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Abstract

Quantifier elimination (QE) is a powerful tool for problem solving. Once a problem is
expressed as a formula, such a method converts it to a simpler, quantifier-free equiva-
lent, thus solving the problem. Particularly many problems live in the domain of real
numbers, which makes real QE very interesting. Among the so far implemented meth-
ods, QE by cylindrical algebraic decomposition (CAD) is the most important complete
method. The aim of this thesis is to develop CAD-based algorithms, which can solve
more problems in practice and/or provide more interesting information as output.

An algorithm that satisfies these standards would concentrate on generic cases and
postpone special and degenerated ones to be treated separately or to be abandoned
completely. It would give a solution, which is locally correct for a region the user is
interested in. It would give answers, which can provide much valuable information in
particular for decision problems. It would combine these methods with more specialized
ones, for subcases that allow for. It would exploit degrees of freedom in the algorithms
by deciding to proceed in a way that promises to be efficient. It is the focus of this
dissertation to treat these challenges.

Algorithms described here are implemented in the computer logic system REDLOG
and ship with the computer algebra system REDUCE.
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Introduction

The results presented in this thesis are application-oriented extensions and modifica-
tions of the cylindrical algebraic decomposition algorithm (CAD) for real quantifier
elimination (QE).

A Tool for Problem Solving

Quantifier elimination (QE) is a versatile tool for solving a wide range of problems. It
proceeds in two steps:

Modelling QE
Problem −→ Formula −→ Solution

In a first step, the problem is modeled by a formula. This step is usually straightfor-
ward and can sometimes be performed automatically, e.g. in case of electrical network
analysis, or schematically, e.g. in case of geometrical theorem proving. A formulation
is usually easy to comprehend, but not yet useful. Quantifier elimination is the tool to
find an equivalent, but simpler formulation. Simpler here means not necessarily shorter.
Instead it means that the quantifiers, which can be thought of as an infinite disjunction
or conjunction ranging over all real numbers, are replaced by something finite. So quan-
tifier elimination is a process of starting with seemingly infinite cases, but then exposing
the finite cases that there really are. This sounds a little bit like a wonder, and in fact it
is: only for certain very special situations in algebra and logic it is possible. The field of
reals with the language of ordered rings is such a lucky situation. This setting, shortly
called real quantifier elimination, is the setting with which we will be concerned.

History and Importance of CAD

Some historic remarks are in order. Tarski was the first to realize the existence of a
method for real quantifier elimination in the 1930s, but his method was not published
until the late 1940s1. Tarski’s method was not only too complicated to implement on
computers in those days, but also its theoretical complexity was less than optimal. In

1cf. [Tar48], for a reprint see [CJ89]
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1973 Collins found a method called cylindrical algebraic decomposition (CAD). Today
this is the most important implemented general method for real quantifier elimination.
To substantiate the importance of the method, here is a list of applications:

• The analysis of partial differential equations is one of the best studied application
area. This includes stability analysis [HLS97] of PDEs and a method for deciding
them to be elliptic [SW03].

• Applications of quantifier elimination in control theory [ADY+96, Jir97] and in the
analysis of hybrid systems, in particular for the computation of the reachability
space, are also extensively studied [ADY+96, Jir97].

• Ioakimidies has applied QE in the area of theoretical mechanics [Ioa99].

• Quantifier elimination and simplification methods can also be applied in the area
of Hopf bifurcations [KW00].

• Motion planning for one or more robots in a time dependent environment was also
studied [Wei01b, Wei01a, DW].

• Sturm suggested to use QE for the design, analysis and diagnosis of electrical
networks [Stu99b].

• Dolzmann has described in his doctoral dissertation how to solve scheduling prob-
lems for the traditional dedicated machine model and for project networks by
applying the extended quantifier elimination [Dol00].

• Problems in the area of geometry and computer aided design may be also solved
by quantifier elimination. [Stu00, Stu99a].

Challenge

Looking at the above list of application areas one might wonder, why not everybody is
using the method extensively. There are two main reasons for this:

1. The flexibility of the method comes at a price. This price is the theoretical com-
plexity, which is doubly exponential. As a result the method does not scale well
in practice.

2. Most engineers or mathematicians, who have applications for the method, are
either unaware of the method, or put off by the difficulties of learning to formulate
the problem in the QE framework and to use existing implementations.

These issues were addressed in the past in several ways:
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1. Many improvements were suggested to the method to avoid unnecessary compu-
tations. These improvements cover every aspect of the method. There has been
30 years of progress and active research.

2. By restricting the method to input of a special kind, or by adopting the method to
the specific problem, the overhead for a particular class of examples or problems
can be reduced.

3. Within recent years, several implementations became available. An interesting
approach is the package SYNRAC, which is developed by a group at the Fujitsu
Laboratories. It allows the engineers to use QE without actually having to know
something about logic and formulas.

Contents of this Thesis

Let us now focus on the scope of this thesis. In the past, three paradigms for QE were
developed, originally for the virtual substitution (VS) method, which is an alternative,
but restricted, real QE method.

1. Generic Quantifier Elimination is based on the observation that much work is
done for special cases, which might not be of much interest. Thus such cases are
excluded, but kept track of.

2. Local Quantifier Elimination caters for situation where values of interest for some
or all parameters are known. Then a result is returned that is correct for a certain
area where the points of interest reside in.

3. Quantifier Elimination with Answers provides parametric sample points, in case
an existential request can be satisfied, or parametric counter examples, in case a
universal request cannot be satisfied.

This thesis makes three core contributions to deal with the issues above and to push
the applicability and accessability of the CAD method forward:

1. We show that the aforementioned paradigms generic QE, local QE, and QE with
answers can be successfully transferred to the CAD method.

2. We investigate the effects of changing the projection order and a linear transfor-
mation of variables on the CAD method and show that these methods can be
utilized to dramatically improve the practical complexity.

3. We present an implementation as part of the computer algebra system REDUCE.

Let us now summarize how the content is organized in the main part of this thesis.

Chapter 1 clarifies notation and introduces other basic tools.
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Chapter 2 introduces CAD in the relevant detail. This establishes the theoretical
framework on which this work is based.

Chapter 3 introduces the concept of cylindrical subdecompositions. This provides
an abstraction layer, from which generic CAD and local CAD are derived as
applications.

Chapter 4 deals with applications of cylindrical subdecompositions. Most notably
these applications include generic CAD and local CAD. In addition we show that
these variants can be combined.

Chapter 5 extends the CAD algorithm to give parametric answers and parametric
counter-examples.

Chapter 6 shows how efficient projection orders can be constructed.

Chapter 7 introduces and investigates the regularization of formulas.

Chapter 8 discusses the author’s implementation.

Chapter 9 gives the overall conclusions.

Acknowledgment
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Chapter 1

Preliminaries

The aim of this chapter is to introduce some notions and to synchronize the reader’s
notation with the notation used in this thesis. In particular, we will mention some
general conventions and notations, look at algebra where we give algorithms to compute
subresultants, and introduce some concepts in logic.

1.1 General Conventions

Before we start some general conventions should be mentioned. The natural numbers
N include zero. An algorithm terminates, if a Return command is encountered. The
notion a is a shorthand for a1, . . . , an for some n which is either known from the context,
or which does not matter. If f : A → B is a map and S ⊆ A, then f [S] ⊆ B denotes
the image of S under f .

1.2 Algebra

Ring always denotes a commutative ring with unit. In this section, D will be a ring. A

denotes the set of all real algebraic numbers.
We assume that the reader is familiar with the notion of a polynomial ring in

X1, . . . , Xn over D, denoted as D[X1, . . . , Xn]. As we will only consider polynomi-
als over infinite integral domains we need not make a difference between polynomials
and polynomial functions.

1.2.1 Univariate Notions on Multivariate Polynomials

1.1 Definition
Let f be a polynomial in x1 . . . , xj (j ≥ 1), i.e. f ∈ D[x1 . . . , xj ]. We can view f
as element of D[x1 . . . , xj−1][xj ]. There is a unique n ≥ −1 and unique pn, . . . , p0 ∈

13



14 1.2 Algebra

D[x1 . . . , xj−1] such that

f =
n∑

i=0

pix
i
j

and pn �= 0, if n ≥ 0. We define the following functions:

• The degree of f in xj , denoted as deg(f, xj) is n. In particular, this defines
deg(0, xj) := −1. If deg(f, xj) ≤ 0 then we call f a constant polynomial in xj .

• The leading coefficient of f in xj , denoted as lc(f, xj) is defined to be pn, if f �= 0.
For the zero polynomial, define lc(0, xj) := 0.

• The reductum of f in xj , denoted as red(f, xj) is
∑n−1

i=0 pix
i. In particular, if

n ∈ {−1, 0}, i.e. if f is a constant polynomial in xj , then red(f, xj) equals the
empty sum, which is 0.

• The (formal) derivation of f in xj , denoted as der(f, xj) is
∑n

i=1 npnx
n−1. In

particular, if f is constant in xj , then der(f, xj) = 0.

• The list (pn, . . . , p0) is called the list of coefficients of f wrt. xj . In particular, the
empty list is the list of coefficients of 0.

For improved readability we allow the notations degx(f), lcx(f), redx(f) and derx(f)
instead of deg(f, x), lc(f, x), red(f, x) and der(f, x) as well. The variable can be omitted,
if it is known from the context.

1.2 Remark
With these definitions we have in any case:

f = lc(f, xj)x
deg(f,xj)
j + red(f, xj)

This gives a recursion scheme on polynomials, as the leading coefficient has smaller
degree and as the reductum is shorter than the original polynomial.

1.2.2 Multivariate Notions on Multivariate Polynomials

1.3 Definition
For variables (x) = (x1, . . . , xr) and a polynomial f ∈ D[x] choose a minimal (wrt.
subset ordering) E ⊆ Nr and a family (de)e∈E in D \ {0} such that

f =
∑
e∈E

de

r∏
i=1

xei
i .

Define:
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• The monomials of f wrt. x to be1

monsx(f) :=

{
de

r∏
i=1

xei
i

∣∣∣∣∣ e ∈ E
}
.

• The terms of f wrt. x to be

termsx(f) :=

{
r∏

i=1

xei
i

∣∣∣∣∣ e ∈ E
}
.

• The coefficients of f wrt. x to be

coeffsx(f) := {de | e ∈ E} .

• The number of monomials of f wrt. x to be

nomx(f) := |monsx(f)|.
Note that the number of monomials equals | termsx(f)|, the number of terms.

• The total degree of f wrt. x to be

tdegx(f) :=

{
maxe∈E

(∑r
j=1 ej

)
, if E �= ∅

−1, otherwise.

Regarding the total degree, tdeg(f) denotes the total degree of f wrt. all variables
actually occurring in f , if they are known from the context.

1.2.3 Resultants and Discriminants

Elimination Theory considers the following question (cf. [Usp48], p.277, [MS99], p.33):

If f and g are two univariate polynomials with coefficients in an integral
domain A, find necessary and sufficient conditions (on the coefficients) for
f and g to have common roots in an extension of the domain A.

Resultants are the tool of choice for this task. A common way to introduce the resultant
is via the Sylvester matrix.

1.4 Definition (Sylvester matrix)
Let f =

∑m
i=0 aix

i, g =
∑n

i=0 bix
i with m = degx(f), n = degx(g) be two polynomials

in x. If f = 0 or g = 0 then SYL(f, g, x) = ∅, the 0× 0-matrix. Otherwise, SYL(f, g, x)
is defined as the following m+ n×m+ n-matrix:

(l, c) �→
⎧⎨
⎩

am−(c−l) if 1 ≤ l ≤ m and l ≤ c ≤ l +m

bl−c if n+ 1 ≤ l ≤ m+ n and l − n ≤ c ≤ l
0 otherwise.

1Note that what we call monomials is called terms in some places.
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This definition leads to a simple algorithm to generate the Sylvester matrix.

1.5 Algorithm (Sylvester matrix)

S ←− SYL(f, g, x)

Input: Univariate polynomials f, g in x over some ring D
Output: A square Matrix S over D with degx(f) + degx(g) rows.

1. m := degx(f), n := degx(g), f =
∑m

i=0 aix
i, g =

∑n
i=0 bix

i.

2. Initialize S with 0 ∈ Rm+n×m+n.

3. For l from 1 to m do for c from l to l +m do Sl,c := am−(c−l).

4. For l from n+ 1 to m+ n do for c from l − n to l do Sl,c := bl−c.

5. Return S.

1.6 Definition (resultant)
Let f, g be two polynomials in x. Then the resultant of f and g wrt. x is the determinant
of the Sylvester matrix of f and g wrt. x:

res(f, g, x) := det(SYL(f, g, x)).

The following facts about the resultant are taken from [Mig91]:

1.7 Theorem (properties of the resultant)
With notation from Algorithm SYL:

1. res(f, 0, x) = 0

2. res(g, f, x) = (−1)mnres(f, g, x)

3. If deg(f, x) = m ≤ n = deg(g, x) then res(f, g, x) = an−m
m res(f, rem(g, f, x), x).

4. If f �= 0 and g �= 0 then res(f, g, x) = 0 iff f and g have a common nontrivial
factor.

5. Suppose f and g are polynomials over an integral domain and α1, . . . αm are the
roots of f and β1, . . . , βn are the roots of g (in a suitable extension), then

res(f, g, x) = an
m

m∏
i=1

g(αi) = (−1)mnbmn

n∏
j=1

f(βj) = an
mb

m
n

m∏
i=1

n∏
j=1

(αi − βj).
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Assertion 4 of the last Theorem is sometimes called the standard theorem on resultants,
see e.g. [Loo82], p. 178.

Resultants can be used to find intersections of curves. A curve, however, can intersect
itself. Here discriminants are useful.

1.8 Definition (discriminant)
Let f be a polynomial in x over D, then the discriminant of f wrt. x is defined to be:

dis(f, x) := res(f,der(f, x), x).

1.2.4 Subresultants and Their Coefficients

By removing some rows and columns from the Sylvester matrix SYL(f, g, x), we define
a modified Sylvester matrix as follows:

1.9 Algorithm (modified Sylvester matrix)

M ←− SYLMOD(f, g, x, i, j)

Input: Polynomials f, g in x over D, natural numbers i, j.
Output: A square Matrix S over D.

1. M := SYL(f, g, x)

2. For r from m+ n downto (m+ n)− j + 1 do remove the r-th row from M .

3. For r from n downto n− j + 1 do remove the r-th row from M .

4. For c from m+ n downto m+ n− i− j + 1 do remove the c-th column from M .

5. For c from m+ n− i− j − 1 downto m+ n− 2j do remove the c-th column from
M .

6. Return M .

The Sylvester matrix is a square m + n × m + n-matrix. The modified matrix has
m + n − 2j rows and columns, hence it is a square matrix again, and the following
definitions are well defined.

1.10 Definition (subresultant, principal subresultant coefficient)
Define the j-th principal subresultant coefficient and the j-th subresultant of two poly-
nomials f, g ∈ D[x] as follows:

• psc(f, g, x, j) := det(SYLMOD(f, g, x, j, j)), the j-th principal subresultant coeffi-
cient of f and g wrt. x.
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• sres(f, g, x, j) :=
∑j

i=0 det(SYLMOD(f, g, x, j, i))xi, the j-th subresultant of f and
g wrt. x.

We note some properties of psc and sres.

1.11 Lemma
1. psc0(f, g, x) = sres0(f, g, x) = res(f, g, x)

2. pscj(f, g, x) = lcx(sresj(f, g, x))

3. degx(sres(f, g, x, j)) = j

The notions introduced and discussed in this section are needed in particular to define
the projection operator for CAD.

1.3 First-Order Predicate Logic

In order to practice logic, one needs to provide the syntactical means first, i.e. language,
terms, atomic formulas and formulas. Based on these notions one can give calculi to
deduce formally from a given set of formulas new formulas. Investigation of this is
called proof theory. One can then proceed to consider structures, i.e. a collection of
a language, a given set called universe and semantic functions for every symbol of
the language. Investigation of mathematical concepts based on these notions is called
model theory. We will recall some needed notions, as in practice many different—but
quite equivalent—ways of defining things abound. See [EFT78] or [SW] for a thorough
introduction.

We start with the language, the terms, the atomic formulas, and the formulas we
will deal with, i.e. the syntax.

1. We focus on the language (0(0), 1(0),−(1),+(2), ·(2);<(2)) of ordered rings. (The
arity of the function and relation symbols are given in braces in the exponent.)

2. Terms over this language can be considered as polynomial expressions with integer
coefficients.

3. Atomic formulas are polynomial equations or order inequalities.

4. First-order formulas, or short: formulas, are the smallest set with the properties

(a) true and false are formulas,

(b) atomic formulas are formulas,

(c) negation, conjunction, disjunction, implication, and equivalence of formulas
are formulas, and

(d) existential or universal quantification of formulas are formulas.
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Strictly speaking, terms and atomic formulas are strings, where the following kinds of
symbols are used: special symbols consisting of a opening round bracket “(”, a closing
round bracket “)”, a comma “,” and an equation symbol “=”, an infinite but countable
set V of variables that is assumed to be fixed, logical operators {true, false,¬,∧,∨,−→
,←→}, and quantifier symbols {∀,∃}. It is assumed that these sets of symbols together
with {0, 1,−,+, ·, <} are pairwise disjoint.

Each formula falls into exactly one of the cases (a)–(d) above. This gives a natural
recursion scheme on formulas. Several definitions for formulas can be made either by
structural induction, or by viewing a formula as a string.

Without loss of generality, the atomic formulas can be written as p = 0 or p < 0.
Although p is strictly speaking a string, we identify p with the denoted polynomial, the
polynomial of the corresponding atomic formula. Then the polynomials of a formula is
the set of all polynomials in all atomic subformulas.

The variables occurring in a formula ϕ are denoted with V(ϕ). The free variables
Vf (ϕ) of ϕ are the elements x of V(ϕ) that occur in a position that is not within the
range of a quantifier Qx, where Q ∈ {∃,∀}. A formula is called quantifier-free, if it
contains neither the symbol ∃ nor ∀,

For a term t and a variable x we denote with ϕ[t/x] the result of substituting t for
x in ϕ. Consequently, ϕ[t1/x1, . . . , tn/xn] denotes the simultaneous substitution of the
terms t1, . . . , tn for the variables x1, . . . , xn in ϕ.

To define the semantics of a formula (wrt. R), one can augment the formula by a
list of pairwise distinct variables (x1, . . . , xk). This gives an extended formula. For such
an extended formula one can define a semantic map Rk → {0, 1} that gives information
whether a formula is valid or not at a certain point. In addition, extended formulas
define a certain subspace. See Section 3.1 for more details.

There are normal forms for formulas. The normal form which is of most interest to
us is the prenex normal form (PNF). Here the formula starts with quantifiers, and after
that there is a quantifier-free part, called the matrix of the formula. When working
with formulas in PNF, the following notations can be useful:

1.12 Definition (variable block, quantifier block)
For a list (y) = (y1, . . . , ym) of variables, Q ∈ {∀,∃}, and a formula ψ let Qy(ψ) denote
the formula Qy1(. . . (Qym(ψ)) . . .). In this context, we will call (y) a variable block (or:
block of variables), and Qy a quantifier block (or: block of quantifiers).

1.13 Definition (variable block list)
Consider an extended prenex formula

ϕ(x1, . . . , xk) := Qk+1xk+1(. . .Qrxr(ψ) . . .).

There exists a unique n ∈ N and unique integers i1, . . . , in such that with the additional
definition i0 := 1, in+1 := r + 1, Qr+1 := ∅ the following holds for all 1 ≤ j < n:

1. k + 1 = i1 < . . . < in ≤ r
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2. Qij = . . . = Qij+1−1

3. Qij+1−1 �= Qij+1

Then we can write with the notation introduced above

ϕ(x1, . . . , xk) := Qi1xi1 . . . xi2−1(. . .Qinxin . . . xin+1−1(ψ) . . .),

or, with (x(j)) := (xij , . . . , xij+1−1) for 0 ≤ j ≤ n

ϕ(x(0)) := Qi1x
(1)(. . .Qinx

(n)(ψ) . . .).

Then ((x(0)), . . . , (x(n))) is called the variable block list of ϕ(x1, . . . , xk).

1.4 Summary

This preliminary chapter featured some general conventions, some definitions from alge-
bra, which are used for defining a projection operator later, and some notions for logic,
which are given to allow the reader to quickly synchronize with the notions used in this
thesis.



Chapter 2

Cylindrical Algebraic
Decomposition

This thesis will deal with modifications of the cylindrical algebraic decomposition (CAD)
algorithm. In order to have a basis for this work, it is necessary to recall how the
algorithm works. This establishes the notational and algorithmical framework, upon
which the main part of this thesis builds. The plan of this chapter is as follows:

1. We introduce the notions regarding CAD. These are: region, cylinder, section and
sector of a cylinder, decomposition, cell, algebraic cell, algebraic decomposition,
stack, cylindrical decomposition, cylindrical algebraic decomposition, and sign-
invariance.

2. We give the specification of a CAD algorithm and discuss how data can be repre-
sented. At this point we can only guess and verify that a mathematical object is
a CAD, we have not yet an algorithm to construct a CAD constructively.

3. We introduce the important concept of delinability for one polynomial and for
a set of polynomials and show how it can be utilized for sign-invariant stack
construction.

4. We show how conditions for delineability can be given by means of Collins’ pro-
jection operator. We give the specification of a projection operator and introduce
projection sets.

5. We combine the application of a projection operator with stack construction to
give a recursive CAD algorithm. Preferably this is done into two phases, the
projection phase, where the projection set is computed, and the extension phase.

6. We specify a CADQE algorithm that performs real quantifier elimination (QE).
We show how a CAD algorithm can be extended to a CADQE algorithm.

21
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2.1 Notions Regarding CAD

In this section we define the notion cylindrical algebraic decomposition and specify what
an algorithm should provide.

2.1 Definition (real variety and common zeros)
For variables (x) = (x1, . . . , xj) we define the shorthand Ij := Z[x]. For a set of
polynomials A ⊆ Ij let Vx(A) denote the real variety of A, i.e. the set

Vx(A) =
{
(a) ∈ Rj

∣∣ for all f ∈ A : f(a) = 0
}

of all common zeros of polynomials in A. Dually, the set of all real zeros of polynomials
in A is defined as

Zerosx(A) =
{
(a) ∈ Rj

∣∣ exists f ∈ A : f(a) = 0
}
.

2.2 Remark
It holds that Zerosx(A) = Vx(

∏
A). This would be an alternative definition.

2.3 Definition (connected, region)
A non-empty subset of Rj is called connected, if it is connected in a topological sense
wrt. the topology induced on Rj by the Euclidean metric. We call a connected subset
a region.

2.4 Remark
Note that a region is non-empty. An open region is pathwise connected [Que01].

2.5 Definition (cylinder, section, sector)
If S is a region in Rj , then:

1. cyl(S) := S × R denotes the cylinder over S.

2. The graph of a continuous map f : S → R, i.e. {(s, f(s)) | s ∈ S}, is called the
f -section (of the cylinder over S). A subset C of Rj+1 is called a section, if there
is a S ⊆ Rj and a map f : S → R such that C is the f -section.

3. Let f1 be either a continuous map S → R or the unique map −∞ : S → {−∞}
and f2 be either a continuous map S → R or the unique map ∞ : S → {∞}. If
f1 < f2 then the set {(s, t) | s ∈ S, f1(s) < t < f2(s)} is called (f1, f2)-sector (of
the cylinder over S). A subset C of Rj+1 is called a sector, if there is a S ⊂ Rj

and maps f1, f2 such that C is the (f1, f2)-sector.

2.6 Remark
1. If Z ⊆ Rj+1 is a cylinder, then the set S ⊆ Rj such that Z = cyl(S) is uniquely

determined. If C is a section, then S, f : S → R and S × R, such that C is the
f -section (of the cylinder S × R), are uniquely determined. The analogous result
holds for sectors.
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2. If f1 = −∞ or f2 = ∞, then the (f1, f2)-sector has infinite diameter. But even
for f1, f2 /∈ {−∞,∞} can the (f1, f2)-sector have infinite diameter. E.g. consider
the (f1, f2)-sector for f1 :]−∞, 0[→ R : x �→ 0 and f2 :]−∞, 0[→ R : x �→ x2.

2.7 Definition (decomposition, cell)
A decomposition U of R ⊆ Rj is a finite set of disjoint regions such that the union of U
results in R. The elements of U are called cells.

2.8 Remark
1. ∅ is a decomposition for ∅.

2. {{∅}} is a decomposition for R0 = {∅}. In fact, there is no other decomposition
for R0.

3. Not for every R ⊆ Rj exists a decomposition. E.g. j = 1, R = Q.

4. A decomposition differs from the well known set-theoretic notion of partition in
that a partition is not required to be finite, and the elements are not required to
be connected. But both, an element of a partition and a cell in a decomposition,
are required to be non-empty.

5. The notion of cell is not simply a synonym for a region. Consider

R :=
{
(x, y) ∈ R2

∣∣ y = 0 or x ∈ Z
}
.

R is a region, but �R consists of infinitely many connected components. So R
cannot be a cell in a decomposition of R2.

2.9 Definition (algebraic cell, algebraic decomposition)
A cell C ⊆ Rj is called algebraic, if there is an extended formula δC(x1, . . . , xj) over
the language of ordered rings such that C is the R-realization of δC(x1, . . . , xj). That
is, C = RδC(x), where RδC(x) = {(a) ∈ Rj |R |= δC(a)}. A decomposition is algebraic, if
every cell is algebraic.

2.10 Remark
1. Note that an algebraic cell should more precisely be called semi-algebraic, but

within CAD context it is a convention to just use the term algebraic.

2. δC can be assumed to be a quantifier-free formula due to the famous result by
Tarski.

2.11 Definition (stack, cylindrical decomposition, CAD)
1. A stack over a cell C is a decomposition of cyl(C) such that the projection, which

drops the last component, maps each cell of this decomposition to C.
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2. A decomposition Dj of Rj is called cylindric, if 0 ≤ j ≤ 1 or if j > 1 and Dj can
be partitioned into stacks over cells of a cylindrical decomposition of Rj−1, the
induced cylindrical decomposition of Dj .

3. A decomposition that is cylindric and algebraic is called cylindrical algebraic de-
composition (CAD).

2.12 Remark
1. The projection from Rj onto Rj−1, j ≥ 1, which drops the last component, can

be denoted with π(1,...,j−1). Then a decomposition S of C ×R is a stack over C iff

{
π(1...,j−1)[s]

∣∣ s ∈ S} = {C}

2. The union of the cells of a stack forms a cylinder.

3. Dj−1, the induced cylindrical decomposition of Dj is uniquely determined: We
have that Dj−1 =

{
π(1,...,j−1)[C]

∣∣ C ∈ Dj

}
. Thus speaking of the induced de-

composition is justified. Furthermore, by recursion, cylindrical decompositions
Dj−2, . . . , D0 are induced and uniquely determined.

2.13 Definition (sign-invariant)
Let A ⊆ Ij be a set of integral polynomials over (x) = (x1, . . . , xj). An set S ⊆ Rj is
called sign-invariant wrt. A and (x), if there exists a family (σf )f∈A in {−1, 0, 1} such
that for all s ∈ S and f ∈ A sign(f(s)) = σf . If (x) is known from the context, then
we simply say S is sign-invariant wrt. A, or S is A-sign-invariant. A decomposition or
stack is called A-sign-invariant, or sign-invariant wrt. A, if every cell is A-sign-invariant.

2.2 Algorithm Specification and Data Representation

With the definitions from the previous section, the basic specification of a CAD algo-
rithm is:

2.14 (specification of a CAD algorithm)

D ←− CAD(A, (x)).

Input: A finite subset A of Ir and variables (x) = (x1, . . . , xr), for a r ≥ 0.
Output: A A-sign-invariant cylindrical algebraic decomposition D of Rr wrt. (x), from
which can be read:

1. The number and arrangement of the cells.

2. The sign of each element of A on each cell.
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2.15 Definition (CAD problem, solution for a CAD problem)
We call a pair (A, (x)) as specified as input in 2.14 a CAD problem and an A-sign-
invariant decomposition D as specified as output in 2.14 a solution of a CAD problem.

In order to give an algorithm it has to be clear how the objects that are dealt with
are represented. This is folklore for objects like identifiers, numbers, polynomials, and
finite collections. Such representations have usually the property that the represen-
tant uniquely determines the represented object. (In general, the converse is not true:
E.g. there is a machine representation of the integers where 0 has two representants.
Distributive representation of polynomials is an additional example.)

Regarding CAD a straightforward approach would be to (a) represent cells by a
Tarski formula and (b) represent a CAD as a list of cells.

Such an approach, however, is not suitable for our needs specified in (1) and (2)
above. On the one hand, there is too little information. From a Tarski formula it is
difficult to find a point in the described area. On the other hand, there is too much
information. In fact, a sample point in each cell suffices for most quantifier elimination
needs.

Thus let us state the following very clearly: The algorithms for CAD construc-
tions for quantifier elimination will use a CAD representation that contains enough
information for quantifier elimination purposes, but insufficient information to uniquely
determine the mathematically underlying CAD. A cell will mainly be represented by a
sample point of the cell. Instead of a CAD, more precisely a cylindrical algebraic sample
(CAS) will be computed. This allows to compute the invariant sign of each polynomial
of A on each cell.

Here is an example that demonstrates that by only taking sample points the original
problem cannot be reconstructed: For A =

{
x2

1 − x2

}
an A-invariant CAD wrt. (x1, x2)

can be represented with the sample points ((0,−1), (0, 0), (0, 1)), but this represents also
an A-invariant CAD for A =

{
x3

1 − x2

}
or A =

{−x2
1 − x2

}
wrt. (x1, x2).

So a sample point, possibly additional information, like for each polynomial of A
the invariant sign on the cell, a describing formula for the cell, or a truth value, can be
included in the representation.

The requirement about the cylindrical arrangement of the cells in the specification
of an CAD algorithm can be satisfied by representing a decomposition as a tree, instead
of a plain set. This preserves the information about the cylindrical arrangement of
the cells. Alternatively, a cell can contain an index, which gives information about the
position of the cell in the according CAD tree. Then a CAD can be represented as a
plain list. Both approaches are equivalent.

Altogether we will formulate the algorithms in a mathematical way, i.e. they con-
struct a CAD, but only the information needed is effectively constructed. This abstracts
from representation details.
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2.3 Delinability and Sign-invariant Stack Construction

Consider the following situation: For a set S ⊆ Rj−1 and a set of polynomials F ⊆ Ij
the portion of V (F ) lying in the cylinder above S consists of disjoint sections, such that
there is an F -sign-invariant decomposition of the cylinder above S into sections and
sectors of roots of polynomials from F .

First we will introduce the notion of delinability to give a criterion for the just
described situation. This notion was introduced by Collins in his original paper and
slightly modified later on. We keep faithful to this notion and repeat it with some
clarifications. By restricting our attention to regions we can give simpler conditions for
delineability.

2.3.1 Delineability for one Polynomial

2.16 Definition
For a real polynomial f(x1, . . . , xr), r ≥ 2 and a subset S of Rr−1 we say that the roots
of f are delinable on S, if the following holds:

1. There exists an m ≥ 0 and positive integers e1, . . . , em such that for all (a) ∈ S
univariate f(a, xr) has exactly m distinct roots with multiplicities e1, . . . , em.

Furthermore, there exists a k ≥ 0 and maps f1, . . . , fk from S to R, such that

2. f1 < . . . < fk are continuous.

3. For all (a) ∈ S and all 1 ≤ i ≤ k we have that fi(a) is a root of univariate f(a, xr)
of multiplicity ei.

4. For all (a) ∈ S, b ∈ R we have that f(a, b) = 0 implies that there exists a 1 ≤ i ≤ k
such that b = fi(a).

In this context we say that f1, . . . , fk, delineate the real roots of f on S. One also
simply says f is delineable over S or f has the delineability property over S. This
defines delineability to be a ternary predicate.

2.17 Remark
With the notation from Definition 2.16:

1. If f is the zero polynomial, then f(a, xr) has an infinite number of roots for each
(a) ∈ S. Thus it cannot be delineable, as no finite k exists as required in the
definition.

2. If f vanishes at some point in S, then f is not delineable on S. In particular, if f
vanishes identically on S �= ∅, then f is not delineable on S.

Proof . Choose (a) = (a1, . . . , ar−1) ∈ S such that f(a, xj) = 0. Given any m ≥ 0
and integers e1, . . . , em we note that univariate f(a, xr) has not exactly m distinct
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roots with multiplicities e1, . . . , em, as in fact it has infinitely many roots. Thus
condition 1 in the definition does not hold. �

3. If f is a constant, but non-zero polynomial, then f(a, xr) has no root for each
(a) ∈ S. Thus it is delineable, with k = 0 and m = 0.

4. Consider S = ∅. Then for any choice of m, e condition 1 is satisfied. Moreover,
for k = 0 (or, for k = 1 and f1 being the empty map) conditions 2–4 are satisfied.
Hence f is delineable over S.

5. Let us drop the condition r ≥ 2 and consider r = 1. Then, as a subset of R0, we
have either S = ∅, in which case f is delineable over S. Or, we have S = {∅}.
Then condition 1 is easily verified, and, for k being the number of distinct roots
of f , and, for fi mapping ∅ to the ith root, conditions 2–4 hold as well.

6. If we assume S �= ∅, m is uniquely determined. So are k and f1, . . . , fk.

7. Let g(x) be another real polynomial. If Vx(f) ∩ (S × R) = Vx(g) ∩ (S × R) then
f is delineable over S iff g is delineable over S. I.e. changing a polynomial does
not change the delineability property, if the variety is not changed. Thus we can
e.g. perform content elimination (divide a polynomial by its domain content).

2.18 Example
Consider f = x2

1 + x2
2 − 1, S =] − 1, 1] and (x) = (x1, x2). Then f(0, x2) has two real

roots, each of multiplicity 1, and f(1, x2) has one real root of multiplicity 2. Thus the
first condition cannot be satisfied and f cannot be delineable over S.

Now consider S =]− 1, 1[. Set m := 2, (e) := (1, 1). The first condition is satisfied.
Set k := 2 and f1 : S → R : a �→ −√1− a2, f2 : S → R : a �→ √1− a2. This satisfies
conditions 2–4. Thus f is delineable over S.

Let us consider, with the notation of Definition 2.16, two conditions:

(D1) The leading coefficient of f does not vanish on S. I.e. for all (a) ∈ S we have
(lcxr(f))(a) �= 0.

(D2) f has a constant number of (complex) roots on S. I.e. there exists a n ∈ N such
that for all (a) ∈ S univariate f(a, xr) has n distinct roots.

2.19 Lemma (necessary conditions for delineability)
Let f(x1, . . . , xr) be a real polynomial with r ≥ 2 and ∅ �= S ⊆ Rr−1. If the roots of f
are delineable on S, then for each (a) ∈ S we have that conditions (D1) and (D2) hold.

Proof . As S �= ∅, and as the zero polynomial is not delineable on non-empty sets,
as remarked in 2.17, we have that f is not the zero polynomial. Thus, f(a) has a
constant number m > 0 of roots, each with constant multiplicity ei > 0. We have that
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degxr(f(a)) =
∑m

i=1 ei > 0 is constant on S, i.e. the leading coefficient cannot vanish
and (D1) holds.

In addition, (D2) follows immediately from the definition. �
Conversely, if we add the condition of S being a connected set, then these two conditions
are sufficient for delineability.

2.20 Lemma (sufficient conditions for delineability)
Let f(x1, . . . , xr) be a real polynomial with r ≥ 2 and S ⊆ Rr−1. Then the roots of f
are delineable on S, if S is connected and conditions (D1) and (D2) hold.

For the proof see Theorem 1 in [Col75]. These lemmata underline the importance
of connected sets. This motivates why such objects deserve a special name: regions.
Altogether we have as an immediate consequence:

2.21 Theorem (characterization of delineability on regions)
Let f(x1, . . . , xr) be a real polynomial with r ≥ 2 and S ⊆ Rr−1 a region. Then the
roots of f are delineable on S, iff conditions (D1) and (D2) hold.

2.3.2 Delineability for Sets of Polynomials

We need to extend the definition of delineability for a polynomial to delineability for
sets of polynomials.

2.22 Definition
For a set A = {f1, . . . , fn} ⊆ Ir of polynomials we say the roots of A are delineable on
S ⊆ Rr−1, if the roots of

∏n
i=1 fi are delineable on S.

2.23 Remark
With the notation from Definition 2.22:

1. If A contains the zero polynomial, then A is not delineable.

2. If a polynomial in A vanishes identically on S, then A is not delineable on S.

3. If A is empty, then
∏0

i=1 fi = 1, and hence A is delineable.

4. Instead of using the product of all polynomials, we could have defined delineability
for sets of polynomials in a different, but equivalent way: A is delineable over S
iff the following two conditions hold:

(a) Every element of A is delineable on S

(b) The sections of cyl(S) belonging to different f, g ∈ A are either disjoint or
identical.
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5. Let B = {g1(x), . . . , gl(x)} be another set of real polynomials. If Vx(
∏n

i=1A) ∩
S × R = Vx(

∏l
i=1 gi) ∩ S × R then A is delineable over S iff B is delineable over

S. I.e. changing a set of polynomials does not change the delineability property,
if the variety of the product polynomial is not changed. Thus we can e.g. remove
constant polynomials or perform factorization.

2.3.3 Stack Construction

The notion of delineability was introduced to allow for the construction of a sign-
invariant stack over a base cell.

2.24 Algorithm (sign-invariant algebraic stack construction)

(C)←− STACK(B,F, (x))

Input: A finite set F of integral polynomials in (x) = (x1, . . . , xj), j ≥ 1, and an alge-
braic cell B = (B, (α1, . . . , αj−1), δB, (ι1, . . . , ιj−1))) in Rj−1 such that F ∗ is delineable
on B. Here F ∗ denotes the polynomials in F , which do not vanish identically on B.
Output: An F -sign-invariant algebraic stack (C) over B.

1. Substitution of α1, . . . , αj−1 for x1, . . . , xj−1 for any polynomial in F results in a
set F(α) of univariate polynomials in A[xj ]. Removal of zero polynomials results
in a set F ∗

(α) of univariate polynomials over A in xj .

2. Root isolation. Find the n real roots of F ∗
(α) and denote them with α(2i)

j for 1 ≤ i ≤
n, such that α(2)

j < . . . < α
(2n)
j . There exists unique maps ρ1 < . . . < ρm : B → R,

which delineate the real roots of
∏
F ∗.

3. Cells. Define C2i to be the ρi-section, for 1 ≤ i ≤ m. Define C2i−1 to be the
(ρi−1, ρi)-sector for 1 ≤ i ≤ m+ 1, where ρ0 := −∞ and ρ2m+1 :=∞. This gives
cells C1, . . . , C2m+1.

4. Sample points. Find m+ 1 rational numbers α(2i−1)
j for 1 ≤ i ≤ m+ 1, such that

α
(1)
j < α

(2)
j < · · · < α

(2m)
j < α

(2m+1)
j .

Define 2m + 1 points αCi := (α1, . . . , αj−1, α
(i)
j ) for 1 ≤ i ≤ 2m + 1. For each

1 ≤ i ≤ 2m+ 1 the point α(i) lies in the cell Ci.

5. Describing formulas. For every 1 ≤ i ≤ n, choose a polynomial fi ∈ F ∗ such
that f(αC2i) = 0. Say, α(2i)

j is the ki-th root of f(αB , xj). Define δC2i := δB ∧
ϕroot of,fi,ki for 1 ≤ i ≤ n. Define δC2i−1 := δB ∧ ∃q, s(ϕroot of,fi−1,ki−1 [q/xj ] ∧
ϕroot of,fi,ki [s/xj ] ∧ q < xj < s), for 2 ≤ i ≤ m. Furthermore, define δC1 := δB ∧
∃s(ϕroot of,f1,k1 [s/xj ]∧xj < s) and δC2n+1 := δB ∧∃q(ϕroot of,fn,kn [q/xj ]∧ q < xj).
See the remark below for a definition of ϕroot of,f,k.
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6. Index. Define the index ιCi := (ι1, . . . , ιj−1, i).

7. Return (C1, . . . , C2n+1), where Ci = (Ci, αCi , δCi , ιCi)

After we have given the algorithm, we want to justify and discuss the approach in
greater detail.

2.25 Remark
1. The set F is split into two sets: F ∗ and F 0 := F \ F ∗. Note that for any

polynomial in F 0 any stack over B will be F 0-sign-invariant. Thus it suffices
to consider the polynomials from F ∗, and find an F ∗-sign-invariant stack. The
vanishing polynomials are sorted out in Step 1 of the algorithm. When the sample
point of B is substituted into a polynomial f , and f(α, xj) = 0 then this implies by
Remark 2.17,(2) that f is not delineable over S, and hence, by assumption on F , f
vanishes identically on S. Thus, by removing zero polynomials after substitution,
we in fact concentrate on polynomials f(α, xj) with f ∈ F ∗.

2. The existence of ρ1 < . . . < ρn : B → R follows from the definition of delineability.
For 1 ≤ i ≤ n we have that ρi(α1, . . . , αj−1) = α

(2i)
j .

3. The cylinder over B can now be decomposed into n sections, and into n+1 sectors,
as determined by the ρi. This makes 2n + 1 cells. We have that B × R is the
disjoint union of C1, . . . , C2n+1

4. The roots we isolated give us the last component of the sample points of the
sections. The last components of the sample points for the sectors are found by
choosing a rational numbers in between two roots. For C1 or, respectively, C2m+1,
a rational number smaller than the smallest root, or, respectively, greater than the
greatest root can be chosen. The sample points are now defined by enlarging the
sample point of the base cell by the last component just found. Thus all sample
points differ only in the last component.

5. For (x) = (x1, . . . , xj−1), an integral polynomial f in (x, xj), and k ∈ N1, define
the formula ϕroot of,f,k := ∃r1, . . . , rk−1(r1 < . . . < rk−1 < xj ∧ f(x, r1) = 0∧ . . .∧
f(x, rk−1) = 0∧f(x, xj) = 0∧∀r(f(x, r) = 0 −→ (r = r1∨. . . r = rk−1∨r = x∨r >
x))). Then ϕroot of,f,k(x1, . . . , xj) is an extended formula. For all (a) ∈ Rj−1 and
aj ∈ R we have: R |= ϕroot of,f,k(a, aj) iff aj is the k-th root of f(a, xj).

With the definition of the algorithm we have Ci = RδCi
(x,xj) for 1 ≤ i ≤ 2n + 1.

This shows that the cells are indeed algebraic.

6. Later the index can be used to determine the position of the cell within a CAD
tree. It is of further use to determine the dimension of a cell.

The following lemma summarizes the remarks made and hints that a stack plays an
important role in eliminating a quantifier.
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2.26 Lemma (properties of STACK)
With notions and assumptions from Algorithm 2.24

1. (C) is an F -sign-invariant non-empty algebraic stack over B.

2. Let ψ(x) be an extended formula that has constant truth value vC on each cell in
(C). Then for Q ∈ {∃,∀} the formula Qxjψ has constant truth value vB on B,
where vB = max {vC | C ∈ (C)}, if Q = ∃, and vB = min {vC | C ∈ (C)}, if Q = ∀.

Proof . The first claim is clear from the remark above. We show the second claim by
case distinction.

Case 1: For all C ∈ (C): vC = 0. Then (Qxjψ)R(a) = 0 = min {vC | C ∈ (C)} =
max {vC | C ∈ (C)} for all (a) ∈ B and Q ∈ {∃,∀}.

Case 2: Exists C ∈ (C): vC = 1. Then (∃xjψ)R(a) = 1 = max {vC | C ∈ (C)}
for all (a) ∈ B. For the universal quantifier we need one more distinction. Case 2.1:
Exists C ′ ∈ (C): vC′ = 0. Then (∀xjψ)R(a) = 0 = min {vC | C ∈ (C)} for all (a) ∈ B.
Case 2.2: For all C ′ ∈ (C): vC′ = 1. Then (∀xjψ)R(a) = 1 = min {vC | C ∈ (C)} for all
(a) ∈ B. �
Being able to construct sign-invariant stacks is an important first milestone on our way
to CAD construction, as a CAD is a union of stacks. Still two components are missing:
more practical conditions to ensure delineability and recursion.

2.4 Collins’ Approach to Projection

If we are given a region and a set of polynomials that is delineable on this set, we can
construct a sign-invariant stack. So far, however, we lack practical means to find and
check regions for delieability. Theorem 2.21 gives, for a given region, conditions on the
polynomial to be delineable. We can improve on this in two ways:

1. First, we make (D2) more practical. This is achieved in Theorem 2.29.

2. Second, we want to have a similar result for sets of polynomials. This is done in
Theorem 2.30.

Then we relax the assumptions. Theorem 2.31 improves on Theorem 2.29 and Theo-
rem 2.32 improves on Theorem 2.30.

The conditions to ensure delineability will be in terms of coefficients. This is done
by a projection operator, which maps a set of polynomials to a set of polynomials in
one less variables.

We conclude this section by giving a general specification of a projection operator.
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2.4.1 Ensuring Delineability on Regions

2.27 Lemma
The number of distinct roots of a non-constant univariate real polynomial f(x) is

degx(f)− degx(gcd(f,derx(f))).

2.28 Lemma
Let f(x) and g(x) be non-zero polynomials over a unique factorization domain. Then

degx(gcd(f, g)) = min
{
j ∈ N

∣∣ pscj(f, g, x) �= 0
}
.

The proofs can be found as the proofs of Theorem 3 and Theorem 2, respectively, in
[Col75].

Based on these lemmata, we can give a sufficient condition based on a polynomial’s
coefficients (or, based on coefficients of a set of polynomials) that we have delineability
over a region. As this result is not stated explicitly in the literature we give the simple
proof.

2.29 Theorem (conditions on a region for delineability of a polynomial)
Let f ∈ Ij be a non-zero polynomial and S be a region in D such that the leading
coefficient of f does not vanish and such that resxj (f,derxj (f)) does not vanish at some
point in this region. Then f is delineable on S.

Proof . Note that resxj (f,derxj (f)) equals psc0(f,derxj (f), x). It follows from Lemma
2.28 that degxj

(gcd(f,derxj (f))) is invariant on S. From Lemma 2.27 it follows that
the number of distinct roots of f is invariant on S. Finally our claim follows with
Lemma 2.20 and with the assumption that leading coefficient of f does not vanish on
S. �

2.30 Theorem (conditions on a region for delineability of a set of poly.)
Let A ⊆ Ij be a set of non-zero polynomials and S be a region in Rj−1 such that for all
f ∈ A we have that lcxj (f) does not vanish, resxj (f,derxj (f)) does not vanish, and for
all f, g ∈ A we have that resxj (f, g) does not vanish at some point in this region. Then
A is delineable on S.

2.4.2 Collins’ Projection Operator

We will need the following notation: If F ⊆ Ij and a region R ⊆ Rj is known from the
context, then F ∗ denotes the set of all polynomials from F that do not vanish at some
point in R.

By moving to a larger set of polynomials than just leading coefficients, discriminants,
and resultants, we can get a more general condition. We need some more notation. For
A ⊆ D[x] define

B(A, x) :=
{

redk(a, x)
∣∣∣ a ∈ A, k ≥ 0, redk(a, x)) �= 0

}
,
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the set1 of all non-zero redukta of elements of A wrt. x. In case A consists of a singleton
element f we allow us to write B(f, x) instead of B({f}, x).

L(A, x) := {lcx(a) | b ∈ A} ,
the set of all leading coefficients of elements of A wrt. x.

S1(A, x) := {psck(a,derx(a), x) | a ∈ A and 0 ≤ k < degx(derx(a))} ,
and

psc(f, g, x) := {psck(f, g, x) | 0 ≤ k < min(degx(f),degx(g)}),
a set comprised of all possible principal subresultant coefficients.

S2(A, x) := {psck(a1, a2, x) | a1, a2 ∈ A, 0 ≤ k < min{degx(a1),degx(a2)}}
=

⋃
a1,a2∈A

psc(a1, a2, x),

a set of further subresultants.
The following conditions improve on Theorem 2.29, as cases where the leading co-

efficients vanish are included as well.

2.31 Theorem (sufficient condition for f to be delineable on S)
Let f(x1, . . . , xj) be a non-zero real polynomial, j ≥ 2, and S be a region in Rj−1 such
that f does not vanish on S. Define

projc1(A, xj) := L(B(A, xj), xj) ∪ S1(B(A, xj), xj)

=
⋃

h∈B(A,xj)

({lcxj (h)} ∪ psc(h,derxj (h), xj)).

If every element of projc1({f}, xj) is invariant on S then the roots of f are delineable
on S.

The proof can be found as the proof of Theorem 4 in [Col75]. To lift this result to a set
of polynomials, we need to add some more subresultants.

2.32 Theorem (sufficient condition for A to be delineable on S)
Let A be a non-empty set of non-zero real polynomials in x1, . . . , xj , j ≥ 2, and S be a
connected subset of Rj−1. Let projc1(A, xj) be defined as before and define

projc2(A, xj) := S2(B(A, xj), xj) =
⋃

f,g∈B(A,xj)

psc(f, g, xj).

If every element of projc1(A, xj) ∪ projc2(A, xj) is invariant on S then the roots of
A∗ are delineable on S.

1Note that in the original paper the condition deg(redk(a)) ≥ 1 was used instead of redk(a, x) �= 0.
This can lead to misconceptions, as it is only correct if deg is considered to be the total degree.
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The proof can be found as the proof of Theorem 5 in [Col75]. We can now define Collins’
projection operator :

projc(A, (x)) := projc2(A, xj) ∪ projc2(A, xj)

A projection operator essentially maps a set of multivariate polynomials over the integers
to a set of polynomials in one less variable. Input sets, and thus output sets as well, are
assumed to be finite.

2.4.3 Specification of a Projection Operator

With projc we have defined the first instance of a projection operator. In general, a
projection follows this specification:

2.33 (specification of a projection operator)

F ←− PROJ(A, (x))

Input: Set A of integral polynomials in (x) = (x1, . . . , xj).
Output: Set F of integral polynomials in (x1, . . . , xj−1) such that for any F -invariant
region R in Rj−1 the following two conditions hold:

1. Every element of A is either delineable or identically zero on R.

2. Let A∗ denote the polynomials of A, which do not vanish identically on R. The
sections of cyl(R) belonging to different f, g ∈ A∗ are either disjoint or identical.

2.34 Remark
1. Condition (2) is changed slightly to correct a glitch in [Hon90].

2. The property stated for the output F of a projection operator in the specification
can be restated in the light of Remark 2.17 as follows:

Let R be an F -invariant region in Rj−1 and let A∗ denote the polyno-
mials of A, which do not vanish identically on R. Then the roots of A∗

are delineable on R.

3. projc adheres to the specification of a projection operator.

4. Assume proj is a projection operator, and proj′ is a map of same type with
proj′(A, (x)) ⊇ proj(A, (x)). Then proj′ is a projection operator as well. The
reason is that a proj′(A, (x))-invariant region is in particular a proj(A, (x))-
invariant region.



2. Cylindrical Algebraic Decomposition 35

2.4.4 From Projection Operator to Projection Set

So far we have seen that delineability for polynomials on a region can be ensured by
requiring the region to be sign-invariant wrt. a certain set of polynomials in one less
variable that can be obtained via application of a projection operator.

We extend now the previous results for ensuring delineability to multiple levels. We
want to find for a set A of polynomials in r variables practical conditions on a (j − 1)-
level region (1 ≤ j ≤ r), such that the j-level polynomials from A are delineable on that
region.

This will amount to transform the set A into a set F , by performing projection steps
repeatedly. We can transform the initial set and the sets occurring after each projection
step to equivalent, but nicer ones by replacing them with the set of all irreducible factors.

2.35 Algorithm (projection set)

F ←− PROJSET(proj)(A, (x))

Input: Set A of integral polynomials in (x) = (x1, . . . , xr). In addition, a projection
operator proj is known that satisfies Specification 2.33.
Output: Set F of integral polynomials in (x) with properties stated below.

1. Let F denote the irreducible factors of A.

2. For j from r downto 2 do

(a) Let Fj denote the j-level polynomials from F .

(b) Let P denote the irreducible factors of proj(x1,...,xj)(Fj).

(c) F := F ∪ P
3. Return F .

2.36 Remark
With the notations and assumption from Algorithm 2.35:

1. Irreducible factor computation is just an instance of the more general concept of
squarefree basis computation. A set A of integral polynomials is called squarefree
basis if all elements of A have positive degree, are primitive, are square-free and are
pairwise relatively prime; alternatively, if is a set of ample, primitive irreducible
polynomials of positive degree. We won’t go further into this, please cf. to the
original paper by Collins. It is best practice to perform squarefree basis computa-
tion in form of irreducible factors computation. This is based on observation, and
no thorough published investigation of the most efficient transformation during
projection is known to the author. In addition, note that this step is optional (for
Collins-Hong style projection operators), but in practice it is highly desirable to
perform this step.
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2. Note that taking irreducible factors includes removing constant polynomials, as a
polynomial is irreducible, if it is non-constant, and not the product of two non-
constant polynomials.

3. Notation: For a projection set F the underlying variable order (x) can be assumed
to be known. Then Fj denotes the set of all j-level polynomials of F wrt. (x).

2.37 Lemma (Properties of algorithm PROJSET)
With the notations and assumption from Algorithm 2.35:

1. F is closed under proj in the following sense: For 1 ≤ j ≤ r every irreducible
factor of proj(x1,...,xj)(Fj) is already in F .

2. PROJSETx is idempotent, i.e. PROJSETx(PROJSETx(A)) = PROJSETx(A).

3. For 1 ≤ j ≤ r and for any Fj−1-invariant region R in Rj−1: F ∗
j is delineable on R.

2.38 Remark
1. We will, in general, not make a difference between projection polynomials and

projection factors, because there is usually no benefit in discerning these notions.

2. Closure of a set under projection. If sets A and A+ are given such that A is closed
under projection, then PROJSET(A ∪A+) is the closure of A and A+ under
projection. An algorithm could be devised to compute this set more efficiently as
just defined.

2.5 Sign-Invariant Decomposition

We can now put two things together: Projection set computation and sign-invariant
stack computation. This allows us to get, on input of finite set of polynomials in r
variables and a variable order, a cylindrical algebraic decomposition of real r-space in
form of a CAD tree. We assume a sequence of variables (x1, . . . , xr) to be fixed. Usually
0 ≤ j ≤ r will hold.

2.5.1 Trees for CAD Representation

As already mentioned, it is natural to use a trees to represent a CAD.

2.39 Definition (recursive labeled tree)
L a set. Define RL to be the smallest set closed with the property:

(R1) ∅ ∈ RL

(R2) If a ∈ L and R1, . . . , Rn ∈ RL \ {∅} for some n ∈ N, then (a, (R1, . . . , Rn)) ∈ RL.
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2.40 Remark
1. ∅ is called the empty tree.

2. In particular, if a ∈ L, then (a, ∅) ∈ RL.

3. A more general way to define labeled trees would be this:

(a) Let N∗ denote the set of words over the alphabet N. A subset T of N∗ is
called tree, if the following two conditions are met:

(T1) If n1 · · ·nk ∈ T then for all h ≤ k n1 · · ·nh ∈ T .
(T2) If t ∈ T then for all t′ ∈ N∗: if t′ is lexicographically smaller than t, then

t′ ∈ T .

The elements of T are called nodes. If n1 · · ·nh is a node, then (n1, . . . , nh) ∈
Nh is called the index of the node.
With this definition, we can remark: ∅ is a tree, the empty tree. (T1) says
that T is closed under prefixes, (T2) says that T is closed under lexicographic
smaller elements. If T �= ∅, then ε ∈ T . This follows immediately from (T1).
ε is called the root of T .

(b) T a tree, L a set and l : T → L a map. Then the pair (T, l) is called a labeled
tree (with labels from L). The elements of T are called nodes of (T, l). The
label of a node t is l(t).
As a remark: The pair (∅, ∅ : ∅ → L) is a labeled tree, the empty labeled
tree.

The benefit of this definition is that the notion of index occurs naturally. Every
recursive labeled tree can be represented as a labeled tree, but not vice versa.

2.41 Definition (depth)
Define for a recursive labeled tree R = (a, (R1, . . . , Rn)):

depth((a, (R1, . . . , Rn))) :=
{

0, if n = 0,
1 + max {depth(Ri) | 1 ≤ i ≤ n} , otherwise

2.5.2 Full CAD

From now on a CAD tree is a recursive labeled tree, where the nodes are labeled with
cells. We represent cells in the form C = (C,αC , δC , ιC), where C is a subset of some
real j-space, αC is a sample point, δC a describing formula, and ιC the cell’s index.

2.42 Algorithm (CAD tree)

D ←− CADTREE(A, (x))

Input: A finite set A of polynomials in Ir and a list (x) = (x1, . . . , xr) of variables.
Output: A CAD tree with properties stated below.
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1. Projection. F := PROJSET(A, (x)). Denote with Fj the projection polynomials
of level j.

2. Root of the tree. Let C be the only cell a decomposition of R0 can have, i.e.
C = ({∅}, (), true, ()).

3. Call subroutine. Return D := CADTREE1(C,F, (x)))

2.43 Algorithm (full CAD tree subroutine)

D ←− CADTREE1(B,F, (x))

Input: A (j − 1)-level cell B and a finite set F of integral polynomials in variables
(x) = (x1, . . . , xr) such that B is Fj−1-sign-invariant and such that for j ≤ i ≤ r and
for any Fi−1-sign-invariant region R in Rj−1 F ∗

j is delineable on R.
Output: A CAD subtree.

1. Definitions. j is known, as the sample point of B has length j− 1, and r is known
as the length of (x).

2. Base Case. If j > r then B is cell of level r, and hence a leave. Return a tree
which only consists of a root labeled with B.

3. Stack construction. (C1, . . . , C2n+1) := STACK(B,Fj , (x1, . . . , xj))

4. Recursive call. Define Ti := CADTREE1(Ci, F, (x)), for 1 ≤ i ≤ 2n+ 1.

5. Return the tree (B, (T1, . . . , T2n+1)).

2.44 Lemma (properties of CADTREE)
With notation and assumptions from Algorithm 2.42. Let Dj , for 0 ≤ j ≤ r, denote
the set of all labels of j-level nodes in D. Then Dj is a Fj-sign-invariant CAD of Rj .
In particular, Dr is an A-sign-invariant CAD of Rr.

Proof . By induction on j. If j = 0 then D0 = {{∅}}. As F0 = ∅ the claim clearly
holds. Assume j > 0 and that Dj−1 is a Fj−1-sign-invariant CAD of Rj−1. It is not
difficult to see that

Dj =
⋃
{STACK(B,Fj , (x1, . . . , xj)) | B ∈ Dj−1} .

So it is easy to see that Dj can be partitioned into Fj-sign-invariant algebraic stacks
over cells of the cylindrical decomposition Dj−1 of Rj−1. Thus Dj is an Fj-sign-invariant
CAD of Rj .

As each irreducible factor of A is in F , Dr is in particular A-sign-invariant. �
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2.6 Quantifier Elimination by Cylindrical Decomposition

At this point we move the focus from CAD to its application for quantifier elimination.
The aim of the algorithm is to produce on input of a first-order formula an equivalent
quantifier-free first-order formula as an output, such that all the output’s free variables
are free in the input formula as well.

2.6.1 Algorithm Specification

2.45 (specification of CADQE)

ϕ′ ←− CADQE(ϕ)

Input: Formula ϕ.
Output: Quantifier-free formula ϕ′, with V(ϕ′) ⊆ Vf (ϕ) and R |= ϕ←→ ϕ′.

2.46 Remark
1. Note that while for the CAD algorithm the variable order was given as an input,

for the CADQE algorithm no variable order is specified. The reason for this is
that for CAD the knowledge about the variable order is crucial; if it is not decided
upon input, it would have to be returned on output, as the output is worthless
without this knowledge.

2. One could add the variable order as a second input argument for the specification
of CADQE. In this case, however, one has to require the input formula to be
prenex, as otherwise, in the process of making the input formula prenex, new
variables can occur.

2.6.2 Preparing a Formula for CAD

In a first preparational step, an order of the input formula’s variables is fixed, and the
input formula ϕ is made prenex wrt. this order. After this preparation phase, we have
decided on a variable list (x1, . . . , xr), or, equivalently, a variable order xr → · · · → x1,
and have a prenex

ϕ(x1, . . . , xk) = Qk+1xk+1 . . .Qrxrψ (Qk+1 . . .Qr ∈ {∃,∀})
where ψ(x1, . . . , xr) is quantifier-free, and called matrix of ϕ. Furthermore, k is the
number of free and r the total number of variables. The set of polynomials of the
formula are extracted and denoted A.

We have introduced two formats for writing down variables in an ordered way: As
a list (x1, . . . , xr) or with arrow notation xr → · · · → x1. The latter notation proved
to be natural in the context of projection, while the former notation is natural for the
other phases of the algorithm.

Note that in general the variable order is not uniquely determined. We will exploit
this degree of freedom in the subsequent Chapter 6.
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2.6.3 Evaluation and Propagation of Truth Values

For QE purposes we have to tag cells with truth values. Thus we extend the represen-
tation of a cell C by a fifth component vC ∈ {0, 1}. We will call a cell with truth value
1 a true cell, and a cell with truth value 0 a false cell. True and false cells are called
solution and non-solution cells in the literature as well.

2.47 Algorithm (evaluation and propagation of truth values)

D ←− TVPROP(D, (Q), (x), ψ)

Input: A CAD tree D such that the yield Dr is a decomposition of Rr, a formula ψ
such that ψ(x) is an extended formula, variables (x) = (x1, . . . , xr), such that ψ(x) is
truth-invariant on the cells of Dr, and a list of quantifier symbols (Q) = (Qk+1, . . . ,Qr).
Output: A CAD tree D such that the cells in level k to r contain truth values with
properties stated below.

1. Base case: evaluation of truth values. If D = (C, ∅) and (s) ∈ Ar is the sample
point of C, then let C ′ denote C with its truth value assigned to ψR(s). Return
the tree (C ′, ∅)

2. Recursion case: propagation of truth values. If D = (C, T1, . . . , Tn), n ≥ 1, then
compute

T ′
i := TVPROP(Ti, (Q), (x), ψ).

Let v1, . . . , vn denote the truth values of the root labels of T1, . . . , Tn. Let C ′ denote
the cell C, with its truth value assigned to min {v1, . . . , vn}, if Qr−depth(D) = ∀,
max {v1, . . . , vn}, otherwise. Note that one can find r − depth(D) by adding 1 to
the length of the sample point of C as well.

2.48 Lemma (properties of TVPROP)
With the notation and assumptions from the algorithm: Let k ≤ j ≤ r. Then on each
cell C ∈ Dj

ϕj(x1, . . . , xj) := Qj+1xj+1 . . .Qrxrψ

is truth-invariant with truth value vC as computed by the algorithm. �

Proof . By induction on j. Base case j = r: As all polynomials from ψ are sign-
invariant, ψ is truth-invariant on C. For the induction step Lemma 2.26,(2) can be
used. �

After computing a CAD tree and after evaluation and propagation of truth values
we have now a truth invariant decomposition of the free variable space of the input
formula. The space described by the input formula is the union of true cells of level k:

Rϕ(x1,...,xk) =
⋃
{C ∈ Dk | vC = 1}
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We are now very close to finding a solution formula ϕ′. In principle, if we knew for each
cell C of Dk a describing quantifier-free formula δC we could simply use∨

C∈Dk,vC=1

δC

as a solution formula. Instead of finding a quantifier-free description of each cell, cur-
rently the best practice is to try to construct a signature-based formula.

2.6.4 Solution Formula Construction

So far we have seen how on input of ϕ(x1, . . . , xk) we can find a ϕ(x1, . . . , xk)-truth-
invariant decomposition Dk of the free variable space Rk. This decomposition is in
particular sign-invariant wrt. projection factors of level 1 through k. The idea behind
signature-based solution formula construction is to discern true and false cells by the
signature of these polynomials. If we can accomplish this task this is the last building
block needed to give an CADQE algorithm.

We need a slightly more general version of Hong’s solution formula construction.
So the presentation of this algorithm belongs to Chapter 3. Here we give only the
specification of SFC.

2.49 (specification of SFC)

ϕ′ ←− SFC(Y, F, (x))

Input: A set F of polynomials from Ik with (x) = (x1, . . . , xk) and an F -sign-invariant
CAD Y of Rk where each cell C has a truth value vC assigned.
Output: A quantifier-free formula ϕ′ with properties stated below, or the symbol fail.

The property of SFC which we need in this chapter is:

If Dk is a F -sign-invariant decomposition of Rk, then ϕ′(x1, . . . , xk) as com-
puted by SFC(Dk, F, (x1, . . . , xk)) is a describing formula for the union of
true cells in Dk.

This follows from Lemma 3.31.

2.6.5 Algorithm QE by full CAD

We have now discussed all the building blocks, i.e. preparation, projection, sign-invariant
CAD construction, evaluation and propagation of truth values, and solution formula
construction. This can be summarized in the following algrorithm:

2.50 Algorithm (quantifier elimination by CAD)

ϕ′ ←− CADQE(ϕ)
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Input and output: As stated in 2.45. In addition, if SFC fails, the output can be the
symbol fail as well.

1. Preparation. Find a prenex equivalent formula for ϕ, i.e. find variables
(x1, . . . , xr), an integer 0 ≤ k ≤ r, quantifier symbols (Qk+1, . . . ,Qr) and a
quantifier-free formula ψ such that ψ(x1, . . . , xr) and ϕ(x1, . . . , xk) are extended
formulas, every variable from {x1, . . . , xk} occurs freely in ϕ and such that

R |= ϕ←→ Qk+1xk+1 . . .Qrxrψ.

2. Projection. F := PROJSET(A, (x)), where A are the polynomials from ψ.

3. Lifting. Compute an F -sign-invariant CAD of Rr: D := CADTREE(F, (x)).

4. Evaluation and propagation of truth values. D′ := TVPROP(D, (Q), (x), ψ).

5. Solution formula construction. Let D′
k denote the cells of level k in D′ and let

F(1,...,k) denote the polynomials of level 1 through k from F . Then define ϕ′ :=
ϕ′′ := SFC(D′

k, F(1,...,k), (x1, . . . , xk)).

6. Simplification (optional). Find a quantifier-free formula ϕ′ with V(ϕ′) ⊆ V(ϕ′′)
such that R |= ϕ′′ ←→ ϕ′

7. Return ϕ′.

2.51 Remark
1. The correctness of the algorithm follows by putting the results of this section

together. First, for the input formula ϕ a prenex equivalent formula

ϕ̄(x1, . . . , xk) = Qk+1xk+1 . . .Qrxrψ

is computed without introducing new free variables. Notice, however, that new
bounded variables are possibly introduced. Then a ψ(x1, . . . , xr)-truth-invariant
CAD D of Rr is computed. After evaluation and propagation of truth values, as
stated by Lemma 2.48, a ϕ̄(x1, . . . , xk)-truth-invariant CADD′

k of Rk is found. As-
suming solution formula construction succeeds, a describing formula ϕ′(x1, . . . , xk)
for the true-space of ϕ̄(x1, . . . , xk) is constructed, as shown in Lemma 3.31. We
have now

R |= ϕ←→ ϕ̄←→ ϕ′.

2. Note that after evaluation and propagation of truth values only cells of level k are
needed. So it is sound if TVPROP trims the respective subtrees.
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Notation Meaning
ϕ input formula, often assumed to be prenex
ψ matrix of ϕ, i.e. leading quantifieres stripped off ϕ
k number of free variables
r total number of variables
(x1, . . . , xr) variable order, written as list
xr → · · · → x1 variable order, arrow notation
{x1, . . . , xk} free variables of ϕ
{xk+1, . . . , xr} bounded variables of ϕ
{x1, . . . , xr} variables of ϕ
{Qk+1, . . . ,Qr} quantifiers
A polynomials of the input formula
F projection factors
F1, . . . , Fr projection factors of level 1, . . . , r
D CAD tree
D0, . . . , Dr decompositions of R0, . . . ,Rr

ϕ′ quantifier-free output formula, solution formula

Figure 2.1: Ubiquitous notation in the context of QECAD.

2.7 Summary

In this chapter we have presented the CAD framework in a consistent, modern, and
implementation-friendly way, reused as much notation (see Figure 2.1 for an overview)
from the literature as possible, and to provided a solid basis for the following chapters,
in particular for Chapter 3.
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Chapter 3

Cylindrical Subdecomposition

As outlined in the introduction, our aim is to cut down on the amount of computation re-
quired for real quantifier elimination by cylindrical algebraic decomposition (CADQE),
while retaining meaningful semantics. This first part of this chapter is devoted to answer
the following question:

In the setting of CADQE, what algorithmic and semantics benefits and
effects are there if we decompose only a subspace?

In response to this question we put forward a generalization of the CAD framework,
which we call cylindrical algebraic subdecomposition (SCAD), or shorter, cylindrical
subdecomposition. In contrast to a CAD problem we restrict our attention to a semi-
algebraic subspace, which is given by an extended formula. Corresponding subspaces in
lower dimensions are induced. We define the notion of cylindrical algebraic subdecom-
position (SCAD) and give an algorithm for computing a subdecomposition. We show
how subdecompositions can be utilized for real quantifier elimination and give clean
semantics for the result. The main result from this section is Algorithm SCADQE (see
3.33) and its semantics (see 3.34).

The approach is to carefully lift and adapt, after some preparations, the notions,
algorithms and results of the CAD framework to a setting where one does not decompose
the full space. In more detail, the plan of this chapter is as follows:

1. We first turn to semi-algebraic subspaces and their description with extended
formulas.

2. We introduce the notions subcylinder, substack, subcylindrical decomposition,
and subcylindrical algebraic decomposition (SCAD) and state what we call the
SCAD problem.

3. We give an algorithm to construct a sign-invariant substack.

45
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4. We can relax the delineability property of projection sets: It is only required for
regions which lie within the corresponding subspace. These relaxed specifications
spawn the notions of subprojection operator and subprojection set.

5. We give an algorithm to construct a cylindrical algebraic subdecomposition.

6. Based on the subdecomposition algorithm we give a quantifier elimination algo-
rithm and its semantics.

7. We discuss how SCAD relates to full CAD, to partial CAD, an in how far assump-
tion can be made during the algorithm.

The applications of this approach, in particular generic CAD and local CAD, follow in
Chapter 4.

3.1 Subspaces

CAD finds a decomposition of full space. To specify a subspace we need a formula and
an order on the free variables. For this we recall the notion of extended formula.

3.1 Definition (extended formula)
For a first-order formula ϕ and variables (x) = (x1, . . . , xk) the pair (ϕ, (x)) is called
extended first-order formula, if V(ϕ) ⊆ {x} and the variables from (x) are pairwise
distinct. As a convention, we write the pair (ϕ, (x)) more suggestively as ϕ(x).

For each extended formula ϕ(x) one defines by recursion on the structure of ϕ a
map Rk → {0, 1}. Here 0 stands for true and 1 stands for false. This map is denoted
as ϕR and the extension of ϕ is always known from the context.

An extended formula ϕ(x) is said to hold at a point (a) = (a1, . . . , ak), if ϕR(a) = 1.
In this situation on writes R |= ϕ(a). A formula ϕ is said to hold in R, if for an extension
ϕ(x) one has R |= ϕ(a), for all a. Then one writes R |= ϕ. Instead of R |= ϕ←→ ϕ′ we
sometimes use the infix notation ϕ ≡R ϕ

′.

The subspace defined by an extended formula is its R-realization.

3.2 Definition (R-realization)
For an extended formula α(x), where (x) = (x1, . . . , xr), the set

Rα(x) := {(a) ∈ Rr | R |= α(a)}

is called R-realization of α(x). If the variable list (x) is known from the context, we
simply write Rα. In addition, for 0 ≤ j ≤ r, define αj to be a quantifier-free equivalent
of ∃xj+1 · · · ∃xrα and the Rj-realization of α(x) to be

R
j
α(x) :=

{
(a) ∈ Rj

∣∣ R |= αj(a)
}
.
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The following lemma says that the Rj-realization can be obtained from the R-realization
by projection on j-space.

3.3 Lemma
With the notation from Definition 3.2:

R
j
α(x) = Rαj(x1,...,xj) = π(1,...,j)[Rα(x)].

Proof . (x1, . . . , xj) is an extension for ∃xj+1 · · · ∃xrα. It holds for all (p) ∈ Rj :

(p) ∈ π(1,...,j)[Rϕ(x)] iff exists pj+1, . . . , pr ∈ R : (p1, . . . , pr) ∈ Rα(x)

iff exists pj+1, . . . , pr ∈ R : R |= α(p1, . . . , pr)
iff R |= (∃xj+1 · · · ∃xrα)(p1, . . . , pj)

iff (p) ∈ R
j
α(x)

�
The following example illustrates the effect of the choice of the extension on the de-
scribed space.

3.4 Example
Consider α := (x = 0). Then α(x), α(x, y), and α(y, x) are extended formulas. The
corresponding R-realizations are

Rα(x) = {0}, Rα(x,y) = {(0, b) | b ∈ R} , Rα(y,x) = {(a, 0) | a ∈ R} .

The corresponding R1-realizations are

R1
α(x) = {0}, R1

α(x,y) = {0}, R1
α(y,x) = R.

3.2 SCAD Notions and Problem Statement

As we have introduced notions for the induced subspaces, let us now see how the other
notions regarding CAD have to be adjusted. Unless stated otherwise, α(x1, . . . , xr)
denotes an extended formula and 0 ≤ j ≤ r.

3.5 Remark (region)
The notion of region remains unchanged, i.e. R ⊆ R

j
α(x) is a region, iff R is a region in

Rj . Thus for the connectedness property of a region the topology of Rj , and not the
subspace topology of R

j
α(x) is used.

3.6 Definition (subcylinder, section, sector)
If S is a region in R

j
α(x), then:
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1. subcylα(x)(S) := cyl(S)∩R
j
α(x) denotes the subcylinder over S wrt. α(x). If α(x)

is known from the context we write simply subcyl(S).

2. C is called a section or a sector of subcyl(S) if C is a sector or a section of the
cylinder over S and C ⊆ subcyl(S).

3.7 Remark (subdecomposition, algebraic cell, algebraic subdecomposition)
Definition 2.7 is already general enough, so we need not to formally define a notion of
subdecomposition. For a decomposition U of R ⊆ R

j
α(x), however, we may use the term

subdecomposition, to underline the fact that it is a decomposition of a subspace of Rj .
The elements of U are called cells as usual. Analogously the notions algebraic cell and
algebraic subdecomposition are defined.

3.8 Definition (substack, subcylindrical decomposition, SCAD)
1. A substack over a cell C wrt. α(x) is a decomposition of subcyl(C) such that the

projection, which drops the last component, maps each cell of this subdecompo-
sition to C.

2. A decomposition Dj of R
j
α(x) is called subcylindric, if j = 0 or if j > 0 and Dj can

be partitioned into substacks over cells of a subcylindrical decomposition Dj−1 of
R

j−1
α(x), the induced subcylindrical decompositon of Dj−1.

3. A decomposition that is subcylindric and algebraic is called subcylindrical algebraic
decomposition (SCAD). In light of the remark above we allow us to say cylindrical
algebraic subdecomposition instead of subcylindrical algebraic decomposition.

As we have now introduced the necessary notions, we can formulate the SCAD problem.

3.9 (specification of SCAD)

D ←− SCAD(A,α, (x))

Input: A and (x) as in Specification 2.14. In addition, a formula α, such that α(x) is
an extended formula.
Output: An A-sign-invariant cylindrical algebraic subdecomposition D of Rr

α(x), from
which can be read:

1. The number and arrangement of the cells.

2. The sign of each element of A on each cell.

3.10 Definition (SCAD problem, solution for a SCAD problem)
We call a triple (A,α, (x)) as specified as input in 3.9 a SCAD problem and an A-
sign-invariant subdecomposition D as specified as output in 3.9 a solution of a SCAD
problem.

As for a CAD, it is proximate to represent a SCAD by a tree. Here the remarks from
the sections 2.2, 2.5.2, and 2.6.3 apply as well.
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3.3 Sign-Invariant Substack Construction

3.11 Algorithm (substack construction)

(C)←− SUBSTACK(B,F, α, (x))

Input: B,F, (x) as in Algorithm 2.24. In addition there exist variables xj+1, . . . , xr such
that α(x, xj+1, . . . , xr) is an extended formula, B ⊆ R

j−1
α(x,xj+1,...,xr) is an algebraic cell

and every cell of STACK(B,F, (x)) is either a subset of R
j
α(x,xj+1,...,xr) or �R

j
α(x,xj+1,...,xr).

Output: An F -sign-invariant algebraic substack (C) over B.

1. (E) := STACK(B,F, (x))

2. Remove those cells from (E), which are not subset of R
j
α(x,xj+1,...,xr). Call the

result (C).

3. Return (C).

We need some more notation.

3.12 Definition (bounded quantifiers)
For Q ∈ {∀,∃}, a variable x, and formulas γ and ξ, define

(Qx)γξ :=
{ ∃x(γ ∧ ξ), if Q = ∃,
∀x(γ −→ ξ), otherwise.

3.13 Lemma (properties of SUBSTACK)
With notions and assumptions from Algorithm 3.11

1. (C) is an F -sign-invariant algebraic substack over B wrt. α(x).

2. Let ψ(x) be an extended formula that has constant truth value vC on each cell
C in (C). Then, if (C) �= ∅, for Q ∈ {∃,∀} the formula (Qxj)αjψ has constant
truth value vB on B, where vB = max {vC | C ∈ (C)}, if Q = ∃, and vB =
min {vC | C ∈ (C)}, if Q = ∀.

Proof . Choose xj+1, . . . , xr such that α(x, xj+1, . . . , xr) is an extended formula. As a
shortcut, define β := ∃xj+1 · · · ∃xrα, then Rβ(x) = R

j
α(x,xj+1,...,xr).

As (E) is a finite collection of disjoint regions, so is (C). Next we show:

⋃
{C} =

⋃{
E ∈ (E)

∣∣∣ E ⊆ R
j
β

}
= subcylβ(x)(B).

The first equation holds due to Step 2. To show the second equation, let a ∈⋃{
E ∈ (E)

∣∣∣ E ⊆ R
j
β

}
. Choose E ∈ (E) such that a ∈ E and E ⊆ R

j
β . As E ⊆ cyl(B)
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we have a ∈ cyl(B). As in addition a ∈ R
j
β we have shown a ∈ subcylβ(x)(B). Con-

versely, assume a ∈ subcylβ(x)(B). As a ∈ cyl(B)∩R
j
β , choose E ∈ (E) with a ∈ E. By

assumption, either E ⊆ R
j
β(x) or E ⊆ �R

j
β(x). As a ∈ E ∩ R

j
β we have E ⊆ R

j
β(x). Thus

a ∈ ⋃{E ∈ (E)
∣∣∣ E ⊆ R

j
β

}
. This shows that (C) is a decomposition of subcylβ(x)(B).

In addition each C ∈ (C) is algebraic and π(1,...,j−1)[C] = B, as each cell in (E) has this
property. This finishes the proof of the first claim.

To show the second claim we assume an extended formula ψ(x) that has constant
truth value vC on each cell C in (C) to be given. In addition, (C) �= ∅ is assumed. We
make a case distinction.

Case 1: For all C ∈ (C) : vC = 0. Let (a) ∈ B. Case 1.1: Q = ∃. Let aj ∈ R.
If βR(a, aj) = 1, i.e. (a, aj) ∈ Rβ(x), then choose C ∈ (C) with (a, aj) ∈ C. Then
ψR(a, aj) = vC = 0 and (β ∧ ψ)R(a, aj) = 0. If βR(a, aj) = 0, i.e. (a, aj) /∈ Rβ(x), then
(β ∧ ψ)R(a, aj) = min

{
0, ψR(a, aj)

}
= 0. So for all aj ∈ R: (β ∧ ψ)R(a, aj) = 0 and we

have
(∃xj(β ∧ ψ))R(a) = 0 = max {vc | c ∈ (C)} .

Case 1.2: Q = ∀. Choose C ∈ (C), as (C) �= ∅. Choose aj ∈ R with (a, aj) ∈ C.
Consequently βR(a, aj) = 1 and (β −→ ψ)R(a, aj) = max

{
(¬β)R(a, aj), 0

}
= 0. So

there exists aj ∈ R such that (β −→ ψ)R(a, aj) = 0 and we have

(∀xj(β −→ ψ))R(a) = 0 = min {vc | c ∈ (C)} .

Case 2: There exists C ∈ (C) such that vC = 1. Then (∃xj(β ∧ ψ))R(a) = 1 =
max {vc | c ∈ (C)} for all (a) ∈ B. For the universal quantifier we need one more
distinction. Case 2.1: There exists C ′ ∈ (C) such that vC′ = 0. Then (∀xj(β −→
ψ))R(a) = 0 = min {vc | c ∈ (C)} for all (a) ∈ B. Case 2.2: For all C ∈ (C): vC = 1.
Let (a) ∈ B and aj ∈ R. If βR(a, aj) = 1, then choose C ′ ∈ (C) with (a, aj) ∈ C ′.
Then ψR(a, aj) = vC′ = 1 and (β −→ ψ)R(a, aj) = 1. If βR(a, aj) = 0, then (β −→
ψ)R(a, aj) = 1 as well. Thus (∀xj(β −→ ψ))R(a) = 1 = min {vc | c ∈ (C)}. �

3.14 Remark
With notation and assumptions from Algorithm 3.11.

1. How decide whether Ei lies within R
j
α(x,xj+1,...,xr) or its complement? Let α′

j be a
quantifier-free equivalent to αj . Note that α′

0, . . . , α
′
r−1 can be found by computing

one CAD tree. Then if (e) is a sample point of Ei, (α′
j)

R(e) = 1 iff Ei lies within
R

j
α(x,xj+1,...,xr).

2. The number and position of deleted cells can only in some cases be reconstructed
from the indices of remaining cells. Thus, as an alternative to removing a cell, a
cell can be marked to be a non-lifting cell. We print such cells white.
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3.4 Subprojection Operator and Subprojection Set

In the context of subdecompositions weaker conditions on projection operators and
projection sets suffice. As usual, if an A-invariant region R in Rj−1 is known, then A∗

denotes the polynomials from A that do not vanish.

3.15 (specification of a subprojection operator)

F ←− SPROJ(A,α, (x))

Input: A and (x) as in Specification 2.33. In addition there exist variables xj+1, . . . , xr

such that α(x, xj+1, . . . , xr) is an extended formula.
Output: Set F of integral polynomials in (x1, . . . , xj−1) such that for any F -invariant
region R in R

j−1
α(x,xj+1,...,xr) the following two conditions hold:

1. Every element of A is either delineable or identically zero on R.

2. Let A∗ denote the polynomials of A, which do not vanish identically on R. The
sections of cyl(R) belonging to different f, g ∈ A∗ are either disjoint or identical.

3.16 Remark
1. Every projection operator is a subprojection operator. More precisely, if proj

satisfies Specification 2.33, then (A,α, (x)) �→ proj(A, (x)) satisfies Specifica-
tion 3.15.

2. In the context of subdecomposition, one wants to design projection operators that
exploit the knowledge about the given subspace. The generic projection operator,
which is defined in an application section below, is an example for an subprojection
operator.

It is straightforward to adapt the algorithm PROJSET to the corresponding algorithm
that computes the subprojection set:

3.17 Algorithm (subprojection set)

F ←− SPROJSET(sproj)(A,α, (x))

Input: A and (x) as in Algorithm 2.35. In addition, a formula α, such that α(x) is an
extended formula. Furthermore, a subprojection operator sproj is known.
Output: Set F of integral polynomials in (x) with properties stated below.
Proceed as in Algorithm PROJSET, but with the following modification:

1. In line 2,(b), use sprojα,(x1,...,xj)(Fj).

Accordingly, the properties of the corresponding projection set are weaker, too:
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3.18 Lemma (Properties of algorithm SPROJSET)
With the notations and assumption from Algorithm 3.17:

1. F is closed under sproj in the following sense: For 1 ≤ j ≤ r every irreducible
factor of sprojα,(x1,...,xj)(Fj) is already in F .

2. SPROJSETα,(x) is idempotent, i.e.

SPROJSETα,(x)(SPROJSETα,(x)(A)) = SPROJSETα,(x)(A).

3. For 1 ≤ j ≤ r and any Fj−1-invariant region R in R
j−1
α(x): F

∗
j is delineable over R.

3.5 Sign-Invariant Subdecomposition

By combining a subprojection operator with substack construction we can construct a
SCAD. With a small modification, the CADTREE algorithm is adapted to the needs
of SCAD.

3.19 Algorithm (SCAD tree)

D ←− SCADTREE(A,α, (x))

Input: A and (x) as in Algorithm 2.42. In addition a formula α such that α(x) is an
extended formula.
Output: A SCAD tree with properties stated below.

1. Projection. F := SPROJSET(A,α, (x)). Denote with Fj the projection polyno-
mials of level j.

2. Empty subspace. If ∃x1 · · · ∃xrα is equivalent to false, then Return ∅, i.e. the
empty tree.

3. Root of the tree. Let C be the only cell a decomposition of R0 can have, i.e.
C = ({∅}, (), true, ()).

4. Call subroutine. Return D := SCADTREE1(C,F, α, (x)))

3.20 Algorithm (full CAD tree subroutine)

D ←− SCADTREE1(C,F, α, (x))

Input: C, F , (x) as in Algorithm 2.43. In addition a formula α such that α(x) is an
extended formula.
Output: A SCAD subtree.
Proceed as in Algorithm 2.43, but with the following modifications:
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• In Step 3, use SUBSTACK(C,Fj , α, (x1, . . . , xj)).

• In Step 4, use SCADTREE1(Ci, F, α, (x)).

3.21 Lemma (properties of SCADTREE)
With notation and assumptions from Algorithm 3.19. Let Dj , for 0 ≤ j ≤ r, denote the

set of all labels of j-level nodes in D. Then Dj is a Fj-sign-invariant SCAD of R
j
α(x).

In particular, Dr is an A-sign-invariant SCAD of Rr
α(x).

Proof . With the convention that the j-level nodes of the empty tree are ∅ the proof
can be easily lifted from the proof of Lemma 2.44. �

3.6 Quantifier Elimination by SCAD

With a SCAD algorithm at hand, we can proceed similar to the CAD setting and
perform evaluation and propagation of truth values, and give as a solution formula a
describing formula of the true cells in free variable space. The semantics of this result
is, however, far from clear, and will be given at the end of this section. We start by
giving a specification of the algorithm in question.

3.6.1 Algorithm Specification

3.22 (specification of a SCADQE algorithm)

ϕ′ ←− SCADQE(ϕ, α)

Input: Formulas ϕ and α such that ϕ is prenex, α is quantifier-free, and every variable
of α occurs in ϕ, possibly as a bounded variable.
Output: Quantifier-free formula ϕ′ with properties stated below.

Let us go through the steps the final algorithm will be composed of.

3.6.2 Preparation Phase

As the input formula is already assumed to be prenex there is little work to do, except
of deciding on an order (x1, . . . , xk) of the free variables. The order (xk+1, . . . , xr) of
the bounded variables is given by the formula, but changes could be made within blocks
of likely quantified variables. So we write the input formula as:

ϕ(x1, . . . , xk) = Qk+1xk+1 . . .Qrxrψ (Qk+1 . . .Qr ∈ {∃,∀}).
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3.6.3 Projection and Subdecomposition Phase

The set of input polynomials A we consider for SCAD needs to be comprised of the
polynomials of ψ and α. By including all polynomials of α we ensure that during
stack construction cells of level j are αj-truth-invariant. This is necessary for substack
construction. Altogether we end up with a subdecomposition D := SCAD(A,α, (x)) of
Rr.

3.6.4 Evaluation and Propagation of Truth Values

For evaluation and propagation of truth values we re-specify Algorithm 2.47 and care
in addition for the case that the decomposition is empty. As the new version is more
general than the original one, it shall supersede that definition.

3.23 Algorithm (evaluation and propagation of truth values for subdec.)

D ←− TVPROP(D, (Q), (x), ψ)

Input: A SCAD tree D such that the yield Dr is a subdecomposition of Rr, a formula
ψ such that ψ(x) is an extended formula, variables (x) = (x1, . . . , xr), such that ψ(x) is
truth-invariant on the cells of Dr, and a list of quantifier symbols (Q) = (Qk+1, . . . ,Qr).
Output: A SCAD tree D such that the cells in level k to r contain truth values with
properties stated below.
Proceed as in Algorithm 2.47, but add the following case to Step 1:

If D = ∅ then Return ∅.
The following lemma gives the semantics of the truth values that are computed for cells
of level k through r by the algorithm.

3.24 Lemma (properties of TVPROP with SCAD tree)
With D, (Q), (x), ψ and assumptions from Algorithm 3.23. If α(x) is an extended
formula such that Dr is a decomposition of Rα(x), then for each j with k ≤ j ≤ r and
each cell C in Dj the formula

ϕ(j)(x1, . . . , xj) := (Qj+1xj+1)αj+1 . . . (Qrxr)αrψ

is truth-invariant with truth values vC as computed by the algorithm.

Proof . Induction on j. For j = r let C be a cell in Dr. According to Lemma 3.21 all
polynomials of ψ are invariant on C. Thus the truth value of ψ is invariant on C as
well.

Now assume that k ≤ j < r and that the assumption holds for j + 1. Let C be
a cell in Dj . On all cells of the stack above C ϕ(j+1)(x1, . . . , xj+1) has constant truth
value by assumption. According to Lemma 3.13,(2), vC is the invariant truth value of
ϕ(j)(x1, . . . , xj) �
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As an easy corollary we know now what area the true cells and the false cells of level k
describe.

3.25 Lemma (semantics of the true cells in free variable space)
With notions and assumptions from Lemma 3.24. The extended formula

ϕ̌(x1, . . . , xk) := αk ∧ (Qk+1xk+1)αk+1
. . . (Qrxr)αrψ

is a describing formula of
⋃ {C ∈ Dk | vC = 1}. Conversely,

ϕ̂(x1, . . . , xk) := αk ∧ ¬((Qk+1xk+1)αk+1
. . . (Qrxr)αrψ)

is a describing formula of
⋃ {C ∈ Dk | vC = 0}. �

Let us now discuss what occurrences of bounds in ϕ(k)(x1, . . . , xk) are indeed necessary.

3.26 Remark (simpler semantics)
Note that R |= αk ←− . . .←− αr.

1. Let m′ denote the level of the highest variable that occurs in α wrt. (x1, . . . , xr),
and put m := max {k,m′}. Then the bounds αm+1, . . . , αr can be dropped. Note
that αk remains. The ultimate reason for this is that in propositional calculus
the formula A −→ (A ∧ B) is equivalent to A −→ B and that A ∧ (A −→ B) is
equivalent to A ∧B.

2. Among those blocks of like quantifiers, where a bound remains, it suffices to keep
only the bound for the highest variable.

3. We do not expect that in general more bounds can be dropped. We give the
argument for two blocks of quantifiers. In such a case, say, the formula is equivalent
to either

∃xk+1, . . . , xl∀xl+1, . . . , xrαl ∧ (αr −→ ψ)

or
∀xk+1, . . . , xl∃xl+1, . . . , xrαl −→ (αr ∧ ψ)

Let us abstract the matrix of each formula to propositional calculus. This amounts
to

A ∧ (B −→ C), A −→ (B ∧ C).

Looking at Table 3.1 we see that despite the assumption A←− B in A −→ (B∧C)
neither A , B, or C is redundant, due to conflicting line pairs (1, 2), (6, 8), and
(4, 8). And in A ∧ (B −→ C) neither A , B, or C is redundant, due to conflicting
line pairs (1, 2), (2, 4), and (4, 8).

The following is needed later to argue that the semantics of the CADQE algorithm is
independent of the variable order.
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A B C A←− B A −→ (B ∧ C) A ∧ (B −→ C)
0 0 0 1 1 0
1 0 0 1 0 1
0 1 0 0 1/dc 0/dc
1 1 0 1 0 0
0 0 1 1 1 0
1 0 1 1 0 1
0 1 1 0 1/dc 0/dc
1 1 1 1 1 1

Table 3.1: No further minimization possible. dc stands for don’t care.

3.27 Lemma (independence of the semantics from the variable order)
Consider the formula

ϕ′ := (Qk+1xk+1)αk+1
. . . (Qrxr)αrψ

and, for a permutation (x′k+1, . . . , x
′
r) of (xk+1, . . . , xr), that respects blocks of like

quantifiers, the formula

ϕ′′ := (Qk+1x
′
k+1)α′

k+1
. . . (Qrx

′
r)α′

r
ψ,

where α′
j is a quantifier-free equivalent to ∃x′j+1 . . .∃x′rα. Then R |= ϕ′ ←→ ϕ′′.

Proof . We show the claim for the case that there is one block of like quantifiers. Let

� denote ∧, if Q = ∃, and −→, if Q = ∀.

(Qxk+1)αk+1
. . . (Qxr)αrψ ≡R Qxk+1 . . .Qxr(αk+1 
� (. . . (αr 
� ψ) . . .))

≡R Qxk+1 . . .Qxr(αr 
� ψ)
≡R Qxk+1 . . .Qxr(α′

r 
� ψ)
≡R Qx′k+1 . . .Qx

′
r(α

′
r 
� ψ)

≡R Qx′k+1 . . .Qx
′
r(α

′
k+1 
� (. . . (α′

r 
� ψ) . . .))
≡R (Qx′k+1)α′

k+1
. . . (Qx′r)α′

r
ψ

The argument is now easily generalized by induction on the number of blocks of like
quantifiers and by using the fact that always αj ≡R α

′
j , if j marks the end of a block of

like quantifiers. �

3.6.5 Solution Formula Construction for Subdecomposition

With some small modifications we can reuse the algorithm for signature-based solution
formula construction from [Hon90].
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3.28 Definition (signature, signature-based formula)
Let (f) = (f1, . . . , fm) be a list of integer polynomials.

1. A signature for (f) is a sign vector σ = (σ1, . . . , σm) ∈ {−1, 0, 1}m.

2. If W is a finite set of signatures of (f), then

ϕsignbased,W,(f)(x1, . . . , xk) :=
∨

σ∈W

∧
i∈{1,...,m}

fiρi0,

where ρi ∈ {<,=, >} is defined to be <, if σi = −1, =, if σi = 0, and >, if σi = 1,
is called the W -based formula for (f).

Disjoint sets of signatures result in signature-based formulas, which describe disjoint
spaces.

3.29 Lemma
Let W , W ′ with W ∩W ′ = ∅ be two sets of signatures for (f). Let (x) be an extension
to ϕsignbased,W,(f) and ϕsignbased,W′,(f). Then

R �|= ∃x(ϕsignbased,W,(f) ∧ ϕsignbased,W′,(f))

Proof . If W = ∅ or W ′ = ∅ then one of the signature-based formulas is false, and the
claim holds. So we assume W and W ′ to be non-empty.

Suppose R |= ∃x(ϕsignbased,W,(f) ∧ ϕsignbased,W′,(f)). Choose reals (a) such that R |=
(ϕsignbased,W,(f) ∧ ϕsignbased,W′,(f))(a). Choose σ ∈W , σ′ ∈W ′ such that

R |= (ϕsignbased,{σ},(f) ∧ ϕsignbased,{σ′},(f))(a).

Choose i such that σi �= σ′i. Now fi(a) evaluates to a number and has two different
signs, a contradiction. �
The following algorithm is used for the special case Y = Dk in Chapter 2. Here,
instead of Dk, we more generally assume an ϕ(x1, . . . , xk)-invariant decomposition Y of
a subspace of Rk.

3.30 Algorithm (signature-based solution formula construction)

ϕ′ ←− SFC(Y, F, (x))

Input: A set F of polynomials from Ik with (x) = (x1, . . . , xk) and an F -sign-invariant
CAD Y of a subspace of Rk where each cell C has a truth value vC assigned.
Output: A quantifier-free formula ϕ′ with properties stated below, or the symbol fail.

1. Decide on an ordering of the polynomials. Choose (f) = (f1, . . . , fm) such that
F = {f}.
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2. For each cell C in Y compute a signature σ(C) := sign(f(αC)).

3. True, false, and conflicting signatures. Wt :=
{
σ(C)

∣∣ C ∈ D, vC = 1
}
, Wf :={

σ(C)
∣∣ C ∈ D, vC = 0

}
, Wc := Wt ∩Wf .

4. Quick win. If Wt = ∅ then Return false. If Wf := ∅ then Return true.

5. If Wc = ∅ then Return ϕsignbased,Wt,(f), else Return fail.

3.31 Lemma (properties of SFC)
With notions and assumptions from Algorithm 3.30. Let Y (t) := {C ∈ Y | vC = 1} and

Y (f) := {C ∈ Y | vC = 0}. If SFC succeeds, then⋃
Y (t) ⊆ Rϕ′(x1,...,xk) ⊆ �

⋃
Y (f).

In particular, if Y is a decomposition of Rk, then ϕ′(x) is a describing formula for Y (t).

Proof . As the algorithm succeeds we have Wc = ∅. If Wt = ∅ then⋃
Y (t) = ∅ = Rfalse(x1,...,xk) ⊆

⋃
Y (f).

Conversely, if Wf = ∅, then⋃
Y (t) ⊆ Rk = Rtrue(x1,...,xk) =

⋃
Y (f).

In the following, Lemma 3.29 is used implicitly in some arguments. For C ∈ Y we have
that C ⊆ Rϕsignbased,{σC},(f)

due to the assumption that (f) are C-sign-invariant. Thus

⋃
Y (t) ⊆

⋃
C∈Y (t)

Rϕsignbased,{σC},(f)
= R�

C∈Y (t) ϕsignbased,{σC},(f)
= Rϕsignbased,Wt,(f)

As just seen, and as Wc = ∅, we have that

Rϕsignbased,Wt,(f)
=
⋃

C′∈Y (t)

Rϕ
signbased,{σC′},(f)

⊆ �C

for all C ∈ Y (f). Thus

�
⋃
Y (f) =

⋂{
�C
∣∣ C ∈ Y, vC = 0

}
⊇
⋂{

Rϕsignbased,Wt,(f)

∣∣∣ C ∈ Y, vC = 0
}

= Rϕsignbased,Wt,(f)

If Y is a decomposition of Rk, then
⋃
Y (t) = �

⋃
Y (f), thus Y (t) = Rϕ′(x1,...,xk). �
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3.32 Remark
1. The algorithm SFC can fail in rare cases. Then the true-space is not projection-

definable. The version given in [Hon90] is less general in that it assumes Y to be
a decomposition of Rk, but more sophisticated in that it is shown there how to
use multiple-valued logic minimization to further simplify the result.

2. The original paper [Col75] shows how to find a quantifier free describing formula
for each cell in free variable space by means of an augmented projection operator.
This approach turned out to be too costly and is replaced now by signature-based
solution formula construction as best practice.

3. Brown [Bro99] shows how a situation with conflicting signature can be remedied
by subsequently adding additional input polynomials. Adding polynomials and
recomputing the CAD is less costly than using augmented projection beforehand.
Due to this result a CAD algorithm with signature-based solution formula con-
struction can be considered complete.

3.6.6 Quantifier Elimination by SCAD

Finally we can give the proposed SCADQE algorithm and clarify, by putting the various
results from this section together, its semantics.

3.33 Algorithm (SCADQE)

ϕ′ ←− SCADQE(ϕ, α)

Input: Formulas ϕ and α such that ϕ is prenex and every free variable of α occurs in
ϕ, possibly as a bounded variable.
Output: Quantifier-free formula ϕ′ with properties stated below.
Proceed as in CADQE (cf. Algorithm 2.50), with the following modifications:

• In Step 2, let A denote the polynomials of ψ and α.

• In Step 3, replace CADTREE(F, (x)) by SCADTREE(F, α, (x)).

• Replace Step 6 by:

Simplification under theory (optional). Find a ϕ′ such that R |= α −→
(ϕ′′ ←→ ϕ′)

3.34 Theorem (properties of SCADQE)
With notions ϕ, α, and ϕ′ and assumptions from Algorithm 3.33 and for any valid choice
of variable order (x1, . . . , xr) as discussed on page 53 it holds: V(ϕ′) ⊆ Vf (ϕ) and with
formulas αj as introduced in Definition 3.2:

R |= αk −→ (ϕ′ ←→ (Qk+1xk+1)αk+1
. . . (Qrxr)αrψ).
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In particular, if α does not contain any bounded variable from ϕ, then

R |= α −→ (ϕ′ ←→ ϕ).

Proof . Let (x1, . . . , xr) denote the variable order fixed in Step 1, D denote the SCAD
tree computed in Step 3, and D′ the SCAD tree with truth values from Step 4 of the
algorithm. (x1, . . . , xk) is an extension for αk, ϕ′, and (Qk+1xk+1)αk+1

. . . (Qrxr)αrψ.
Let (a) ∈ Rk with R |= ak(a). So (a) lies within

⋃
Dk. Choose cell C ∈ Dk with

(a) ∈ C. We have to show

(ϕ′)R(a) = ((Qk+1xk+1)αk+1
. . . (Qrxr)αrψ)R(a).

Due to Lemma 3.24, (Qk+1xk+1)αk+1
. . . (Qrxr)αrψ)R(a) = vC . So it suffices to show

(ϕ′)R(a) = vC . If vC = 1, then due to Lemma 3.31 (first inclusion) (ϕ′)R(a) = 1. If
vC = 0, then with Lemma 3.31 (second inclusion)

(a) ∈ C ⊆ �Rϕ′(x1,...,xk) = R¬ϕ′(x1,...,xk).

So (¬ϕ′)R(a) = 1 and thus (ϕ′)R(a) = 0.
Altogether we have shown the claim for one particular variable order. Due to

Lemma 3.27 the claim holds for any valid variable order (x1, . . . , xr). �

3.35 Example
Consider the input formula ϕ(x, y) := ∃y(x = y2) and the assumption α(x, y) := (x2 +
y2− 1 < 0). SCADQE returns ϕ′ = (x2 +x− 1 < 0∧x ≥ 0). The R-realization of ϕ′(x)
is the half-open interval [0,−1

2 +
√

5
2 [. As a comparison, the R-realization of the result

of CADQE would be [0,∞[.

3.7 Discussion

After the introduction of the subdecomposition framework we want to discuss how
it relates to full decomposition, partial CAD, and how it can be modified such that
assumptions can be made on the fly as well.

3.7.1 Subdecomposition Versus Decomposition

For a SCAD problem (A, (x), α) we call the CAD problem (A, (x)) the corresponding
CAD problem. Conversely, if α is known from the context, for a CAD problem (A, (x))
the problem (A, (x), α) is called the corresponding SCAD problem. We note some
observations on how a subdecomposition relates to the corresponding decomposition.
Let us first consider the situation where by making assumptions no new projection
factors are introduced. Then:
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1. If the set of projection factors is the same as that of regular CAD, then the sub-
decomposition will be a subset of the corresponding decomposition. In particular,
the nubmer of cells of the subdecomposition will be less than or equal to the
number of cells of the corresponding decomposition.

2. If the set of projection factors is a subset of that of regular CAD, then the sub-
decomposition needs no longer be a subset of the decomposition. What happens
is that cells melt together, yielding a coarser decomposition.

3. On the one hand it is additional work to find non-lifting cells. On the other hand
one level later there is less work, as there are less stacks to be constructed. We
have two expectations: (1) If a decomposition succeeds then a subdecomposition
will succeed as well, maybe needing more time in rare cases. (2) In general we
expect a subdecomposition to be a time saver.

Let us now consider the situation where the assumptions introduce additional projection
factors. Then:

1. A subdecomposition can have more cells than the corresponding decomposition.
As an example, consider A =

{
x2 + y2 − 1

}
, α := (x2 + y2 ≤ 2), and the variable

order (x, y). The regular CAD algorithm computes a CAD of 13 cells. The
corresponding SCAD for this example, however, results in 25 cells.

2. A subdecomposition can have less cells than the corresponding decomposition, but
counting white cells there were more. As an example, consider A := {4y2 + 4x2−
12x+ 5, 4y2 − 12y + 5 + 4x2}, α := (x > y), and the variable order (x, y). There
are two circles, one at (1.5, 0) and the other at (0, 1.5), both with radius 1. These
circles do not overlap. A CAD results in 1+3+5+7+9+7+5+3+1 = 41 cells. A
corresponding SCAD consists of 3+5+7+9+11+9+7+5+3 = 59 cells in total, but
34 white cells have to be removed. So there remain 1+1+1+3+5+5+5+3+1 = 25
cells.

3. In principle it is possible that it takes much more effort to construct the SCAD
than the corresponding CAD. In practice, however, the assumptions made are
not arbitrary. They are either made manually by the user who has a certain
understanding of the problem, or they are made automatically by an algorithm,
as will be seen in later applications. In both cases we expect that in general the
SCAD approach will lead to improved results.

3.7.2 Partial CAD Versus SCAD

Partial Cylindrical Algebraic Decomposition (PCAD) was introduced by Collins and
Hong [CH91] and consists of three ideas to speed up the construction of a CAD tree
or to simplify a CAD tree in the context of quantifier elimination. These are: Partial
CAD itself, the first improvement trial evaluation (TE), and the second improvement
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propagation below free variable space (PBFVS). Note that PCAD can have two different
meanings: It can be used both as a collective term for these three ideas and as a
designation for the first idea. We shall discuss the relationship between PCAD and its
improvements and SCAD.

The idea of PCAD itself is already sketched in Collins’ original paper [Col75]. For
ease of presentation we considered two different phases: the construction of a CAD
and then, afterwards, evaluation and propagation of truth values. These two phases
can of course be intermingled, in that the tree is constructed in a depth-first manner,
evaluation of truth values is performed as soon as a leaf is reached, and propagation of
truth values takes place as soon as a stack is returned. When doing this, it is easy to
see that in certain situations it is not necessary to compute the subtree over every cell
in a stack. If the truth values of a stack will be propagated to the base cell by means of
an existential quantifier, then as soon as one finds a true cell one can cease to compute
subtrees. The dual situation holds for universal quantifiers. As a result, not a full CAD
tree is computed, but only a partial one. This can lead to enormous speed-ups.

Let us look at trial evaluation. The idea behind TE is that in some cases the truth
value of a cell might be determined by plucking in the sample point into the matrix
ψ. If ψ contains atomic formulas for which the partial sample point suffices to find a
truth value, then chances are that the overall truth value of ψ can be determined and
assigned to the cell. As a result, the subtree over the cell need not be constructed.
This integrates nicely into the CADQE framework if done at level k and above. If done
within free variable space, then a cell C of level j < k, for which a truth value by TE is
found, represents the cell C ×Rk−j . As a result, a truth-invariant full decomposition of
free variable space for the input formula is constructed. This decomposition might no
longer be sign-invariant wrt. projection factors of level k, and there are some implications
on solution formula construction, which we need not discuss here. Depending on the
problem TE can lead to large gains, or to an overhead.

Regarding PBFVS, the idea is that when all cell in a stack on or below free variable
space have the same truth value, than this value can be propagated to the base cell,
and the children of this base call can be removed from the tree. Similarly as with TE,
a leave C of level j < k represents the cell C × Rk−j of level k, and the decomposition
might no longer be sign-invariant, but is still truth-invariant. The advantage of PBFVS
is faster solution formula construction and simplification.

Looking at PCAD, TE, and PBFVS, these improvements have the following common
characteristics:

1. A full decomposition of free variable space is computed.

2. This decomposition is not necessarily sign-invariant (wrt. projection factors of
level 1 through k).

3. Classical semantics: Output is equivalent to input.

In contrast to this, SCAD has the the following properties:
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1. A subdecomposition of free variable space is computed.

2. This decomposition is sign-invariant (wrt. projection factors of level 1 through k).

3. Relaxed semantics: Under some assumptions the output is equivalent to the input
formula, where some bounds have to be added.

We can conclude that SCAD differs significantly from PCAD and its improvements.
Even better, SCAD can be combined with PCAD. When constructing a substack in

quantified variable space we can apply the PCAD idea and cease to compute subtrees
in appropriate cases. As a result we end up with a decomposition of free variable space,
which is exactly the same as without PCAD applied. If we utilize TE for SCAD, then
the following can happen: A cell below free variable space is assigned a truth value, but
if we would continue the decomposition, then a white cell would occur in a stack above.
As a result, not a decomposition of the appropriate subspace of free variable space,
but a decomposition of some superset of it would be computed. This does not affect
the semantics of the solution, the only disadvantage might be that solution formula
construction unnecessarily fails due to compatible signatures. As for PBFVS, similarly
to TE a superset is decomposed. Note that in contrast to TE the extraneous space may
bear wrong truth values, but again this does not affect the semantics.

To summarize, the use of PCAD and TE on and above free variable space is save and
has no visible effects on the subdecomposition of free variable space that is computed;
we can proceed with solution formula construction as described above. TE below free
variable space and PBFVS has effects on the decomposition, but the semantics remains
intact. Solution formula construction is affected and has to be modified accordingly.

3.7.3 A Priori Assumptions Versus Making Assumptions on the Fly

So far we have considered the situation that assumptions are given beforehand to the
algorithm Note that the overall algorithm is good-natured in that in most steps the use
the assumptions is optional, and not mandatory. In the following, if we speak about
making assumptions on the fly, i.e. during the execution of the algorithm, then we mean
assumptions that will fully exclude or include future cells to be generated, and that will
fully exclude or include cells that were already generated. E.g. making assumptions in
terms of projection factors satisfies this condition.

1. During projection, assumptions may or may not be used to cut down on the
projection set. If assumptions are not, or not always used, then redundant pro-
jection factors may persist. Such a projection set, however, is in particular a
valid subprojection set. Making not full use of the assumptions does not affect
the semantics, but “only” leads to superfluous computation, as possibly a more
fine-grained decomposition has to be constructed.

2. During extension, assumptions may or may not be used to remove white cells be-
low and on free variable space. Here superfluous cells might result in unnecessary
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computation, a cluttered up solution formula, or a failed signature-based solution
formula construction, but the semantics for QE is not affected (we can argue sim-
ilarly as above, where we argued that SCAD is compatible with TE and PBFVS).
Note, however, that above free variable space this freedom does not exist. Here
a precise substack construction is needed, so evaluation and propagation of truth
values leads to correct results.

As a consequence, instead of having assumptions fixed beforehand, we consider the
following more flexible approach:

1. During projection we can make assumptions on all variables.

2. After projection we can make assumptions on all variables.

3. During extension we can make assumptions on free variables. If assumptions
made include bounded variables, then it has to made clear that none of the cells
constructed so far gets turned into a white cell by making these assumptions.

4. After extension, and during solution formula construction, we can make assump-
tions on free variables.

In any case, we can put the semantics and correctness of such CADQE variant down to
the semantics and correctness of the original CADQE algorithm:

1. Make (additional) assumptions α′ during the algorithm as allowed and desired.
This results in a variant CADQE′ of CADQE of the following format:

(α′, ϕ′)←− CADQE′(ϕ, α)

2. Argue that ϕ′ can be obtained by SCAD(ϕ, α∧α′) by making use of the assump-
tions in a selective way. This clarifies the semantics of ϕ′.

Altogether, by relaxing the utilization of assumptions in CADQE within the afore-
mentioned limits we get a flexible framework to build interesting application-oriented
variants upon. When doing this, the key questions to be asked are:

1. In which steps should assumptions be allowed to be made?

2. What kind of assumption should be made?

3. Should assumptions be utilized during projection and how can this be done?

4. Is there an efficient way to sort out white cells?

5. Is it ensured that the assumptions are not inconsistent, i.e. equivalent to false?
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3.8 Conclusions

We have put forward the framework of cylindrical subdecomposition (SCAD) in order
to clarify the effects and benefits of decomposing only a subspace, as opposed to finding
a full decomposition. In particular, this framework gives an algorithm and semantics
of subdecomposition-based real quantifier elimination (SCADQE), where external as-
sumptions on bounded variables are allowed. The approach is compatible with partial
CAD. It provides an abstraction layer on which further application can be realized. By
using the SCAD framework one can focus on application ideas, while semantics and
correctness is provided by the framework.
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Chapter 4

SCAD Applications

This chapter is devoted to applications of the SCAD framework, which was presented
in Chapter 3.

1. As a first application for SCAD we give a generic projection operator, which ex-
ploits the relaxed conditions on projection sets in a subdecomposition setting. By
computing non-trivial examples we illustrate the capabilities of this approach.

2. As a second application we show how the paradigm of local quantifier elimination
can be applied to the CAD setting by means of performing a subdecomposition.

3. We show that generic projection operator and local elimination can be combined
for added advantages.

4. We discuss more applications and further work.

4.1 Generic Elimination

This section applies the paradigm of generic quantifier elimination to partial cylindri-
cal algebraic decomposition (PCAD). On input of a first-order formula over the reals
generic PCAD outputs a theory and a quantifier-free formula. The theory is a set of
negated equations in the parameters of the input formula. The quantifier-free formula is
equivalent to the input for all parameter values satisfying the theory. For obtaining this
generic elimination procedure, we derive a generic projection operator from the standard
Collins–Hong projection operator. Our operator particularly addresses formulas with
many parameters. It restricts decomposition to a reasonable subset of the entire space.
There is a theory in the form of negated equations generated that describe this subset.
The approach is compatible with other improvements in the framework of PCAD. It
turns out that the theory contains assumptions that are easily interpretable and that
are most often non-degeneracy conditions. The applicability of our generic elimina-
tion procedure significantly extends that of the corresponding regular procedure. Our
procedure is implemented in the computer logic system REDLOG.

67
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The content of this section is published in [SS03].

4.1.1 Introduction

In [DSW98] generic quantifier elimination has been introduced on the basis of real
quantifier elimination by virtual substitution. This works as follows: On input of a
first-order formula ϕ over the reals, the generic quantifier elimination procedure has
two return values:

1. A theory Θ, i.e., a list of negated equations, also called assumptions, in the para-
meters of ϕ.

2. A quantifier-free formula ϕ′ in the parameters of ϕ.

The specification of the algorithm is that ϕ′ is a quantifier-free equivalent to ϕ for all
choices of parameters satisfying Θ; formally

R |=
∧

Θ −→ (ϕ′ ←→ ϕ).

Note that there are never equalities or ordering inequalities assumed, and that there
are no Boolean connections other than conjunction possible between assumptions. As a
consequence, the exception set, for which ϕ′ is not correct, has measure zero within the
parameter space. The idea behind generic quantifier elimination is that the assumption
of Θ supports the construction of ϕ′ to such an extent that the range of practically
feasible problems is significantly extended.

With virtual substitution methods [Wei88] this has without doubt been the case.
This has been demonstrated in particular in the area of automated geometry proving
[DSW98, Stu99a] and physical network analysis [Stu99b]. In all applications examined
so far there have been two more most interesting observations made:

• The assumptions Θ use to have a straightforward interpretation within the real
system modeled by the input. For instance, conditions on an electric circuit would
not compare voltages with resistances.

• Even more strikingly, the assumptions often provide additional non-degeneracy
assumptions that are actually necessary to make the input a sufficiently precise
model of the real world.

We shall see concrete examples for both these points in Section 4.1.4.
Regarding the second point, in his famous monograph on geometry proving [Cho88],

Chou has convincingly demonstrated that for geometric configurations it is not practi-
cable to determine all necessary non-degeneracy conditions in advance.

Consequently, straightforward algebraic formulations of geometric theorems are in
most cases “false,” and this would in fact be the result of any regular quantifier elimi-
nation procedure. Generic quantifier elimination, in contrast, adds in almost all cases
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considered so far the missing input specifications to Θ and obtains “true” as ϕ′. From
this point of view, generic quantifier elimination is much more than a weaker form of
regular quantifier elimination. It is noteworthy that the Wu–Ritt reduction techniques
used by Chou yield conditions in the parameters very similar to our assumptions. In
this section, we gain the following results pertaining to generic quantifier elimination
by PCAD:

1. We define a generic projection operator gproj, which is derived from the stan-
dard Collins–Hong projection operator projh [Col75, Hon90]. This operator is
compatible with the common variants of cell decomposition and solution formula
construction. On the other hand, it even allows for a specifically optimized de-
composition.

2. Our operator gproj particularly addresses formulas with many parameters: It
will turn out that projection within parameter space systematically allows for
assumptions. In bound variable space, in contrast, this requires certain configu-
rations that occur in practice with significant frequency but not systematically.

3. Unlike all other improvements of projection operators discussed in the literature
so far, we do not only aim at a coarser decomposition of the entire space but at
decomposing only a reasonable subset of this space. Our approach is compatible
with other improvements in the framework of PCAD.

4. Our projection operator gproj allows to restrict the possible form of valid as-
sumptions: One can, e.g., restrict to monomial assumptions.

5. We have implemented quantifier elimination by PCAD using our generic projec-
tion operator gproj. This allows us to judge the empirical performance of our
approach on practical examples.

6. Furthermore, it is possible with our implementation to choose between generic
quantifier elimination using our gproj and regular quantifier elimination using
projh. This ensures perfect comparability of computation times as well as of
qualities of results between our approach and the classical one. It turns out that
generic PCAD dramatically exceeds the capabilities of regular PCAD.

7. As discussed with other methods above, we obtain assumptions Θ that are easily
interpretable and that are most often non-degeneracy conditions.

It is not hard to see that the introduction of our generic projection operator does
not lead to any better upper worst-case complexity bounds compared to regular PCAD.
We thus focus on demonstrating its applicability by solving with our implementation of
generic PCAD examples that are not solvable with its non-generic counterpart. Since
real quantifier elimination has during the past years been on the edge between academic
examples and real world problems, any step further is most promising.
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The plan of this section is a follows: Section 4.1.2 is the technical core. Here we
define our generic projection operator, which is derived from Hong’s modification in
[Hon90] of Collins’ original projection operator in [Col75], and prove that it yields a
subprojection operator. In Section 4.1.3 we give, based on the SCAD framework, our
GCADQE algorithm by using the generic projection operator to obtain assumptions and
a subprojection set. In Section 4.1.4 we give computation examples. In Section 4.1.5
we finally summarize and evaluate our work.

4.1.2 Generic Projection Operator

Throughout this section, we consider our prenex input formula to contain variables
x1, . . . , xr, where x1, . . . , xk are free variables, which we also refer to as parameters,
and xk+1, . . . , xr are variables bound by quantifiers. By Ij we denote Z[x1, . . . , xj ].
Consequently, Ir is the set of all polynomials possibly occurring in our formula, and Ik
is the set of all polynomials containing only parameters. Let A generally denote a finite
subset of Ir.

We recall the definition of Hong’s projection operator from [Hon90]:

projh(A) = proj1(A) ∪ proj∗2(A),

proj1(A) =
⋃
f∈A

f∗∈red(f)

({ldcf(f∗)} ∪ psc(f∗, f∗′)
)

proj∗2(A) =
⋃

f,g∈A
f<g

⋃
f∗∈red(f)

psc(f∗, g).

For the motivation of our approach, consider the leading coefficients added in proj1(A).
In contrast to only adding the leading coefficient of each polynomial in A, there are in
addition the leading coefficients of all reducta added. The reason for this is that there
will in general be choices for variables such that these leading coefficients vanish. For
the relevant properties of the projection sets it is, however, crucial to include leading
coefficients for all possible choices of variables including degenerate situations.

From this point of view, the construction of the chain of reducta can be stopped as
soon as the first constant leading coefficient appears; a fact, which is well-known in the
community. Our idea is now to go one step further: We are going to stop this process
as soon as a leading coefficient appears, which contains only parameters. We simply
assume this parametric leading coefficient to be nonzero. This assumption, which is
formally a negated equation, is added to a theory Θ.

Similar observations hold for the chains of principal subresultant coefficients com-
puted in both proj1 and proj∗2.

After our generic projection we continue PCAD. At the end we have obtained on
input of a first order formula ϕ both a quantifier-free formula ϕ′ and the theory Θ
mentioned above. The result ϕ′ is correct for all choices of parameters satisfying Θ.
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Formally, we have
R |=

∧
Θ −→ (ϕ′ ←→ ϕ).

From this semantical description it is straightforward that we do not want to admit
any assumptions on bound variables. Recall that projection proceeds from bound vari-
able space to parameter space. Within the former it is good luck to find parametric
leading coefficients or principal subresultant coefficients; within the latter they occur
systematically.

We are now going to formalize our idea and prove its correctness.
For the definition of our generic projection operator, we define a generic set of

reducta as follows: If there is some j such that redj(f) �= 0 and ldcf(redj(f)) ∈ Ik and
there is some j < j′ such that redj′(f) �= 0, then

µ = min
{
j
∣∣ redj(f) �= 0 and ldcf(redj(f)) ∈ Ik

}
and

gred(f) =
({ldcf(redµ(f)) �= 0}, { redi(f) | 0 ≤ i ≤ µ }).

Else gred(f) =
(∅, red(f)

)
.

Similarly, we have a generic set of principal subresultant coefficients: If there is j <
min{deg(f),deg(g)} such that pscj(f, g) ∈ Ik and there is j < j′ < min{deg(f),deg(g)}
such that pscj′(f, g) �= 0, then

µ = min
{
j < min{deg(f),deg(g)} ∣∣ pscj(f, g) ∈ Ik

}
and

gpsc(f, g) =
({pscµ(f, g) �= 0}, {psci(f, g) | 0 ≤ i ≤ µ }

)
.

Else gpsc(f, g) =
(∅,psc(f, g)

)
.

As a final preparational step, we make the conventions that

gldcf(f) =
(∅, {ldcf(f)})

and that
(Θ, S) � (Θ′, S′) = (Θ ∪Θ′, S ∪ S′).

This allows us to define our generic projection operator as follows:

gproj(A) = gproj1(A) � gproj∗2(A),

gproj1(A) =
⊔
f∈A

f∗∈gred(f)

({gldcf(f∗)} � gpsc(f∗, f∗′)
)

gproj∗2(A) =
⊔

f,g∈A
f<g

⊔
f∗∈gred(f)

gpsc(f∗, g)
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Note that all polynomials occurring as the left hand sides of assumptions are as well
part of the projection set. This way, after computation of a sign-invariant decompo-
sition, every assumption will be either constantly valid or constantly invalid over each
cell.

We recall further definitions. We denote by V (A) the real variety of A. For 0 ≤ j < r
let S be a connected subset of Rj . Then Z(S) := S × R is the cylinder over S. We
adopt the definition of a section of a cylinder from [ACM84]. Then A is delineable
on S if the portion of V (A) lying in Z(S) consists of n disjoint sections of Z(S) for
some n ≥ 0. This notion of delineability, which is a bit weaker than the original one
by Collins, has been introduced in [ACM84]. We shall allow ourselves in the sequel to
briefly say invariant instead of sign-invariant.

For a set of conditions Θ in variables x1, . . . , xr and 0 ≤ j ≤ r let

R
j
Θ =
{
x ∈ Rj

∣∣∣ R |=∧Θ(x, y) for some y ∈ Rr−j
}
.

4.1 Lemma
Let A be a finite subset of Ij for j ≥ 2, and say gproj1(A) = (Θ, P ). Let S be a

connected subset of R
j−1
Θ such that every element of P is invariant on S. Then every

element of A is either delineable or identically zero on S.

Proof . This assertion is a modification of Lemma 2 in [Hon90], for which the proof
is given in Theorem 4 of [Col75]. We modify this proof to derive a proof of our claim
as follows: Fix an element f(x1, . . . , xj) =

∑m
i=0 fix

i
j of A and a connected subset S of

R
j−1
Θ such that f is not identically zero on S.

Choose m ≥ 1 maximal, such that fm �= 0 on S and choose k such that

g := redk(f) =
m∑

i=0

fix
i
j .

Denote gred(f) = (Θ1, B), and assume Θ1 �= ∅, say

Θ1 =
{
ldcf(redµ(f)) �= 0

}
, B =

{
f, red(f), . . . , redµ(f)

}
.

Because of Θ1 ⊆ Θ and our assumption on S we have k ≤ µ. Hence certainly g ∈ B
and ldcf(g) ∈ P .

Choose l ≥ 1 minimal such that pscl(g, g′) �= 0 on S. Denote gpsc(g, g′) = (Θ2, S1).
Assume Θ2 �= ∅, say

Θ2 =
{
pscν(g, g

′) �= 0
}
, S1 =

{
psc0(g, g

′), . . . ,pscν(g, g
′)
}
.

In the same way as above we conclude that l ≤ ν, hence pscl(g, g′) ∈ S1.
We have shown that whenever we make assumptions and cease to include further

polynomials, then all polynomials needed for the original proof that we are modifying
are contained in our generic projection set. �
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4.2 Lemma
Let A be a finite subset of Ij for j ≥ 2, and say gproj1(A) = (Θ, P ). Let S be a

connected subset of R
j−1
Θ such that every element of P is invariant on S. Let f and g

be any two different polynomials in A. If the least integer k such that

psck

(
f(α, xj), g(α, xj)

) �= 0

does not vary for α ∈ S, then the sections of Z(S) belonging to f and g are either
disjoint or identical. �

This assertion is a modification of Lemma 3 in [Hon90]. The basic proof ideas are given
in Theorem 5 of [Col75]. Using similar modifications as in the proof of Lemma 4.1 one
obtains a proof for our assertion.

4.3 Theorem (gproj is a subprojection operator)
Let A be a finite subset of Ij for j ≥ 2, and say gproj1(A) = (Θ, P ). Let S be a

connected subset of R
j−1
Θ such that every element of P is invariant on S. Then the

following two conditions hold:

1. Every element of A is either delineable or identically zero on S.

2. The sections of Z(S) belonging to different f , g ∈ A are either disjoint or identical.
�

Again, a proof can be obtained by adaption of the proof of Theorem 1 in [Hon90].
It is not hard to see that our generic projection remains correct if we impose re-

strictions on the form of possible assumptions. From an application point of view this
is a most interesting feature. The user might, e.g., wish to obtain only monomial as-
sumptions, require at least one variable to occur only linearly, impose other degree
restrictions, or wish to prohibit assumptions on certain parameters.

By successively liberating restrictions on possible assumptions, our generic projec-
tion set scales from the Collins–Hong projection set towards Brown’s projection set
[Bro01]. In fact, Brown implicitly makes assumptions even on bound variables but does
not create any theory. The price is that his decomposition, in contrast to ours, can fail.

4.1.3 Decomposition and Quantifier Elimination

The situation for generic CAD differs from SCAD only in so far, as the subspace is not
known from the beginning, but found during projection. The implications of making
assumptions on the fly were discussed in Section 3.7.3. By writing a small wrapper
around SCADQE we obtain the GCADQE algorithm.

4.4 Algorithm (GCADQE)

(Θ, ϕ′)←→ GCADQE(ϕ)
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Input: Formula ϕ.
Output: List of negated equations Θ and a quantifier-free formula ϕ′ with properties
stated below.

1. Let (Θ, F ) denote the result of generic projection of the polynomials of ϕ. Set
α :=

∧
Θ.

2. Let ϕ′ denote the result of SCADQE(ϕ, α). When calling SCADQE, use the
generic projection operator, such that SCADQE will indeed use the subprojection
set F as already computed in Step 1.

3. Return (Θ, ϕ′)

The correctness of GCADQE is now easily verified, as it follows from the results from
Section 4.1.2 and the properties of SCADQE.

4.5 Theorem
With notations and assumptions from Algorithm 4.4. Then

R |=
∧

Θ −→ (ϕ′ ←→ ϕ).

�

4.6 Remark
1. To fit squarely into the SCAD framework, the generic projection set is computed

twice in this formulation of GCADQE. Of course, in practice one would compute
the result of generic projection only once, and save it for further use.

2. REDLOG contains powerful simplifiers [DS97c]. We use these simplifiers in two
different ways: First, instead of blindly making assumptions, we conservatively
check whether a desired non-zeroness follows from assumptions already made be-
fore. Second, we obtain by simplification a most concise theory for output at the
end.

4.1.4 Computation Examples

The computations for the following example have been performed on a 1.5 GHz Intel
Pentium M under Windows XP using 128 MB ram.

Rhomboid

Consider the following geometrical theorem: In a parallelogram, the diagonals intersect
each other in the middle. We can attempt to prove this with real QE.
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level CADQE GCADQE GCADQE+PCAD
4 693 154 12
3 127 30 30
2 19 10 10
1 5 3 3

Time: 130ms 30ms 20ms

Table 4.1: Number of cells in a full, generic, and generic-partial CAD tree for ϕpg

Without loss of generality, we can assume one corner of the parallelogram at (0, 0),
a second corner at (1, 0). The remaining corners are assumed at (u, v), and at (1+u, v).
Then a condition for a point (x, y) to lie on both diagonals is

y

x
=

v

1 + u
and

−v
1− u =

−y
1− x.

A condition that (x, y) lies on the middle of one diagonal is that the distance from (0, 0)
to (x, y) equals the distance from (x, y) to (1 + u, v), i.e.

x2 + y2 = (1 + u− y)2 + (v − y)2.

Together this gives the following formulation:

ϕpg := ∀x∀y(uy − vx+ y = 0 ∧ −uy + vx− v + y = 0
−→ −u2 + 2ux− 2u− v2 + 2vy + 2x− 1 = 0)

Applying QE to ∀u∀vϕpg results in false. This hints a flaw in the formulation, as we
know the theorem holds and thus expect true. Applying GCADQE to ϕpg results in

((u+ 1 �= 0, u− 1 �= 0, v �= 0), true).

In case v = 0 the parallelogram degenerates to a line, so v �= 0 is a non-degeneracy
condition. The cases u = 1 and u = −1 are special cases and can be considered
separately.

The comparison in Table 4.1 shows that there are considerable savings when using
GCADQE. If partial CAD is performed in addition, then there are savings by trial
evaluation of level-3 cells.

The following computations have been performed on a 933 MHz Intel Pentium III
under Linux using 128 MB ram. All timings are cpu times including garbage collection
times.
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Figure 4.1: An inverting operation amplifier circuit

Inverting Operation Amplifier

We revisit an example from [Hen95, Stu99b]. The inverting operation amplifier in
Figure 4.1 is described by the following set of equations. This description has been
automatically generated from a description of the circuit using the mathematica-based
system Analog Insydes [HH98]:

v1 = v1
v2 = −vpm op1

v3 = vog op1

v1 + iv0r1 = v2

v2r1 + v2r2 = v3r1 + v1r2 + ipm op1r1r2

v3 + iog op1r2 = v2

vog op1 = vpm op1x
2
op1

v2
sx

2
op1 +Av2

og op1 = Av2
s

ipm op1 = 0.

The aim is to determine the output voltage v3 as a function of the input voltage v1 .
The amplification factor A, the supply voltage vs, and the resistances r1 and r2 are
parameters. All other variables

vpm op1, iog op1, ipm op1, iv0, v1, v2, vog op1, xop1

have to be existentially quantified.
In [Hen95] it had been tried to determine a solution via computation of an elim-

ination ideal basis, where it was for principal reasons not possible to exclude certain
so-called parasitic solutions. The problem has then been satisfactorily solved in [Stu99b]
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using generic quantifier elimination by virtual substitution. For our purposes here, we
consider it an excellent benchmark example for the decomposition of a 14-dimensional
space. The 14 variables partition into 6 existentially quantified variables and 8 para-
meters; it should be mentioned that the elimination of one of the quantified variables,
viz. v1, is in fact trivial.

The projection order for all computation variants on this example discussed in the
sequel is as follows:

vpm op1→ iog op1→ ipm op1→ iv0→ v1→ v2→
vog op1→ xop1→ | A→ vs→ v1→ r2→ v3→ r1→ .

By placing “|” we indicate the beginning of the parameter space.
Using projh, the size of the projection set develops as follows:

9→ 12→ 14→ 16→ 17→ 20→
30→ 42→ | 78→ 375→ ⊥ (> 104 min).

That is, there are 9 input factors before the projection of vpm op1. This first projection
step results in 12 factors altogether before the projection of iog op1, etc. After 104 min
the computation aborts during the projection of vs due to exceeding the chosen memory
size of 128 MB.

Using gproj, we successively obtain projection set cardinalities as follows:

9→ 12→ 13→ 15→ 15→ 16→
18→ 26→ | 32→ 35→ 35→ 35→ 35 (870 ms).

During this projection, there is in addition to the projection factors the following
theory of 13 negated equations generated:

{
4A2r21v

2
3 + 8A2r1r2v1v3 + 4A2r22v1

2 + r21v
2
s + 2r1r2v2

s + r22v
2
s �= 0,

Ar1v
3
3 −Ar1v3v2

s +Ar2v1v2
3 −Ar2v1v2

s + r1v3v
2
s + r2v3v

2
s �= 0,

Ar1v
3
3 −Ar1v3v2

s +Ar2v1v2
3 −Ar2v1v2

s − r1v3v2
s − r2v3v2

s �= 0,
Ar1v3 +Ar2v1 + r1v3 + r2v3 �= 0,

A �= 0,
r1v3 + r2v1 �= 0,

r1 + r2 �= 0,
r1 �= 0,
r2 �= 0,

v3 + vs �= 0,
v3 − vs �= 0,

v3 �= 0,
vs �= 0

}
.
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To be more precise, the theories which we give here have undergone some simplification
techniques [DS97c]. There have been possibly more than 13 assumptions made during
projection.

Among the assumptions in the theory, we find typical non-degeneracy conditions:
resistances like r1, r2 can, of course, never be zero in reality; the output voltage v3 can
naturally never reach the supply voltage vs.

The entire generic PCAD finishes after 12 min yielding the quantifier-free result
“false.” This is a bit surprising. The reason is that the algebraic equation describing
the behavior of the circuit is actually the negation of the third assumption in the theory.

Instead of going into details about the physical facts that could be derived in this
situation, we continue seeking for a straightforward result. For this we once more use
gproj but now prohibit non-monomial assumptions in the theory. We successively
obtain the following cardinalities of projection sets:

9→ 12→ 13→ 15→ 15→ 16→
19→ 26→ | 32→ 35→ 35→ 35→ 35 (230 ms).

In addition, we obtain the following theory with 5 negated equations:

{A �= 0, r1 �= 0, r2 �= 0, v3 �= 0, vs �= 0}.
On the basis of this projection, generic PCAD finishes after 12 min. This time we
obtain a quantifier-free result containing 408 atomic formulas. Here we obviously suffer
from our still preliminary solution formula construction code. Substitution of reasonable
values for the parameters A, r1, r2 and successive simplifications indicate, however, that
this formula actually describes the desired solution derived in [Stu99b].

X-Axis Ellipse Problem

The problem, which has been suggested by Lazard in [Laz88], is to write down conditions
such that the ellipse

(x− c)2/a2 + (y − d)2/b2 − 1 = 0

is inside the circle x2 + y2− 1 = 0. We treat the special case d = 0; compare Figure 4.2.
The input formula reads as follows:

∀x∀y(b2(x− c)2 + a2y2 − a2b2 = 0 −→ x2 + y2 − 1 ≤ 0
)
.

The projection order is
y→ x→ | c→ b→ a→. With the regular projection operator

projh, we successively obtain intermediate projection sets of the following sizes:

2→ 9→ | 18→ 28→ 32 (20 ms).

On the basis of this projection set, regular PCAD succeeds after 1 min with a quantifier-
free equivalent containing 4234 atomic formulas.
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Figure 4.2: The x-axis ellipse problem

With our generic projection operator gproj, we obtain, in contrast, the following
intermediate projection set sizes:

2→ 9→ | 16→ 24→ 24 (10 ms).

In addition, we obtain the following theory:

{a+ b �= 0, a− b �= 0, a �= 0, b �= 0}.

On this basis, generic PCAD returns after 7 s a quantifier-free formula containing
448 atomic formulas.

We finally analyze the situation when using gproj but admitting only monomial
assumptions. Here we obtain the projection set sizes

2→ 9→ | 17→ 25→ 25 (10 ms)

together with the theory
Θ = {a �= 0, b �= 0, c �= 0}.

On this basis, generic PCAD yields after 8 s a quantifier-free formula ϕ′ with 578 atomic
formulas. Note that a �= 0 and b �= 0 are obviously non-degeneracy conditions.

We now use Θ and ϕ′ obtained by this last generic PCAD, and complete it to a
quantifier-free equivalent of the input formula. For this we additionly treat the three
cases excluded by Θ. Applying regular PCAD to the original problem with 0 substituted
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for a, we obtain “false” in less than 10 ms. The same holds for the case b = 0. For the
case c = 0 we obtain in 240 ms a quantifier-free equivalent ϕ′

c with 76 atomic formulas.
Combining these results, we have

R |=
((∧

Θ ∧ ϕ′
)
∨ (c = 0 ∧ ϕ′

c)
)
←→ ϕ.

Our quantifier-free formula obtained by one generic PCAD plus three regular PCAD’s
on special cases contains 3 + 578 + 1 + 76 = 658 atomic formulas. It requires an overall
computation time of less than 9 s. This is a considerable improvement compared to the
straightforward PCAD with 4234 atomic formulas in 1 min.

4.1.5 Conclusions

We have defined a generic projection operator for PCAD and described how to perform
generic quantifier elimination on the basis of this operator. Our techniques are imple-
mented within the computer logic system REDLOG. By means of two highly non-trivial
quantifier elimination examples, we have demonstrated that our generic approach has a
significantly extended application range compared to regular PCAD. This particularly
affects input formulas with polynomials of high degree and many parameters thus filling
a present gap in the applicability of real quantifier elimination techniques.

4.2 Local Elimination

Local quantifier elimination was introduced as a variant of real quantifier elimination by
virtual substitution (VSQE). For a first-order formula and a real point a quantifier-free
formula is computed, which is not only at the given point equivalent to the input, but on
a semi-algebraic set that contains the given point. Such a semi-algebraic set is computed
by the algorithm as well, and returned represented by a quantifier-free formula. In this
section:

1. We introduce the concept of local quantifier elimination in greater detail and
motivate its usefulness.

2. We discuss how local quantifier elimination can be realized within the CAD frame-
work and give the Algorithm LCADQE.

3. By examining examples we demonstrate the algorithm and compare the result
with regular CAD.

4.2.1 Introduction

Local quantifier elimination was introduced by Dolzmann and Weispfenning in [DW00a].
It caters for situations, where example values of interest for some or all parameters are
known. Such values can be values for which empirically a good behavior of an underlying
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system is known. It is, however, desired to find an environment of one point (or of some
points) such that all values from these region have the same good behavior as the given
point.

Such problems often occur in engineering. It is the idea behind this method to use
the additional information about a sample point to simplify the algorithm such that the
computation time is decreased and the output size of the solution is reduced.

4.2.2 Algorithm

As for the algorithm, we get a formula, a variable list and a reference point as input.
As a result we derive a quantifier-free equivalent for the input problem with parameters
fixed as specified, and, in addition, a description of a subspace wherein these parameters
can be varied such that the equivalence still holds. More formally, we have the following
specification for the local elimination:

4.7 (specification of LCADQE)

(α,ϕ′)←− LCADQE(ϕ, (x), (p))

Input: A prenex formula ϕ, a variable list (x) = (x1, . . . , xk) such that ϕ(x) is an
extended formula, and a reference point (p) = (p1, . . . , ph) ∈ Ah with 0 ≤ h ≤ k.
Output: A pair (α,ϕ′) of quantifier-free formulas, such that α and ϕ′ are formulas with
extension (x1, . . . xk),

1. (p) ∈ Rh
α(x), and

2. R |= α −→ (ϕ←→ ϕ′).

Here ϕ′ is called solution, and α is called area or range description. R
j
α(x) is called range

of the reference point.

Our plan is to realize this application by means of a subdecomposition. The central
question is how the area description comes into being. There is a trade-off: On the one
hand one wants to have a small area, as this reduces computational effort. On the other
hand, a larger area yields a stronger result.

Consider this approach: Compute the projection set with a standard projection
operator. Let C denote the cell of level h of the induced decomposition that contains
the reference point. Find a describing formula δC for this cell, and define α := δC .
Let ϕ′ := SCADQE(ϕ, α, (x)) and return (α,ϕ′). This would be a proximate course of
action and limit the area to a small one. The problem with this approach is, however,
that finding δC is difficult and orthogonal to the usual proceeding of signature-based
solution formula construction.

After these considerations the following solution is more suitable: Instead of C,
use the smallest superset of C that can be described by a signature-based formula.
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Naturally, the formula doing this can be found by using the signs of the projection
factors at the sample point.

4.8 Algorithm (LCADQE)

(α,ϕ′)←− LCADQE(ϕ, (x), (p))

Input: As specified in 4.7.
Output: As specified in 4.7, or, in rare cases, fail.

1. Projection. Perform projection as given by the variable list (x, xk+1, . . . , xk). This
results in the set F .

2. Area definition. Let f1, . . . , fm denote the projection factors from F1, . . . , Fh.
Define the signature

σ := (sign(f1(p)), . . . , sign(fm(p)))

Define α := ϕsignbased,{σ},(f) (cf. Definition 3.28).

3. Subdecomposition. ϕ′ := SCADQE(ϕ, α). Make sure that SCADQE uses the
projection order (x, xk+1, . . . , xk).

4. If SCADQE succeeds, then Return (α,ϕ′), else Return fail.

4.9 Remark
We use the notation from Algorithm LCADQE.

1. There is a certain degree of freedom to choose a projection order. The block
(xh+1, . . . , xk) and every block of like bounded quantified variables can be re-
ordered. In principle, the block (x1, . . . , xh) could be reordered as well, but then
this reordered block would have to be returned as output of the algorithm, and
the semantics would need to be adjusted straightforwardly.

2. Instead of one point p a set of points P could be given as input. For the points
(p(1), . . . , p(n)) from P and signatures σ(i) := (sign(f1(p(i))), . . . , sign(fm(p(i))))
one would choose then

α := ϕsignbased,{σ(1),...,σ(n)},(f).

As a consequence, Property (1) in the specification has to be changed slightly into:
for all p ∈ P : p ∈ R

j
α(x).

3. The general CADQE algorithm is a special case of LCADQE: Choose p := (), the
empty reference point. Then α = true, i.e. the neutral element wrt. ∧. If a set of
reference points is allowed, choose P := {()}.
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4. If (p) has length k, then ϕ′ ∈ {true, false}, if the algorithm succeeds.

5. We could have specified (x1, . . . , xh) to be an extension to α, as, looking at the
algorithm, indeed V(α) ⊆ {x1, . . . , xh}. This was not done due to a later improve-
ment.

4.10 Theorem (properties of LCADQE)
With the notions and assumptions from the algorithm: ϕ′ and α are quantifier-free
formulas with V(ϕ′) ⊆ {x} and V(α) ⊆ {x1, . . . , xh}. Furthermore it holds:

1. (p) ∈ Rh
α(x) and

2. R |= α −→ (ϕ←→ ϕ′).

Proof . By definition in Step 2 it is clear that α is quantifier-free. As the polynomials
of α stem from F1, . . . , Fh, V(α) ⊆ {x1, . . . , xh} is clear as well. Property (1) is clear by
the choice of α. V(ϕ′) ⊆ {x1, . . . , xk} and Property (2) follows from Theorem 3.34. �

4.2.3 Examples

In the following we will see some (S)CAD trees drawn. There are five kind of cells:

white cell A cell that is computed, but removed from the decomposition. No lifting
takes place over such a cell, and it bears no truth value.

gray cell A cell that is not computed due to some improvement.

black cell A regular cell that bears no truth value.

green cell A regular cell, that bears truth value 1.

red cell A regular cell, that bears truth value 0.

These color codes are used in electronic versions of this document. In order to allow to
discern gray, red, and green cells in black and white print, we label green cells with “T”
and red cells with “F”.

Let us look at the results of the local elimination method on our standard example
ϕ := ∃x(ax2 + bx + 1) with projection order (a, b, x). This yields the projection set{
ax2 + bx+ 1,−4a+ b2, b, a

}
.

At first, let us use (a = 1) as a reference point. Figure 4.3 shows the resulting CAD
tree. Both in Figure 4.3 and in Figure 4.4 the subtrees of white cells, which have not
to be constructed, are displayed in gray. With the notation from the algorithm we have
h = 1, m = 1, f1 = a and σ = (+1). This yields α = (a > 0). Lifting has to occur
only over the rightmost subtree in level 1. We get ϕ′ := (−4a + b2 ≥ 0) as a solution
formula. In total, the algorithm results in (a > 0,−4a+ b2 ≥ 0). This tells us that for
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T T F F F T T

F T F T F F T F F F F F T F F T F T F

Figure 4.3: Local CAD tree for standard example and reference point (a = 1) as a
subtree of the full CAD tree

a = 1, and, in fact, for all positive values for a the polynomial ax2 + bx + 1 has a real
root if and only if the discriminant −4a+ b2 is positive semi-definite.

Let us go one step further and use (a = 1, b = 3) as a reference point. This reference
point has maximal length. Figure 4.4 shows the resulting CAD tree. With the notation

T

F T F T F

Figure 4.4: Local CAD tree for standard example and reference point (a = 1, b = 3) as
subtree of the full CAD tree

from the algorithm we have h = 2, m = 3, f1 = a, f2 = −4a + b2, f3 = b, and σ =
(+1,+1,+1). This yields α = (a > 0∧−4a+b2 > 0∧b > 0). We can derive the solution
formula ϕ′ = true. In total, the algorithm results in (a > 0∧−4a+ b2 > 0∧ b > 0, true).
From this result we gain the following insight: if we fix a positive value for a and choose
b such that b >

√
4a, then the univariate polynomial ax2 + bx+ 1 has a real root.

We summarize the number of cells in Table 4.2.

4.11 Remark
1. The range the reference point resides in needs not to be an environment in the
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level CADQE LCADQE LCADQE
(a = 1) (a=1,b=3)

3 41 19 5
2 13 7 1
1 3 1 1

Table 4.2: Number of cells in CAD tree of standard example for regular and for local
CAD.

sense of topology. I.e. not necessarily is the reference point in the inner part
of this set. As an example, consider the standard example with reference point
(a = 0, b = 0). Then the algorithm returns (α, false) with α := (a = 0 ∧ b = 0).
Now Rα(a,b) is a singleton non-open set that contains the reference point (0, 0).

2. For sample points of maximal length, the solution formula is a truth value. Then,
the describing formula for the area is a sufficient condition for the input formula
being true or false.

3. The describing formula for the area is in general not a necessary condition for the
equivalence of the input and solution formula.

4. The local CAD tree is a subtree of the full CAD tree.

5. The size of the solution of LCADQE will be smaller or equal to the size of the
solution of CADQE, as only a subset of the cells of the original CAD tree have to
be taken into account for solution formula construction.

4.3 Combination of Generic Projection with Local Elimi-
nation

In [DW00b] it was remarked that local and generic QE are closely related for the VS
method. We have a similar situation for the CAD method.

4.3.1 Algorithm

Local CAD can be combined with the use of the generic projection operator. We will
first discuss the proceedings, and then formulate the overall algorithm.

We get (ϕ, (x), (p)) as specified for input with LCADQE. If Θ is the list of assump-
tions generated by generic projection, α is the area description generated for a reference
point (p) and variables (x) by local CAD for the generic projection set, then we use
SCADQE applied to (ϕ, β) to compute the solution formula ϕ′, where β := α∧∧Θ and
SCADQE is ensured to use the generic projection set and the variable order that was
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used to compute it. Then (β, ϕ′), is the result of local-generic quantifier elimination by
CAD (LGCADQE). We call the CAD tree computed to solve the problem the local-
generic CAD tree. Similar to local elimination, we want the following two semantical
conditions to hold:

1. (p) ∈ Rh
β(x), and

2. R |= β −→ (ϕ←→ ϕ′).

Instantly the second condition is satisfied. Regarding the first condition there is a
problem, which can occur. Consider our standard example and the reference point
a = 0. Generic projection makes the assumption a �= 0. After projection, the local
method makes the assumption a = 0. As a result, the level-1 decomposition is comprised
only of white cells. Thus (a = 0 ∧ a �= 0, false) is the result of the algorithm. Although
still logically correct, due to R |= false −→ (ϕ ←→ false), this is not desired and the
first condition is violated. The following shows how it can be ensured already during
projection that the first condition is satisfied:

4.12 Remark
1. As argued for the local case, (p) ∈ Rα(x1,...,xh) is ensured by construction of α.

This is the argument for the last equivalence in:

(p) ∈ Rh
β(x1,...,xk) ⇐⇒ (∃xh+1 . . .∃xkα ∧

∧
Θ)R(p) = 1

⇐⇒ (α ∧ ∃xh+1 . . .∃xk

∧
Θ)R(p) = 1

⇐⇒ (p) ∈ Rα(x1,...,xh) and (p) ∈ Rh�
Θ(x1,...,xk)

⇐⇒ (p) ∈ Rh�
Θ(x1,...,xk)

So the condition (p) ∈ Rh�
Θ(x1,...,xk) is necessary and sufficient for Property (1) of

the semantics to hold. Still the question is open how it is detected during generic
projection whether an assumption can be made.

2. A straightforward solution would be this: At a point during generic projection,
when assumptions Θ̌ are already made and it must be decided whether to add
an assumption ϑ or not, then check (p) ∈ Rh

Θ(x1,...,xk), where Θ := ϑ ∧ ∧ Θ̌, by
applying QE to

∃xh+1 . . .∃xkΘ,

which gives Θ′(x1, . . . , xh). The assumption ϑ can be made iff (Θ′)R(p) = 1. If
(p) is a rational point the these values can first be substituted, and then QE can
be performed. Iff this result is true then the assumption ϑ can be made.

As the number of variables for this QE subproblem is smaller than the number
of variables of the original problem, and as the set of projection factors for this
problem is a small subset of the projection factor set of the original problem, it is
expected that this yields not too big an overhead.
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3. We can improve on the straightforward approach. It would be much more desirable
not to have an accumulating formula to check. We can argue as follows:

(p) ∈ Rh�
Θ(x1,...,xk) ⇐⇒ (∃xh+1 . . .∃xk

∧
Θ)R(p) = 1

⇐⇒ (
∧
ϑ∈Θ

∃xh+1 . . .∃xkϑ)R(p) = 1

⇐⇒ for all ϑ ∈ Θ : (∃xh+1 . . .∃xkϑ)R(p) = 1
⇐⇒ for all (q �= 0) ∈ Θ : q(p, xh+1, . . . , xk) �= 0

Here the second equivalence needs more reasoning. In general, existential quan-
tifiers and a conjunction cannot be interchanged. It is, however, not difficult to
see that for a family (q1, . . . , qn) of real polynomials in m variables the following
conditions are equivalent:

(a) There exists a ∈ Rm such that for all i ∈ {1, . . . , n} : qi(a) �= 0.

(b) For all i ∈ {1, . . . , n} there exists a ∈ Rm such that qi(a) �= 0.

Back to the equivalence above, we have now gained a criterion that justifies
the following approach: When during generic projection an assumption ϑ, say
ϑ = (q �= 0) with q ∈ Ik, should be added, then test whether the polynomial
q(p, xh+1, . . . , xk), which is a polynomial in A[xh+1, . . . , xk], is not the zero poly-
nomial. The assumption ϑ can be made iff q(p, xh+1, . . . , xk) is not the zero
polynomial.

4.3.2 Examples

Let us look at the results of the local elimination method, combined with the generic
projection operator, on our standard example. At first, let us use (a = 1) as a reference
point. The generic projection operator yields Θ = {a �= 0}. Figure 4.5 shows the
resulting local-generic CAD tree. With the notation from the algorithm we have h = 1,
m = 1, f1 = a and σ = (+1). This yields α = (a > 0). By the condition Θ, no lifting
has to occur over the middle cell C2 in Level 1. In addition, the condition α excludes
the left cell C1 of Level 1 as well. C1 and C2 are white cells. Therefore, lifting has to
occur only over the rightmost cell C3 in Level 1. Due to the lack of the level-2 projection
factor b there are now only five instead of seven cells in the stack above C3.

We get ϕ′ := (−4a+ b2 ≥ 0) as a solution formula. In total, The algorithm results
in (a > 0∧a �= 0,−4a+b2 ≥ 0). This tells us that for a = 1, and, in fact, for all positive
values for a the polynomial ax2 + bx+ 1 has a real root if and only if the discriminant
−4a+ b2 is positive semi-definite.

Let us go one step further and use (a = 1, b = 3) as a reference point. This reference
point has maximal length. Figure 4.4 shows the resulting local-generic CAD tree. With
the notation from the algorithm we have h = 2, m = 2, f1 = a, f2 = −4a + b2 and
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T T F T T

F T F T F F T F F F T F F T F T F

Figure 4.5: Full CAD tree for standard example overlayed with local-generic CAD tree
for reference point (a = 1)

T T

F T F T F F T F T F

Figure 4.6: Full CAD tree for standard example overlayed with local-generic CAD tree
for reference point (a = 1, b = 3)

σ = (+1,+1). This yields α = (a > 0 ∧ −4a+ b2). We can derive the solution formula
true. In total, the algorithm results in (a > 0∧−4a+ b2, true). From this result we gain
the following insight: if we fix a positive value for a and choose b such that |b| > √4a,
then the univariate polynomial ax2 + bx+ 1 has a real root.

We summarize the number of cells in Table 4.3:

4.3.3 Observations and Remarks

1. For a local QE problem, the number of cells that have to be computed for the
local-generic CAD tree is not necessarily less than the number for the local CAD
tree. The reason is that with fewer projection factors the area description gets
weaker. Nevertheless, although there are more cells, the roots of the according
polynomials are more easily isolated in the local-generic case. This is why one can
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level CADQE LGCADQE LGCADQE
(a = 1) (a = 1, b = 3)

3 41 17 10
2 13 5 2
1 3 1 1

Table 4.3: Number of cells in CAD tree of standard example for regular CAD and for
local CAD combined with generic projection operator.

expect the local-generic variant to be faster than the purely local variant, even if
the former results in more cells to be constructed.

2. The local-generic CAD tree is a subtree of the generic CAD tree.

3. The local-generic CAD tree is in general not a subtree of the full CAD tree. The
reason is, that in general the generic CAD tree is not a subtree of the full CAD
tree. For the sake of presentation and better comparison with the non-generic case
the local-generic trees are drawn over a full CAD tree. Thus, the two gray cells
displayed in the stack over C3 are not part of the generic, and therefore not part
of the local-generic CAD tree. The area they are comprised of is in the generic
and local-generic case part of the middle cell C33 in the stack over C3.

4.4 Further Applications

We want to sketch some further applications.

1. Salvage signature-based solution formula construction. As pointed out at several
locations, signature-based solution formula construction can fail in rare cases due
to compatible signatures. A simple example is this:

ϕcessfc := ∃y(x2 + y2 < 1 ∧ x+ y > 0)

Projection results in the level-1 projection factors f1 := 2x2, f2 := x−1, f3 := x+1.
Decomposition and evaluation and propagation of truth values results in nine level-
1 cells with truth values and signatures for (f1, f2, f3) as listed in Table 4.4.

Signature-based solution formula construction finds sets Wt = {σ5, σ6, σ7}, Wf =
{σ1, σ2, σ3, σ4, σ8, σ9}, and Wc = {σ6, σ7}. As Wc �= ∅ there are conflicting signa-
tures, and solution formula construction fails, or, as suggested by Hong, returns
a sufficient and a necessary solution formula.

By thinking in terms of subdecomposition, we can suggest this alternative ap-
proach. Make the assumption α := ¬ϕsignbased,Wc,(f). This removes all cells with
conflicting signatures from the decomposition, and SFC can give a result ϕ′. For
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i Ci vi σi

1 ]−∞,−1[ 0 (+1,−1,−1)
2 {−1} 0 (+1,−1, 0)
3 ]− 1,−

√
2

2 [ 0 (+1,−1,+1)
4

{
−

√
2

2

}
0 (0,−1,+1)

5 ]−
√

2
2 ,

√
2

2 [ 1 (−1,−1,+1)
6

{√
2

2

}
1 (0,−1,+1)

7 ]
√

2
2 , 1[ 1 (+1,−1,+1)

8 {1} 0 (+1, 0,+1)
9 ]1,∞[ 0 (+1,+1,+1)

Table 4.4: Information about the level-1 cells of ϕcessfc

the example ϕcessfc we get the solution ϕ′ = (2x2− 1 < 0∧ x− 1 < 0∧ x+ 1 > 0),
which is readily simplified to 2x2 − 1 < 0.

Note that ϕ′ is equivalent to the sufficient condition, and ¬α ∨ ϕ′ is equivalent
to the necessary condition suggested by Hong. We believe that our suggestion is
more intuitive and more concise for the user.

2. CAD with external theory. In [Dol00] it was shown how to aid quantifier elimi-
nation by virtual substitution. Our subdecomposition framework shows how this
can be done for the CAD method. We can even allow conditions on bounded
variables.

3. Salvage decomposition based on Brown-McCallum projection operator. Brown-
McCallum projection based decomposition can fail. It is a conjecture that SCAD
framework can be adapted for this approach and that in case of failure assumptions
can be made to exclude problematic cells. To do this, we need the feature of
making assumptions on bounded variables, as provided by our framework.

4. Consider full-dimensional cells only. A full-dimensional cell is a cell where no
component of the sample point is found by root isolation. I.e. full-dimensional
cells are the cells that have an index where each component is odd. Only consid-
ering full-dimensional cells is desirable, as root isolation is needed only for integer
polynomials. Avoiding implementation of and computation with algebraic num-
bers greatly improves implementation and execution speed. Such an approach was
only used so far for very special cases. SCAD clarifies the semantics and makes
this approach possible in general. Consider the example

ϕ := ∃y(x2 + y2 − 1 ≤ 0).
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CADQE would return −1 ≤ x ≤ 1 as a result. A SCAD that considers only
full-dimensional cells would yield ϕ′ := −1 < x < −1. Such an approach that
yields results which are correct up to measure zero sets is particularly promising
in engineering.

4.5 Conclusions

In this chapter we have developed quantifier elimination by generic CAD and local
CAD as applications within the SCAD framework. In addition, we have shown how
these approaches can be combined with each other, and sketched more applications.

By looking at examples we see that the amount of computation needed is greatly
reduced as expected. This is done at the expense of a relaxed semantics. While from a
theoretical point of view a weaker semantics might seem inferior at first, it turns out that
for both generic CAD and local CAD the generated assumptions consist of interesting
information. In addition, from a practical point of view the actual user might be more
happy to get an result that excludes certain degenerate or special cases, or that is locally
correct, than to wait considerably longer, or indefinitely, for a general result.
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Chapter 5

Getting Answers

We show how the cylindrical algebraic decomposition (CAD) method for real quantifier
elimination (QE) can be extended to provide answers, i.e. sample solutions for vari-
ables in a leading block of existential quantifiers, thus providing more and interesting
information.

5.1 Introduction

For the virtual substitution method, an interesting extension has been developed
[Wei94]. This method was extended to give sample parametric answers for values of
the variables in a leading block of existential quantifiers. This has turned out to be
very useful in practice, e.g. for error diagnosis in electrical networks [Stu99b] and for
collision problems [Stu99a].

This chapter deals with extending the CAD method for real QE to give, next to a
quantifier-free equivalent formula, answers. In this chapter:

1. We motivate that sometimes one would like to get more information out of QE
than just an equivalent formula, e.g. sample values for certain variables.

2. We demonstrate that prior progress was made to extend the virtual substitution
method for real QE to give answers. Due to limitations on the vs method, however,
QE with answers was so far not applicable to all problems over the reals.

3. We give a CAD-based algorithm to show how the CAD method can be exploited
to provide answers.

4. By extending the CAD method we lift the limitations on the applicability of
extended quantifier elimination.

5. We explain how, by duality, one can get parametric counter-examples for formulas,
which have an outermost block of universal quantifiers.

The content of this chapter is published in [Sei04]

93
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5.2 Motivating Examples and Prior Work

We look at some examples to give an impression of how real quantifier elimination
can be used to model and solve a problem, to demonstrate prior progress made to
extend the virtual substitution method to give answers, and to motivate the suggested
improvement.

5.2.1 Solving a Tangram Style Puzzle

Consider the following puzzle. There are four small squares A,B,C,D of diameter 2 and
one square of diameter 4. The squares are arranged as can be seen in Figure 5.1. Every
edge is parallel to the bisecting line of the first and third, or, of the second and fourth
quadrant. More precisely, the position of, say, the square A in the real plane is given by
the corner points (a1, a2), (a1− 1, a2 +1), (a1, a2 +2) and (a1 +1, a2 +1). The position
of the big square S is given by (0, 0), (−2, 2), (0, 4) and (2, 2). The challenge is to decide
whether the small squares fit by translation into the big one without overlapping each
other. Let us formulate this problem in first-order logic. First of all, we need a formula

D

  (d1,d2)

A B

C

 (a1,a2)   (b1,b2)

  (c1,c2)    (0,0)

S

Figure 5.1: Four small squares (left) and a big square (right)

describing whether a point (x1, x2) lies within the small square A. Its relative position
is given by (a1, a2).

ϕA :≡ a1 + a2 − x1 − x2 + 2 > 0 ∧ a1 + a2 − x1 − x2 < 0 ∧
a1 − a2 − x1 + x2 − 2 < 0 ∧ a1 − a2 − x1 + x2 > 0.

Similarly, one finds formulas ϕB, ϕC , and ϕD. For the big square S

ϕS :≡ x1 + x2 − 4 < 0 ∧ x1 + x2 > 0 ∧ x1 − x2 + 4 > 0 ∧ x1 − x2 < 0

is appropriate. Note that we have to consider open objects without border.
The squares A, B, C, D lie within S, for fixed (a1, a2), (b1, b2), (c1, c2), (d1, d2), iff

(ϕA ∨ ϕB ∨ ϕC ∨ ϕD) −→ ϕS
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for all (x1, x2). Furthermore, the squares A, B, C, D do not overlap each other, iff

¬(ϕA ∧ ϕB) ∧ ¬(ϕA ∧ ϕC) ∧ ¬(ϕA ∧ ϕD) ∧ ¬(ϕB ∧ ϕC) ∧ ¬(ϕB ∧ ϕD) ∧ ¬(ϕC ∧ ϕD).

Altogether the problem can be stated as follows:

ϕ :≡ ∃a1∃a2∃b1∃b2∃c1∃c2∃d1∃d2∀x1∀x2(¬(a1+a2−x1−x2+2 > 0∧a1+a2−x1−
x2 < 0∧a1−a2−x1 +x2−2 < 0∧a1−a2−x1 +x2 > 0∧ b1 + b2−x1−x2 +2 >
0 ∧ b1 + b2 − x1 − x2 < 0 ∧ b1 − b2 − x1 + x2 − 2 < 0 ∧ b1 − b2 − x1 + x2 >
0)∧¬(a1 + a2−x1−x2 + 2 > 0∧ a1 + a2−x1−x2 < 0∧ a1− a2−x1 +x2− 2 <
0 ∧ a1 − a2 − x1 + x2 > 0 ∧ c1 + c2 − x1 − x2 + 2 > 0 ∧ c1 + c2 − x1 − x2 <
0∧ c1− c2− x1 + x2− 2 < 0∧ c1− c2− x1 + x2 > 0)∧¬(a1 + a2− x1− x2 + 2 >
0 ∧ a1 + a2 − x1 − x2 < 0 ∧ a1 − a2 − x1 + x2 − 2 < 0 ∧ a1 − a2 − x1 + x2 >
0 ∧ d1 + d2 − x1 − x2 + 2 > 0 ∧ d1 + d2 − x1 − x2 < 0 ∧ d1 − d2 − x1 + x2 − 2 <
0 ∧ d1 − d2 − x1 + x2 > 0) ∧ ¬(b1 + b2 − x1 − x2 + 2 > 0 ∧ b1 + b2 − x1 − x2 <
0 ∧ b1 − b2 − x1 + x2 − 2 < 0 ∧ b1 − b2 − x1 + x2 > 0 ∧ c1 + c2 − x1 − x2 + 2 >
0 ∧ c1 + c2 − x1 − x2 < 0 ∧ c1 − c2 − x1 + x2 − 2 < 0 ∧ c1 − c2 − x1 + x2 >
0)∧¬(b1 + b2 − x1 − x2 + 2 > 0∧ b1 + b2 − x1 − x2 < 0∧ b1 − b2 − x1 + x2 − 2 <
0 ∧ b1 − b2 − x1 + x2 > 0 ∧ d1 + d2 − x1 − x2 + 2 > 0 ∧ d1 + d2 − x1 − x2 <
0∧ d1− d2− x1 + x2− 2 < 0∧ d1− d2− x1 + x2 > 0)∧¬(c1 + c2− x1− x2 + 2 >
0 ∧ c1 + c2 − x1 − x2 < 0 ∧ c1 − c2 − x1 + x2 − 2 < 0 ∧ c1 − c2 − x1 + x2 >
0 ∧ d1 + d2 − x1 − x2 + 2 > 0 ∧ d1 + d2 − x1 − x2 < 0 ∧ d1 − d2 − x1 + x2 − 2 <
0 ∧ d1 − d2 − x1 + x2 > 0) ∧ (((a1 + a2 − x1 − x2 + 2 > 0 ∧ a1 + a2 − x1 − x2 <
0 ∧ a1 − a2 − x1 + x2 − 2 < 0 ∧ a1 − a2 − x1 + x2 > 0) ∨ (b1 + b2 − x1 − x2 + 2 >
0 ∧ b1 + b2 − x1 − x2 < 0 ∧ b1 − b2 − x1 + x2 − 2 < 0 ∧ b1 − b2 − x1 + x2 >
0) ∨ (c1 + c2 − x1 − x2 + 2 > 0 ∧ c1 + c2 − x1 − x2 < 0 ∧ c1 − c2 − x1 + x2 − 2 <
0 ∧ c1 − c2 − x1 + x2 > 0) ∨ (d1 + d2 − x1 − x2 + 2 > 0 ∧ d1 + d2 − x1 − x2 <
0 ∧ d1 − d2 − x1 + x2 − 2 < 0 ∧ d1 − d2 − x1 + x2 > 0)) −→ (x1 + x2 − 4 <
0 ∧ x1 + x2 > 0 ∧ x1 − x2 + 4 > 0 ∧ x1 − x2 < 0))).

Generating such formulas by hand can be a tedious and error-prone task. Therefore
the author has implemented a package tangram. This package was written to aid
the formulation of tangram style problems. It allows for the easy creation of formulas
describing convex objects, which have a polygonal outline. In addition, based on already
defined shapes, a formula saying that certain small shapes fit into a bigger shape without
overlapping each other, can be produced. The above formulas were generated by this
software.

Let us now apply QE to this problem formulation ϕ. We derive true with the
virtual substitution method. Although this is the correct answer, we wish to get more
information. Where do we have to place the small shapes? This is where extended QE,
or QE with answers comes into play.

For the virtual substitution method, prior research [Wei94] has shown that for the
outermost block of quantifiers one can get sample values in the existential case or
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counter-examples in the universal case for the according variables. For our example,
the virtual substitution method yields true and the sample values

a1 = 0 , a2 = 2 , b1 = 0 , b2 = 0 , c1 = 1 , c2 = 1 , d1 = −1 , d2 = 1.

5.2.2 A Parametric Example

Variables, which are not within the scope of a quantifier, are called free variables or
parameters. The preceding example was a closed formula, i.e. a formula without free
variables. For such an example we can get concrete values as answers. If there are
parameters such answers will have to be parametric as well in general.

Past research for the virtual substitution method showed that there is a natural
way for this method to deliver the parametric answers [Wei94], thus this method is not
restricted to decision problems.

Consider the following example. The formula ϕ :≡ ∃x(ax2 + bx + 1 = 0) asks for
conditions on the parameters a, b such that the quadratic polynomial ax2 + bx+ 1 has
a real root. QE by vs with answers returns three guarded points:(

4a− b2 ≤ 0 ∧ a �= 0,

(
x =

−√−4a+ b2 − b
2a

))
(

4a− b2 ≤ 0 ∧ a �= 0,

(
x =

+
√−4a+ b2 − b

2a

))
(
a = 0 ∧ b �= 0,

(
x =

−1
b

))
.

This tells us not only that 4a−b2 ≤ 0∧a �= 0∨a = 0∧b �= 0 is equivalent to ax2 +bx+1
having a real root. It tells us in addition what such a root x looks like in the two cases
4a− b2 ≤ 0 ∧ a �= 0 and a = 0 ∧ b �= 0.

5.2.3 Finding Extraneous Points

Consider the parametric curve (f1, g1) with

f1(t) = −6t4 − 63, g1(t) = 92t3 + 70t2.

By computing the resultant ρ of x−f1 and y−g1 wrt. t one can get an implicit description
of this parametric curve. Such a description is often not exact. More precisely, the graph

{(x, y) ∈ R2|exists t ∈ R such that x− f1(t) = 0 and y − g1(t) = 0}

of the parametric curve is often a proper subset of the real variety of {ρ}, i.e. the set

{(x, y) ∈ R2|ρ(x, y) = 0}.



5. Getting Answers 97

To get an exact real implicit representation, we apply real quantifier elimination to

∃t(x = −6t4 − 63 and y = 92t3 + 70t2)

and derive

8954912x3 − 1777440x2y + 1710485868x2 + 44100xy2 − 223957440xy +
108895082184x+ 27y4 + 2778300y2 − 7054659360y + 2310620648364 = 0

and x+ 63 ≤ 0

To do this we need the CAD method, as the vs methods fails due to degree restrictions.
The result is equivalent to

ρ = 0 and x ≤ −63

At this point, quantifier elimination with answers could help us to find possible extrane-
ous points, which lie in the real variety of ρ, but not in the graph of the given parametric
curve.

These examples make it obvious that for decision problems, as well as for parametric
problems, getting answers out of quantifier elimination in addition to quantifer-free
equivalents is highly desirable. Furthermore, getting answers from the CAD method is
desirable in particular, due to limitations of the vs method, as the last example showed.

5.3 QE with Parametric Answers

We want to specify now what the result of QE with answers is. From now on we assume
the input formula

ϕ(x1, . . . , xk) ≡ ∃xk+1 · · · ∃xlQl+1xl+1 · · ·Qrxrψ

to be in prenex normal form. The input formula has x1, . . . , xk as free and xk+1, . . . , xr

as bound variables. For each k + 1 ≤ j ≤ r the symbol Qj denotes xj ’s quantifier. We
furthermore assume that Ql+1 is a universal quantifier. So (xk+1, . . . , xl) is the leading
block of existentially quantified variables of maximal length.

5.3.1 Specification

The output of QE with answers is specified to be a finite set of guarded points [DS97a]

{(ψ′
i, (xk+1 = bi,k+1, . . . , xl = bi,l))|i ∈ I}.

Here the ψi’s are quantifier-free formulas, and bi,j is, for some i and k + 1 ≤ j ≤ l,
a term which contains at most the variables x1, . . . , xj . Such a term is an arithmetic
expression, which may include a binary predicate of the form Root(f, n), where n is a
natural number and f a polynomial expression. The variable xj can only occur within
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a polynomial expression of a Root predicate. Note that within a Root predicate the
role of xj could be assumed by any other variable, except from {x1, . . . , xj−1}, without
impact on the map γ defined below.

A guarded point (ψ, (xk+1 = bk+1, . . . , xl = bl)) can be viewed to define a partial
map γ : Rk → Rl−k: Given values (a1, . . . , ak) ∈ Rk, such that R |= ψ(a1, . . . , ak),
we can successively compute ak+1, . . . , al in the following way: Let us assume that
ak+1, . . . , aj are already computed for a k ≤ j < l, and now we want to compute aj+1.
We substitute in the term bj+1 the values a1, . . . , aj for the variables x1, . . . , xj . This
yields an expression b′j+1, where xj+1 is the only variable that can occur. If so, it occurs
in the polynomial expression of a Root symbol. Now, each occurrence of an expression
Root(f, n) in b′j+1 can be replaced with the n-th root of the univariate polynomial f .
For guarded points constructed by the algorithm below this will always be well defined.
We get an expression b′′j+1 without free variables, which can be evaluated in R to aj+1.

After detailing the syntactical definition, we specify how the semantics of the output
of QE with answers should be. There are two conditions.

(C1) Quantifier-free formula. We want to easily construct a quantifier-free formula,
which is equivalent to the input formula, from the set of guarded points:

R |= ϕ↔
∨
i∈I

ψ′
i.

(C2) Example solution. For every guarded point (ψ, (xk+1 = bk+1, . . . , xl = bl)) in the
output set and every (a1, . . . , ak) ∈ Rk with R |= ψ(a1, . . . , ak), we want to have

R |= Ql+1xl+1 · · ·Qrxrψ(a1, . . . , al),

where γ(a1, . . . , ak) = (ak+1, . . . , al).

These two conditions motivate why QE with answers is also called extended QE: The
output of a quantifier-free formula, as provided by classical QE, is extended to provide
sample solutions in addition.

5.4 Situation for the CAD Method

5.4.1 Algorithm

We now want to investigate if we can achieve similar results for the CAD method. Still
the same assumptions on the form of the input formula ϕ are made as at the beginning
of Section 5.3.

Let us furthermore assume that a full CAD tree for this problem has been con-
structed, and cells of Dr, . . . , Dk bear a truth value. For each cell C ∈ Dk let δC denote
a quantifier-free description of this cell. Such a formula exists, as each cell represents
a semi-algebraic set. Let G denote the finite set which is generated by collecting for
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each true cell C(l) in Dl a guarded point (δC , xk+1 = pk+1, . . . , xl = pl). Here C ∈ Dk

is the unique predecessor of C(l), and pk+1, . . . , pl are derived in the following way: Let
C,C(k+1), . . . , C(l) be the path from C to C(l) in the CAD tree and k + 1 ≤ j ≤ l. To
define pj , we look how the last component sj of C(j)’s sample point (s1, . . . , sj) was
generated. There are four cases.

1. There is a projection polynomial f ∈ Fj such that sj is the n-th root of the
polynomial f(s1, . . . , sj−1, xj) ∈ A[xj ]. Then pj := Root(f, n).

2. There are projection polynomials f, f ′ ∈ Fj such that sj lies between the n-th root
of the polynomial f(s1, . . . , sj−1, xj) and the m-th root of f(s1, . . . , sj−1, xj) and
there exists no other root in between. Then pj := (Root(f, n) +Root(f,m))/2.

3. If sj is smaller than the smallest or greater than the biggest root, then pj :=
Root(f, 1)− 1 or pj := Root(f,m) + 1 for an appropriate f ∈ Fj and integer m.

4. Otherwise, if there was no root at all, pk can be simply defined as 0 or as the
special symbol arbitrary.

After this set of guarded points is defined, we want to allow two ways to manipulate
this set to make it more concise.

1. Combine. Two guarded points, which only differ in the first part, can be combined:

(ψ, b), (ψ′, b) �→ (ψ ∨ ψ′, b).

2. Simplify. The first part of a guarded point can be replaced by an equivalent one.

In contrast to the virtual substitution method, the degree of the polynomials can be
arbitrary. Thus we cannot rely on radicals to specify pj . Instead we had to introduce
the symbol Root. The semantics of Root is self-explanatory. The delineability property
of the projection set ensures Root to be well defined.

5.4.2 Correctness

We need to check whether the conditions (C1) and (C2) are satisfied. As for (C1) a
valid solution formula can be constructed as a disjunction over formulas describing the
true cells of Dk.

To see that (C2) holds, note that a full CAD tree D for

Ql+1xl+1 · · ·Qrxrψ

is essentially the same as for ϕ. The only difference is that cells on the levelsDk, . . . , Dl−1

bear no truth value. If one now computes for a guarded point and for (a1, . . . , ak) ∈ Rk

the values ak+1, . . . , al, then the point (a1, . . . , al) lies in a true cell of Dl. Hence (C2)
holds.

Furthermore, if for a set of guarded points both (C1) and (C2) hold, then combining
and simplifying points as described above will preserve these properties.
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5.4.3 Examples

Second Example Revisited

We revisit the example ϕ :≡ ∃x(ax2 + bx+1 = 0) from Subsection 5.2.2 to demonstrate
the algorithm. Figure 5.2 shows the full CAD tree for this problem. Here k = 2, l = 3,
and r = 3 with our notation. Let us denote the three cells of D1 by C1, C2, C3. We name

T T T

F T F T F F T F T F F T F T F

T F T

F T F F F T F

T T F F F T T

F T F T F F T F F F F F T F F T F T F

Figure 5.2: Full CAD tree for ϕ ≡ ∃x(ax2+bx+1 = 0) wrt. the variable order x→ b→ a
and projection sets F3 =

{
ax2 + bx+ 1

}
, F2 =

{−4a+ b2, b
}
, and F1 = {a}. Solid black

cells bear no truth value.

cells on a higher level similarly, but extend the index of the corresponding base cell. So,
e.g., the three children of C1 in D2 will be called C11, C12, C13 and the five children of
C11 will be called C111, . . . , C115. There are 14 true cells in D3. The first true cell is
C112. The last component of its sample point was generated as a first root. If δ11 is a
describing formula for C11 then (δ11, (x = Root(ax2 + bx + 1, 1))) is the first guarded
point. The last component of the sample point of C114 was generated as a second root.
Hence (δ11, (x = Root(ax2 +bx+1, 2))) is the next guarded point to collect. Proceeding
with the algorithm we get the following twelve additional guarded points:

(δ12, (x = Root(ax2 + bx+ 1, 1)))
(δ12, (x = Root(ax2 + bx+ 1, 2)))
(δ13, (x = Root(ax2 + bx+ 1, 1)))
(δ13, (x = Root(ax2 + bx+ 1, 2)))
(δ21, (x = Root(ax2 + bx+ 1, 1)))
(δ23, (x = Root(ax2 + bx+ 1, 1)))



5. Getting Answers 101

(δ31, (x = Root(ax2 + bx+ 1, 1)))
(δ31, (x = Root(ax2 + bx+ 1, 2)))
(δ32, (x = Root(ax2 + bx+ 1, 1)))
(δ36, (x = Root(ax2 + bx+ 1, 1)))
(δ37, (x = Root(ax2 + bx+ 1, 1)))
(δ37, (x = Root(ax2 + bx+ 1, 2)))

We can reduce the number of points by combining them as follows: As δ21 ∨ δ23 is
equivalent to a = 0 ∧ b �= 0, we combine point 7 and 8 to

(a = 0 ∧ b �= 0, (x = Root(ax2 + bx+ 1, 1))).

The latter could be further simplified by making use of the knowledge a = 0. This
reduces the quadratic polynomial to a linear one.

Furthermore, as δ11∨δ12∨δ13∨δ31∨δ32∨δ36∨δ37 is equivalent to 4a−b2 ≤ 0∧a �= 0,
we can combine the points 1, 3, 5, 9, 11, 12, 13 to

(4a− b2 ≤ 0 ∧ a �= 0, (x = Root(ax2 + bx+ 1, 1))).

Finally, as δ11 ∨ δ12 ∨ δ13 ∨ δ31 ∨ δ37 is equivalent to 4a− b2 < 0∧ a �= 0, we can combine
the points 2, 4, 6, 10, 14 to

(4a− b2 < 0 ∧ a �= 0, (x = Root(ax2 + bx+ 1, 2))).

We finish this example by concluding that we could reduce the 14 guarded points to
three, which quite match the three cases found by the vs method. (Actually, the reason
why we did not get exactly the same result are the cells C322 and C362, where the last
component of the sample point is a single root with multiplicity two.)

Third Example Revisited

In Subsection 5.2.3 we found an exact implicit description for a given parametric curve,
and ended up with the formula

ρ = 0 and x ≤ −63.

This hints that there might be extraneous points in the halfspace x > −63. So we apply
extended QE by CAD to

∃x∃y(ρ = 0 ∧ x > 63)

and derive true and the answer

x =
−30758091

559682
, y =

42875
529

.
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We can now convince ourselves that this is the only extraneous point by applying QE
to

∃x∃y(x > −63 ∧ ρ = 0 ∧ ¬(559682x = −30758091 ∧ 529y = 42875))

and deriving false.

5.5 Dual Answers: Parametric Counter-Examples

In this section we assume the input formula

ϕ(x1, . . . , xk) ≡ ∀xk+1 · · · ∀xlQl+1xl+1 · · ·Qrxrψ

to have a leading block of universal quantifiers. This is dual to the assumption in
Section 5.3. By negating this input formula, we get

ϕ(x1, . . . , xk) ≡ ∃xk+1 · · · ∃xlQl+1xl+1 · · ·Qrxrψ.

For formulas, overlining is just an alternative notation for negation. For quantifiers, an
overlined quantifier denotes the dual one. Let

{(ψ′
i, (xk+1 = bi,k+1, . . . , xl = bi,l))|i ∈ I}

be the output of the extended algorithm on input of ϕ. Then, dually to (C1) and (C2)
the following two conditions hold.

(C1) Quantifier-free formula. We can easily construct from the set of guarded points
a quantifier-free formula, which is equivalent to the input formula:

R |= ϕ↔
∧
i∈I

¬ψ′
i.

(C2) Counter-example. For every guarded point (ψ, (xk+1 = bk+1, . . . , xl = bl)) in the
output set and every (a1, . . . , ak) ∈ Rk with R |= ψ(a1, . . . , ak), we have

R �|= Ql+1xl+1 · · ·Qrxrψ(a1, . . . , al),

where γ(a1, . . . , ak) = (ak+1, . . . , al).

In other words: Instead of as a union of true cells, we get the set described by a solution
formula as an intersection of complements of false cells. If given parameter values
(a1, . . . , ak) lie in a false cell, then the appropriate guarded point delivers counter-
examples (ak+1, . . . , al) such that Ql+1xl+1 · · ·Qrxrψ(a1, . . . , al) does not hold.
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5.6 Conclusions

We have motivated that it is highly desirable to produce answers in addition to a solu-
tion formula as output of quantifier elimination for a formula with a leading existential
block of quantifiers. We have devised an algorithm to extend the cylindrical algebraic
decomposition method to produce such answers. For non-decision problems, these sam-
ple solutions are in general parametric. For the dual case, i.e. for formulas with a leading
universal block of quantifiers, we get parametric counter-examples. The main advantage
over a virtual substitution based approach is that there are no degree restrictions on
the input.
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Chapter 6

Efficient Projection Orders

We introduce an efficient algorithm for determining a suitable projection order for per-
forming cylindrical algebraic decomposition. Our algorithm is motivated by a statistical
analysis of comprehensive test set computations. This analysis introduces several mea-
sures on both the projection sets and the entire computation, which turn out to be
highly correlated. The statistical data also shows that the orders generated by our al-
gorithm are significantly close to optimal. This improvement is applicable to both, pure
CAD and QE by CAD. The content of this chapter, except of Section 6.3, is published
in [DSS03].

6.1 Introduction

During the past 30 years there have been considerable research and publications on
optimizing CAD. For the application to real quantifier elimination, the introduction of
partial CAD (PCAD) [CH91] has been one major progress, which affects the extension
phase.

The vast majority of improvements, however, extremely focused on improving the
projection phase [McC84, McC88, Hon90, Laz94, Bro01, SS03]. Most surprisingly, all
these contributions concentrating on improved projection operators never examined the
relevance of the order in which the variables are projected. If one is only interested
in pure CAD, then this order can be chosen completely arbitrarily. For quantifier
elimination there are restrictions imposed by projecting unquantified variables last and
not interchanging ∃ with ∀. There is, however, still a considerable degree of freedom.

We are going to demonstrate by means of a small example that the projection order
is highly relevant for the practical complexity of the overall procedure: We consider two
circles of radius 2,

c1 = (x+ 3)2 + (y + 1)2 − 4,
c2 = (x− 3)2 + (y − 1)2 − 4,

105
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x

5 3 1

y

1 3 5 3 1 3

Figure 6.1: CAD wrt. the variable order y → x.

one located at (−3,−1) and the other one located at (3, 1). Figure 6.1 shows a CAD
for these circles choosing the projection order y → x. This CAD contains 1 + 3 + 5 +
3 + 1 + 3 + 5 + 3 + 1 = 25 cells.

Figure 6.2 shows, by the way of contrast, a corresponding CAD using the projection
order x → y. Note that the y-axis is drawn horizontally here. We obtain considerably
more cells: 1 + 3 + 5 + 7 + 9 + 7 + 5 + 3 + 1 = 41.

It is obvious that the computation of this second CAD requires more computational
resources while delivering a result of equal quality for most purposes.

This chapter provides results for determining good variable orders from the input
beforehand, i.e., without actually constructing any CAD, in order to then construct the
desired CAD wrt. such an order.

The plan of the paper is as follows: In Section 6.2, we introduce time and space
measures for characterizing the complexity of a particular CAD computation. These
measures apply partly to the projection phase and partly to the overall computation.
We discuss a comprehensive example set of CAD’s wrt. all relevant orders and apply all
our measures to all results. We then show on a precise formal basis that for this set of
examples all our measures are statistically strongly correlated. In particular there are
measures on the projection that are suitable for predicting the complexity of the overall
computation.

In Section 6.4, we introduce a heuristic algorithm for efficiently constructing one
good projection order wrt. to the relevant measures on the projection phase. This
is done without trying all relevant projection orders. In fact, it cannot be avoided
constructing several alternatives for the projection of each variable, but the number of
such construction steps in our algorithm is only quadratic in contrast to exponential
in the number of variables. We reuse our example database from Section 6.2 to show
two facts: First, our heuristic algorithm yields projection orders that are statistically
significantly close to optimal. Second, the overhead originating from constructing the
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y

5 3 1

x

1 3 5 7 9 7

Figure 6.2: CAD wrt. the variable order x→ y.

good projection order is negligible while the gain is immense.
In Section 6.5 we conclude our contribution by summarizing and evaluating our

results.
Section 6.6 finally contains an appendix listing the variable orders used for the

computation of the example set in Section 6.2 such that these computations can be
reproduced.

6.2 Measures on CAD Computations

In this section we consider the following situation: There is a set A of polynomials
in r variables given, which possibly origin from a prenex formula ϕ. For a variable
order X = (x1, . . . , xr), which we also write xr → · · · → x1, the projection results in
projection sets Fr, . . . , F1 of projection factors. Based on these sets, the CAD tree D is
constructed. The levels D1, . . . , Dr of D are CAD’s for R1, . . . , Rr, respectively. This
situation is completely specified by (A,X) or (ϕ,X), respectively. We have developed
our methods on the basis of the classical Collins–Hong projection. They are, however,
also applicable to the other projection operators discussed in the literature.

Our goal is to find for given A or ϕ a favorable projection order X at the earliest
possible stage. For this we want to be able to draw conclusions on the size of the CAD
from properties of the intermediate projection sets.

Therefore, we are going to systematically investigate numerous complete CAD’s
wrt. all relevant projection orders, consider certain measures on the projection sets as
well as on the CAD’s, and examine statistical correlations between these measures.
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6.2.1 Measures

There are six measures that we take into account:

1. The number of projection factors in all the projection sets Fr, . . . , F1:

card(A,X) =
r∑

i=1

|Fi|.

2. The sum of total degrees of all monomials of all polynomials in all the projection
sets Fr, . . . , F1:

sotd(A,X) =
r∑

i=1

∑
f∈Fi

σ(f),

where, using the convention e = (e1, . . . , er),

σ

(∑
e∈E

aex
e1
1 · · ·xer

r

)
=
∑
e∈E

r∑
i=1

ei.

3. The number of cells in the resulting full CAD:

ncad(A,X) = |Dr|.

4. The overall computation time of the full CAD computation in seconds:

tcad(A,X).

5. The number of leaves in the partial CAD tree that is generated for quantifier
elimination:

npcad(ϕ,X) =
∣∣{ c ∈ Dk ∪ · · · ∪Dr | c is a leaf

}∣∣.
6. The overall computation time of the quantifier elimination by partial CAD in

seconds:
tqe(ϕ,X).

The time measures tcad and tqe depend on the implementation and the machine. The
CAD implementation of the author in the REDLOG package [DS97b] of the widespread
computer algebra system reduce was used. All computations were carried out on a
2.0 GHz Intel Pentium IV using 128 MB of RAM.

The first four measures card, sotd, ncad, and tcad are defined for sets A of polyno-
mials. They can be as well applied to formulas ϕ by considering the set of polynomials
occurring in these formulas. The last two measures npcad and tqe, in contrast, do not
make sense outside a quantifier elimination context.
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It might appear more natural to consider in the definition of our sotd the total
degrees of the corresponding polynomials instead of sums of total degrees of monomials.
Experiments have shown that these measures are highly correlated. Our choice has the
advantage to favor sparse polynomials.

For the definition of npcad we shortly recall the basic idea of the partial CAD
procedure for quantifier elimination [CH91]: When using full CAD, there is the CAD
tree D with levels D1, . . . , Dr computed, and then the matrix formula is evaluated at
the sample points of the cells in Dr. The truth values thus obtained are propagated
down to the corresponding root cell in Dk according to the types of quantifiers. Hence
full CAD computation and its use for quantifier elimination are two isolated subsequent
steps. For partial CAD, in contrast, one tries to determine truth values for the matrix
formulas during extension already for cells in D1, . . . , Dr−1, i.e., without fixing all
variables to real numbers. For instance, x1 − 42 > 0 ∧ x3

2 − 4711x3 = x4 is false for
x1 =

√
2, no matter what x2, . . . , xr are. Whenever one succeeds this way for a cell

c ∈ Di, where i ∈ {1, . . . , r}, this cell c need not be further extended. In other words,
the partial CAD tree is pruned at this point, and c becomes a leaf.

It is now clear, that it is not reasonable to consider the time for the partial CAD
construction as a measure: This construction is not isolated from the quantifier elim-
ination but contains a considerable part of the quantifier elimination work, viz. hard
computations with algebraic numbers for trial evaluation of the matrix formula. The
other part of the quantifier elimination work, viz. solution formula construction, is, in
contrast, still an isolated subsequent step. From that point of view, we consider tqe an
appropriate counterpart for tcad.

The first two measures card and sotd can be applied after projection or even during
projection on intermediate projection sets. They are candidates for suitable criteria
for determining projection orders. The latter four measures ncad, tcad, npcad, and
tqe, in contrast, can be applied only after a complete CAD computation or quantifier
elimination, respectively. They are going to be used for evaluating the significance of
our candidate criteria.

6.2.2 Computation of the Test Set

We are going to discuss a test set consisting of six CAD examples, mostly from the
literature. Each example has been computed wrt. a significant number of projection
orders. In fact, we have computed a much more comprehensive example set comprising
48 examples, and selected these six examples as a representative subset for this paper.

All our examples are in fact quantifier elimination examples, which allows us to
apply all our measures. Note that also from the point of view of pure CAD, it is not
at all a restriction to consider only such examples; they can be considered deliverers of
interesting sets of polynomials.
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Admissible Projection Orders

On the other hand, we consider the quantifier block structure of the examples in order
to restrict the set of possible orders to a reasonable subset: Strictly speaking, quantifier
elimination by CAD for a prenex formula

ϕ = Qk+1xk+1 . . . Qrxrψ

requires a projection order with two properties: First, all quantified variables xr,
. . . , xk+1 are projected before all unquantified variables xk, . . . , x1.

Second, the quantified variables have to be projected essentially in the order xr →
· · · → xk+1. This requirement for a fixed projection order is weakened by the fact that
in ϕ like neighbored quantifiers can be equivalently interchanged.

For instance, ∃x∃y∀zψ is equivalent to ∃y∃x∀zψ but not generally equivalent to
∃x∀z∃yψ. Consequently z → y → x and z → x → y are both possible projection
orders in this example, while y → z → x is not. This observation suggests to rewrite
∃{x, y}∀{z}ψ thus making visible the quantifier blocks.

So returning to the general discussion, we can rewrite our prenex formula ϕ as

ϕ = Q1B1 . . . QnBnψ,

where Qi �= Qi+1 for i ∈ {1, . . . , n− 1} and B1, . . . , Bn are finite sets of variables. This
is the unique block representation of a prenex formula. For convenience, let B0 denote
the set of unquantified variables.

From that point of view, admissible projection orders for quantifier elimination are
characterized by projecting

Bn → · · · → B1 → B0,

while within each block Bi the order can be freely chosen. Obviously, the number of
admissible projection orders is given by

n∏
i=0

|Bi|!.

The Quartic Problem

The quartic problem has been suggested by Lazard [Laz88]. It asks for necessary and
sufficient conditions on the coefficients of a quartic polynomial to be positive semidefi-
nite:

quartic = ∀x(px2 + qx+ r + x4 ≥ 0).

There are 1! · 3! = 6 admissible orders. The following table presents the computation
results:1

1For all our examples discussed thoughout this section, the actual variable orders used in each table
row are collected in an appendix in Section 6.6.
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card sotd ncad tcad npcad tqe
1 7 54 445 4.71 251 7.04
2 7 54 445 83.39 251 138.18
3 7 50 417 0.54 235 0.89
4 7 50 417 1.64 239 2.55
5 9 66 ⊥ >600 ⊥ >600
6 9 66 ⊥ >600 ⊥ >600

We see that card cannot predict differences in ncad, where sotd can. Note that ncad and
tcad are surprisingly unrelated here. On the other hand, there is one order, viz. no. 3,
that is optimal wrt. all criteria. We have automatically aborted all our computations
after 10 minutes. Measures that are unknown due to such unfinished computations are
marked with ⊥.

A Real Implicitization Problem

This example is an exercise on complex implicitization in a textbook [CLO92]. Our
formulation asks for a corresponding real implicitization:

cls7 = ∃u∃v(x = uv ∧ y = uv2 ∧ z = u2).

The number of admissible orders is 2! · 3! = 12.

card sotd ncad tcad npcad tqe
1 9 25 889 0.09 266 0.16
2 9 25 889 0.09 266 0.15
3 9 25 889 0.15 268 0.20
4 9 25 889 0.14 266 0.22
5 9 25 889 0.14 268 0.19
6 9 25 889 0.15 266 0.19
7 11 36 1571 0.19 508 0.28
8 11 36 1571 0.18 508 0.28
9 11 36 1571 0.17 582 0.29

10 11 36 1571 0.16 580 0.29
11 11 36 1571 0.17 582 0.29
12 11 36 1571 0.17 580 0.28

Compared to the previous example there is much less variation here. Note that a choice
of projection order according to card or sotd yields significantly good ncad, tcad, npcad,
and tqe.
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Range of Lower Bounds

The following formula asks for the possible range of strict lower bounds on the values
of a parabola that has no real zeros. The example comes from the context of [Sei01].

as6 = ∀x∀a∀b∀c∃x′((a > 0 ∧ ax′2 + bx′ + c �= 0) −→
y < ax2 + bx+ c

)
.

There are 1! · 4! · 1! = 24 admissible orders:

card sotd ncad tcad npcad tqe
1 11 42 4199 0.39 283 0.07
2 11 42 4199 0.48 307 0.09
3 12 44 5231 0.55 487 0.15
4 12 44 5231 0.55 487 0.14
5 13 53 6389 1.37 341 0.13
6 12 49 6389 0.38 357 0.09
7 11 50 4007 0.44 241 0.06
8 11 50 4007 0.55 255 0.08
9 12 50 5027 0.62 395 0.12

10 12 50 5027 0.62 395 0.11
11 12 50 5027 0.58 305 0.10
12 12 50 5027 0.59 321 0.10
13 12 43 5007 0.46 523 0.18
14 12 43 5007 0.40 523 0.17
15 11 39 3975 0.38 423 0.16
16 11 39 3975 0.40 423 0.15
17 11 39 3975 0.28 415 0.16
18 11 39 3975 0.29 415 0.14
19 11 36 3709 0.52 348 0.16
20 11 36 3709 0.21 358 0.11
21 9 28 2365 0.27 272 0.11
22 9 28 2365 0.27 288 0.11
23 9 28 2365 0.13 290 0.08
24 9 28 2365 0.14 290 0.08

This is another example with little variation. Here card and sotd do not discover
optimal orders wrt. npcad or tqe. The orders that they point at are, however, absolutely
acceptable.

Consistency in Strict Inequalities

This problem decides whether the intersection of the open ball with radius 1 centered
at the origin and the open cylinder with radius 1 and axis the line x = 0, y + 2 = 2
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is nonempty. It has been introduced by McCallum and used by Collins and Hong for
demonstrating PCAD [McC87, CH91]:

con = ∃z∃x∃y(x2 + y2 + z2 < 1 ∧ x2 + (y + z − 2)2 < 1
)
.

There are 3! = 6 admissible orders:

card sotd ncad tcad npcad tqe
1 12 46 251 0.02 51 0.01
2 8 43 365 2.24 43 0.04
3 11 33 193 0.02 29 0.01
4 11 33 193 0.02 37 <0.01
5 8 43 365 2.90 47 0.07
6 12 46 251 0.02 51 0.01

Comparing the lines 2 and 5 with 3 and 4, we observe that card and sotd contradict
each other. Following sotd in these cases yields the best values for ncad, tcad, npcad,
and tqe.

Parametrized Collision Problem

The following formula asks if two moving objects, a circle and a square, are going to
collide at some time t in the future. The circle is moving with constant velocity (1, 0),
while the velocity of the square is parameterized with (vx, vy). This example has been
used by Collins and Hong for several fixed choices of (vx, vy) [CH91].

pcol = ∃t∃x∃y(t > 0 ∧ −1 ≤ x− vxt ≤ 1 ∧
−9 ≤ y − vyt ≤ −7 ∧ (x− t)2 + y2 ≤ 1).

The number of admissible orders is 3! · 2! = 12:

card sotd ncad tcad npcad tqe
1 62 250 144971 47.86 6969 3.78
2 62 250 144971 121.13 6969 4.91
3 ⊥ ⊥ ⊥ >600 ⊥ >600
4 4678 227337 ⊥ >600 ⊥ >600
5 62 248 149925 58.95 13310 4.53
6 62 248 149925 151.50 13310 7.51
7 57 323 ⊥ >600 ⊥ >600
8 57 323 ⊥ >600 ⊥ >600
9 ⊥ ⊥ ⊥ >600 ⊥ >600

10 ⊥ ⊥ ⊥ >600 ⊥ >600
11 ⊥ ⊥ ⊥ >600 ⊥ >600
12 ⊥ ⊥ ⊥ >600 ⊥ >600
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In this example we observe an immense variety in all measures. In particular, the orders
in the lines 3, 9–12 do not even allows to finish projection within the time limit. The
probability of failing to finish full as well as partial CAD computation for a random
order is 2/3. Minimal card misleadingly points at such failing orders. Minimal sotd
does not point at the optimal order but still at acceptable ones.

The X-Axis Ellipse Problem

The X-Axis Ellipse Problem has been firstly stated by Kahan [Kah75]. It has been
formulated as a quantifier elimination problem by Lazard [Laz88]. The problem is to
write down conditions such that the ellipse

(x− c)2
a2

+
(y − d)2

b2
= 1

is inside the circle x2 + y2 = 1. We treat the special case d = 0:

ell = ∀x∀y(b2(x− c)2 + a2y2 = a2b2 −→ x2 + y2 ≤ 1
)
.

There are 2! · 3! = 12 admissible orders:

card sotd ncad tcad npcad tqe
1 32 107 114541 46.64 37883 29.68
2 28 103 51477 45.54 11635 28.70
3 26 89 64625 17.10 21059 15.59
4 27 91 96833 29.71 20431 17.70
5 36 119 ⊥ >600 74587 260.70
6 43 129 ⊥ >600 ⊥ >600
7 122 522 ⊥ >600 ⊥ >600
8 109 537 ⊥ >600 ⊥ >600
9 77 345 ⊥ >600 ⊥ >600

10 74 331 ⊥ >600 ⊥ >600
11 136 761 ⊥ >600 ⊥ >600
12 143 751 ⊥ >600 ⊥ >600

Similar to the previous example, there is probability of only 1/3 to finish full CAD
and only a slightly higher probability to finish partial CAD for a random order. Both
minimal card and sotd point at an optimal order wrt. tcad, npcad, and tqe and this
order is almost optimal wrt. ncad.

6.2.3 Statistical Correlations

In the informal remarks after presenting for each of our examples the resulting table,
we have collected some positive and negative observations concerning the possible cor-
relations between our measures.
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We are now going to systematically examine the correlations on a precise formal
basis. To motivate this, consider the x-axis ellipse problem from Section 6.2.2. For the
12 admissible projection orders the card values (lower line) and the corresponding sotd
values (upper line) differ pretty much as can be seen from the following interpolated
plot:
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Nevertheless, it is our impression that there is a correlation between these measures.
To substantiate this, we introduce a formal notion of correspondence: Consider lists
p = (p1, . . . , pl) and q = (q1, . . . , ql) in R ∪ {⊥} like the card column and the sotd
column for the ellipse example. The value ⊥ is used to encode that the corresponding
value is unknown. Define

I =
{ {i, j} ∣∣ 1 ≤ i < j ≤ l and pi, pj , qi, qj ∈ R

}
;

this is the set of all unordered pairs of different indices (orders) for which all values are
known. On this basis, we define

C =
{ {i, j} ∈ I ∣∣ sign(pi − pj) = sign(qi − qj)

}
,

the subset of all pairs of indices where the corresponding values for p are ordered in
exactly the same way as the ones for q. Finally, we define

C ′ =
{ {i, j} ∈ I ∣∣ | sign(pi − pj)| �= | sign(qi − qj)|

}
,

where the corresponding orders between the values are at least not completely opposite.
In these definitions, sign(x) is 1, 0, or −1 if x is positive, zero, or negative, respectively,
and | · | denotes the usual absolute value.

If we observe C = I, then this would suggest very good correspondence. If {i, j} /∈ C
for some {i, j} ∈ I, then we would consider it good correspondence to at least have
{i, j} ∈ C ′. This gives rise to the following definition of the degree of correspondence
between p and q. It is defined for |I| > 0:

doc(p, q) =
|C|+ 0.5|C ′|

|I| ∈ [0, 1].
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Note that doc is commutative.
It is not hard to see that for fixed list length l, the average over the degrees of

correspondences for all possible choices of pairs of lists is 0.5. A value greater than
0.5 thus indicates an above-average correspondence. For our motivating ellipse example
above, we obtain, e.g., doc(card, sotd) = 0.97.

The following table collects for all our examples the doc values for the relevant
combinations of card, sotd, ncad, tcad, npcad, and tqe. For convenience, the doc’s are
multiplied by 100 thus rescaling them to percentages:

quartic cls7 as6 con pcol ell ∅

card–ncad 67 100 89 46 67 67 72
sotd–ncad 100 100 88 74 33 67 77
card–tcad 50 81 78 30 50 100 64
sotd–tcad 83 81 85 56 33 100 73
card–npcad 58 84 67 67 67 70 68
sotd–npcad 91 84 54 93 33 70 70
card–tqe 50 82 62 33 50 100 62
sotd–tqe 83 82 47 60 33 100 67

The last column gives the averages over the corresponding lines. These averages indicate
that sotd has a significantly higher doc with all measures on the complete computation
than card.

We thus consider sotd in contrast to card to be a suitable indicator after projection
for the time and space to be expected for the overall computation.

6.3 Guessing the Size of a Full CAD

We want to dedicate this section to a special measure “guess” that lies between the
indicator measures card and sotd on the one side and the target measures on the other
side.

Modern implementations construct the CAD tree in a dept-first manner, as for QE
purposes there is hope that a partial construction suffices. For a full CAD, it doesn’t
hurt either to proceed this way. Thus it can be expected that the first leaf is found
within a very small fraction of the overall computing time.

During the process of constructing the first leaf, the number ni of cells of the stack
over the corresponding cell of level i − 1 is either known, or can be found out easily,
e.g. by evaluating Sturm sequences at −∞ and ∞. Then the guessed value of the CAD
problem is

∏r
i=1 ni. This defines the measure guess for a CAD problem.

Let us look at the verbose output of the author’s implementation for the example
quartic with projection order y → r → q → p.

(0:3(1:11(2:9(3:5(4)(4)(4)_2)...)...)...)
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This gives us the following information: Starting decomposition at level 0 there are 3
cells on level 1. We select one cell C1 and procede to level 2 where there are 11 cells
in the stack over C1. Again we select a cell C2 out of these 11 cells. The stack over
C2 turns out to have 9 cells. And again we select a cell C3, which turns out to have a
stack with 5 cells. Now we have reached real 4-space for the first time. We stop now
and guess the number of cells of a CAD of real 4-space to be 3 · 11 · 9 · 5 = 1485. We
note some observations:

1. The guessed and precise number of cells turned out to differ by a factor between
0.25 and 4 for a set of examples similar to the test set of Section 6.2. E.g. for the
example quartic factors range between 1.2 and 3.3. Thus guess can be expected
to reveal the order of magnitude of a problem.

2. No algebraic number arithmetic is needed to implement this algorithm. As on
each level only one cell is needed, it suffices to choose one with rational sample
point.

3. The resulting number highly depends on the cell selection strategy employed dur-
ing decomposition. The author’s implementation uses the cell which is first found
by incremental root isolation. Other strategies are described in [CH91].

4. The size of a partial CAD, which occurs for a CADQE problem, can be unpre-
dictably smaller than the size of a full CAD. Thus the guessed size is only an
upper bound, if used in context of a CADQE problem.

The measure guess was considered as a possible choice for an indicator measure, but
ruled out for two reasons. The main reason is that the quality of predictions of guess
turned out worse than sotd (but better than card). In addition it seemed not to be
too promising to apply CAD constructions to intermediate projection sets, both in time
consumption and quality of results. So the decision of the last section to choose sotd as
the most suitable indicator measure is not affected.

Nevertheless, guess can be put to good use. There is the additional possibility to
take the time needed to find the first leaf and multiply it by the guessed number of cells
of a full CAD. This would allow a computer algebra system to tell the user the order of
magnitude of time it guesses to compute the problem. Giving the user an idea about
the rough space and time requirements of his problem has several benefits.

1. The user gets an idea how large or small a problem is. She can interactively
experiment with several alternative formulations, and use the one which promises
to be the fastest. This would improve the user experience considerably.

2. CAD problems can be classified by the expected order of magnitude of amount
of time: milliseconds, centiseconds, seconds, minutes, hours, days, weeks, months,
years, decades, centuries, millennia, or aeons.
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3. In particular for problems, for which a full decomposition is illusionary, this ap-
proach allows for an educated guess. E.g. for example ell with order 11 we obtain
a guess of approx. 13, 000, 000 cells.

6.4 Constructing Good Orders

We recall from the Section 6.2 that sotd(A,X) for a setA of polynomials and a projection
order X is the sum of the total degrees of all monomials in all polynomials in all
projection sets Ar, . . . , A1. For a prenex first-order formula ϕ we may also speak of
sotd(ϕ,X) referring to the set of polynomials occurring in ϕ.

The results of the previous section provide a good indication that sotd is a suitable
measure that is correlated with a high degree of correspondence to all measures that
one possibly wishes to optimize in order to save computational resources:

1. small size of the full CAD (ncad),

2. fast computation time for the full CAD (tcad),

3. small size of the partial CAD (npcad),

4. fast computation time for quantifier elimination (tqe).

On the basis of this result we can conclude from the knowledge of all projection
sets for all admissible orders on the interesting time and space measures listed above
without actually performing any base phase or extension phase.

The remaining problem is the following: In order to get a basis for the decision,
there are still projection phases wrt. all admissible orders to be performed. The worst-
case number of admissible orders is the factorial of the number of variables and hence
exponential in the word length of the input.

In this section we are going to suggest a heuristic algorithm for finding a good
projection order wrt. sotd. This algorithm will require quadratically many projection
steps in the number of variables and thus in the word length.

We are going to evaluate the quality of the orders determined by our algorithm on
the basis of our example set introduced in the previous section. It is going to turn out
that the practical computation times are absolutely negligible, while the gain obtained
from using the computed orders is immense.

6.4.1 Greedy Projection

We suggest a greedy algorithm for finding a good admissible projection order wrt. sotd.
By greedy, we refer to roughly the following idea: We perform the first projection step
wrt. to all possible variables. Then we determine the sum of total degrees for each single
obtained set. We greedily take the best one, throw away all others, and repeat like that
until there are no variables left to order.
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For formulas ϕ, we have to recall our discussion of admissible orders in Section 6.2.2:
For a formula

ϕ = Q1B1 . . . QnBnψ

in prenex block representation, the admissible projection orders are characterized by
projecting the blocks in the order

Bn → · · · → B1 → B0,

where B0 denotes the set of all unquantified variables. For each of these blocks, the
order can be freely chosen. The first block to consider is Bn.

We give the algorithm with two subroutines that build on each other. The main
work is done in PORDER2. Here the order of one variable block is decided. Bases on
this, PORDER1 finds variable orders for all blocks, starting with the innermost block
Bn. Using this routine, depending on the application, the variable order for a formula
or a set of polynomials can be found.

6.1 Algorithm (greedy projection, 2nd subroutine)

(A′, ω)←− PORDER2(A, (B0, . . . , Bm))

Input: A finite set A ⊂ R[x1, . . . , xj ] and pairwise disjoint sets of variables B0, . . . , Bm

with
⋃m

i=0Bi = {x1, . . . , xj}.
Output: A projection order ω on Bm and the corresponding intermediate cumulative
projection set A′.

1. ω := ()

2. while Bm �= ∅ do

(a) A′ := ⊥
(b) for each x ∈ Bm do

i. A′′ := project
({
f ∈ A ∣∣ for all y ∈ ω : degy(f) ≤ 0

}
, x
)

ii. s′′ :=
∑

f∈A′′ σ(f)
iii. if A′ = ⊥ or s′′ < s′ then

A′ := A′′ ∪A
s′ := s′′

x′ := x

(c) ω := (x′) ◦ ω
(d) A := A′

(e) Bm := Bm \ {x′}
3. Return (A′, ω).
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There are some remarks to this algorithm.

1. In Step 2.(b).i, project(M, v) denotes one projection step on the set M wrt. the
variable v. This includes computing irreducible factors. Depending on the projec-
tion operator it might not suffice to just provide x. In this case a preliminary order
ω′ ◦ (x) has to be provided, where ω′ is an arbitrary order on (

⋃m
i=0Bi)\ (ω∪{x}).

2. In Step 2.(b).ii, recall the definition of σ from Section 6.2.1, and note that sums
over the empty set are zero.

3. Note that the first time Step 2.(b).iii is encountered, s′ is undefined, but this does
no harm, as A′ = ⊥ is true. Thus by means of lazy evaluation s′′ < s′ needs not
to be evaluated. Alternatively, after Step 2.(a), s′ :=∞ could be added.

Based on Algorithm PORDER2 one can straightforwardly define

6.2 Algorithm (greedy projection, 1st subroutine)

(A′, (ω0, . . . , ωn))←− PORDER1(A, (B0, . . . , Bn))

Input: A finite set A ⊂ R[x1, . . . , xr] and pairwise disjoint sets of variables B0, . . . , Bn

with
⋃n

i=0Bi = {x1, . . . , xr}.
Output: Projection orders ωi on Bi and the corresponding cumulative projection set
A′.

1. for i from n downto 0 do

(a) (A′, ωi) := PORDER2(A, (B0, . . . , Bi))

(b) Ai :=
{
f ∈ A′ ∣∣ exists y ∈ ωi : degy(f) ≥ 1

}
(c) A := A′ \Ai

2. Return (
⋃n

i=0Ai, (ω0, . . . , ωn)).

With this it is finally very clear how to write the top-level algorithm.

6.3 Algorithm (greedy projection)

ω ←− PORDER(ϕ)

Input: A prenex formula ϕ.
Output: An efficient projection order for ϕ.

1. Let A denote the irreducible factors of the polynomials of ϕ.

2. Identify the variable blocks (B0, . . . , Bn) of ϕ.

3. Return ω, where (A′, ω) := PORDER1(A, (B0, . . . , Bn))
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If one is not interested in quantifier elimination, but only CAD, then for a sets A
of polynomials in variables B one can find an efficient projection order by the call
PORDER1(A, (B)).

Note that the algorithm, does not necessarily find a projection order yielding really
minimal sotd. The main reason is that we apply a local criterion on projection levels,
while sotd is a global criterion on entire projections. In other words, the projection
order with smallest sotd need not necessarily have small sums of total degrees in the set
obtained after the first projection step.

Nevertheless, we shall see that our greedy algorithm applied to the previous set of
examples provides orders of very high quality in the following sense: First, they are as
a rule close to optimal. We are going to substantiate this in the following section by
means of a statistical analysis. Second, and even more important, the computed orders
never exceed the time limit in any of our examples, even when there is a high probability
of failing.

6.4.2 CAD Performance with Greedy Projection

The following tables provide a statistical analysis of the performance of the orders
generated by our greedy algorithm. It shows that the performance of these orders is
considerably above-average. The extra computing time is negligible.

quartic cls7 as6
order no. by greedy 3 1 22
time for greedy 0.01 <0.01 0.01
ncad by greedy 417 889 2365
rank w/i ncad 1 of 6 1 of 12 1 of 24
median of ncad 445.00 1230.00 4103.00
mean of ncad ⊥ 1230.00 4273.00
tcad by greedy 0.54 0.09 0.27
rank w/i tcad 1 of 6 1 of 12 4 of 24
median of tcad 44.05 0.16 0.42
mean of tcad >215.04 0.15 0.45
npcad by greedy 235 266 288
rank w/i npcad 1 of 6 1 of 12 5 of 24
median of npcad 251.00 388.00 352.50
mean of npcad ⊥ 411.67 364.25
tqe by greedy 0.89 0.16 0.11
rank w/i tqe 1 of 6 2 of 12 10 of 24
median of tqe 72.61 0.25 0.11
mean of tqe >224.78 0.24 0.11
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con pcol ell
order no. by greedy 3 5 3
time for greedy <0.01 0.13 0.01
ncad by greedy 193 149925 64625
rank w/i ncad 1 of 6 3 of 12 2 of 12
median of ncad 251.00 ⊥ ⊥
mean of ncad 269.67 ⊥ ⊥
tcad by greedy 0.02 58.95 17.10
rank w/i tcad 1 of 6 2 of 12 1 of 12
median of tcad 0.02 ⊥ ⊥
mean of tcad 0.87 >431.62 >411.59
npcad by greedy 29 13310 21059
rank w/i npcad 1 of 6 3 of 12 3 of 12
median of npcad 45.00 ⊥ ⊥
mean of npcad 43.00 ⊥ ⊥
tqe by greedy 0.01 4.53 15.59
rank w/i tqe 2 of 6 2 of 12 1 of 12
median of tqe 0.01 ⊥ ⊥
mean of tqe 0.02 >401.72 >379.36

6.5 Conclusions

We have obtained strong statistical evidence that the projection order is of crucial
importance for the success of CAD computations. For determining the quality of a
given projection order, we have shown that there is one single measure, viz. sotd, on
the projection sets that is correlated to all interesting time and space measures on the
computation of a full CAD as well as on quantifier elimination by partial CAD. We
have introduced a greedy algorithm for efficiently constructing a good projection order
wrt. sotd. This algorithm is already utilized by others [BPB05, Phi05]. In addition, a
method to guess the order of magnitude of the space and time requirements of a CAD
problem is devised. This work closes a considerable gap within the CAD framework.

6.6 Appendix: Catalogue of Orders

We finally list for our example set computed in Section 6.2.2 the projection orders used
there. The numbering here corresponds to the that of the table rows in Section 6.2.2:
quartic: 1. x→ r → q → p, 2. x→ r → p→ q, 3. x→ q → r → p, 4. x→ q → p→ r,
5. x→ p→ r → q, 6. x→ p→ q → r.
cls7: 1. v → u→ z → y → x, 2. v → u→ z → x→ y, 3. v → u→ y → z → x,
4. v → u→ y → x→ z, 5. v → u→ x→ z → y, 6. v → u→ x→ y → z,
7. u→ v → z → y → x, 8. u→ v → z → x→ y, 9. u→ v → y → z → x,
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10. u→ v → y → x→ z, 11. u→ v → x→ z → y, 12. u→ v → x→ y → z.
as6: 1. x′ → c→ b→ a→ x→ y, 2. x′ → c→ b→ x→ a→ y,
3. x′ → c→ a→ b→ x→ y, 4. x′ → c→ a→ x→ b→ y,
5. x′ → c→ x→ b→ a→ y, 6. x′ → c→ x→ a→ b→ y,
7. x′ → b→ c→ a→ x→ y, 8. x′ → b→ c→ x→ a→ y,
9. x′ → b→ a→ c→ x→ y, 10. x′ → b→ a→ x→ c→ y,
11. x′ → b→ x→ c→ a→ y, 12. x′ → b→ x→ a→ c→ y,
13. x′ → a→ c→ b→ x→ y, 14. x′ → a→ c→ x→ b→ y,
15. x′ → a→ b→ c→ x→ y, 16. x′ → a→ b→ x→ c→ y,
17. x′ → a→ x→ c→ b→ y, 18. x′ → a→ x→ b→ c→ y,
19. x′ → x→ c→ b→ a→ y, 20. x′ → x→ c→ a→ b→ y,
21. x′ → x→ b→ c→ a→ y, 22. x′ → x→ b→ a→ c→ y,
23. x′ → x→ a→ c→ b→ y, 24. x′ → x→ a→ b→ c→ y.
con: 1. y → x→ z, 2. y → z → x, 3. x→ y → z, 4. x→ z → y, 5. z → y → x,
6. z → x→ y.
pcol: 1. y → x→ t→ vy → vx, 2. y → x→ t→ vx → vy, 3. y → t→ x→ vy → vx,
4. y → t→ x→ vx → vy, 5. x→ y → t→ vy → vx, 6. x→ y → t→ vx → vy,
7. x→ t→ y → vy → vx, 8. x→ t→ y → vx → vy, 9. t→ y → x→ vy → vx,
10. t→ y → x→ vx → vy, 11. t→ x→ y → vy → vx, 12. t→ x→ y → vx → vy.
ell: 1. y → x→ c→ b→ a, 2. y → x→ c→ a→ b, 3. y → x→ b→ c→ a,
4. y → x→ b→ a→ c, 5. y → x→ a→ c→ b, 6. y → x→ a→ b→ c,
7. x→ y → c→ b→ a, 8. x→ y → c→ a→ b, 9. x→ y → b→ c→ a,
10. x→ y → b→ a→ c, 11. x→ y → a→ c→ b, 12. x→ y → a→ b→ c.
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Chapter 7

Regularization

In this chapter we study the effect of a linear transformation of variables on sets of
polynomials and its application to the CAD method for quantifier elimination. The
plan of this chapter is as follows:

1. We give syntactic and geometric reasons to motivate that a linear change of vari-
ables can lead to CAD with fewer cells.

2. We define the notion of regularity, give a transformation, investigate its effects and
show how a set of polynomials can be transformed into a regular one by means of
this transformation.

3. We show how this transformation can be applied to formulas in the preparation
phase of the CAD algorithm to rewrite the input formula to a regular formula.

4. We show that it is often unnecessary to regularize wrt. all variables and show how
to find an efficient subset of variables. We sketch a way to find such a set faster.

5. We look at examples. In particular, examples with few or without free variables
and with large blocks of like quantifiers are applicable.

7.1 Introduction

On input of a first-order formula ϕ, the CAD method for real QE starts off by extracting
the polynomials of the formula as set A. Then, during projection phase, the irreducible
factors of A are extended to the projection set F . The algorithm we propose rewrites the
input formula to an equivalent one, such that some or many polynomials of this formula
have a constant leading coefficient. We can expect two benefits from this approach.

First, from a syntactical point of view, constant leading coefficients are desirable, as
this leads to smaller projection sets with Collins-Hong style projection operators. By
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regularization we can always transform for a given variable a polynomial into a polyno-
mial with constant leading coefficient wrt. this variable. We expect smaller projection
sets, and therefore benefits for the CAD algorithm.

Second, there is a geometric motivation: As an additional effect, the intended trans-
formations are capable of yielding a situation, which is more suitable for CAD. Con-
sider the set A1 := {4y2 + 4x2 − 12x + 5, 4y2 − 12y + 5 + 4x2} of input polynomi-
als. Independent of the choice y → x or x → y of the variable order this yields a
CAD with 41 cells. If we, however, apply a sheering x �→ x + y, then we get the set
A2 := {8y2 + 4x2 + 8xy − 12x − 12y + 5, 8y2 − 12y + 5 + 4x2 + 8xy} of transformed
polynomials, and for the variable order y → x we get a CAD of only 25 cells. This is
illustrated in Figure 7.1. This example indicates that this approach allows us to have
tilted cylinders.

Figure 7.1: Left: The two circles yield a CAD of 1+3+5+7+9+7+5+3+1 cells. Right:
After a sheering in x-direction, we end up with 1+3+5+3+1+3+5+3+1 cells.

7.2 Regularity

We first need to introduce the notion of regularity. This notion is derived from the study
of power series and related to the Weierstrass Vorbereitungssatz, see [GR65, Wei86]. In
this chapter, D always denotes a domain.

7.2.1 Two Flavors of Regularity

Let f be a polynomial in D[y1, . . . , ym]. The polynomial f is called regular in ym

wrt. y1, . . . , ym−1, if the leading coefficient of f wrt. ym is a constant polynomial in



7. Regularization 127

y1, . . . , ym−1, i.e. if
tdeg(y1,...,ym−1)(lcym(f)) ≤ 0.

It is called strongly regular in ym wrt. y1, . . . , ym−1, if it is regular in ym wrt. y1, . . . , ym−1

and in addition the total degree of f wrt. y1, . . . , ym equals the degree of f wrt. ym, i.e.
if in addition

tdeg(y1,...,ym)(f) = degym
(f).

With these definitions, regularity and strong regularity are ternary predicates, depend-
ing on a polynomial, a variable and a list of variables. As a notational convention,
for our convenience and with hindsight of implementation, we collect the second and
third argument into one list. Thus we say more shortly f is (strongly) regular wrt.
(y1, . . . , ym) instead of f is (strongly) regular in ym wrt. (y1, . . . , ym−1).

7.2.2 A Transformation for Regularization

In this section we define a linear transformation τ of variables.

7.1 Definition (τ)
For a variable list (y) := (y1, . . . , ym) and a list of natural numbers (c) := (c1, . . . , cm−1),
define τ to be the unique homomorphism of rings

τ(y),(c) : D[y]→ D[y],

with τ(y),(c)|D = idD and with

τ(y),(c)(yj) =
{
ym, if j = m,
yj + cjym, otherwise.

As a notational convenience, we simply write τy,c instead of τ(y),(c). This is save, as a
sequence of 2m− 1 objects can always be uniquely split into the first m and the latter
m− 1 objects.

7.2 Remark
1. τ(y),(c) is an automorphism. To prove this it remains to show that τy,c is a bijection.

Define
τ−1
y,c := τy,(−c1,...,−cm−1).

For all f ∈ D[y1, . . . , ym] we have τ−1(τ(f)) = f , hence τ is injective. Further-
more, for f ∈ D[y1, . . . , ym] we have τ(τ−1(f)) = f as well, hence f is surjective.

2. Using the homomorphism property from 7.1, we know that for a given polynomial
f we have:

(τy,c(f))(y) = f(y1, y2 + c1y1, . . . , ym + cmy1).



128 7.2 Regularity

7.2.3 Properties of this Transformation

In order to get a clearer idea what τ does and why it is suitable for our purposes
we at first assume a slightly more general setting. Define τ ′ similar to τ , but use
variables x = (x1, . . . , xm−1), which are distinct to y = (y1, . . . , ym), instead of constants
c2, . . . , cm. This makes τ ′y,x a map

D[y1, . . . , ym]→ D[x1, . . . , xm−1, y1, . . . , ym].

7.3 Lemma (action of τ ′ on a monomial)
For e := (e1, . . . , em) ∈ Nm, variables (x) = (x1, . . . , xm−1) distinct from variables

(y) = (y1, . . . , ym), d ∈ D \ {0}, a monomial t := d
∏m

j=1 y
ej

j , and f ′ := τ ′y,x(t) ∈ D[x,y]
we have:

1. The number of monomials of f ′ wrt. (y) is
∏m−1

j=1 (1 + ej).

2. Each monomial t′ in f ′ has tdegy(t′) =
∑m

j=1 ej = tdegy(t).

3. There is exactly one monomial t′ in f ′ with degym
(t′) =

∑m
j=1 ej , i.e. f ′ is strongly

regular wrt. y. In addition, lcym(t′) = c
∏m−1

j=1 x
ej

j for a domain element c, i.e.

tdegx(t′) =
∑m−1

j=1 ej .

Proof . Note that the product sign is used in the following for both, the set-theoretical
cartesian product and the arithmetical product. As the object that follows the product
sign is either a set or an arithmetic expression the meaning is always clear. Note further,
that the assumption d �= 0 implies t �= 0.

τ ′(t) = dye1
m

m−1∏
j=1

(yj + xjym)ej

= dyem
m

m−1∏
j=1

ej∑
k=0

(
ej
k

)
yk

j (xjym)ej−k

=
∑

f∈�m−1
i=1 {0,...,ei}

dyem
m

m−1∏
j=1

(
ej
fj

)
y

fj

j (xjym)ej−fj

Set F :=
∏m−1

i=1 {0, . . . , ei} and for f ∈ F set sf := dyem
m

∏m−1
j=1

(ej

fj

)
y

fj

j (xjym)ej−fj . Let
f, g ∈ F with f �= g. Choose 2 ≤ i ≤ m with fi �= gi. Then

degyi
(sf ) = fi �= gi = degyi

(sg),

i.e. sf �= sg. Thus τ ′(t) results in |F | =∏m−1
j=1 (1 + ej) monomials. This shows (1). The

second claim follows immediately from

tdegy(sf ) = em +
m−1∑
j=1

(fj + (ej − fj)) =
m∑

j=1

ej .



7. Regularization 129

To show (3), consider the zero map 0 ∈ F and set

t′ := s0 = dyem
m

m−1∏
j=1

(
ej
0

)
x

ej

j y
ej
m .

Now degym
(t′) = em +

∑m−1
j=1 ej =

∑m
j=1 ej and tdegx(t′) =

∑m−1
j=1 ej . As degym

(sf ) =
em +

∑m−1
j=1 (ej − fj) it is clear that for all f ∈ F , f �= 0 the monomial sf has smaller

degree in y1 than t′. The remainder of the claim is immediately clear. �
Recall that with monexpsy(f) we denote the list of m-tuples of monomial exponents

of a polynomial f in m variables y.

7.4 Example
Consider variables (x, y, z), the monomial t := xyz and f ′ := τ(x,y,z),(a,b)(t). Then
f ′ = xyz+xbz2 + az2y+ az3b. As expected from the Lemma we get 4 monomials, each
with total degree of 3 wrt. (x, y, z). And f ′ is strongly regular wrt. (x, y, z) due to the
monomial t′ := az3b.

7.5 Corollary (action of τ ′ on a polynomial)
For variables x = (x1, . . . , xm−1) distinct from variables y = (y1, . . . , ym), f ∈ D[y]\{0},
and f ′ := τ ′y,x(f) ∈ D[x,y] we have:

1. The number of monomials of f ′ wrt. y is smaller or equal to

∑
e∈monexpsy(f)

m−1∏
j=1

(1 + ej).

2. tdegy(f ′) = tdegy(f) holds.

3. There is a monomial t′ in f ′ with degym
(t′) = tdegy(t′), i.e. f ′ is strongly regular

wrt. y and tdegx(t′) ≤ tdegy(f) − µ, where µ is the minimum of all ym-degrees
occurring in a monomial of f of highest total degree.

Proof . Set E := monexpsy(f). Write f as a sum of monomials f =
∑

e∈E te. By the
homomorphism property of τ ′ we know τ ′(f) =

∑
e∈E τ

′(te). Now (1) and (2) follow
immediately from Lemma 7.3,(1) and (2).

To show (3), let H ⊆ E denote the set of highest monomial exponents of f , i.e.
e ∈ H implies

∑m
j=1 ej = tdegy(f). For each e ∈ H let t′e denote the unique monomial

in τ ′(te) that exists by Lemma 7.3,(3) with lcym(t′e) = ce
∏m−1

j=1 x
ej

j for a domain element
ce. Let e, e′ ∈ H with e �= e′. Choose 2 ≤ i ≤ m with ei �= e′i. Then lcym(t′e) and
lcym(t′e′) differ in the power of xi. Thus

∑
e∈H lcym(t′e) �= 0, i.e. f ′ is strongly regular

wrt. y.
As with 7.3,(3) we have tdegx(t′e) =

∑m−1
j=1 ej =

∑m
j=1 ej − degym

(t′e), the second
part of claim (3) is clear as well. �
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7.2.4 Regularization

We have just seen that the transformation τ can, in principle, be used to map a polyno-
mial to a regular one. In principle, as if we use concrete constants (c) instead of generic
variables (x), there is the possibility that the coefficient of the monomial that makes
the polynomial regular vanishes. This then results in a transformed polynomial that
lacks the desired property.

7.6 Example
Consider the polynomial h := −81x3 + 35x3z − 72y3z + 51y2z2 − 86x3y2 + 86x2z3.
Regularization wrt. (x, y, z) with choice (1, 1) for constants does not succeed. The
slightly different choice (2, 1) works, however.

We turn now to the question if there is always a choice of constants to perform reg-
ularization. The situation can be seen as follows: If the coefficients of the monomials
of the transformed polynomial are polynomial expressions in the constants. The goal
is to find a choice of constants that is a non-root for the polynomial expression that is
the coefficient of the monomial that makes the transformed polynomial regular. Such
a choice has to be found for several polynomials simultaneously. We show that this is
always possible.

7.7 Lemma (existence of non-roots for a polynomial)
A non-zero real polynomial f in m ∈ N variables (y) = (y1, . . . , ym) has a non-root in
Zm. Moreover, for given Zi ⊆ Z with Zi �= ∅ and |Zi| ≥ 1 + degyi

(f) for 1 ≤ i ≤ m
there exists a non-root (c) ∈∏m

i=1 Zi.

Proof . Let f be a non-zero real polynomial. We prove the claim by induction on
the number of variables. If m = 0 then for ∅ ∈ Z0 we have f(∅) �= 0 and indeed
(c) := ∅ ∈∏ ∅ = {∅} is a non-root of f .

If m > 0, then, as f is non-zero, lcym(f) is non-zero. By induction hypothesis,
choose a non-root (c) = (c1, . . . , cm−1) of lcym(f). For given Z1, . . . , Zm ⊆ Z we can
even assume (c) ∈ ∏m−1

i=1 Zi. Now, f(c, ym) is a non-zero univariate polynomial. This
polynomial can have at most degym

(f(c, ym)) real roots in Z. As |Zm| > degym
(f) =

degym
(f(c, ym)) choose a non-zero cm from Zm such that f(c, cm) �= 0. Hence we have

found a non-root (c, cm) of f in Zm. �

7.8 Corollary
A finite set A of non-zero real polynomials in m ∈ N variables (y) = (y1, . . . , ym) has a
non-root in Zm. Moreover, for given Zi ⊆ Z with Zi �= ∅ and |Zi| ≥ 1 +

∑
f∈A degyi

(f)
for 1 ≤ i ≤ m there exists a non-root (c) ∈∏m

i=1 Zi.

Proof . An element (c) ∈ Zm is a non-root of A iff it is a non-root of g :=
∏

f∈A f . As
degyi

(g) =
∑

f∈A degyi
(f), the claim follows from Lemma 7.7. �
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7.9 Theorem (existence of non-roots for a set of polynomials)
For a finite set A of non-zero real polynomials in (y) = (y1, . . . ym) there exist integer
constants (c) = (c1, . . . , cm−1) such that τy,c(f) is regular wrt. (y) for all f ∈ A.

Proof . For variables (x) = (x1, . . . , xm−1) disjoint from (y) and for domain elements
(c) = (c1, . . . , cm−1) let γx,c denote the unique map D[x,y]→ D[y] defined by mapping
xi to ci. Clearly τy,c = γx,c ◦τ ′y,x. As just seen, lcym(τ ′y,x(f)) is a non-trivial polynomial
in (x) for all f ∈ A. Consider the set B :=

{
lcym(τ ′y,x(f))

∣∣ f ∈ A} of polynomials in
(x). Choose by means of Corollary 7.8 a non-root (c) of B. Now γx,c ◦ τ ′y,x(f) is regular
wrt. (y) for all f ∈ A. �
Theorem 7.9 guarantees that ther is a legal choice of (c). Corollary 7.8 tells us how big
a cuboid must be to certainly find a legal choice. Clearly, if we have a bijection from N

to an appropriate product space of Z, this would solve our problem.

7.10 Remark
It is not difficult to verify the following facts:

1. Define ν : N→ N : n �→
⌊
−1

2 +
√

1
4 + 2n

⌋
and µ : N→ N : n �→ 1

2n(n+ 1). Then
ν ◦ µ = idN.

2. Define γ1 : N → N : n �→ ν(n) − γ2(n) and γ2 : N → N : n �→ n − µ(ν(n)). Then
the map γ : N→ N2 : n �→ (γ1(n), γ2(n)) is a bijection.

3. If A,B are sets and α : N→ A and β : N→ B bijections, then the map

N→ A×B : n �→ (α ◦ γ1(n), β ◦ γ2(n))

is also a bijection.

4. Define εm := idN, if m = 1, and εm : N → Nm : n �→ (ε1 ◦ γ1(n), εm−1 ◦ γ2(n)),
for m > 1. Then εm is a bijection for all m ∈ N1. As a small modification, define
ε∗1 : N → N1 : n �→ n + 1, and ε∗m : N → Nm

1 : n �→ (ε∗1 ◦ γ1(n), ε∗m−1 ◦ γ2(n)), for
m > 1. Then ε∗m is a bijection for all m ∈ N1.

5. Define ζ1 : N → Z by n �→ n
2 , if n is even, and by n �→ −n+1

2 , otherwise. Define
ζm : N → Zm : n �→ (ζ1 ◦ γ1(n), ζm−1 ◦ γ2(n)), for m > 1. Then ζm is a bijection
for all m ∈ N1.

We can now define an algorithm which maps a set of polynomials to a set of regular
polynomials. We use the bijection ε∗m−1 : N→ Nm−1

1 .

7.11 Algorithm (regularization subroutine)

(c)←− REG1(F, (y))

Input: Variables (y) = (y1, . . . , ym) and a set of polynomials F ⊆ D[y].
Output: Constants (c) such that τ(y),(c)[F ] is a set of polynomials regular wrt. (y).
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1. Set i := 0, F ′ := F and (c) = (c1, . . . , cm−1) := (0, . . . , 0).

2. While F ′ is not regular wrt. (y) do:
(c) := ε∗m−1(i)
F ′ := τ(y),(c)[F ′]
i := i+ 1

3. Return (c).

7.12 Remark
1. This algorithm terminates, because of Theorem 7.9 eventually an i will be found

such that the while loop terminates. It is correct, as after the termination of the
while loop F ′ is regular wrt. (y).

2. Note that in case that the input is already regular the zero tuple (0) is returned,
which makes τy,0 the identity on D[y]. In all other cases, due to the use of ε∗,
never 0 is chosen for a constant. We will examine in a later section how one can
systematically introduce zeros where possible.

Based on Algorithm REG1 we straightforwardly define:

7.13 Algorithm

F ′ ←− REG(F, (y))

Input: Variables (y) = (y1, . . . , ym) and a set of polynomials F ⊆ D[y].
Output: A set F ′ of polynomials that is regular wrt. (y).

1. Return τ(y),REG1(F,(y))[F ].

7.14 Remark
From a mathematical point of view it would now be interesting to investigate, which
kind of enumeration leads to fast regularization, i.e. to a small number of times of
execution of the body of the while loop.

In practice, however, it turns out that the body of the while-loop is rarely executed
more than once. To test this, we generated random polynomials in Maple, using the
command

randpoly([z,y,x],terms=5),

which gives a polynomial in three variables. In general, such a polynomial has total
degree five and five terms, with coefficients ranging from −99 to 99.

Regularization of 1000 such random polynomials with the enumeration ε∗, which
does not choose 0 for any constant, reveals that in general only 1–3 need a second
choice of constants.

Thus finding a regular polynomial fast is not the problem. We will see, however,
that finding a relatively sparse one is the task of interest. The way to go will be to
carefully decide if it makes sense to choose 0 for certain constants.
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7.3 Regularization of Formulas

After we have developed the necessary tools for regularization of polynomials we now
examine how they can be applied to the quantifier elimination process. The aim is to
transform a formula to a equivalent one with regular polynomials in it. This can be
done in the following way:

1. Without loss of generality the input formula is prenex and every polynomial of
the formula is irreducible.

2. For every quantifier block, starting with the innermost, we can apply regulariza-
tion. It is important to note that we cannot apply regularization to each polyno-
mial with an individual choice of constants, but that we have to find a choice of
constants to regularize all polynomials of the formula simultaneously and consis-
tently. See Algorithm 7.16 and 7.18. This transformed formula is equivalent to
the formula we started with.

3. QE by CAD is applied to this modified formula. Note that the polynomials of this
formula are irreducible. So irreducible factors computation does not destroy the
regularity property. Thus the regularized polynomials are handed to the projection
operator, where we can leverage constant leading coefficients.

Recall that for a non-constant polynomial f in (x) = (x1, . . . , xm) the level of f wrt.
(x) is the maximal index 1 ≤ i < m such that degxi

(f) ≥ 1. Constant polynomials are
assigned level 0.

The input A of the following algorithm will usually be the polynomials of a for-
mula. The set A is comprised of polynomials in (x1, . . . , xr). The index i1 denotes the
beginning of a certain quantifier block, i2 denotes the end of that quantifier block.

7.15 Algorithm (regularization of a block of variables subroutine)

L←− REGBLOCK1(A, (x), i1, i2)

Input: A list of variables (x) = (x1, . . . , xm), a set of polynomials in (x), and natural
numbers 1 ≤ i1 ≤ i2 ≤ m.
Output: A list L for regularization.

1. A′ := A

2. For i from i2 downto i1 + 1 do:
Let A′′ denote the set of all i-level polynomials in A′ wrt. (x).
(c(i)) := REG1(A′′, (xi1 , . . . , xi))
A′ := τ(xi1

,...,xi),(c(i))[A
′]

3. Return (((xi1 , xi1+1), (c(i1+1))), . . . , ((xi1 , . . . , xi2), (c
(i2))))
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Consider a list L = ((x(1), c(1)), . . . , (x(n), c(n))) as returned from the algorithm. Such a
list contains pairs consisting of a list of variables and a list of constants of appropriate
length. We can straightforwardly extend the definition of τ by:

τL := τ(x(1),c(1)) ◦ · · · ◦ τ(x(n),c(n))

7.16 Algorithm (regularization of a block of variables)

A′ ←− REGBLOCK(A, (x), i1, i2)

Input: As in Algorithm REGBLOCK1.
Output: A set of polynomials A′ such that for each i1 ≤ i ≤ i2 each i-level polynomial
of A′ is regular wrt. (xi1 , . . . , xi).

1. Return τREGBLOCK1(A,(x),i1,i2)[A].

As for the correctness of the algorithm, assume that an i-level polynomial f was made
regular wrt. (xi1 , . . . , xi). Then in lcxi(f) none of the variables xi1 , . . . , xi−1 occurs.
Thus subsequent regularization steps cannot destroy this property.

7.17 Algorithm (regularization of a formula subroutine)

L←− REGFOF1(ϕ, (x))

Input: A prenex formula ϕ and an admissible variable order (x) = (x1, . . . , xr).
Output: A list L for regularization.

1. Write ϕ in quantifier block form: ϕ(x(0)) := Qi1x
(1)(. . .Qinx

(n)(ψ) . . .). Then
(x) = (x(0), . . . ,x(n)). Set i0 := 1 and in+1 := r + 1. Then the j-th quantifier
block (x(j)) is (xij , . . . , xij+1−1).

2. Let A denote the polynomials of ϕ.

3. for j = n downto 1 do:
(Lj) := REGBLOCK1(A, (x(j)), ij , ij+1)

4. Return (L1, . . . ,Ln).

We extend straightforwardly τ to formulas. Let τx,c(ϕ) denote the result of replacing
every polynomial f of ϕ by τx,c(f). Similarly, define τL(ϕ).

7.18 Algorithm (regularization of a formula)

ϕ′ −→ REGFOF(ϕ, (x))
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Input: As in Algorithm REGFOF1.
Output: A prenex formula ϕ′ such that for each bound variable xi each i-level polyno-
mial is regular wrt. (xi1 , . . . , xi), if (xi1 , . . . , xi2), i1 ≤ i ≤ i2, is the variable block xi

resides in, and such that R |= ϕ←→ ϕ′

1. Return τREGFOF1(ϕ,(x))(ϕ))

Note that it would of course be desirable to have each i-level polynomial to be regular
wrt. (x1, . . . , xi), as it then would be guaranteed to have a constant leading coefficient.
Regularization is, however, limited to variable blocks, as otherwise the condition, that
the transformed formula is equivalent to the original formula, could not be guaranteed.
Nevertheless there is the expectation, that often this limited regularization suffices to
produce constant leading coefficients.

Before we see some examples we show how to limit the growth of the number of
monomials during regularization.

7.4 Efficient Regularization

So far, regularization means for us to perform a transformation wrt. every variable,
except the variable the polynomial should finally be regular in. We can be more efficient
in this respect: Based on an observation we show that it often suffices to consider less
variables for the transformation. This yields sparser polynomials (less monomials and
therefore a smaller sotd value), and is hence expected to be more efficient for CAD, as
seen in Chapter 6.

7.4.1 An Observation

Consider the following randomly generated polynomials:

f0 = 79y + 56z2x2 + 49zy2x+ 63y2x2 + 57z3y2 − 59z2y3

f1 = 77yx2 + 66z3y + 54zyx2 − 5zx3 + 99y2x2 − 61zx4

f2 = zx− 47zyx− 91zx3 − 47yx3 − 61z4x+ 41zy3x

f3 = −86z2y + 23z2x− 84y3x+ 19z2x3 − 50y5 + 88y2x3

f4 = −85z2 − 86x3 + 30z3y + 80zy2x+ 72z5 + 66z3yx

We want regularity wrt. (x, y, z). If we apply the algorithm REG to fi and (x, y, z)
we are guaranteed to get regular results wrt. (x, y, z). The number of monomials of
the results are given in the last line of Table 7.2. Now, what happens if we apply the
algorithm to fi and (y, z), (x, z), or (z), respectively? The results are guaranteed to be
regular wrt. (y, z), (x, z), or (z), respectively, but will they be regular wrt. (x, y, z) as
well? Looking at Table 7.2 again we see from the third line that, with the exception of
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f2, all polynomials are regular wrt. (x, y, z), after they were made regular wrt. (y, z).
And from the second line we read that, with the exception of f0 and f1, all polynomials
are regular wrt. (x, y, z), after they were made regular wrt. (x, z). Finally, looking at
the first line, only f4 was regular wrt. (x, y, z) from the beginning.

In addition we observe that we can expect smaller polynomials if we regularize
wrt. fewer variables. E.g. for f3 we find a regular version with 14 instead of 26 mono-
mials.

f0 f1 f2 f3 f4

(z) – – – – 6
(z, x) – – 16 14 6
(z, y) 12 9 – 16 6
(z, y, x) 15 21 22 26 6

Figure 7.2: Number of monomials of the regularized polynomial, if regular wrt. (z, y, x).

7.4.2 Optimal Regularization wrt. Number of Monomials

If A is a set of polynomials inD[y] we call an sublist (y′) of (y) suitable for regularization
of A wrt. (y), if each element of REG(A, (y′)) is regular wrt. (y). The sublist (y′) is
called optimal for regularization of A wrt. (y), if it is suitable and the sum of all numbers
of monomials of elements of REG(A, (y′)) is minimal among all suitable sublists.

After the observation above, it is straightforward to give an algorithm, which finds
an optimal sublist for regularization wrt. number of monomials:

7.19 Algorithm (optimal regularization subroutine)

S ←− REGOPT2(A, (y))

Input: Variables (y) = (y1, . . . , ym), m ≥ 1, and a set of polynomials A ⊆ D[y].
Output: A non-empty list of lists of variables S, such that each list of variables (y′) ∈ S
is a sublist of (y), each element of REG(A, (y′)) is regular wrt. (y), and (y′) is optimal
for regularization of A wrt. (y).

1. For each sublist (y′) of (y1, . . . , ym−1) collect a pair⎛
⎝(y′, ym),

∑
f ′∈REG(A,(y′,ym))

nomy(f)

⎞
⎠ ,

but only if each element of REG(A, (y′, ym)) is regular wrt. (y). Call this list of
pairs L.

2. Return S := {(y′, ym) | ((y′), c) ∈ L and c minimal in {π2(p)|p ∈ L}}.
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7.20 Algorithm (optimal regularization subroutine)

(c)←− REGOPT1(A, (y))

Input: As in Algorithm REGOPT2.
Output: A list of constants (c) = (c1, . . . , cm−1), such that each element of τy,c[A] is
regular wrt. (y).

1. Choose an element (y′) ∈ REGOPT2(A, (y)).

2. (c′) := REG1(A, (y′))

3. For 1 ≤ i ≤ m− 1 define ci :=
{

0, if yi does not occur in (y′)
c′j , if yi occurs on position j in (y′).

4. Return (c).

Based on Algorithm REGOPT1 we straightforwardly define:

7.21 Algorithm (optimal regularization)

A′ ←− REGOPT(A, (y))

Input: As in Algorithm REGOPT1.
Output: A set A′ of polynomials that is regular wrt. (y).

1. Return τ(y),REGOPT1(A,(y))[A].

Note that REG1 and REGOPT1, and also REG and REG1 have the same specifications.
This means that the optimized versions are drop-in replacements for their non-optimized
counterparts.

7.4.3 An Efficient Way to Find Good Regularization Subsets

In contrast to applications of a projection operator the transformations discussed in
this chapter are rather cheap. Nevertheless, we present here an idea how to speed up
regularization.

The number of possible sublists considered by REGOPT2 is exponential in the num-
ber of variables. Here, similar to the approach in Chapter 6, a greedy algorithm could
be utilized. Such an algorithm would reduce the number of sublists to be considered to
one polynomial in the number of variables. We cannot expect to always find an optimal
result, but we would expect to find a good result.

7.5 Examples

We study the impact of regularization by looking at some examples. Some of the exam-
ples demonstrate that we can indeed achieve the desired savings with our regularization
method.
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Motzkin Polynomial

Consider the question whether the Motzkin polynomial is positive semidefinite:

ϕmp = ∀x∀y(1 + x2y2(x2 + y2 − 3) ≥ 0)

This leads to a full CAD of 19 cells. The regularized equivalent formula

ϕmpr = ∀x∀y(x4y2 + 4y3x3 + 7x2y4 + 6y5x+ 2y6 − 3x2y2 − 6xy3 − 3y4 + 1 ≥ 0)

leads to a CAD with only 15 cells.

A CAD Example with 3 Variables

Consider the polynomial f := ux3 + ux+ vx2 + x3 + 2x− 1. After projection wrt. the
variable order x→ u→ v we end up with 9 projection factors, and a corresponding full
CAD with 429 cells. If we, however, regularize f wrt. (u, v, x) and perform projection
wrt. the same order as above, then we end up with only 5 projection factors and 187
cells.

An Implicitation Example

Consider the implicitation example

ϕcox6 := ∃u∃v(x = uv ∧ y = u2 ∧ z = v2)

The set of input polynomials is A =
{−uv + x,−u2 + y,−v2 + z

}
, and (x, y, z, u, v) is

computed as an efficient projection order. This CADQE problem results in 9 projection
factors, a full CAD of 863 cells, and a partial CAD of 179 cells. We can regularize the
block of existential quantifiers by computing REGOPTBLOCK(A, (x, y, z, u, v), 4, 5).
Replacing the polynomials in ϕcox6 by those we get the regularized formula

ϕcox6r := ∃u∃v(−uv − v2 + x = 0 ∧ −u2 − 2uv − v2 + y = 0 ∧ −v2 + z = 0)

Note that now all polynomials are of the highest level. In particular, in the second
polynomial the variable v occurs now. This equivalent formulation leads to 37 projection
factors, and a full CAD guessed to consist of a 6-digit number of cells, and a partial
CAD of 51017 cells. For this example, regularization does not lead to the expected gain
in efficiency.

7.6 Further Work and Remarks

1. Based on this work more advanced methods regarding the particular choice of
constants and strategies to detect when regularization has its benefits and when
not could be developed.



7. Regularization 139

2. Deciding on a projection order, as seen in Chapter 6, and regularization, as seen
in this chapter, is, from a more abstract point of view, the same approach: a linear
bijection (a permutation in the first case, a sheering in the second case) is applied
to blocks of variables. This leads to the more general question which further kinds
of transformations could be utilized.

7.7 Conclusions

In this chapter we have defined a method for transforming a set of polynomials into one
which is equivalent for QE for CAD by regularization. We have made precise on which
polynomials occurring within the projection phase this transformation can be used. On
the one hand we expected smaller projection sets and thus savings. On the other hand,
the increase of the sotd value and the level for some polynomials lead us to the a priori
suspicion that negative effects are to be expected. Looking at examples we see that
these two effects indeed occur. Thus, based on this work, more sophisticated methods
of regularization could be developed to guarantee more consistently good results.
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Chapter 8

Implementation

Improvements suggested in this thesis were implemented, so large examples could be
computed that were not feasible by hand. In this chapter we give an overview of this
implementation. More precisely:

1. We introduce the computer algebra system REDUCE in which most of the imple-
mentation took place.

2. We demonstrate that CADQE can be combined with quantifier elimination by
virtual substitution (VSQE) for added benefits.

3. We talk about some implementation details and design decisions.

4. We give an overview of the available commands.

8.1 REDUCE and REDLOG

Most of the implementation work was done within the REDUCE package REDLOG.

8.1.1 REDUCE

REDUCE is a computer algebra system that dates back to the 1960s. Its name is written
in capital letters, as in those times input devices had no lower case letters. The name
is not an acronym, but intended as a joke, as computer algebra systems can give very
large output in certain cases [Hea05]. The system is open source—in the literal sense,
i.e. the sources are shipped, not in the modern sense of free and open source software
(FOSS). Its installation base is comprised of roughly 15001 licenses, many of them at
universities, so the user base is presumably higher.

REDUCE is based on a Lisp dialect called Standard Lisp. Several implementations
are available, the most important ones being Portable Standard Lisp (PSL), maintained

1This number refers to 3.7 systems.
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by Winfried Neun at the Zuse Institut Berlin (ZIB), and Cambridge Standard Lisp
(CSL), maintained by Arthur Norman (Trinity College/Codemist Ltd.).

The emphasis of REDUCE and its Lisp base lies on simplicity, efficiency, and porta-
bility. The speed and efficiency that can be achieved matches and surpasses2 imple-
mentations in C. On the downside, the programming language lacks features like type
checking, which are considered basic nowadays, and the current Lisp systems impose a
memory limit of 128MB on REDUCE. With the advent of 64bit architectures, however,
this memory limit is lifted.

The user interface is minimalistic, but there are several front-ends available. RED-
FRONT provides the features of the GNU Readline and is meanwhile shipped with the
system. The PSL version of REDUCE comes with a graphical interface for Windows
that provides menus and some fancy printing. TeXmacs allows for sophisticated fancy
printing of the output, thus it is suitable for demonstrations. For the CSL-based version
a graphical interface based on the platform-independent Fox-toolkit is developed.

The current release is 3.8 from 15 April 2004. Future plans for REDUCE are to
further open it up, and to possibly turn it into free software in 2010.

8.1.2 REDLOG

REDLOG, the REDUCE logic system is developed in Passau since 1992. It allows to
compute with first-order logic over a fixed language and theory. For this work, only the
language of ordered rings and the theory of real closed fields is of interest.

It provides quantifier elimination by several alternative methods, simplification of
first-order formulas, using factorization and Gröbner basis techniques, normal form
computation and numerous tools for constructing and processing formulas.

The available quantifier elimination methods for the reals are: virtual substitution of
test points (VS), parametric real root counting (now called Hermitian QE), and, thanks
to this work, cylindrical algebraic decomposition (CAD).

It is of mutual advantage to have a computer logic system integrated into a computer
algebra system, in contrast to have a stand-alone system. This is pointed out in [DS03].

REDLOG is part of the REDUCE development system. This means that con-
tributions to REDLOG will automatically be part of the next REDUCE release. In
particular, the CAD implementation, the improvements of generic CAD and efficient
projection orders are already included in REDUCE 3.8.

8.2 Combination of Methods

With CAD and VS implemented on one system we can think of combining these two
methods into one QE strategy. The CAD and the VS method differ in some respects,
and thus complement each other:

2Communication with Thomas Sturm, who compared a REDUCE/Lisp implementation with a
Asir/C implementation of the VS method.
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• VS imposes restrictions on the degree of the polynomials in the input formula.
CAD has no restrictions.

• VS is doubly exponential in the number of quantifier changes, but for fixed quan-
tifier type only singly exponential in the number of quantifiers; most importantly,
the number of parameters does not contribute to complexity in a relevant way.
CAD, on the contrary, is doubly exponential in all variables.

• VS can eliminate one quantifier at a time, staring with the innermost quantifier.
CAD has to eliminate all quantifiers simultaneously.

Altogether this hints the following strategy:

1. Eliminate as many quantifiers as possible via the VS method.

2. If at some step the VS method fails due to degree restrictions, finish with the
CAD method.

Note that it is not possible to do it the other way round, due to the characteristics of
the methods.

Consider as an example the following implicitation problem taken from [CLO92]:

∃u∃v(x = u · v ∧ y = u · v2 ∧ z = u2)

Virtual substitution eliminates successfully the first quantifier:

∃v(z ≥ 0 ∧ ((v4 · z − y2 = 0 ∧ v2 · z − x2 = 0∧
v · x ≤ 0 ∧ (v = 0 ∨ y ≤ 0)) ∨ (v4 · z − y2 = 0∧
v2 · z − x2 = 0 ∧ v · x ≥ 0 ∧ (v = 0 ∨ y ≥ 0))))

But now, due to degree restrictions, VS cannot be used anymore. CAD continues and
succeeds:

(x4 − y2 · z = 0 ∧ x = 0 ∧ y = 0 ∧ z ≥ 0)∨
(x4 − y2 · z = 0 ∧ x �= 0 ∧ y �= 0 ∧ z > 0)

As for timings,3 the combined strategy needed 110ms, CAD alone 330ms.
As a consequence, this strategy is implemented as the default behavior in RED-

LOG. This automatic combination of two quantifier elimination methods on one system
empowers users to compute larger examples as previously possibly. An example for a
successful application of this strategy is [SW03].

3On a Pentium 933Mhz 128Mb.
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8.3 Implementation Details

For real algebraic number computation we use a reimplementation of the approach
that was developed in [Sei01], with some improvements [Sei02]. With respect to real
algebraic numbers, the three available implementations of CAD differ. QEPCAD uses
primitive element computation, and Mathematica uses validated numerics. It is an
interesting—but so far unanswered—question, which approach is the best.

In the preparation phase it is possible to utilize the degree decreasing strategy from
[DS98], and to use an efficient projection order (cf. Chaper 6).

For projection, Collins’ operator with Hong’s improvement [Hon90] is used for levels
higher than 3. For lower levels, McCallum’s operator is used.

For decomposition we use a recursive algorithm that builds a CAD tree. This in-
cludes an implementation of partial CAD (with first and second improvement). For
root isolation an improvement to the Sturm-Sylvester method is used, which the author
calls incremental root isolation. The idea here is as follows: After we have found the
first isolating interval for a root of a polynomial that has the property that no other
polynomial has a root inside and on the border we pause root isolation. One root suf-
fices to generate the sample points for two cells by extending the sample point of the
base cell by the lower bound of the interval, and the real algebraic number itself. This
process of finding one root and generating two cells is iterated. The final sample point is
generated with the upper bound of the isolating interval of the largest root. In the con-
text of PCAD this approach can yield savings. This root isolation technique is believed
to be an important reason why, when looking at the following timings,4 the author’s
implementation rlcad is not either always faster or always slower than QEPCAD.

Example rlcad QEPCAD
cox12 150ms 50ms
ter 80ms 60ms
col 0ms 70ms
davhei 280ms 80ms
colj 60ms 50ms
lwcoj 1380ms 160ms
gamma1 460ms 3280ms
css 8400ms 70ms
quartic 7720ms 140ms
aci 13920ms 220610ms

As for solution formula construction we use the method based on signatures of projec-
tion polynomials proposed by Hong; thus in rare cases, solution formula construction
may fail. For simplification of the output formula we use the available routines from
REDLOG. The results are often less simple than the ones of QEPCAD. The main rea-
son for this seems to be that the tree-valued logic simplification method implemented

4On a Pentium 933Mhz 128Mb.
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in QEPCAD (which is tailored to signature based formulas) proposed by Hong yields
better results than the (more general) methods utilized by REDLOG.

8.4 Documentation

In this section we give a more detailed overview of the available commands than in
the REDLOG manual for REDUCE 3.8 [DSS04]. We assume basic data structures as
formula and other functionality to be known from the manual.

Some of this functionality may be changed or removed in future releases of REDLOG.

8.4.1 Quantifier Elimination by CAD

rlcad formula [reverse projection order] Function
Quantifier elimination by cylindrical algebraic decomposition. Returns a
quantifier-free equivalent of formula, if the method succeeds, the input for-
mula, otherwise. A projection order can be given as an optional argument.
There are no degree restrictions on the polynomials in formula.

rlcadproj formula [reverse projection order] Function
Projection factors set. Returns a projection set. A projection order can be
given as an optional argument.

rlcadswitches Function
CAD switches. Prints the current settings of the most important switches.
Note that this command has to be called as rlcadswitches().

rlcaddecdeg Switch
Decrease degree. Tries to decrease the degree of the input formula during
preparation phase. Turned off by default.

rlcadpartial Switch
Partial CAD. Turned on by default.

rlcadte Switch
Trial evaluation, the first improvement to partial CAD. Turned on by default.

rlcadpbfvs Switch
Propagation below free variable space, the second improvement to partial CAD.
Turned on by default.

rlcadisoallroots Switch
Isolate all roots. Turned off by default.

rlcadtrimtree Switch
Trim CAD tree. Unneeded branches of the tree are pruned in order to save
space (cf. Remark 2.51). Turned on by default.
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rlcadfulldimonly Switch
Find full-dimensional cells only. Warning: If this switch is turned on, then the
result is in general not correct. Turned off by default.

rlcadrmwc Switch
Remove white cells. Turned on by default.

rlcadrawformula Switch
Output the signature-based solution formula without simplification.

rlcaddnfformula Switch
Output the solution formula in DNF. If turned off, the solution formula is
returned in CNF. Turned on by default.

rlqefb Switch
Fall back QE. This affects rlqe. If turned on, the CAD method is used, if QE
by VS fails due to degree restrictions. Turned on by default.

rlcadpreponly Switch
Preparation phase only. Turned off by default.

rlcadprojonly Switch
Projection phase only. Turned off by default.

rlcadextonly Switch
Extension phase only. Turned off by default.

8.4.2 CAD with Answers

rlcadans Advanced Switch
Propagate answers. Returns answers in form of verbose output. The follow-
ing switches need to be set: on rlcadisoallroots, on rlcadpartial, off
rlcadpbfvs, off rlcadte, and off rlcadtrimtree Turned off by default.

8.4.3 Generic CAD

rlgcad formula [reverse projection order] Function
Generic quantifier elimination by CAD. Returns a pair consisting of a theory
and a quantifier-free formula.

rlgcadporder formula Function
Efficient projection order for generic CAD. Returns a reverse projection order.
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8.4.4 Efficient Projection Orders

projection order Data Structure
A list of variables (x1, . . . , xr) that indicates that projection is performed in
the order: xr → . . .→ x1.

reverse projection order Data Structure
A list of variables (xr, . . . , x1) that indicates that projection is performed in
the order: xr → . . .→ x1.

projection set Data Structure
A list of list of polynomials (Fr, . . . , F1), such that Fi contains the level-i pro-
jection factors.

The main procedures for finding projection orders:
rlcaddefaultorder formula Function

Default order, the reverse projection order, which the system would use by
default. Returns a reverse projection order.

rlcadporder formula Function
Efficient projection order. Returns a list of variables, a re-
verse projection order.

rlgcadporder formula Function
Efficient projection order for generic CAD. Returns a list of variables, a re-
verse projection order.

rlcadporders formula Function
Admissible projection orders. Returns a list of reverse projection order. Warn-
ing: If formula contains long blocks of quantifiers, the returned result can get
quite large. Use rlcadpordersnum to check beforehand.

rlcadpordersnum formula Function
Number of admissible projection orders. This is very fast, as the projection
orders need not to be generated. Returns a number.

doc number list number list Function
Degree of correspondence of two lists of numbers of same length. Returns a
rational number.

8.4.5 Exact Number of Cells of a full CAD

rlcadnum projection set reverse projection order Function
Compute the size of a full CAD for a given list of polynomials and a projection
order. Returns a number.

rlcadnum1 projection set reverse projection order Function
Compute the number of cells of a full CAD and of all induces CAD’s for a
given list of polynomials and a projection order. Returns a list (|Dr| , . . . , |D1|)
of numbers.
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rlcadnumauto formula Function
Compute the size of a full CAD for a given formula using the default projection
order. Returns a number.

rlcadnumepo formula Function
Compute the size of a full CAD for a given formula using an efficient projection
order as computed by rlcadporder. Returns a number.

8.4.6 Guessed Number of Cells of a full CAD

rlcadguess projection set reverse projection order Function
Guess the size of a full CAD for a given list of polynomials and a projection
order. The resulting value gives quickly an idea on how big the order of mag-
nitude of the size of a full CAD is.

rlcadguess1 projection set reverse projection order Function
Guesses the size of a full CAD subroutine. Returns a list (dr, . . . , d1) of numbers
such that

∏j
i=1 is the guessed number of level-j cells.

rlcadguessauto formula Function
Guess the size of a full CAD wrt. the projection order the system would actually
choose.

rlcadguessepo formula Function
Guess the size of a full CAD using an efficient projection order as computed
by rlcadporder.

8.4.7 Number of Cells in a Partial CAD

rlcadpnum formula reverse projection order Function
Compute the number of leaves of the resulting partial CAD tree. Note that
the cells of the yield of the partial CAD tree are not necessarily on the highest
level.

8.4.8 Regularization

These functions are implemented in a Maple worksheet and not available in REDUCE.
transreg polynomial list variable list constant list Function

This implements the transformation τ .

epsstar number number Function
This implements ε∗.

REG1 polynomial list variable list Function
REG polynomial list variable list Function
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This implements algorithms 7.11 and 7.13.

REGBLOCK1 polynomial list variable list number number Function
REGBLOCK polynomial list variable list number number Function

This implements algorithms 7.15 and 7.16.

REGOPT2 polynomial list variable list Function
REGOPT1 polynomial list variable list Function
REGOPT polynomial list variable list Function

This implements algorithms 7.19, 7.20 and 7.21

REGOPTBLOCK1 polynomial list variable list number number Function
REGOPTBLOCK polynomial list variable list number number Function

Like REGBLOCK1 and REGBLOCK above, but with optimized drop-in re-
placements.

8.4.9 Graphviz Interface

rlcadtree2dot Switch
Export CAD tree to dot format in a file cadtree.dot. Usually one wants to turn
off rlcadtrimtree. The file includes as a comment a suggested command line
call to produce a postscript file. Turned off by default.

8.5 Summary

The author implemented CADQE (including PCAD) as well as modifications and im-
provements from this thesis within the computer logic system REDLOG. This made it
possible to combine this method with VSQE on one system. The implementation differs
from other implementations by several design decisions. As part of the REDUCE de-
velopment system, the implementation is already available in part with REDUCE 3.8,
and will be available in full the next version of REDUCE.
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Chapter 9

Conclusions

This thesis presented application-oriented extensions and modifications of the cylindrical
algebraic decomposition algorithm (CAD) for real quantifier elimination (QE). Due to
these methods, larger problems than before can be tackled in practice and/or more
interesting information is provided as output.

Chapter 1 contains no new contributions, it serves to provide some basic notions
and notations in order not to clutter up later chapters.

In Chapter 2 we have presented the CAD algorithm for real QE in a consistent
way that reuses as much notation from the literature as possible. The presentation is
modern in that it views CADs as trees, which is more suitable than lists of cells for QE
purposes. It is implementation-friendly in that it discusses some representation issues
and gives concrete algorithms. It contains no new results; its main purpose is to put up
a scaffolding to raise Chapter 3.

In Chapter 3 we have developed the framework of cylindrical subdecomposition
(SCAD). This framework gives insight into what happens, if one does not compute a cell
decomposition of full space, but only a subspace, and then uses this subdecomposition
for QE purposes. In particular, this framework gives an algorithm for and semantics of
subdecomposition-based real quantifier elimination (SCADQE). One original feature of
this algorithm is to allow external assumptions on bounded variables in a semantically
clean way. The approach is compatible with partial CAD. It provides an abstraction
layer on which further applications can be realized. There are applications possible,
where assumptions accompany the input, or are found at various stages during algorithm
execution, or both. By using the SCAD framework one can focus on application ideas,
while semantics and correctness is provided by the framework.

In Chapter 4 we have defined a generic projection operator and described how to
perform generic quantifier elimination (combined with partial CAD) on the basis of this
operator. The idea of generic QE is to automatically exclude certain special cases to
cut down on the overall cost of computation. By means of highly non-trivial quantifier
elimination examples, we have demonstrated that our generic approach significantly
extends the application range of partial CAD. This particularly affects input formulas
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with polynomials of high degree and many parameters, thus filling a present gap in the
applicability of real quantifier elimination techniques.

Furthermore, in Chapter 4 we have developed quantifier elimination by local CAD as
an additional application within the SCAD framework. The idea of local elimination is
to cater for cases where the user already knows sample values for some or all parameters
of his formulation. The result is then locally correct in an area that contains these
points. The algorithm makes use of this additional information given by the user to
concentrate on the cases of interest. We demonstrate that this leads to large savings.
In addition, we have shown that these approaches can be combined with each other,
by giving a criterion to be checked during generic projection set computation to ensure
that the overall assumptions are not getting inconsistent. Finally we sketched some
more applications.

By looking at examples we see that the amount of computation needed for GCAD,
LCAD, and the combined LGCAD, is greatly reduced as expected. In return, the
results are correct only wrt. a relaxed semantics. While from a theoretical point of
view a weaker semantics might seem inferior at first, it turns out that for both generic
CAD and local CAD the generated assumptions consist of interesting information. In
addition, from a practical point of view the actual user might be more happy to get an
result that excludes certain degenerate or special cases, or that is locally correct, than
to wait considerably longer, or indefinitely, for a general result.

Putting the results of Chapter 3 and 4 together, we have gathered strong evidence
that a relaxed semantics, where the result of QE is equivalent to the input under some
assumptions, is highly useful. There are three reasons why the suggested approach
should be considered as a feature. First, the assumptions made automatically can pro-
vide added insight into the problem, as seen with generic CAD. Second, an algorithm
can be designed to cater for a special problem, as seen with local CAD. Third, it is nat-
ural to think about a problem and conditions, so providing support on an algorithmic
level to separate assumptions and not to intermingle them with the problem formulation
is promising and user friendly. We have provided the theoretical background, the algo-
rithmic means, and a variety of applications and computation examples to substantiate
the usefulness of this approach.

In Chapter 5 we have seen that it is highly desirable to produce answers in addition
to a solution formula as output of quantifier elimination for a formula with a leading
existential block of quantifiers. We have devised an algorithm to extend the cylindrical
algebraic decomposition method to produce such answers. For non-decision problems,
these sample solutions are in general parametric. For the dual case, i.e. for formulas
with a leading universal block of quantifiers, we get parametric counter-examples.

Altogether we have shown in Chapter 3 through 5, that the paradigms of generic
QE, local QE, QE with answers, and QE with external theory, which were originally
developed with the virtual substitution method (VS), can be successfully applied to
CAD as well. This is a surprising and original result, as the concrete realization of
these application for CAD is totally different to the VS approach. Consequently, these
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methods are now available for all real QE problems, without degree restrictions.
In Chapter 6 we have exploited a degree of freedom in the CAD algorithm: the

order in which projection is conducted. We have obtained strong statistical evidence
that the projection order is of crucial importance for the success of CAD computations.
For determining the quality of a given projection order, we have shown that there is
one single measure, namely the sum of total degrees of all monomials (sotd), on the
projection sets that is correlated to all interesting time and space measures on the
computation of a full CAD as well as on quantifier elimination by partial CAD. We
have introduced a greedy algorithm for efficiently constructing a good projection order
wrt. sotd. This algorithm provides consistently excellent results and is already utilized
by others. In addition, a method to guess the order of magnitude of the space and time
requirements of a CAD problem is devised.

In Chapter 7 we have defined a method for transforming a set of polynomials into one
which is equivalent for QE for CAD by regularization. Basically we apply a sheering, so
in a certain sense tilted cylinders are considered. On the one hand this method can give
smaller projection sets by introducing constant leading coefficients. On the other hand,
the increase of the level for some polynomials can lead to an increased projection set.
Looking at examples we see that these two effects indeed occur. Thus, based on this
work, more sophisticated methods of regularization could be developed to guarantee
more consistently good results.

The approaches of Chapter 6 and 7 have in common that in both cases a linear
bijection (a permutation in the first case, a sheering in the second case) is applied to
blocks of variables. This leads to the more general (and open) question which further
transformations are suitable and could be successfully utilized.

Chapter 8 shows that with the author’s implementation of CAD in REDLOG, this
QE method can be combined with the VS method with an overall benefit. The im-
plementation allowed for the first time a combined elimination strategy based on two
real QE methods within a single system. For each of the chapters 4 through 7 we have
provided an implementation to compute large examples.

The following table finally gives an overview which application-oriented concept leads
to a relaxed semantics, provides additional information, exploits a degree of freedom, is
applicable for pure CAD (i.e. without a QE problem in the background), and leads to
a consistent speed-up.

SCAD G/LCAD answers PORDER REGFOF combination

relaxed semantics + +
additional information + + +
degree of freedom + +
appl. for pure CAD + + +
speed-up usually + + ± +
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