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Abstract

We consider probability distributions which are uniformly distributed
on a disjoint union of balls with equal radius. For small enough radius
the optimal quantization error is calculated explicitly in terms of the ball
centroids. We apply the results to special self-similar measures.
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1 Introduction

Approximating a probability distribution by another discrete one with finite
support, one can study the deviation in terms of the induced Lr−error and
ask for an optimal approximation measure under the constraint of fixed (finite)
support cardinality.

More exactly let d ∈ N = {1, 2, ..} and µ be a Borel probability distribution
on Rd. For n ∈ N and r > 0, we define the n−optimal quantization error

Vn,r(µ) = inf{
∫

min
b∈β

‖ x− b ‖r dµ(x) : β ⊂ Rd, card(β) ≤ n},

where ‖ · ‖ is the Euclidean norm and card is the cardinality. A set α ⊂ Rd

consisting of at most n-points is called n−optimal (of order r) for the probability
µ, if

Vn,r(µ) =
∫

min
a∈α

‖ x− a ‖r dµ(x).

The problem of optimal quantization is to determine for every n ∈ N all
n−optimal sets, which are also called n−optimal codebooks, and to calculate
the optimal quantization error Vn,r(µ).

Historically the problem of optimal quantization is mainly motivated from
electrical engineering and information theory in connection with signal process-
ing and data compression. It’s history goes back to the 1940’s. A good survey is
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the article of Gray and Neuhoff [6]. A comprehensive mathematical treatment
of this problem was given by Graf and Luschgy [3],[4].

Despite of the difficulties in determing an explicit solution of the quantization
problem, the asymptotic behaviour of (Vn,r(µ))n∈N could be described for large
classes of probability distributions µ. Mainly the existence of the so-called
quantization dimension and quantization coefficient was investigated by several
authors (cf. [3],[5],[8],[11],[12],[14],[15]).

Only for a very few non-singular distributions, the optimal quantization error
and the optimal codebooks can be determined exactly (cf. [3], Sections 4.4 and
5.2). A few years ago, progress was made for one-dimensional singular distribu-
tions. The quantization problem was solved for the classical self-similar Cantor
distribution (cf. [2]) and later on for more generalized Cantor distributions,
which are not necessarily self-similar (cf. [8],[10]). For r = 2 and probabilities
which are uniformly distributed on a finite support of cardinality N , the prob-
lem of optimal quantization reduces to the calculation of the centroids of all
appearing partitions of the support (cf. [3], p.35).

The main objective of this paper is to generalize this centroidal representa-
tion of the optimal quantization error for distributions with finite support to
distributions which are uniformly supported on a collection of N disjoint balls.
If the balls are small enough, this generalization is possible for singular and non-
singular distributions in arbitrary finite dimension. If, additionally, the distrib-
ution concerned consists of identical parts on each ball (modulo translation), we
can calculate the quantization error explicitly for n = 1, .., N . This is the main
vantage of our approach and we will utilise it for special self-similar measures.
Somewhat more precisely we investigate the quantization problem for measures,
which are concentrated on a disjoint union of N closed balls (B(xi, l))i∈{1,..,N}
on Rd with equal radius l > 0 and midpoints xi ∈ Rd. We assume that µ is
equidistributed on the balls, i.e.

µ(B(xi, l)) =
1
N

for every i ∈ {1, .., N}. (1)

For small enough radius l > 0 we derive a formula for the optimal quantization
error Vn,2(µ) for all n ∈ {1, .., N} in terms of the µ−centroids on the balls
and we give a characterization of the optimal codebooks (cf. Theorem 4.4).
The main idea in our proofs is an approximation argument between µ and the
equidistribution Qω on the finite set ω = {x1, .., xN}.

The results will then be applied to self-similar measures, which are satisfying
condition (1). If, additionally, the iterated function system, which generates the
self-similar measure, does not contain any rotation part, we can calculate the
ball centroids explicitly. Hence, we will get a formula for the optimal quanti-
zation error of these special singular distributions, which does not contain any
µ−integrals. (cf. Theorem 5.4). As special examples we briefly discuss the uni-
form distributions on modified versions of the Cantor sets, the Sierpinski gasket
and the Cantor dust.
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2 Basic notions and results about optimal quan-
tization

For the reader’s convenience we briefly present in this chapter some well-known
general facts about optimal quantization, which will be frequently used in the
sequel. Let µ be a Borel probability distribution and B be a Borel-measurable
subset of Rd with µ(B) > 0. We define

sµ(B) = (µ(B))−1

∫
B

xdµ(x) (2)

as the µ−centroid of B. Let n ≤ card(supp(µ)), where supp(µ) is the support
of µ. For each r ≥ 1, we denote by Cn,r(µ) the set of all n−optimal sets for µ
of order r. For any finite nonempty set α ⊂ Rd and a ∈ α let

W (a | α) := {x ∈ Rd : ‖ x− a ‖ = min
b∈α

‖ x− b ‖} (3)

be the Voronoi cell of a with respect to α. A bijective mapping T : Rd → Rd

is called similarity transformation if there exists c ∈ ]0,∞[, the scaling number,
such that ‖ Tx− Ty ‖= c ‖ x− y ‖ for every x, y ∈ Rd.

Theorem 2.1.
(1) There always exists an n−optimal set for µ of order r.
(2) Only one 1−optimal set for µ of order 2 exists. It equals {sµ(Rd)}.
(3) For any α ∈ Cn,r(µ) and ∅ 6= β ⊂ α with card(β) = m ≤ n we have

(a) card(α) = n,

(b) if r > 1, then µ(W (a | α) ∩W (b | α)) = 0 for every a, b ∈ α with a 6= b,

(c) µ(W (a | α)) > 0 for every a ∈ α,

(d) β ∈ Cm,r(µ(· |
⋃

b∈β W (b | α))).

(4) For a similarity transformation T : Rd → Rd with scaling number c > 0 we
have Cn,r(µ ◦ T−1) = TCn,r(µ) resp. Vn,r(µ ◦ T−1) = crVn,r(µ).

Proof. For a proof of (1) see [3], Theorem 4.12. A proof of (3a),(3c) and (3d)
can be found in [3], Theorem 4.1. The assertion (2) follows from [3], Theorem
2.4 (i) and [3], Example 2.3 (b). From [3], Theorem 4.2 we deduce (3b). The
assertion (4) is an easy consequence of the definition, but also stated as Lemma
3.2 in [3].

Denote < ·, · > as the inner product on Rd. The following two results are
quite simple but useful in later chapters.
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Lemma 2.2. Let a = sµ(Rd) and z ∈ Rd. Then∫
‖ x− z ‖2 dµ(x) =

∫
‖ x− a ‖2 dµ(x)+ ‖ a− z ‖2 .

Proof. Obviously we have

‖ x− z ‖2 = ‖ x− a ‖2 + ‖ a− z ‖2 +2 < x− a, a− z > .

Integration with µ and the linearity of < ·, · > are yielding the assertion.

Corollary 2.3. Let B be a Borel measurable subset of Rd with µ(B) > 0. If
a = sµ(B), then∫

B

‖ x− z ‖2 dµ(x) =
∫

B

‖ x− a ‖2 dµ(x) + µ(B) ‖ a− z ‖2 .

If we approximate µ by another probability distribution, the optimal quan-
tization problem will also be approximated. To state the exact result for the
optimal codebooks, we first have to define the distance between two probabil-
ity measures in terms of the so called Wasserstein-Kantorovich-distance. Let
Mr = Mr(Rd) be the space of all Borel probability measures ν on Rd with∫
‖ x ‖r dν(x) < ∞ and ν1, ν2 ∈ Mr. Then

ρr(ν1, ν2) = inf
λ

(∫
‖ x− y ‖r dλ(x, y)

)1/r

is called the Wasserstein-Kantorovich (or Lr−minimal) distance between ν1 and
ν2. The infimum is taken over all Borel probability measures λ on Rd×Rd with
marginal measures ν1 and ν2. Let U, V ⊂ Rd be arbitrary sets. We denote

dH(U, V ) = max
{

max
u∈U

min
v∈V

‖ u− v ‖, max
v∈V

min
u∈U

‖ u− v ‖
}

as the Hausdorff distance between U and V .

Proposition 2.4. Let µ ∈ Mr and n ≤ card(supp(µ)). For every ε > 0, there
exists δ > 0 satisfying the following: for every ν ∈ Mr with ρr(µ, ν) < δ and
every α ∈ Cn,r(µ), there exists β ∈ Cn,r(ν) such that dH(α, β) < ε.

Proof. See [3], Theorem 4.21 (b).

Essential is the following characterization.

Proposition 2.5. Let µ ∈ Mr and µk ∈ Mr for every k ∈ N. Then

lim
k→∞

ρr(µk, µ) = 0,

if and only if µk converges weakly to µ and∫
‖ x ‖r dµk(x) →

∫
‖ x ‖r dµ(x).

Proof. See Theorem 2.6.4 in [13].
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3 Optimal quantization of distributions with fi-
nite support

At first in this section we briefly discuss the optimal quantization problem of dis-
tributions with finite support. In this situation, optimal quantization is reduced
to an optimal partitioning problem for the support (Remark 3.2). If r = 2, the
optimal quantization error can be calculated in terms of the centroids of an
optimal partition (Proposition 3.1). Moreover we will prove, that an optimal
partition of the finite support, which is induced by an appropriate optimal set,
will also be generated by another set with the same cardinality, if the Hausdorff
distance between the two sets is small enough (Lemma 3.5).

Let N ≥ 2 and ω = {x1, .., xN} ⊂ Rd be a set consisting of N different
points. We denote Qω as the equidistribution on ω, i.e.

Qω =
1
N

∑
x∈ω

δx,

if δx denotes the Dirac measure on x. For n ∈ {1, .., N} let Zn be the set of all
partitions of ω consisting of n−elements. For any non-empty finite set α ⊂ Rd

and a ∈ α we write ω(a | α) = ω ∩W (a | α).

Proposition 3.1. Let n ∈ {1, .., N}. Then

Vn,2(Qω) =
1
N

min
Z∈Zn

∑
γ∈Z

∑
x∈γ

‖ x− sQω
(γ) ‖2 . (4)

Proof. From [3], Example 3.5 we obtain

Vn,2(Qω) =
1
N

min
Z∈
Sn

k=1 Zk

∑
γ∈Z

∑
x∈γ

‖ x− sQω
(γ) ‖2

≤ 1
N

min
Z∈Zn

∑
γ∈Z

∑
x∈γ

‖ x− sQω
(γ) ‖2 . (5)

On the other hand let α be an n−optimal set for Qω, i.e. α ∈ Cn,2(Qω). From
Theorem 2.1 (3) we deduce, that {ω(a | α) : a ∈ α} is a n−partition of ω.
Moreover due to Theorem 2.1 (2) and (3) we have a = sQω

(ω(a | α)) for any a
in α. Hence,

Vn,2(Qω) =
∫

min
a∈α

‖ x− a ‖2 dQω(x)

=
1
N

∑
a∈α

∑
x∈ω(a|α)

‖ x− sQω
(ω(a | α)) ‖2

≥ 1
N

min
Z∈Zn

∑
γ∈Z

∑
x∈γ

‖ x− sQω
(γ) ‖2 . (6)
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The combination of (5) and (6) yields the assertion.

Let n ∈ {1, .., N} and define

Z∗
n =

Z ∈ Zn : Vn,2(Qω) =
1
N

∑
γ∈Z

∑
x∈γ

‖ x− sQω (γ) ‖2


as the set of all n−optimal partitions of ω. For any Z ∈ Zn denote
s(Z) = {sQω

(γ) : γ ∈ Z} as the set of all Qω-centroids induced by the partition
Z.

Remark 3.2. For any n ∈ {1, .., N} Proposition 3.1 reduces the calculation
of Vn,2(Qω) to the analysis of all possible n−partitions of ω. The proof of
Proposition 3.1 also shows, that every n-optimal set of Qω is generated by the
Qω-centroids of an appropriate n−optimal partition, i.e.

Cn,2(Qω) = {s(Z) : Z ∈ Z∗
n}.

On the other hand , every n−optimal partition is induced by an n−optimal set,
i.e.

Z∗
n = {{ω(a | α) : a ∈ α} : α ∈ Cn,2(Qω)}.

Even stronger, if α ∈ Cn,2(Qω) and Z = {ω(a | α) : a ∈ α} we have α = s(Z).
If Z ∈ Z∗

n, then Z = {ω(a | s(Z)) : a ∈ s(Z)}.

From Theorem 2.1 (4) we know, how the quantization error scales under a
similarity transformation. The following lemma does preserve this result for the
discrete distribution Qω, if the transformation is defined only on ω instead of
Rd. We will need this result in Section 5.

Lemma 3.3. Let c > 0 and f : ω → Rd with

‖ f(x)− f(y) ‖= c ‖ x− y ‖

for every x, y ∈ ω. If n ∈ {1, .., N}, then

Vn,r(Qf(ω)) = c2Vn,r(Qω).

Proof. Immediate consequence of Proposition 3.1.

Remark 3.4. Obviously the set f(Z∗
n) is identical with the set of all optimal

n−partitions of f(ω).

For a set B ⊂ Rd let
◦
B be the interior of B. Let β ⊂ Rd be finite and

consisting of more than one point. Let α ⊂ Rd with card(α) = card(β). We
define

dmin(β) = min{‖ x− y ‖: x, y ∈ β;x 6= y}
as the minimal appearing distance in β and ρ = min(dmin(α), dmin(β))/2. If

α∩
◦
B (b, ρ) 6= ∅ for all b ∈ β (7)
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and
β ∩

◦
B (a, ρ) 6= ∅ for all a ∈ α, (8)

we can define a bijection Gα,β from β to α by taking Gα,β(b) as a unique element

of α∩
◦
B (b, ρ) for every b ∈ β.

The conditions (7) and (8) are satisified, if

dH(α, β) < ρ =
1
2

min(dmin(α), dmin(β)). (9)

If dH(α, β) < dmin(β)/2, it is easy to see, that

1
2

min(dmin(α), dmin(β)) ≥ 1
2

min(dmin(β)− 2dH(α, β), dmin(β))

=
1
2
dmin(β)− dH(α, β).

As a consequence, if dH(α, β) < dmin(β)/4 holds, then (9) is satisified and
therefore (7) and (8) are also satisfied.

For an arbitrary set U ⊂ Rd we denote its boundary by ∂U . For any x ∈ Rd

and l > 0 let B(x, l) := {z ∈ Rd : ‖ z ‖≤ l} be the closed ball with radius l and
midpoint x.

Lemma 3.5. There exists a δ ∈ ]0, dmin(ω)/2], such that for every n ∈ {1, .., N},
every β ∈ Cn,2(Qω) and every α ⊂ Rd with card(α) = n and dH(α, β) < δ the
relation

∀ b ∈ β : ω(b | β) = {x ∈ ω : B(x, δ) ⊂ W (b | β)}
= {x ∈ ω : B(x, δ) ⊂ W (Gα,β(b) | α)} = ω(Gα,β(b) | α)

hold.

Proof.
1. We determine δ ∈ ]0, dmin(ω)/2].

By taking the minimum over {1, .., N} it suffices to prove the assertion for
one arbitrary n ∈ {1, .., N}. Let n ∈ {1, .., N} and β ∈ Cn,2(Qω). From
Theorem 2.1 (3b) we obtain Qω(

⋃
b∈β ∂W (b | β)) = 0, which yields

ω ∩
⋃
b∈β

∂W (b | β) = ∅. (10)

According to the definition (3) of a Voronoi cell and the identity (10) we obtain

‖ x− t′ ‖ − ‖ x− t ‖> 0

for every t, t′ ∈ β with t 6= t′ and x ∈ ω(t | β). Because β and ω are finite, we
get

H(ω, β) := min
t∈β

min
t′∈β\{t}

min
x∈ω(t|β)

(‖ x− t′ ‖ − ‖ x− t ‖) > 0. (11)
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Let γ ⊂ Rd with card(γ) = n and dH(γ, β) < min(H(ω, β)/2, dmin(β)/4). Next
we will show, that for every t ∈ β the relation

ω(t | β) = ω(Gγ,β(t) | γ) (12)

holds. Let t ∈ β and x ∈ ω(t | β). Let t′ ∈ β\{t}. Then we have

‖ x−Gγ,β(t′) ‖ − ‖ x−Gγ,β(t) ‖
≥ ‖ x− t′ ‖ − ‖ t′ −Gγ,β(t′) ‖ −(‖ x− t ‖ + ‖ t−Gγ,β(t) ‖)
≥ ‖ x− t′ ‖ − ‖ x− t ‖ −2dH(γ, β)
≥ H(ω, β)− 2dH(γ, β) > 0.

The bijectivity of Gγ,β ensures Gγ,β(β\{t}) = γ\{Gγ,β(t)}. Hence, we obtain
for all a′ ∈ γ\{Gγ,β(t)}, that

‖ x− a′ ‖ − ‖ x−Gγ,β(t) ‖> 0,

which yields x ∈ ω(Gγ,β(t) | γ).
On the other hand, let x ∈ ω(Gγ,β(t) | γ). By similar arguments one gets

x ∈ ω(t | β). Thus, the equality (12) is proved.
Now we will show, that for every ε > 0 and every γ ⊂ Rd with card(γ) = n

under the condition

dH(γ, β) < min
(

1
2
H(ω, β),

1
4
dmin(β),

ε

2

)
the relation

| H(ω, β)−H(ω, γ) | ≤ ε (13)

holds. The definition (11) and the identity (12) lead to

H(ω, β)−H(ω, γ) = min
t∈β

min
t′∈β\{t}

min
x∈ω(t|β)

(‖ x− t′ ‖ − ‖ x− t ‖)

− min
a∈γ

min
a′∈γ\{a}

min
x∈ω(a|γ)

(‖ x− a′ ‖ − ‖ x− a ‖)

= min
t∈β

min
t′∈β\{t}

min
x∈ω(Gγ,β(t)|γ)

(‖ x− t′ ‖ − ‖ x− t ‖)

− min
a∈γ

min
a′∈γ\{a}

min
x∈ω(a|γ)

(‖ x− a′ ‖ − ‖ x− a ‖).

Because Gγ,β is bijective, we obtain

H(ω, β)−H(ω, γ) = min
b∈γ

min
b′∈γ\{b}

min
x∈ω(b|γ)

(‖ x−Gβ,γ(b′) ‖ − ‖ x−Gβ,γ(b) ‖)

− min
a∈γ

min
a′∈γ\{a}

min
x∈ω(a|γ)

(‖ x− a′ ‖ − ‖ x− a ‖)

≥ min
b∈γ

min
b′∈γ\{b}

min
x∈ω(b|γ)

(‖ x− b′ ‖ − ‖ x− b ‖ −2dH(γ, β))

− min
a∈γ

min
a′∈γ\{a}

min
x∈ω(a|γ)

(‖ x− a′ ‖ − ‖ x− a ‖)

= −2dH(γ, β).
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In the same way one can show, that H(ω, β) − H(ω, γ) ≤ 2dH(γ, β), which
implies (13). As an immediate consequence of (13) we derive the dH−continuity
of the mapping H(ω, ·) in β. Therefore a δ1(β) > 0 exists such that for all
δ ≤ δ1(β) and for all γ ⊂ Rd with card(γ) = n and dH(β, γ) < δ the relation

H(ω, γ) > 4δ1(β) ≥ 4δ > 0 (14)

hold.
Note, that Cn,2(Qω) consists of finitely many partitions of ω (cf. Remark

3.2). Hence the inequality (14) still holds if we exchange δ1(β) by the positive
value

δ′1 = min{δ1(β′) : β′ ∈ Cn,2(Qω)}.

Let δ2 = min{dmin(β′)/4 : β′ ∈ Cn,2(Qω)} and

δ ∈
]
0,min

(
dmin(ω)

2
, δ2, δ

′
1

)]
be chosen independently of β. Let α ⊂ Rd such that card(α) = n and dH(α, β) <
δ. Let b ∈ β. To show the assertion of Lemma 3.5, we divide the rest of the
proof into several steps.

2. We will show that ω(b | β) ⊂ {x ∈ ω : B(x, δ) ⊂ W (Gα,β(b) | α)}.
Let x ∈ ω(b | β) and z ∈ B(x, δ). It holds that

min
a∈α\{Gα,β(b)}

(‖ z − a ‖ − ‖ z −Gα,β(b) ‖)

= min
a∈α\{Gα,β(b)}

(‖ z−x+x−Gβ,α(a)+Gβ,α(a)−a ‖ − ‖ z−x+x−b+b−Gα,β(b) ‖)

≥ min
a∈α\{Gα,β(b)}

(‖ x−Gβ,α(a) ‖ − ‖ z − x ‖ − ‖ Gβ,α(a)− a ‖

− ‖ x− b ‖ − ‖ z − x ‖ − ‖ b−Gα,β(b) ‖)

≥ min
a∈α\{Gα,β(b)}

(‖ x−Gβ,α(a) ‖ − ‖ x− b ‖)− 2δ − 2dH(α, β)

> min
a∈α\{Gα,β(b)}

(‖ x−Gβ,α(a) ‖ − ‖ x− b ‖)− 4δ.

Due to Gβ,α = G−1
α,β and (14) we have

min
a∈α\{Gα,β(b)}

(‖ x−Gβ,α(a) ‖ − ‖ x− b ‖)− 4δ

= min
b′∈β\{b}

(‖ x− b′ ‖ − ‖ x− b ‖)− 4δ

≥ H(ω, β)− 4δ > 0,

which yields z ∈ W (Gα,β(b) | α), resp. B(x, δ) ⊂ W (Gα,β(b) | α).
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3. We will show that ω(b | β) ⊃ {x ∈ ω : B(x, δ) ⊂ W (Gα,β(b) | α)}.
Let x ∈ ω and assume that B(x, δ) ⊂ W (Gα,β(b) | α).

Hence x ∈ W (Gα,β(b) | α) and we get

min
b′∈β\{b}

(‖ x− b′ ‖ − ‖ x− b ‖)

= min
b′∈β\{b}

(‖ x−Gα,β(b′) + Gα,β(b′)− b′ ‖ − ‖ x−Gα,β(b) + Gα,β(b)− b ‖)

> min
b′∈β\{b}

(‖ x−Gα,β(b′) ‖ − ‖ x−Gα,β(b) ‖)− 2δ

= min
a∈α\{Gα,β(b)}

(‖ x− a ‖ − ‖ x−Gα,β(b) ‖)− 2δ

≥ H(ω, α)− 2δ > 4δ − 2δ > 0,

which implies x ∈ W (b | β).

4. We will verify the identity ω(b | β) = {x ∈ ω : B(x, δ) ⊂ W (b | β)}.
Note, that dH(β, β) = 0 < δ. Hence, the identity of Step 4 is an immediate

consequence of Step 1 to Step 3.

5. We will prove, that {x ∈ ω : B(x, δ) ⊂ W (Gα,β(b) | α)} = ω(Gα,β(b) | α).
It is obvious, that

{x ∈ ω : B(x, δ) ⊂ W (Gα,β(b) | α)} ⊂ ω(Gα,β(b) | α). (15)

Let x ∈ ω(Gα,β(b) | α) and z ∈ B(x, δ). We deduce

min
a∈α\{Gα,β(b)}

(‖ z − a ‖ − ‖ z −Gα,β(b) ‖)

= min
a∈α\{Gα,β(b)}

(‖ z − x + x− a ‖ − ‖ z − x + x−Gα,β(b) ‖)

≥ min
a∈α\{Gα,β(b)}

(‖ x− a ‖ − ‖ x−Gα,β(b) ‖)− 2δ

≥ H(ω, α)− 2δ ≥ 4δ − 2δ > 0,

which implies

ω(Gα,β(b) | α) ⊂ {x ∈ ω | B(x, δ) ⊂ W (Gα,β(b) | α)}. (16)

The combination of (15) and (16) shows the assertion of Step 5.
Hence Step 1 to Step 5 are proving the assertion of Lemma 3.5.

4 The quantization error for ball-separated mea-
sures

Based on the results from the previous section we intend in this section to derive
a formula similar to (4), which decomposes the quantization error by an optimal
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partition and the according centroidal sums (see Theorem 4.4). The main idea
is an approximation argument between the discrete set ω and the ball collection
(B(xi, l))i∈{1,..,N} whose union contains the support of the Borel distribution µ.

Recall ω = {x1, .., xN} ⊂ Rd and consider the collection (B(xi, l))i∈{1,..,N} of
N pairwise disjoint closed balls on Rd with equal radius l > 0. The distribution µ
is called (l, ω)−separated, if relation (1) holds. Obviously Qω is (l, ω)−separated
for every l ∈ ]0, dmin(ω)/2[. Let Z ∈ Zn and recall s(Z) = {sQω

(γ) : γ ∈ Z} as
the set of all Qω-centroids induced by the partition Z.

Lemma 4.1. There exists a l0 ∈ ]0, dmin(ω)/2], such that for every n ∈ {1, .., N},
every l < l0 and every (l, ω)-separated probability measure ν the following hold:

(a) for every Z ∈ Z∗
n and γ ∈ Z we have

γ = {x ∈ ω : B(x, l) ⊂ W (sQω
(γ) | s(Z))} = ω(sQω

(γ) | s(Z))

(b) for every n−optimal set α ∈ Cn,2(ν) there exists an n−optimal partition
Z ∈ Z∗

n coinciding with the partition induced by α, i.e.

Z = {ω(sQω
(γ) | s(Z)) : γ ∈ Z} = {ω(a | α) : a ∈ α}.

Moreover

Z = {{x ∈ ω : B(x, l) ⊂ W (a | α)} : a ∈ α}
= {{x ∈ ω : B(x, l) ⊂ W (sQω (γ) | s(Z))} : γ ∈ Z}.

Proof. As a consequence of Proposition 2.5 one derives that for all ε > 0 an
l1 > 0 exists such that for all l ≤ l1 and for all (l, ω)−separated measures ν the
inequality

ρ2(ν,Qω) < ε (17)

holds. From (17) and Proposition 2.4 we get for every ε > 0 the existence of
l1 > 0 satisfying the following: for any l ≤ l1, n ∈ {1, .., N} and α ∈ Cn,2(ν),
there exists β ∈ Cn,2(Qω) such that

dH(α, β) < ε. (18)

Now fix δ ∈ ]0, dmin(ω)/2] according to Lemma 3.5 and let n ∈ {1, .., N}. We
take l1 so that (18) holds with ε = δ. We define l0 := min(l1, δ) and choose
l < l0. Let ν be a (l, ω)−separated measure.

(a) Let Z ∈ Z∗
n and γ ∈ Z. Remark 3.2 and Lemma 3.5 are yielding

γ = ω(sQω (γ) | s(Z))
= {x ∈ ω : B(x, δ) ⊂ W (sQω (γ) | s(Z))}.

If we substitute B(x, l) for B(x, δ), the part (a) of the assertion follows.
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(b) Let α ∈ Cn,2(ν). We take β so that (18) holds with ε = δ. Lemma 3.5
guarantees for all b ∈ β, that

ω(Gα,β(b) | α) = {x ∈ ω : B(x, δ) ⊂ W (Gα,β(b) | α)}
⊂ {x ∈ ω : B(x, l) ⊂ W (Gα,β(b) | α)}
⊂ ω(Gα,β(b) | α). (19)

Moreover Lemma 3.5 implies that

ω(b | β) = {x ∈ ω : B(x, δ) ⊂ W (b | β)}
⊂ {x ∈ ω : B(x, l) ⊂ W (b | β)} ⊂ ω(b | β) (20)

and
ω(Gα,β(b) | α) = ω(b | β). (21)

Now we define the partition Z = {ω(b | β) : b ∈ β}. From Remark 3.2 we
deduce Z ∈ Z∗

n. Applying Remark 3.2 and Theorem 2.1 (2) we obtain

β = s(Z). (22)

From the definition of Z and (22), it follows that

Z = {ω(b | β) : b ∈ β} = {ω(sQω
(γ) | s(Z)) : γ ∈ Z}.

The identity (21) and the bijectivity of Gα,β yield

Z = {ω(b | β) : b ∈ β} = {ω(Gα,β(b) | α) : b ∈ β} = {ω(a | α) : a ∈ α}.

Hence we get from (19) and (20) the relation

Z = {{x ∈ ω : B(x, l) ⊂ W (a | α)} : a ∈ α}
= {{x ∈ ω : B(x, l) ⊂ W (sQω

(γ) | s(Z))} : γ ∈ Z},

which proves the part (b) of the assertion.
One could expect in general the existence of a lower bound for l0 in Lemma 4.1.
E.g. it could be conjectured the existence of ξ > 0 independent of ω such that
l0 > ξ · dmin(ω). The following example shows that this is unfortunately not
true.

Example 4.2. Let q ∈ ]0, 1/4[ and

ω = {(0, 0); (1, 0); (1− q, 1); (q, 1)}.

Applying Proposition 3.1 and Remark 3.2 one recognizes that

C3,2(Qω) = {{(0, 0); (1, 0); (
1
2
, 1)}}.

Now let l ∈ [0, 2q] and

κ = {(0, 0); (1, 0); (1− q + l, 1); (q − l, 1)}.
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The equidistribution Qκ is a (l, ω)−separated measure.
If l < q, then C3,2(Qκ) = C3,2(Qω). If l > q, then

C3,2(Qκ) = {{(q − l, 1); (1− q + l, 1); (
1
2
, 0)}}.

In case of l = q we have

C3,2(Qκ) =
{{

x + y

2

}
∪ κ− {x, y} : x, y ∈ κ, ‖ x− y ‖= 1

}
.

Obviously the statements (a) and (b) in Lemma 4.1 are becoming wrong, if we set
ν = Qκ and l ≥ q. They are true if l < q. Because dmin(ω) = 1− 2q > 1/4 > q,
and q could be chosen arbitrary small, it is not possible to fix a ξ > 0, which is
independent of ω, such that the relation l0 > ξ · dmin(ω) would hold.

As a last auxiliary result in this section we need a partition formula for the
quantization error in case of n = 1.

Lemma 4.3. Let l ∈ ]0, dmin(ω)/2[ and ∅ 6= κ ⊂ ω. Let ν be a (l, ω)-separated
measure and n = card(κ). Then

V1,2

(
ν

(
· |
⋃
x∈κ

B(x, l)

))

=
1
n

∑
x∈κ

(
‖ sν(B(x, l))− 1

n

∑
y∈κ

sν(B(y, l)) ‖2 +V1,2(ν(· | B(x, l)))

)
.

Proof. Using Theorem 2.1 (2) one gets

{sν(
⋃
x∈κ

B(x, l))} ∈ C1,2(ν(· |
⋃
x∈κ

B(x, l))),

which yields

V1,2(ν(· |
⋃
x∈κ

B(x, l))) =
N

n

∑
x∈κ

∫
B(x,l)

‖ z − sν(
⋃
y∈κ

B(y, l)) ‖2 dν(z).

The application of Corollary 2.3 implies

V1,2(ν(· |
⋃
x∈κ

B(x, l)))

=
N

n

∑
x∈κ

(
1
N

‖ sν(
⋃
y∈κ

B(y, l))− sν(B(x, l)) ‖2

+
∫

B(x,l)

‖ z − sν(B(x, l)) ‖2 dν(z)

)

=
1
n

∑
x∈κ

(
‖ sν(

⋃
y∈κ

B(y, l))− sν(B(x, l)) ‖2 +V1,2(ν(· | B(x, l)))

)
.
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From the definition of sν we obtain

sν(
⋃
y∈κ

B(y, l)) =

(
ν(
⋃
y∈κ

B(y, l))

)−1 ∫
S

y∈κ B(y,l)

zdν(z)

=
N

n

∑
y∈κ

∫
B(y,l)

zdν(z)

=
1
n

∑
y∈κ

sν(B(y, l)).

As a consequence we deduce

V1,2(ν(· |
⋃
x∈κ

B(x, l)))

=
1
n

∑
x∈κ

(
‖ 1

n

∑
y∈κ

sν(B(y, l))− sν(B(x, l)) ‖2 +V1,2(ν(· | B(x, l)))

)
.

Now we can state and prove the main result in this section.

Theorem 4.4. There exists a l0 ∈ ]0, dmin(ω)/2], such that for every
n ∈ {1, .., N}, every l < l0 and (l, ω)−separated probability distribution ν the
identity

Vn,2(ν) =
1
N

∑
x∈ω

V1,2(ν(· | B(x, l)))+

min
Z∈Z∗

n

1
N

∑
γ∈Z

∑
x∈γ

‖ sν(B(x, l))−

(
1

card(γ)

∑
y∈γ

sν(B(y, l))

)
‖2 (23)

hold. Moreover for every n−optimal set α ∈ Cn,2(ν) an n−optimal partition
Z ∈ Z∗

n of ω exists, which induces α, i.e.

Cn,2(ν) ⊂ {{sν(
⋃
x∈γ

B(x, l)) : γ ∈ Z} : Z ∈ Z∗
n}. (24)

Proof. We choose l0 according to Lemma 4.1. Let n ∈ {1, .., N}. Let l < l0 and
ν a (l, ω)-separated probability measure. Let α ∈ Cn,2(ν). We subdivide the
remaining proof into several steps.

1. We show relation (24).
According to Lemma 4.1 (b) the set α induces an n−optimal partition Z of

ω, i.e.
Z = {ω(a | α) : a ∈ α} ∈ Z∗

n. (25)

Again by Lemma 4.1 (b) we have for every a ∈ α, that

{x ∈ ω : B(x, l) ⊂ W (a | α)} = ω(a | α). (26)
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In the same way as for Qω in Remark 3.2 we deduce from Theorem 2.1 (2) and
(3) that α consists of the ν-centroids of its Voronoi cells, i.e.

α = {sν(W (a | α)) : a ∈ α}. (27)

Because the support of ν is a subset of ∪x∈ωB(x, l) we get from (26) and (27),
that

α = {sν(
⋃

x∈ω(a|α)

B(x, l)) : a ∈ α}

= {sν(
⋃
x∈γ

B(x, l)) : γ ∈ Z}.

Because α was chosen arbitrarily, we have proven (24).

2. We prove a lower bound for Vn,2(ν).
Following the comments in [3], p.9 one recognizes that a Borel measurable

partition {Aa : a ∈ α} exists with

W0(a | α) ⊂ Aα ⊂ W (a | α),

if we denote W0(a | α) = {x ∈ Rd : ‖ x − a ‖ < minb∈α\{a} ‖ x − b ‖}. From
[3], p. 31/32 we obtain

Vn,2(ν) =
∑
a∈α

ν(Aa) · V1,2(ν(· | Aa)).

Applying Theorem 2.1 (3)(b) we get

Vn,2(ν) =
∑
a∈α

ν(W (a | α)) · V1,2(ν(· | W (a | α))).

Because ν is (l, ω)−separated we have ν(B(x, l)) = 1/N . The application of
(25) and (26) yields

Vn,2(ν) =
∑
γ∈Z

card(γ)
N

· V1,2(ν(· |
⋃
x∈γ

B(x, l))).

Therefore, Lemma 4.3 implies

Vn,2(ν) =
1
N

∑
γ∈Z

∑
x∈γ

(
V1,2(ν(· | B(x, l)))

+ ‖ sν(B(x, l))− 1
card(γ)

∑
y∈γ

sν(B(y, l)) ‖2

)
,

and

Vn,2(ν) ≥ min
Z∈Z∗

n

1
N

∑
γ∈Z

∑
x∈γ

(
V1,2(ν(· | B(x, l)))

+ ‖ sν(B(x, l))− 1
card(γ)

∑
y∈γ

sν(B(y, l)) ‖2

)
. (28)
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3. For the upper bound we proceed indirectly.
Assume the existence of Y ∈ Z∗

n\{Z} satisfying

Vn,2(ν) >
1
N

∑
η∈Y

∑
x∈η

(
V1,2(ν(· | B(x, l)))

+ ‖ sν(B(x, l))− 1
card(η)

∑
y∈η

sν(B(y, l)) ‖2

)
.

Using Lemma 4.3 we recognize that the right hand side of this inequality is
identical to ∑

η∈Y

card(η)
N

· V1,2

(
ν(· |

⋃
x∈η

B(x, l))
)

.

We define β = {sQω
(η) : η ∈ Y }. From Lemma 4.1 (a) we deduce∑

η∈Y

card(η)
N

· V1,2

(
ν(· |

⋃
x∈η

B(x, l))
)

=
∑
b∈β

ν(W (b | β))V1,2(ν(· | W (b | β))).

According to [3], Lemma 3.3 the right hand side of this inequality is greater
than or equal to Vn,2(ν). Hence, we end into a contradiction. Therefore (28)
turns into an equation and the identity (23) is proved.

5 Application to self-similar measures

Let d, N ∈ N, N ≥ 2 and consider N contractions S1, .., SN with identical
contraction factor c ∈ ]0, 1[, which is the number satisfying

‖ Si(x)− Si(y) ‖= c ‖ x− y ‖ (29)

for every i ∈ {1, .., N} and x, y ∈ Rd. We call these N contractions a uniform
iterated function system (UIFS). Every UIFS has a unique nonempty compact
set A ⊂ Rd with the characteristic property

A = S1(A) ∪ ... ∪ SN (A). (30)

For a proof of this fact the reader is referred to [7], Theorem 3.1 (3) (i). In
the literature on fractal geometry (see e.g. [1], p.31) the set A is often called
invariant attractor or invariant set.

Moreover a unique Borel probability distribution µ on Rd exists, which is
characterized by

µ =
1
N

N∑
i=1

µ ◦ S−1
i . (31)

We call µ the uniform distribution (UD) of the UIFS. The support of µ
coincides with the invariant set A. A proof of these facts can also be found in
[7].
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Every contraction S : Rd → Rd with contraction factor c ∈ ]0, 1[ has a unique
fixed point x. Moreover an orthonormal mapping O : Rd → Rd exists such that

S(z) = c ·O(z − x) + x

for every z ∈ Rd. For a proof see [7], Proposition 2.3 (1)).
We denote by ω = {x1, .., xN} the set of fixed points of the UIFS. We will

assume that the fixed points are pairwise different. It holds that ω ⊂ A.
Now we intend to apply the results of Section 4 to self-similar measures. To

this end, we need further restrictions to the UIFS. For the rest of this paper
let us assume, that all contractions of the UIFS do not contain a rotation part,
i.e. for every x ∈ Rd and i ∈ {1, .., N} we have

Si(x) = c · (x− xi) + xi. (32)

For any nonempty set B ⊂ Rd we define

diam(B) = sup{‖ x− y ‖: x, y ∈ Rd;x 6= y}.

We assume that

c <
1
2
· dmin(ω)
diam(A)

. (33)

Remark 5.1. Because the set A depends also on the contraction factor c the
existence of c0 satisfying (33) for every c ∈ ]0, c0[ is not obvious. Due to A =⋃N

i=1 Si(A) there exists i, j ∈ {1, .., N} and x ∈ Si(A), y ∈ Sj(A), such that
diam(A) = ‖ x− y ‖ . Hence we obtain

diam(A) ≤ ‖ x− xi ‖ + ‖ xi − xj ‖ + ‖ xj − y ‖
≤ 2c · diam(A) + diam(ω),

which yields

diam(A) ≤ 1
1− 2c

· diam(ω), (34)

if we assume that c ∈ ]0, 1/2[. A simple calculation using (34) shows that

c <
1
2
· dmin(ω)
diam(A)

is satisfied for every c ∈ ]0, c0[, if we set c0 = dmin(ω)/(2(dmin(ω) + diam(ω))).

Remark 5.2. Due to (33) the balls (B(xi, c · diam(A)))i∈{1,..,N} are pairwise
disjoint. Using (30) and (31) we deduce that

µ(B(xi, c · diam(A))) = µ(Si(A)) =
1
N

for every i ∈ {1, .., N}. Hence, the probability distribution µ as UD of the UIFS
is a (c · diam(A), ω)−separated measure.
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Lemma 5.3. Let ∅ 6= I ⊂ {1, .., N} and

∼
ω = {Si(sµ(A)) : i ∈ {1, .., N}}.

Then

(a) sµ(A) =
∑N

i=1 xi/N,

(b) sµ

(⋃
i∈I B(xi, c · diam(A))

)
=
∑

i∈I Si(sµ(A))/ card(I),

(c) Vn,2(Q∼
ω
) = (1− c)2Vn,2(Qω) for every n ∈ {1, .., N},

(d) V1,2(µ) = ((1− c)/(1 + c)) · V1,2(Qω).

Moreover we obtain for every i ∈ {1, .., N}, that

(e) V1,2(µ(· | B(xi, c · diam(A)))) = c2 · ((1− c)/(1 + c)) · V1,2(Qω).

Proof.
(a) Obviously

Si(A) ⊂ B(xi, c · diam(A)) (35)

for every i ∈ {1, .., N}. Due to (33) we therefore get

Si(A) ∩ Sj(A) = ∅, (36)

for all i, j ∈ 1, .., N with i 6= j. From (30), (36) and the definition (2) of the
centroid we deduce

sµ(A) =
∫

A

xdµ(x) =
N∑

i=1

∫
Si(A)

xdµ(x).

Using (31) and again (36) we obtain

sµ(A) =
N∑

i=1

∫
Si(A)

xd(
1
N

N∑
j=1

µ ◦ S−1
j (x)) =

N∑
i=1

1
N

∫
Si(A)

xdµ ◦ S−1
i (x).

From (32) we deduce

sµ(A) =
N∑

i=1

1
N

∫
A

(c(x− xi) + xi) dµ(x)

=
N∑

i=1

(
c

N

∫
A

xdµ(x) +
1− c

N
xi

)

= c · sµ(A) + (1− c)
1
N

N∑
i=1

xi,

which yields sµ(A) =
∑N

i=1 xi/N.
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(b) Because µ is a (c ·diam(A), ω)−separated measure (cf. Remark 5.2), we get
by a simple calculation, that

sµ

(⋃
i∈I

B(xi, c · diam(A))

)
=

1
card(I)

∑
i∈I

sµ(B(xi, c · diam(A))). (37)

Due to supp(µ) = A and (30) we have for every k ∈ {1, .., N} that

µ(· | B(xk, c · diam(A))) = µ

(
· |

N⋃
i=1

Si(A) ∩B(xk, c · diam(A))

)
.

The combination of (36), (35) and (33) implies

µ(· | B(xk, c · diam(A))) = µ (· | Sk(A)) . (38)

From (37) and (38) we deduce

sµ

(⋃
i∈I

B(xi, c · diam(A))

)
=

1
card(I)

∑
i∈I

sµ(Si(A))

=
1

card(I)

∑
i∈I

(µ(Si(A)))−1

∫
Si(A)

xdµ(x).

Using (31) and (36) we get together with (32), that

sµ

(⋃
i∈I

B(xi, c · diam(A))

)

=
1

card(I)

∑
i∈I

N

(
1
N

∫
A

Si(x)dµ(x)
)

=
1

card(I)

∑
i∈I

∫
A

(c(x− xi) + xi) dµ(x)

=
1

card(I)

∑
i∈I

(c
∫

A

xdµ(x) + (1− c)xi) =
1

card(I)

∑
i∈I

Si(sµ(A)).

(c) We define a mapping T from ω to Rd by

T (x) = c ·

((
1
N

N∑
i=1

xi

)
− x

)
+ x

for every x ∈ ω. Applying (a) and (32) we get T (ω) =
∼
ω. Now let x, y ∈ ω.

Obviously
‖ T (x)− T (y) ‖= (1− c) ‖ x− y ‖ .

The assertion (c) is now a direct consequence of Lemma 3.3.
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(d) With (31) and (32) we derive∫
‖x‖2dµ(x) =

1
N

N∑
i=1

∫
‖c(x− xi) + xi‖2dµ(x).

Using sµ(A) =
∫

xdµ(x) and by some elementary calculations we deduce∫
‖x‖2dµ(x) =

1− c

1 + c
·

(
(

1
N

N∑
i=1

‖xi‖2)− ‖sµ(A)‖2

)
+ ‖sµ(A)‖2.

By (a) we have

V1,2(Qω) =
1
N

N∑
i=1

‖ xi − sµ(A) ‖2=

(
1
N

N∑
i=1

‖xi‖2

)
− ‖sµ(A)‖2.

Hence we obtain ∫
‖x‖2dµ(x)− ‖sµ(A)‖2 =

1− c

1 + c
· V1,2(Qω).

By Theorem 2.1 (2) we know, that {sµ(A)} is a 1−optimal set for µ. Thus we
get from Lemma 2.2 that V1,2(µ) =

∫
‖x‖2dµ(x) − ‖sµ(A)‖2, which proves the

assertion (d).

(e) From identity (38) and (31) it follows for all i ∈ {1, .., N}, that

µ(· | B(xi, c · diam(A))) = µ (· | Si(A)) = µ ◦ S−1
i .

Using (29) and Theorem 2.1 (4) we deduce

V1,2(µ(· | B(xi, c · diam(A)))) = V1,2(µ ◦ S−1
i ) = c2V1,2(µ).

The assertion (e) then follows immediately from (d).
In order to keep notation simple, we denote Z∗

n from now on as the set of all
n−partitions of the set {1, .., N} instead of the set ω. To stress the dependence
of the UD of the UIFS on the contraction factor c ∈ ]0, 1[ we denote µc instead
of µ.

Theorem 5.4. Let µc be the UD of a UIFS, which consists of the mappings

Si(x) = c · (x− xi) + xi.

with contraction factor c ∈ ]0, 1[ and i ∈ {1, .., N}, x ∈ Rd.
Then a c0 ∈ ]0, dmin(ω)/(2 diam(A))] exists such that for every n ∈ {1, .., N}
and every c < c0 the equation

Vn,2(µc) =
1− c

1 + c
· c2V1,2(Qω) + (1− c)2Vn,2(Qω) (39)



Optimal quantization on small balls 21

holds. Additionally for every n−optimal set α ∈ Cn,2(µc) an n−optimal parti-
tion Z of {1, .., N} exists such that

α =

 1
card(I)

∑
i∈I

xi +
c

N

N∑
j=1

(xj − xi)

 : I ∈ Z

 .

Proof. Fix l0 > 0 according to Theorem 4.4. Let c0 := l0/(2l0 + diam(ω)) and
choose c < c0. As in Remark 5.1 one recognizes, that

c <
l0

diam(A)
≤ dmin(ω)

2 diam(A)
.

Remark 5.2 ensures that µc is a (c · diam(A), ω)−separated probability distrib-
ution. Now let n ∈ {1, .., N} and l = c · diam(A).
1. From Theorem 4.4 it follows that

Vn,2(µc) =
1
N

N∑
i=1

V1,2(µc(· | B(xi, l)))+

min
Z∈Z∗

n

1
N

∑
I∈Z

∑
i∈I

‖ sµc
(B(xi, l))−

 1
card(I)

∑
j∈I

sµc
(B(xj , l))

 ‖2 .

The application of Lemma 5.3 (b) and (e) yields

Vn,2(µc) = c2 · 1− c

1 + c
· V1,2(Qω)+

min
Z∈Z∗

n

1
N

∑
I∈Z

∑
i∈I

‖ Si(sµc
(A))−

 1
card(I)

∑
j∈I

Sj(sµc
(A))

 ‖2 .

According to Remark 3.4 and Proposition 3.1 we have

Vn,2(µc) = c2 · 1− c

1 + c
· V1,2(Qω) + Vn,2(Q∼

ω
).

By Lemma 5.3 (c) we deduce

Vn,2(µc) = c2 · 1− c

1 + c
· V1,2(Qω) + (1− c)2Vn,2(Qω).

2. Theorem 4.4 implies

Cn,2(µc) ⊂ {{sµc
(
⋃
i∈I

B(xi, c · diam(A))) : I ∈ Z} : Z ∈ Z∗
n}.
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Lemma 5.3 (b) yields

{{sµc(
⋃
i∈I

B(xi, c · diam(A))) : I ∈ Z} : Z ∈ Z∗
n}

= {{ 1
card(I)

∑
i∈I

Si(sµc
(A)) : I ∈ Z} : Z ∈ Z∗

n}.

From Lemma 5.3 (a) and (32) we obtain

{{ 1
card(I)

∑
i∈I

Si(sµc(A)) : I ∈ Z} : Z ∈ Z∗
n}

= {{ 1
card(I)

∑
i∈I

xi +
c

N

N∑
j=1

(xj − xi)

 : I ∈ Z} : Z ∈ Z∗
n},

which finishes the proof.

From the equation (39) we obtain that the quantization error differences of µc

are scaled versions of the ones of Qω. To be exactly let ν be a Borel probability
distribution on Rd with a support consisting of at least N points. If N > 2 we
define

Dmin(N, ν)
= min{Vn,2(ν)− Vn+1,2(ν)− (Vn+1,2(ν)− Vn+2,2(ν)) : n ∈ {1, .., N − 2}}
= min{Vn,2(ν) + Vn+2,2(ν)− 2Vn+1,2(ν) : n ∈ {1, .., N − 2}}

as the smallest quantization error difference for n = 1, .., N .

Corollary 5.5. There exists c0 ∈ ]0, dmin(ω)/(2 diam(A))] such that for every
c < c0

(a) VN,2(µc) = c2V1,2(µc) and

(b) Dmin(N,µc) = (1− c)2Dmin(N,Qω), if N > 2.

Proof. Immediate consequence of Theorem 5.4.
To demonstrate the applicability of our results we discuss briefly three famous
UIFS and the optimal quantization of their related UD’s.

Example 5.6 (one-dimensional Cantor set). Let d = 1 and ω = {x1, x2} with
x1 = 0, x2 = 1. With a contracting factor c ∈ ]0, 1/2] we consider the UIFS
defined by (32). From Theorem 5.4 we obtain for small enough c ∈ ]0, 1/2] that

V1,2(µ) =
1− c

1 + c
· V1,2(Qω) =

1− c

4(1 + c)
(40)

and
V2,2(µ) =

1− c

1 + c
· c2 · V1,2(Qω) = c2 1− c

4(1 + c)
.
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By elementary considerations using (31) and Theorem 2.1 (2), one can prove
the equation (40) directly for every c ∈ ]0, 1/2]. For the special case c = 1/3 the
reader is also referred to [2], Lemma 3.4. and [2], Theorem 5.2. Insofar our
results are substantially incorporated by the already known facts regarding this
example.

Example 5.7 (Sierpinski gasket). Let d = 2 and ω = {x1, x2, x3} with
x1 = (0, 0), x2 = (1, 0) and x3 = (1/2,

√
3/2). With a contracting factor c ∈

]0, 1/2] we consider the UIFS defined by (32). If c = 1/2, the invariant set
A of the UIFS is the (classical) Sierpinski gasket. Using Proposition 3.1 we
obtain

V1,2(Qω) =
1
3

3∑
i=1

‖ xi − sQω
(ω) ‖2=

1
3
.

Applying Theorem 5.4 and Proposition 3.1 we derive

V1,2(µ) =
1− c

1 + c
· V1,2(Qω) =

1− c

3(1 + c)
,

V2,2(µ) =
c2(1− c)
3(1 + c)

+
1
6
(1− c)2, (41)

and

V3,2(µ) =
c2(1− c)
3(1 + c)

for small enough c > 0. By direct calculations or Corollary 5.5 (b) one gets

Dmin(3, µ) = (1− c)2
((

1√
3

)2

− 4
3

(
1
2

)2
)

= 0.

From Theorem 2.1 (2) we know that sµ(A) is the only 1−optimal set for µ.
Using Lemma 5.3 (a) we obtain that sµ(A) = (1/2,

√
3/6). For i ∈ {1, 2, 3} we

denote
x1,i = Si(sµ(A))

and

x2,i =
1
2

3∑
j=1
j 6=i

Sj(sµ(A)).

Applying Theorem 5.4 and Lemma 5.3 (a) we get

C2,2(µ) ⊂ {{x1,i, x2,i} : i = 1, 2, 3}.

According to symmetry arguments one easily recognizes that

C2,2(µ) = {{x1,i, x2,i} : i = 1, 2, 3}. (42)

Again by Theorem 5.4 we obtain

C3,2(µ) = {{x1,1, x1,2, x1,3}}.
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The identities (42) and (41) are becoming wrong, if c > 3/7. To see this, let
β = {b1, b2} with b1 =

(
1/2,

√
3 (1/2− c/3)

)
and b2 =

(
1/2, c

√
3/6
)
. A direct

calculation shows that

µ(W (b1 | β)− S3(A)) > 0,

if c > 3/7. Hence, in this case

b1 6= E(µ(· | W (b1 | β))), (43)

if E(·) denotes the expected value. If we assume (42), then Theorem 2.1 (3)(d)
implies C1,2(µ(· | W (b1 | β))) = {{b1}}. Moreover, Theorem 2.1 (2) yields

b1 = E(µ(· | W (b1 | β))),

which contradicts (43). Thus, β = {b1, b2} could not be a 2−optimal set, and
(41) and (42) do not hold in this case.

Example 5.8 (Cantor dust). Let d = 2 and ω = {x1, x2, x3, x4} with
x1 = (0, 0), x2 = (1, 0), x3 = (1, 1) and x4 = (0, 1). Consider the UIFS defined
by (32) with a contracting factor c ∈ ]0, 1/2]. Similar to the other examples we
get for small enough contracting factor c > 0 the following identities

V1,2(µ) =
1− c

2(1 + c)
,

V2,2(µ) =
1− c

4(1 + c)
(1 + c2),

V3,2(µ) =
(1− c)(1 + 3c2)

8(1 + c)
,

V4,2(µ) =
1− c

2(1 + c)
· c2.

Here as well, the relation Dmin(4, µ) = 0 hold.
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