopic v EF exemplifiedTopic)

2

Remark 6.3.53 (ALCCTL Counterexamples)

Example 6.3.52 demonstrates that counterexamples returned by CTL model checking
of the transformed structure M ′ and formula f ′ are counterexamples w.r.t. the original
ALCCTL structure M and formula f . Hence, at the level of counterexamples we do
not need to worry about the bulky transformations on the bases of whichALCCTL for-
mulae are verified. Although the CTL transformations and the overall model checking
algorithm may appear complex, the counterexamples show a quite simple structure:
they are paths from a selected starting state to a state at which the verified formula is
violated.
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As for the simple scenario of Example 6.3.52, the information delivered by a coun-
terexample appears small. In application scenarios, however, there are usually hun-
dreds or thousands of states and an exponential or infinite number of paths within the
state transition system. Considering this, an isolated finite path that demonstrates a
specification violation is a valuable information.

Obviously, isolating a violating path within the verified structure is just a first step in
identifying the root cause of an error. In Example 6.3.52, the reason for the specifi-
cation violation is that state exaTree is not reachable from the definition defTree of
Tree and BinTree. Although the structure contains an example of each defined con-
cept, AG (definedTopic v EF examplifiedTopic) is violated because the examples
of concepts cannot be reached in the sequel of their definition. In another scenario, the
specification could have been violated because the document does not contain any
example of either Tree or BinTree or the definition defines the wrong terms.

Supporting the error identification and correction process in interaction with the user
remains a topic of future research. 2

6.4. Applying ALCCTL to Checking Documents

So far, we have introducedALCCTL and its model checking problem in an application
independent way. In principal, ALCCTL can be used to represent properties of any
domain that can be modelled in terms of an ALCCTL temporal structure. We apply
ALCCTL for the verification of documents based on the semantic model introduced in
chapter 5.

Recall, the semantic model of a document d has been introduced as a structure
SMd := (NSd,KBd, kmap) (Definition 5.3.24). The narrative structure NSd =
(CUd, BODd, proceed) consists of a set of content units CUd of the document, a
starting unit BODd, and the narrative relation proceed between content units.

Knowledge about the content of the document is represented by the set of DL knowl-
edge bases KBd = {KBU | U ∈ CUd} where KBU denotes the knowledge base
representing information about content unit U ∈ CUd.

We observe that there is a structural mismatch between semantic models of documents
and ALCCTL temporal structures (S, R,∆, I) which the semantics of ALCCTL for-
mulae is defined upon. Hence, target criteria for the content and structure represented
by ALCCTL formulae cannot be evaluated directly on a semantic model of a docu-
ment. For using ALCCTL as a specification formalism for document properties, we
have to clarify first when a (set of) ALCCTL formula(e) holds for a semantic model
SMd of a document.

In the sequel, we define the document verification problem and show how semantic
models of documents can be verified using ALCCTL model checking.
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6.4.1. Basic Definitions

For the verification of the semantic model SMd of a document d against a set of
ALCCTL formulae F , we define a mapping of SMd onto anALCCTL temporal struc-
ture M and then verify whether F holds in M by model checking.

Definition 6.4.1 (ALCCTL Temporal Structure of a Document)

Let NSd = (CUd, BODd, proceed) be the narrative structure of document d and
KBd = {KBU | U ∈ CUd} be a locally consistent knowledge representation of
document d.

• Sd := CUd denotes the set of states of document d, i.e. the content units of
document d (Definition 5.2.1) are treated as states of the temporal structure of d.

• Rd := proceed denotes the transition relation of document d, i.e. the narrative
relation proceed (Definition 5.2.4) is treated as the transition relation on states.

• ∆d := IVcKBd
denotes the domain of document d. Recall, IVcKBd

is the set
of individuals which occur in some assertion of some local knowledge base
KBU ∈ KBd (Definition 5.3.15 knowledge domain).

• Id denotes the temporal interpretation of document d iff

AId(s) = {a ∈ IVKBs |KBs |= A(a)} and

RId(s) = {(a, b) ∈ IVKBs × IVKBs |KBs |= R(a, b)}
for each A ∈ AC, R ∈ AR, s ∈ Sd, and IVKBs being the set of individuals
occurring in some statement of the local knowledge base KBs (Definition 5.3.15
local knowledge domain).

• Md := (Sd, Rd, ∆d, Id) denotes the temporal structure of document d.
2

Proposition 6.4.2 (ALCCTL Temporal Structure of a Document)

The temporal structure Md of a document d is a finite ALCCTL temporal structure, in
symbols, Md ∈ fMALCCTL.

Proof:

Md is a finite ALCCTL temporal structure because

• Sd is nonempty and finite. This is because Sd = CUd and CUd is nonempty and
finite (Definition 5.2.1).

• Rd is a left-total relation on Sd because Rd = proceed, Sd = CUd, and proceed
is a left-total relation on CUd (Definition 5.2.19).

• ∆d = IVcKBd
is nonempty by Definition 5.3.24 and finite by Corollary 5.3.16.
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• Id is a temporal interpretation if IVKBs ⊆ ∆d for each s ∈ Sd. This is the case
because IVKBs ⊆ IVcKBd

(Corollary 5.3.17) and IVcKBd
= ∆d (Definition

6.4.1).
2

Example 6.4.3 (ALCCTL Temporal Structure of a Document)
Consider a document d consisting of three content units CUd = {sec1, sec2, sec3}
where BODd = sec1 is the beginning of the document. Further there are narrative re-
lations proceed = {(sec1, sec2), (sec1, sec3), (sec2, sec3), (sec3, sec3)}, i.e. start-
ing from sec1 the user may go to sec2 or go immediately to sec3 that is the end unit
of the document.

Knowledge about each content unit is represented in a set of local fact bases lABd =
{ABsec1, ABsec2, ABsec3} where

ABsec1 = {hasObjective(intro, R180), hasObjective(intro, R180 Handling)}
ABsec2 = {teaches(L1, R180)}
ABsec3 = {teaches(L2, R180 Handling)}

I.e. content unit sec1 contains an introduction, represented by the individual intro,
which states two objectives: ”robot type R180” represented by the individual R180
and ”Handling of robots of type R180” represented by the individual R180 Handling.
Unit sec2 contains Lesson 1 represented by individual L1. L1 teaches topic
R180. Unit sec3 contains Lesson 2 represented by individual L2. L2 teaches topic
R180 Handling.

Further, no global facts about the document are available, i.e. gABd = ∅.

As a reference ontology consider

RO = { objectiveOf
.= hasObjective−, objectiveOf is the inverse

of role hasObjective.
addressedBy

.= addresses−, addressedBy is the in-
verse of role addresses.

> v ∀addresses.Topic, Topic is the range of role
addresses.

teaches v addresses, teaches is a sub-role of
addresses.

∃teaches.Topic
.= Lesson, Lesson is the class of ob-

jects that teach some topic.
∃objectiveOf.> v MajorTopic, MajorTopic is the do-

main of role objectiveOf .
MajorTopic v Topic Every major topic is a

topic.
}
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By Definition 5.3.10, we get:

KBd = {KBsec1,KBsec2,KBsec3}

where

KBsec1 = RO ∪ gABd ∪ABsec1

= RO ∪ {hasObjective(intro, R180),
hasObjective(intro,R180 Handling)}

KBsec2 = RO ∪ gABd ∪ABsec2

= RO ∪ {teaches(L1, R180)}
KBsec3 = RO ∪ gABd ∪ABsec3

= RO ∪ {teaches(L2, R180 Handling)}

and

cKBd = RO ∪ABU1 ∪ABU2 ∪ABU3

= {objectiveOf
.= hasObjective−,

addressedBy
.= addresses−,

> v ∀addresses.Topic,

teaches v addresses,

∃teaches.Topic
.= Lesson,

∃objectiveOf.> v MajorTopic,

MajorTopic v Topic,

hasObjective(intro, R180), hasObjective(intro, R180 Handling),
teaches(L1, R180), teaches(L2, R180 Handling)}

The knowledge domain (Definition 5.3.15) is

IVcKBd
= {intro, L1, L2, R180, R180 Handling}

The temporal structure Md = (Sd, Rd,∆d, Id) of document d is such that

• Sd = CUd = {sec1, sec2, sec3}.

• Rd = proceed = {(sec1, sec2), (sec1, sec3), (sec2, sec3), (sec3, sec3)}.

• ∆d = IVcKBd
= {intro, L1, L2, R180, R180 Handling}.

IVKBsec1 = {intro,R180, R180 Handling}
IVKBsec2 = {L1, R180}
IVKBsec3 = {L2, R180 Handling}
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• Id is such that

hasObjectiveId(sec1) = {(a, b) ∈ IVKBsec1 × IVKBsec1 |
KBsec1 |= hasObjective(a, b)}

= {(intro,R180), (intro, R180 Handling)}
hasObjectiveId(sec2) = hasObjectiveId(sec3) = ∅
MajorTopicId(sec1) = {a ∈ IVKBsec1 |KBsec1 |= MajorTopic(a)}

= {R180, R180 Handling}
MajorTopicId(sec2) = MajorTopicId(sec3) = ∅
addressedById(sec1) = {(a, b) ∈ IVKBsec1 × IVKBsec1 |

KBsec1 |= addressedBy(a, b)} = ∅
addressedById(sec2) = {(R180, L1)}
addressedById(sec3) = {(R180 Handling, L2)}

LessonId(sec1) = {a ∈ IVKBsec1 |
KBsec1 |= Lesson(a)} = ∅

LessonId(sec2) = {L1}
LessonId(sec3) = {L2}

...

Figure 6.6 depicts the temporal structure of document d with selected interpretations
of atomic concepts and roles.

sec1

sec2

sec3

hasObjective
Id(sec1)

 = {(intro, R180), (intro, R180_Handling)}

MajorTopic
I
d
(sec1)

= {R180, R180_Handling}

teaches
Id(sec2)

= {(L1, R180) }

addressedBy
Id(sec2)

 = {(R180, L1) }

Lesson
I
d
(sec2)

= {L1}

teaches
Id(sec3)

= {(L1, R180_Handling) }

addressedBy
Id(sec3)

 = {(R180_Handling, L2) }

Lesson
I
d
(sec3)

= {L2}

Figure 6.6.: a sample temporal document structure

The temporal interpretation of each atomic concept and role in a state s ∈ Sd is cal-
culated as the set of assertions that are logically implied by the local knowledge base
KBs of the content unit s ∈ CUd. For instance, LessonId(sec2) = {L1} can be seen
as follows.
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By definition of Id (Definition 6.4.1), it holds:

LessonId(sec2) = {a ∈ IVKBsec2 |KBsec2 |= Lesson(a)}
= {a ∈ {L1, R180} |KBsec2 |= Lesson(a)}

{a ∈ {L1, R180} |KBsec2 |= Lesson(a)} can be obtained as follows:

• KBsec2 |= Lesson(L1) because

{teaches(L1, R180),
teaches v addresses} |= addresses(L1, R180),
{addresses(L1, R180),
> v ∀addresses.Topic} |= Topic(R180),

{teaches(L1, R180),
T opic(R180)} |= (∃teaches.Topic)(L1),

{(∃teaches.Topic)(L1),
∃teaches.Topic

.= Lesson} |= Lesson(L1)

• KBsec2 6|= Lesson(R180) because let I = (∆I , ·I ) be an interpretation such
that ∆I = {L1I , R180I} and

hasObjectiveI = objectiveOf I = ∅
teachesI = {(L1I , R180I)}

addressesI = {(L1I , R180I)}
addressedByI = {(R180I , L1I)}

TopicI = {R180I}
LessonI = {L1I}

MajorTopicI = ∅

Then I |= KBsec2 but R180I 6∈ LessonI and hence I 6|= Lesson(R180) which
contradicts KBsec2 |= Lesson(R180) (Definition 3.1.31).

In summary, the state transition system (Sd, Rd) represents the narrative structure of
the document. The domain ∆d represents the set of objects the properties of which
describe the content of the document. The temporal interpretation Id represents the
properties of objects at a content unit U ∈ CUd, which are logically implied by the
respective local knowledge base KBU . KBU contains local facts ABU about the con-
tent unit U , global facts gABd about the document as a whole, and general background
knowledge represented by the reference ontology RO.

Semantic criteria represented in ALCCTL are evaluated w.r.t Md (see Definition
6.4.4). 2

182



6.4. Applying ALCCTL to Checking Documents

Definition 6.4.4 (ALCCTL Document Verification Problem)

Let Md be the ALCCTL temporal structure and BODd the beginning of document d.
Let f be an ALCCTL formula.

Then document d satisfies f (or f holds in d) iff Md, BODd |= f .
2

Example 6.4.5 (ALCCTL Document Verification Problem)

Consider theALCCTL temporal structure Md of document d as of Example 6.4.3 with
beginning BODd = sec1 (Figure 6.6).

Consider the following ALCCTL formulae:

f1 = MajorTopic v EF ∃addressedBy.Lesson

f2 = MajorTopic v AF ∃addressedBy.Lesson

Then f1 holds in document d but document d does not satisfy f2:

Md, sec1 |= f1

Md, sec1 6|= f2

Md, sec1 |= f1 can be seen as follows:

In state sec1, it holds: MajorTopicId(sec1) = {R180, R180 Handling} (cf. Exam-
ple 6.4.3, Figure 6.6).

Hence, Md, sec1 |= f1 iff R180 ∈ (EF ∃addressedBy.Lesson)Id(sec1) and
R180 Handling ∈ (EF ∃addressedBy.Lesson)Id(sec1), i.e. iff there is some path
(s0, s1, ...) ∈ FPsec1 such that eventually a state si is reached at which holds
R180 ∈ (∃addressedBy.Lesson)Id(si) and, in addition, there is a (not necessarily
different) path (s′0, s

′
1, ...) ∈ FPsec1 such that eventually a state s′j is reached at which

R180 Handling ∈ (∃addressedBy.Lesson)Id(s′j) holds.

In state sec2, it holds: addressedById(sec2) = {(R180, L1)} and LessonId(sec2) =
{L1} (Figure 6.6). This implies by ALCCTL semantics (Definition 6.2.8): R180 ∈
(∃addressedBy.Lesson)Id(sec2).

In state sec3, it holds: addressedById(sec3) = {(R180 Handling, L2)} and
LessonId(sec3) = {L2} (Figure 6.6). This implies by ALCCTL semantics (Defini-
tion 6.2.8): R180 Handling ∈ (∃addressedBy.Lesson)Id(sec3).
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Since there is a path (sec1, sec2, ...) ∈ FPsec1 such that sec2 is eventually reached
from sec1 and there is a path (sec1, sec2, sec3, ...) ∈ FPsec1 such that sec3 is even-
tually reached from sec1, we get:

MajorTopicId(sec1) ⊆ (EF ∃addressedBy.Lesson)Id(sec1)

which is equivalent to

Md, sec1 |= MajorTopic v EF ∃addressedBy.Lesson

In contrast, f2 = MajorTopic v AF ∃addressedBy.Lesson is vio-
lated by path (sec1, sec3, sec3, ...) ∈ FPsec1 because for topic R180 ∈
MajorTopicId(sec1) there is no state si in (sec1, sec3, sec3, ...) such that R180 ∈
(∃addressedBy.Lesson)Id(si). Hence, major topic R180 is not eventually addressed
by a learning unit in all paths starting from sec1 as postulated by f2 and thus

MajorTopicId(sec1) 6⊆ (AF ∃addressedBy.Lesson)Id(sec1)

which is equivalent to

Md, sec1 6|= MajorTopic v AF ∃addressedBy.Lesson

2

Remark 6.4.6 (ALCCTL Document Verification Problem)

The document verification problem is modelled as anALCCTL model checking prob-
lem restricted to a single state BODd.

As a consequence the document verification problem is decidable and in polynomial
time if the ALCCTL temporal structure of the document is given.

2
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6.4.2. Verification Algorithm for Documents

Given the semantic model SMd of a document d we can derive a document check-
ing algorithm based on Definition 6.4.1 of the temporal document structure and the
ALCCTL model checking algorithm verify (Algorithm 6.3.37).

Algorithm 6.4.7 shows the structure of the document verification algorithm docverify.

The function docverify takes the following parameters as an input:

Sd = CUd: the set of states of the ALCCTL temporal structure of document d, which
is equal to the set of content units CUd (Definition 6.4.1).

sd = BODd: the starting state of document d that represents the beginning of docu-
ment d (Definition 6.4.1).

Rd = proceed: the narrative relation proceed on content units (Definition 6.4.1).

kmap : a mapping CUd → KBd : kmap(U) = KBU of content units U ∈ CUd

onto their local knowledge base KBU ∈ KBd of the knowledge representation
KBd of document d (Definition 5.3.10).

f : an ALCCTL formula to check.
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6. Document Verification with ALCCTL

Algorithm 6.4.7 (Verification of Documents using ALCCTL)

The following pseudo code sketches the verification algorithm docverify for docu-
ments.

function docverify(Sd, sd, Rd, kmap, f) {
AC|f := f .getAtomicConcepts(); Get the set of atomic concepts in f .
AR|f := f .getAtomicRoles(); Get the set of atomic roles in f .
∆d := ∅; Initialize the interpretation domain ∆d and
Id := ∅; the interpretation Id of the temporal document

structure Md.
for each s ∈ Sd { Calculate the interpretation domain ∆d and the

interpretation Id for the atomic concepts and
roles in f .

KBs := kmap(s); Get the local knowledge base KBs of state s.
if not KBs.isConsistent() then Check KBs for consistency (= satisfiability).

return errorInconsistentKB(s); If inconsistent return an error.
∆d := ∆d ∪KBs.getIndividuals(); Add the individuals IVKBs of KBs to the in-

terpretation domain ∆d.
for each A ∈ AC|f { Calculate the interpretation ·Id(s) of atomic

concepts AC|f in f .
AId(s) := KBs.getInstances(A); Get the instances of atomic concept A as im-

plied by knowledge base KBs.
Id := Id ∪ {(A, s) 7→ AId(s)}; Add the interpretation of A at state s to Id.

}
for each R ∈ AR|f { Calculate the interpretation ·Id(s) of atomic

roles AR|f in f .
RId(s) := KBs.getFillers(R); Get the fillers of atomic role R as implied by

knowledge base KBs.
Id := Id ∪ {(R, s) 7→ RId(s)}; Add the interpretation of R at state s to Id.

}
}
if ∆d = ∅ then Check ∆d for emptyness.

return errorEmptyDomain(); If empty then return an error
return sd ∈ verify(Sd, Rd,∆d, Id, f ); otherwise verify the temporal model Md =

(Sd, Rd, ∆d, Id) of document d against f
} using theALCCTL model checking algorithm

verify.

2

docverify returns an error ”errorInconsistentKB(s)” if there is an unsatisfiable knowl-
edge base KBs = kmap(s) ∈ KBd, i.e. if KBd is not a locally consistent knowledge
representation of document d (Definition 5.3.20).

docverify returns an error ”errorEmptyDomain()” if the knowledge domain ∆d =
IVcKBd

is empty.
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Otherwise docverify returns true if the formula f holds in the ALCCTL temporal
structure Md = (Sd, Rd,∆d, Id) of document d at state sd, in symbols Md, sd |= f ,
and false if document d does not satisfy f , in symbols Md, sd 6|= f .

docverify uses the following sub-routines:

• f .getAtomicConcepts();

returns the set AC|f = {A ∈ AC | A ∈ f} of atomic concepts occurring in
formula f .

• f .getAtomicRoles();

returns the set AR|f = {R ∈ AR | R ∈ f} of atomic roles occurring in formula
f .

• KBs.isConsistent();

returns true if the DL knowledge base KBs is satisfiable (Definition 3.1.28).
Otherwise KBs.isConsistent() returns false.

KBs.isConsistent() is implemented by a call to an external DL reasoner such as
Racer (section 3.1.5).

• KBs.getIndividuals();

returns the set of individuals IVKBs (Definition 5.3.15) which appear in some
statement of knowledge base KBs .

KBs.getIndividuals() is implemented by a call to an external DL reasoner such
as Racer (section 3.1.5).

• KBs.getInstances(A);

returns the set {a ∈ IVKBs | KBs |= A(a)} of instances of the atomic concept
A ∈ AC as implied by knowledge base KBs.

A realization of KBs.getInstances(A) is available as instance retrieval service
that is offered by most DL reasoning systems (section 3.1.5).

• KBs.getFillers(R);

returns the set {(a, b) ∈ IVKBs × IVKBs | KBs |= R(a, b)} of role fillers of
the atomic role R ∈ AR as implied by knowledge base KBs.

A realization of KBs.getFillers(R) is available as role filler retrieval service
which is offered by most DL reasoning systems (section 3.1.5).

• kmap(s) stands for a sub-routine returning the local knowledge base KBs for
s ∈ CUd according to Definition 5.3.10.
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• verify(Sd, Rd,∆d, Id, f );

is a call to theALCCTL model checking algorithm verify (Algorithm 6.3.37). It
returns the set {s ∈ Sd | (Sd, Rd,∆d, Id), s |= f} for a finiteALCCTL temporal
structure (Sd, Rd, ∆d, Id) and an ALCCTL formula f .

Proposition 6.4.8 (Soundness and Completeness of docverify)

docverify is sound and complete:

Let

• NSd = (CUd, BODd, proceed) be the narrative structure of a document d,

• Sd = CUd the set of content units,

• sd = BODd the beginning of document d,

• Rd = proceed the narrative relation proceed,

• kmap : CUd → KBd : kmap(U) = KBU a knowledge mapping of content
units U ∈ CUd onto their local knowledge bases KBU ∈ KBd where KBd is
a locally consistent knowledge representation of document d with a nonempty
knowledge domain IVcKBd

, and

• f an ALCCTL formula.

Then docverify(Sd, sd, Rd, kmap, f) = true ⇔ Md, sd |= f .

Proof:

Since KBd is locally consistent and KBs = kmap(s) ∈ KBd for each s ∈ Sd,
each KBs is consistent and hence docverify does not abort because of an inconsistent
knowledge base.

The set Sd = CUd is finite as a consequence of Definition 5.2.1. Also, the sets AC|f
and AR|f are finite because f is finite and hence f contains finitely many different
atomic concepts AC|f and roles AR|f .

As a result, docverify reaches statement

if ∆d = ∅ then ...

in finite time.

Since the knowledge domain IVcKBd
6= ∅ and IVcKBd

=
⋃

U∈CUd
IVKBU

(Corollary
5.3.17), there is some U ∈ CUd such that IVKBU

6= ∅ and, because Sd = CUd, there
is some s ∈ Sd such that IVKBs 6= ∅. Hence, there is some assignment of KBs in
docverify such that KBs.getIndividuals() = IVKBs 6= ∅.

Since KBs.getIndividuals() is added to ∆d and no other assignments are made to ∆d

in the for-loops of docverify, the expression ∆d = ∅ evaluates to false at the final if
statement of docverify and hence verify(Sd, Rd,∆d, Id, f ) is called.
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We show next: the parameter ∆d of verify is equal to the knowledge domain IVcKBd

of document d:

∆d = IVcKBd
(6.22)

This is because docverify calculates

∆d =
⋃

s∈Sd
KBs.getIndividuals(s) Assignment of ∆d in docverify.

=
⋃

s∈Sd
IVKBs Def. of KBs, KBs.getIndividuals(s) and

kmap(s) in docverify.
=

⋃
U∈CUd

IVKBU
Sd = CUd.

= IVcKBd
Corollary 5.3.17.

Further, for each A ∈ AC|f , R ∈ AR|f , and s ∈ Sd, docverify calculates the sets
AId(s),RId(s), and a representation Id of the temporal interpretation function such that

AId(s) = Id(A, s) = {a ∈ IVKBs |KBs |= A(a)} and (6.23)

RId(s) = Id(R, s) = {(a, b) ∈ IVKBs × IVKBs |KBs |= R(a, b)}
where IVKBs is the set of individuals occurring in some statement of the local knowl-
edge base KBs.
This is because in docverify, f .getAtomicConcepts() = AC|f and

AId(s) = KBs.getInstances(A) Assignment of AId(s).
= {a ∈ IVKBs |KBs |= A(a)} Def. KBs.getInstances(A).

for each A ∈ AC|f .
The analogous arguments hold for the calculation of the interpretation of atomic roles
R ∈ AR|f in docverify.
Hence, Id is a sound representation of the interpretation of the ALCCTL temporal
structure Md of document d according to Definition 6.4.1 and Id is complete w.r.t. the
interpretation of atomic concepts AC|f and roles AR|f occurring in formula f .
The truth of Md, s |= f for s ∈ Sd depends on the interpretation of atomic concepts
and roles of f only (Definition 6.2.8). The interpretations of atomic concepts and roles,
which do not occur in f , are irrelevant.
Hence, Id, as calculated in docverify, is a complete representation of the interpretation
of the temporal model Md as for model checking formula f .
By Equations (6.22), (6.23), and Definition 6.4.1, docverify calls verify with a
sound and complete representation of the finite ALCCTL temporal structure Md =
(Sd, Rd,∆d, Id) of document d for model checking f . Since verify is sound and com-
plete (Proposition 6.3.39), we get
verify(Sd, Rd,∆d, Id, f ) = {s ∈ Sd |Md, s |= f}
As a result:
docverify(Sd, sd, Rd, kmap, f ) = true ⇔ sd ∈ verify(Sd, Rd, ∆d, Id, f ) ⇔ sd ∈
{s ∈ Sd |Md, s |= f} ⇔ Md, sd |= f . 2
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6.4.3. Analysis of Runtime Complexity

Proposition 6.4.9 (Runtime Complexity of docverify)

The runtime complexity of docverify is in EXPTIME.

• Let NSd = (CUd, BODd, proceed) be the narrative structure of a document d.

• Let Sd = CUd be the set of content units.

• Let sd = BODd be the beginning of document d.

• Let Rd = proceed be the narrative relation on content units.

• Let kmap : CUd → KBd : kmap(U) = KBU be a knowledge mapping of
content units U ∈ CUd onto their local knowledge bases KBU ∈ KBd where
KBd is a locally consistent knowledge representation of document d with a
nonempty knowledge domain ∆d = IVcKBd

, KBd is a set of knowledge bases
in the description logic AL, and cKBd is the combined knowledge base of
knowledge representation KBd.

• Let max(kmap) := max({|kmap(U)| | U ∈ CUd}) be the size of the largest
local knoweldge base in KBd.

• Let f be an ALCCTL formula.

• Let T (Sd, Rd, kmap, f) denote the runtime of a call to
docverify(Sd, sd, Rd, kmap, f ).

Then T (Sd, Rd, kmap, f) ∈ O(|f |· |Sd|· 2p(max(kmap)) + |f |· (|Sd| + |Rd|)· |∆d|2)
with p being a polynomial N→ R+ of a degree higher than 0.

Proof:

For the proof of Proposition 6.4.9, regard the subsequent annotated version of Algo-
rithm 6.4.7. In the sequel, p is a polynomial N → R+ of a degree higher than 0.
Further, Ti denotes the runtime of instruction i in the subsequent annotated version of
Algorithm 6.4.7.
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function docverify(Sd, sd, Rd, kmap, f) {
AC|f := f .getAtomicConcepts(); T1 ∈ O(|f |) : single traversal of the expression

tree of f .
AR|f := f .getAtomicRoles(); T2 ∈ O(|f |) : single traversal of the expression

tree of f .
∆d := ∅; T3 ∈ O(1).
Id := ∅; T4 ∈ O(1).
for each s ∈ Sd { T5 ∈ O(1).

KBs := kmap(s); T6 ∈ O(1) : can be done by hashtable lookups.
if not KBs.isConsistent() then T7 ∈ O(2p(|KBs|)) : deciding satisfiability of

AL knowledge bases is exponential in the size
of the knowledge base (section 3.1.4).

return errorInconsistentKB(s); T8 ∈ O(1).
∆d := ∆d ∪KBs.getIndividuals(); T9 ∈ O(|KBs|) : getIndividuals() requires a

traversal of the knowledge base KBs which is
in O(|KBs|). Also, the union ∪ can be done in
O(|KBs|) by using hashtables.

for each A ∈ AC|f { T10 ∈ O(1).
AId(s) := KBs.getInstances(A); T11 ∈ O(2p(|KBs|)) : instance retrieval is expo-

nential in the size of the knowledge base for the
description logic AL (section 3.1.4).

Id := Id ∪ {(A, s) 7→ AId(s)}; T12 ∈ O(1) : by using a hashtable.
}
for each R ∈ AR|f { T13 ∈ O(1).
RId(s) := KBs.getFillers(R); T14 ∈ O(2p(|KBs|)) : role filler retrieval is at

most in exponential time for AL.
Id := Id ∪ {(R, s) 7→ RId(s)}; T15 ∈ O(1) : by using a hashtable.

}
}
if ∆d = ∅ then T16 ∈ O(1).

return errorEmptyDomain(); T17 ∈ O(1).
return sd ∈ verify(Sd, Rd, ∆d, Id, f ); T18 ∈ O(|f |· (|Sd|+ |Rd|)· |∆d|2)

} (Proposition 6.3.41)

Let T (Md) = T (Sd, Rd, kmap, f) − T18 be the runtime that docverify requires for
constructing the temporal structure Md = (Sd, Rd, ∆d, Id) of document d.

T (Md) is dominated by the runtime T11 of the instance retrieval KBs.getInstances(A)
for each s ∈ Sd and A which is executed |Sd|· |AC|f | times. Since |AC|f | ≤ |f | and
|KBs| ≤ max(kmap), we get for the cumulative runtime T ′11 of all instance retrieval
queries KBs.getInstances(A) executed in docverify:

T ′11 ≤ |Sd|· |f |·T11 ∈ O(|f |· |Sd|· 2p(max(kmap)))

Since all other statements within the for-loops of docverify are in O(2p(max(kmap)))
and no statement is executed more than |f |· |Sd| times, we get for the cumulative run-
time T ′5..15 of the ”for each s ∈ Sd { ... }” loop in docverify:

T ′5..15 ∈ O(|f |· |Sd|· 2p(max(kmap)))
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T1, T2, T3, T4, T16, T17 ∈ O(|f |· |Sd|· 2p(max(kmap))) because |f | ≥ 1 and |Sd| ≥ 1
and p(max(kmap)) ≥ 0.

Since T (Md) = T1 + T2 + T3 + T4 + T ′5..15 + T16 + T17, we get:

T (Md) ∈ O(|f |· |Sd|· 2p(max(kmap)))

T18 ∈ O(|f |· (|Sd|+ |Rd|)· |∆d|2) and thus

T (Sd, Rd, kmap, f) = T (Md) + T18

∈ O(|f |· |Sd|· 2p(max(kmap)) + |f |· (|Sd|+ |Rd|)· |∆d|2)

2

Remark 6.4.10 (Runtime Complexity of docverify)

If we assume |Rd|· |∆|2 ≤ 2p(max(kmap)) the runtime of docverify is dominated by
the cost T (Md) of constructing the ALCCTL temporal structure Md and we get

T (Sd, Rd, kmap, f) ∈ O(|f |· |Sd|· 2p(max(kmap)))

In such a scenario, the runtime of docverify is dominated by the complexity of DL
reasoning which is EXPTIME-hard already for simple description logics such as AL
(section 3.1.4).

An exponential blow-up of reasoning time can be avoided by limiting the size of each
local knowledge base KBU ∈ KBd. If the size of each content unit U ∈ CUd of
some document d is limited we can assume that there is k ∈ N such that |KBU | ≤ k
for each KBU ∈ KBd and knowledge representation KBd of some document d and
thus max(kmap) ≤ k.

Under these conditions, we get for the runtime T (Sd, sd, Rd, kmap, f) of docverify:

T (Sd, Rd, kmap, f) ∈ O(|f |· |Sd|· 2p(k) + |f |· (|Sd|+ |Rd|)· |∆d|2)
= O(|f |· |Sd|+ |f |· (|Sd|+ |Rd|)· |∆d|2)
= O(|f |· (|Sd|+ |Rd|)· |∆d|2)

Hence, when restricting the size of each local knowledge base, the runtime scaling of
docverify is determined by the cost of ALCCTL model checking.

2
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In the sequel, we define a worst, best, and average case scenario for the verification of
documents using ALCCTL. Based on these scenarios, we will determine the runtime
complexity of docverify w.r.t. the formula and document size.

A typical application scenario - the average case scenario - can be characterized as
follows:

Let |d| denote the size of the document d, for instance, measured in number of bytes
or lines of text. If we fix the size of each content unit U ∈ CUd we can assume that
the number of content units grows linearly in the size of the document d and hence

|Sd| = |CUd| = α|d|
for some α ∈ R+. As for the number of narrative relations Rd, we can assume a
fixed upper limit n ∈ N1 for the number of suitable successor units of each content
unit U ∈ CUd such that n does not grow with the document size. Consequently, the
narrative graph NGd of a document d can be assumed to be sparsely connected, which
results in

|Rd| = α′|Sd| = β|d|
for some α′ ∈ R+ and β = α·α′. The knowledge domain ∆d representing the set
of objects we have knowledge about in the context of document d can be assumed to
grow linearly in the size of d:

|∆d| = γ|d|
for some γ ∈ R+. In contrast, the size |KBU | of each local knowledge base KBU ∈
KBd does not depend on the size of the document d but on the chosen granularity for
representing content units only. Hence,

|KBU | ≤ k

for each KBU ∈ KBd and some k ∈ N1 and thus also max(kmap) ≤ k.

Under these assumptions, we get for the runtime complexity of docverify:

T (Sd, Rd, kmap, f) ∈ O(|f |· |Sd|· 2p(k) + |f |· (|Sd|+ |Rd|)· |∆d|2)
= O(|f |·α|d|+ |f |· (α|d|+ β|d|)· γ|d|2)
= O(|f |· |d|3)

As a result, in an average case scenario the verification of documents using ALCCTL
model checking can be expected to be linear in the size of the formula and cubic in the
size of the document.

In the sequel, we formally define the properties of a worst, an average, and a best case,
and prove the runtime of docverify in each case.
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Definition 6.4.11 (Best / Average / Worst Case Scenario for docverify)

Let Md = (Sd, Rd, ∆d, Id) be the ALCCTL temporal structure of document d and |d|
denote the size of document d.

Then we assume for the best, average, and worst case scenario that the number of
content units CUd and thus the number of states Sd grows at most linearly in the size
of the document and thus there is some α ∈ R+ such that

|Sd| = |CUd| ≤ α|d|

• In the worst case scenario we assume:

|Rd| = |Sd|2 ≤ α2|d|2
max(kmap) = |cKBd| ≤ β|d|

|∆d| ≤ γ|d|
with β, γ ∈ R+.

In the worst case, Rd = Sd × Sd. Further, there is a local knowledge base
KBU ∈ KBd containing the entire knowledge about the document d and thus
KBU = cKBd for some U ∈ CUd with cKBd being the combined knowledge
base of document d (Definition 5.3.10). This results in max(kmap) = |cKBd|.
The combined knowledge base cKBd, which represents the entire knowledge
about the document, is assumed to grow linearly in the size |d| of the document.
Also, the knowledge domain ∆d = IVcKBd

, which represents the set of content
objects of the document (Definition 5.3.15), can be assumed to grow linearly in
the size of the document.

• In an average case scenario we assume:

|Rd| = α′|Sd| = β|d|
max(kmd) ≤ k

|∆d| ≤ γ|d|
for some fixed k ∈ N1, α′, γ ∈ R+, and β = α·α′ (see explanations ahead of
Definition 6.4.11).

• As for the best case we assume:

|Rd| = |Sd| = α|d|
max(kmap) ≤ k

|∆d| ≤ k′

for some fixed k, k′ ∈ N1 and α ∈ R+.

In the best case, each state s ∈ Sd has just one Rd successor. This is the min-
imal because Rd is left-total. In addition, we assume for the best case that the
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knowledge domain ∆d = IVcKBd
does not grow in the size of the document,

but remains below a constant upper bound for growing documents, i.e. larger
documents do not cover more topics but cover each topic in greater detail.

2

Based on the definitions of worst, average, and best case scenarios we can determine
the respective runtime complexity of docverify w.r.t. the document size |d|:

Proposition 6.4.12 (Best/Average/Worst Case Runtime Complexity of docverify)

For a document d and anALCCTL formula f , a call to docverify(Sd, sd, Rd, kmap, f )
takes the following time in the worst, average, and best case, respectively.

• In the worst case (Definition 6.4.11), it holds:

Twc(Sd, Rd, kmap, f) ∈ O(|f |· 2p′(|d|))

with p′ being a polynomial N→ R+ of degree higher than 0.

• In the average case (Definition 6.4.11), it holds:

T ac(Sd, Rd, kmap, f) ∈ O(|f |· |d|3)

• In the best case (Definition 6.4.11), it holds:

T bc(Sd, Rd, kmap, f) ∈ O(|f |· |d|)

Proof:

By Proposition 6.4.9, it holds: the runtime of docverify is in
O(|f |· |Sd|· 2p(max(kmap)) + |f |· (|Sd| + |Rd|)· |∆d|2) with p being a polynomial
N→ R+ of degree higher than 0.

In the worst case (Definition 6.4.11) holds:

|Sd| ≤ α|d|
|Rd| ≤ α2|d|2

max(kmap) ≤ β|d|
|∆d| ≤ γ|d|

with α, β, γ ∈ R+.
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Hence, we get for the worst case runtime Twc(Sd, Rd, kmap, f) of docverify:

Twc(Sd, Rd, kmap, f) ∈ O(|f |·α|d|· 2p(dβ|d|e) + |f |· (α|d|+ α2|d|2)· γ2|d|2)
= O(|f |· |d|· 2p′(|d|) + |f |· |d|4)
⊆ O(|f |· |d|4· 2p′(|d|))

⊆ O(|f |· 2|d|4 · 2p′(|d|))

= O(|f |· 2p′(|d|)+|d|4)
= O(|f |· 2p′′(|d|))

with p′ : |d| 7→ p(dβ|d|e) and p′′ : |d| 7→ p′(|d|) + |d|4 being polynomials N→ R+.

In the average case (Definition 6.4.11) holds:

|Sd| ≤ α|d|
|Rd| ≤ β|d|

max(kmap) ≤ k

|∆d| ≤ γ|d|

with α, β, γ ∈ R+ and k ∈ N.

Using this in the runtime complexity O(|f |· |Sd|· 2p(max(kmap)) + |f |· (|Sd| +
|Rd|)· |∆d|2) of docverify, we get for the average case:

T ac(Sd, Rd, kmap, f) ∈ O(|f |·α|d|· 2p(k) + |f |· (α|d|+ β|d|)· γ2|d|2)
= O(|f |· |d|+ |f |· |d|3)
= O(|f |· |d|3)

As for the best case (Definition 6.4.11), we have:

|Sd| ≤ α|d|
|Rd| ≤ α|d|

max(kmap) ≤ k

|∆d| ≤ k′

with α ∈ R+ and k, k′ ∈ N.

Using the best case equations for the document size |d|, we get:

T bc(Sd, Rd, kmap, f) ∈ O(|f |·α|d|· 2p(k) + |f |· (α|d|+ α|d|)· k′2)
= O(|f |· |d|+ |f |· |d|)
= O(|f |· |d|)

2
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Remark 6.4.13 (Best/Average/Worst Case Runtime Complexity of docverify)

The runtime scaling of docverify highly depends on the maximal size of the local
knowledge bases of the document’s knowledge representation KBd: if it can be kept
constant, docverify is guaranteed to scale polynomially in the size of the document; if
it grows linearly in the document size, the runtime of docverify may grow exponen-
tially in the size of the document.

In the average case, a constant maximal size of each local knowledge base and a
sparsely connected narrative graph are assumed. Further, a worst case assumption for
the model checking cost of the document’s temporal structure Md w.r.t. formula f is
applied. Under these assumptions, the scaling of docverify in the document size is
cubic. If the narrative graph of a document is not sparsely connected, we get a runtime
of docverify in O(|f |· |d|4). This is the worst case complexity for constant bounded
local knowledge bases.

The best case results for docverify are not unrealistic. In fact, in many practical ex-
periments a linear growth of runtime w.r.t. the document size is observed (see sections
7.5 and 8.3.4).

2

6.4.4. Possible Optimizations

The following optimizations can reduce the runtime of docverify.

Parallelization

Constructing the ALCCTL temporal structure Md of document d in docverify can be
well parallelized.

This is because the calculation of the temporal interpretation ·Id(s) of every atomic
concept A ∈ AC|f and atomic role R ∈ AR|f at every state s ∈ Sd can be done
independently. As a result, the calculation of Id can be done in parallel within one
”step” if |Sd|· (|AC|f | + |AR|f |) processors are available. This is a significant speed
up of the overall algorithm because calculating Id is exponential and thus is the most
expensive part of the algorithm.

Incremental Verification

Calculating the temporal structure Md of document d can be done incrementally.
I.e. Md as calculated by docverify is stored in a persistent result cache and (partially)
reused in subsequent calls of docverify for document d.
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In subsequent checks of the same document d, usually the document has been modified
just locally. Hence, the set CUmod ⊆ CUd of content units, which have been modified
as compared to the previous run of docverify on document d, is typically small.

Let Smod := CUmod be the set of modified content units. Then the local interpretation
·Id(s) of an atomic concept A ∈ AC|f or atomic role R ∈ AR|f at state s needs to be
calculated for states s ∈ Smod only. For every other state, the previously calculated
interpretation can be reused from the result cache. This can save a significant amount
of runtime if just few content units have been modified.

Checking Sets of Formulae instead of Single Formulae

Enhancing docverify from checking a single formula f ∈ ALCCTL to a set of formu-
lae F ⊆ ALCCTL may significantly increase the overall performance of docverify in
application scenarios. This is, because a document d is rarely checked against a single
criterion but d usually needs to satisfy several criteria. It is likely that many formulae
of a larger specification F share some atomic concepts and roles.

When calling docverify for each f ∈ F , the temporal interpretation of shared atomic
concepts and roles is calculated several times. Recalculation of previously calculated
results can easily be avoided when constructing the temporal interpretation Id for the
atomic concepts and roles of the entire set F ofALCCTL formulae. In addition, verify
can work more efficiently when called for a set of ALCCTL formula to check on the
same temporal structure as in the case of a single formula at a time (section 6.3.3.3).

Accelerated Methods for Simple Cases

Calculating the temporal interpretation Id in docverify involves a large number of
instance/role-filler retrieval queries to the local DL knowledge bases KBs ∈ KBd.
In many application scenarios, there are a significant number of atomic concepts/roles
the instances/role-fillers of which can be determined without complex ontological rea-
soning. We call these atomic concepts/roles primitive.

An atomic concept A / role R is primitive iff it does not appear in any of the termi-
nological axioms of the reference ontology RO. If A is a primitive concept the set
AId(s) = {a ∈ ∆s | KBs |= A(a)} does not depend on any terminological axiom in
KBs because the only terminological axioms in KBs are the terminological axioms
of RO (Definition 5.3.10). In such a case, the set {a ∈ ∆s | KBs |= A(a)} can be
retrieved directly from the ABox of KBs. The same holds for the fillers of primitive
atomic roles.

State of the art model checkers such as Racer (section 3.1.5) check for such and other
”simple cases” and apply accelerated reasoning strategies automatically. However, by
building a lookup table of primitive concepts and roles and storing the instances of
primitive atomic concepts/roles internally, the expensive communication cost with an
external reasoning tool can be saved in addition.
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6.5. Comparison with Other Temporal Logics

First temporal extensions of description logics have been proposed by Schmiedel in
1990 [Sch90]. Schmiedel’s logic is based on time intervals as opposed to ALCCTL
which is evaluated on discrete points in time. The first point-based temporal de-
scription logics has been suggested by Schild in 1993 (see section 3.2.3). Since
then, many approaches to temporally extending description logics have been suggested
[AF00, AF01, HWZ01, WZ00]. We do not attempt to give a complete overview of ap-
proaches and results but refer the reader to the surveys in [AF01], [WZ00], [HWZ01],
and [HWZ02].

Many of the proposed logics are undecidable and hence not well suited for automated
reasoning [AF01]. Decidable fragments of point-based branching time temporal de-
scription logics have been discovered and studied recently [BHWZ04, HWZ02]. Most
of them are fragments of the branching time logic DPCT L∗ [HWZ01].

6.5.1. Comparison with DPCT L∗

ALCCTL is a syntactic fragment of DPCT L∗. DPCT L∗ extends the standard de-
scription logic ALC w.r.t. temporal specifications by introducing following operators:

• past tense operators S (since), 3P (some time in the past), 2P (always in the
past);

• future tense operator U (until),© (next time), 3F (some time in the future), 2F

(always in the future);

• path quantifiers A (all paths) and E (some path).

DPCT L∗ is interpreted on bundled ω-trees, i.e. trees the full branches of which are
order-isomorphic to 〈N0, <〉 [HWZ02]. A DPCT L∗ model M = 〈F,H, D, I〉 is
composed of

• an ω-tree F representing states (or moments in time) and a ”proceed” relation
between them,

• a set of full branches H in F representing linearly ordered flows of time in F,

• a domain of objects D,

• an interpretation function I assigning each moment in time s an ALC-
interpretation I(s) of DPCT L∗ atomic concepts, roles, and constants.

For the complete definition of the syntax and semantics of DPCT L∗ we refer the
reader to [HWZ01]. Since there are few restrictions on how path quantifiers, tempo-
ral, and non-temporal connectives can be combined, the expressiveness of DPCT L∗
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is high and DPCT L∗ can be considered as an ”upper bound” of point-based tempo-
ral description logics [HWZ01]. Unfortunately, the high expressiveness of DPCT L∗
leads to undecidability of satisfiability and logical implications (cf. [HWZ02]).

In contrast to DPCT L∗, ALCCTL offers future tense quantifiers only and restricts
the use of temporal connectives such that they always need to be paired with path
quantifiers.

The semantics of ALCCTL differs from DPCT L∗ because ALCCTL formulae are
evaluated w.r.t. states of a state transition system (S,R) while DPCT L∗ formulae
are evaluated on ω-trees w.r.t. full branches of the tree [HWZ01]. The semantics of
ALCCTL formulae is closer to the semantic document model (Definition 5.3.24) rep-
resenting the structure of the document as a graph of content units (states) and narrative
relations (transitions).

The differences in the definition of the semantics of either logic render a formal com-
parison of their expressiveness difficult. We demonstrate the differences of ALCCTL
and DPCT L∗ by giving application-related examples.

Example 6.5.1 (LTL Expressions)

The syntactic restriction ofALCCTL, that each temporal connective needs to be paired
with a path quantifier, limits the expressiveness of ALCCTL such that, as opposed
to DPCT L∗, the linear fragment of temporal description logics is not contained in
ALCCTL.

For instance, linear temporal formulae of the type 32p with p being a formula are
not expressible in CTL [CD88]. The formula holds on a path iff eventually a state is
reached from which on p holds in every state.

Since the LTL formula 32p is not expressible in CTL and ALCCTL coincides with
CTL on the level of formulae, there is no formula equivalent to 32p in ALCCTL.

For instance, there is no equivalent expression in ALCCTL for the DPCT L∗ formula

f = 32(Difficult v ⊥) (6.24)

”Eventually no more difficult content is presented.” (cf. [HR04])

The followingALCCTL approximation, for instance, is not semantically equivalent to
f :

f ′ = AF AG(Difficult v ⊥) (6.25)

The formula holds iff on every path eventually a state s is reached from which no state
s′ is reachable at which the interpretation of Difficult is nonempty.
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end1 addons end2

Difficult
I(end1)  

= {}

start

Difficult
I(end2)  

= {}

Difficult I(addons)  = {proof1}

Figure 6.7.: temporal structure illustrating the difference between LTL and CTL

Figure 6.7 illustrates the difference between DPCT L∗ formula f of Equation (6.24)
and theALCCTL formula f ′ of Equation (6.25). Figure 6.7 sketches a narrative struc-
ture of a document as follows. From the starting state start, on all paths eventually
state end1 is reached, which represents the ”first” end of the document. The user can
either remain in state end1 forever (i.e. stop reading in end1) or proceed with state
addons containing additional material such as proof1. proof1 is difficult, which is
represented by proof1 ∈ DifficultI(addons) (Figure 6.7). After state addon, the
”second” end of the document end2 is reached.

The DPCT L∗ formula f holds in the temporal structure depicted in Figure 6.7 for all
infinite paths starting from state start. This is because each infinite path from start
eventually reaches state end1 and then either stays in state end1 forever or eventually
reaches state end2 and then stays in state end2 forever. In both cases eventually a state
endN is reached such that (Difficult v ⊥) holds forever.

In contrast f ′ does not hold in the temporal structure of Figure 6.7 at state start.
This is because there is a full path fp = (start, ..., end1, end1, end1, ...) from state
start to state end1 which remains in end1 for ever. In fp, it holds at every state
that state addons is reachable at which (Difficult v ⊥) does not hold. Hence,
M, start |= EG EF¬(Difficult v ⊥) and, since EG EF¬(Difficult v ⊥) ≡
¬AF AG(Difficult v ⊥) = ¬f ′, we get

M, s 6|= f ′

with M denoting the temporal structure sketched in Figure 6.7.

For a detailed discussion on the expressiveness of CTL as compared to LTL we refer
the reader to [CD88, HR04].

2

Remark 6.5.2 (LTL Expressions)

The limitations of CTL as compared to LTL have high practical relevance in the area
of verifying processes because many fairness constraints expressible in LTL are not
expressible in CTL and fairness is an important property of protocols for concurrent
processes [BBF+01]. However, the concept of ”fairness” is of little relevance in the
presented use case of documents because the reader does not compete with other read-
ers on getting access to some limited resource. Up to now, it is unclear if there is an
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important class of criteria for documents, which are expressible in linear time logics
but not in ALCCTL. In contrast, relevant criteria being expressible in ALCCTL but
not in linear time logics are easy to find.

The simplest such kind of criteria are reachability requirements of the shape AG EF p,
for instance, AG EF ¬(Home v ⊥) ”The reader can always get back to ”home”. Such
a property is not expressible in linear time logics [HR04]. As a consequence, we opted
for using a branching time logic for the representation of criteria on documents.

Note that linear and branching time can be combined: DPCT L∗ includes the linear
time fragment as well as the CTL fragment of description logics. However, the re-
sulting CTL∗ type logics are computationally complex: model checking propositional
CTL∗ is exponential in the size of the formula [Sch03]).

Even state-of-the-art model checking systems such as SMV and NuSMV do not
support full CTL∗ (section 3.2.4.3). Instead, they enhance CTL model checking
algorithms to the class of fairness constraints that can be expressed in LTL only
[BBF+01, CGP02c]. We can probably leverage these enhancements for ALCCTL
model checking becauseALCCTL model checking is reduced to CTL model checking
problems and thus most of the model checking work can be delegated to an external
CTL model checking system. When ”fairness-style” properties turn out to be important
for documents, an according enhancement of the verification framework may become
an issue of future research. 2

Example 6.5.3 (Past Tense Quantifiers)

The following DPCT L∗ formula is not in ALCCTL:

usedConcept v 3P definedConcept (6.26)

3P is a past tense temporal connective expressing ”some time in the past”. Equation
(6.26) represents the property ”every used concept has been defined some time in the
past”.

Formula (6.26) is not in ALCCTL because 1) ALCCTL does not offer past tense con-
nectives such as 3P and 2) in ALCCTL temporal connectives such as 3P cannot be
used in isolation but need to be paired with path quantifiers.

However, a re-formulation of the criterion can be expressed in ALCCTL:

> v A(definedConcept B usedConcept) (6.27)

”everything must be, on all paths, a defined concept before it is a used concept”.

In many cases, properties expressed by past tense quantifiers can also be represented
by expressions using future tense quantifiers [LS00, LS95]. However, not in all cases a
equivalent transformation exists and, even if one exists, it is not always straight forward
[BBF+01, LS95]. 2
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Remark 6.5.4 (Past Tense Quantifiers)

As for LTL and CTL∗, past tense connectives can always be transformed into equiv-
alent future-tense expressions when formulae are interpreted on finite state transition
systems [LS95]. In the case of CTL, however, past tense connectives add additional
expressiveness but also additional computational complexity [LS95]. As a conse-
quence, most available model checking systems support future tense expressions only
[BBF+01].

Limiting the specification language ALCCTL to future tense has been a pragmatic
choice which ensures the feasibility and efficiency of the framework.

2

Results for temporal description logics address the decidability of satisfiability and the
computational complexity of logical implication [AF00, AF01, AFM+01, AFM03,
AFW+01, AFWZ02, BHWZ02, BHWZ04, HWZ01, HWZ02, WZ00]. All of the
suggested temporal description logics are either undecidable or computationally in-
tractable. Consequently, existing applications of temporal description logic do not
scale well to application relevant problem sizes (cf. section 6.5.3).

DL-based specification languages that address temporal aspects and are applied in
practical systems such as T-REX [WL92, WL94], CLASP [DL91, DL96], and RAT
[HKNP92], are special-purpose languages limited to a specific application domain,
for instance, representation and recognition of plans. There is little known about the
computational complexity of these languages [AF01].

The model checking problem of temporal description logics has not yet been studied
in detail. Results on the decidability and computational complexity of model checking
temporal description logics have not been available. This work presents the first model
checking algorithm for a temporal description logic and proves its complexity, sound-
ness, and correctness. It is shown that model checkingALCCTL is in polynomial time
and that TDL-based model checking enables to verify properties that are inefficient to
verify using existing methods (cf. sections 6.5.2, 7.5, and 8.3).

6.5.2. Comparison with CTL

CTL is a widely adopted formalism for the verification of state transition systems
(chapter 3). It is also applied in hypermedia verification (section 2.4.2). We argued
that CTL is not sufficient for expressing coherence criteria on documents, which mo-
tivated the choice for a temporal description logic as a specification formalism. In the
sequel, we will demonstrate the advantages of ALCCTL as compared to CTL for the
specification and verification of content-related criteria on documents and compare the
computational complexity of ALCCTL- and CTL-based document verification.
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6.5.2.1. Expressiveness and Adequacy

Coherence criteria (Definition 2.3.1) are an important class of criteria that are express-
ible in ALCCTL but not in CTL. An example of a coherence criterion has been given
in the introduction of this chapter (section 6.1). With respect to the semantic document
model introduced in chapter 5, we define coherence criteria as follows.

Definition 6.5.5 (Coherence Criteria in Narrative Structures)

Coherence criteria are the set of properties regarding the narrative structure of a doc-
ument (Definition 5.2.19), which contain a combination of the following type of re-
quirements:

• there is a (semantic) relation R of objects within a content unit U1 to objects
within another content unit U2 6= U1.

• content U1 has to be passed either before or after unit U2 on some or all narrative
paths through the document.

2

Example 6.5.6 (Coherence Criteria)

Typical examples of coherence criteria have been given in Example 2.3.2. For conve-
nience, we repeat these sample criteria here and then give a possible formalization of
them in ALCCTL.

1. ”Every theorem must be proven immediately.”

2. ”Eventually a solution to every task to solve is presented.”

3. ”The information required to solve a task has previously been presented.”

4. ”Defined concepts need to be used later on and used new concepts need to be
defined before.”

5. ”For every robot function presented in the overview of the manual, a detailed
handling instruction must be provided later on.”

6. ”Every objective mentioned in an introduction needs to be addressed by some
related content later on but before its major aspects are summarized in a conclu-
sion.”

7. ”The user cannot access protected content until she/he has read and accepted an
according end user license agreement.”
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Possible ALCCTL formalizations of the properties above are:

1. AG(Theorem v ∀asserts.EX ∃shownIn.Proof)

2. AG(Exercise v ∀hasTask.AF ∃topicOf.Solution)

3. Information v A(∃topicOf.Lesson B ∃requiredFor.∃taskOf.Exercise)

4. AG(Definition v ∀defines.EF ∃usedIn.>)∧
newConcept v A(¬∃usedIn.> U definedIn.Definition)

5. AG(Overview v ∀presents.(¬Function t EF ∃describedIn.
(HandlingInstruction u ∃hasDetailLevel.High)))

6. AG(Introduction v ∀hasObjective.∀relatesTo.
A(∃topicOf.> B ∃topicOf.(Summary u ∃partOf.Conclusion))u
(¬MajorAspect t EF ∃topicOf.(Summary u ∃partOf.Conclusion)))

7. P rotectedContent v A(¬Accessible U ∀protectedBy.
(¬License t (Presented uAccepted)))

2

Remark 6.5.7 (Coherence Criteria)
Criterion 7) in Example 6.5.6 illustrates that formal verification of documents is par-
ticularly relevant if restricted access to content needs to be enforced. Only sound and
complete algorithms can provide a proof of the presence or absence of some property.
Note, however, that the value of the proof depends on the correctness of the model that
has been extracted from the document and is checked against the specification. For de-
termining the states in which a ”license” is ”presented” and ”accepted”, the semantic
document model also needs to represent relevant aspects of the document presentation
system. This is possible in principle but is beyond the current prototypical implemen-
tations of the knowledge extraction components.

Most of the ALCCTL formalizations shown in Example 6.5.6 can be simplified using
a reference ontology. For instance, given that the reference ontology RO contains the
axiom

summarizedTopic
.= ∃topicOf.(Summary u ∃partOf.Conclusion)

expression 6) in Example 6.5.6 can be simplified to

AG(Introduction v ∀hasObjective.∀relatesTo.

A(∃topicOf.> B summarizedTopic)
u(¬MajorAspect t EF summarizedTopic))

Still, Example 6.5.6 demonstrates that the formalization of criteria is not trivial al-
though their natural language formulation may appear quite simple. This is a general
problem in the field of formal methods [DAC99, FMPR04, KC05]. Therefore, user
support will be a major concern in future research [Jak06]. 2
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Corollary 6.5.8 (Coherence Criteria cannot be Expressed in CTL)

Coherence criteria on arbitrary domains are not expressible in CTL. This is be-
cause CTL provides no means for expressing relationships between objects (Definition
3.2.8).

2

Note, however, that coherence criteria can be approximated by CTL for a given finite
interpretation domain as shown in the following example.

Example 6.5.9 (CTL Approximations of Coherence Criteria)

A possible CTL approximation of criterion 1) of Example 6.5.6 is:

AG(
(Theorem1 → EX ProofOfTheorem1)∧
(Theorem2 → EX ProofOfTheorem2)∧
...∧
(TheoremN → EX ProofOfTheoremN))

where Theorem1, ..., TheoremN are atomic propositions representing the set of theo-
rems of the document and ProofOfTheorem1, ..., P roofOfTheoremN are atomic
propositions representing the set of respective proves.

Note that the CTL formula given above is just an approximation of the ALCCTL for-
mula AG(Theorem v ∀asserts.EX ∃shownIn.Proof . TheALCCTL formalization
accounts for theorems and proofs, which contain/show more than one assertion, while
the CTL formalization abstracts from single assertions of a theorem or proof.

In finite domains, relations can always be encoded in terms of atomic propositions
(Proposition 6.3.3). From a practical perspective, however, a propositional encoding
of relations becomes infeasible already for moderately sized documents because the
resulting formulae can grow exponentially (Remark 6.3.10). From an engineering
perspective, the tight coupling of the CTL specification to the checked documents is
problematic because a change of the document is likely to require an update of the
specification, which is a source of overhead and errors.

2

6.5.2.2. Computational Complexity

Recall that model checking CTL is in O(|f |· (|S|+ |R|)) (Theorem 3.2.12). If CTL is
applied to document structures we can assume that the set of states S grows linearly in
the document size |d| and the set of transitions R grows linearly in the document size
in the average case and quadraticly in the size of |d| in the worst case (cf. Definition
6.4.11).
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The complexity results for CTL andALCCTL based verification of formula f on doc-
ument d summarize as (cf. Proposition 6.4.12) :

CTL ALCCTL

best case O(|f |· |d|) O(|f |· |d|)
average case O(|f |· |d|) O(|f |· |d|3)
worst case O(|f |· |d|2) O(|f |· 2p(|d|))

|f | is the size of the checked CTL or ALCCTL formula, |d| is the size of the verified
document, and p is a polynomialN→ R+ of degree higher than 0. The runtime results
and underlying best/worst/average case assumptions are presented in section 6.4.3.

In the best case scenario, ALCCTL- and CTL-based document verification have the
same approximate complexity. Under optimal conditions, ALCCTL model checking
is expected to achieve the same performance as CTL model checking. In the average
case, however,ALCCTL-based document verification scales worse than CTL. Clearly,
the additional expressiveness of ALCCTL results in a higher computational complex-
ity.

The exponential worst case runtime of ALCCTL-based document verification stems
from the adoption of DL reasoning for the construction of temporal document struc-
tures. Since DL reasoning is not applied by standard CTL model checking methods,
the complexity of CTL-based document verification remains polynomial in all cases.

For a fair comparison of the runtime ofALCCTL and CTL, we have to consider that in
the case of CTL the size or number of formulae |f | often grows with the document size
(cf. Example 6.5.9) while the size and number of ALCCTL formulae usually remain
constant for growing documents. In practical application, ALCCTL model checking
can be more efficient than CTL model checking (see experimental results in section
7.5).

6.5.3. Existing Applications of Temporal Description Logics

As opposed to propositional temporal logics such as CTL, all existing temporal exten-
sions of description logics lack a mature infrastructure for automated reasoning based
on theorem proving or model checking techniques [LSWZ01]. This severely limits
their applicability in practice. As a result, existing applications of temporal descrip-
tion logics are at a rather conceptual level.

[AF98] describes an approach to representing actions and plans by the temporal de-
scription logic TL-ALCF that is a restricted version of the interval-based temporal
description logic of Schmiedel [Sch90]. In contrast to Schmiedel’s logic, the subsump-
tion relationship between concepts is decidable in TL-ALCF . Subsumption reasoning
is used for plan recognition and plan retrieval based on an action taxonomy.
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In [AFM+01], [AFW+01], and [AFWZ02], the temporal logic DLRUS is suggested
for representing conceptual schemata and queries to temporal databases. The de-
cidability of DLRUS enables various inference services for temporal databases, for
instance, proving query containment or checking the satisfiability of queries and
schemata w.r.t. all possible states of the data model. It is shown, however, that de-
ciding containment of non-recursive Datalog queries in DLRUS is in 2EXPTIME,
and schema satisfiability and implication is EXPSPACE-complete.

A similar approach is described in [AFM03]. The temporal description logic
ALCQIUS is suggested for conceptual modelling of dynamic information. Two dif-
ferent scenarios are distinguished: (1) modelling of dynamic (time-varying) aspects of
data and (2) representing the evolution of schemata in time. It is shown how temporal
ER diagrams can be mapped onto ALCQIUS . This mapping is used for automated
checking of the satisfiability and logical implication of temporal schemata.

All applications above are based on theorem-proving, which is already EXPTIME-
hard (section 3.1.4) for relevant non-temporal description logics. This and the lacking
availability of reasoning systems for temporal description logics [LSWZ01] restrict
the described applications to theoretical concepts.

In contrast to existing approaches, we apply temporal description logics for model
checking finite document structures. To the best of our knowledge, this work presents
the first application of temporal description logics that bases on model checking. It is
shown how reasoning in non-temporal DL and TDL model checking can be combined
to achieve higher expressiveness, flexibility, and performance in the domain of docu-
ment verification than existing approaches (see section 2.4 and chapters 7 and 8). The
proposed verification algorithms are sound and complete, and have a moderate poly-
nomial runtime in the average case. Evaluation results on real and realistic document
bases confirm the high efficiency, adequacy, and expressive power of the approach
(chapters 7 and 8).

6.6. ALCCTL-based Document Verification – Summary

We have defined ALCCTL, a branching time temporal description logic that is ex-
pressive for document properties. We have shown that the ALCCTL model checking
problem can be solved in polynomial time for finite structures and provided a sound,
complete, and optimal model checking algorithm. Further, it has been shown how
document verification can be transformed into an ALCCTL model checking problem
by applying semantic modelling based on DL knowledge bases and DL reasoning. A
sound and complete document verification algorithm has been defined, which runs in
polynomial time in the average case despite of the exponential complexity of involved
DL reasoning. The polynomial runtime is achieved by partitioning the information
about the document into local DL knowledge bases of constant size.
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We have demonstrated that relevant criteria on documents can be expressed by
ALCCTL and that ALCCTL exceeds the expressiveness of commonly applied propo-
sitional temporal logics regarding the important class of coherence criteria.

As compared to existing approaches to document verification, the combination of DL
reasoning and TDL model checking offers higher expressive power regarding both
content- and path-related criteria, a higher flexibility regarding the type of documents
and criteria being checked, and a better decoupling of the specification from the docu-
ment format and background knowledge, which is adopted to derive implicit informa-
tion about of the content of a document.
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7. Implementation and Evaluation

7.1. Introduction

Overview of Case Studies and Benchmarks

We have implemented the core components of the ALCCTL verification framework
described in chapters 5 and 6. The implementation has been evaluated on XML-based
eLearning documents as well as on synthetic benchmarks.

The aim of the implementation is to demonstrate the feasibility, adequacy, and effi-
ciency of the approach for real problems and realistic problem sizes.

The implementations are prototypical in the following aspects:

• not all components are optimized in terms of efficiency and memory usage. For
a productive system more can be done to increase the efficiency of the current
implementation.

• the knowledge extraction components are restricted to the test cases shown in
the course of the chapter. In a productive system the knowledge extraction com-
ponent can easily be enhanced to extract more information about the document’s
content.

• the user interfaces are rudimentary. Hence, no conclusions about the ”usability”
of the approach at the end-user level can be drawn at current.

However, the prototypes are sufficiently complete to demonstrate the expressive power
and performance of the presented approach.

Goals and Requirements

The prototypical application and case studies are designed to find answers to the fol-
lowing questions:

• Is ALCCTL adequate for representing relevant semantic criteria on documents?

• Do real document bases contain sufficiently detailed and structured information
(metadata) which is required to verify relevant criteria? Can it be extracted at
reasonable cost?

• Is the system effective for finding (previously unknown) errors in documents?
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• Do the analytically derived runtime results transfer to realistic application sce-
narios? Which is the maximal problem size being processable on an average
office computer in less than 30 seconds?

7.2. Some Comments on the Implementation

The ALCCTL prototype system has been implemented in Java 1.5. As a subcom-
ponent for the generation of verification models, the DL reasoning systems Racer
[HM01] and Pellet [SPG+07] have been integrated using the DIG [BMC03] inter-
face standard. ALCCTL formulae are reduced by a framework component to CTL
formulae that are verified by a re-implementation of the explicit state model checking
algorithms described in [HR04].

Knowledge extraction components for different XML-based formats for eLearning
content such as SCORM [Adv04a], LMML [SF02], and <ML>3 [LTV03] have been
implemented.

The experimental results reported in the sequel have been obtained on a web-based
training (WBT) about industrial robots and a number of synthetic benchmarks that
closely resemble a manual of an eLearning system. The ”Robot WBT” is implemented
in SCORM [Adv04a] and proprietary XML formats. In total, the WBT consists of
1102 files, 90 of them being relevant for the checking of consistency criteria. The
WBT delivers content tailored to three different target groups: trainees, trainers, and
support. The synthetic benchmarks simulate SCORM documents of different sizes
and structure. The evaluation results on synthetic and real SCORM documents are
presented in section 7.3.

In addition, the ALCCTL system has been evaluated on a selection of LMML- and
<ML>3 online learning documents developed within the national joint project WWR
(knowledge factory of computer engineering) [LT02]. These documents are in use
at undergraduate and graduate courses in computer engineering at the University of
Passau and other institutions. For results of the additional case studies, we refer the
reader to [Sch06] and [Lü06].

Figure 7.1 gives an overview of the components and major data structures of the
ALCCTL verification system. For a detailed description of the system’s architecture
and implementation is given in [Sch06] and [Lü06].

The core components of the system as depicted in Figure 7.1 are:

• knowledge extractor (Figure 7.1 rhs bottom): this component parses the XML
sources of the document implemented in SCORM [Adv04a], for instance. It
extracts the relevant metadata about the document and transforms it into the
structures of the semantic model: the narrative structure (Definition 5.2.19) and
the DL knowledge representation (Definition 5.3.10).
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manifest .xml
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Figure 7.1.: components of the ALCCTL verification system

• temporal structure generator (Figure 7.1 rhs top): this component computes the
ALCCTL temporal structure from the semantic model of the document w.r.t. a
set ofALCCTL formulae (Definition 6.4.1). The component sends the necessary
instance retrieval queries to an external DIG-compatible reasoner (cf. Algorithm
6.4.7). The most appropriate reasoners for the given application scenario have
been determined in a preparatory study. The evaluated candidates were KAON2
[HMS04b], Pellet [SPG+07], Fact++ [TH06], Racer [HM01], and RacerPro
[Rac07]. Among them Racer, RacerPro, and Pellet delivered the best perfor-
mance and the highest stability. The description logics supported by Racer(Pro)
and Pellet are sufficiently expressive for the requirements of the evaluation sce-
nario. As a consequence, Racer, RacerPro, and Pellet have been chosen as ref-
erence systems in later experiments. The DL systems are used in the standard
configuration with all optimization options switched off to keep the achieved
runtime results realistic, generally valid, and easily reproducible.

• ALCCTL model checker (Figure 7.1 lhs top): this component implements
ALCCTL model checking along the lines of Algorithm 6.3.37. Recall that Al-
gorithm 6.3.37 reduces the ALCCTL model checking problem to a CTL model
checking problem that can be solved using existing methods and tools. For
saving communication overhead with an external model checking tool such as
NuSMV [CCG+02], we opted for internally checking CTL formulae by re-
implementing the comparably simple CTL model checking algorithms described
in [HR04]. These algorithms are based on an explicit representation of the state
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space. State of the art model checkers such as NuSMV usually adopt a symbolic
representation of the state transition system (cf. section 3.2.4.2), which enables
the verification of very large temporal structures. In the case of documents,
an explicit representation of the state space is possible because the number of
states is comparably small. Recall that the number of states directly corresponds
to the number of content units of a document, which closely corresponds with
the number of pages of the document in the given case.

Besides saving communication overhead with an external model checking tool,
the internal implementation of CTL model checking provides access to inter-
mediate verification results and thus enables a more detailed error report if a
formula fails to hold.

• result analyzer (Figure 7.1 lhs bottom): the result analyzer extracts relevant
information from the detailed verification results as returned by the ALCCTL
model checker and displays them to the user. For instance, details about vio-
lated subsumption (v) and equals ( .=) connectives within unsatisfied formulae
are displayed. These are particularly helpful for tracking the root cause of an
error.

• controller (Figure 7.1 lhs center): this component controls the overall verifi-
cation process and manages the dataflow between the other components of the
framework.

The following optimizations as described in section 6.3.3.3 and 6.4.4 have been im-
plemented:

• checking sets of formulae: the temporal structure of the document is checked
against a set of ALCCTL formulae in one go instead of a single formula at a
time. Shared expressions within and across different formulae of the specifi-
cation are detected and re-calculation of common sub-expressions is avoided
(section 6.3.3.3).

• avoiding inefficient CTL Mappings: non-temporal connectives are checked by
dedicated methods and not mapped onto an equivalent CTL problem (section
6.3.3.3).

• accelerated methods for simple cases: in the process of generating theALCCTL
temporal document structure, not all instance-retrieval queries are actually sent
to the DL reasoner. Cases that do not involve TBox reasoning are handled in-
ternally. This significantly speeds up the generation of the ALCCTL temporal
document structure when the reference ontology is small or even empty (section
6.4.4).
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7.3. Evaluation Environment

The runtime results have been obtained in the following runtime environment:

• desktop personal computer with 32 Bit single core Intel Pentium IV processor
at 2.4 Ghz, 1 GB DDR Ram, and 80 GB ATA hard disk;

• Microsoft Windows XP SP2;

• Java runtime environment 1.6.0 02-b06, using 256 MByte of heap space;

• DL reasoning systems Racer version 1.7.23, RacerPro version 1.9.0, and Pellet
version 1.5.0;

• CTL model checking system NuSMV version 2.4.3 for the comparison the
ALCCTL runtime results with the performance of a state-of-the-art CTL model
checker.

The runtime results obtained within this environment are almost identical to the run-
times on an average portable computer (Pentium M at 1.7 Mhz, 1 Gbyte DDR Ram,
40 GB hard disk).

The prototype runs without modification on Windows Vista. Its performance on Vista
is about 5% lower than on Windows XP.

Finally, some experiments were conducted on a relatively up-to-date desktop computer
with Intel Core 2 Duo Processor E6400 at 2.13 Ghz with 2 GB DDR2-667 memory
and 250 GB SATA hard disk. This machine required about one third of the time re-
quired by the standard environment in all experiments. As a result, on recent hardware
the runtime values can be expected to be at a fraction of the values presented in the
subsequent sections.

7.4. Case Study

The ALCCTL framework has been evaluated on a web-based training about robots
based on SCORM, which is a commonly adopted standard for web-based eLearning
documents [Adv04a]. In the sequel, we briefly summarize the most important char-
acteristics of the case. Further details about the content, structure, and knowledge
representation of the web-based training can be found in [Rad05a].
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7.4.1. Description of the Case

7.4.1.1. Content and Structure of the Document Base

The verified web-based training teaches the basics for classifying and using different
kinds of industrial robots to the trainees and customers of a major robot company. Fig-
ure 7.2 sketches the general structure of the document. It consists of 82 interactive
web-pages structured into 6 larger lessons. Each lesson starts with an introduction
presenting its objectives and major concepts, followed by several exposition pages
presenting new concepts to learn (Figure 7.2). Exposition pages are frequently inter-
leaved with pages containing interactive exercises for applying or repeating the cur-
rently studied concepts. In the end of each lesson there is a test to assess the progress
of the learner.

Home

L1: WBT 

Guide

L2: 

Introduction

L3: Robot 

Load

L1.1: 
Navigation

L1.3: Page 
Types (1)

L1.2:  
Symbols

L1.4: Page 
Types (2)

L1.5: Getting 
Help

L2.1: Robot 
Types

L2.3: Self 
Test (1)

L2.2: Robot 
Properties

L2.4: Self 
Test(2)

L2.1a Special 
Types 

L 3.1 Load 
Distribution

L3.2 Robot 
Charge

L2.1b Type 
Quiz

Final Test

Figure 7.2.: narrative structure of the robot WBT

The narrative structure of the WBT is basically linear, i.e. it is meant to be learned
lesson by lesson. However, there are few optional side tracks (e.g. L2.1a and L2.1b in
Figure 7.2) that present additional information about the current topic to the interested
reader.

The WBT is published in different variants tailored to each of the three major target
groups: trainees, trainers, and support staff. The variants of the document vary in size
and complexity of content. For comparing the performance for different problem sizes,
a separate semantic model has been constructed for each variant and verified against a
specific set of criteria.

Table 7.1 characterizes the size of each variant and its semantic model.
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trainees trainers support
# lessons 6 2 3
# web pages 82 32 48
# content units / states 79 29 45
# narrative relations / transitions 81 29 47
# DL assertions in combined knowledge base 339 124 195
# assertions per content unit 4.3 4.3 4.3
# criteria / formulae ”long spec” 25 15 9
# criteria / formulae ”short spec” 11 11 9
# violated criteria / formulae 5 5 3

Table 7.1.: size of different variants of the robot WBT

7.4.1.2. Document Format

The WBT is implemented using the SCORM standard version 1.2 [Adv04a]. The
structure of the WBT is determined by the file imsmanifest.xml, which contains
different organizations and a list of resources according to the IMS Content Packing
Standard [IMS03]. An organization is basically a table of contents of the document
annotated by metadata describing the content of each item.

Listing 7.1 shows a part of the organization of imsmanifest.xml. Each item
element represents a page (or ”screen”) of the WBT. Its attribute identifierref
refers to an external resource (an XML-file, for instance) that contains the content of
the item. An item can contain subitems. For instance, item45 and item46 are
subitems of item44 in Listing 7.1.

The narrative structure and parts of the local fact bases of the document are extracted
from imsmanifest.xml. For instance, the attribute pagetype indicates the
type of content being presented by a specific resource. item46 being attributed as
pagetype="testquestion" (line 14 in Listing 7.1) indicates that the respective
web-page presents a test question to the learner. Other ”page types” are ”testresult”
and ”additional material”. If the attribute pagetype is left empty (line 3 and 7 in
Listing 7.1), the default page type ”information” is implied.

0 <items>
...
<item identifier="item44" identifierref="resource3_02"

isvisible="1" pagetype="" parameters="">
<title>Robot Charge</title>

5
<item identifier="item45" identifierref="resource3_02-1"

isvisible="1" pagetype="" parameters="">
<title>Introduction to Robot Charge</title>

</item>
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10
...

<item identifier="item46" identifierref="resource3_02-17"
isvisible="0" pagetype="testquestion" parameters="">

15 <title>Distance to Center of Gravity</title>
</item>

</item>
</items>

Listing 7.1: organization of items within imsmanifest.xml

The major part of the resources - in the presented case - consists of XML files in a
proprietary XML-format which embeds standards such as Learning Object Metadata
(LOM) [Lea02]. Listing 7.2 shows a part of a test page of the WBT. A major part of
the local fact bases are extracted from the metadata within resource files as sketched
in Listing 7.2. For instance, the entry

<relation>
<resource>lesson03_02-1l.xml</resource>

</relation>

represents the fact that the content of the current page is related to the content of
resource lesson03 02-1l.xml.

0 <document>
<metadata>

<general>
<title>Distance to Center of Gravity</title>
<identifier>resource3_02-17</identifier>

5 </general>
<educational>

<learningresourcetype>test</learningresourcetype>
<learningresourcesubtype>PP</learningresourcesubtype>
<difficulty>high</difficulty>

10 </educational>
<relation>

<resource>lesson03_02-1l.xml</resource>
</relation>

</metadata>
15

(... Content of the Document ...)

</document>

Listing 7.2: the resource file for item item46 of the WBT
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7.4.1.3. Description of Knowledge Representation

Items of the manifest file (Listing 7.1) represent single web-pages containing content
about a distinct topic of the document. Hence, items are good candidates for content
units within the semantic model of the document. Narrative relations can be derived
from the organization and metadata of items within the manifest file. The document
order of the manifest file (Listing 7.1) defines a standard successor for each item /
content unit. Some items are attributed as pages of type ”additional material”. These
items are bypassed on the standard path through the document which leads to a narra-
tive structure as depicted in Figure 7.2. For further details, see [Rad05a].

The numbers in table 7.1 indicate that the narrative structure of the document is rather
linear, i.e. each content unit has exactly one successor unit most of the time. The per-
formance of the system for ”highly branching” documents is evaluated in a dedicated
experiment (section 7.5.3). In each of the three variants the local fact base of each
content unit contains 4 to 5 assertions on average.

The local knowledge base for the content unit item46 sketched in Listings 7.1 and
7.2 is

Assertion extracted from meaning
Testquestion(item46) Lst. 7.1, line 14, at-

tribute pagetype
item46 is a test question

hasType(item46, test) Lst. 7.2, line 7 item46 has content type
test

hasSubType(item46, PP ) Lst. 7.2, line 8 the subtype of item46 is
”PP”

hasDifficulty(item46, high) Lst. 7.2, line 9 item46 is difficult

relatedToF ile(item46, Lst. 7.2, line 11–13 item46 is related to
lesson03 02-1l) lesson03 02-1l

These assertions have been extracted from the XML markup of the manifest file (List-
ing 7.1) and the resource file of the content unit (Listing 7.2).
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The following atomtic concepts are used in subsequent sample specifications:

MajorLesson represents the set of major lessons of the
WBT.

Home represents the beginning of the WBT (cf. Fig-
ure 7.2).

EndOfDocument represents a distinct set of final content units
of the document (cf. Definition 5.2.9).

Excursion content units on side tracks that contain addi-
tional information for the interested user.

Testbegin the introduction to a series of test questions.
Testquestion a content unit that contains of one or more test

questions.
Testresult a unit that presents the result of a test series.
Information content type of units that present concepts to

learn.
Test content type of units that test previously stud-

ied concepts.
Low,Medium, High concepts that represent low, medium, and

high difficulty levels of content units.

(7.1)

The following atomic roles are used in specifications:

hasType associates content units with their content type
Information or Test.

hasDifficulty associates content units with their difficulty level
Low, Medium, or High

isInFile associates content units with their source (an XML
file).

contains inverse of isInF ile: contains
.= isInF ile−.

relatedToF ile associates content units with files that contain re-
lated content.

referredBy inverse of relatedToF ile: referredBy
.=

relatedToF ile−.

(7.2)

7.4.1.4. Checked Criteria

Depending on the variant of the document (Table 7.1), a selection of 9 to 25 relevant
criteria have been formalized in ALCCTL and verified. The criteria have been chosen
in such a way that most ofALCCTL connectives are covered and, at the same time, the
criteria can be approximated well in CTL. This allows for comparing the performance
ofALCCTL-based model checking with existing state-of-the-art CTL model checkers
such as NuSMV. For the same reason, we refrained from using a reference ontology.
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The benefits and cost of ontological reasoning for the verification of content-related
criteria are examined in a separate experiment in section 7.5.4.

Introductory Remarks on the Formalization of Checked Criteria

Many of the checked criteria include a statement of the type

”... there should be some content of type T ...”.

Such criteria require to express the existence of some object satisfying some specific
predicate. In first order logic, a proper formalization has the form

∃x T (x) (7.3)

where T is a unary predicate that evaluates to true for some object x iff x is of type
T .

Recall that ALCCTL formulae are built on top of the basic expression C v D with
C and D being concepts (Definition 6.2.1). This basic expression is equivalent to the
first order formula ∀x(C(x) → D(x)). Hence, ALCCTL formulae are implicitly uni-
versally quantified. As a consequence, statements about the existence of some specific
object as represented by formula (7.3) cannot be expressed in ALCCTL directly.

However, since ALCCTL includes negation, this is not a general limitation as demon-
strated in the sequel. Formula (7.3) is equivalent to

¬∀x ¬T (x)

which in turn is equivalent to

¬∀x(¬T (x) ∨ ⊥(x)) (7.4)

where ⊥ is a unary predicate that evaluates to false for all elements of the interpreta-
tion domain. Further, formula (7.4) is equivalent to

¬∀x(T (x) → ⊥(x))

which directly translates to the ALCCTL formula

¬(T v ⊥) (7.5)

with T being a concept that represents the set of objects of type T . In summary,
formula (7.5) is equivalent to formula (7.3) and expresses the existence of some object
of type T .

Formulae of type (7.5) are frequently used in the ALCCTL-based specifications of
criteria within the following case studies.
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List of Criteria and Formalizations

The complete list of criteria, which apply to each of the three variants of the document,
is:

1. ”At least one content unit is reachable, which contains some additional mate-
rial.”

ALCCTL : f1 := EF ¬(Excursion v ⊥)
CTL : p1 := EF excursion

Excursion is a concept representing the set of content fragments at the current
state / content unit, which contain additional information (cf. Equation (7.1)).
¬(Excursion v ⊥) expresses the existence of some object of type Excursion
within the current content unit (cf. Equation (7.5)).

excursion is an atomic proposition that is true at a given state iff the corre-
sponding content unit contains some additional information.

2. ”There is at least one standard path without any additional material through the
document.”

ALCCTL : f2 := EG(Excursion v ⊥)
CTL : p2 := EG¬excursion

3. ”There is no path through the document without a test.” I.e. the user has to take
a test somewhere within the document:

ALCCTL : f3 := ¬EG(∃hasType.Test v ⊥)
CTL : p3 := ¬EG ¬hasTypeTest

The atomic proposition hasTypeTest is chosen in a way that it is true at a state
s iff (∃hasType.Test)Id(s) 6= ∅, i.e. iff content unit s contains some test. Thus,
p3 is an equivalent abstraction of f3.

f3 requires that there is no cycle within the narrative graph of the document
before a test is reached. Otherwise, there were an infinite path never reaching a
test. If cycles are allowed but it still needs to be ensured that the user encounters
a test at some point of reading the document, the criterion can be changed to

f ′3 := A(¬(∃hasType.Test v ⊥) B ¬(EndOfDocument v ⊥))

Here, the requirement of encountering a test is restricted to those paths
that eventually reach an end of the document (represented by concept
EndOfDocument). Paths that remain in a cycle before reaching an end unit
are not required to contain a test.
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4. ”After information has been provided, a test must always be taken.”

ALCCTL : f4 := AG ((∃hasType.Information v ⊥)∨
AF¬(∃hasType.Test v ⊥))

CTL : p4 := AG (hasTypeInformation → AF hasTypeTest)

The formalizations f4 and p4 just require that some test is presented after an
information unit. It is sensible to postulate, in addition, that the topics of each
information unit are actually covered by some test in the sequel. This can be
achieved by modifying f4 to

f ′4 := AG(∃contains.∃hasType.Information v
AF ∃referredBy.Testquestion)

with contains being the inverse of role isInF ile and referredBy being the
inverse of role relatedToF ile (cf. Equation (7.2)). Since f ′4 represents a coher-
ence criterion (Definition 6.5.5) it is not expressible in CTL (Corollary 6.5.8).

5. ”Immediately after a series of test questions, the test result is presented”. This
criterion can be reformulated to ”immediately after each test question either
another test question or the test result is presented”. This can be expressed as

ALCCTL : f5 := AG((Testquestion v ⊥)∨
(AX ¬(Testquestion t Testresult v ⊥)
∧¬EG ¬(Testquestion v ⊥)))

CTL : p5 := AG(testquestion → AX(testquestion ∨ testresult)
∧¬EG testquestion)

The term ¬EG ¬(Testquestion v ⊥) is added to exclude cycles within a series
of test questions such that the test result is never reached on some narrative path.

6. ”After the beginning of a test, a series of test questions is provided until the test
result is presented”.

ALCCTL : f6 := AG((Testbegin v ⊥) ∨ ((Testresult v ⊥)∧
AX((Testresult v ⊥)∧
A(¬(Testquestion v ⊥) U ¬(Testresult v ⊥)))))

CTL : p6 := AG(testbegin → ¬testresult ∧
AX(¬testresult ∧ A(testquestion U testresult)))

The term (Testresult v ⊥) is added twice to exclude that the test result is
presented already at the beginning or the first content unit after the beginning of
the test, and to ensure that at least one test question must be answered between
the beginning of the test and the presentation of the test result.
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7. ”Each test is nothing else but a test begin, test question, or test result.”

ALCCTL : f7 := AG (∃hasType.Test
.=

Testbegin t Testquestion t Testresult)
CTL : p7 := AG ((hasTypeTest → testbegin ∨ testquestion∨

testresult) ∧ (testbegin ∨ testquestion∨
testresult → hasTypeTest))

This checks the consistency of metadata about tests within the manifest and
content files of the document.

8. ”There is a path through the document without any difficult content”.

ALCCTL : f8 := EG ¬(∃hasDifficulty.(Low tMedium) v ⊥)
CTL : p8 := EG(hasDifficultyLow ∨ hasDifficultyMedium)

9. ”On any path through the document the user will hit something difficult”.

ALCCTL : f9 := AF¬(∃hasDifficulty.High v ⊥)
CTL : p9 := AF hasDifficultyHigh

f9 is a control property. It should be violated iff f8 is satisfied because each
content unit should have a unique difficulty.

f1 through f9 are general structural requirements applying to each of the three variants
of the document. The remaining criteria refer to document topics and hence differ
according to the topics covered by each of the variants.

10. ”The content of each major lesson is tested on all paths through the document.”
In absence of a reference ontology defining the set of ”major lessons” of each
variant of the document, the ”major lesson”-property needs to be encoded into
the specification. This can be done by providing a separate formula for each
major lesson as follows:

ALCCTL : f[10] := AF ¬(∃hasType.Test u
∃relatedToF ile.[MajorLesson] v ⊥)

CTL : p[10] := AF hasTypeTest ∧ [relatedToMajorLesson]

f[10] and p[10] are not formulae but templates for a set of nv formulae with nv be-
ing the number of major lessons of variant v ∈ {trainees, trainers, support}
(cf. Table 7.1). [MajorLesson] is instantiated by concepts representing a single
major lesson such as Lesson03 02-1l. Analogously, [relatedToMajorLesson]
is instantiated by an atomic proposition for each major lesson, which is true in a
state, iff the state represents a content unit that is related to the respective major
lesson. For instance,
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AF ¬(∃hasType.Test u ∃relatedToFile.Lesson03 02-1l v ⊥)

and

AF hasTypeTest ∧ relatedToLesson03 02-1l

are instances of formulae f[10] and p[10], respectively, for major lesson
Lesson03 02-1l.

11. ”Whenever a test of a major lesson is reached, the tested lesson has been visited
before.”

This is a coherence criterion since it expresses a combination of a semantic re-
lationship between two objects (the test and the tested lesson) and a temporal
relationship (test after the lesson) (Definition 6.5.5). In the case of CTL, co-
herence criteria require the explicit encoding of the semantic relationship into
the specification (cf. Example 6.5.9). Since a reference ontology is missing, the
set of ”major lessons” also needs to be encoded into ALCCTL formalization
(cf. formula f[10]). This results in sets of formulae of the following shape:

ALCCTL : f[11] := A(¬(∃hasType.Information u
∃isInF ile.[MajorLesson] v ⊥)
B ¬(∃hasType.Test u
∃relatedToF ile.[MajorLesson] v ⊥))

CTL : p[11] := ¬E(¬(hasTypeInformation ∧ [isMajorLesson])
U (hasTypeTest ∧ [relatedToMajorLesson]))

Recall, A(p B q) is defined as ¬E(¬p U q) (Definition 6.2.3). Since the CTL
model checker NuSMV does not support the ”before” operator B, we have cho-
sen the ”until”-based formalization in the case of CTL.

Similar to f[10] and p[10], f[11] and p[11] are formula templates. [MajorLesson]
is replaced by concepts representing a single major lesson. [isMajorLesson]
and [relatedToMajorLesson] are replaced by atomic propositions that are true
at a state if the according content unit is the given major lesson or is related to
the given major lesson, respectively.

For instance,

A(¬(∃hasType.Information u ∃isInFile.Lesson03 02-1l v ⊥)
B ¬(∃hasType.Test u ∃relatedToFile.Lesson03 02-1l v ⊥))

and

¬E(¬(hasTypeInformation ∧ isLesson03 02-1l)
U (hasTypeTest ∧ relatedToLesson03 02-1l))

are instances of formulae f[11] and p[11], respectively, for major lesson
Lesson03 02-1l.
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There are 8 major lessons in the trainees variant, 3 in the trainers variant, and none
the variant for the support staff. Hence, for the trainees variant, 8 instances of each of
the formula templates f[10], p[10], f[11], and p[11] are required while the trainers variant
requires just 3 instances of each of these formulae templates. The criteria specified by
the formula templates f[10], p[10], f[11], and p[11] are irrelevant for the variant of the
support staff and hence instances of them are not generated in this case.

Together with the variant-independent formulae f1 through f9, we get 9+8+8=25
formulae for the trainees’ variant, 9+3+3=15 formulae for the trainers’ variant, and
9+0+0=9 formulae for the variant of the support staff (cf. Table 7.1 ”long spec”).

Suppose, in the reference ontology or global fact base of the document the set of major
lessons of each variant is specified. This can be done explicitly by a set of ABox
assertions as follows

MajorLesson(Lesson03 02-1l)
MajorLesson(Lesson03 03-1l)
MajorLesson(Lesson04 02-1l)
...

Alternatively, an intensional definition can be given by a terminological axiom such as

∃≥4contains.Units u ∃referredBy.Home v MajorLesson

”every object, which contains at least 4 units and is referred by the home unit, is a
major lesson”

Then the criteria 10) and 11) can be represented in ALCCTL more compactly as fol-
lows:

f ′10 := MajorLesson v AF ∃referredBy.∃hasType.Test

f ′11 := MajorLesson v A(∃contains.∃hasType.Information

B ∃referredBy.∃hasType.Test)

Recall, referredBy is the inverse of role relatedToF ile and contains the inverse of
role isInF ile (Equation (7.2)).

These alternative formalizations are independent of the content of each document vari-
ant and thus do not need to be instantiated for each major lesson of a variant. This
diminishes the number of formulae from 25 / 15 / 9 (Table 7.1 ”long spec.”) to 11
/ 11 / 9 for the variants trainees / trainers / support (Table 7.1 ”short spec.”). In the
subsequent experiment, the runtime results of both formalizations are determined.

Remark 7.4.1 (Formalization of Criteria)

Many criteria are intentionally chosen in a way that the CTL formalization is more
compact than the respective ALCCTL formalization (see, for instance formulae f3
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and p3). This is to compare the performance of the ALCCTL model checking system
with CTL model checking for criteria that still can be represented well in CTL.

Criteria 4), 10), and 11) illustrate the superior expressiveness of ALCCTL, which al-
lows for more precise specifications (f ′4) and a more compact representations of com-
plex criteria (f ′10 and f ′11). Criteria 10) and 11) illustrate, in addition, the benefit of
background knowledge for the specification and verification of criteria. Reference on-
tologies can help to decouple specifications from variations of the document’s content
and to reduce the complexity of specifications. Since theALCCTL formalizations f ′10

and f ′11 are independent of the content of a specific document variant, f ′10 and f ′11

can remain unchanged, if the content of the document is modified. In constrast, for-
mula templates p[10] and p[11] need to be instantiated after each major update of the
document for each of the variants of the document.

Note further that the ALCCTL formalizations are intentionally not optimized to the
shortest possible expression or most efficient to check representation. The formaliza-
tions have been chosen in such a way that they cover a wide range of the expressiveness
of ALCCTL. Moreover, we assume that also in practice not always the most efficient
formalization of a consistency criterion is chosen. For getting most realistic runtime
results, we refrained from manually tuning ALCCTL formalizations. 2

7.4.2. Qualitative Results of the Case Study

Table 7.2 shows the result of checking each variant of the web-based training.

trainees trainers support
# web pages 82 32 48
# instances of f[10] 8 3 0
# instances of f[11] 8 3 0
# formulae 25 15 9
# violated formulae 5 5 3
violated formulae f4, f6, f7, f8,+ f1, f4, f6, f7, f8 f3, f4, f8

one instance of f[10]

Table 7.2.: summary of verification results

The verification results revealed the following previously unknown errors within the
document:

• f[10] failed for the trainees variant and the lesson about ”Robot Types”. This
means that for ”Robot Types” there is no test reachable on any path within the
document. A closer examination of this error revealed that actually a test unit
exists for that topic but it is not referred to by the organization of the manifest
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(Listing 7.1) and hence cannot be reached by the user. This type of error in-
dicates that in some cases it is not sufficient to check for the ”availability” of
certain content within a web document since content can be available but still
not reachable on some path through the content.

• f7 (consistency of test metadata) failed for two variants of the document. This
was because some test result has been marked up incorrectly as information unit,
which leads to presentation errors.

• The same error caused f4 (test after information) to fail in the trainees and train-
ers variant. f4 was also violated in the support variant but for a different reason.
In this variant there was actually no test available.

• f6 (test begin → question → result) was violated in the trainees and trainers
variant because some test question has not been marked as such within the man-
ifest file of the document. Again, this may cause a misleading presentation of
content.

• f8 (some easy path) was violated in each of the three variants because all of
them covered difficult subjects on every path through the document.

• f1 (some additional material) was violated by the trainers variant because this
variant simply does not contain any additional material.

The violation of f[10], f7, and f6 indicate severe errors. They came as a surprise
because the web-based training has been released and has already been in use within a
professional environment.

7.4.3. Quantitative Results of the Case Study

trainees trainers support
# content units 79 29 45
# assertions in cKBd 339 124 195
# formulae ”long spec.” 25 15 9
# formulae ”short spec.” 11 11 9
# violated formulae (long / short) 5 / 5 5 / 5 3 / 3
total runtime (ALCCTL long spec) 0.99 s 0.62 s 0.67 s
DL reasoning – – –
ALCCTL model checker (long spec) 0.18 s 0.08 s 0.07 s
ALCCTL model checker (short spec) 0.13 s 0.09 s 0.07 s
framework 0.81 s 0.54 s 0.60 s
CTL model checker NuSMV (long spec) 0.93 s 0.08 s 0.10 s

Table 7.3.: runtime results of the WBT case study

230



7.4. Case Study

Table 7.3 lists the time required for checking each of the variants.

The total runtime is the sum of the following components:

• the time required for constructing the ALCCTL temporal document structure,
which generally involves instance retrieval queries to the external DL reasoning
system. As for the given case, however, no reference ontology is used. Hence,
DL reasoning is not required for the verification of the specifications.

• the time required to do the ALCCTL model checking and to analyze the model
checking results of violated formulae. Table 7.3 contains the runtime results of
model checking the ”long spec”, which can be translated directly to CTL, and
the ”short spec”, which reduces the number of formulae for the trainees and
trainers variant by making use of the full expressiveness of ALCCTL (section
7.4.1.4). The runtime values for ALCCTL model checking include the time for
extraction and output of a detailed verification report, i.e. they are the sum of
the runtime of the components ALCCTL model checker and result analyzer in
Figure 7.1.

• the time required by the remaining components of the system for extracting the
required metadata from the XML sources, and building the narrative structure
and DL knowledge representation (penultimate row of Table 7.3).

For comparison, the temporal structure of the document has been converted into an in-
put file of the CTL model checker NuSMV and checked against the CTL formalization
of the criteria 1) to 11) (section 7.4.1.4). This is possible because the given scenario
is chosen such that pure CTL model checking can be applied (Remark 7.4.1). The
runtimes of NuSMV are included in the last row of Table 7.3. These values include
the construction and output of a counterexample, but do not include the time for con-
structing the input file for NuSMV from the semantic model of the document. Hence,
they are directly comparable with the values for ALCCTL model checking listed in
Table 7.3.

The total runtime of ALCCTL-based document verification ranges between 0.62 and
0.99 seconds. More than 80% of the total time is taken by the framework. The
ALCCTL model checker requires just 0.07 to 0.18 seconds. In the case of the largest
variant (trainees), the model checking time for the short specification is slightly less
than for the long specification (Table 7.3). This indicates that the high expressiveness
of ALCCTL can help to increase the efficiency of verifying larger documents.

Surprisingly, the performance ofALCCTL model checking can compete with NuSMV
within the given application scenario, although the chosen CTL formalizations of cri-
teria tends to be simpler than the corresponding ALCCTL formulae (Remark 7.4.1).
While in the smaller variants the runtime difference between CTL andALCCTL model
checking is small, ALCCTL model checking clearly outperforms NuSMV for the
largest variant.

231



7. Implementation and Evaluation

7.4.4. Case Study – Summary

In total, ALCCTL has proven both expressive in representing criteria and efficient in
verifying them. The collection of 25 formulae for the trainees’ variant can be reduced
to 11 formulae when making use of the full expressiveness of ALCCTL. The smaller
specification can be verified in less time and is less bound to the specific contents of a
document variant. Compared to CTL model checking, a performance gain of up to a
factor of 7 is achieved. The total runtimes remain below one second, which allows for
smooth interactive use.

The documents of the case study range between 32 and 82 web pages and thus are
rather small publications. In subsequent benchmarks, we examine if the encouraging
runtime results also transfer to more complex scenarios.

7.5. Benchmarks

7.5.1. General Description and Research Questions

The subsequent experiments are targeted at the following research questions:

• How does the runtime of ALCCTL prototype scale with the document size?

• How large is the runtime difference between satisfied and violated formulae?

• How does the system perform on documents offering many alternative reading
trails?

• How does the system perform on reference ontologies of different complexity?

• Finally, how can the system cope with an increasing number of formulae?

To approach these questions, a series of synthetic benchmarks have been designed.

The benchmark bases on a section of 32 web-pages / content units, the structure and
content of which are close to the web-based training of the case study.

Figure 7.3 depicts the narrative structure of the base section for building benchmark
documents of different sizes. The document fragment contains 32 content units, 25 of
them being ”information” pages and 4 of them containing additional material in two
”excursions”. In the end of the section, 3 ”test units” are presented.

Documents of different sizes have been constructed by appending the base section
several times at the end of the document and linking the final state (32) of each section
with the first state (1) of the subsequent section. A selection of 10 representative
formulae have been chosen as a test specification.
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Figure 7.3.: basic building block of benchmark documents (cf. [Rad05a])

7.5.2. Experiment 1 - Scaling in Document Size

Description of the Experiment

The first benchmark aims at determining how the runtime correlates with the document
size. For creating documents of different sizes the basic building block of Figure 7.3
has been copied 1 to 16 times which simulates 16 documents (D1), (D2), ..., (D16)
consisting of 1 to 16 chapters of 32 pages each (Table 7.4).

The size of the narrative structure ranges from 1· 32 to 16 · 32 = 512 content units and
from 1· 35 to 16 · 35 = 560 narrative relations (Table 7.4). The maximal length of an
acyclic part of a narrative path increases from 32 for the smallest document (D1) to 512
for the largest document (D16). The number of narrative paths within the document
ranges between 41 and 416 = 4.294.967.296.

The runtime of ALCCTL-based document verification further depends on size of the
interpretation domain ∆d of the ALCCTL temporal document structure (Definition
6.4.1). The interpretation domain ∆d is the set of objects that represent the content of
document d. The size |∆d| of the interpretation domain grows from 46 + 1· 32 = 78
for the smallest document (D1) to 46 + 16 · 32 = 558 for the largest document (D16)
(Table 7.4).

A good indicator of the amount of knowledge about the document is the sum of the
sizes of the local knowledge bases

sizeOf(KBd) :=
∑

KB∈KBd

|KB|

with KBd = {KBU | U ∈ CUd} being the knowledge representation of document d
(Definition 5.3.10). The local knowledge bases consist of ABox assertions only, be-
cause a reference ontology is not applied within the scope of this Experiment. The
impact of reference ontologies of different complexity on the performance of the sys-
tem is examined in Experiment 3 (section 7.5.4).
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Table 7.4 summarizes the relevant numbers of each of the test cases (D1) through
(D16).

D1 D2 D3 ... D16
# content units 32 64 96 ... 512
# narrative relations 35 70 105 ... 560
sizeOf(KBd) 332 664 996 ... 5312
|∆d| 78 110 142 ... 558
# formulae 10 10 10 ... 10
# violated formulae 3 3 3 ... 3

Table 7.4.: benchmark test cases (standard documents)

To determine the upper limit of the size of documents, which can be handled by the
ALCCTL system, a second test series of very large documents (VLD1 - 10) is con-
structed in the same manner as the first series (D1 - D16). The relevant numbers for
the second test series are listed in Table 7.5

VLD1 VLD2 VLD3 ... VLD10
# content units 512 1024 1536 ... 5120
# narrative relations 560 1120 1680 ... 5600
sizeOf(KBd) 5312 10624 15936 ... 53120
|∆d| 558 1070 1582 ... 5166
# formulae 10 10 10 ... 10
# violated formulae 3 3 3 ... 3

Table 7.5.: benchmark test cases (very large documents)

Each document is checked against 10 criteria of different complexity, three of them
being violated. As in the case study in section 7.4, the criteria have been chosen in
such a way that they can be represented equally well in ALCCTL and in CTL. This
enables a direct and fair comparison of the performance of ALCCTL model checking
with existing state-of-the-art CTL model checkers.

1. ”Some additional material is reachable.”

ALCCTL : f1.1 := EF ¬(Excursion v ⊥)
CTL : p1.1 := EF excursion

This criterion is satisfied.

2. ”There is a path without any additional material.”

ALCCTL : f1.2 := EG(Excursion v ⊥)
CTL : p1.2 := EG¬excursion
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This criterion is satisfied.

3. ”On all paths eventually additional material is presented.”

ALCCTL : f1.3 := AF ¬(Excursion v ⊥)
CTL : p1.3 := AF excursion

This criterion is violated.

4. ”There is a path without any tests.”

ALCCTL : f1.4 := EG(∃hasType.Test v ⊥)
CTL : p1.4 := EG¬hasTypeTest

This criterion is violated.

5. ”There is no path without any information units.”

ALCCTL : f1.5 := ¬EG(∃hasType.Information v ⊥)
CTL : p1.5 := ¬EG¬hasTypeInformation

This criterion is met.

6. ”Whenever some information is presented, eventually a test is reached.”

ALCCTL : f1.6 := AG((∃hasType.Information v ⊥)∨
AF ¬(∃hasType.Test v ⊥))

CTL : p1.6 := AG(hasTypeInformation → AF hasTypeTest)

This criterion is met.

7. ”Whenever a test is reached, information has been presented before.”

ALCCTL : f1.7 := A(¬(∃hasType.Information v ⊥)
B ¬(∃hasType.Test v ⊥))

CTL : p1.7 := ¬E(¬hasTypeInformation U hasTypeTest)

This criterion is met.

8. ”At the end of a series of test questions, the test result is presented.”

ALCCTL : f1.8 := AG((Testquestion v ⊥) ∨
(AX ¬(Testquestion t Testresult v ⊥)
∧¬EG ¬(Testquestion v ⊥)))

CTL : p1.8 := AG(testquestion → AX(testquestion ∨ testresult)
∧¬EG testquestion)

This criterion is satisfied.
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9. ”After the beginning of a test, a series of test questions is provided until the test
results are presented”.

ALCCTL : f1.9 := AG((Testbegin v ⊥) ∨ ((Testresult v ⊥) ∧
AX((Testresult v ⊥) ∧ A(¬(Testquestion v ⊥)
U ¬(Testresult v ⊥)))))

CTL : p1.9 := AG(testbegin → ¬testresult ∧
AX(¬testresult ∧ A(testquestion U testresult)))

This criterion is satisfied.

10. ”Each test is nothing else but a test begin, test question, or test result.”

ALCCTL : f1.10 := AG (∃hasType.Test
.= Testbegin t

Testquestion t Testresult)
CTL : p1.10 := AG ((hasTypeTest → testbegin ∨ testquestion∨

testresult) ∧ (testbegin ∨ testquestion∨
testresult → hasTypeTest))

This criterion is violated.

Since f1 through f10 are chosen such that they can be translated directly to CTL, they
do not make use of the full expressiveness of ALCCTL. For instance, path quan-
tifiers and temporal connectives appear at the level of formulae only but not on the
level of concepts. For getting more typical runtime results for the ALCCTL case, we
build a second specification by replacing formulae f1.1 through f1.5 with formulae f ′1.1

through f ′1.5 (cf. Table 7.6).

Remark 7.5.1 (f ′1.1 through f ′1.5 are not Equivalent to f1.1 through f1.5)

Although the formulae f ′1.1 through f ′1.5 are syntactically similar to their counter-
parts f1.1 through f1.5, they are not indented to be equivalent to their original version.
Rather, f ′1.1 through f ′1.5 are targeted at determining the performance of the system for
formulae making use of temporal concepts which are not available in CTL. Equiva-
lent re-formalizations of formulae f1.1 through f1.5 would still remain within the class
of properties, which can be represented well in CTL, and hence would not cause a
significantly different scaling of runtime.

Still, f ′1.1 through f ′1.5 are chosen as close as possible to their original version: they
have similar sizes and yield, in the given case, verification results that are identical to
those using f1.1 through f1.5. This allows for assessing the extra-cost of using the full
expressiveness of ALCCTL as compared to CTL-like specifications.

2

Formulae f ′1.1 through f ′1.5 are derived from f1.1 through f1.5 by ”pushing down” the
temporal connectives to the concept level of the formula. This way, harder-to-verify
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original ”CTL-like”criterion new ”ALCCTL-like” criterion
”Some additional material is reachable.”

f1.1 := EF ¬(Excursion v ⊥)
This criterion is satisfied.

”There is some object which is on some path
eventually an excursion.”

f ′1.1 := ¬(EF Excursion v ⊥)
This criterion is satisfied.

”There is a path without any additional mate-
rial.”

f1.2 := EG(Excursion v ⊥)
This criterion is satisfied.

”There no such object that is on all paths
eventually an excursion.”

f ′1.2 := AF Excursion v ⊥
This criterion is satisfied.

”On all paths eventually additional material is
presented.”

f1.3 := AF ¬(Excursion v ⊥)
This criterion is violated.

”There is some object that is on all paths even-
tually an excursion.”

f ′1.3 := ¬(AF Excursion v ⊥)
This criterion is violated.

”There is a path without any tests.”

f1.4 := EG(∃hasType.Test v ⊥)
This criterion is violated.

”There no such object that has on all paths
eventually the type Test.”

f ′1.4 := AF ∃hasType.Test v ⊥
This criterion is violated.

”There is no path without any information
units.”

f1.5 := ¬EG(∃hasType.Information v
⊥)

This criterion is met.

”There is some object that has on all paths
eventually the type Information.”

f ′1.5 := ¬(AF ∃hasType.Information v
⊥)

This criterion is met.

Table 7.6.: original and new ALCCTL specifications

”temporalized” concepts are generated but, in general, the equivalence to the original
version is not preserved (cf. Remark 7.5.1).

In the sequel, S := {f1.1, f1.2, ..., f1.10} denotes the standard specification while the
alternative specification is denoted as S′ := {f ′1.1, ..., f

′
1.5, f1.6, ..., f1.10}.

To assess, if the system performs differently on satisfied and violated formulae, we
built a specification Ssat with all formulae being satisfied and a specification Svio with
all formulae being violated. Ssat is derived from S by negating the violated formulae
f1.3, f1.4, and f1.10 of S. Svio is derived from S by negating all satisfied formulae of
S.

To examine, how the runtime of ALCCTL document verification scales with the doc-
ument size, the specifications S and S′ are checked against both test series (D1 - D16)
and (VLD1 - VLD10). Since an ontology is missing within this experiment, DL rea-
soning is not required and just the runtimes of theALCCTL model checker (including
error report) and of the framework (document parsing, knowledge extraction, generat-
ing the semantic model and temporal document model) are determined. For comparing
the performance of ALCCTL model checking with state-of-the-art methods for CTL
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model checking, the temporal document model is converted to a NuSMV input file and
checked against the CTL formalization p1.1, ..., p1.10 of the test criteria.

Expectations and Hypotheses

We expect the following results for each of the involved components.

• ALCCTL model checking is inO(|f |· |d|3) in the average case and inO(|f |· |d|)
in the best case (cf. Proposition 6.4.12). Since the size |f | of the formulae be-
ing checked remains constant, we expect that the model checking time grows
linearly to cubicly from (D1) to (D16) and from (VLD1) to (VLD10). Tempo-
ral connectives are more complex to check at the level of concepts than at the
level of formulae. Hence, checking S is expected to be faster than checking S′.
Since the runtime complexity of ALCCTL model checking does not depend on
whether a formula is violated or satisfied, we expect little difference between the
runtimes for checking S, Ssat, and Svio.

• CTL model checking is in O(|f |· |d|) in the best and average case (cf. section
6.5.2.2). Hence, we expect a linear growth of runtime of the CTL model checker
NuSMV for the test series (D1 - 16) and (VLD1 - 10).

• The framework has to do a lot of ”bookkeeping work” such as extracting knowl-
edge from the document and constructing the semantic model. In the presented
case, all of these tasks can be done in a straightforward manner and do not in-
volve complex calculations. Thus we expect a linear growth of framework time
w.r.t. the document size.

Outcome of the Experiment

Figures 7.4 and 7.5 show the experimental results for checking specifications S and S′

on the series of standard documents (D1 - 16).

The total runtime for verifying specification S grows approximately linearly from 0.6
seconds for the smallest document (32 content units) to 2.7 seconds for the largest (512
content units).

The major part of the runtime is consumed by the framework. In case of S, the frame-
work time takes between 88.3% (224 content units) and 91.3% (64 content units) of
the total runtime with an average of 89.9%. In case of S′, the contribution of the
framework ranges between 87.3% (224 content units) and 90.3% (32 content units)
with an average of 88.5%. The absolute runtime of the framework is identical for
specifications S and S′.

The model checking times seem to grow linearly for both specifications S and S’
(Figure 7.5). The relatively large variations of values indicate, however, that the test

238



7.5. Benchmarks

0

0,5

1

1,5

2

2,5

3

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

document size (number of content units)

ti
m

e
 (

s
)

total time (S)

framework

model checking S'

model checking S

Figure 7.4.: scaling of runtime in the document size

cases are too small for getting runtime results stable enough for predictions on larger
documents.

The runtime of the model checking component can, within the limits of this experi-
ment, be approximated by the linear function

p(|d|) = (0.48· |d|+ 50) ms

where |d| = |CUd| is the number of content units of the document (thick gray line in
Figure 7.5).

As expected, the values of model checking specification S′ are higher than for model
checking S. However, the increase in runtime for S′ is rather moderate (17.4% on
average).

For comparison, Figure 7.5 includes the results of NuSMV for checking the CTL for-
mulae p1.1, ..., p1.10. The runtimes of NuSMV include the construction of a counterex-
ample but do not include the time for constructing the input file from the temporal
document structure. Hence, the runtimes of NuSMV are directly comparable with the
runtimes of ALCCTL model checking.
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Figure 7.5.: runtime results for specifications S and S′

NuSMV and the ALCCTL model checker deliver exactly the same runtime for the
smallest document of 32 content units. However, the runtime of NuSMV increases
significantly faster for larger documents (cf. Figure 7.5). This is surprising because
the runtime complexity of CTL-based document checking is lower than the complex-
ity of ALCCTL-based document checking in the average case (cf. section 6.5.2.2).
Obviously, within the given application scenario, the CTL model checking algorithm
implemented in NuSMV is not optimal w.r.t. its runtime complexity.

The runtime of NuSMV already exceeds 0.4 seconds for a document of 96 content
units and reaches 25.6 seconds for 512 content units. In contrast, the ALCCTL model
checking time for 512 content units is as low as 0.25 seconds for S and 0.33 seconds
for S′, which is just 1.0% / 1.33% of NuSMV’s runtime.

Table 7.7 shows the differences in runtime for checking the specifications Ssat (all
formulae satisfied), S (3 of 10 formulae violated), and Svio (all formulae violated) on
document (D16).

As expected, the runtimes for checking S, Ssat, and Svio do not differ much. The total
runtime for 512 content units ranges between 2.64 seconds (Ssat - all formulae satis-
fied) and 2.88 seconds (Svio - all formulae violated). The slightly higher runtime of
checking Svio results from the longer error report. However, the time for constructing
the error report is small compared to the total time. Hence, the impact of the number
of violated formulae on the overall performance of the system is negligible.
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test case Ssat S Svio

# content units 512 512 512
# narrative relations 560 560 560
# formulae 10 10 10
# violated formulae 0 3 10
total runtime (s) 2.64 2.73 2.88
ALCCTL model checker (s) 0.19 0.25 0.41
framework (s) 2.45 2.48 2.47

Table 7.7.: dependency of runtime on the validity of formulae

Figure 7.6 shows how the system copes with very large documents (VLD1 - 10).
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Figure 7.6.: scaling of runtime for very large documents

The scaling of runtime of the single components of the system is identical to series
(D1 - D16) of smaller documents except for the model checking time of S′ for which
a super-linear scaling becomes apparent (Figure 7.6).

The total runtime is still dominated by the framework time although the influence of
the model checking time increases for larger documents in the case of specification S′
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(red graphs in Figure 7.6). The total runtime grows linearly in the document size with
a mininum of 2.44 seconds at 512 content units and a maximum of 14.24 seconds at
5120 content units in the case of checking specification S. For specification S′, the
total time grows from 2.54 seconds (512 content units) to 16.36 seconds (5120 content
units). On a more recent hardware (Intel Core2Duo E6400 processor at 2,13 GHz, 2
GB DDR2 RAM, 250 GB SATA Hard-Disk) the runtimes remain below 6 seconds in
all cases.

The framework time of the ALCCTL system is identical for specifications S and S′

and grows linearly in the document size from 2.2 seconds (512 content units) to 12.4
seconds (5120 content units).
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Figure 7.7.: runtime of the ALCCTL model checker for very large documents

More interesting is the scaling of model checking time for very large documents as
depicted in Figure 7.7. For better visibility of runtime results, the document sizes for
the runtimes of NuSMV are divided by 16 (values in brackets on the horizontal axis of
Figure 7.7).

For the simpler specification S, the ALCCTL model checking time grows linearly
in the size of the document with the minimum of 0.24 seconds for 512 content units
and the maximum of 1.86 seconds for 5120 content units (Figure 7.7). The relative
portion of model checking time as compared to the total time increases slightly from
9.8% (512 and 1536 content units) to 13.1% (5120 content units) with an average of
11.3%. A linear scaling can be achieved within the given setting because the formulae
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in S do not make full use of the expressiveness of ALCCTL. For instance, temporal
connectives appear only at the level of formula terms but not at the level of concept
terms.

In contrast to S, the first five formulae of S′ contain temporal connectives at the level
of concepts. This results in a super-linear growth of model checking time with a mini-
mum of 0.32 seconds for 512 content units and a maximum of 3.96 seconds for 5120
content units (Figure 7.7). In the case of S′, the relative amount of model checking
time as compared to the total time grows from 12.6% (512 content units) to 24.2%
(5120 content units).

The model checking time for S′ can be approximated well by the polynomial

q(|d|) = (
|d|2

12800
+ 0.35· |d|+ 120)ms

(gray line in Figure 7.7) where |d| := |CUd| is the number of content units.

The runtime of CTL model checking by NuSMV scales significantly worse in the
document size. NuSMV requires more time (4.19 seconds) for checking a document
of 256 content units than the ALCCTL model checker requires for 5120 content units
(S: 1.86 seconds, S′: 3.96 seconds). Checking a document of 512 content units with
NuSMV already takes 25.6 seconds such that we refrained from evaluating NuSMV
on the series of very large documents (VLD1 - 10).

We suspect that symbolic model checking as implemented in NuSMV does not per-
form optimally for documents. NuSMV is highly optimized for parallel processes with
a huge number of states [BCMH92]. Our application scenario is rather different. The
number of states is comparably small but each state has rather complex properties rep-
resenting the content of a distinct part of the document. Moreover, there is usually
little redundancy between the content units of a document, while the states of a sys-
tem of parallel processes often share many of their properties. This may lead to the
unexpected bad performance of NuSMV within the given application scenario.

Experiment 1 - Summary and Conclusions

The results of Experiment 1 show that ALCCTL-based document verification per-
forms well for growing documents. Within the given application scenario, ALCCTL
model checking clearly outperforms a state-of-the-art CTL model checker. Within the
same time span, ALCCTL model checking can verify documents up to 25 times as
large. Obviously, the symbolic model checking techniques applied by NuSMV do not
perform optimally for document structures. In contrast, the implemented ALCCTL
model checking algorithm uses an explicit representation of states. This turned out to
be more efficient for documents the temporal models of which comprise relatively few
states.
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TheALCCTL model checking time (including error report) for the largest document of
this experiment (5120 content units) is as low as 1.9 seconds for a simple specification
and 4.0 s seconds for a more complex one. NuSMV requires 4.2 seconds for 256
content units and 25.6 seconds for 512 content units.

The total verification time (including knowledge extraction and model generation) is
less than 15 seconds for a document of 5120 content units and a specification of 10
formulae. Hence, even extremely large publications can be verified in a reasonable
amount of time.

The total runtime of the system is dominated by the framework time. Consequently,
a significant improvement of performance is not possible by tuning the model check-
ing algorithms alone. In future developments the focus of performance optimizations
should be shifted towards the collection of required metadata and construction of the
semantic and temporal document models.

A promising direction is an incremental approach to knowledge extraction and model
generation. In constrast to model checking, which usually requires complete informa-
tion about the entire document, the knowledge extraction and model generation can be
done separately for each component of a document. A document as large as several
thousand units is not built within a single step and then verified. Instead, it grows and
changes over time. Whenever a component of the document is completed or changed
and committed to a document repository, the document model can be updated for the
modified component.

In such a scenario, the semantic model and large parts of the document’s temporal
structure are pre-computed offline before verifying the document. This nearly elimi-
nates the framework time and thus allows for interactive use of the verification system
with response times of less than 2 seconds for documents as large as 5000 content
units.

7.5.3. Experiment 2 - Influence of the Number of Relations

Description of the Experiment

The documents used in Experiment 1 (Figure 7.3) have a rather linear structure and
thus the number of relations per content unit is small (35

32 ≈ 1.1).

In the subsequent experiment, we examine how the verification and particularly the
model checking runtime responds to an increasing number of relations per content unit.
Therefore, more and more excursions (optional side tracks) are added to an entirely
linear document of 256 content units similar to (D8) of Experiment 1. Table 7.8 lists
the relevant numbers of each of the 8 test cases.

The verified documents (B0) through (B7) each have |Sd| = 256 content units but the
number of relations increases from |Rd| = 312 (B0) to |Rd| = 680 (B7). The size of
the interpretation domain |∆d| remains constant at 302.
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test case B0 B1 B2 B3 B4 B5 B6 B7
# content units 256 256 ... ... 256
# excursions 0 32 64 96 128 160 192 216
# narrative relations 256 312 376 440 504 568 632 680
# relations / # units 1.0 1.22 1.47 1.72 1.97 2.22 2.47 2.66
|∆d| 302 302 ... ... 302
# formulae 10 10 ... ... 10
# violated formulae 4 3 ... ... 3

Table 7.8.: test cases for experiment with varying branching factor

The test documents (B0 - 7) are checked against specification S of Experiment 1. In
case (B0) one additional formula is violated (last row of Table 7.8) because formula
f1.1 ”there is an excursion reachable” is, as opposed to cases (B1-7), not satisfied.

Expectations and Hypotheses

We expect the runtime of the framework to grow moderately because the amount of
extracted metadata and the sizes of the constructed semantic and temporal document
models increase slightly from document (B0) to (B7).

The complexity of the ALCCTL model checking algorithm is in O(|f |· (|S| +
|R|)· |∆|2) (Proposition 6.3.41). Since the number |S| of states, the size |∆| of the
interpretation domain, and the size |f | of the verified formulae remain constant and
the number |R| of relations increases approximately linearly from (B0) to (B7), we
expect a moderate linear increase in runtime of ALCCTL model checking.

Outcome of the Experiment

Figure 7.8 shows the actual experimental results. The number of narrative relations
has little impact on the runtime of any of the evaluated components.

The total time reaches its minium of 1.64 seconds for the cases (B1),(B2), and (B3) and
its maximum of 1.69 seconds for case (B7). The relative difference between minimal
and maximal total time is just 3%.

As expected, the framework time increases slightly from (B0) to (B7). The mini-
mal framework time is 1.47 seconds (B0, B2, B3). The maximum of 1.51 seconds is
reached for case (B7).

Also, the runtime of the ALCCTL model checker is hardly affected by the number of
narrative relations. The variation of values remains within the measurement tolerance.
The runtimes are between 0.16 and 0.18 seconds for all cases, which is between 9.7%
and 10.9% of the total runtime.
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Figure 7.8.: scaling of runtime in the number of narrative relations

Experiment 2 - Summary and Conclusions

The results of Experiment 2 indicate that the performance of the system is hardly
affected by the number of narrative relations within a document. The runtime of the
system can be expected to be stable and predictable for different document structures.

7.5.4. Experiment 3 - Impact of the Reference Ontology

Description of the Experiment

The previous experiments do not apply a reference ontology. In absence of a refer-
ence ontology the system performs significantly faster because theALCCTL temporal
document structure, which is checked against the set of ALCCTL formulae of a spec-
ification, can be constructed without expensive DL reasoning.

When a reference ontology is given, the instance retrieval service of a DL reasoner
such as RacerPro is used for computing the temporal interpretation Id of the tempo-
ral document structure (Sd, Rd, ∆d, Id) (Algorithm 6.4.7). Recall that the temporal
interpretation AId(s) of an atomic concept A ∈ AC is computed as

AId(s) := {a ∈ IVKBs |KBs |= A(a)}
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where KBs is the local knowledge base of the content unit s ∈ Sd and IVKBs is the
set of individuals occuring in KBs (Definition 6.4.1).

Recall further that the local knowledge base KBs of a content unit s ∈ Sd comprises
the reference ontology RO, the global fact base gABd, and the local fact base ABs

representing information about the content of unit s (Definition 5.3.10). The number
of local knowledge bases |KBd| of a document grows linearly in the document size
while the size |KBs| of a single local knowledge base KBs ∈ KBd stays constant.

In this experiment, we examine how the verification and particularly the DL reasoning
time responds to increasingly complex reference ontologies. The documents and for-
mulae used in this experiment are identical to those of Experiment 1 (section 7.5.2).
However, reference ontologies RO of different complexity are added.

Apart from performance issues, we are interested in how different reference ontologies
influence the quality of verification results: can additional errors be detected when
using appropriate reference ontologies?

To approaching these questions, four ontologies have been built:

R1 : this reference ontology has a minimal complexity. It basically consists of do-
main and range definition of seven roles hasType, hasDifficulty, forUserRole,
isInFile, teaches, asks, relatedToF ile used in the fact bases of the doc-
ument’s knowledge representation. Furthermore, (R1) contains the following
axioms to classify different kinds of content units:

ContentUnit
.= TestUnit t ExpositionUnit

TestUnit
.= Testbegin t Testquestion t Testresult

Excursion v ExpositionUnit

R2 : this ontology is an extension of (R1) in the following aspects:

– two additional equivalences between concepts and one additional implica-
tion between concepts are defined as follows:

ContentProperty
.= ContentType tDifficulty t UserRole t

Source t Topic

> .= ContentUnit t ContentProperty

F ile v Source

– three disjointness axioms such as ContentUnituContentProperty
.= ⊥

are added.

– three additional roles hasSource, hasTopic, relatedTo are defined as
super-roles of respective roles isInF ile, teaches/asks, relatedToF ile
in (R1).
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– the inverse of every role is defined in ten additional axioms.

– the roles hasType, hasDifficulty, isInF ile, and hasSource are defined
as right-unique.

(R2) can be considered as a realistic reference ontology with moderate complex-
ity.

R3 : this ontology is just a slight extension of (R2). The following two equivalence
axioms between concepts are added:

TestUnit
.= ∃hasType.(Test t Exercise)

ExpositionUnit
.= ∃hasType.Information

R4 : represents a realistic but rather complex ontology. Compared to (R3), the
additional roles hasPart and partOf as well as four further concept equiva-
lence and seven further concept implication axioms are added. They are of a
rather complex nature using negation, universal quantification, existential quan-
tification, ”at-most” and ”at-least” qualified number restrictions. Nominals and
concrete domains are not used.

Table 7.9 lists the relevant numbers of each case. (R0) is the setting of Experiment 1
without a reference ontology.

In this experiment, the documents (D1-16) and specification S of Experiment 1 (sec-
tion 7.5.2) are used. Although the presence of a reference ontology would allow for
simplifying some of the formulae within the specification S, we refrained from such
modifications to keep the verification results comparable.

The runtime results for DL reasoning are obtained using the reasoning systems Racer
version 1.7.23, RacerPro version 1.9.0, and Pellet 1.5.0 (section 3.1.5). These systems
have shown the best performance in preliminary tests.

Expectations and Hypotheses

Since the size of each local knowledge base does not grow with the document size,
we expect a linear increase in runtime in the document size for each of the reference
ontologies (R1 - 4) (cf. Proposition 6.4.12).

We expect that the system performs worse for the more complex ontologies than for the
simpler ones. The impact of the complexity of each of the ontologies on the runtime
is hard to predict because ontological reasoning can be already very hard for simple
knowledge bases (cf. section 3.1.4).

Regarding the different reasoning systems, we expect a better performance of the com-
mercial system RacerPro than of the non-commercial systems Racer and Pellet.

The remaining components of the framework are hardly affected by the size and com-
plexity of the reference ontology.
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test case R0, R1, R2, R3, R4
#content units 256
#narrative relations 280
#assertions in cKBd 1232
#formulae 10
#violated formulae 3
reference ontology R0 R1 R2 R3 R4
# concepts 0 12 14 17 29
# roles 0 7 20 20 22
# concepts and roles 0 19 34 37 51
# concept equiv. axioms 0 2 4 6 10
# concept impl. axioms 0 1 2 2 9
# disjointness axioms 0 0 3 3 3
# role domain defs 0 7 8 8 9
# role range defs 0 7 7 7 8
# inverse role defs 0 0 10 10 11
# right-unique roles 0 0 4 4 4
# role impl. axioms 0 0 4 4 4
# axioms 0 17 42 44 58

Table 7.9.: test case with reference ontologies of different complexity

• The reference ontology has influence on the temporal interpretation Id of the
ALCCTL temporal document structure (Sd, Rd, ∆d, Id). This can lead to a re-
duced but also to an increased model checking time depending on the criteria
to check. As for the average case, we expect that the reference ontology has no
effect on the ALCCTL model checking time.

• The framework time is little affected by the size of the reference ontology. The
framework loads the reference ontology into the reasoner, which may take a no-
ticeable time for very large reference ontologies. As for the reference ontologies
used in this experiment, the upload time should be negligible and thus we expect
no relevant changes in the framework time.

No changes are expected for the verification results (set of satisfied and violated for-
mulae).

249



7. Implementation and Evaluation

Outcome of the Experiment

Qualitative Results

Surprisingly, the use of reference ontologies revealed further errors.

• Already the simplest ontology (R1) turned out to be useful as it helped to reveal
a typo in an early version of the specification. This is because the reasoners
accept concepts and roles only that are defined within the reference ontology.
Of course, the final results of all experiments as presented in this chapter have
been acquired based on the corrected specification without any flaws.

• A preliminary version of (R2) contained 4 instead of 3 disjointness axioms. The
additional disjointness axiom was

ExpositionUnit u TestUnit
.= ⊥ (7.6)

”No thing (content unit) is both an exposition unit and a test unit”.

This disjointness axiom, however, led to an inconsistent knowledge base because
some content unit of the document was actually classified as an exposition unit
and test unit because of contradictive metadata about the content unit. This indi-
cated an error in the metadata attributes of the document that was not previously
known.

For keeping the documents of experiment 3 identical to the documents used in
other experiments, we opted for not correcting the error in the document but for
discarding the disjointness axiom of Equation (7.6) from the reference ontolo-
gies (R2), (R3), and (R4).

• The additional axioms of (R3) as compared to (R2) revealed further problems
within the document regarding the metadata about test units (formula f1.10

of Experiment 1). As a consequence of the additional axiom TestUnit
.=

∃hasType.(Test t Exercise), more content units of the document are clas-
sified as ”test units”, which do not satisfy formula f1.10. Formula f1.10 is also
violated in cases (R0), (R1), and (R2), but with a lower number of counterex-
amples.

The results of Racer, RacerPro, and Pellet do not differ exept for the most complex
ontology (R4). Using (R4), Pellet does not deliver any reasoning results but returns a
severe internal server error (”null pointer exception”). The error could be eliminated
by removing the axiom

ContentUnit v ∃hasType.> u ∃hasDifficulty.> u
∃forUserRole.> u ∃hasSource.>
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from (R4). This is surprising since this axiom is not the most complex axiom by far
and is also not structurally different from other axioms of (R4). The runtime of Pellet
for (R4) of Table 7.10 is obtained by using the modified slightly smaller version (R4∗)
of (R4) and thus is not directly comparable with the runtimes of Racer and RacerPro,
which are obtained by using the original full version of (R4).

Quantitative Results

Table 7.10 lists the runtime results for document (D8) of 256 content units being
checked against specification S of Experiment 1 containing 10 formulae.

test case R0 R1 R2 R3 R4 / R4∗

total time using RacerPro 1.57 434.4 1750 2768 8302
total time using Pellet 1.57 11.8 14.1 15.7 17.1
RacerPro – 432.9 1749 2766 8301
Racer – 26.9 58.4 59.2 98.8
Pellet – 10.3 12.5 14.2 15.6∗

ALCCTL model checking 0.18 0.13 0.13 0.13 0.14
framework 1.39 1.41 1.42 1.41 1.41

Table 7.10.: runtime results for 256 content units using different reference ontologies

As predicted, the reference ontology only has little effect on the runtime of the
ALCCTL model checker and of the framework.

The slightly lower runtime of the ALCCTL model checker in cases (R1 - 4) results
from internal optimizations of the representation of the temporal document structure
when a reference ontology is available. Compared to the total time, however, the
differences in model checking time are negligible.

In contrast to the model checking time, the framework time in case (R0) is slightly
lower than in the other cases (Table 7.10 last row). The higher framework time in
cases (R1 - R4) stems from sending the reference ontology to the reasoning system
and is irrelevant for the total runtime of the system.

The total time is clearly dominated by the runtime consumed by the DL reasoning
component. Even in the case of the best performing reasoner Pellet and the simplest
ontology (R1), the total runtime increases by a factor of 7.5 from 1.57 to 11.8 seconds
for a document of 256 content units (Table 7.10).

The runtimes of the reasoners RacerPro, Racer, and Pellet differ extremely. Surpris-
ingly, the commercial system RacerPro performs extremely poor – much worse than
its free predecessor system Racer. Already for the smallest ontology (R1), the runtime
of RacerPro exceeds 7 minutes for a document of 256 content units, which is beyond
any acceptable limit. For more complex ontologies (R2), (R3), and (R4), the runtime
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of RacerPro degrades even more. In the most complex case (R4), RacerPro takes more
than 2 hours, which is about 19.2 times as much time as in the simplest case (R1).

The precedessor of RacerPro, Racer, actually performs much better in all cases. Ob-
viously, the optimizations of RacerPro as compared to Racer are counterproductive
within the setting of Experiment 3. The runtime of Racer ranges between between 27
seconds for (R1) and 99 seconds for (R4). The runtime of Racer for the most complex
ontology (R4) is just 3.7 times as high as for the simplest one (R1).

Pellet clearly outperforms both RacerPro and Racer . The runtimes of Pellet lie be-
tween 10.3 seconds for (R1) and 15.6 for (R4). In addition, Pellet shows the lowest
relative increase in runtime for the most complex ontology (R4) as compared to the
most simple one (R1): Pellet takes about 1.5 times as long for (R4) as for (R1).

The absolute values for Pellet for a medium sized document of 256 content units are
acceptable for a non-interactive application scenario but too high for smooth interactive
use. More important than the absolute values for a medium sized document is the
scaling of runtime for growing documents.

We assumed a linear scaling of reasoning time in the document size for all ontologies
and reasoning systems.
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Figure 7.9 shows the scaling of runtime of RacerPro, Racer, and Pellet for ontologies
(R1) and (R4). Contrary to expectations, RacerPro does not scale linear in the docu-
ment size neither in case of (R1) nor in case of (R4) (red graphs in Figure 7.9). Using
the very simple ontology (R1), the runtime of RacerPro grows linearly for documents
with less than 160 content units. From 160 content units on the runtime suddenly
increases. Using the most complex ontology (R4), the runtime already explodes for
documents larger than 64 content units. This runtime behaviour cannot be explained
from the test data because the knowledge bases for reasoning do not become larger or
more complex for larger documents. Obviously, there is some problem in the internal
memory management of RacerPro, which leads to a drastic degeneration of runtime
after a certain amount of submitted and released knowledge bases.

Racer behaves more stable within our evaluation scenario (Figure 7.9). At least in the
case of (R1) the runtime shows the expected linear scaling in the document size. In the
case of (R4), however, the runtime of Racer displays some anormalities: the document
of 352 content units can be handled more quickly than the document of 320 content
units. Moreover, the runtime increase from 384 to 416 is significantly larger than
in the other cases. Obviously, Racer also suffers from internal memory reallocation
problems, which results in a rather unstable and unpredictable performance in the case
of complex ontologies and larger documents.

In contrast to Racer and RacerPro, the runtime results for Pellet meet our expectations
exactly. The runtime grows strictly linearly in the size of the document for both cases
(R1) and (R4). Pellet performs quicker for (R4) than Racer and RacerPro for (R1).
Also, the relative difference between (R4) and (R1) remains small for all document
sizes: on average Pellet requires 50% more time for ontology (R4) than for ontology
(R1). The absolute runtime of Pellet increases from 3.2 seconds for 32 content units
to 17.3 seconds for 512 content units in the case of (R1), and from 3.9 seconds for
32 content units to 28.2 seconds for 512 content units in the case of (R4). Hence,
Pellet is sufficiently quick to handle even large documents and complex ontologies in
acceptable time. In any case, however, the runtimes are too large for smooth interactive
use.

Even when applying the simple ontology (R1), the runtime of Pellet clearly dominates
the runtime of the system and consumes between 83% and 88% of the total runtime
for different document sizes. In case of (R4), the relative amount of runtime consumed
by Pellet ranges between 86% and 92% of the total time.

Experiment 3 - Summary and Conclusions

Experiment 3 revealed that the performance of the ALCCTL verification system is
highly depending on the performance of the integrated reasoning system if a reference
ontology is applied.
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The performance of different reasoning system varies extremely within our applica-
tion scenario. RacerPro, one of the best performing reasoners on the market according
to standard benchmarks [GPH05, MYQ+06, WLLB06], performed extremely poorly
within the ALCCTL system. In contrast, the comparably simple open source reasoner
Pellet shows acceptable runtime results that vary little for reference ontologies of dif-
ferent complexity and remain below 30 seconds even in case of complex ontologies
and large document (512 content units). Hence, the general feasibilty and the perfor-
mance of the overall approach for application relevant problem sizes is demonstrated.

Even in the case of using Pellet and a simple reference ontology, however, the total
runtime increases by a factor of at least 7.5 as compared to using no ontology. In
addition, Pellet shows functional weaknesses within our evaluation scenario. In the
case of the most complex ontology, Pellet returned an internal error for unclear reasons
and refused to deliver any reasoning results. Further evaluation of reasoning systems
are necessary to determine the best performing and most reliable system.

The poor performance of current DL reasoning systems allow interactive use for small
documents (up to 100 content units) only. For larger documents, theALCCTL tempo-
ral document structure should be calculated offline, for instance, whenever a new ver-
sion of a document is committed to the document repository. This is possible because
the verification of the specification byALCCTL model checking is separated from the
construction of the ALCCTL temporal document structure in Algorithm 6.4.7.

In addition, the modularity of knowledge representation and the monotonic behaviour
of DL reasoning ideally support an incremental approach because previously calcu-
lated results remain valid if new metadata or new components are added to the docu-
ment. If just a few parts of the documents are changed or added, theALCCTL tempo-
ral document structure only needs to be updated in parts and the major portion of the
necessary DL reasoning can be saved.

7.5.5. Experiment 4 - Scaling in the Size of the Specification

Description of the Experiment

In the last experiment, we examine how the systems copes with increasingly large
specifications.

This experiment is based on document (D16) of Experiment 1. (D16) consists of 16
sections each containing 32 pages / content units (Figure 7.3). (D16) is checked against
10 specifications the size of which varies between 3 and 30 formulae (Table 7.11). All
specifications are built using a base set of the following three formulae:

1. ”Additional material is reachable.”

ALCCTL : f4.1 := EF ¬(Excursion v ⊥)
CTL : p4.1 := EF excursion

This criterion is satisfied.
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2. ”Additional material is found eventually on every path.”

ALCCTL : f4.2 := AF ¬(Excursion v ⊥)
CTL : p4.2 := AF excursion

This criterion is violated.

3. ”Whenever some information is presented, a test is reachable.”

ALCCTL : f4.3 := AG((∃hasType.Information v ⊥)∨
EF ¬(∃hasType.Test v ⊥))

CTL : p4.3 := AG(hasTypeInformation → EF hasTypeTest)

This criterion is met.

As in Experiment 1, the criteria have been chosen in such a way that they can be
equally well represented inALCCTL and CTL . This enables the direct comparability
of the runtime results for ALCCTL and CTL model checking.

For growing specifications, we can distinguish two scenarios of different complexity:

• in the best case scenario, the total number of sub-expressions occurring within
the specification does not grow with the size of the specification but remains
constant. In this scenario, there are a growing number of formulae but each
formula shares its sub-expressions with other formulae of the specification.

We simulate the best case scenario by simply repeating the base set of three
formulae within a specification. This results in specifications of 3, 6, 9, ..., 30
formulae such that each specification contains 3 different formulae only (Table
7.11).

• in the worst case scenario, none of the formulae within a specification shares
any sub-expression with another formula. In this scenario, the number of sub-
expressions used within the specification grows linear with the size of the spec-
ification.

We simulate the worst case scenario by introducing new concepts and relations
for every formula of the specification. This results in specifications of the fol-
lowing shape:

EF ¬(Excursion1 v ⊥)
AF ¬(Excursion2 v ⊥)
AG((∃hasType1.Information1 v ⊥) ∨ EF ¬(∃hasType1.T est1 v ⊥))
EF ¬(Excursion3 v ⊥)
AF ¬(Excursion4 v ⊥)
AG((∃hasType2.Information2 v ⊥) ∨ EF ¬(∃hasType2.T est2 v ⊥))
EF ¬(Excursion5 v ⊥)
...
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The concepts Excursion1, Excursion2, ... have the same set of instances but
are treated as different concepts. This way. the smallest specification (F1) com-
prising three formulae uses four different concepts and one role, (F2) containing
six formulae has eight different concepts and two different roles, and (F10) with
30 formulae uses 40 different concepts and 10 different roles in total (cf. Table
7.11).

F0 F1 ... F10
# content units 512 512 ... 512
# narrative relations 560 560 ... 560
# formulae 3 6 ... 30
# different formulae (best / worst case) 3 / 3 3 / 6 ... 3 / 30
# concepts (best / worst case) 3 / 4 3 / 8 ... 3 / 40
# roles (best / worst case) 1 / 1 1 / 2 ... 1 / 10
# violated formulae 1 2 ... 10

Table 7.11.: test cases for the experiment with a varying number of formulae

Expectations and Hypotheses

As for the components of the system we expect the following runtime behaviour.

• ALCCTL model checking is in O(|f |· (|S| + |R|)· |∆|2) (Proposition 6.3.41).
The number of states S and relations R stays constant within the test series (F1
- 10). The size |f | of the formulae to check can be identified with the number
of formulae within the specification because a specification containing several
formulae can be simulated by a single formulae, which is the conjunction of
all formulae of the specification. Consequently, we expect a linear growth of
runtime of theALCCTL model checker for both the best and the worst case sce-
nario. Since the ALCCTL model checker checks for redundant sub-expressions
within a specification, the model checking time should be noticably lower in the
best case scenario than in the worst case scenario.

• Also, CTL model checking is linear in the size of the formula (Theorem 3.2.12).
Hence, we expect a linear growth of runtime of model checking the CTL version
of the specification using NuSMV.

• The framework requires some time to parse the specification. Hence, we except
a moderate linear growth of runtime for the framework in the best as well as
worst case scenario.
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Figure 7.10.: scaling of runtime for a growing number of formulae

Outcome of the Experiment

Figure 7.10 shows the benchmark results for the best case and the worst case scenario.

The runtime results of the ALCCTL system meet our expectations. The framework
time increases slightly from 2.44 seconds (F2, F5) to 2.49 seconds (F9). The frame-
work time within the best case scenario does not differ from the framework time within
the worst case scenario.

The model checking time apparently grows linearly in the size of the specification
in both the best and the worst case scenario. However, the runtimes of the worst
case scenario grow about three times as fast as the runtimes of the best case scenario.
The absolute values increase from 0.13 seconds for 3 formulae to 0.24 seconds for
30 formulae in the best case scenario and from 0.13 seconds for 3 formulae to 0.51
seconds for 30 formulae in the worst case scenario.

The total runtime increases from 2.58 seconds for three formulae to 2.72 seconds for
30 formulae in the best case scenario and from 2.58 seconds for 3 formulae to 2.99
seconds for 30 formulae in the worst case scenario. The relative difference of total
time between the specification of 3 formulae and the specification of 30 formulae is
5.4% in the best case and 15.9% in the worst case scenario.
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Again, theALCCTL model checker performs significantly better than NuSMV (Figure
7.10). Note that in Figure 7.10 the runtimes of NuSMV for checking the CTL versions
of the worst case specifications are divided by 100. NuSMV takes 21.9 seconds for
checking 3 formulae and more than 7 minutes for checking 30 formulae. Compared to
ALCCTL model checking, NuSMV takes 168 times as much time for 3 formulae and
836 times as much time for 30 formulae.

Surprisingly, NuSMV shows a super-linear growth of runtime in the size of the speci-
fication (Figure 7.10), which indicates that the symbolic model techniques applied by
NuSMV do not perform optimally within the given setting.

Experiment 4 - Summary and Conclusions

The ALCCTL-based document verification scales well to large specifications, i.e. the
size of the specification has little effect on the total runtime of the system. This is
because the total runtime is dominated by the framework time that is little affected by
the size of the specification. The model checking time scales, in accordance with ana-
lytical results (Propositions 6.3.41 and 6.4.9), linearly in the size of the specifications.
The increase in model checking time is moderate even in the worst case scenario (no
shared sub-expressions) and the model checking time does not exceed 0.51 seconds
for specifications of 30 formulae verified on documents of 512 content units.

The performance of ALCCTL model checking exceeds that of CTL model checking
by up to three magnitudes even for criteria that can be expressed equally well in CTL
and inALCCTL. Since, in many cases, a CTL-based formalization of criteria on docu-
ments results in much more formulae than an equivalentALCCTL-based formalization
(cf. Example 6.5.9 and section 7.4.1.4), ALCCTL model checking outperforms CTL
model checking rather more than demonstrated by the results of this experiment.

7.6. Summary of Findings

The major findings of the presented experiments are as follows.

• ALCCTL is sufficiently expressive for representing useful content-related prop-
erties. As compared to CTL, ALCCTL offers useful additional expressiveness
as demonstrated by the WBT case study in section 7.4.

• Reference ontologies are a useful but expensive tool for increasing the robust-
ness and precision of the verification system. When applying an ontology, the
performance of the system is dominated by the efficiency of the adopted DL
reasoning system. Using an efficient reasoner, the runtime of the system scales
linearly in the document size even when applying complex ontologies. The eval-
uated reasoning systems, however, are too slow for a smooth interactive use of
the system such that DL reasoning should be done offline.
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• TheALCCTL system performs extremely well if no reference ontology is used.
Documents of 5000 content units (≈ pages) can be verified in a few seconds on
an up-to-date personal computer. The runtime of the system increases linearly in
the document size in many scenarios. Just for very large documents and complex
specifications a quadratic scaling of runtime in the document size is observed.

• Within our scenario, the relatively simple explicit state algorithms applied for
ALCCTL model checking clearly beat the performance of the symbolic model
checking algorithms of NuSMV.ALCCTL model checking offers a significantly
better scaling in both the document and specification size. This contrasts with
the analytical runtime results for CTL and ALCCTL model checking (section
6.5.2.2).

• Model checking the specification consumes a rather small portion of the overall
runtime. Knowledge extraction and model generation take the major part of the
system’s runtime.

• The runtime of the system is hardly influenced by the number of narrative rela-
tions, the size of the specification, and the number of violated or satisfied for-
mulae. The runtime of the system remains stable and predictable in different
settings.

The major implications drawn from the experimental results are the following.

• The feasibility, usefullness, and scaling of the approach to application relevant
problem sizes is demonstrated.

• Pre-processing tasks such as knowledge extraction and model generation should
be performed offline and separated from core verification tasks. This allows for
online verification of documents as large as 5000 content units in less than 2
seconds.

• Reasoning systems should be selected with care and evaluated thoroughly before
using them in a productive environment. Any of the tested reasoning systems
displayed severe functional or performance-related problems in the given set-
ting.
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8. Comparison with XML Validation

In the course of this chapter, we compare ALCCTL-based document verification with
existing methods for XML documents. XML documents are not the only but certainly
one of the most relevant use case of the presented approach. There are a variety of
methods for ensuring the validity and consistency of XML documents (section 2.4.1).
Among them, Schematron and CLiX are most relevant.

8.1. Comparing ALCCTL with Schematron

A Short Introduction to Schematron

Schematron is an ISO standard [ISO06] for specifying business rules on XML docu-
ments. It is well-supported by a range of commercial and non-commercial tools (see
section 2.4.1.2).

The basic approach of Schematron is simple. A consistency rule is represented by
two XPath expressions: the first one selects a context (set of nodes) in which a certain
condition is evaluated. The second XPath expression represents a condition that must
or must not be met by all nodes of the selected context. In addition, simple means for
generating error messages in the case of violated rules are provided.

Example 8.1.1 (Schematron Rule)

The criterion ”every defined term must be used in the sequel of its definition” can be
represented by the following Schematron rule:

<sch:rule context="//definition/definedTerm">
<sch:assert test= "text() = ../following::usedTerm/text()"

diagnostics="d1">
Every defined term is used in the sequel of
its definition.

</sch:assert>
</sch:rule>

<sch:diagnostics id="d1">
Term "<value-of select=’text()’/>" defined in definition
<value-of select=’../@title’/> is not used in the sequel.

</sch:diagnostics>

261



8. Comparison with XML Validation

The XPath expression //definition/definedTerm of the element sch:rule
selects every definedTerm element within a definition element of the XML
document. Defined terms are the context for evaluating the subsequent assertion.

For each context element, the assertion
text() = ../following::usedTerm/text() is evaluated. The assertion
is satisfied iff the text of each definedTerm element is equal to the text contained
in some usedTerm element following the parent of the definedTerm element
w.r.t. the document order of elements.

The element sch:assert can optionally refer to a sch:diagnostics element
that defines an error message for each violating context element.

2

A Schematron specification or schema is basically a structured set of rule and diagnos-
tic definitions (cf. [Vli07] for further examples).

The evaluation of such a schema on a set of documents runs in two steps. In the first
step, the Schematron schema is translated into an XSL stylesheet. This can be done
independently from the documents to be validated. In the second step, the translated
schema is applied to documents by using a standard XSLT processor.

The approach of Schematron is simple yet powerful. Even complex criteria can be
represented by XPath expressions. In addition, Schematron inherits many advanced
XSLT features such as parameters, variables, key definitions, and various pre-defined
XSLT functions [ISO06] that further extend the expressive power of Schematron rules.

In addition, Schematron can be bound to query languages different to XPath as long
as they support the basic mechanisms of Schematron such as context and constraint
definitions [ISO06]. Suitable alternative query languages include XQuery [W3C07c]
and XSLT [W3C99b, W3C07d].

These query languages are Turing-complete [Kep04] and thus theoretically expressive
enough to evaluate any decidable constraint on XML documents (assuming an unre-
stricted amount of available memory and time).

Comparison with ALCCTL

In contrast to Schematron,ALCCTL does not have universal expressiveness. However,
the kind of criteria being expressible in ALCCTL are very hard to realize and ineffi-
cient to check using XSLT processing and XPath, which are fundamental to Schema-
tron. This will be demonstrated in detail by a number of experiments presented in
section 8.3.4. Further, consider that the ALCCTL system applies XSLT for extracting
knowledge from XML documents. Hence, within the presented framework the ex-
pressive power of XSLT and XPath can be utilized for pre-computing properties not
expressible in ALCCTL (see section 8.3.3).
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8.2. Comparing ALCCTL with CLiX

A Short Introduction to CLiX

CLiX (Constraint Language in XML) is a proprietary format for consistency rules on
XML documents. As opposed to Schematron, CLiX is supported by commercial tools
only (section 2.4.1.2).

CLiX is a combination of XPath 1.0 and first order logic: similar to XPath 2.0, it intro-
duces quantified variables in XPath expressions. To preserve decidability, all variables
must be constrained by predicates that are true for a finite set of elements only. It re-
mains unclear if CLiX rules actually exceed the expressive power of XPath 1.0 from a
theoretical perspective. However, the availability of quantified variables can help users
acquainted with first order logic to express complex constraints in a more natural way
than using a variable-free language such as XPath 1.0. Since XPath 2.0 also allows for
the quantification of variables in XPath expressions, it is possible to represent CLiX
rules quite similarly in XPath 2.0.

Example 8.2.1 (CLiX Rule)

The criterion ”every defined term must be used in the sequel of its definition” can be
represented in CLiX as follows:

<clix:rule id="rule-1">
<clix:forall var="dTerm" in="//definition/definedTerm">
<clix:exists var="uTerm" in="$dTerm/../following::usedTerm">

<clix:equal op1="$dTerm" op2="$uTerm"/>
</clix:exists>

</clix:forall>
</forall:rule>

A CLiX rule starts with the element clix:forall that defines the context of the
rule. Each node of the context is bound to a variable (named dTerm in the sam-
ple rule above). The context of the sample rule is defined by the XPath expres-
sion //definition/definedTerm, which returns every definedTerm ele-
ment within a definition element of the XML document.

Each node bound to dTerm is checked against the subsequent condition:
there is some node uTerm in the node set returned by the XPath expression
$dTerm/../following::usedTerm, such that the concatenated text nodes of
uTerm are identical to the concatenated text nodes of dTerm.

For users acquainted with first order logic, the CLiX representation of the consistency
criterion may be more readable than the corresponding Schematron rule in Example
8.1.1. For users experienced in XSLT programming, the Schematron style of consis-
tency rules may be easier to get along with. 2
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Examples 8.1.1 and 8.2.1 illustrate that there is little difference in the general concept
of and expressiveness of CLiX and Schematron. Both constraint languages support
XPath with embedded XSLT functions, variables bound to finite sets of elements, and
further XSLT constructs such as key definitions. However, since the definition and
evaluation of Schematron schemas entirely base on open standards, Schematron is
more open to future enhancements than CLiX that is bound to patented proprietary
evaluation algorithms.

Comparison with ALCCTL

It is shown in [Pil06] that ALCCTL restricted to finite models is contained in first
order logics interpreted over finite domains. Consequently, every criterion express-
ible in ALCCTL can be represented by a CLiX rule. ALC, the non-temporal part of
ALCCTL, is a two variable fragment of predicate logic, while CLiX expressions can
make use of more than two variables. Hence, the expressiveness of CLiX exceeds the
expressiveness of ALCCTL for non-temporal conditions.

However, [Pil06] also demonstrates that the simulation of temporal conditions using
first order logic leads to very complex expressions that are, in general, expensive to
evaluate. As a result, ALCCTL allows for the compact representation and efficient
checking of criteria that are hard to represent and verify by methods based on first
order logics such as CLiX.

Note further that ALCCTL formulae are interpreted on vocabulary described by DL
knowledge bases. DL reasoning is adopted for constructing the temporal verification
model of a document. In contrast to CLiX rules, DL reasoning is not restricted to fi-
nite domains and yields also sound and complete results when reasoning about infinite
domains. Hence, when adding ontologies, ALCCTL-based verification is more pow-
erful than CLiX for criteria referring to schema level knowledge about the concepts
and relations of the document’s domain of discourse.

It has to be added that CLiX offers a basic extension mechanism for introducing new
self-defined operators. The evaluation of self-defined operators has to be implemented
by dedicated algorithms within the runtime environment of CLiX. With such exten-
sions, CLiX can be considered as Turing-complete, i.e. every decidable condition for
XML documents can be expressed and evaluated.

An analogous instrument is also available within the ALCCTL system. Recall that
relevant knowledge about the document is extracted from the document and other in-
formation sources and represented as DL assertions within the semantic document
model. Hence, properties that are not expressible in ALCCTL can be computed by
dedicated algorithms within the knowledge extraction process and represented within
the semantic model. We call such properties computed properties (cf. Table 8.1).

As an example consider the following criterion: ”eLearning documents should not
contain any unfair tests.” Whether a test is fair or unfair may depend on complex
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conditions, the representation and evaluation of which are out of scope of ALCCTL.
Still, on an abstract level, the criterion can be represented by ALCCTL as
AG(Test v ∀classifiedAs.Fair).

The tough work – the assessment of the fairness of tests as represented by role
classifiedAs – is delegated to the knowledge extraction process and the reference
ontology, respectively.

8.3. Comparative Evaluation Based on XSLT and XPath

Within the subsequent section, the expressiveness and performance of ALCCTL as
compared to XSLT and XPath are evaluated.

8.3.1. Why XSLT and XPath?

The most relevant rule-based validation techniques for XML documents – Schematron
and CLiX – highly rely on XPath and XSLT for the representation and evaluation
of criteria. Schematron schemas are converted to XSL stylesheets and evaluated by
standard XSLT processors. CLiX rules are very similar to Schematron rules but are
validated by proprietary tools such as xlinkit. In preliminary case studies [Abs06], the
performance of CLiX/xlinkit turned out to be rather lower than the performance of
XSLT-based evaluation of Schematron.

Thus, the combination of XSLT and XPath can be considered as an upper bound re-
garding efficiency, expressiveness, and flexibility of XML-based document validation.
As such, XSLT and XPath are a good benchmark for assessing the performance of
ALCCTL-based document verification.

Further arguments for choosing XSLT + XPath as a tough benchmark for ALCCTL
are:

• XPath is adequate for expressing complex path-related conditions on XML doc-
uments.

• XSLT is Turing-complete [Kep04]. Consequently, every condition that cannot
directly be expressed in XPath can be checked by using advanced XSLT fea-
tures such as recursive templates. The experiments in section 8.3.6 show that
recursive templates are actually very helpful for checking criteria represented in
ALCCTL.

• highly optimized and mature processing engines are available for both XPath
and XSLT. XSLT and XPath are routinely applied in many system environments.
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Recently, the XSLT and XPath specifications version 2.0 have been released [W3C07d,
W3C07b]. Version 2.0 adds a lot of comfort and functionality [Kay04]. It turned out,
however, that within the scope of the subsequent case studies and experiments the
differences between versions 2.0 and 1.0 of XSLT / XPath 1.0 are of little relevance.
The implementation of the selected test cases in XSLT/XPath 2.0 does not differ from
XSLT/XPath 1.0 apart from irrelevant syntactic variations. Version 1.0 of XSLT and
XPath is still more widely adopted and supported by more processing tools. For in-
stance, the Microsoft XSLT processor version 4.0, one of the most efficient XSLT
processors, does not support version 2.0 of XSLT and XPath. As a consequence of the
sufficient expressiveness, better tool support, and higher performance, we opted for
using XSLT/XPath 1.0 in subsequent experiments.

8.3.2. Evaluation Goals

Within this section, we compare the developed verification techniques with standard
XML validation techniques in the following aspects:

• features: which kind of features useful for representing consistency criteria are
supported?

• performance: how do the runtimes of ALCCTL-based document verification
compare to XML-based techniques?

8.3.3. Comparing Features

The most important features of ALCCTL -based document verification are:

• access to schema-level and background knowledge.

The ALCCTL framework provide means for adopting general background
knowledge about the entities and relationships of the domain of discourse. This
simplifies the specifications because background knowledge does not need to be
encoded into the specifications. Background knowledge can be represented at
the instance and schema level. General document and discourse models can be
applied for checking complex content-related criteria. This increases the expres-
siveness of the overall approach.

• controlled specification terminology.

Reference ontologies can be used to define the vocabulary for the representation
of the document’s content and for formalizing criteria by means of ALCCTL.
A defined, agreed-upon, common vocabulary greatly enhances the robustness
against specification or representation errors (e.g. due to typos) and thus in-
creases the reliability of verification results. Moreover, the vocabulary of speci-
fications can be aligned by ontologies to different document and content models.
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This allows for decoupling specifications from possible changing or heteroge-
neous document formats and supports re-use and adaption of specifications to
different use cases.

• consistency of metadata.

The decidability of DL allows for checking the logical consistency of metadata
about the document. Faulty and contradictive metadata, which could reduce the
reliability of verification results, can be discovered before evaluating specifica-
tions.

• implicit knowledge.

By combining instance-level knowledge about the document’s content and struc-
ture with schema-level knowledge about its domain of discourse, implicit knowl-
edge can be derived by means of ontological reasoning. Implicit knowledge
helps to reduce the complexity of specifications and of the knowledge extraction
process. Further, additional errors may be detected based on derived document
properties (cf. section 7.5.4).

• open world semantics.

For deriving implicit knowledge from the DL representation of the document’s
content, the open world assumption is applied. Open world reasoning distin-
guishes if a property is not known to hold or if a property is known not to hold.
As a consequence, a property is not assumed not to hold if it cannot be proven
based on the available information.

The open world assumption is adequate for reasoning about (possibly infinite)
domains, the knowledge about which is incomplete. This is assumed, for in-
stance, for the document’s domain of discourse because a complete formal rep-
resentation of the domain of discourse is, in general, impossible or too expen-
sive.

The decidability of the DL, which is used for the representation of knowledge
about the document, enables sound and complete conclusions based on the par-
tial knowledge about potentially infinite discourse domains. Drawn conclusions
remain valid even if additional information becomes available (monotonic rea-
soning).

• closed world semantics.

The closed world assumption is applied for the verification of narrative paths
through the document by model checking techniques. I.e. if a property cannot
be verified it is assumed not to hold. Hence, theALCCTL framework combines
open and closed world reasoning within the verification process. This property
distinguishes the presented approach not only from standard XML techniques
but, to the best of our knowledge, also from all other approaches to document
verification.
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A closed world semantics is adequate if a complete representation of relevant
structures can be assumed. Regarding the narrative structure of the document,
such an assumption is valid because documents are finite, fully accessible data
objects.

Closed world semantics is more intuitive for most users and allows - in the case
of finite structures - for adopting highly efficient model checking techniques
instead of expensive theorem proving as required for open world reasoning.

• negation as failure.

This is negation under a closed world assumption: if a property can not be ver-
ified it is assumed not hold. Negation as failure is widely adopted and therefor
also known as default negation [Jan01]. The connective ”¬” ofALCCTL speci-
fications and the not operator in XPath expressions have a ”negation as failure”
semantics.

• standard negation.

The standard negation expresses that a property is asserted not to hold (in con-
trast to negation as failure that expresses the absence of a proof a property). The
DL used for the knowledge representation of the document’s content offers stan-
dard negation. Standard negation is not available inALCCTL specifications and
in XPath. However, the reference ontology can define properties based on stan-
dard negation as atomic concepts that are used within ALCCTL specifications.

• properties of narrative paths.

Computation tree logics such as ALCCTL are expressive for a wide range of
path-related properties [BBF+01]. Causal as well as temporal dependencies be-
tween properties of content units can both be addressed [DAC99, Jak06]. Causal
dependencies are of the form: ”when(ever) property p holds also property q must
hold”. Temporal interdependencies are of the form: ”property p holds once/al-
ways before/after/until q”. Finally, property p can be required to hold for some
path or for all paths (satisfying a certain property q).

• structured local properties.

In ALCCTL, local properties are represented by the description logics ALC
that is less expressive than standard description logics such as SHIQ or
SHOQ(D). However, complex properties not expressible in ALC can be de-
fined within the reference ontology of the ALCCTL system and used as atomic
concepts/roles within ALCCTL specifications (cf. standard negation). Thus, in
ALCCTL, very expressive DL can indirectly be used for expressing local prop-
erties.

• coherence properties.

ALCCTL is expressive for coherence criteria requiring a combination of seman-
tic and temporal relation between content objects (Definition 6.5.5).
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The most important features of XSLT and XPath are:

• Turing-completeness.

XSLT is Turing-complete [Kep04]. Any decidable criterion can be checked by
XSLT. In contrast to ALCCTL, the number of variables used within rules is
not limited. The limitation of variables in ALCCTL formulae is necessary to
preserve decidability [BCM+03, HWZ01].

• traversing paths within the composition tree.

XPath allows for traversing the document tree of an XML document along var-
ious axis such as descendant, ancestor, preceding, and following. This way,
elements relative to a given context can be selected very flexibly.

• properties of narrative paths.

Narrative paths, which do not follow any axis of the document tree, can be
tracked by recursively resolving references within an XML document. This is
supported in XSLT by recursive templates (see also 8.3.6). However, as shown
in later case studies (section 8.3.4), the expressiveness of a computation tree
logic is very expensive to realize by means of XSLT.

• structured local properties.

XPath offers a rich language for representing structured local properties of con-
tent units, for instance, by constraining the values of certain attributes or sub-
elements.

• coherence properties.

Coherence properties can be represented by means of XPath as long as the tem-
poral condition is relatively simple and evaluated w.r.t. the linear document order
of elements (section 8.3.5). XPath and XSLT, however, do not match the flexi-
bility and performance of ALCCTL for coherence criteria on documents with a
branching narrative structure.

• computed properties.

Computed properties are not directly represented by XML data but require some
sort of calculation based on the XML data. A simple computed property, for
instance, is the total number of content units of the document. Being Turing-
complete, XSLT can compute every decidable property. Also, XSLT offers a
rich collection of built-in functions for efficient calculations.

• numeric constraints.

ALCCTL is not very expressive for numeric constraints. ALCCTL cannot ex-
press directly, for instance, that a document should contain a certain percentage
of easy, medium, and hard content. Numeric constraints can, in principal, be
represented and checked by means of XSLT. For complex numeric constraints,
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however, an XML-based approach reaches its limitations [Sch08] and cannot
compete with dedicated constraint solving techniques such as linear program-
ming [Dar91], constraint logic programming [MS98], or answer set program-
ming [Bar03].

Aspect XPath + XSLT CTL ALCCTL

access to background and limited (data – +
schema knowledge types in 2.0)
controlled specification ter-
minology

– – +

consistency of metadata – – +
implicit knowledge – – +
open world semantics – – +
closed world semantics + + +
negation as failure + + +
standard negation – – indirect

(ontology)
Turing-completeness + - -
maximal number of unlimited 0 2
variables per condition (implicit)
traversing paths within the ++ - limited
composition tree (via partOf role)
properties of narrative paths limited ++ ++
structured local properties ++ – +
coherence properties + – +
computed properties + – indirect

(knowledge extraction)
numeric constraints + – indirect

(ontology)

Table 8.1.: features of different methods for document verification

Tables 8.1 gives an overview of the relevant features of ALCCTL-based document
verification as compared to XSLT/XPath. For completeness, a column for CTL has
been added because CTL is frequently applied to checking the consistency of hypertext
documents (section 2.4.2).

In summary, XSLT + XPath is the more powerful and flexible tool for checking the
XML representation of a document, whereas ALCCTL is targeted at the verification
of the document’s content and narrative structure independent of its implementation.
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8.3.4. Comparing Performance - General Setting

In the subsequent experiments, we examine the performance of XSLT-based consis-
tency checking as compared to ALCCTL model checking.

Since XSLT is Turing-complete, all criteria expressible in ALCCTL can also be
checked based on XSLT. However, we demonstrate that from a certain level of com-
plexity onwards the XSLT-based solution is not efficient neither in realization cost nor
in performance.

We start the comparison by assuming the best case scenario for XSLT processing:
linearly structured documents and criteria of limited complexity. Subsequently, we
evaluate how XSLT processing performs on documents with a branching narrative
structure.

The following XSLT processors are adopted:

• Microsoft XSLT processor MSXML 4.0 SP2 [Liv02]

• Xalan-Java version 2.7.0 [Xal07]

In preliminary evaluations, MSXML turned out to be the best performing XSLT pro-
cessor within the given setting. However, MSXML is only available for Windows
environments. The Java version of Xalan has been chosen as a state-of-the-art XSLT
processor that is platform independent and used in many software projects dealing
with XML documents. In addition, a Java-based implementation of XSLT processing
enables a fair comparison of the runtime results because the ALCCTL model checker
is also implemented in Java.

Test Cases

We choose the SCORM-based XML documents and criteria of the ALCCTL bench-
marks of Experiment 1 (section 7.5.2) as test cases for the subsequent experiments.

Using XSLT, the criteria could be checked directly on the XML sources of the test
documents. This, however, would be a very difficult task because each test document
is not a single XML file but is implemented in terms of a large set of interrelated
XML files of different types and contents (cf. section 7.4). Consider, in addition, that
ALCCTL formulae are evaluated w.r.t. a comparably small semantic model about the
document that integrates all relevant information from various sources and abstracts
from many irrelevant details.

For a fair comparison, also XSLT-based checking of criteria is conducted on pre-
processed XML documents: relevant metadata and structural information is extracted
by the same knowledge extraction methods as used in ALCCTL system and repre-
sented in a single, integrated XML file that has a much smaller size and simpler struc-
ture than the original XML documents of the test case.
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Criteria expressed in temporal logics are evaluated w.r.t. paths within the narrative
graph of a document, which is mapped onto a state transition system. The representa-
tion of the narrative structure of a document by means of XML is not straight forward.
This is because the XML data model bases on linearly ordered trees while the narrative
graph of a document is neither linearly ordered nor is it a tree (cf. section 5.2).

There are two basic approaches for representing the narrative structure of a document
by means of XML:

• flat structure: the nodes (i.e. content units) of the narrative graph are represented
by a flat list of XML elements each carrying a unique ID. The vertices (i.e. nar-
rative relations) between content units are represented as references between the
elements representing nodes.

• deep structure: each direct successor of a content unit U ∈ CUd is represented
as a child of the element representing U . The unique starting unit of the doc-
ument becomes the root element of the XML representation and all direct and
indirect successors are ancestors of the root element. The set of narrative paths
of the document is represented by the set of paths from the root element along
the child axis of the XML structure.

Example 8.3.1 (Flat vs. Deep XML representation of Narrative Structure)

Consider the narrative structure NSd = (CUd, BODd, proceed) where

CUd = {s0, s1, s2}
BODd = s0

proceed = {(s0, s1), (s0, s2), (s1, s2), (s2, s2)}

The following XML fragment illustrates a flat representation of NSd:

<contentUnit name="s0">
<successor name="s1"/>
<successor name="s2"/>

</contentUnit>

<contentUnit name="s1">
<successor name="s2"/>

</contentUnit>

<contentUnit name="s2">
<successor name="s2"/>

</contentUnit>

The following XML fragment illustrates a deep representation of NSd:
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<contentUnit name="s0">
<contentUnit name="s1">

<contentUnit name="s2"/>
</contentUnit>
<contentUnit name="s2"/>

</contentUnit>

2

The flat representation requires the iterative resolution of references for tracking paths
within the document. The deep representation translates the narrative graph into a tree
that can efficiently be represented and processed by XML methods without resolving
references.

At a first glance, the deep structured representation seems to be the more adequate ap-
proach. However, an unfolding of the narrative graph can lead to trees of infinite depth
and breadth because, in general, there are infinitely many narrative paths each of them
having an infinite length. Even when restricting the narrative graph to directed acyclic
graphs, a tree unfolding can grow exponentially in the number of content units. Hence,
the sizes of deep structured XML representations may explode for larger documents.

Table 8.2 shows the document size of deep vs. flat structured representations of the
narrative document structure for the test cases (D1 - 6) (section 7.5.2).

D1 D2 D3 D4 D5 D6
# content units 32 64 96 128 160 192
# narrative relations 35 70 105 140 175 210
# narrative paths 4 16 64 256 1024 4096
flat repr. size in kByte 37 74 110 148 185 223
deep repr. size in kByte 75 374 1580 6444 26066 105202

Table 8.2.: size of flat vs. deep XML representation of narrative document graphs

The size of the deep structured XML representation grows exponentially in the number
of content units. This renders the checking of criteria inefficient or even impossible
for larger documents.

As a consequence, we opted for the flat representation of the narrative graph. The nar-
rative structure and the extracted facts about each of the content units are represented
as a single, compact XML document (Listing 8.1).

0 <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<document source="manifest_32.xml">

<content>
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5 ...
<contentUnit name="ITEM_a14">
<successor name="ITEM_a19" />
<successor name="ITEM_a15" />
<successor name="ITEM_a18" />

10 ...
<related name="hasDifficulty">
<pair leftObject="ITEM_a14" rightObject="difficult" />

</related>
...

15 <related name="hasType">
<pair leftObject="ITEM_a14" rightObject="information" />

</related>
...
</contentUnit>

20
<contentUnit name="ITEM_a15">
<successor name="ITEM_a16" />

...
<property name="Excursion">

25 <object name="ITEM_a15" />
</property>
<related name="hasDifficulty">
<pair leftObject="ITEM_a15" rightObject="easy" />

</related>
30 ...

</contentUnit>

<contentUnit name="ITEM_a16">
<successor name="ITEM_a17" />

35 ...
</contentUnit>
...
</content>

40
</document>

Listing 8.1: fragment of the flat XML representation of the semantic document model

Listing 8.1 shows a fragment of the flat XML representation of the semantic docu-
ment model. It consists of a sequence of contentUnit elements representing the
set of content units CUd of the document. contentUnit contains one or more
successor elements representing the successor units according to the proceed re-
lation of the narrative structure of the document. In addition, contentUnit may
contain property elements and related elements. property elements repre-
sent concepts while related elements represent roles of the local fact bases of a
content unit. property elements contain one or more object elements that rep-
resent the instances of the respective concept. Analogously, pair elements represent
the role fillers of the respective role.
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Listing 8.1 illustrates the XML-representation of 3 content units with identifiers
ITEM a14, ITEM a15, and ITEM a16.

Let U15 ∈ CUd be the content unit corresponding with ITEM a15 and U16 ∈ CUd be
the content unit corresponding with ITEM a16. Let, as usual, proceed ⊆ CUd×CUd

denote the set of narrative relations across content units and ABU15 ∈ lABd be the
local fact base of content unit U15.

Then the XML fragment of Listing 8.1 represents the following information about
content unit U15:

(U15, U16) ∈ proceed

Excursion(U15) ∈ ABU15

hasDifficulty(U15, easy) ∈ ABU15

The document order of contentUnit elements within the XML representation of
the semantic model is equal to the document order of the respective items within the
original XML files of the document. This enables efficient checking of criteria w.r.t.
the document order of content units because no successor references need to be re-
solved.

8.3.5. Experiment 1 - Performance on Linear Documents

In Experiment 1, the performance of XSLT-based verification for entirely linear docu-
ments is determined and compared toALCCTL model checking. In the linear case, the
narrative structure of content units coincides with the (linear) document order of XML
elements. This simplifies the formalization of criteria using XPath because XPath al-
lows for directly evaluating conditions along the document order of elements.

Description of the Test Case

As a test case consider the following coherence criterion:

”Every lesson must be addressed by some test question in the sequel.”

This property is formalized in ALCCTL as

AG(∃contains.∃hasType.Information v AF ∃referredBy.Testquestion)
(8.1)

(cf. formula f ′4 in section 7.4).

As for the XSLT-based formalization, we disregard alternative narrative paths within
the test documents, i.e. the ”all paths” conditions of the modal operators AG and AF
in Equation (8.1) are dropped. Instead, the XSLT-based version evaluates the criterion
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w.r.t. the linear document order of content units only, which significantly simplifies the
verification task.

An XPath-based representation of the simplified criterion can be constructed along the
following lines:

• First, the set of files containing some information unit is determined, which
are represented by theALCCTL concept ∃contains.∃hasType.Information.
We call these objects initial elements of the coherence condition. The names of
initial elements can be determined by the following XPath query:

//contentUnit/related[@name=’isInFile’]/pair/@rightObject
[../@leftObject = ../../../related[@name=’hasType’]/pair
[@rightObject=’information’]/@leftObject]

Recall that contains is the inverse of role isInF ile that is represented by
<related name=’isInFile’> in the XML representation of the seman-
tic model. The sub-expression

related[@name=’isInFile’]/pair/@rightObject

returns the ”right-hand side” fillers of role isInFile, i.e. the file names
of lessons. Let n be such a file name. Then in the context of n,
../@leftObject returns the ”left-hand side” filler of n in role isInF ile,
which is the name ln of the lesson contained in file n. In the context of a file
name n, the filter expression
[../@leftObject = ../../../related[@name=’hasType’]/pair
[@rightObject=’information’]/@leftObject]

evaluates to true iff the respective lesson name ln (../@leftObject) has
a ”right-hand side” role filler in role hasType (= ../../../related

[@name=’hasType’]/pair[...]/@leftObject) that is an information
([@rightObject=’information’]).

• For each initial element, the ”coherence condition” represented by theALCCTL
concept AF ∃referredBy.Testquestion is checked. Recall that referredBy
is the inverse of role isRelatedToF ile (Equation (7.2)). Let i be an initial
element. Then there must be some object o that is a test question and is related
to i via relation isRelatedToFile within the same or a following content
unit.
This condition can be represented by the following XPath expression evaluated
in the context of an initial element i.
. = (../../../related[@name=’relatedToFile’]

/pair[@leftObject = ../../property
[@name=’Testquestion’]/object/@name] |
following::contentUnit/related[@name=’relatedToFile’]
/pair[@leftObject = ../../property
[@name=’Testquestion’]/object/@name])
/@rightObject
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The expression above evaluates to true in the context of a file name n, iff n
appears in the right-hand side of role relatedToF ile in the current or some fol-
lowing content unit
(. = (../../../related[@name=’relatedToFile’]/pair[...]

| following::contentUnit/related[@name=’relatedToFile’]/

pair[...])/@rightObject)
and the respective left-hand side partner of n w.r.t. role relatedToF ile
has the property ”test question” ([@leftObject = ../../property

[@name=’Testquestion’]/object/@name]).

• In total, each initial element selected by the first XPath expression must satisfy
the ”coherence” condition as represented by the second XPath expression. In
other words, there must not be some initial element that does not satisfy the
coherence condition.
This can be checked by the following XPath expression:
not(
//contentUnit/related[@name=’isInFile’]/pair/@rightObject
[../@leftObject = ../../../related[@name=’hasType’]/pair
[@rightObject=’information’]/@leftObject]
[not(. = (../../../related[@name=’relatedToFile’]

/pair[@leftObject = ../../property
[@name=’Testquestion’]/object/@name] |
following::contentUnit/related[@name=’relatedToFile’]
/pair [@leftObject = ../../property
[@name=’Testquestion’]/object/@name])
/@rightObject

)])

For constructing a meaningful error report, the list of initial elements that violate the
”coherence condition” are determined using the for-each construct of XSLT:

<xsl:for-each select="//contentUnit/related
[@name=’isInFile’]/pair/@rightObject
[../@leftObject = ../../../related[@name=’hasType’]
/pair[@rightObject=’information’]/@leftObject]
[not(. = (../../../
related[@name=’relatedToFile’]/pair
[@leftObject = ../../property[@name=’Testquestion’]
/object/@name] | following::contentUnit/related
[@name=’relatedToFile’]/pair[@leftObject =
../../property[@name=’Testquestion’]
/object/@name])/@rightObject)]">

Untested lesson <xsl:value-of select="."/>
in content unit
<xsl:value-of select="../../../@name"/>;

</xsl:for-each>
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This outputs the names and locations of all initial elements that violate the coherence
condition.

Remark 8.3.2 (XPath Representation of Coherence Criteria)

The relatively simple sample criterion of this experiment is already sufficient to
demonstrate that criteria expressible in ALCCTL are difficult to represent by XPath
even when restricting the XPath-based formalization to entirely linear structures. In the
case of branching structures, the emulation of ALCCTL formulae by means of XSLT
and XPath becomes even more cumbersome (cf. subsequent experiments). The much
lower complexity ofALCCTL-based formalizations as compared to XML methods re-
sults in lower formalization and maintenance cost, higher robustness against specifica-
tion errors, easier adaptability towards different specification problems and document
formats, and, last but not least, in a higher performance as shown subsequently. 2

Experiment 1 - Evaluation Hypothesis

The specification of this experiment is represented by a single variable-free XPath
expression. In preliminary experiments, MSXML has proven extremely efficient for
evaluating variable-free XPath expressions. Hence, we expect a good performance of
MSXML for the given task.

The evaluated XPath expression is quite complex. The number of initial elements
to evaluate increases linearly with the document size. For each initial element i, the
number of elements to consider for checking of the ”coherence condition” grows linear
in the document size. Hence, we expect a quadratic scaling of runtime in the document
size.

In the average case, ALCCTL model checking has a cubic scaling of runtime in the
document size (Proposition 6.4.12). In practical experiments of section 7.5, ALCCTL
model checking displayed a linear to quadratic scaling of runtime. Hence, it is hard
to predict if ALCCTL model checking performs better or worse than the XSLT-based
solution.

Experiment 1 - Runtime Results

Figure 8.1 displays the runtimes of the XSLT processors Xalan and MSXML as com-
pared to ALCCTL model checking for the series of very large documents (VLD1 -
10) of Experiment 1 (section 7.5.2). The runtimes of XSLT processing and ALCCTL
model checking do not include the pre-processing time for constructing the verifica-
tion model but include the time for generating an error report. For better visibility, the
values of the ALCCTL model checker are multiplied by 10 in Figure 8.1.

The scaling of XSLT processing in the document size is - as expected - super linear
in the document size. The Microsoft processor performs 7 to 8 times as fast as the
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Figure 8.1.: runtime results of XML Experiment 1

Xalan processor. The absolute runtime of MSXML ranges between 0.9 seconds (512
content units) and 56.5 seconds (5120 content units). The largest document being
checked within 10 seconds is 2048 content units. The runtimes of Xalan range between
5.5 seconds (512 content units) and 439.6 seconds (5120 content units). The largest
document being checked within 10 seconds is 512 content units.

The runtimes ofALCCTL model checking (including error report) range between 0.13
seconds (512 content units) and 0.73 seconds (5120 content units) and scale approxi-
mately linearly in the document size.

ALCCTL model checking is between 7 (512 content units) and 77 (5120 content units)
times as fast as MSXML for the given verification task although the ALCCTL model
checker verifies the sample criterion for all paths through the document while the
XSLT-based solution is restricted to the linear document order of content units. More
surprising than the absolute runtime values is the better scaling of ALCCTL model
checking in the document size as compared to XSLT processing.

Experiment 1 - Interpretation of Results and Conclusions

Criteria expressible in ALCCTL can be represented in XPath when restricting them
to the linear document order of elements. However, the resulting XPath expressions
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are complex, difficult to built, and expensive to evaluate. XSLT processing is suffi-
ciently efficient for checking even large documents. Still, ALCCTL model checking
outperforms XSLT processing clearly and scales better in the size of the document.

8.3.6. Experiment 2 - Performance on Non-Linear Documents

In the subsequent experiments, we evaluate the performance of XSLT processing for
conditions evaluated along narrative paths. Evaluating criteria along paths in a state
transition system is a complex task, in general. To simplify the complexity of the
scenario, the following assumptions are applied:

• the narrative structure is an acyclic directed graph.

• all narrative paths start from the first content unit w.r.t. the document order of
content units within the XML document.

• all narrative paths end at the last content unit w.r.t. the document order content
units within the XML document.

These conditions ensure that there are finitely many narrative paths through the doc-
ument each of them having a finite length. In general, narrative structures contain
infinitely many different narrative paths each of them having infinite lengths. As a
consequence, the XSLT-based algorithms presented in the subsequent experiments are
not generally applicable but restricted to documents of limited structural complexity.

8.3.6.1. Experiment 2a - Tracking a Single Path in Acyclic Narrative
Graphs

Description of the Test Case

In this experiment, we evaluate the performance of XSLT processing as compared to
ALCCTL model checking for criteria, the checking of which requires to track just a
single narrative path through the document. This is the best case scenario for path-
based conditions. In general, more than one or even all paths through the document
need to be considered for determining the validity of an ALCCTL formula.

As a test case, consider the following simple criterion:

”There should be path through the document without hitting any additional material.”

This criterion can be expressed by ALCCTL as follows:

EG (Excursion v ⊥)

Recall, Excursion is a concept representing the set of content fragments that contain
additional information.
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The test criterion is true within documents (VLD1 - 10) iff the path condition ”no Ex-
cursion” – represented by theALCCTL sub-formula Excursion v ⊥ – holds on each
content unit of some path from the first content unit to the final content unit. I.e. the
criterion is satisfied iff the last unit can be reached from the first unit by iteratively
pursuing narrative relations that lead to content units without any excursion.

Thus, verifying the criterion EG (Excursion v ⊥) can – within the scope of this
experiment – be modelled as a reachability problem under a certain condition applied
to the edges to follow. Checking ”conditional reachability” within the narrative graph
is not straight forward in XSLT for two reasons:

• XPath expressions can select elements just along a number of given axis. Narra-
tive paths, however, do not necessarily follow any of the given axis of XPath
such as child, parent, ancestor, descendent, preceding,
following,.... Instead, tracking narrative paths requires the iterative reso-
lution of references within the XML document.

• XPath can express predicates (so called node tests) for selecting nodes from a
given sequence of elements but does not provide means for applying arbitrary
conditions to the paths to be followed. All axis expressions are unconditional
[W3C99a, W3C07b].

As a result, XPath alone is not sufficient for representing path-related criteria such as
the test criterion. Instead, the path criterion must be checked iteratively. Iterations in
XSLT can be realized by recursive templates. A recursive formulation of the given
conditional reachability problem can be obtained by using the following equivalences
(cf. [HR04]):

EG(Excursion v ⊥) ≡ (Excursion v ⊥) ∧ EX EG(Excursion v ⊥)
EX EG(Excursion v ⊥) ≡ EX((Excursion v ⊥) ∧ EX EG(Excursion v ⊥))

These equivalences are the basis of the following inductive definitions:

• if the first content unit contains an excursion, EG (Excursion v ⊥) is not sat-
isfied. The absence of an excursion within the first content unit can be checked
by the following XPath expression:

//contentUnit[1][not(property[@name=’Excursion’]/object)]

• if the first content unit does not contain an excursion, then it satisfies
EG (Excursion v ⊥) iff it satisfies EX EG (Excursion v ⊥).

• the last content unit satisfies EX EG (Excursion v ⊥) by assumption.

The XPath expression not(following-sibling::contentUnit)
checks if the current content unit is the last content unit of the document.
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• any other content unit satisfies EX EG (Excursion v ⊥) iff there
is some successor unit that does not contain an excursion and satisfies
EX EG (Excursion v ⊥).

In the context of a contentUnit element, the names of successor units can
be determined by the XPath expression current()/successor/@name.
The following XPath expression evaluated in the context of a contentUnit
element U returns the sequence of successor units of U , which do not contain
an excursion:

//contentUnit[@name=current()/successor/@name]
[not(property[@name=’Excursion’]/object)]

Note that in the Xpath expression above the filter expression
@name=current()/successor/@name evaluates to true if there is
some node n in current()/successor/@name such that attribute @name
is equal to n.

The inductive definition of EX EG (Excursion v ⊥) is checked by a recursive
XSL template checkEXEG as shown in the code fragment below.

The definitions above lead to following XSL code fragment for checking
EG(Exursion v ⊥):

<xsl:for-each select="//contentUnit[1][not(property
[@name=’Excursion’]/object)]">

<xsl:call-template name="checkEXEG"/>
</xsl:for-each>

<xsl:template name="checkEXEG">
<xsl:choose>
<xsl:when test="following-sibling::contentUnit">
<xsl:for-each select="

//contentUnit[@name=current()/successor/@name]
[not(property[@name=’Excursion’]/object)]">

<xsl:call-template name="checkEXEG"/>
</xsl:for-each>

</xsl:when>
<xsl:otherwise>

true
</xsl:otherwise>

</xsl:choose>
</xsl:template>

The XSL fragment outputs true at least once iff EG(Excursion v ⊥) is satisfied by
the first content unit (//contentUnit[1]) of the document.

The recursive template checkEXEG successively selects contentUnit elements
by their unique name attribute. This can be sped up by using the xsl:key construct.
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<xsl:key name="CUIndex" match="contentUnit" use="@name"/>

This instructs the XSLT processor to create an access index named CUIndex for
element contentUnit using key @name.
Now contentUnit elements can be accessed efficiently by name using the XSLT
function key. The indexed access to contentUnit is realized by modifying the
for-loop of template checkEXEG to:

<xsl:for-each select="key(’CUIndex’,successor/@name)
[not(property[@name=’Excursion’]/object)]">

<xsl:call-template name="checkEXEG"/>
</xsl:for-each>

In subsequent runtime evaluations, we tested both the indexed and non-indexed access
to contentUnit elements.

Note that the given XSLT formalization is sufficient within the scope of the experiment
but not generally valid. For instance, the stylesheet does not terminate in the case of
cycles within the narrative graph because it does not check for already visited content
units.

Moreover, the code fragment outputs true several times if there are more than one
path satisfying the property G(Excursion v ⊥). This is because the template
checkEXEG performs an exhaustive search for all paths on which Excursion v ⊥
globally holds. An exhaustive search of paths is not tractable in general because the
number of paths in acyclic directed graphs can grow exponentially in the number of
vertices. Within the scope of this experiment, an exponential blow up of tracked paths
does not arise because each of the test documents (VLD1 - VLD10) contains just a
single path satisfying the condition G(Excursion v ⊥).

In total, the test case and the given XSLT implementation are designed to represent a
best case scenario for XSLT-based checking of path-related criteria.

Experiment 2a - Evaluation Hypothesis

For the non-indexed version, we suspect a quadratic growth of runtime in the document
size because the number of content units, which are ”visited” by the recursive template
checkEXEG, grow linearly in the document size and a linear growth of the time re-
quired for selecting the successor units of each content unit within the checkEXEG
template can be assumed.

An access index to contentUnit elements should result in a linear scaling of run-
time because each content unit is visited at most once and the selection of succes-
sor units should be possible in constant time using an efficient index structure for
contentUnit elements.

For ALCCTL, we expect a linear scaling of runtime as in Experiment 1 of ALCCTL
benchmarking (section 7.5.2).
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Experiment 2a - Test Results

Figure 8.2 shows the runtime results of the XSL stylesheet without using an index on
contentUnit elements.
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Figure 8.2.: runtime results of Experiment 2a - no access index

As expected, the runtimes of MSXML and Xalan scale super-linearly within the given
scenario. The Microsoft processors fails to check documents larger than 2560 content
units because of a ”stack overflow”. The Xalan processor can handle all documents
increasing the stack size of the Java Virtual Machine to 4 MByte (standard is 256
kByte).

MSXML performes about twice as fast as Xalan on each of the test cases (VLD1 -
5). Interestingly, the same test scenario executed on a laptop computer led to a clearly
better performance of Xalan as compared to MSXML. Obviously, the code of MSXML
is highly optimized for desktop environments.

The absolute values of the Microsoft processor range between 1.0 seconds (512 content
units) and 18.0 seconds (2560 content units) while Xalan takes 2.9 seconds for 512
content units, 35.0 seconds for 2560 content units, and 135.1 seconds for 5120 content
units.

The runtime values ofALCCTL model checking, although magnified by factor 10, are
hardly visible in Figure 8.2. The model checking times do not exceed 0.11 seconds for
any of the given test cases.
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Figure 8.3 shows the runtime results when using an access index to contentUnit
elements.
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Figure 8.3.: runtime results of Experiment 2a - applying an access index

The index significantly speeds up the execution of the stylesheet. Both processors
achieve the optimal linear scaling of runtime. The runtime of Xalan exceeds the run-
time of MSXML by a factor of 3.5 to 4. In contrast to Xalan, MSXML again fails
to check documents larger than 2560 content units because of a stack overflow. The
runtimes of MSXML range from 0.4 seconds for 512 content units to 0.9 seconds for
2560 content units. Xalan requires 1.8 seconds for 512 content units, 3.2 seconds for
2560 content units, and 4.9 seconds for 5120 content units.

Note that the good performance of XSLT processing can only be achieved under the
specific simplifying conditions of this experiment: just one narrative path has to be
tracked and the narrative structure is free of cycles. Figure 8.3 includes the runtime
results of XSLT processing when cycle detection is added to the stylesheet (dotted
graphs in Figure 8.3). Checking for cycles significantly slows down the runtime of the
stylesheet and leads to a super-linear scaling of runtime. In addition, the Microsoft
processor runs into a stack overflow already for documents larger than 2048 content
units.

ALCCTL model checking outperforms both the non-indexed and indexed XSLT-based
solutions clearly. A document of 2560 content units can be checked about 13 times as

285



8. Comparison with XML Validation

fast as MSXML and about 46 times as fast as Xalan on the stylesheet that applies an
indexed access to content units and does not check for cycles.

Experiment 2a - Interpretation of Results and Conclusions

An XSLT-based formalization of criteria related to narrative paths is feasible if many
simplifying conditions (simple conditions, no cycles, few alternative paths) are met.
The XSL feature of access indices enables efficient tracking of single narrative paths
within the document. Still, XSLT cannot match the performance of ALCCTL model
checking. For the general case, (cyclic narrative structure, many alternative paths,
complex path-related criteria) checking properties of narrative paths in XML docu-
ments by means of XSLT can be expected to result in very complex and inefficient
code.

In contrast, model checking is not only efficient in easy scenarios but also scales to
complex cases containing many alternative paths and complex path-related conditions
(see benchmarks in section 7.5).

8.3.6.2. Experiment 2b - Tracking All Paths in Acyclic Narrative Graphs

Description of the Test Case

In this experiment, we examine the performance of XSLT processing when all narrative
paths need to be considered for the evaluation of a criterion.

As a test case consider the following criterion:

”On all paths eventually the final test results will be presented.”

This criterion can be expressed in ALCCTL as

AF AG ¬(Testresult v ⊥)

”On all paths eventually a state is reached, from which onwards the set of test results
will never be empty.”

The sub-formula AG ¬(Testresult v ⊥) characterizes the set of content units con-
taining final test results (end unit property, cf. Definition 5.2.9).

The XSL representation of the criterion is simplified by making use of background
knowledge about test cases (VLD1 - 10). Here, the final test result is always presented
in the last content unit. Then the given criterion reduces to checking the reachability
of the last content unit on all narrative paths starting from the first content unit.

We can check this condition by a slight modification of the XSL code of Experiment
2a. If the path condition G(Excursion v ⊥) within the path tracking template
checkEXEG is dropped, all paths from the first to the last content unit are tracked.
The XSLT realization of AF AG ¬(Testresult v ⊥) is:
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<xsl:key name="CUIndex" match="contentUnit" use="@name"/>

<xsl:for-each select="//contentUnit[1]">
<xsl:call-template name="checkAF"/>

</xsl:for-each>

<xsl:template name="checkAF">
<xsl:choose>
<xsl:when test="following-sibling::contentUnit">

<xsl:for-each select="key(’CUIndex’,successor/@name)">
<xsl:call-template name="checkAF"/>

</xsl:for-each>
</xsl:when>
<xsl:otherwise>

true
</xsl:otherwise>

</xsl:choose>
</xsl:template>

This stylesheet fragment outputs true for each path within the narrative graph that starts
from the first content unit and reaches the last content unit of the XML document.

The validity of AF AG ¬(Testresult v ⊥) can be evaluated for the given series of
documents by comparing the output size with the total number of narrative paths from
the first to the last content unit. The number of such narrative paths within the test
cases (D1 - 11) calculates as follows:

document # content units # narrative paths
D1 32 41 = 4
D2 64 42 = 16
D3 96 43 = 64
D4 128 44 = 256
D5 160 45 = 1024
D6 192 46 = 4096
D7 224 47 = 16384
D8 256 48 = 65536
D9 288 49 = 262144

D10 320 410 = 1048576
D11 352 411 = 4194304

Remark 8.3.3 (Checking All Path Conditions)

In principle, it is possible to check ”all paths” conditions more efficiently than by
simply tracking all paths from a given start node. The marking of already visited nodes
and dynamic programming [CLRS01] can prevent an exponential blow-up of runtime.
These methods, however, are clearly beyond the scope of XSLT programming because
of the missing support of complex data types and updates to the values of variables.
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8. Comparison with XML Validation

Note that the given criterion can be reformulated to a criterion of the same type as in
Experiment 2a by using the equivalence AF p ≡ ¬EG ¬p [HR04]. The evaluation
results of Experiment 2a suggest that EG type of criteria are easier to check by means
of XSLT than AF type of criteria. This is not the case because also EG type of criteria
require to consider all paths, in general. For the criterion of this experiment, the map-
ping onto an EG type of expression is not helpful for finding a more efficient XSLT
realization.

2

Experiment 2b - Evaluation Hypothesis

The stylesheet for checking AF AG ¬(Testresult v ⊥) conducts an exhaustive
search of all narrative paths from the first to the last content unit. Since the num-
ber of such narrative paths grows exponentially in the document size, the runtime of
the stylesheet is expected to grow exponentially.

In contrast, ALCCTL model checking is polynomial for all types of expressions
(Proposition 6.3.14).

Experiment 2b - Test Results

Figure 8.4 shows the evaluation results.

0

20

40

60

80

100

120

140

32 64 96 128 160 192 224 256 288 320 352

size of document (number of content units)

ti
m

e
 (

s
)

Xalan

MSXML

ALCCTL model
checking * 10

Figure 8.4.: runtime results of Experiment 2b
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8.4. Comparative Evaluation - Summary and Conclusion

As expected, the runtime of tracking all paths within the narrative structures of the
test documents explodes from a certain document size on. The largest document being
processed within 10 seconds is 256 content units in case of MSXML and 224 content
units in case of Xalan. A document of 320 content units requires already 45.4 seconds
on the Microsoft processor and more than 8 minutes on Xalan.

In contrast, the runtime of ALCCTL model checking does not exceed 0.15 seconds
even for documents as large as 5120 content units.

Experiment 2b - Interpretation of Results and Conclusions

A naive approach to checking properties of narrative paths through the document is
only sufficiently efficient for small documents. Advanced data structures and methods
are required for efficiently checking temporal conditions within the narrative graph of
a document. For checking paths not following any of the given structural axis of XML
documents, XSLT-based verification of criteria is not adequate and efficient.

8.4. Comparative Evaluation - Summary and
Conclusion

XSLT + XPath is a very flexible and powerful tool for checking consistency conditions
related to the XML implementation of documents. However, when criteria are not
directly related to the structure of the XML representation of a document but to its
content and narrative structure, XSLT is sufficiently efficient in simple cases only.

Already in the case of linear documents, XML-based checking of coherence criteria
results in complex specifications and does not match the performance of model check-
ing. For checking properties of narrative paths, which do not follow one of the struc-
tural axis of XML documents, model checking is clearly more powerful and efficient
than XSLT processing. In general, XSLT is not an adequate and efficient platform for
checking narrative paths in documents.

In addition, the performance of XSLT processing highly depends on the XSLT proces-
sor and the implementation of criteria in terms of XPath expressions and XSL code.
The user has to deal with many low level decisions, for instance, if and how index
structures can be applied to increase the performance of the implementation. Conse-
quently, much experience and many test cycles are required to achieve good results
when adopting XSLT for the verification of the document’s content and structure.

ALCCTL enables the compact representation and generic verification of an important
class of structural conditions and content-related criteria that are difficult to check
using standard XML techniques. ALCCTL model checking exceeds the performance
of XSLT processing in simple scenarios and offers a much higher and more predictable
performance for complex criteria and large documents.
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In contrast, XML validation techniques are powerful and flexible for ensuring the cor-
rectness of the XML representation of content, which is an important aspect of the
document’s consistency, indeed.

Obviously, the combination of XML-based document validation and logic-based ver-
ification offers the highest level of flexibility, expressiveness, and performance for
different types of criteria on XML documents. Such a ”hybrid” approach to document
checking may be a promising direction of future research.
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9. Conclusion

We have presented a new approach to combining semantic modelling, process mod-
elling, ontological reasoning, and model checking, to enable the verification of
content-related consistency criteria on documents with a branching narrative structure.

A semantic document model based on DL knowledge bases serves as an abstraction
from irrelevant implementation details and allows for combining instance-level knowl-
edge about the document with background knowledge about its domain of discourse.
Ontological reasoning is adopted for checking the local and global consistency of the
knowledge representation and for deriving implicit knowledge about the document.
This increases the robustness and expressiveness of the framework and simplifies spec-
ifications and the knowledge extraction process.

The temporal description logics ALCCTL is defined as a new specification formalism
for structured content- and path-related properties. ALCCTL is expressive for con-
straining properties of processes in structured domains. By modelling the reception of
documents as a (reading) process on structured content objects, ALCCTL is a power-
ful tool for checking the consistency and coherence of content along individual reading
paths through the document. This is very difficult to achieve using existing verifica-
tion methods for propositional temporal logics, or using ”low level” methods, such as
XML validation, that work directly on the document data.

Document verification is modelled as an ALCCTL model checking problem. For the
first time, the model checking problem of a temporal description logics is examined in
detail. Assuming finite domains and a finite set of states, theALCCTL model checking
problem is shown to be decidable and computable in polynomial time. The first model
checking algorithm for a temporal description logics is proposed and its soundness,
completeness, and polynomial runtime complexity are shown.

Furthermore, it has been shown how knowledge about a document represented in non-
temporal DL can be adopted for checking specifications in a temporal DL. Open world
reasoning based on non-temporal DL and closed world reasoning (model checking)
based on a temporal DL are combined in such a way that high expressiveness for
content-related and structural criteria is achieved while a moderate polynomial runtime
complexity can be guaranteed. In addition, the flexible combination of open world and
closed world reasoning methods allows for tuning the framework to the characteristics
of the given application scenario.
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9. Conclusion

The formal framework has been implemented and evaluated in a number of case stud-
ies on real and synthetic documents. Already the first prototypical implementation
of ALCCTL model checking exceeds the performance of state-of-the-art CTL model
checkers by magnitudes, although CTL model checking is computationally less com-
plex than ALCCTL model checking. Also, efficient ”low level” methods such as
XSLT processing cannot match the performance of ALCCTL model checking. This
gives evidence to the high potential of the developed methods not only for verifying
documents. Further promising applications include the modelling and verification of
business processes as well as the specification and verification of service-oriented ar-
chitectures and web services.
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[Hüb00] R. Hübscher. Logically optimal curriculum sequences for adaptive hy-
permedia systems. In P. Brusilovsky, O. Stock, and C. Strapparava, ed-
itors, International Conference on Adaptive Hypermedia and Adaptive
Web-based Systems, volume 1892 of LNCS, pages 121–132. Springer,
2000.

300



Bibliography

[Hut00] D. Hutter. Management of change in verification systems. In Proc. of
the 15th IEEE International Conference on Automated Software Engi-
neering, pages 23–34. IEEE Computer Society, 2000.

[HWZ01] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Monodic fragments
of first-order temporal logics: 2000–2001 a.d. Logic for Programming,
Artificial Intelligence and Reasoning, LNAI, 2250:1–23, 2001.

[HWZ02] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and unde-
cidable fragments of first-order branching temporal logics. In Proceed-
ings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS 2002), pages 393–402, Copenhagen, Denmark, 2002.

[IM04] A. Inaba and R. Mizoguchi. Learners’ roles and predictable educational
benefits in collaborative learning - an ontological approach to support de-
sign and analysis of CSCL. In Proc. of the seventh International Confer-
ence on Intelligent Tutoring Systems (ITS2004), Alagoas, Brazil, 2004.

[IMS03] IMS Global Learning Consortium. IMS Content Packaging Information
Model, Version 1.1.3 Final Specification, 2003.

[ISO06] Information technology – Document Schema Definition Languages
(DSDL) - Part 3: Rule-based validation - Schematron, International
Standard, ISO/IEC 19757-3, First edition 01 June 2006, 2006.
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