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Abstract

A parallelising compilation consists of many translation and optimisation stages.
The programmer may steer the compiler through these stages by supplying directives
with the source code or setting compiler switches. However, for an evaluation of the
effects of individual stages, their selection and their best order, this approach is not
optimal.

To solve this problem, we propose the following method. The compilation is cast as
a sequence of program transformations. Each intermediate program runs on an Abstract
Parallel Machine (APM), while the program generated by the final transformation runs
on the target architecture. Our intermediate programs are all in the same language,
Haskell. Thus, each program is executable and still abstract enough to be legible,
which enables the evaluation of the transformation that generated it. This evaluation
is supported by a cost model, which makes a performance prediction of the abstract
program for a real machine.

Our project, PolyAPM, provides an acyclic directed graph – usually a tree – of
APMs whose traversal specifies different combinations and orders of transformations.
From one source program, several target programs can be constructed. Their run time
characteristics can be evaluated and compared.

The goal of PolyAPM is not to support the one-off construction of parallel appli-
cation programs. For the method’s overhead to pay off, the project aims rather at
supporting the construction and comparison of many similar variations of a parallel
program and a comparative evaluation of parallelisation techniques. With the au-
tomation of transformations, PolyAPM can also be used to construct semi-automatic
compilation systems.
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Zusammenfassung

Eine parallelisierende Compilation besteht aus vielen Übersetzungs- und Opti-
mierungsstufen. Der Programmierer kann den Compiler in diesen Stufen steuern, in
dem er im Quellcode Anweisungen einfügt oder Compileroptionen verwendet. Für eine
Bewertung der Auswirkungen der einzelnen Stufen, der Auswahl der Stufen und ihrer
besten Reihenfolge ist der Ansatz aber nicht geeignet.

Um dieses Problem zu lösen, schlagen wir folgende Methode vor. Eine Compila-
tion wird als Abfolge von Programmtransformationen betrachtet. Jedes Zwischenpro-
gramm gehört jeweils zu einer Abstrakten Parallelen Maschine (APM), während das
durch die letzte Transformation erzeugte Program für die Zielarchitektur bestimmt ist.
Alle Zwischenprogramme sind in der Sprache Haskell geschrieben. Dadurch ist jedes
Programm ausführbar und trotzdem abstrakt genug, um gut lesbar zu sein. Durch
diese Ausführbarkeit kann die Transformation, durch die das Programm erzeugt wird,
bewertet werden. Diese Bewertung wird durch ein Kostenmodell unterstützt, das eine
Performance-Vorhersage des abstrakten Programms, bezogen auf eine reale Maschine,
ermöglicht.

Unser Projekt PolyAPM liefert einen azyklischen, gerichteten Graphen – in der
Regel einen Baum – aus APMs, dessen Traversierungen jeweils bestimmte Kombina-
tionen und Reihenfolgen von Transformationen definieren. Aus einem Quellprogramm
können verschiedene Zielprogramme erzeugt werden, deren Laufzeitverhalten bewert-
und vergleichbar ist.

Das Ziel von PolyAPM liegt nicht in der Erzeugung eines einzelnen, parallelen Pro-
gramms. Damit sich der zusätzliche Aufwand der Methode auszahlt, richtet sich das
Projekt eher auf die Entwicklung und den Vergleich vieler, ähnlicher Variationen eines
parallelen Programms und der vergleichenden Bewertung von Parallelisierungstech-
niken. Mit der Automatisierung von Transformationen kann PolyAPM dazu benutzt
werden, halbautomatische Compilations-Systeme zu bauen.
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Chapter 1

Introduction

Despite some pessimistic forecasts, recent years have still seen a growth in the number of transis-
tors per square inch and hence in computing power according to Moore’s law [Moo03]. But even
with standard workstations matching mainframes from ten years ago, there still exist communities
that need even more number crunching resources. Science and engineering projects analyse exper-
imental data or perform simulations with mathematical models. Request for almost unbounded
processing power exists in fields where continuous systems are modelled with discrete methods.
More recently, large databases, data warehousing, financial statistics and other areas have entered
the market of multi-processing. All these application areas are pursued by organisations with the
financial resources to purchase dedicated parallel computers. But during the last 10 years, the
availability of commodity hardware for multi-processor machines has lowered the entry level price
and thus attracted new user groups.

Even though parallel programming has been done for several decades, it remains difficult.
Compared to sequential programming, the process contains added complexity: independent parts
of algorithms have to be determined and assigned to different processors, intermediate results have
to be communicated among the processors and, in the case of distributed memory machines, input
data has to be distributed before the computation and the results have to be collected after it. All
of these steps have to be done very efficiently as one wants the additional processing power to be
used as much as possible on the original algorithm and not on the parallel overhead.

We present a new approach for programming parallel machines: the programming process
is decomposed into a sequence of transformations. Input and output of these transformations
are programs for abstract parallel machines. A stepwise refinement process is performed to get a
parallel program, and the result of each refinement step can be executed on an abstract machine.

1.1 Parallel Programming

To motivate our work, we present a short overview of the current state of affairs in parallel
programming. Traditionally, the user base of parallel computers has been small. The few and
very expensive machines located at research labs and big corporations were used by specialised
scientists. Usually, they were not computer scientists, but physicists, meteorologists, chemists and
others. As Fortran is still the predominant sequential programming language in these areas, it is
not surprising that its parallel variants are also wide spread.

Fortran was either used with vendor specific libraries or with dedicated compilers for parallel
dialects of the language [Ame92, HPF97]. These libraries tie a program to a specific architecture
of a specific vendor, so that a new hardware generation or a vendor change results in the need
to adapt the code. On the other hand, parallel compilers were just not good in extracting the
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2 Introduction

parallelism and were often restricted to shared memory machines.

The library situation was improved when in the late 80s vendor-independent message passing
libraries were introduced that have a fixed application programmer’s interface (API) for all im-
plementations on different architectures. PVM [G+94] and MPI [DHHW93] are the most widely
spread ones. It is up to the hardware vendors to provide efficient implementations of these stan-
dardised APIs on their platforms.

But even with these libraries, parallel programming is tedious and error-prone. Especially get-
ting the communications right is a complex task. Communication is often done in a send/receive-
manner, i.e., the sending program issues a send library call to transmit a message while at the
same time the receiving program must perform a matching receive call to obtain the message. The
success of the receive may be necessary to proceed with the calculations, so that the receiving call
blocks until the message was received. A small mistake in the program structure can easily lead
to a deadlock where two processors mutually wait on each other. Debugging such deadlocks is
difficult as debuggers only deal with single programs, but to address communication problems the
interaction of a set of programs must be observed.

These difficulties do not exist on shared memory machines, but the common access of all
processors to the memory is a bottleneck that prevents unlimited scaling. While programming
such machines is easier, the degree of parallelism remains limited.

Hardware vendors tried to combine the ease of shared memory programming with scalability
of distributed memory by inventing Non-Uniform Memory Access (NUMA) machines. These
machines are clusters of tightly connected shared memory machines for which a software layer
provides a shared memory programming style for the whole machine. Memory access times differ
depending on whether the data is in local or remote memory, thus the term non-uniform access.

Today, a customer mainly chooses from three architectures: shared memory, distributed mem-
ory and NUMA. Even with shared memory machines without communications, parallel program-
ming remains difficult. If compiler support is required, the choices are either a Fortran or C
Compiler with OpenMP [Boa00] support for shared memory, or a High Performance Fortran
(HPF) [HPF97] compiler for distributed memory. But in practise most parallel programs today
are probably written in Fortran or C with MPI calls.

To sum up, the difficulties when writing a parallel program for a distributed memory machine
are: parallelism has to be identified in the algorithm and adopted to the programming model,
data has to be distributed and recollected and communication of intermediate values has to be
devised. This is all done on top of the normal task of implementing the algorithm itself. In manual
programming, all of the above tasks are often done in one huge step, after which a lot of debugging
is needed until the program is deemed correct. We will now look at methods helping to ease this
process.

1.2 Software Engineering

Structured programming as we know it today originated from several advances made by some
of the most distinguished pioneers of computer science. It became necessary by the increasing
complexity of software during the 1960s. The concept of “levels of abstraction” was introduced by
E.W. Dijkstra to describe a layered system in which upper layers must not access details hidden in
lower layers [Dij68]. The idea is to concentrate just on the concepts necessary for each particular
layer.

D.L. Parnas then pioneered work on information hiding [Par72], which laid the basis for a
further structuring of software development. He later used the term program families for the fact
that software development is rarely linear, but exhibits a tree structure of program variations with
slightly different objectives [Par76].



1.3 Abstract Machines 3

The deconstruction of the programming process into a series of transformations that – step
by step – lead to the final program was coined by N. Wirth as stepwise refinement [Wir71].

Based on the above work, the discipline of software engineering evolved within computer
science to help making programming a craft rather than an art form. Among the later inventions
during the 1970s were abstract data types, the separation of different program parts into modules
and software reuse.

Starting in the 1980s, software engineering focused more on the management of large projects.
Design was formalised by several communities, with a particularly active community that paid
special attention to the application to object-oriented software development [GHJV95].

1.3 Abstract Machines

A well known tool in the development of language implementations is the abstract machine. It
serves as a simplified model of a real machine and can be used to simulate the step-by-step
execution of a program. Depending on the purpose, very few to almost all technical details of a
real machine may be missing. In practise, many compiler implementations use abstract machines
as targets for their intermediate code transformations before generating the target code. S. Diehl,
P. Hartel and P. Sestoft compiled a comprehensive bibliography of abstract machines in various
programming language implementations [DHS00].

The concept of stepwise refinement complements abstract machines in that the refined inter-
mediate programs are still incomplete, yet they need to be written in a form that gives them an
operational semantics. This semantics is provided if the refined programs are designed for dedi-
cated abstract machines. The approach gives rise to a sequence of refinements, where the input
and output of each refinement step is an abstract machine program. At the end of the sequence,
the last abstract machine coincides with a real machine.

1.4 PolyAPM

Our work aims to improve the situation of parallel program development by utilising software
engineering concepts for a manual or semi-automatic transformational program generation with
profiling support for transformation selection. In an ideal world, a user can implement an algorithm
without having to care about hardware details to improve performance. Such details include
the specifics of a parallel machine. Unfortunately, as of today, the techniques for automatic
parallelisation are not capable to get maximum performance for arbitrary programs. Therefore,
we have chosen an approach that organises the transformation of the user’s input program to a
parallel target program by splitting the process into a sequence of transformations. This process
relies on the concept of stepwise refinement to be able to apply many simple transformations
with isolated objectives. Out work supports both, manual and possible automatic application of
transformations.

Using this approach, in one application scenario an experienced programmer just has to deal
with the transformations that cannot yet be automated, thus yielding a semi-automatic compila-
tion. But even if all transformations are done by hand, the entire programming process is simplified
by the division into small steps and the ability to immediately evaluate the transformation effect.
This helps to narrow down errors and avoids the difficulty of an all-in-one-step approach that is
still popular practise.

In case transformations have alternatives, there is the difficult task to determine the best one.
To tackle this problem, we provide help by evaluating the effects of transformations. Recall that
the result of a transformation, the intermediate program, is designed for an abstract machine.
This machine exhibits just as much hardware detail as required by the program. We implement
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interpreters for these machines so that the intermediate programs can in fact be executed with real
input. The profiling data of such program runs can give insight in the effects of a transformation.
Furthermore, we devise a cost model with which one can predict the program’s performance on
a real machine, based on the profiling data of the program’s execution on an abstract machine.
So, instead of writing final target code in one big effort and just using trial and error for code
optimisation, a programmer may use PolyAPM to get a profiling directed transformation sequence
which produces well performing final target code.

1.5 Overview

In Chapter 2, functional programming and the state of the art in parallel programming, together
with some basic definitions, are introduced. Our PolyAPM framework for the development of
parallel programs by stepwise refinement is presented in Chapter 3. It is followed by the detailed
description of an example implementation in Chapter 4. This implementation is subject of two
case studies for 2D finite differences (Chapter 5) and LU decomposition (Chapter 6). Based on
the experiences made in the case studies, we evaluate PolyAPM in Chapter 7. The connection to
related work is made in Chapter 8. The work is concluded in Chapter 9.



Chapter 2

Preliminaries

This chapter presents material that is a prerequisite for understanding the content of the following
chapters. We start with a short presentation of functional programming with particular focus on
the language Haskell (Section 2.1). Then, we present an overview of parallel programming with
an emphasis on the areas that are needed for this work (Section 2.2).

2.1 Haskell as the Implementation Language

This section explains the differences between Haskell and imperative languages and provides a
motivation for using Haskell in this work. A short introduction to Haskell is given so that a reader
unfamiliar with the language is able to follow the code examples in later chapters.

2.1.1 Differences between Imperative Languages and Haskell

The world of programming languages is divided in two main groups: imperative and declarative
languages. They have a different computational model as their base. Imperative languages focus
on how things are computed. They consist of a series of commands that are executed in a certain
order. In contrast to this, declarative languages focus on what is to be computed. They consist
of a set of declarations of no particular order. Inside declarations, references to other declarations
may be made. The execution of a program is a request to evaluate a specific declaration; other
declarations that are needed for this are automatically evaluated.

The imperative model is machine oriented. Programs comprise a sequence of commands and a
collection of data being stored in the computer’s memory. A processor retrieves the commands from
memory to execute them. The programming model was very much influenced by Alan Turing and
his Turing Machines [Tur37]. Today, imperative languages are the most widely used. They have
evolved into several categories ranging from simple procedural languages (Fortran, C, Pascal, etc.)
to object-oriented languages like Smalltalk, C++, Java and C#. Traditionally, these languages
provide comparatively fine-grained control over the machine. Memory for data structures needs to
be allocated and deallocated, memory content may be destructively overwritten and it is clearly
defined how a computation is performed. Modern languages have raised the level of abstraction
in that they disallow direct references to memory (pointers) and use automatic garbage collection
by a run time system. This evolution trades machine control and often efficiency for ease of
programming.

Declarative languages are further divided into logical and functional languages. Haskell is a
functional language. A Haskell program consists of a set of functions, that may call each other.
The programmer does not specify an order in which calculations take place, but rather the function
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6 Preliminaries

in whose result he is interested. A run time system takes care of evaluating all expressions needed
to compute this result. The underlying computational model is the Lambda Calculus [Bar84].

Functions are evaluated and their results may or may not be bound to names. These names
can be used interchangeably with the value they denote. Therefore, the name-value binding

name = expression

is an equation in the mathematical sense. A prerequisite for the interchangeability is the absence
of side-effects. The only result of a function is the returned value. There cannot be any assignment
to a global variable as it happens in imperative languages.

This property can be used in proofs: either side of an expression can be substituted by the
other. This proof technique is called equational reasoning .

There is a correspondence between this binding and the variable assignment in imperative
languages. Assignments have, however, an inherent right to left direction: evaluate the expression
on the right and store the result in the memory location denoted by the name on the left. This
means that in imperative languages, the same name (i.e., memory location) can be re-assigned
a new value by overwriting the old one. Equational reasoning does not work here, as one name
may have several right hand sides and it is not always possible to deduce which one is current.
There are some functional languages that incorporate imperative features [OCa, MTHM97]. In the
functional programming community, they are called impure to contrast them to pure languages
like Haskell.

The next subsection features some Haskell type system properties that enable a smooth inte-
gration of user-defined types. We use these types to represent abstract programs within Haskell.
Interpreters for those programs then use these representations.

For our work, we choose Haskell for several reasons: programs for abstract machines can
be embedded easily into the language using algebraic data types, corresponding interpreters for
user-defined languages are simple to write. We also believe that Haskell is well suited for the
implementation of algorithms of our problem domain. Finally, the suitability of a functional
language for correctness proofs is of importance for developers of new transformations.

2.1.2 Short Introduction to Haskell

Haskell is a purely functional language that was defined by a committee in 1987 and has since
then gone through several revisions until it reached a mature state with Haskell 98 [PJHe99].
Today, most research work which requires a purely functional language is done in Haskell. Several
computer science departments use Haskell as one of the first programming languages to teach the
fundamentals of programming. Haskell is named after the 20th century mathematician Haskell B.
Curry.

All existing implementations are non-commercial and maintained by research groups. The
most prominent one is the Glasgow Haskell Compiler (ghc) [GHC], a compiler and interpreter suite
originally developed by the functional programming group at the University of Glasgow. Today,
the core development takes place at Microsoft Research in Cambridge, UK.

Basic Concepts of Haskell

We now present a short overview of the language concepts of Haskell with a focus on what we need
in our work. Programs are collections of functions, possibly separated into modules. The order
of the functions within a source file does not matter. A striking feature of the Haskell syntax is
its conciseness. Programs tend to be comparatively short with only little syntactic overhead. A
“Hello World” program is a one-liner:

main = putStr "Hello World\n"
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The execution of any Haskell program starts at the main function that calls other functions to
compute the program’s result. String constants are enclosed by quotation marks. The start and
end of a block, such as a function body, are usually marked by the indentation level. Alternatively,
one could use curly brackets like in C, but this is uncommon.

Parameters to functions are just put after the function name, without any parentheses. Func-
tion definitions start with the function name without any special keyword. The following function
solve_eq returns the two roots of the polynomial x 2 + px + q , as defined by

x1/2 = −p
2
±
√

p2

4
− q

without checks whether only one or no roots exist:

solve_eq p q = (-p/2 - root, -p/2 + root)
where root = sqrt(p^2/4 - q)

The function takes two formal parameters, p and q, that are floating point numbers. It returns a
pair of the two solutions in parentheses. To enhance readability, the computation of the square
root is moved outside the pair and given the local name root. The type of this function can be
defined as Float -> Float -> (Float,Float), but Haskell 98 derives a more general type (see
below). A type with one arrows is called a function type and a function whose type has two or more
arrows is called higher-order. The above function type means the following: the first parameter is
of type Float, and if such a Float is provided, the result is again a function. This result function
takes another Float and returns a pair of Floats. This is different from a simple function that
takes and returns pairs of Floats. Its type is (Float,Float) -> (Float,Float).

Mentioning types in source files is not mandatory in Haskell. The type checker automatically
infers the type of every expression in the program. However, if a function is augmented with a type
as the programmer intends it to be, the type checker compares inferred and provided types and
generates an error if the two do not match. This way programming errors can be located better.
If the type is omitted and, due to a mistake, different from the intended one, but still a legal
Haskell type, then possibly the application of the faulty function somewhere else in the program
will result in a type error. However, the error will be displayed at the function application, and not
the incorrect function definition. Therefore it is good practise to provide types for all functions.

A type expression may contain type variables that are placeholders for other types. The set
of types that a particular variable may assume can be restricted by contexts. Functions with type
variables in their types are called polymorphic. An example is the function isZero:

isZero a = if a==0 then True else False

Its type is

isZero :: (Num a) => a -> Bool

which means that the type of the parameter can be any type (type variable a), as long as the
context Num a is satisfied. This context restricts the types that a can assume to numeric types,
such as integers and floating point numbers. It is inferred at the comparison to the numeric
constant 0. With a similar argument, the actual type of the above function solve_eq is:

solve_eq :: (Floating a) => a -> a -> (a, a)

Lists

An important data structure in functional languages is the list, an ordered collection of data items
of the same type. In Haskell, lists elements are separated by commas and enclosed by square
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brackets. Many standard functions on lists are higher-order. An example is the function map that
applies a function to each element of a list, yielding a new list:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x):map f xs

The function f may change the list elements’ type, but the type variables a and b may also stand
for the same type. map is polymorphic: it works on lists of any type. The above definition is also
an example of pattern matching . If a list is provided as a parameter, then empty and non-empty
lists often need to be distinguished. This can be done by providing several cases of the function,
each with a different pattern on the discriminating parameter. Here, the pattern [] in the first
definition matches exactly the empty list, the pattern x:xs matches only and all non-empty lists.
To build patterns, we use type constructors of the corresponding type. The list has two of them,
which are [] (pronounced nil) for the empty list, and : (pronounced cons) for an operator that
adds one new element in front of a given list. This is why x:xs matches only non-empty lists:
whatever the list xs is (it may or may not be empty), the cons-part x: means that at least one
element has been added to the list, so the matched list cannot be empty.

An example of the use of map is the following application to an integer-valued list, yielding a
boolean list:

> map isZero [2,3,-4,0,2,0]
[False,False,False,True,False,True]

Lines starting with a > indicate user input in an interactive session, followed by the interpreter’s
result. A convenient way to construct lists is the list comprehension. It looks like the mathematical
set notation, starting with a general expression to generate entries and, separated by a vertical bar,
one or more generators and/or guards. In a generator x <- xs, the operator <- draws element by
element from the list xs, naming them x each time, and generating one resulting element for each
x. Boolean guards filter generated elements, and several generators construct cartesian products
of their input lists. The following examples demonstrates the conciseness of this notation:

> [ x+5 | x <- [1,2,3,4] ]
[6,7,8,9]

> [ x+5 | x <- [1,2,3,4], even x ]
[7,9]

> [ (x,y) | x <- [1,2,3], y <- [9,8,7] ]
[(1,9),(1,8),(1,7),(2,9),(2,8),(2,7),(3,9),(3,8),(3,7)]

User-Defined Data Types

An important concept is the definition of new data types. For our work, two kinds are important:
type synonyms and algebraic data types. Synonyms are defined with the keyword type and are
used as a shorthand for more complex types. The definition

type Customer = (String,String,String,Int,Int)

allows us to use the type name Customer instead of the long tuple type. However, no new type is
introduced; the two types can be used interchangeably.

If the discrimination of a new type is needed, one can use algebraic data types. The keyword
data is followed by the new type name and optional type variables. The type is defined by one or
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several constructors, that may each have several and possibly different parameters. As a simple
example, we define an enumeration type of weekdays:

data Day =
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

There are seven different constructors, each without any parameter. Each constructor is an element
of type Day, and there are no more, so that together they construct the type Day.

The constructors generate all elements of a type. Built-in types can have infinitely many
constructors, such as the arbitrary-length integer type. Every integer number is a constructor of
this type. As an example of constructors with parameters, we can implement a user-defined list
type:

data Mylist a = EmptyL
| Cons a (Mylist a)

The type variable a is the polymorphic type of the list elements. A Mylist of integers has type
Mylist Int. The difference to the built-in list is just of a syntactical nature. Haskell lists have a
two symbol type name [.], and the second constructor : is infix in contrast to the prefix Cons.

Type Classes

The functions solve_eq and isZero contain type class restrictions in their types. A type class
consists of a set of types that are guaranteed to provide an implementation for certain functions.
If a type is a member of that class, we know that we can use a class function on expressions of
this type. The predefined Haskell class Num is defined in the standard library (prelude) like this:

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

This definition states several things. Any type a that is an instance of Num must also be an instance
of Eq and Show, which means that equality and conversion to strings must be defined on it. The
class definition also provides types for seven functions that have to be defined for a type in Num.
All predefined numeric Haskell types such as Int, Double, Float and Complex are instances of
Num. If a new type is defined by a user, it can also be made an instance of Num and therefore use
the overloaded operators +, -, * and so on. There is, however, no mechanism to ensure that the
semantics of the new + function has anything to do with addition. Instance declarations are made
using the keyword instance. For some user-defined numeric type MyNum, it starts like this:

instance Num MyNum where
a + b = ...
...

The instance definition provides implementations of the class functions. This is done by overloading
the operators and functions. By inspecting the types of the function parameters, the run time
system decides which of the overloaded functions it needs to call.

Arrays and LArrays

Although lists play a central role in functional languages, scientific algorithms usually use indexed
data for which the array is the most suitable representation. Haskell provides arrays of arbitrary
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element types. The type of the indices can be any ordered type. This general array implementation
is much more flexible than, say, an array in C. Arrays in Haskell are initialised and updated with
association lists, i.e., lists of index-value pairs. The index domain is always rectangular and its
extent is defined by the upper left and the lower right element. The following example creates an
integer array with both indices ranging from 0 to 2, but only two elements are defined.

a = array ((0,0),(2,2)) [((0,0),3), ((0,1),5)]

The exclamation mark is the read operator. A read access of a yet undefined element (e.g.,
a!(0,2)) results in a run time error. A convenient way to define regular arrays is by using list
comprehensions:

b = array ((0,0),(2,2)) [((x,y),x+y) | x <- [0..2], y <- [0..2]]

As arrays are lazy data structures in Haskell, self references in the initial definition are allowed as
long as the data dependences between the array elements can be solved (cyclic references lead to
a run time error):

c = array ((0,5)) ((0,15):[(x, 2*c!((x+1) ‘mod‘ 6)) | x <- [1..5]])

The value of c is:

> c
array (0,5) [(0,15),(1,480),(2,240),(3,120),(4,60),(5,30)]

Updates of arrays are done by using the // operator on an array and an association list. The
expression c // [(0,100)] yields:

> c // [(0,100)]
array (0,5) [(0,100),(1,480),(2,240),(3,120),(4,60),(5,30)]

The standard Haskell arrays are multi-threaded, so that after an update the old version of the
array can still be used. Consider the following example:

let a = array ((0,0),(2,2)) [((0,0),3), ((0,1),5)]
b = a // [((0,0),5)]

in a!(0,0) + b!(0,0)

Two arrays exist here. The updated array a gets a new name, while the old, not-updated a
still exists. A consequence is that every array update requires the creation of a copy that differs
from the old array in just this one element. Even if the use is single-threaded (which is the most
common case), the Haskell system still creates a copy. This makes Haskell programs with lots
of array updates memory and time consuming. In this thesis, we will use Haskell to implement
abstract machines and simulate abstract programs on them. The inefficiency of standard array
operations reduces the manageable problem size significantly, but there are ways to overcome this.

One solution is to use arrays within a state transformer monad. An expression of a monadic
type contains a sequence of sub-expressions that have a guaranteed linear evaluation order [Tho99].
Some applications, e.g., input/output, require such an guaranteed order, so that their correspond-
ing expressions are put in a monad. Array accesses inside a monad are necessarily single-threaded,
although each access itself may still be lazy. A compiler optimisation may recognise the single-
threadedness and perform the array updates efficiently in-place, i.e., by overwriting the old value
instead of the standard Haskell copy-update. However, we feel that the monadic programming
style would make the APM interpreters and programs difficult to read, as they do not look like
Haskell programs anymore.
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As an alternative, we use the module LArray [Gro03] that implements linear arrays with
single-threaded semantics and in-place updates while retaining the standard Haskell syntax. The
only drawback of this module is that the compiler cannot check the single-threaded use – if a
program using LArrays is in fact multi-threaded, the results are wrong. But in our realm of
scientific algorithms such a case never happens. Throughout the APM interpreters and programs
in this work, we use the LArray module.

2.2 Parallel Programming

This section introduces some basic concepts of parallel programming. We first describe the appli-
cation domains in which parallel computing is used. Then we present standard techniques for loop
parallelisation, which play a crucial role in the area of automatic parallelisation, before proceeding
to a more advanced technique that we will be using in this thesis. Finally we introduce some
concepts for measuring the performance of parallel programs.

2.2.1 Problem Domains for Parallel Programming

The classic domain for parallel programming is scientific computing. This is where very complex
computations on large data sets are needed. Be it physics, chemistry or engineering, they all need
mathematical algorithms. Most of these algorithms work on matrices that are implemented as
arrays. New matrices are computed and matrix elements are updated. In both cases, the algorithm
has to iterate over the elements, which is done by a loop nest in an imperative program. Such
programs spend the majority of their run time within these loop nests. Thus, loop parallelisation
is an important area of research.

Recently, other domains show an interest in parallel computing. Finance companies and other
database users have large processing needs. However, database operations are based on a different
class of algorithms that we do not deal with in our work.

The advent of parallel clusters made of commodity hardware enables users with less money to
use parallel processing power. However, cluster applications usually use coarse-grained parallelism
on the process or thread level. These applications often employ the multi-threaded programming
paradigm for concurrency reasons so that the performance increase on a cluster is not much more
than a welcome side-effect. Therefore, we will not concentrate on this area but on the parallel
program generation for scientific algorithms.

2.2.2 General Loop Parallelisation Techniques

Most parallel programs today are still written in Fortran or C, so these languages are in the centre
of research in parallel programming.

Compiler optimisations have used loop restructuring transformations for a long time. It turns
out that some of these transformations are also useful for turning a sequential loop (nest) into a
parallel one. In the context of a loop nest, parallelism means that the iterations of one or several
loop levels are independent and can be computed on different processors. The problem is either
to identify such loops or, if none are found, to try to transform the loop nest into an equivalent
one that does have independent loops. Equivalence is meant semantically – all transformations
must preserve the input/output behaviour of the code. We present briefly the basics of loop
restructurings.

A central concept is the data dependence. Two statements depend on each other if their
execution in a reverse order leads to a different effect. However, the concept of a dependence
between statement is too coarse-grained. A loop nest with only one statements in the body may
have dependences between some of its iterations. Therefore we define dependences on operations,
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which are statements outside of loops or statement iterations within a loop. Three kinds of data
dependences are distinguished. Consider operation O1, followed by O2. If they access the same
memory location and at least one of them performs a write, there is a dependence. The operations
are said to be

flow dependent if O2 reads what O1 wrote,

anti dependent if O2 overwrites what O1 has previously read, or

output dependent if O1 and O2 both write.

In these cases, O1 and O2 cannot be interchanged without possibly changing the semantics of the
program. There is a simple method to eliminate many dependences. A variable or array is said
to be single assignment if it is only written once. Every program can be transformed to a single-
assignment variant by adding an extra dimension to each variable to hold the different values. If
a program consists only of single assignment data structures, only the flow dependences remain
as no overwrites occur. Haskell programs are always single-assignment.

Dependences have to be direct. If there is a flow dependence between O1 and O2, and another
one between O2 and O3, we do not consider the dependence between O1 and O3. However, all
dependences of a program’s execution comprise a partial order. If there is more than one strongly
connected component within this partial order, then the loop nest can be restructured so that
there is at least one parallel loop.

To get an idea of how parallelism can be exposed in loops, we present some of the more
frequently used techniques.

Loop Fusion combines two consecutive loop nests. It reduces the loop overhead and may increase
the amount of parallelism if at least one resulting loop is parallel.

Loop Coalescing combines two or more loop levels into one, thus reducing the number of loops
in a nest. If the newly created loop is parallel, the parallelism is increased.

Loop Interchange changes the order of loops within a loop nest. Some loops may not affect the
set of dependences so that they can be freely moved around within the loop nest. It is often
favourable to have such loops on the outside and declare them as parallel.

Loop Skewing is a transformation of the loop bounds to establish parallelism when none of the
existing loops is parallel. Two or more loops span a multi-dimensional index space. Usu-
ally, each loop enumerates one dimension. Instead, a skewed loop facilitates a wavefront of
computations through the index space. The computations within the wavefront are inde-
pendent so that they can be enumerated by a parallel loop. This is a special case of the
transformation methods based on polytope model that we present in the next subsection.

Other loop transformations include loop shrinking, loop unrolling and loop distribution. A
more detailed account of this can be found elsewhere [Wol95].

2.2.3 Loop Parallelisation in the Polytope Model

Each loop iteration can be identified by the values of all surrounding loop variables. If there
are n such loops, an n-tuple comprising these values represents a point in Zn . The entire loop
iteration is a subset of Zn . If the bounds of all loops contain only linear expressions of constants
and surrounding loop variables, the iteration set of the loop, the index space, is an intersection of
Zn with a polytope. The left side of Figure 2.1 shows a loop nest with two loops and, below it,
the derived iteration space for n = 3. Each point denotes one iteration. Each axis relates to a
loop level. The arrows between the points denote a data dependence between statements of the
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for i := 0 to n do
for j := 0 to i + 2 do

A(i , j ) := A(i − 1, j )
+A(i , j − 1)

end
end

for t := 0 to 2n + 2 do
forall p := max(0, t−n) to min(t , bt/2c+ 1) do

A(t−p, p) := A(t−p−1, p)
+A(t−p, p−1)

end
end
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Figure 2.1: Parallelisation in the Polytope Model

corresponding iterations. Note that there are dependences parallel to each axis so that no loop
can be made parallel. However, if we think of a wavefront starting in the lower left at (0, 0), going
to the upper right as shown by the dotted line, then all iterations on the front are independent.

In order to parallelise the loop nest, the task is to find a coordinate transformation for the
index space, resulting in the target space, such that the iterations along at least one axis have no
dependences between them. Such a loop can be made parallel. This coordinate transformation
is called a space-time mapping and is applied to all expressions in the loop bounds and in the
body that contain the original loop variables. The lower right of Figure 2.1 shows the index space
after the coordinate transformation. The transformation yields a time dimensions t and a space
dimension p instead of i and j . The time dimension enumerates the advancing front, the space
dimension all iterations on the front.

Note that for each time value, the iterations that follow the p dimension vertically have no
dependence between them. Thus, a loop enumerating p could be done in parallel. From the
target space we can derive the target program on the upper right. The sequential t loop needs
only 8 iterations for n = 3, while the source program needs 18 sequential iterations. A detailed
description of this parallelisation scheme can be found elsewhere [Len93].

The characteristics of a program fragment suitable for treatment with a paralleliser based on
the polytope model are:

• The program is a loop nest whose body consists of array assignments.

• Loop bounds and array index expressions are linear and may contain other variables which
are constant within the loop nest.

• Other than assignments, only conditionals and procedure calls are analysed in the loop body.
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In the parallelisation, the latter are treated as read and write accesses to all parameters.

The determination of the parallelism inherent in the loop nest and the generation of seman-
tically equivalent, parallel code proceed as follows:

• Data dependences are calculated. They associate accesses of different operations on the same
array element. If such dependences exist, they impose a partial ordering on the operations.

• The task of “scheduling” is to find a function mapping all operations to points in time. This
is also called the time mapping. The optimisation aspect is to map every operation to the
earliest possible time without violating the data dependences. If there is any parallelism in
the program, there will be times with more than one operation scheduled to.

• The dual mapping, the “allocation”, assigns the operations to specific processing elements
(PE). This is called the space mapping. One goal is to optimise data locality on the PEs,
thus minimising communication.

• A code generation procedure performs a program transformation of the original source code
into parallel target code by using the space-time mapping.

Intuitively speaking, the index space of the original loop nest is skewed by means of a coordi-
nate transformation in such a way that there exist some dimensions along which all iterations are
independent. These dimensions may be enumerated by a parallel loop, all others are enumerated
by a sequential loop. Of course, a skewing must not produce dependences going backwards in
time.

2.2.4 Concepts for Performance Measurement of Parallel Programs

Parallel programming is about speed. The question is always how much faster a computation gets
if we use a parallel computer. Run time measurements (benchmarks) yield performance figures to
judge the effect of the parallelisation. For the analysis of the benchmark results, we need some
definitions as can be found in any standard text book on parallel programming (e.g., see [Fos95]).

In this section, we write Ts as the run time of the best sequential algorithm on one processor,
T1 for the run time of a parallel algorithm on one processor, and Tp for the run time of a parallel
algorithm on p processors.

A speedup is a factor by which one program’s execution time is faster than another’s. If
the program is indeed slower, i.e., the speedup is less than 1, people sometimes call it a negative
speedup. If the speedup on p processors is equal to p, it is called a linear speedup. Most often, this
is the theoretical limit, as one wouldn’t expect that p processors can be more than p times faster
than one processor. However, super-linear speedups exist in cases where cache and buffer effects
play a major role.

Relative Speedup The relative speedup on p processors is defined as follows:

Srel =
T1

Tp

It compares the parallel algorithm on 1 and p processors and, thus, measures the scalability
of the parallel algorithm. It is not, however, an absolute measure of the quality of the
algorithm. If T1 and Tp are very big, the relative speedup may still be good as long as the
algorithm scales well.
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Absolute Speedup This is the real world measure. It compares the parallel algorithm on p
processors with the sequential algorithm and is defined as:

Sabs =
Ts

Tp

It answers the question: if a sequential algorithm is too slow and a corresponding parallel
algorithm is run on p processors, how much faster would it get? As Ts ≤ T1 holds, we have:
Sabs ≤ Srel .

Efficiency Up to a certain point, the more processors are used, the greater the speedup. However,
the speedup increase may slow down, i.e., additional processors have less impact on the
speedup. Intuitively, the efficiency goes down. Therefore, we define the efficiency as the
relation of a speedup to the number of processors:

Eabs =
T1

p ∗ Tp
=

Sabs

p

The efficiency is often presented as a percent value.
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Chapter 3

The PolyAPM Framework for the
Development of Parallel Programs

In this chapter we describe our approach to the structured development of parallel programs. The
idea of stepwise refinement of specifications has existed for a long time in computer science. Each
step in a refinement process results in a new program version, thus the whole process leads to a
sequence of programs. Graphs (usually trees) are used to present the combination of alternative
sequences of design decisions. If we look at the various intermediate specifications that exist
between all transformations of the parallelisation process, we observe an increasing degree of
concreteness while we proceed. Thus, the abstract specification is eventually transformed into a
binary for a target machine. Consider the intermediate steps: on our descent along one path down
the tree, we pick up more and more properties of the target architecture. But this also means that,
most likely, no existing machine matches the level of abstraction of any intermediate specification.
If we employ an abstract machine model that is just concrete enough to cover all the details of our
intermediate program, we can have it implemented in software and even run our programs on it.

3.1 Abstract Machines and Stepwise Refinement

Abstract machines are being used when a programming model reflects only a subset of a given
set of machine characteristics. This reduces the complexity of the machine and thereby also the
complexity of the programming process. This way, programs for abstract machines are simpler to
write and to reason about, and furthermore the simplified operational behaviour enables simple
yet effective cost models.

In our problem domain, the generation of parallel programs, one frequently employs program
transformations to introduce new program characteristics or optimisations. These transformations
use source code in a suitable representation as input and output. With the use of abstract machines
and their structurally simple programs, these transformations become easier as they just have to
deal with relevant machine characteristics. Lower level details – like code that is required to make
the program executable on a real machine – are factored out as long as possible. Eventually a
program will be run on a real machine, so that these details have to be filled in. But until that is
necessary, the program generation process benefits from the higher abstraction level during most
of its phases.

The above observations motivate the use of abstract machines for any program transforma-
tion approach. In our work, we employ the stepwise refinement method of program generation.
Refining a program can be viewed as making it more concrete, less abstract. Therefore, as stepwise
refinement is a program transformation approach, it matches ideally with the abstract machine
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model. The refined programs are designed for a particular abstract machine and each machine
adds only so much more details as the refinement step to it requires.

3.2 Abstract Parallel Machines

Compared to sequential programming, writing a parallel program requires additional work to be
done. Not only must one deal with implementing the algorithm in a programming language,
additionally things like identifying and placing independent operations, distributing data and im-
proving performance become important. These new concerns are on an operational level that is
often more low-level than the actual program. In addition, there have been many approaches on
how to separate them from the program in order to improve the readability and ease of program-
ming.

Many abstract machine models for parallel programming have been proposed [DD95]. Our
approach is to use the observations from the previous section and use stepwise refinement as a
programming model on Abstract Parallel Machines (short: APMs) following the ideas of O’Don-
nell/Rünger [OR97]. They describe APMs as single program multiple data-style (SPMD) dis-
tributed memory machines. Although the definition itself is purely operational, they have also
presented an I/O-specification in a functional language. The programs for these machines consist
of functional compositions of parallel operations (ParOps). The APM interpreters are implemented
and the APM programs are embedded in a functional language, so that APM programs can be
interpreted within one language realm.

Several key properties of the APM approach support its feasibility:

• Due to the simplicity with which new data types can be defined and passed around using
higher-order functions, functional languages are well suited for writing interpreters.

• Together with input, the interpreter for an APM and the APM program are executable, so
that the validity of the APM program can be tested.

• APM programs as data types can be handled easily, thus supporting program transformation
techniques.

• Semantic properties of pure functional languages like Haskell [PJHe99] enable reasoning
techniques that make verification proofs of program transformations comparatively simple
(e.g. equational reasoning).

The main difference between APMs and most other parallel abstract machines is the ease of
APMs to be implemented in software in order to execute their programs, whereas other machines
usually serve a theoretical purpose (e.g., cost models).

3.3 PolyAPM

The purpose of PolyAPM is to provide a framework for a stepwise refinement approach to parallel
programming. Focus is laid upon dividing the transformation process into small chunks, evaluation
and executability of intermediate programs, mixed manual and automatic transformations as well
as general support to explore a particular problem domain.

To meet these goals we regard intermediate programs to be executable on an abstract machine.
These machines have to match the program’s level of abstraction. Thus we need abstract parallel
machines whose capabilities may be changed. The APMs as presented by O’Donnell and Rünger
may be adapted at two different places: the computation function that effectively represents the
APM program and the communication function representing the network wiring. Other than
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that, no hardware detail varies at different levels of abstraction. In order to match the needs of
stepwise refinement in a program transformation approach, we would like the programs in the
transformation process to run on machines that exhibit just enough hardware detail to cover the
program’s needs, but not more. Therefore we have designed a sequence of APMs that accompany
the sequence of transformed programs. In general, there are fewer APMs than programs, since
not every transformation introduces new machine requirements.

3.3.1 Machine Model

The PolyAPM abstract machines have a one-dimensional processor field of arbitrary, but finite size
n. In a distributed memory setting, each processor has unbounded local memory and is connected
to a buffering network with unspecified topology. In a shared memory setting, there is no local
memory, but possibly a communication network. As to why, see Section 3.3.4. All processors run
the same program in SPMD style. The structure of the programs is a loop nest of at least two
outermost, perfectly nested loops. Possible inner loops may not be perfectly nested. Of the two
outer loops, exactly one must be tagged sequential and the other parallel. If the outer loop is
parallel, we call the program asynchronous, otherwise synchronous.

In the terminology of the polytope model, these machine properties restrict us to a one-
dimensional allocation in both cases. In the synchronous case we need a one-dimensional schedule
unless the inner sequential loops do not carry any dependences and may be moved inside the
parallel loop. It is important to note that the machine model defines a communication phase at
the end of each time step, i.e., after each iteration of the outermost sequential loop. There is
no communication possible inside the inner loops. Concerning dimensionality, for all problems
a one-dimensional allocation can be found. One-dimensional schedules are only guaranteed for
programs with linear dependences. But loops derived from multi-dimensional schedules can al-
ways be combined into one loop if one accepts computationally complex loop bounds and strides.
Therefore, we usually restrict ourselves to one dimension on both cases without losing too much
generality.

The parallel loop that enumerates processors is eventually replaced in each program instance
by a variable assignment of the corresponding processor number. The sequential time loop pro-
vides a global clock enumerating time steps. Within such a time step, first a computation takes
place, i.e., everything within the time loop is executed, and second inter-processor communica-
tions are performed. Such a time step is similar to BSP’s superstep [SHM97]. In fact, in the
synchronous execution mode we require a barrier synchronisation after the communication phase.
The operations of the same logical time step in the asynchronous execution mode may not happen
at the same wall clock time, yet they correspond. A limited synchronisation is done by the message
exchange, so that no global barrier is necessary.

Note that the communication phase is optional, it only exists if a particular APM is designed
for it (e.g., in a distributed memory environment).

3.3.2 Structuring APMs into Graphs

One crucial aspect of parallel programming is the need for design decisions. A transformation
process may not be single-threaded, meaning that at some point several alternative transformations
are possible. This leads directly to a tree of transformed programs, but in general we observe a
directed acyclic graph structure. This is because two or more subsequent transformations may
be completely orthogonal and therefore commutative, so that after all have been performed, the
resulting programs are identical in all applied orders. Thus, the process of deriving a target
program is like traversing the graph of design decisions, the PolyAPM Decision Graph (PDG).
Each node in this graph is a transformed program that runs on a dedicated APM. An example
of such a graph is depicted in Figure 3.1. It will be discussed in detail in subsequent sections.
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Figure 3.1: PolyAPM Decision Graph (PDG), here only a sub-tree

These accompanying APMs create a graph themselves, the PolyAPM Machine Graph (PMG), in
which each node corresponds to an APM and the arcs denote an “is being refined to” relation. As
noted above, the PMG has usually fewer nodes than the corresponding PDG, so that there exists
a many-to-one mapping of programs to APMs.

To use the PolyAPM framework for program construction it is necessary to identify the possible
transformations within the compilation process. These transformations are combined into a PDG.
They have then to be examined as to whether they introduce additional machine requirements,
so that for each transformation an accompanying abstract machine is defined. As not every
transformation introduces new requirements, there is not always the need to define a new machine.
The structure of the transformations leads to a hierarchy of APMs that can be implemented in
software. It presents the basis for the subsequent programming process of APM programs.

The above framework comprises a software engineering approach to split the process of writ-
ing/compiling a program into a sequence of transformations, where each transformed program is
designed for an abstract machine. Thus, nothing so far is specific for writing parallel programs
as the abstract machine could just as well be sequential. This approach may even have merits
for such a general application domain, but we specialise on the development of parallel programs
where we benefit greatly from some properties of this approach.

3.3.3 Development Process

In automatic parallelisation the view is to tackle the difficulties of writing parallel programs by let-
ting the programmer write a conventional sequential program and leaving the parallelisation effort
to a compiler. This approach requires sophisticated program analysis techniques. The PolyAPM
approach provides an alternative framework when not all transformations can be automated.

There are some problems to be aware of while considering PolyAPM:

1. the experience of a seasoned programmer may not be turned easily into good program trans-
formations,

2. there may be no systematic way to determine the most suitable transformation among a set
of alternatives,

3. some desirable transformations may easily become computationally intractable (exponential
or worse) and

4. the formulation of a problem in a sequential imperative way may introduce algorithmically
unnecessary data dependences that are difficult to remove and that reduce the degree of
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determinable parallelism. See Chapter 6 for an example of this.

While the first and the third problem lie outside the scope of PolyAPM, we strive to provide
help for the second and the fourth one. PolyAPM enables a semi-automatic parallel programming
approach in which user input will be used where experience cannot be replaced by an algorithm.
Since we break down the entire compilation into several phases, a mix of automated and manual
transformations and decisions is possible. This may lead to the iterative development of a complete
compiler if all transformations are eventually automated. In this case, PolyAPM would not be
so much of an alternative, but a construction method for an automatic parallelising compiler.
However, because of the four problems which we have just listed, one may not want to automate
some transformations. The main goal of PolyAPM is to provide a manual or semi-automatic
program generation environment.

As to the fourth problem, the difficulties possibly introduced by an imperative language are
avoided by using a declarative language for specifying the algorithm. In declarative programs,
there is not necessarily a requirement of a sequential order of the operations and no mention
of parallelism. The declarations merely state what is to be computed, rather than how. We
argue that this is the easiest of all choices for the programmer, especially as there is a striking
similarity between the way mathematical formulae (an important domain in parallel programming)
are stated and the way they are being implemented in a functional language. See Section 2.1.2
for an example of such a similarity. We employ the functional language Haskell for this purpose.
However, this choice is independent of the languages selected for the abstract machine programs.
In fact, we show that the APM programs, although embedded in Haskell, have an imperative
control structure. This is no contradiction to the above, as we distinguish between the declarative
specification program (before PolyAPM) and the APM programs (part of PolyAPM).

The overall picture describing how parallel programs are developed in PolyAPM is depicted
in Figure 3.2. The task is to implement a mathematical algorithm and have it running on a
parallel computer. First, the problem is implemented without thoughts of parallelism to relieve
the programmer of this additional burden. Then a transformation process is started to parallelise
this program. Thus, the declarative program has to be parallelised to match the first and most
abstract parallel machine. From there the PolyAPM framework is used to select and perform
optimising code transformation until a sufficient level of concreteness is reached. The last APM
should be quite similar to the real machine to be used, so that the last transformation from a
PolyAPM program to a program for a real machine is as easy as possible. This is important as the
last transformation is not formalised.
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In the following, we describe this process in more detail. First, recall the PDG of Figure
3.1. The transformations depicted in it have been motivated by our experiences with the polytope
model for parallelisation [Len93] within the LooPo project [GL96], but PolyAPM is not restricted
to this model.

The program development process is divided into several phases as follows:

1. Implementation of a problem specification in standard (sequential) Haskell as a source pro-
gram, which serves as the specification. Note that we avoid talking about sequential Haskell
programs, as they have a declarative semantics and do not impose any sequential evaluation
order. We have stated before that the two main reasons for using Haskell are its suitability for
implementing mathematical algorithms and the smooth integration of APM programs and
APM interpreters within one language. However, these reasons make the choice of Haskell
only highly suggestive, but not a requirement. We point out above that it is also possible to
write the source program in an imperative language.

2. Initial parallelisation of the sequential program. This requires the analysis of the problem to
identify independent computations that can be computed in parallel – a process which might
be done manually, or with the help of a parallelisation tool (as is the case in our example in
Section 4). We have used LooPo for this purpose. In any case, the result of the parallelisation
should map each computation to a virtual processor and to a logical point in time (see Section
2.2.3). The granularity of the computation is the choice of the programmer, as the PolyAPM
framework will maintain this granularity throughout the process. As the source program
will most likely contain a repetitive construct, e.g., recursion or a comprehension, it is often
sensible to perform the parallelisation on these and keep the inner computations of the
recursion/comprehension atomic.

Without loss of generality, we assume a one-dimensional processor field so that we have
the basic computations, their allocation in space (i.e., the processor) and their scheduled
computation time. With these components, the problem has a natural expression as a
loop program with two loops: one processor loop which is parallel, one time loop which is
sequential, and the loop body which is our atomic computation. Thus, we have either a
synchronous or an asynchronous program.

This motivates the corresponding branches of the PDG in Figure 3.1. The right branch for
classical tiling is a special case in which parallelisation is not the first step.

3. Based on the parallelisation, the source program is transformed into an APM program, which
resembles an imperative loop nest with at least two loops levels (there may be additional
loops in the source program’s core computation). The program is subject to several trans-
formations to adapt it to other APMs. This is a central aspect of PolyAPM and is discussed
in more detail in Section 3.3.4.

4. The final result of the compilation, the target program, has to be executable on a parallel
machine. Therefore, the last APM program is transformed into a target language for the
parallel machine. It is important that the target language exhibits at least as much control as
the last APM, so that no optimisation of any APM program transformation is lost. Suitable
target languages, among others, are C+MPI and C+BSP.

3.3.4 Abstract Machines and their Programs

The APMs form a tree, as shown in Figure 3.3. There is a many-to-one mapping from the programs
to APMs. An APM program must reflect the design characteristics of the corresponding APM,
e.g., in case of a synchronous program, a loop nest with an outer sequential and an inner parallel
loop and a loop body, which may contain more loops. This separates the loops which represent
the parallel execution from the inner sequential loops to be executed on the processors. Here,
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Figure 3.3: PolyAPM Machine Tree

we deal only with a one-dimensional allocation. The model could be extended to incorporate
multi-dimensional allocations.

The synchronous program is subject to a sequence of source-to-source program transforma-
tions. Each adds another machine characteristic or optimises a feature needed for execution on
a real parallel machine. Assuming that the original parallelisation was done for a number p of
processors whose value depends on the input, the p processors’ workload has to be distributed on
rp real processors of the target machine. This transformation is called processor tiling, in contrast
to tiling techniques with other purposes. In this work, the term workload denotes the amount
of computational work that is scheduled on a processor. Depending on the context, workload is
measured in number of operations or in computing time.

The next two transformations complete the transition to a distributed memory architecture
with communications. This has been deliberately divided into two transformations. First, while
still maintaining a shared memory, we generate communication directives. As a second step, the
memory is distributed, introducing the necessity of communication. The reason for this unusual
separation is twofold. One of the aims of PolyAPM is to make each transformation as simple
as possible, and both communication generation and memory distribution can get complicated.
Furthermore, if we applied both transformations in one step and the resulting APM program had
an error, it would be more difficult than necessary to isolate the reason for this error. When
interpreting an APM program that communicates even in the presence of shared memory, the
communications perform identity operations on the shared memory cells. The APM interpreter
checks for this identity and issues a warning in case of a mismatch. This way, wrong communi-
cations are detected already after the first step, while the effect of missing communications shows
up only after the distribution of memory.

The transformed program runs on an APM capable of communications, the SynCommAPM,
which provides a message queue and a message delivery system. We assume that each processor
stores data in local memory by the owner computes rule. This placement strategy distributes
the global data completely into the local memories of all processors, and each data item is stored
only on the processor where it was computed (i.e., the owner). Therefore, data items computed
elsewhere have to be communicated, either by point-to-point communication or by collective op-
erations. If we were to employ a different storage management rule, this transformation would
have to be adapted accordingly.

The “unnecessary” communications of the SynCommAPM program become crucial when the
memory is being distributed for the SynDMAPM program. This branch of the tree uses the owner
computes rule, making it easy to determine which parts of the global data space are actually
necessary to keep in local memory. That completes the minimal set of transformations needed for
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a synchronous loop program on a distributed-memory machine. The last transformation generates
so-called target code, i.e., it transforms the SynDMAPM program into non-APM source code that
is compilable on the target machine. Possible alternatives include C+MPI and C+BSP.

As outlined in Figure 3.1, transformation sequences other than the one for synchronous paral-
lelism are possible. In addition to the corresponding sequence for asynchronous parallelism, Figure
3.1 contains a branch for a typical sequence as employed by the tiling community [Wol89].

3.4 A Cost Model for PolyAPM

In the previous sections we have presented how the compilation process is broken up into a se-
quence of transformations that are viewed as source-to-source transformations of abstract machine
programs. If there exist alternatives for a particular transformation, a choice has to be made. Help
for such a decision may be given by a cost model, which is usually a function of the number of
processors and the input size, and whose values correspond to the expected execution times of the
program.

For PolyAPM we have devised a cost model that is applicable to any abstract program, so
that the anticipated performance can be used to judge the last transformation. As the programs
become more concrete during the transformation process, their cost should correspond more closely
to the target program’s execution time. Since we do not impose severe regularity restrictions on
PolyAPM programs (such as linear dependences), the communication structure may not be regular
or may even be dynamically changing. This presents a problem with some cost models that require
communication properties to be inferred from the program code. Therefore, we utilise the APM
interpreters which can run the abstract program and simultaneously collect profiling data of the
run. This data is used to derive a cost value.

There is one inherent problem with such a cost model for an abstract architecture: it requires
some values that can only have enough credibility if measured on a real machine, or at least if
motivated by experiences made with real machines. Yet, the cost model is for an abstract machine
with the real machine possibly not yet decided upon.

It can be part of the PolyAPM programming process to find the best suitable architecture for
a given problem. So which machine parameters does one use in the cost formula? The answer is to
vary machine parameters in the cost formula so that transformation impacts on different machines
can be observed alternatively. This introduces even more choices into the PDG. Of course, if the
target architecture is already fixed, then the machine parameters remain constant and the model
benefits from better accuracy of the prediction.

If different machine parameters favour different transformations and one of them is selected,
then further down the derivation tree the selected machine has to remain fixed.

The general idea of obtaining the cost model formula is quite similar to BSP. Like super-
steps, we have a sequence of time steps, each consisting of a computation phase and a possible
communication phase. The existence of the latter depends on whether the particular APM is per-
forming communications. This time step model applies to the synchronous and the asynchronous
execution.

Also like BSP, in each step we compute the computation and communication times for each
processor and determine the maximum for both over all processors. The reason is that in the
synchronous model, the communication synchronises all processors. In the case of PolyAPM, all
processors synchronise even before and after the communication. The time when all processors
enter the communication phase is determined by the processor with the longest computation, and
likewise the longest communicating processor determines the length of the global communication
phase. As the processor with the longest computation may be different from the one with the
longest communication, we determine the maximum values independently and sum them up to
get the time (i.e., cost) for a particular time step. The different time steps are independent so
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Figure 3.4: Synchronous and Asynchronous Communications

that their execution times are added.

This process is adequate for the synchronous model, but it only provides an upper bound for
asynchronous programs, and even then only under the proviso that messages are coalesced. In the
asynchronous case there is no waiting for the slowest. Processors may be synchronised pair-wise
by message exchange, but there is no global synchronisation. The slowest processor of a time step
doesn’t necessarily have to synchronise at all. Thus, the other processors may already proceed
with the next logical time step. If the slowest processor is not always the same, compensation
can occur and the total execution time may be smaller than the sum of all maximum values of all
slowest processors at each time step. See Figure 3.4 for an illustration of this effect.

However, an implementation may choose not to coalesce messages, i.e., at the end of a time
step one processor may send several physical messages to the same communication partner. With
coalescing they would be integrated into a single physical message. The problem is that without
coalescing the message startup cost occurs more than once per communication partner. In general,
asynchronous execution may lead to less waiting and thus a shorter execution time. But in a case
where it may therefore be favourable and message coalescing is used, without coalescing a total
execution time higher than in the synchronous model is possible.

These problems somewhat reduce the suitability of our cost model for asynchronous programs.
This is unfortunate, but we have decided to keep it this way for the following reasons:

• This cost model is only a decision aid for the development process, it is no prerequisite.
Therefore the restricted usability of the cost model in the asynchronous case does not preclude
the usefulness of the entire approach.

• For asynchronous programs with message coalescing we do have an upper bound for the
costs. This is just a loss of accuracy compared to the synchronous case.

• Cost models for asynchronous programs are rare and complicated [MRRV99]. There doesn’t
appear to be a simple extension of our model to cope with asynchrony.

The necessary data to compute the cost function is gathered during runs of the PolyAPM pro-
grams on their abstract machine interpreters, thus making this an empirical rather than analytical
approach. The cost values (computation and communication costs) have to be gathered separately
for each time step and the cost for all steps are added up to get the cost for the program.

In contrast, the BSP model deals with communication cost quite differently. In order to
prevent hot spots in unbalanced distributions, it uses a randomised distribution of computations to
achieve a randomised and, thus, evenly balanced communication pattern. This approach destroys
any locality. In addition, BSP treats communication en masse, but its creators argue that their
model still provides a good cost estimate. However, they admit that this approach does not work
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well for regular programs that benefit from locality, but they claim that randomisation is worth
it in most cases ([SHM97], page 5). We are not in the position to reject this claim, but we argue
that our problem domain, the scientific algorithms, has a comparatively regular communication
structure and therefore benefits from careful placement. Thus, we decided to be more specific than
BSP in that we do a complete bookkeeping of all messages and their sizes in order to get a more
detailed cost estimate.

The cost values for each computation and each message being sent are provided by the APM
programmer within the APM program and indicate an approximate execution time to perform the
operation. The values have to be determined by manually analysing the computations and setting
them in relation to the unit cost (one floating point multiplication). The communication cost is
relative to the sending of one floating point value.

The unit of the cost model value is called a tick. All times within the cost model formula
are expressed in ticks. While the computation cost by definition is expressed in ticks, the com-
munication costs have to be normalised to be comparable. This normalisation factor has to be
determined by experiments.

In the APM programs, the programmer has to provide an estimate of how many ticks the
computations within the loop body take. This is done by putting those values into a data structure
from which the cost model calculation of the APM interpreters can read. For the communication
cost, the length of the message is included in the APM message structure. The interpreters record
this cost during message sending and delivery.

The calculation of the cost of a program run is defined by the PolyAPM cost formula in
Figure 3.5. It defines for each time step and for each processor independently the communication
cost as the sum of sending cost, receiving cost and a possible barrier cost. These costs have to
be normalised suitably so that they can be added to the computation cost. For the sending and
receiving cost we have the normalisation factors s and r , that transform message lengths (denoting
the cost of a message) into the number of ticks that are required to send or receive messages of
that length. The message startup cost m is assumed to be normalised before being multiplied
with the number messages. And finally the communication phase may be finished by a barrier
synchronisation whose normalised cost is denoted by b.

In case that APM communications are to be neglected (e.g., on shared memory systems or with
very abstract programs), only the computation cost remains and cit is set to 0. For asynchronous
programs we assume any synchronisation to be done by message passing so that the barrier cost
b is set to 0.

3.4.1 Incorporation of the Cost Model into PolyAPM Interpreters

The cost model presented above is almost too complex for a manual calculation of a cost index,
especially as the input’s size also has to be taken into account. But in the PolyAPM framework
we are able to execute the intermediate programs on abstract machine interpreters. And these
interpreters are being used to collect the data necessary to calculate the cost formula’s result.
However, the relative costs of a computation and a message transfer are difficult to gauge auto-
matically, so we rely on user input. Within the APM program, as part of a computation’s result
state, a floating point value has to be given that states a relative cost. Similarly, a component of
the message data type tuple is the relative cost value associated with sending the message. The
PolyAPM interpreters collect and count all these cost values in the course of a program execution.
Together with the machine constants mentioned in the cost model the interpreters are able to
calculate the cost value. It is a relative estimate of the expected run time.

We do not normalise the cost model’s result to wall clock time for two reasons: the APM
programs are not yet the target programs, they are unfinished and require further transformations
before they are fit to run on a real machine. Therefore we think it unrealistic to expect a forecast
of a future target program’s run time based on an unfinished predecessor. The second reason is
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Measured and predetermined values:

• wit the workload of processor i at time t

• sijt the cost (read: size) of sending message j from processor i at t

• rijt the cost (read: size) of receiving message j from processor i at t

• s the normalisation factor to relate a sending cost unit to a workload unit such that
1 workload unit ∼ s ∗ 1 sending cost unit (obtained by experiments)

• r like s but for the receiving costs (obtained by experiments)

• b the cost for a barrier synchronisation (obtained by experiments)

• ms the startup cost to initiate a message (obtained by experiments)

• mr the startup cost to receive a message (obtained by experiments)

Calculated values:

• #sit number of messages sent by processor i at time t
(the number of sijt for a given i and t)

• #rit likewise for received messages

• cit we calculate cit , the communication cost of processor i at time t , as the sum of all
sending costs plus the sending startup costs plus the receiving costs plus the barrier cost:

cit =

(
#sit∑
j=1

s ∗ sijt + ms

)
+

(
#rit∑
j=1

r ∗ rijt + mr

)
+ b

• costt the cost of time step t is defined as

costt = max
i∈procs

(wit + cit)

Final Cost Function:

for a fixed input size, number of processors and machine parameters:

cost =
∑
t

costt

Figure 3.5: PolyAPM Cost Model
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lcost t = (fromIntegral (t‘div‘2)*lfact +1 + 2)
ucost t = (fromIntegral ((t-1)‘div‘2)*ufact +1 +1 + 5)

body_s_sc:: (GlobalStateShM LUmem b c d, [Idx]) -> [Int]
-> ((GlobalStateShM LUmem b c d, [Idx]), [Int])

body_s_sc (GStateShM (a,l,u) msgs
((Comps crange (ca:compsal)):clist),[n,maxp]) (idxlist@[t,rp,p]) =

((GStateShM mem msgs
((Comps crange ((ca//[(rp,cost+ca!rp)]):compsal)):clist), [n,maxp]), idxlist)
where (mem,cost) =

if (t ‘mod‘ 2 == 0)
then ((a, stmnt1 a l u (t,p,n), u), (lcost t)+2.0)
else if (t+2)‘div‘2 == p

then ((a,l,u), 5.0)
else ((a,l,stmnt2 a l u (t,p,n)), (ucost t)+5.0)

stmnt1 a l u (t,p,n) = ... omitted ...

stmnt2 a l u (t,p,n) = ... omitted ...

Figure 3.6: LU SynCommAPM Body

that we don’t need to. The whole point of this cost model is to be able to decide between several
alternative code transformations based on the assumed performance impact. For this purpose a
relative comparison suffices.

The following example shows how the user defined cost values are to be provided. The code
is taken from the LU decomposition example for SynCommAPM of Section 6. Figure 3.6 shows
two different computations, namely new values for L and U , that are performed at even resp.
odd times. The result type is of GlobalStateShM, denoting a global state for a shared memory
machine. It is a machine state that is aware of the cost mechanism. It contains the current
memory, a list of pending messages and a list of CostItems that hold the profiling data needed to
compute the cost model prediction. Three types of cost items are used: the computation cost, the
message receive cost and the message sending cost. Within the loop body, only the computation
cost is updated. The one-dimensional cost array ca contains one floating point cost value per real
processor. The computation cost of the current iteration is therefore added to the rpth element of
ca. The computation cost is determined by the cost of the statement (lcost or ucost) plus the
cost of evaluation the surrounding if guards. For the latter, we count the number of operations
(2 for the outer if and 3 for the inner). This way, the empty statement in the first then branch of
the second if gets a cost of 0 plus the 5 ticks of its if guards assigned. The values of lcost and
ucost are determined by analysing the structure of the two statements and counting the number
of operations in them.

The message generation deals with two types of cost: the cost of generating messages, which
is added to the computation cost, and the cost of transmitting the message. Each message is
accompanied by its cost value that corresponds to the amount of data contained in the message.
This value is retrieved twice: first during message creation for the sending cost, and the second
time during delivery for the receiving cost. This way, the computation of sent and receive costs
are independent and if they don’t match at the end of a program’s execution, the interpreter may
flag an error that message delivery is at fault.
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generateMsg LU_blocked_SynCommAPM [t,rp,p] (n:maxp:_) (a,l,u) =
if(t‘mod‘2==0)
then ([Msg (rp, to_p, t, t+1, L, (p,t‘div‘2+1), l!(p,t‘div‘2+1),1)

| to_p <- [rp+1 .. maxp-1]], (rp, gen_cost_B1))
else if (2*p-2>t)

then ([Msg (rp, to_p, t, t+1, U, ((t+1)‘div‘2, p), u!((t+1)‘div‘2, p),1)
| to_p <- [rp+1 .. maxp-1]],(rp, gen_cost_B1+3.0))

else ([], (rp, 5.0))
where gen_cost_B1 = fromIntegral ((maxp-1)-(rp+1)) -- msgs cost

+ 2.0 -- 1st if guard

Figure 3.7: LU SynCommAPM Message Generation

PolyAPM views a message as a tuple within the Msg type. Its last component is the message
cost. An element of this type has the following form:

Msg (from, to, source time, destination time, domain, index, value, cost)

The message generation function of LU in Figure 3.7 sets the last component of the tuple accord-
ingly. As the message’s payload is only a single float, the cost value is set to 1. Note that the
function generateMsg returns a pair of the generated message list and the generation cost. This
cost is determined like the computation cost in the body and is added to the computation cost
array ca.

The collection and calculation of the communication cost is performed by the SynCommAPM
and SynDMAPM interpreters without further user interaction.

3.5 Dependence Analysis in Haskell

A prerequisite to writing the first APM program is to have a suitable parallelisation of the algo-
rithm or input program. In case this parallelisation is not blatantly obvious, one often needs to
determine the data dependences between computed and read array elements. These dependences
can be analysed to determine the independent computations that may be executed in parallel.

PolyAPM was designed to be applicable to loop program transformations done with the poly-
tope model (see Section 2.2.3). The polytope model will be used in the second case study in
Chapter 6. Its scheduling and allocation methods need a formal definition of the program’s de-
pendences as their input.

There are many publications on dependence analysis for imperative programs ([Fea91, Ban93]
and more), but as we suggest the use of Haskell as a specification language, we need to describe
how dependences can be retrieved in this setting.

Data dependences between computations impose a partial order which any evaluation or-
der must follow. The partial order is used to identify independent computations which can be
executed in parallel. The aim of the dependence analysis is to obtain this partial order by an
analysis of the source code. In the following, we present a simple algorithm to determine the flow
dependences between array elements in array computations of a Haskell program. As Haskell is
single-assignment, output- and anti-dependences do not exist.

Array computations in Haskell are often specified with the array construct. The array ele-
ments are usually defined by an array comprehension. Due to the fact that data type definitions
can be mutually recursive, a set of array definitions may depend on each other. We define two
arrays a and b to be in relation R, i.e., aRb, if and only if an element of b is being referenced
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in the definition of a. Then, the weakly connected components with respect to R are the sets
of arrays in which each array is either the source or the destination of a dependence. The array
computations within a component are parallelised together.

Given a Haskell program, the first task is to determine these array component sets. This is
done by the pseudo-algorithm in Figure 3.8.

Input: – Haskell-program with array definitions
Output: – Array component sets Si , i ∈ N

1. Construct a list L of all arrays in the program.
2. while there exists an unmarked array A in L do
3. Construct the weakly connected component SA of

arrays which includes A.
4. Mark all arrays of set SA in list L
5. output all Si

Figure 3.8: Array Component Set Determination

The second task is to determine all dependences within a set. They will be used later for
the parallelisation of all computations within the set. The pseudo-algorithm for the dependence
analysis is presented in Figure 3.9.

Input: – Haskell-program with array definitions
– Component set S

Output: – Set of all dependences with index spaces of set S

1. create empty set D
2. foreach array A in S
3. foreach array A’ of S used in the definition of A
4. construct a dependence A’ → A; add it to set D,

together with appropriate index space.
5. output D

Figure 3.9: Dependence Analysis Algorithm

The determination of the index space in Step 3 has to consider possible boolean restrictions
of generators in Haskell’s list comprehension. The original polytope model [Len93] is restricted
to index spaces with defined by linear expressions in the loop bounds. For simplicity we use this
model, i.e., the boolean predicates may only be linear relations of index variables. Extensions of
the polytope model can deal with general if statements [Col95], which correspond to arbitrary
boolean predicates in our context.

The above dependence analysis will be applied in Chapter 6 to the LU decomposition algo-
rithm. We did not implement the analysis, but rather performed it manually according to the
above pseudo-code. The result is a set of dependences. If they are to be used as input for a
polytope based parallelisation with LooPo, the obtained dependences, together with index space
and statement descriptions, have to be brought into a form that LooPo can process. Such a form
is called a LooPo specification. Examples are shown in Appendix A and discussed in Chapter 6.



Chapter 4

Example of a PolyAPM
Infrastructure

While the previous chapter explained the general PolyAPM development model and a set of syn-
chronous example machines, we present in the present chapter an exemplary implementation of
these machines as interpreters for their programs. We have implemented interpreters for SynAPM,
SynCommAPM and SynDMAPM as Haskell modules. These interpreters are used in the develop-
ment process to run the APM programs with real input data and determine program characteristics
such as the cost value.

In Section 4.1 we describe in general terms how to write an APM program for our interpreters.
Section 4.2 contains a detailed description of the application programmer’s interface of our example
APM implementations. The final APM program will have to be transformed to a program on a
target architecture. How to do that we present by way of example using a Scali Linux cluster in
Section 4.3. Finally, properties of the target architecture are captured in the set of cost model
parameters. Section 4.4 illustrates the process of devising and performing benchmarks to determine
the cost model constants for the Scali cluster.

4.1 Writing PolyAPM Programs

A PolyAPM program is a loop program with a body of array assignments. Depending on the APM
the program is designed for, additional functions for communications may be needed. Of course,
anyone using PolyAPM can extend PDG and PMT which, in turn, may impose more requirements
for the program.

In this section we describe the program components and their requirements for the syn-
chronous APM line as described in Section 3.3.4. That is, we present our example implementation
of the PolyAPM machines SynAPM, SynCommAPM and SynDMAPM. It is conceivable to define
completely different machines based on the PolyAPM ideas which would lead to different program
properties. The motivation to present our implementation is to augment the general description
of APMs with concrete examples and experiences.

Common to all presented programs is the loop structure comprising loop bounds and a loop
body. They have to be of certain Haskell types so that the provided APM machine interpreters
can use them. Figure 4.1 shows the structure of a PolyAPM program using all mandatory and
optional functions.
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Figure 4.1: APM Program Structure

The following types are all defined in the APM module. Loops are defined by

-- loop: finitely many loop levels and one inner body
data Loop e b = LP [LoopGen] (Body e b)

and consist of a list of loop generators (one for each loop level) and the loop body. A loop generator
defines lower and upper bounds, the stride and whether the loop is parallel or sequential. The
bounds are integer valued so that the loop is like a for loop (lower bound is inclusive, upper
bound is exclusive). Bounds and strides may depend on two sets of integer values: loop variables
of surrounding loops and other program values (i.e. structural parameters). They are therefore
functions of these values. The predefined Haskell types are

data Par_annot = Par | Seq
type Idx = Int
type Lbd = Idx
type Ubd = Idx
type Step = Idx

type LoopGen = (Par_annot,
([Idx], [Idx]) -> Lbd,
([Idx], [Idx]) -> Ubd,
([Idx], [Idx]) -> Step)

The annotation is for the complete description of the loop nest but has no effect on the
interpreters. Whether a loop is treated as parallel depends on the machine type. Of course, other
APM implementations might behave differently.

The loop body has the following type:

data Body e b = BD (e -> b -> e)

A body is viewed as a function that takes the current machine state (of type e) and the loop
variable values (of type b) to compute a new machine state as the result. The kind of state
that has to be supplied differs from APM to APM. Some need distributed, some shared memory.
Some have communications and need message queues, others do not. The specifics of the different
machines are presented in detail in Section 4.2. While the state type is defined by the APM, the
memory type as part of the state is not. The programmer has full control over the organisation
of the abstract memory. This is possible because all functions that access the memory are user
defined and the APM interpreters do not directly modify the memory. However, the user defined
memory needs to reflect the APM’s architecture: if it is shared memory, then the memory type
has to comprise the entire program’s data, otherwise just the local data.
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In the collection of APMs presented here, we have up to three different auxiliary functions
to modify and read the user defined memory. They are called from within the interpreters. To
ensure that their types fit, three Haskell type classes have been defined. The user program needs to
provide the corresponding instance declarations. The three classes are Synchronizing, Sendable
and Updatable.

All of the above APMs require a function called synchronizeMem as defined by the class
Synchronizing:

class Synchronizing machine mem where
synchronizeMem:: machine -> mem -> mem
synchronizeMem a = id

Its purpose is to reorganise global or local memory in a synchronised manner at the end of each
time step. The class default is the identity which can be overloaded in case a program needs reor-
ganisation. When this function is called the APM interpreter ensures that all body computations
on all processors have completed and all messages have been sent. Some methods (e.g., multi-grid
algorithms) require a global memory reorganisation that is independent of the computations as
performed in the loop body. In a lot of cases, nothing has to be done here, which is why the
default instance is the identity function.

One thing to note is that all instance declarations of the three APM functions are parame-
terised with a machine parameter. This is a discriminating data type for each APM program whose
only constructor relates the instance declarations to their APM programs. The reason is that dif-
ferent APM programs might want to provide their own instances (in this case synchronizeMem)
operating on the same memory data type. In the case of synchronizeMem, without the machine
parameter we would have several instance declarations of the class Synchronizing with type
synchronizeMem:: mem -> mem. If the mem type is identical in two or more cases, a compile time
error prohibits the redeclaration of these instance declarations. The machine parameter make the
otherwise identical instance types artificially different, so that several instance declarations using
the same memory type become possible. It would not help to put the different instance declara-
tions into separate modules as instance declarations are always globally im- and exported. The
separate name spaces of modules do not refer to instance declarations.

Starting with SynCommAPM, SPMD-style communication is introduced. The APM programs
need to exchange values among the processors they run on. While the message delivery is done
by the APMs, message generation and the memory update are part of the APM program. Con-
ceptually, the communication takes place at the end of each time step and is separate from the
computation. Because of this, the communication code is not part of the loop program. Instead,
along the lines of synchronizeMem, we have the functions generateMsg and updateMem to be
defined by the APM program.

generateMsg:: machine -> [Idx] -> [Idx] -> virtprocmem -> ([Msg a b c],(Idx,Float))
updateMem:: machine -> Msg dom idx val -> realprocmem -> realprocmem

The function generateMsg takes the machine label, the list of current loop indices, the list
of structural parameters and the memory. Since the function is part of the APM program, the
memory structure is known so that the message data can be retrieved from memory. The result is
a list of messages that are placed in the message queue. These messages will be delivered during
the delivery phase just before the time step with the specified delivery time starts. Until then, the
message is assumed to be buffered by the network.

The message structure is given in the Msg data type:

data (Ix b, Show a, Show b, Show c) =>
-- From To SrcT DestT Dom Idx Val Cost

Msg a b c = Msg (Proc,Proc,Idx, Idx, a, b, c, Float)
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A message contains origin and destination of its delivery, both of which are defined by a processor
id and a logical time. The data item is defined by its domain (a user defined data type used by
updateMem to determine the part of the memory where the data item is to be stored), an index
into the destination array (is left unused if the destination is a scalar variable) and finally the
value. Associated with each message is the cost to send this message. During delivery the message
costs are collected and integrated into the cost formula (see Section 3.4 for details).

On the receiving end, the function updateMem takes a message and the memory in order to
make the message’s data persistent in the memory.

The only functions that have to know about the structure of the memory are the loop body
and the three auxiliary functions synchronizeMem, updateMem and generateMsg. In addition,
there need to be functions that construct the input memory and preload the necessary input
data as well as retrieve the computation result after the program execution. But none of the
APM interpreter functions will ever access the memory directly as they have no knowledge of its
structure.

4.2 The PolyAPM API

The PolyAPM example implementation of synchronous APMs provides a list of functions to be
used by the APM program. In the previous section we have already described the functions
generateMsg, updateMem and synchronizeMem. In the following we present the API of the APM
Haskell module for use by APM programs.

4.2.1 Data Types

An APM program is encoded as a Haskell data type. The topmost structure is a loop, consisting
of a list of loop generators and a loop body. A generator comprises three functions to compute
the lower and upper bound of a loop and its stride. The arguments to these functions are of two
kinds: one is a list of structure parameters, which are external values from the loop’s point of
view, and the other is a list of the loop variable values of the surrounding loops. These types have
been described in Section 4.1.

All synchronous APM interpreters use at least the computation cost of the PolyAPM cost
model. To record the cost, a one-dimensional floating point valued array is used. The index
denotes the processor id. Every body computation has to update the corresponding cost value.

All arrays containing cost information are stored in a list of type CostItem. Programs for
SynAPM and SynCommAPM update the computation cost directly. SynDMAPM programs with their
independent local states first put the cost values into a list of type CompCostList, from where
the APM interpreter collects them at the end of each time step and stores them in the global
CostItem structure. While the SynAPM interpreter only uses the Comps component, SynCommAPM
and SynDMAPM use all three of them.

type CompStat = LArray Int Float
type MsgStat = LArray (Int,Int) [Float]

data CostItem =
Comps (Int,Int) [CompStat]

| RcvdMsgSzs ((Int,Int),(Int,Int)) [MsgStat]
| SentMsgSzs ((Int,Int),(Int,Int)) [MsgStat]
| Void

All cost items have a list of one- or two-dimensional arrays. For each time step a new array is
added at the head of the list. The cost array has exactly one entry per processor, while the other
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two contain the message cost index by sending and receiving processor. The range for new arrays
is provided as the first parameter within the data type.

The computations at each space/time point are simply accumulated in a single floating point
number, so that we get the total computation cost for each processor at a time step. The number
of computations is lost as the cost model does not require it. In contrast, the message costs are
stored in lists with one entry per message. The reason is that we need more information than just
the total cost. The length of this list equals the number of messages, which is used by the cost
model. Furthermore, target machines may coalesce PolyAPM messages sent to the same target
processor into one physical message, so that only one startup cost per target processor and not
per PolyAPM message incurs. In this case, the cost model calculation needs to analyse the sent
and received messages to infer the number of communication partners. Optional coalescing on the
target machine is acknowledged by the PolyAPM cost model.

4.2.2 SynAPM Functions

To run a SynAPM program, we pass it to the SynAPM interpreter function which is called
runloop_s. Its type is

runloop_s:: (Synchronizing m realprocmem) =>
m -> Loop (realprocmem, [Idx], CompStat) [Idx]
-> [Idx] -> (realprocmem, CostItem) -> (realprocmem, CostItem)

The only type class requirement is that the program’s memory type (together with the pro-
gram/machine identifier) is made an instance of class Synchronizing.

The function runloop_s takes the following parameters:

• a program identifier of any type m,

• a loop whose body function takes and returns a triple consisting of memory, a list of indices
and the computation statistics,

• a list of indices containing the structure parameters (for each particular program, the order
of the parameters in this list is constant), and

• a pair of the memory itself and the cost item for the computation statistics.

It returns the memory after the execution of the program and the new filled cost item. Both
can then be inspected for the result of the program run. In other words, input and output are
performed by writing the memory before and reading it after the computation.

Any function that accesses the memory has to be written as part of the APM program,
since the APM interpreters have no knowledge of the structure and the semantics of the memory.
This obviously includes a function that retrieves the computational results after the computation.
However, the computation statistics are of a predefined structure. The APM module provides a
function to calculate the PolyAPM cost as described in Section 3.4:

calc_costmodel:: CostModel -> [CostItem] -> String

This function takes as parameters a particular model for a specific machine and the list of cost
items. In this context a CostModel is a Haskell record comprising a set of machine parameters.
For a discussion of cost models and how to obtain them see Section 4.4. The result will be a string
that contains a message about the computational and overall PolyAPM cost of the program run,
as described by the second parameter.
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4.2.3 SynCommAPM Functions

The introduction of communication affects the machine interpreter in several ways. The machine
state is defined not only by the memory, but also by the content of message queues. Message gen-
eration and delivery have to be implemented and the cost model needs to take the communication
cost into account.

First of all, a new interpreter function runloop_sc is introduced:

runloop_sc::
(Updatable m b c d a, Synchronizing m a, Show d, Show c, Show b, Ix c) =>
m -> Loop (GlobalStateShM a b c d,[Idx]) [Idx] -> [Idx]
-> GlobalStateShM a b c d -> GlobalStateShM a b c d

This function differs in two main ways from runloop_s: for one, the memory and computation
statistics have been combined with a global message queue into the type GlobalStateShM, and sec-
ondly there is the requirement of making the memory and message types an instance of Updatable.
The latter is done by providing an implementation of updateMem that takes memory and a mes-
sage and updates the memory with the message’s content. The definition of GlobalStateShM is
as follows:

data GlobalStateShM a b c d =
GStateShM a -- arbitrary memory

[Msg b c d] -- global msg queue
[CostItem] -- cost model item list

In order for the communication mechanism to work, functions of the APM program and the APM
interpreter have to be interleaved in a certain way.

The PolyAPM view is that, after each body execution, we might need to send newly computed
values to other processors. This is done by the sender generating one message for each destination
processor. Broadcasts and multicasts are not supported.

Messages are generated after each iteration of the body and immediately appended to the
global message queue. The communication phase takes place at the end of each time step. During
it, the global message queue is searched for messages whose destination time will be the next time
step. These messages are removed from the queue and delivered. In case there are sequential loops
within the processor (p) loop, there are possibly several body iterations per time step.

The reason for generating messages after each iteration is simplicity: the loop indices of the
last generation are still there, right along with the values to be communicated. So it is feasible
to communicate right at this point. If a coarser communication granularity were selected (such
as time step-wise), any program transformation that changes the time loop later on would also
require a change of message generation. Thus there is an advantage of doing it at the smallest
possible granularity, which is right after every body iteration.

The body function of type BD (e -> b -> e) as part of the loop program consists of a
composition of the real body function and a predefined message generation function genMsg_sc.
The idea is to generate a message containing a new value as soon as it is computed. In the above
body type, the type variable e is the state and b is the list of loop indices. The genMsg_sc function
also needs the loop indices, so that the user defined body function has the type e -> b -> (e,b),
thus passing on state and loop variables. The function genMsg_sc consumes the loop variables
and returns just the state, thus its type (e,b) -> e. If combined together, they yield a body
function of type e -> b -> e. In all these types, the machine parameter is omitted.
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With a genMsg_sc function of the following type

genMsg_sc::(Sendable m a1 b c a, Show a1, Show b, Show c) =>
m -> ((GlobalStateShM a a1 b c, [Idx]), [Idx]) ->
(GlobalStateShM a a1 b c, [Idx])

a typical loop body definition looks like this:

-- like function composition, but combines a second
-- function with two parameters
comb :: (c -> d) -> (a -> b -> c) -> (a -> b -> d)
(f ‘comb‘ g) x y = f (g x y)

loop_s_sc = LP loop_bounds_s_sc
(BD ((genMsg_sc LU_blocked_SynCommAPM ) ‘comb‘ body_s_sc))

The genMsg_sc function calls the user defined function generateMsg to generate new messages
based on state and indices, and places them in the outgoing message queue. To make sure that
generateMsg fits into the APM function framework, we introduce the type class Sendable:

class (Ix b) => Sendable machine a b c mem where
generateMsg:: machine -> [Idx] -> [Idx] -> mem -> ([Msg a b c],(Idx,Float))

An instance uses the system’s memory and all types involved in a message. The first list of Idx
contains the loop indices, the second all structural parameters. As part of an APM program, the
function knows about the memory’s structure and can access it to retrieve the computed values for
a generated message. The function generates one message for each receiver and places them in the
result list. The messages are appended to the processor’s local message queue from where they are
collected during the next communication phase. In addition to the messages, the function returns
processor id and message generation costs. The interpreter adds this cost to the computation cost
of the designated processor.

The counterpart of generateMsg is defined in the type class Updatable:

class Updatable machine dom idx val realprocmem where
updateMem:: machine -> Msg dom idx val -> realprocmem -> realprocmem

The updateMem function is called from the communication delivery system to make the payload
of a message persistent in memory. This function also has to be part of the APM program as it
needs knowledge about the memory structure. Its parameters are a message and the memory and
it returns the updated memory.

4.2.4 SynDMAPM Functions

The interpreter of SynDMAPM employs the distributed memory model, where each processor has
its own local memory. Remote access to it can only be done by means of communication. To
implement this memory type, SynDMAPM needs a new global state type, the GlobalStateDM:

data CompCostList = CCL [Float]

data LocalState a b c d = LState a [Msg b c d] CompCostList

data GlobalStateDM a b c d = GStateDM (LArray Int a)
[Msg b c d]
[CostItem]
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The difference from SynCommAPM’s GlobalStateShM is the memory type: we now have an array
of memories of type a, while SynCommAPM’s memory type was free-style. However, the current
implementations are more restrictive in that they require the machine state to be (GlobalStateDM
(LocalState a b c d) b c d). This way, all generated messages will be placed in the local
message queues, which are a part of the LocalState type, before they are moved to the global
message queue in the immediately following communication phase. In addition, the LocalState
contains a CompCostList in which the body functions place the computation cost. At the end
of each time step the APM interpreter removes the values from all computation cost lists and
stores them in the global computation CostItem. This is necessary as the body computations get
only their own local state and have no access to the global state, so that they cannot access the
CostItem list.

4.2.5 An APM Example Program

The following is a small example program for SynAPM. It consists of some memory type, a program
label type (necessary for instance declarations), the loops, a loop body and an instance declaration
for synchronizeMem. It iterates five times over a one-dimensional array of floats, each time
computing the square root of every array element.

type Mem = LArray Int Float

data Example_SynAPM = Example_SynAPM

loop_s = LP [(Seq, \([],(n:_))->0,
\([],(n:_))->5,
\([],(n:_))->1),

(Par, \((t:_),(n:_))->0,
\((t:_),(n:_))->n,
\((t:_),(n:_))->1)]

(BD body_s)

body_s::(Mem,[Idx],CompStat) -> [Idx] -> (Mem,[Idx],CompStat)
body_s (a, splist@(n:_), ca) (t:p:_) =

(a//[(p,sqrt (a!p))], splist, ca//[(p,1.0+ca!p)])

instance Synchronizing Example_SynAPM Mem where
synchronizeMem Example_SynAPM a = a

The loop construct comprises the generator list and the loop body function. The first loop
generator defines a sequential outer loop ranging from 0 to 4, stride 1 (the upper bound is exclu-
sive). The bounds and the stride are defined as functions, taking a list of outer loop variables and
a list of structure parameters. As the sequential loop is the outermost one, its loop variable list
is empty. Its structure parameter list matches the first element as n. Possible further structure
parameters are ignored at this point by the underscore pattern _.

The second loop is tagged parallel and ranges from 0 to n − 1, stride 1. It is the inner one,
so it may use the outer loop variable. Therefore, the first list is (t:_), referring to the sequential
loop variable as t.

The body takes a triple comprising the memory, the structure parameter list and the cost
array, as well as a list of the loop variables. It returns the updated triple: the pth array element
of a is replaced by its square root, and the pth element of the cost array is increased by one, the
cost for the square root operation.
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Finally, each SynAPM program needs to define an instance of Synchronizing. Most APM
programs, like the one in this example, don’t need it and define it as the identity function on the
memory.

4.3 Adapting APM Programs to Target Architectures

APMs can be adapted to any parallel target architecture. The most abstract APMs we present
have shared memory. With the default being one shared memory, we view memory distribution
as an additional property that an architecture may have. Thus it will be introduced in a more
specific APM. PolyAPM itself has no bias towards either shared memory or distributed memory
machines. In the past, massive parallelism was only possible on distributed memory machines
where some installations have several thousands of processors. Shared memory machines have
a severe performance bottleneck in the interconnection network, because all processors need to
have fast access to the memory. Because of this limitation, until a few years ago there existed
no shared memory machines with more than 32 processors. However, more recently machines
with up to 100 processor appeared on the market. Programs for shared memory machines do not
need communication, thus easing the programming. A compromise between both worlds are Non-
Uniform Memory Access machines (NUMA), that consist of a cluster of shared memory machines.
A software layer provides shared memory programming without explicit communication, but the
performance difference between a local and a remote memory access is measurable, hence the
name.

All performance measurements in this work have been conducted on our distributed memory
machine, a 32 node dual Pentium III 1 GHz Linux cluster with a high-performance SCI com-
munication network by Scali [Sca]. The system software for the SCI network provides a low
level communication library. However, code for this library is difficult to write and not portable.
Therefore, Scali provides its own implementation of MPI in the ScaMPI library on top of SCI. The
alternative MPI implementation MPICH was not available for these experiments. The LAM MPI
library [LAM] does not support the SCI network and can therefore only be used on our cluster
with the 100 MBit Ethernet network. Since Ethernet has a comparatively high latency we do not
use LAM.

4.3.1 The mpi_apm Library

The whole point of the PolyAPM project is to ease the development of parallel programs while
striving for code quality by choosing the best program among several alternatives. One partic-
ularly difficult aspect of writing a parallel program is to specify the communications. In order
to ease the effort in this regard, the abstract programs perform one-sided communications. This
means that only the sending side knows which values are communicated to which destination.
The receiver just enters the communication phase and is ready to receive messages, if any. It
has no knowledge beforehand about incoming messages. The communication partners are deter-
mined by following the data dependences. For many algorithms, it is possible to program a static
communication scheme where also the receivers know how many messages to expect during each
communication phase. Such a scheme would incur less overhead as but we trade this overhead
for easier programming (just the sending routine has to be implemented) and the possibility to
deal with algorithms that have a dynamic communication structure. Furthermore, the absence of
explicit blocking receives eliminates a common source for deadlocks in parallel programs.

The difficulty lies in supporting this programming style with MPI. Version 2 of the MPI
standard defines remote memory access as a way to implement one-sided calls, but only few
MPI libraries implement this. In particular, ScaMPI does not. To solve this problem we have
implemented the mpi_apm library (see Section 4.3.1 for details) that uses collective operations to
simulate one-sided calls. All processors independently call the communication function at the
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same logical time step. Only the senders know of the messages about to be sent. Messages are
exchanged and during this process the processors are synchronised.

A Communication Mechanism for One-Sided Calls and MPI 1

To improve efficiency we accumulate the possibly large number of messages in message buffers,
thus trading the number of messages for the size of messages. This trade-off is favourable with
most current communication networks. The data to be sent from processor i to processor j is just
the MPI message buffer containing all PolyAPM messages that are to be sent between the two
at this time. This way, instead of a large number of messages that might be sent between two
processors in each time step, we have only two at most, i.e., one in each direction.

A common case in the parallelisation of loop programs is to use the owner computes rule. If
other processors need the new value, then it has to be communicated. Each processor just sends
its newly computed values so that the outbound message buffer is identical for all destinations.
The only exception is if the values from processor i are not needed at all by processor j . In this
case, no communication takes place between the two.

In the following we assume one send buffer of a fixed and suitably large size s per proces-
sor. The maximal number of physically available processors is denoted by maxp, so that the
processors are numbered from 0 to maxp−1. The communication mechanism described above
requires (maxp−1) ∗ s receive buffers on each processor. There are several ways to implement this
mechanism using MPI collective operations.

Implementing the Mechanism with MPI_Allgather

If we disregard the fact that not all pairwise communications have to take place, the mechanism
fits exactly the MPI call MPI_Allgather (see Figure 4.2).

send buffers before send

Proc data

0 A0

1 B0

2 C0

3 D0

4 E0

5 F0

−→

receive buffers after receive
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4 A0 B0 C0 D0 E0 F0

5 A0 B0 C0 D0 E0 F0

Figure 4.2: The MPI Call MPI_Allgather

The contents of all send buffers are distributed across all processors. The MPI call takes as
parameters the send buffer as well as a send data type and the number of data items to be sent,
so that the buffer is not sent as a whole if it is not full. The small PolyAPM messages that are
stored consecutively within the send buffer are defined as a new MPI data type. The number of
items to be sent is in terms of this data type. There is only one such number per sender, but it
may be different for different senders. It is not possible for one sender to send different amounts
of data to different receivers.

The problem is that, in the one-sided call scheme, other processors do not know how many
messages they will receive from their communication partners. Therefore we use two allgathers.
The first distributes the buffer fill size of each sender across all processors, so that all of them have
an integer array containing the number of messages they are about to receive from each partner.
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Pi sendmsg_cntr: si
recvnr_buf: ( )

1st allgather−→ Pi

...
recvnr_buf: (s0, . . . , sn−1)

Pi sendmsg_cntr: si
psendmsg_buf: [ si messages ]
recvnr_buf: (s0, . . . , sn−1)
prcvmsg_buf: ( )

2nd allgather−→

Pi

...
prcvmsg_buf:

( [s0 messages from P0],
. . . ,
[sn−1 messages from Pn−1] )

Figure 4.3: Allgather Data Exchange

The amount of data received from each partner is constant: one integer. Then a second allgather
that communicates the contents of all send buffers can take place. It uses the just acquired
information about how many messages each partner will send. The overhead for the first allgather
is constant, but if we omit it and always communicate the entire send buffer, the additional volume
is proportional to the difference between the average send buffer usage and the send buffer size.
In general, this difference grows with the problem size, so the price for the additional allgather is
worth it.

The data exchange of the two allgathers as it is implemented by the C+MPI code in Figure 4.4
is depicted in Figure 4.3. A box contains the buffers and variables that are used for the allgather
call. Counters are integer valued and buffers may be empty, have a fixed number of elements
(enclosed by parentheses) or a variable number of elements (enclosed by square brackets). The
expression “si messages” denotes a sequence of si messages. On the right hand side in the boxes
after the call, only data items that were changed by the call are displayed.

The first allgather just distributes the sendmsg_cntr of all processors. They comprise the
array that says how many messages are to be received by any processor in the next allgather. The
second allgather distributes the psendmsg_buf, and all processors place all received messages in
prcvmsg_buf. The prcvmsg_buf has exactly n elements, but each element is itself an imaginary
buffer of variable size. Note that, due to the nature of the allgather, the content of prcvmsg_buf
is identical on all processors.

The C+MPI code in Figure 4.4 implements the quasi one-sided PolyAPM communication
using MPI_Allgather. Both, send and receive buffers are just single arrays. We use displacements
to separate the data for different partners. As the number of PolyAPM messages (read: the length
of the one coalesced MPI message) differs across the processors and invocations of the function,
the second call is an MPI_Allgatherv (for messages with a variable message length). The actual
lengths of the messages to be received are stored in the rcvnr_buf array that is filled in the first
allgather.

Implementing the Mechanism with MPI_Alltoall

The problem with allgather has already been mentioned: if a processor sends data, it has to send
the same data to all partners. In unbalanced communication patterns many unnecessary messages
are created (see Section 6 for an example of unbalanced structures).

The next more general MPI collective call is an MPI_Alltoall. It provides different send
buffers for each communication partner. Its communication structure is depicted in Figure 4.5.
Each processor has as many send buffers as there are processors in the system. Buffer i (0 ≤ i <
maxp) is sent to processor i . The receiving part is analogous to an allgather. This communication
pattern is more general than we need: if a processor sends messages at some time, all receivers
get the same data from it. We only want to be able to exclude some partners from receiving
the message for efficiency concerns. Similarly to the receive buffer organisation in allgather, the
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void send_msgs_gather(int n,int maxp, int sendmsg_cntr,
int sendnr_buf[],int displ[],
int sendbuf_size,int rcvnr_buf[],
struct Msg psendmsg_buf[],
struct Msg prcvmsg_buf[],
MPI_Comm mycomm){

int i,j;

for(i=0; i<maxp; i++){
displ[i] = i*sendbuf_size;

}

MPI_Allgather(&sendmsg_cntr,1,MPI_INT,rcvnr_buf,1,MPI_INT,mycomm);
MPI_Allgatherv(psendmsg_buf,sendmsg_cntr,PMsgType,

prcvmsg_buf,rcvnr_buf,displ,PMsgType,mycomm);

/* Collect new messages */
for(i=0; i<maxp; i++){
for(j=0; j<rcvnr_buf[i];j++){
updateMem_with_msg(prcvmsg_buf[displ[i]+j]);

}
}

}

Figure 4.4: C+MPI Code for Allgather Message Exchange
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Figure 4.5: The MPI Call MPI_alltoall
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Figure 4.6: Alltoall Data Exchange

different send buffers in alltoall are actually combined to one array with a displacement array
pointing at the starts of the different send points. However, since a sender sends the identical
data to all its receivers, there is only one such send point for all receivers. The send displacements
always point to the beginning of the send, so that no space is wasted by replicating the send buffer
for each receiver.

But the alltoall call does not check this special case and considers the send buffers distinct,
each with a different sent counter (here in the array sendnr_buf). This way we can mask out some
processors by setting their send counter to 0. On the other hand, if one processor sends to several
partners, the MPI run time system does not know that the messages have the same content, thus
they need to be sent separately over the network. In this regard the alltoall is less efficient than
the allgather. But experiments have shown that, especially with unbalanced problems like LU
decomposition, the run time behaviour of send_msgs_a2a is significantly better.

Figure 4.6 shows the data exchange of processor i before and after the alltoall calls. The
difference to the allgather exchange is that the sender has potentially different data to send to
different destinations, so that the prcvmsg_buf after the second alltoall is not identical on all
processors. This exchange is implemented by the C+MPI code in Figure 4.7.

Other Implementation Options

The communication mechanisms based on alltoall and allgather only simulate one-sided commu-
nications. The receiver still has to enable potential message exchange during the communication
phase by calling either of send_msgs_gather or send_msgs_a2a. Communication without any
participation at the receiving application’s end is not possible.

The MPI 2 standard defines remote memory access (RMA) functions that allow just that:
local memory segments of distributed machines are made available to other processors for direct
writing. Functions called MPI_Put and MPI_Get may be used to access and update remote memory.
The call structure is asymmetric, i.e., the MPI application on the corresponding end does not
have to issue any MPI call. The underlying MPI infrastructure takes care of this. However, the
mechanism is not completely unlike the two presented above, only the abstraction layer is different.
The communication partner also has to be ready to receive communication requests that it doesn’t
know of beforehand. The difference is only that the MPI application does not need to participate.
Thus, the programming of RMA is simpler, but most likely not more efficient.

Unfortunately, the ScaMPI libraries on our cluster do not implement the RMA functions of
MPI 2.
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void send_msgs_a2a(int n,int maxp, int sendmsg_cntr,
int sendnr_buf[],int sdispl[],
int sendbuf_size,int rcvnr_buf[],
struct Msg psendmsg_buf[],
struct Msg prcvmsg_buf[],
MPI_Comm mycomm){

int i,j;
int rdispl[maxp];

for(i=0; i<maxp; i++){
sdispl[i] = 0; /* if we send, then always the same data */
rdispl[i] = i*sendbuf_size;

}

MPI_Alltoall(sendnr_buf,1,MPI_INT,
rcvnr_buf,1,MPI_INT,
mycomm);

MPI_Alltoallv(psendmsg_buf,sendnr_buf,sdispl,PMsgType,
prcvmsg_buf, rcvnr_buf, rdispl,PMsgType,
mycomm);

/* Collect new messages */
for(i=0; i<maxp; i++){
for(j=0; j<rcvnr_buf[i];j++){
updateMem_with_msg(prcvmsg_buf[rdispl[i]+j]);

}
}

}

Figure 4.7: C+MPI Code for Alltoall Message Exchange
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1 initialisation

2
3 FOR t1 = ...
4 FOR p1 = ...
5 FOR t2 = ...
6 ...
7 FOR tn = ...
8 loop body body_s_dm
9 message generation generateMsg
10 ENDFOR tn
11 ...
12 ENDFOR t2
13 ENDFOR p1
14 sending and receiving messages (APM interpreter)

15 updating memory with received values updateMem
16 memory synchronisation synchronizeMem
17 ENDFOR t1
18
19 gathering results

Figure 4.8: Operational Structure of a SynDMAPM Program

Adapting a SynDMAPM Program to the mpi_apm Library

The SynDMAPM machine was designed to be quite similar to a real parallel machine with dis-
tributed memory in order to ease the transformation of programs between them. Let’s consider
again the main parts of an APM program: type definitions, initial value declarations, the loop
program and the synchronizeMem, updateMem and generateMsg functions.

Most Haskell types cannot be translated directly to C. However, the program domain that we
deal with chiefly uses integers and floating point numbers, usually organised as scalars or arrays,
and these types have a direct correspondence in C. Haskell tuples can be represented in C either
as records or arrays.

The structure of a SynDMAPM program is displayed in Figure 4.8. The initialisation and
result gathering in lines 1 and 19 are very application specific. It is up to the programmer to
care for a suitable data layout so that the process of distributing and gathering data is simple and
easily translatable into the target language. However, the definition of the PolyAPM message type
and the creation of communication buffers for the mpi_apm library is performed by the mpi_apm
function define_PMsgType.

The program pattern from lines 3 through 17 can be easily translated into any imperative
language. The function calls within the pattern (here: emphasised by italics) are translated to C
and inserted into the pattern. Figure 4.8 contains five such function calls of which only the first
one may require significant translation work.

In the PolyAPM framework we deliberately do not place restrictions on the structure of loop
bodies for the APM programs in order to provide a very general approach. However, if the
programmer uses that freedom to write a loop body in a very functional style, a high price for a
translation to a corresponding imperative loop body has to be paid. On the other hand, restrictions
on programs (e.g., as the polytope model imposes [Len93]) may well result in an easy translation.
We had no difficulties to translate any loop body to C that stemmed from a numerical algorithm
expressed in Haskell.

The next function is the message generation in line 9. The Haskell APM functions generate
lists of messages that the APM interpreters place in the global message queue. In the C program
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the messages have to be placed in an mpi_apm message buffer. The difference between the two
is that the APM program generates one message per data item and destination, whereas the
mpi_apm library stores each data item once in the message buffer and stores the destinations in
the sendnr_buf array (the destination times are neglected by the mpi_apm library). Thus, a
processor in an APM program is able to send different messages to different destinations. Using
the mpi_apm library, a processor will always send the same messages to all its communication
partners. The following example illustrates the transformation process.

instance Sendable Foo Foo_Dom (Int,Int) Float Foo_mem where
generateMsg FooC [t,rp,p] splist (a,b) =

[Msg (rp, to_p, t, to_tm, dom, xidx, yidx, val, 1)
| (to_p,to_tm) <- [(x,x+3)| x<- [rp..maxp-1]]
]
where dom = if t ‘mod‘ 2 == 0 then A else B

(xidx,yidx,val) = if dom == A
then (p, 2*t, a!(p,2*t))
else (2*t+1,p , b!(2*t+1, p))

Figure 4.9: An Exemplary generateMsg APM Function

The exemplary APM function generateMsg in Figure 4.9 belongs to an APM program named
Foo (this is the machine parameter, see Section 4.1). It generates messages containing floating
point values from two-dimensional, integer indexed data structures. These data structures are
enumerated by the type Foo_Dom and values of structures A and B are actually sent. In the
example the message content depends on the value of t. A list comprehension ranging over the
destination processors creates one such message for every destination.

The C code in Figure 4.10 is a translation of the above APM function. First, depending on
t, the message domain is selected. Then the corresponding indices and the value are determined.
This information is filled into one message slot of the send buffer and the respective counter
is increased. A for loop that corresponds to the above list comprehension tags the entries of
destination processors in the sendnr_buf so that the message is being sent there during the next
communication phase.

dom = t%2==0 ? A : B ;
if(dom==A){
xidx = p; yidx = 2*t; val = a!(p,2*t);

} else {
xidx = 2*t+1; yidx = p; val = b!(2*t+1, p);

}
psendmsg_buf[sendmsg_cntr].msgdomain = dom ;
psendmsg_buf[sendmsg_cntr].xidx = xidx ;
psendmsg_buf[sendmsg_cntr].yidx = yidx ;
psendmsg_buf[sendmsg_cntr].value = val ;
sendmsg_cntr++;

for(x=rp; x<maxp; x++){
to_p = x;
to_tm = x+3; /* not needed */
sendnr_buf[to_p] = 1;

}

Figure 4.10: An Exemplary mpi_apm C Function
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The remaining functions are easy to transform. In line 14 of the program structure the
message exchange takes place. This is done by the APM interpreter and initiated by a call of
sendmsgs_a2a.

The memory update in line 15 refers to the APM function updateMem. The corresponding C
function is just a for loop ranging over the receive buffer and updates the memory according to
the message content.

Finally line 16 refers to the memory synchronisation function. Its content is application
specific so that no general advice for a transformation can be given. In most cases, this function
will be the identity so that it may be ignored for the transformation to C. An example for a
non-identity synchronisation is presented in Chapter 5.

The above example shows that there is a syntactical difference between the APM functions
and the corresponding mpi_apm C functions, but that on a semantic level the difference is small
enough to make a transformation between the two easy. The presented PolyAPM implementation is
a proof of concept so that we did not invest more work to ease the transformation on a syntactical
level.

4.4 Calibrating the Cost Model for send_msgs_a2a

The PolyAPM cost model, as presented in Section 3.4, is intended to give a rough cost estimate
of a program’s execution time for a given input on a specific, real machine. The aim is to provide
some guidance when deciding between different program transformations. As the ultimate goal is
to produce a fast program on a real machine, the cost model tries to predict the future run time
behaviour even for an abstract program.

Section 3.4 motivates our empirical approach. The interpreters execute abstract programs
with real input data and collect run time statistics about the computation and the communications.
In order to compute the cost value for a real machine from these statistics, we need to know about
some machine properties that relate different statistical data.

Remember that a tick is defined as the time that is necessary to multiply two floating point
numbers. The calibration process is needed to determine the values of the normalisation factors
s, r , the message startup costs ms and mr and the barrier cost b for a given machine and com-
munication library. Since the cost model should provide a performance prediction, these values
have to be adapted whenever a change in the library or hardware layer may affect the run time
behaviour. Furthermore, if programming models do not need the full generality of the PolyAPM
cost model, they may set unneeded values to 0. As an example, if messages are sent in a blocking
style, the processors may be implicitly synchronised so that no explicit barrier is needed. In that
case the barrier cost b is set to 0.

We will now describe the process of obtaining the PolyAPM cost model parameters for the
Scali Linux cluster that has been described in detail in Section 4.3. The send_msgs_a2a function
from the mpi_apm library is used for message exchange.

4.4.1 Determining the Computation Cost

To get the cost for a computation we have performed 108 array multiplications in a loop on one
of the cluster nodes. This took 8.1973160 seconds, so that the time for one computation is c =
8.197316 ∗ 10−8 seconds. The factor c will later be used to normalise run times of communication
benchmarks to cost model ticks.

We have compared operation times of addition, maximum and ceildiv (i.e., da
b e) to the mul-

tiplication time. All the different run times were surprisingly similar. However it did make a
difference whether one operand was recently used so that one can expect it to reside in a processor
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register or at least in the processor cache. Therefore the memory access is the governing factor.
Experimental results that we conducted show that on the average, one of two operands has to be
fetched from memory, while the other is usually in the cache. Because of this, we assign all of
the above operations the cost of one tick when determining the computation cost within an APM
program.

4.4.2 Before Determining the Communication Costs

The PolyAPM cost model deals with send, receive and barrier costs independently and combines
their cost. It is unfortunate that the function send_msgs_a2a does all the communications on
both the sending and the receiving end, within a global alltoall call. This makes it difficult to find
the calibration parameters for this software environment.

The first distinction has to be made between constant costs and variable costs, where the
variation is with respect to the number of messages. Consider an MPI program running on n
processors in parallel. Some fraction of the communication cost will be constant in every commu-
nication phase. Any synchronisation cost is an example of this. The rest of the communication
cost increases if number and lengths of the messages increases. However, both the constant and
the variable cost grow with an increasing number of processors.

A typical time step in a PolyAPM program consists of three parts:

1. computations of values

2. filling of the send buffers

3. send_msgs_a2a

Parts 2 and 3 comprise the communication. Part 2 certainly imposes a variable cost and part
3’s cost is a combination of variable and fixed costs. The function send_msgs_a2a in turn can be
separated into four phases:

1. initialisation of displacement arrays (these are arrays of offsets (or displacements) that MPI
uses to access multiple send buffers within one C array)

2. first alltoall to exchange the number of messages

3. second alltoall to exchange the messages themselves

4. unmarshalling the messages and storing their content in memory

Phases 1 and 2 impose constant cost, phases 3 and 4 a cost which varies with the number and
lengths of the messages. Next we present the measurement of the constant cost, then the mea-
surement of the variable cost, which is done by benchmarking the complete communications and
subtracting the constant cost.

4.4.3 Measuring the Constant Communication Cost

The benchmarking setup is simple: only the program parts that contribute a constant to the
communication cost – phases 1 and 2 – remain in the test program. All other parts and steps are
commented out. In our benchmarks we measure the time of 1000 send_msgs_a2a calls, each being
the constant cost for different values of n processors. The results are depicted in Figure 4.11. The
analysis of the data is performed with statistical methods, but the graph already suggests a linear
relationship between the constant cost imposed by the communications between varying number
of processors.
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Figure 4.11: send_msgs_a2a Constant Overhead per Processor

A detailed analysis shows that there is a fixed cost associated with the communication of two
processors and, for every additional processor participating in the communication, the same cost
has to be added. This cost is 0.0085554 seconds for 1000 communications, which leads to the
relation:

constant cost with n processors = (n − 1) ∗ 0.0085554s ∗ 10−3 (4.1)

For all further calibration benchmarks with send_msgs_a2a we subtract the constant cost as
defined by Equation 4.1.

4.4.4 Measuring the Variable Communication Cost

As the alltoall send does all sends, receives and implicit synchronisation in one MPI call, we have
to benchmark the run times of specific communication patterns in order to separate their costs.
The idea is to have one primary processor perform only one kind of communication (either send or
receive), but many of them, whereas all other processors do the opposite operation just once. As
the number of processors grows, the primary processor will dominate the run time. Suppose we
want to measure receive times. On n processors, the primary processor will perform n−1 receives.
We are interested in the linear relation between the number of PolyAPM message receives to run
time. Therefore we perform the timings for 1 to 512 PolyAPM messages, each accounting for
roughly 20 bytes. This series of results is expected to yield a linear relation, but most likely the
“line”will be different for different numbers of processors. In other words, just to measure the cost
for receiving a message we need to perform many benchmarks to get a family of linear relations,
from which we should be able to the deduce the cost for receiving a single message. The same
applies to the inverse, the cost for sending a message.

Figure 4.12 illustrates the setup to measure the receive costs for n = 5. Processor 4 is the
primary one. In the communication phase between time 0 and time 1, we have n − 1 sends to
the primary processor. As n increases, the number of receives by the primary processor increases.
The corresponding situation for send costs is presented in Figure 4.13.

We will first deal with determining the receive costs. Figure 4.14 shows the experimental
results we obtained by performing the receive benchmark on 8 nodes, so that 7 nodes send their
messages of varying length to the 8th. The x-axis ranges over the number of PolyAPM messages,
from 1 to 512. The y-axis denotes seconds for 1000 such sends. One can see that from about
60 messages onward the results lie on an almost straight line, while for fewer messages the times
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are well below that line. As the reason for this we assume that small message numbers do not
completely fill buffers in the MPI or network layer, so that overhead for buffer management does
not yet occur. Since we expect in practise rather more than fewer messages and do not want to
over-complicate things, we decide to deal only with cases where there are more than 60 messages.
The displayed pattern is almost identical for other numbers of processors, and the straight linear
behaviour goes on beyond 512 messages.

In order to analyse the data we need a linear approximation of the data in the upper, linear
part. This approximation is already included in Figure 4.14. It was obtained by the statistical
least squares method. For our experiments, we have written scripts that feed the benchmark data
into Maple [Map] to obtain the linear equations. The data points for message lengths between 0
and 60 are neglected.

Another problem is a property of the least squares method: data points that are way off
and could be considered erroneous have a disproportional effect on the result. We cannot explain
such erroneous data points, but the lack of real time behaviour of the Linux operating system on
the nodes may be the reason for some of them. It is always possible for some system daemon
to consume suddenly CPU time and mess up the benchmark result. In theory, a single wrong
data point can alter the result arbitrarily. Our experience is that we have only very few erroneous
points per benchmark, but we prefer to remove them to get a more accurate approximation.

All our benchmarks use message lengths from 0 to 512 PolyAPM messages. After removing
the first 60 points usually we haven’t observed more than 3 erroneous data points. To be on the
safe side, we remove the 10 worst fitting points before determining the final linear approximation.
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Figure 4.15: Receive Costs over Message Lengths for 2 to 32 Procs

From here on we will only deal with the linear functions that approximate the benchmark
results. Benchmarks for receive cost (as depicted in Figure 4.14) are performed for sets of processors
ranging from 2 to 32 on the Scali cluster. The resulting linear times, normalised to variable cost
by subtracting the constant cost, are displayed in Figure 4.15. While there are too many lines to
identify a particular one, one can observe the regularity in the relation of the lines. The lowest
line is for the 2-processor benchmark, and upwards the lines for increasing numbers of processors
are drawn.



52 Example of a PolyAPM Infrastructure

This regularity suggests that the variable cost for a given message length is proportional to the
number of processors. The ratio of the slopes of the lines and the number of processors appears to
be constant. A simple analysis of the proportions within the data set leads to the cost for receive
on one processor, the receive cost.
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Figure 4.16: Send Costs over Message Lengths for 2 to 32 Procs

All the evaluation detail that has been mentioned in the above discussion for the receive cost
also applies to the send costs as depicted in Figure 4.16. Before we analyse the results in detail,
a few things can be observed by just comparing Figure 4.15 to Figure 4.16. The dynamic startup
costs appear to be quite similar (around 0.5 seconds), but the slope of the receiving cost lines is
about twice as high. It appears that the receiving cost per data item is about twice as high as the
sending cost.

A more accurate comparison has been performed by analysing the slopes and axis intercepts.
Of particular importance are the slope and intercept differences between i and i + 1 processors.
The average of the slope differences denotes the average cost of sending or receiving data to or from
one additional processor. Consider the sending costs: we have sequences of slopes a0, a1, . . . , an

and intercepts b0, b1, . . . , bn that pairwise form linear equations li := y = ai ∗ x + bi . The average
slope a and intercept b are similar to a0 and b0. This leads to the approximation lapprox

i := y =
(i − 1) ∗ a ∗ x + (i − 1) ∗ b. If the errors ai − (i − 1) ∗ a and bi − (i − 1) ∗ b are small, the hope is
that for a given i and sensible values of x the total error of lapprox

i (x )− li(x ) is also small.

For 1000 communications our experiments determined the following costs:

send costs receive costs
as bs ar br

seconds 9.875275 ∗ 10−05 0.0174725 2.773241 ∗ 10−4 0.0144195

Figure 4.17: Calibration Results for 1000 Communications

The two average constants, bs and br , are expected to be similar: they denote the startup cost
for initiating a communication with an additional partner. This cost is defined by the hardware and
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communication library software layers that should be similar in both cases. We therefore define
the general constant cost per additional communication partner bav as the average of the two:
0.0159460 seconds. As the constant cost of one processor communicating with itself is negligible,
and bav is defined for 1000 communications, we define the constant part of the variable cost as:

constant part of variable cost with n processors = (n − 1) ∗ 0.0159460s ∗ 10−3 (4.2)

4.4.5 Confirming the Cost Prediction

So far the costs for sends and receives have been determined by just one kind of benchmark. A
double-check should confirm the predictions of the cost model. To do this we have performed a third
benchmark which is a combination of the send and the receive benchmark. The communication
structure is depicted in Figure 4.18.
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Figure 4.18: Confirming Send and Receive Costs

The idea is to accumulate send and receive costs at one processor which then dominates the
benchmark’s run time. From the number of sends and receives we will predict the run times of
the benchmark and compare the results with the timings. This prediction is not done by way of
the PolyAPM cost model, it is just a sanity check for the run times in Figure 4.17.

The prediction is (p − 1) ∗
(
as + br

)
∗ x + bav with x being the number of PolyAPM messages

and p the number of processors. The benchmark results are shown in Figure 4.19. For each
number of processors we have a linear function that approximates the run time depending on the
message length, i.e., the number of PolyAPM messages. On the other hand, the prediction above
also yields such a linear function. To compare the two, we consider the functions to be of the form
f (x ) = a ∗ x + b. The comparison is done on the parameters a and b and presented in Figure 4.20.

The a column shows an error margin of almost 60% with lower processors, which later goes
down to about 10% at 32 processors. The error in the b column is smaller and also shrinks with
an increasing number of processors. The decreasing error was to be expected, as the prediction
is based on the averages of a and b values over 32 processors. The fact that the decrease in the
b column is not monotonic is not really a problem. The values of b denote the difference in the
startup cost of prediction and benchmarks for messages of zero length. There is a considerable
error in the benchmark to be expected for such messages. Furthermore, the value of b is only of
small impact on the performance prediction in Figure 4.21.

However, more important than just comparing a’s and b’s is to measure the difference of the
function’s values. The function f (x ) predicts the cost of x messages sent per node. For realistic
values of x , the accuracy of this prediction is crucial. Note that the column of b in Figure 4.20
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Figure 4.19: Send and Receives on 1 Processor out of 2 to 32 Procs

is f (0). For 100 and 500 PolyAPM messages, we have compared the measured and predicted
communication cost for all numbers of processors and determined the difference in percent (see
Figure 4.21). The value of b has only limited impact on the values of f (100) and f (500).

In total, the error margin is acceptable. The performance of the entire system depends on the
bandwidths of several buses and networks and the sizes of several buffers. We have employed a
simplistic linear prediction model and the error margin is well below a factor of 2 in all cases, and
usually much better than that. In addition, the cost model prediction is higher than the actual
value, so that it is a conservative approximation. The reason is most likely that we scaled the
cost for a single message, ignoring the fact that due to pipelining in the hardware the actual cost
might be lower than this linear scaling.

The PolyAPM cost model does not strive for accurate run time prediction of the final program
but is rather a tool for the relative cost comparison. Highest accuracy is neither feasible nor
necessary for our purposes.

4.4.6 Determining the Cost Model Parameters

So far we have determined the computation cost c, the constant communication startup cost (given
in Equation 4.1) and the send and receive costs (given in Figure 4.17). All communication values
are normalised with respect to c.

The cost model parameters, as mentioned in the PolyAPM cost model in Figure 3.5, have to
be defined for the cost model computation in the APM interpreters. They are stored in a record
of type CostModel, and we can have several of them. One such record is given as a parameter to
the cost model computation of the APM interpreters.

data CostModel = CostM {mstartup_s::Float, mstartup_r::Float,
normsent::Float, normrcvd::Float,
barrier::Int->Float, coalesce::Bool}
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procs diff a diff b
2 52.67% -28.18%
3 56.76% -39.90%
4 57.36% -37.56%
5 57.13% -36.01%
6 58.17% -38.52%
7 58.89% -40.18%
8 35.14% -28.92%
9 45.55% -30.98%

10 44.02% -33.40%
11 55.03% -39.98%
12 46.39% -39.11%
13 45.42% -32.47%
14 41.47% -31.52%
15 39.66% -37.35%
16 39.35% -38.98%
17 28.93% -17.31%
18 34.23% -23.54%
19 25.51% -11.62%
20 21.78% -9.06%
21 24.84% -14.32%
22 24.88% -22.97%
23 24.91% -20.51%
24 19.78% -8.54%
25 19.35% -7.14%
26 15.61% 7.39%
27 17.03% -5.55%
28 14.27% 3.09%
29 16.76% -11.18%
30 10.15% 14.02%
31 11.57% -0.49%
32 10.59% 17.82%

Figure 4.20: Differences of Measured and Pre-
dicted Communication Cost Functions f (x ) =
a ∗ x + b in calib_mult1to1

procs 100 msgs 500 msgs
2 14.34% 40.32%
3 6.00% 39.25%
4 8.33% 40.65%
5 9.62% 41.08%
6 7.72% 40.85%
7 6.42% 40.68%
8 6.55% 26.25%
9 9.43% 33.95%

10 6.99% 32.02%
11 5.37% 37.96%
12 3.23% 31.91%
13 8.25% 33.39%
14 7.39% 30.59%
15 2.24% 27.42%
16 0.82% 26.64%
17 10.53% 23.53%
18 9.58% 26.75%
19 11.55% 21.52%
20 10.61% 18.64%
21 9.89% 20.54%
22 5.39% 19.10%
23 6.75% 19.57%
24 9.67% 16.95%
25 10.01% 16.75%
26 13.03% 14.92%
27 9.25% 14.88%
28 10.70% 13.31%
29 6.76% 13.96%
30 11.27% 10.44%
31 7.68% 10.52%
32 12.65% 11.12%

Figure 4.21: Differences of Measured and
Predicted Communication Costs for Message
Lengths of 100 and 500 in calib_mult1to1
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The barrier cost is the sum of the constant communication startup cost (see Equation 4.1)
and the fixed cost associated with each message exchange (see Equation 4.2), divided by c. This
cost is imposed once for every communication phase. The constant part of the variable cost is an
unusual component of the barrier cost. One would rather expect for bs and br to be the major
components of ms and mr , resp. However, we found that, in the case of send_msgs_a2a with
message coalescing, this variable startup cost is independent of the number of sent and received
messages. The ruling parameter is the number of communication partners. This is also the case
with the constant startup cost itself. Because of this, we have included both in the barrier cost
and set the message startup costs ms and mr to 0.

The variable send and receive costs are the average slopes per processor of the corresponding
benchmark functions, i.e., as

c
ar

c .

The above arguments lead to the following set of PolyAPM cost model parameters:

CostM {mstartup_s=0.0, mstartup_r=0.0,
normsent=1.2046961, normrcvd=3.3831080 ,
barrier= (\n->(fromIntegral (n-1))*298.8954664),
coalesce = True}

These numbers provide us with insight into the performance behaviour of our Scali cluster
with the send_msgs_a2a function within the mpi_apm library. Receiving is twice as expensive
as sending, and both factors are unusually small when compared to the cost of one computation,
which is by definition one tick. So receiving a floating point number is about 3.4 times as expensive
as computing it. In other architectures, we can expect communication to be more expensive.
However, the barrier cost for each communication phase is comparatively high. The parameter n
within the barrier cost denotes the number of processors participating in the communication.



Chapter 5

Case Study I: Finite Differences

As a first illustrating example, we choose the two-dimensional finite difference method. We start
with an abstract problem specification, and by going through a process of program transformations
– each yields a new, interpretable specification with equal input/output behaviour – we eventually
obtain an executable program for a specific target platform.

First we need to implement the specification in Haskell and identify the parallelism. The
APM program expresses the parallelism as a loop nest with one of the two outermost loops being
tagged as “parallel”. Then we derive subsequent APM programs until a final transformation to
the target language is feasible.

The abstract specification of the two-dimensional finite difference problem (as presented by
[Fos95]) describes an iterative process of computing new array elements as a combination of the
neighbour values and the previous value at the same location. In one such iteration an input array
is used to produce an output array of the same size. An application of the finite difference problem
typically consists of many such iterations. Many application domains, such as image processing,
operate on two-dimensional data.

In order to get a picture of what this algorithm does see Figure 5.1. The left part shows the
computation of a new element. Its old value is multiplied by four, then the values of the right, left,
upper and lower neighbours are added, and finally the result is divided by eight. This operation
can be performed only if all four neighbours exist, which is not the case at the borders of the array.
The right part of the picture shows that in one finite difference iteration only the inner elements
are being computed, while the border elements are just copied from the old array. No matter in
which order the elements of the new iteration are computed, every computation needs old values
from the previous iteration that are being overwritten by current ones. Thus two copies of the
array are needed: one with the old content that is read-only, and one to hold the new values that
is write-only. Subsequent iterations may alternate the role of the two copies.

Formally, the new array at at iteration t with (xh − xl) ∗ (yh − yl) elements is defined as:(
∀x ∈ {xl + 1 . . . xh − 1},∀y ∈ {yl + 1 . . . yh − 1} : :

at [x , y ] :=
at−1[x − 1, y ] + 4 ∗ at−1[x , y ] + at−1[x + 1, y ] + at−1[x , y − 1] + at−1[x , y + 1]

8

)
,

(∀y ∈ {yl . . . yh} : :
at [xl , y ] := at−1[xl , y ],
at [xh, y ] := at−1[xh, y ] ),

(∀x ∈ {xl + 1 . . . xh − 1} : :
at [x , yl ] := at−1[x , yl ],
at [x , yh] := at−1[x , yh] ) (5.1)

57
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Figure 5.1: 2D Finite Differences

The Haskell specification of this problem is given in Figure 5.2. Note how closely the Haskell
program of Figure 5.2 corresponds to Equations 5.1. findiff2D represents one iterative step in
which a new array is computed from the previous array a, just as the Equations 5.1 require.
Function fd calls findiff2D as often as the parameter n prescribes. It does so by a repeated
function composition using ncombine. In the current example, the number of iterations is arbitrary,
but fixed. We set n = 20. Each call to findiff generates a new Haskell array with the updated
values. This corresponds to a destructive update of an array using an imperative programming
model. In this example, all references to a refer to the previous iteration, so that, as explained
above, we need two copies of the array.

We continue with the presentation of transformed findiff programs, emphasising the differ-
ence to the corresponding predecessor programs.

5.1 Initial Code Generation: The Synchronous Program

The Haskell program specification (Figure 5.2) has to be transformed into an imperative loop
nest. We call this process the initial code generation as it is the first of a sequence of program
transformations. In parallel programming the term code generation is usually reserved for the
construction of the final program version, to be executed on a parallel machine.

The parallelisation of the finite difference source program is done manually. It is obvious that
the calculations of the array elements inside one particular findiff2D call are independent, but
they all depend on the previous values. Thus, fd corresponds to an outer, sequential loop with 20
iterations, whereas the list comprehensions inside findiff2D yield a parallel loop.

To write a SynAPM program for findiff, we proceed as follows:

1. We define the memory contents, here: two arrays a and a1 of the same kind as the input
array.

2. We set the read-only structure parameter list to [n], where n describes the size of a.

3. We define the loops: one outer sequential loop, arbitrarily set to 20 iterations, and one inner
parallel loop, ranging from 0 to n2 − 1.
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findiff2D:: LArray (Int,Int) Float -> LArray (Int,Int) Float
findiff2D a = array ((xl,yl),(xh,yh))

([((xl,y), a!(xl,y)) | y <- [yl..yh]] ++
[((xh,y), a!(xh,y)) | y <- [yl..yh]] ++
[((x,yl), a!(x,yl)) | x <- [xl+1..xh-1]] ++
[((x,yh), a!(x,yh)) | x <- [xl+1..xh-1]] ++
[((x,y), (a!(x-1,y)+a!(x+1,y)+4*a!(x,y)+a!(x,y-1)+a!(x,y+1))/8 )
| x<-[xl+1..xh-1], y<-[yl+1..yh-1]])

where ((xl,yl),(xh,yh)) = bounds a

ncombine:: Int -> (a->a) -> (a->a)
ncombine 0 f = f
ncombine n f = f . (ncombine (n-1) f)

fd :: (LArray (Int,Int) Float) -> (LArray (Int,Int) Float)
fd a = ncombine 20 findiff2D a

Figure 5.2: Sequential Haskell Specification of Finite Differences

4. We write a loop body function.

5. We define an instance of the Synchronizing class.

This defines the synchronous loop nest loop_s in Figure 5.3. The body function of a SynAPM
program has the following type: BD (e -> b -> e), i.e., it takes some state, consisting of memory
and structure parameters, and a list of current values of all surrounding loops, to return an updated
state. Figure 5.3 shows the state to be of type (Mem,[Idx],CompStat). The memory type Mem
comprises the two arrays. The first array a is the one computed by the previous iteration, and a1
is computed by the current iteration. Note that the structure parameter list splist consists of
only one item: n, the size of the arrays. As the bordering array elements are just copied and not
computed, a case analysis is needed.

The x and y coordinates addressing the array elements are defined in terms of the parallel
loop variable p. The two separate generators of x and y from the specification are replaced by one
p loop.

The computation statistics are part of the PolyAPM cost model. The basic cost unit is a
floating point operation. The cost type is a one-dimensional array of processor numbers and their
costs. In each loop iteration the current computation cost is added to the pth element of the cost
array ca.

The programmer determines the sum of all operations’ costs that are executed within the loop
body. In the body_s function in Figure 5.3 we determine the cost of the if guard and add the
computation costs of the branches. The guard contains four comparisons and three disjunctions,
so that we estimate the cost with seven units. The first branch does no computation at all, so the
total cost is just seven units. The second branch executes stmnt1 that we gauge with additional
six units, thus yielding a total of 11 units. These two cost values are added to the cost array as
part of the return state.

Between the time steps we need to reorganise the memory. With each time step, we need a new
array that holds the new values. It is placed in the right component of the memory pair (a,a1).
The reorganisation shifts the arrays: the old a array is disregarded, the old a1 array becomes the
new a array, and an empty array is created and named a1. This task has to be performed after all
loop iterations of the time step are completed. The function synchronizeMem is the right place
for this. Subsequent synchronizeMem instances will be identical until the memory type changes
in SynDMAPM.
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type Mem = (LArray (Int,Int) Float,LArray (Int,Int) Float)

if_cost = 7 -- cost for the if-guards inside the loop body
elt_cost = 6 -- cost to compute one new element in the body

loop_s = LP [(Seq, \([],(n:_))->0,
\([],(n:_))->21,
\([],(n:_))->1),

(Par, \((t:_),(n:_))->0,
\((t:_),(n:_))->n*n,
\((t:_),(n:_))->1)]

(BD body_s)

body_s::(Mem,[Idx],CompStat) -> [Idx] -> (Mem,[Idx],CompStat)
body_s ((a,a1),splist,ca) (t:p:_) =

if (x == xl || x == xh || y == yl || y == yh)
then ((a, a1//[((x,y),a!(x,y))]),

splist, ca//[(p, if_cost+ca!p)])
else ((a, stmnt1 a a1 (t,x,y,n)),

splist, ca//[(p, if_cost+elt_cost+ca!p)])
where stmnt1 a a1 (t,x,y,n) =

a1//[((x,y),(a!(x-1,y)+a!(x+1,y)
+4*a!(x,y)+a!(x,y-1)+a!(x,y+1))/8)]

x = p ‘mod‘ n
y = p ‘div‘ n
(low,up) = bounds a
((xl,yl),(xh,yh)) = (low,up)
(n:_) = splist

instance Synchronizing Findiff2D_SynAPM Mem where
synchronizeMem Findiff2D_SynAPM (a,a1) =

(a1,listArray (bounds a1) [ error ("fd "++(show i))|i<-(indices a)])

Figure 5.3: SynAPM Version of the Finite Differences

If we interpret the APM program with four processors and a problem size of n = 256, we
obtain the following results in our cost model:

Cost model, total (no comms): 4.113507e8, agg. work: 1.7762808e7

These results tell us that the cost of the parallel execution of this program is by an order of mag-
nitude greater than the aggregated cost of all computations. Since the latter can be viewed as an
estimate of the sequential run time, we obtain a speedup of less than 1. This bad performance is
typical for initial SynAPM programs. The reason is that after each time step a barrier synchronisa-
tion takes place and the cost model profile for the Scali cluster contains a barrier cost function that
is linear in the number of participating processors. The initial APM program uses the maximum
number of (virtual) processors as given by the problem size, with each processor computing only
one element per time step. Therefore, the barrier cost per processor is much higher than the small
computation cost, yielding the bad speedup.
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data Findiff2D_til_SynAPM = Findiff2D_til_SynAPM

tilesize2D n maxp = min (n ‘div‘ (intSqrt maxp)) n

loop_til = LP loop_bounds_til (BD body_til)

loop_bounds_til = [(Seq, \([],(n:maxp:_))->0,
\([],(n:maxp:_))->21,
\([],(n:maxp:_))->1),

(Par, \((t:_),(n:maxp:_))->0,
\((t:_),(n:maxp:_))->maxp,
\((t:_),(n:maxp:_))->1),

(Seq, \((t:rp:_),(n:maxp:_))->
max ((rp ‘mod‘ intSqrt maxp) * tilesize2D n maxp) 0,

\((t:rp:_),(n:maxp:_))->
min ((rp ‘mod‘ intSqrt maxp) *

tilesize2D n maxp + (tilesize2D n maxp)) n,
\((t:rp:_),(n:maxp:_))-> 1),

(Seq, \((t:rp:x:_),(n:maxp:_))->
max ((rp ‘div‘ intSqrt maxp) * tilesize2D n maxp) 0,
\((t:rp:x:_),(n:maxp:_))->
min ((rp ‘div‘ intSqrt maxp) *

tilesize2D n maxp + (tilesize2D n maxp)) n,
\((t:rp:x:_),(n:maxp:_))-> 1)]

body_til::(Mem,[Idx],CompStat) -> [Idx]
-> (Mem,[Idx],CompStat)

body_til ((a,a1),splist@(n:_),ca) [t,rp,x,y] =
if (x == xl || x == xh || y == yl || y == yh)
then ((a,a1//[((x,y),a!(x,y))]),splist,ca//[(rp,if_cost+ca!rp)])
else ((a, stmnt1),splist,ca//[(rp,if_cost+elt_cost+ca!rp)])

where stmnt1 =
a1 //[((x,y), (a!(x-1,y)+a!(x+1,y)+4*a!(x,y)+a!(x,y-1)+a!(x,y+1))/8)]

(low,up) = bounds a
((xl,yl),(xh,yh)) = (low,up)

instance Synchronizing Findiff2D_til_SynAPM Mem where
synchronizeMem Findiff2D_til_SynAPM = synchronizeMem Findiff2D_SynAPM

Figure 5.4: Tiled SynAPM Version of the Finite Differences
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5.2 The Tiled Program

The first transformation within the APM framework according to the PDG (Figure 3.1) is the
processor tiling to reduce the number of parallel processors with the following effects: matching
an existing machine with limited resources, improving locality and increasing the computational
work load per processor in order to increase efficiency.

Figure 5.4 shows the synchronous findiff program after a processor tiling transformation.
The parallel loop of loop_s has been partitioned into tiles such that the number of remaining
parallel iterations matches the number of physically available processors (as defined by physprocs).
The old parallel loop ranges over all n2 elements of the result array, so that the parallelism is
reduced from n2 to maxp. Each tile comprises a number of independent loop iterations that
are now sequentially executed on the same physical processor. Therefore, one or more loops are
necessary to enumerate these sequential iterations. In our case, we choose a two-dimensional tiling,
so that two inner sequential loops are added.

A two-dimensional tiling with square tiles will exhibit the smallest number of communications
later on. This is because the computations of the finite difference problem need only neighbour
values, so that the number of communications needed for all iterations within a tile is proportional
to the length of the circumference of the tile. The index space is rectangular, so we use rectangular
tiles to partition the index space. The rectangles with the smallest circumference are squares, which
is why we use square tiles to minimise the communications. This is called the surface-to-volume
effect (see [Fos95], page 40). Costing an alternative APM program would easily reveal that a
different rectangular tiling causes a higher number of communications.

We choose to enumerate the iterations within a tile with two sequential loops, one for each
dimension. If we used just one loop, ranging over p, we could re-use the loop_s body. But in
that case the loop bounds for the p loop are quite complicated. We pay for simplicity in the loop
bounds with a slight modification of the body function.

The two inner sequential loops enumerate the absolute x and y coordinates of each compu-
tation within a tile. While body_s has to determine the values for x and y from the value of
p, body_til gets them directly as loop variables. Except for the adaptation of these variables,
the body function does not change. As the APMs work with an arbitrary but fixed number of
processors, the tiled program can still run on SynAPM.

An execution of the tiled program yields a dramatic decrease of the parallel cost (again four
processors and input size of 256):

Cost model, total (no comms): 4459533.0, agg. work: 1.7762808e7

The main reason for this decrease is that, instead of previously 256 processors, now only four
processors have to synchronise. We show in Section 4.4.3 that the barrier cost is a linear function
of the number of involved processors. Since no communication is involved, the speedup improved
from significantly less than one to 3.98. This is expected as the load should be distributed equally
over the four processors.

Code Changes to Obtain the tiled Program

• The tilesize2D function to determine the length of the square tiles is added.

• The former p loop is replaced by the rp loop that enumerates real processors. Two additional
loops for x and y are added to enumerate operations within a tile.

• The body function takes four loop variables, t , rp, x and y . The computation of x and y
has been removed.
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5.3 The Communicating Program

Loop and body functions are the same as in the tiled program except for the memory type.
Whereas in the previous APM programs the memory type could be defined freely, we now require
the parameterised type GlobalStateShM that couples memory and message queue. Functions
that alter the memory now have to access it as part of the global state. The message queue is not
manipulated directly. The SynCommAPM program is presented in Figure 5.5. Emphasising font is
used for pseudo code that replaces some longer Haskell code. Function synchronizeMem has been
omitted as it is identical to the SynAPM version.

gen_cost = 8 -- cost for the message generation right after the body

body_sc = similar to body_til

loop_sc = similar to loop_til, msg generation after each body

instance Sendable Findiff2D_SynCommAPM SC_Dom (Int,Int) Float Mem where
generateMsg Findiff2D_SynCommAPM [t,rp,x,y] (n:maxp:_) (a,a1) =

([Msg (rp, to_p, t, to_tm, A, (x,y), a1!(x,y), 1.0)|
to_p <- (

(if is_left_border then [rp-1] else [])++
(if is_right_border then [rp+1] else [])++
(if is_upper_border then [rp-(intSqrt maxp)] else [])++
(if is_lower_border then [rp+(intSqrt maxp)] else [])
),

to_tm <- [t+1]
],(rp,gen_cost))

where ts = tilesize2D n maxp
is_left_border = xpos == 0 && is_inner_element
is_right_border = xpos == (ts-1) && is_inner_element
is_upper_border = ypos == 0 && is_inner_element
is_lower_border = ypos == (ts-1) && is_inner_element
is_inner_element= ((x > 0) && (x < n-1) && (y > 0) && (y < n-1))
xpos = x ‘mod‘ ts
ypos = y ‘mod‘ ts

instance Updatable Findiff2D_SynCommAPM SC_Dom (Int,Int) Float Mem where
updateMem Findiff2D_SynCommAPM
(Msg (from_p, to_p, from_tm, to_tm, dom, idx, val, cost)) (a,a1) =

if (a1!idx) == val
then (a,a1 //[(idx,val)])
else error "Wrong update of cell"

Figure 5.5: SynCommAPM version of the Finite Differences

New are two additional functions that have to be implemented by the programmer and which
are called from inside the interpreter:

• generateMsg generates new messages originating from each processor at each time step;

• updateMem updates the state’s memory with values sent in a message.

A remark for the Haskell expert: these two functions have to be introduced by class instance
declarations because the APM interpreter needs some type information to use the – from the
interpreter’s point of view – undefined functions as stubs. This is because the APM interpreters
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reside in a separate Haskell module that is being used by different APM program modules. So,
for every APM program the specific instances of these three functions are different, yet they need
to fit into the APM, and making them instances of multi-parameter type classes guarantees the
integration into the APM interpreter.

The function generateMsg first checks whether the element just computed is at the border of
a tile, but not at the border of the index space. If those conditions are satisfied, then messages to
the neighbouring tiles are generated. Together with the list of generated messages this function
returns the cost for the generation, paired with the processor id.

The function updateMem checks before an update whether the memory’s and the message’s
values are identical. If they differ, the interpreter issues a run time error message because a wrong
communication message was generated. This is by no means a method to prove correctness of
communications, but testing the SynCommAPM program with a variety of inputs without errors
can provide some confidence in the message generation, which belongs to the more error-prone
parts of parallel programming. The SynDMAPM provides further communication checks.

To evaluate the transformation we execute the transformed SynCommAPM program again on
four processors with an input size of 256:

Cost model, total: 7236516.0
work totals: [7193214.0,7193214.0,7193214.0,7193214.0]
send totals: [42,42,42,42] = 168
recv totals: [42,42,42,42] = 168
comm totals: [43301.758,43301.758,43301.758,43301.758]

Several things are worth noticing: the total cost has gone up again, and when compared to the
aggregated (i.e., sequential) work of the SynAPM programs, it exhibits an expected speedup of
only 2.45. The additional data provides insight into the reason for this loss of efficiency. Each list
of totals contains four elements, one for each processor. The values are the sums of the respective
cost for each processor over the entire program execution. As finite difference is a completely
symmetric problem, the cost is identical for all processors.

The computational work (work totals) is the major component of the total cost and by two
orders of magnitude greater than the communication cost (comm totals). The latter is small
since we do not have many communications going on – just 42 sends and receives per processor.
However, note that the employed cost model profile is for coalesced messages (as implemented by
the mpi_apm library), so that the number of PolyAPM messages is much higher than 42.

The increase in the total cost is mainly due to the increase of computation cost. However, the
loop bodies do the same amount of work. The additional cost stems from the effort for message
generation, which is in this example relatively high compared to the body computations.

Note that, in this completely symmetrical problem, the total cost is just the sum of compu-
tation and communication costs. For asymmetric problems, this is usually not the case. The total
cost is the sum of the maximal processors costs of each time step. If – over time – different pro-
cessors assume the maximum, then the total cost may be higher than each individual processor’s
sum.

Code Changes to Obtain the Communicating Program

• A GlobalStateShM type combining memory and message queue replaces the memory; types
in body and LP are adapted accordingly.

• Each call of the body is followed by a call of the message generation function of Syn-
CommAPM, which in turn calls the provided generateMsg (see Section 4.2.3).

• Instance declarations for generateMsg and updateMem are added.
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type DM_local_state = LocalState Mem SC_Dom (Int,Int) Float

data Findiff2D_SynDMAPM = Findiff2D_SynDMAPM

body_dm::(DM_local_state ,[Idx]) -> [Idx] -> ((DM_local_state,[Idx]),[Idx])
body_dm (LState mem msgs (CCL statl), splist) (idxlist@[t,rp,x,y]) =

if (x == xl || x == xh || y == yl || y == yh)
then ((LState (a,a1//[((x,y),a!(x,y))]) msgs

(CCL ((if_cost):statl)),splist), idxlist)
else ((LState (a,a1//[((x,y),stmnt1)]) msgs

(CCL ((if_cost+elt_cost):statl)),splist), idxlist)
where stmnt1 = (a!(x-1,y)+a!(x+1,y)+4*a!(x,y)+a!(x,y-1)+a!(x,y+1))/8

(a,a1) = mem
((xl,yl),(xh,yh)) = bounds a
(n:_) = splist

The functions loop_dm, generateMsg, updateMem and synchronizeMem are similar

to before and have only been adjusted to the new memory data type.

Figure 5.6: SynDMAPM version of the Finite Differences

5.4 The Distributed Memory Program

With the paradigm shift from shared to distributed memory, the memory representation in the
APM programs has to be adapted. Each processor gets its own chunk of the memory, which in
this case is defined by the type DM_local_state in the program in Figure 5.6. The distributed
memory comprises all the data which is computed on this processor and a copy of the remotely
owned data that is required for the computation. The values of the latter are communicated before
the computation.

The two-dimensional array is divided into square sub-arrays according to the tile size, with
an additional rim of width 1 at the edges to accommodate copies of neighbour elements needed for
the computation. With a tile size of ts, the arrays in the local memory of each processor contain
(ts + 2)2 elements. The tiles overlap because of the rims.

Since Haskell (and therefore PolyAPM) programs allow for array indices of any ordered type,
the new local memory arrays that contain the local tiles can use the identical indices of the
corresponding SynAPM global memory sub-array. Unlike, e.g., in C, Haskell arrays do not need
to be indexed from 0 to size − 1. This leads to only few adaptations in the body_sc function to
result in Figure 5.6.

The previous APM programs could directly change the cost information in the globally avail-
able [CostItem] list. The loop bodies of a SynDMAPM program have only access to the local state.
In Section 4.2.4 we explain how the body function stores its computation cost in a local computa-
tion cost list CCL and the how interpreter collects its content at the end of each time step to store
it in the global cost structure.

Also, the instance declaration functions generateMsg, updateMem and synchronizeMem have
to be adapted to the new memory type, but all of these changes are straightforward.

As the new memory type affects neither the computation cost nor the communication over-
head, the total PolyAPM cost remains the same:

Cost model, total: 7236516.0 (9989028.0)
...
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Code Changes to Obtain the Distributed Memory Program

• The memory type within the global state changes to an array of local state types, one state for
each processor. Body function, generateMsg, updateMem and synchronizeMem are adapted
accordingly.

• In the LP structure, just the names of the body/generateMsg functions change.

• Any non-APM functions have to be adapted which create the initial state to be fed into
the PolyAPM program and also functions that access the state after the APM interpreter
finishes.

5.5 The Distributed Memory Program with Relative Coor-
dinates

So far all APM programs have used absolute coordinates. However, target languages like C
require their arrays of size n to be indexed from 0 to n − 1. One aim of PolyAPM is to make each
transformation simple, with special emphasis on the last transformation to the target program.
Since a change in the way the memory is indexed affects most APM program parts, we perform
another PolyAPM transformation. The result is again a SynDMAPM program, but with relative
indexing, so that the subsequent transformation to C is simpler.

In the code in Figure 5.7 the sub-arrays that comprise the memory of a specific tile are indexed
with relative coordinates. As the loop bounds remain unchanged, the body function converts the
absolute index values x and y to their respective relative counterparts xRel and yRel that start
from 0. All memory accesses are adapted accordingly.

The index change also affects message generation. Each message contains the array index of
the transmitted value. The previous APM programs use absolute coordinates in which each index
is globally unique. This is not true for the relative coordinates, in which the local tile memory of
each processor is indexed from (0,0) to (ts − 1, ts − 1). The coordinates of the sender’s elements
have to be converted to the coordinate system of the receiving end. This is done by the function
dst_relCoords that computes the relative coordinates of the destination processor.

The functions updateMem and synchronizeMem as well as the cost model results are not
affected by the index change so that they are not repeated here.

This program resembles very much an imperative SPMD program with loops as the control
structure so that the transition to C+MPI can be performed easily.

Code Changes to Obtain the Distributed Memory Program with Relative Coordinates

• Replace all array indices x and y by xRel and yRel .

• Adapt generateMsg with a dst_relCoords to send the relative coordinates as indices in a
message.

5.6 The C+MPI Program

This last transformation leaves the APM realm. Conceptually, nothing interesting happens, but a
language barrier has to be crossed. The simpler the body function is, the easier its transformation
into a C function gets. The premier area of parallel programming, scientific computation, usually
deals with arithmetic operations on arrays. The array as the most frequently used data structure
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body_rel_dm::(DM_local_state ,[Idx]) -> [Idx] -> ((DM_local_state,[Idx]),[Idx])
body_rel_dm (LState mem msgs (CCL statl), splist@(n:maxp:_))

(idxlist@[t,rp,xAbs,yAbs]) =
if (xAbs == 0 || xAbs == n-1 || yAbs == 0 || yAbs == n-1)
then ((LState (a, a1//[((xRel,yRel),a!(xRel,yRel))]) msgs

(CCL ((if_cost):statl)),splist), idxlist)
else ((LState (a,a1//[((xRel,yRel),stmnt1)]) msgs

(CCL ((if_cost+elt_cost):statl)),splist),idxlist)
where stmnt1 = (a!(xRel-1,yRel)+ a!(xRel+1,yRel)+ 4*a!(xRel,yRel)+

a!(xRel,yRel-1)+ a!(xRel,yRel+1) )/8
(xRel,yRel) = abs2rel (xAbs,yAbs) rp n maxp
(a,a1) = mem

instance Sendable Findiff2D_rel_SynDMAPM SC_Dom (Int,Int) Float Mem where
generateMsg Findiff2D_rel_SynDMAPM [t,rp,xAbs,yAbs] splist@(n:maxp:_) (a,a1) =

([Msg (rp, to_p, t, to_tm, A, dest_coords, a1!(xRel,yRel), 1.0)
| (to_p, dest_coords) <-
((if is_left_border then [(rp-1, dst_relCoords (rp-1))] else [])++
(if is_right_border then [(rp+1, dst_relCoords (rp+1))] else [])++
(if is_upper_border then [(rp+sqMaxp, dst_relCoords (rp+sqMaxp))] else [])++
(if is_lower_border then [(rp-sqMaxp, dst_relCoords (rp-sqMaxp))] else [])
),
to_tm <- [t+1]

], (rp, gen_cost))
where sqMaxp = intSqrt maxp

dst_relCoords p = abs2rel (xAbs, yAbs) p n maxp
(xRel, yRel) = dst_relCoords rp
ts = tilesize2D n maxp
is_left_border = xRel == 1 && is_abs_inner_element
is_right_border = xRel == ts && is_abs_inner_element
is_upper_border = yRel == ts && is_abs_inner_element
is_lower_border = yRel == 1 && is_abs_inner_element
is_abs_inner_element

= ((xAbs > 0) && (xAbs < n-1) &&
(yAbs > 0) && (yAbs < n-1))

Figure 5.7: SynDMAPM version of the Finite Differences with Relative Indexing
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exists in both languages. This is not to say that more general problem domains cannot be handled,
but then the target code transformation can get more complicated.

To generate target code, abstract APM communications have to be transformed into MPI calls
by using the mpi_apm library. The memory data type and its distribution/aggregation function
need imperative equivalents. But all these changes are isolated, and in most cases not difficult,
especially if this transformation was taken into account while choosing the appropriate Haskell
types.

Procedure to Obtain the C+MPI Program

• The template in Figure 4.8 for an SPMD program is used. The body, message generation and
memory update functions have to be filled in, i.e., the functions body_rel_dm, generateMsg,
updateMem and synchronizeMem are rewritten in C.

• The memory type has to be adapted, the MPI message handling is performed by the mpi_apm
library.

• Any functions creating and reading the finite difference arrays have to be reimplemented in
C.

void apm_main_loop(int n){
int t,x, y, xAbs,yAbs, status, i;
const int rp = rank;
const int lbX = MAX((rp % sqrtMaxp) * ts, 0);
const int ubX = MIN((rp % sqrtMaxp) * ts + ts, n);
const int lbY = MAX((rp / sqrtMaxp) * ts, 0);
const int ubY = MIN((rp / sqrtMaxp) * ts + ts, n);

for (t = 0; t < NUM_RUNS; t++) {
clear_senddata();

for(xAbs = lbX; xAbs < ubX; xAbs++) {
for(yAbs = lbY; yAbs < ubY; yAbs++) {
body2d(t,rp,xAbs,yAbs,n);
genmsgs(xAbs, yAbs, n);

}
}
send_msgs(n);
synchronizeMem();

}
}

Figure 5.8: Finite Differences in C+MPI: Function apm_main_loop

We will now present some selected C functions of the target program to illustrate the trans-
formation. Figure 5.9 shows the complete set of correspondences between the APM and the C
program.

The filled-in template of Figure 4.8 is the function apm_main_loop as depicted in Figure 5.8.
Initially, the extent of the tile is determined and used for the inner loop bounds. At the beginning
of each time step the send buffers are cleared. The two loops start the enumeration of all absolute
indices of a tile and call body2d for the computation and genmsgs for message generation. After
all computations of a time step are completed, the messages are sent and the arrays are swapped.
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APM program parts C+MPI program parts
general loop structure, template in Figure 4.8 apm_main_loop (Fig. 5.8)
body_s_relDM (Fig. 5.7) body2d (Fig. 5.10)
generateMsg (Fig. 5.7) genmsgs (Fig. 5.11)
synchronizeMem (SynAPM version Fig. 5.3) synchronizeMem (Fig. 5.12)
updateMem (SynCommAPM version Fig. 5.5) updateMem_with_msg

APM interpreter message exchange send_msgs (Fig. 5.12)

Figure 5.9: Correspondences of APM and C Programs

void body2d(int t, int rp, int xAbs, int yAbs, int n){
int relX, relY;
abs2rel(xAbs,yAbs, &relX, &relY, rank, n);
if (xAbs == 0 || xAbs == n-1 || yAbs == 0 || yAbs == n-1) {
fd_a1[relX][relY] = fd_a[relX][relY];

} else {
fd_a1[relX][relY] = (fd_a[relX-1][relY] + fd_a[relX+1][relY] +

4*fd_a[relX][relY] + fd_a[relX][relY-1] +
fd_a[relX][relY+1])/8;

}
}

Figure 5.10: Finite Differences in C+MPI: Function body2d

Figure 5.10 displays the C implementation of the body function. The loop variables are
passed on as parameters, while the arrays, represented by fd_a and fd_a1 are globally defined.
The structure of the function follows the corresponding APM function (compare with function
body_relDM in Figure 5.7).

The message generation of the C program in Figure 5.11 corresponds to the PolyAPM function
generateMsg in Figure 5.7. The Haskell list comprehension does not have a direct correspondence
in C. Messages are created and placed in the send buffer by the function genMsgTo. This is the
equivalent of creating one message as a list element in the APM function. Message creation is
guarded by several predicates. The C function has a nested if structure to accommodate the cases
defined by the conjunction of these predicates, while the Haskell function contains a combination
of guarded list generators. But the underlying principle is identical: boolean guards steering the
creation of messages. We argue that this principle can be observed in the APM program and
translated without much effort to an equivalent implementation in the target language.

The communication phase at the end of each time step is performed by the C function
send_msgs as displayed in Figure 5.12. This function sets the number of messages to send for
all current communication partners and consequently calls the mpi_apm function send_msgs_a2a
(see Section 4.3.1).

The APM function synchronizeMem shifts the arrays by creating a new one to hold the new el-
ements. The advantage is that a new array is devoid of any defined elements so that program errors
can be detected easily. However, this frequent creation is not very efficient. While the emphasis
with APM programs is on correctness, the programs in the target language strive for efficiency
while maintaining correctness. Therefore, we avoid creating a new array in synchronizeMem
by reusing the old one. The arrays simply swap their purpose. We do this in the C function
synchronizeMem in Figure 5.12 by swapping the array pointers of a and a1.
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void genMsgTo(int to_p, int x, int y, double sendval) {
const int offset = sendnr_buf[to_p];
psendmsg_buf[to_p*ts+offset].xidx = x;
psendmsg_buf[to_p*ts+offset].yidx = y;
psendmsg_buf[to_p*ts+offset].value = sendval;
sendnr_buf[to_p] += 1;

}

void genmsgs(int xAbs, int yAbs, int n) {
int xRel, yRel, isRelBorder;
double sendval;
const int is_abs_inner_element =
((xAbs > 0) && (xAbs < n-1) && (yAbs > 0) && (yAbs < n-1));

abs2rel(xAbs, yAbs, &xRel, &yRel, rank, n);
isRelBorder = ((xRel == 1) || (xRel == ts) ||

(yRel == 1) || (yRel == ts));

/* if we are at the local border of a tile... */
if(isRelBorder) {
/* and we are not at the border of the global array */
if(is_abs_inner_element) {
sendval = fd_a1[xRel][yRel];

if (xRel == 1) { /* send left */
genMsgTo(rank-1, ts+1, yRel, sendval);

}
if (xRel == ts) { /* send right */
genMsgTo(rank+1, 0, yRel, sendval);

}
if (yRel == ts) { /* send up */
genMsgTo(rank+sqrtMaxp, xRel, 0, sendval);

}
if (yRel == 1) { /* send down */
genMsgTo(rank-sqrtMaxp, xRel, ts+1, sendval);

}
}

}
}

Figure 5.11: Finite Differences in C+MPI: Message Generation



5.7 Benchmarking the C+MPI Program 71

void send_msgs(int n){
int i;
for(i=0; i<size; i++) {
if(sendnr_buf[i] > 0) sendnr_buf[i] = sendmsg_cntr;

}

send_msgs_a2a(n, size,
sendmsg_cntr, sendnr_buf,
displ, sendbuf_size, rcvnr_buf,
psendmsg_buf, prcvmsg_buf,
MYCOMM);

}

void synchronizeMem(){
double** tmpptr;
tmpptr = fd_a;
fd_a = fd_a1;
fd_a1 = tmpptr;

}

Figure 5.12: Finite Differences in C+MPI: functions send_msgs and synchronizeMem

5.7 Benchmarking the C+MPI Program

1 processor 4 processors 16 processors
size seq time abs su time rel su abs su time rel su abs su
64 0.003 0.127 0.02 0.135 0.94 0.02 0.792 0.16 0.00

128 0.018 0.178 0.10 0.145 1.22 0.13 0.730 0.24 0.02
256 0.145 0.413 0.35 0.202 2.04 0.72 0.710 0.58 0.20
512 0.582 1.327 0.44 0.439 3.02 1.33 0.841 1.58 0.69

1024 2.407 4.974 0.48 1.356 3.67 1.77 1.012 4.92 2.38
2048 9.690 19.431 0.50 5.008 3.88 1.93 2.040 9.52 4.75
4096 40.091 77.383 0.52 19.623 3.94 2.04 5.525 14.01 7.26

Figure 5.13: Benchmarking 2D Finite Differences in C+MPI

We have benchmarked the C+MPI version of the 2D finite difference problem on a 64-processor
Scali Linux cluster (see Figure 5.13). The problem sizes ranging from 64 to 4096 represent the
number of elements of each dimension of the 2D input array. We have also implemented a sequential
version of the same algorithm. Its run times on the same machine are displayed in column seq.
All times are measured in seconds and given for 20 repetitions of the loop nest to get measurable
times for small problem sizes. We can observe increasing speedups with increasing problem sizes.
The parallel program scales well as the excellent relative speedups show (columns rel su. With
large problem sizes the absolute speedups become satisfactory and peak at an efficiency around
50% (columns abs su).

We compare now the benchmark results with the cost model predictions. Figure 5.14 is an
overview of cost model results for a relative finite difference SynDMAPM program.

The first observation is that the cost model predictions are too optimistic concerning the
speedup. However, in Section 6.9 we explain in more detail a particular property of the PolyAPM
cost model: its calibration is geared towards big problem sizes. In particular, even the predictions
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4 processor 16 processors
size seq cost cost su cost su
64 1086456 468449 2.32 213214 2.19
96 2468088 1031980 2.39 357417 2.88

128 4408824 1821303 2.42 558068 3.26
256 17762808 7236516 2.45 1925151 9.22

Figure 5.14: Cost Model Predictions for 2D Finite Differences

for small problem sizes match sufficiently well the behaviour of target code for large problem
sizes. If, as a consequence, we compare the predicted speedup of 2.45 of the APM program with
n = 256 with the benchmark results of the target program with n = 4096 (speedup 2.04), then
the prediction is only off by 20%. Similarly, on 16 processors, we have a predicted speedup of 9.22
compared to the benchmarked result of 7.26. Again, the error is about 21%. If we consider the
coarseness of the cost model, and the fact that it is meant to be only a decision support system
and no hardware simulation for performance prediction, then the results are quite good.



Chapter 6

Case Study II: LU Decomposition

The following case study presents a PolyAPM-based program generation for the LU decomposition
problem, including the exploration of design decisions with support from the cost model.

6.1 Problem Specification

We have chosen the non-pivotal LU decomposition of a non-singular square matrix A = (aij ) , (i , j =
1, . . . ,n).

The result consists of one lower triangular matrix L = (lij ), with unit diagonal, and one
upper triangular matrix U = (uij ), such that A = LU . L and U are defined recursively as follows
[Ger78]:

lij = aij −
j−1∑
k=1

lik ∗ ukj , j ≤ i , i = 1, 2, . . . ,n (6.1)

uij =
aij −

∑i−1
k=1 lik ∗ ukj

lii
, j > i , j = 2, . . . ,n (6.2)

The Haskell implementation used for this example is shown in Figure 6.1. As in the previous
chapter, note the close relationship between the problem specification and the code. In particular,

lu_decomp:: Array (Int,Int) Float ->
(Array (Int,Int) Float, Array (Int,Int) Float)

lu_decomp a = (l,u)
where
l = array ((1,1), (n,n))
[ ((i,j), a!(i,j) - sum [ l!(i,k)*u!(k,j) | k <- [1..(j-1)]])
| i <- [1..n], j <- [1..n] , j<=i ]

u = array ((1,2), (n,n))
[ ((i,j), (a!(i,j) - sum [ l!(i,k)*u!(k,j) | k <- [1..(i-1)]])/ l!(i,i))
| j <- [2..n], i <- [1..n], i<j ]

(_ , (n, _)) = bounds a

Figure 6.1: Haskell Code for LU Decomposition

73
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as the computations of L and U are mutually recursive, in most (i.e., strict) programming languages
the programmer has to think about the data dependences between L and U in order to find a
sequential schedule. This additional “serialisation” would have to be undone in a subsequent
parallelisation. However, this is not necessary with the given Haskell code. The lazy semantics
of Haskell ensures a flow of computation as the data dependences require, thus relieving the
programmer of the burden to think about it.

In the following, we will present a sample derivation of the LU decomposition for a loop nest
with an SPMD message passing interface. We treat the above program as two statements within
a two-dimensional index space spanned by i and j . The scalar product with index k is considered
an atomic part of each computation.

6.2 Parallelisation

The parallelisation is done by first determining the data dependences in the above program and
then feeding these to the space-time mapping tools (i.e., the scheduler and allocator) of LooPo
[GL96]. In particular, we compare two different space-time mappings returned by these tools.

6.2.1 Dependence Analysis of LU

By applying the dependence algorithm of Section 3.5 to the LU example, we end up with one
component set S , comprising A, and the two mutually recursive arrays L and U , both referring
to A. The set of dependences is presented in Figure 6.2.

Arr No Source Dest. Restr. Restricted Index Space

L
1 l(i , k) l(i , j )

j ≤ i (i , j , k) ∈ {1, . . . ,n} × {1, . . . , i} × {1, . . . , (j − 1)}
2 u(k , j ) l(i , j )

U
3 l(i , k) u(i , j )

i < j (i , j , k) ∈ {1, . . . , (j − 1)} × {2, . . . ,n} × {1, . . . , (i − 1)}4 u(k , j ) u(i , j )
5 l(i , i) u(i , j )

Figure 6.2: Dependences in the LU Example

This set of dependences describes a partial order on the index space of L and U . The
figure contains, for each array, the referenced array elements (referenced by itself or others), the
restriction imposed on the original array’s domain definition (an affine relation) and the restricted
index space of the dependence. To get an idea of the structure of the dependences, Figure 6.3
contains a graphical presentation of the index space with L’s dependences on the left and U ’s
dependences on the right. The numbers next to the different types of arrow styles in the legend
correspond to the dependence numbers in Figure 6.2. The reason for the different dimensionality
of the two index spaces is the structure of the body computations: an intermediate list is generated
by k and subsequently summed up. This index k provides an additional dimension for the index
space of the dependences.

Dependences and index spaces are the input for the scheduling and allocation algorithms as
is described in the next section.

6.2.2 First Schedule and Allocation (STM1)

This section describes the identification of a schedule and allocation, which comprise the first
space-time mapping (STM1). Index space, dependences and variables constitute a program speci-
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Figure 6.3: Dependences between Array Elements

fication that serves as an input for LooPo. If the input were an imperative loop program, LooPo
could perform the dependence analysis and generation of a program specification by itself. As
we use Haskell and perform our own, albeit simpler dependence analysis, we have to provide the
specification ourselves. The corresponding information about the LU decomposition algorithm is
depicted in the specification in Appendix A.1.

We use LooPo interactively to analyse the specification. Standard LooPo input is an imper-
ative loop program in Fortran or C. These programs are parsed and subjected to a dependence
analysis. At this point, LooPo’s internal data structures contain the index space and the depen-
dences, ready for a parallelisation. We already have the index space and dependences. We can
use the spectoloopo module that parses the specification and transforms it into LooPo’s internal
representations. LooPo’s main window after loading the .spec file is presented in Figure 6.4. Next
we use the Feautrier scheduler [Wie95, Fea92] to get a schedule for the specification and obtain:

θl(i , j ) = 2 ∗ (j − 1) (6.3)
θu(i , j ) = 2 ∗ (i − 1) + 1 (6.4)

This schedule honours the fact that the definitions of L and U are mutually recursive, so that
their overall computation is interleaved. Note that, at each point in time, several computations
can be performed, e.g., at logical time 2 ∗ (j − 1) we can compute l(i , j ) for all i .

The mapping of computations, which are performed at the same time, to virtual processors
is defined by the allocation function. Finding a valid function is not difficult, since every mapping
from the set of parallel computations to the natural numbers will do. The difficulty is finding
a sensible function which minimises the number of communications. This is done by placing
dependences on single processors, i.e., allocating a computation on the same processor as a previous
computation it depends on. Then, the data item can simply stay in the local memory of the
processor. Up to now, no provably optimal algorithm for generating an allocation has been found,
but some heuristic algorithms have been proposed [Fea94, DR95].

We use LooPo’s Feautrier allocator [Wie95, Fea94] to compute suitable allocation functions
for the LU example:

σl(i , j ) = i (6.5)
σu(i , j ) = j (6.6)

We combine schedule and allocation to a single transformation matrix that is used to perform a
coordinate transformation of the index pairs (i , j ) into (t , p). The variables t and p correspond
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Figure 6.4: LooPo with Loaded .spec File

to the enumeration of time and processors, resp. The scheduler module generates a schedule for
each computation, so that we have two matrices, one for L and one for U . Generally, the relation

T ·
(

i
j

)
+ ~d =

(
t
p

)

holds, in this case, denoting a mapping from the index space {(i , j ) | (i , j ) ∈ N2
+} to the target

space {(t , p) | (t , p) ∈ N2}. We obtain:

TL =

(
0 2
1 0

)
; ~dL =

(
−2

0

)
; TU =

(
2 0
0 1

)
; ~dU =

(
−1

0

)

This matrix presentation combines the data necessary for the coordinate transformation.

To see the effect on the index space, Figure 6.5(a) presents the computations of L and U in
a single index space (their domains do not intersect, so that they could even be stored in a single
matrix). In this example, we choose a value of 5 for n. The data points which are independent
of each other lie on the same dotted schedule line. The target space in Figure 6.5(b) depicts the
points after the coordinate transformations. Data items with the same schedule now have the
same value t , meaning that they are computed at the same time.

Thus, as a result of the parallelisation, the computation of the LU decomposition of an n by
n matrix has been accelerated from n2 to 2n − 1 virtual time units, where one unit is the time
to compute a single data item. This time unit depends on the level of abstraction that we have
chosen here. In the Haskell program in Figure 6.1, each computation of L and U contains the
summation of a list whose length is O(n). Taking this into account, a refined parallel solution
requires about 3n time units, which corresponds to the results of others [Che86].
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Figure 6.5: Before and After the First Space-Time Mapping

6.2.3 Second Schedule and Allocation (STM2)

This subsection explores a second and possibly better space-time mapping. The allocation of the
first space-time mapping (STM1) results in two of the five dependences being cut, i.e., the com-
putations connected with the source and destination of a dependence are allocated to the same
processor so that no communication is necessary. In general, it is desirable to cut as many depen-
dences as possible to reduce the number of communications. A closer look at the dependences,
as shown in Figure 6.2, hints that it is possible to cut three of the five dependences. This can be
achieved by a different space-time mapping.

Finding this second space-time mapping (STM2) is slightly different from the first, which is
LooPo’s default output. The scheduling and allocation techniques used by LooPo are sensitive to
the order in which the dependences are listed. We change the order of the dependences until the
resulting allocation cuts the desired number of dependences.

As the LooPo scheduler and allocator are independent phases, it frequently happens that
schedule and allocation are linearly dependent. As they have to be linearly independent to form a
linear mapping, such result pairs have to be disregarded. In our particular case, we have to add two
dummy dependences to avoid such an illegal space-time mapping. The first additional dependence
enforces linear independence and the second ensures that both schedules are identical. The latter is
important as we wish to place both computations within one loop nest. The order of dependences
used to produce the first space-time mapping avoids these problems directly. The resulting .spec
file is shown in Appendix A.2. It is important to note the the tricks used here to force a certain
parallelisation are not part of PolyAPM. In order to compare two different parallel loop nests of
the same algorithm, we used LooPo to generate an alternative parallelisation. The tricks were
necessary to force LooPo into considering the alternative. Help from the LooPo maintainer was
required to succeed [Gri02].

With this input we use the same scheduler and allocator as in Section 6.2.2 and get a new
space-time mapping with the desired properties. The new schedule is

θl(i , j ) = i + j − 2 (6.7)
θu(i , j ) = i + j − 2 (6.8)

and likewise the new allocation is

σl(i , j ) = i (6.9)
σu(i , j ) = i (6.10)
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Figure 6.6: Before and After the Second Space-Time Mapping

We use them to construct the new space-time mappings:

TL =

(
1 1
1 0

)
; ~dL =

(
−2

0

)
; TU =

(
1 1
1 0

)
; ~dU =

(
−2

0

)

The index space of L and U augmented with the new schedule is depicted in Figure 6.6(a). The
new target index space is shown in Figure 6.6(b). Note that, compared to STM1, the execution
time and the load balancing did not change, but we cut more dependences than before, which
gives hope for fewer communications.

6.3 Initial Code Generation

Given the schedules and allocations as determined in the previous section, we want to construct
two synchronous loop nests as the first level of a set of APM programs. Since we obtained one-
dimensional schedules and allocations, the loop nest consists of one outer sequential and one inner
parallel loop. The loop bounds are computed by applying the space-time mapping to the index
space bounds.

The generation of the APM programs is straightforward. The calculations of the loop bounds
can be done by hand using Fourier-Motzkin elimination [Sch86] or one can use LooPo’s target
code generation. The result is one loop nest for each space-time mapping. Within this loop nest,
a body function containing the statements is inserted. Statements are given by the expression
that computes one array element. This is the same granularity as provided to the scheduler and
allocator. Within the statements all references to index variables have to be space-time mapped
as well. The inner scalar product still remains a Haskell array comprehension. In addition, all
computations within the body have to be augmented with user provided computation costs. They
are added to the current processor’s entry in the cost array.

As a result we get two synchronous APM programs. For the STM1 version see Figure 6.7.
The loop nest is two-dimensional, comprising an outer sequential loop (0 ≤ t < 2 ∗ n, stride 1)
and an inner parallel loop (b t

2c + 1 ≤ p < n + 1, stride 1). The body function of SynAPM takes
some state, consisting of memory, structure parameters and computation statistics, and a list of
current values of all surrounding loops, to return an updated state. Here, the memory is defined
as LUmem, a triple of the three arrays A, L and U .
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-- k-loop - if
lcost t = (fromIntegral (t‘div‘2)*lfact +1 + 2)
-- k-loop - / if
ucost t = (fromIntegral ((t-1)‘div‘2)*ufact +1 +1 + 5)

data LU_SynAPM = LU_SynAPM
instance Synchronizing LU_SynAPM LUmem -- id default

loop_s = LP [(Seq, \([],(n:_))-> 0,
\([],(n:_))-> 2*n,
\([],(n:_))-> 1),

(Par, \([t],(n:_))-> t‘div‘2+1,
\([t],(n:_))-> n+1,
\([t],(n:_))-> 1)]

(BD body_s)

body_s:: (LUmem, [Idx], CompStat) -> [Idx]
-> (LUmem, [Idx], CompStat)

body_s ((a,l,u),(n:splist),ca) [t,p] =
if (t ‘mod‘ 2 == 0)
then ((a,l_new,u), (n:splist), ca//[(p,(lcost t) +ca!p)])
else if (t+2)‘div‘2 == p

then ((a,l,u),(n:splist),ca)
else ((a,l,u_new), (n:splist), ca//[(p,(ucost t)+ca!p)])

where l_new = stmnt1 a l u (t,p,n)
u_new = stmnt2 a l u (t+1,p,n)
stmnt1 a l u (t,p,n) =

l // [((p,t‘div‘2+1) , a!(p,t‘div‘2+1)
- sum ([ l!(p,k)*u!(k,t‘div‘2+1)

| k <- [1..t‘div‘2]]))]
stmnt2 a l u (t,p, n) =

u // [(((t+1)‘div‘2, p), (a!((t+1)‘div‘2, p)
- sum ([ l!((t+1)‘div‘2,k)*u!(k,p)

| k <- [1..(t-1)‘div‘2]]))
/ l!((t+1)‘div‘2, (t+1)‘div‘2))]

Figure 6.7: Synchronous APM Code of LU Decomposition (STM1)
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l2cost t p = fromIntegral (t+2-p-1)*lfact+1
u2cost t p = fromIntegral (p-1)*ufact+1

loop_s2 = LP loop_bounds_s2 (BD body_s2)
loop_bounds_s2 =

[(Seq, \([],(n:_))-> 0,
\([],(n:_))-> n*2-2+1,
\([],(n:_))-> 1),

(Par, \([t],(n:_))-> min (max 1 (2+t-n)) (ceildiv (2+t) 2),
\([t],(n:_))-> (max (min n (1+t)) ((1+t) ‘div‘ 2))+1,
\([t],(n:_))-> 1)]

body_s2::(LUmem, [Idx], CompStat) -> [Idx]
-> (LUmem, [Idx], CompStat)

body_s2 ((a,l,u),(n:splist), ca) [t,p] = --trace (show (t,p))
((a,l_new,u_new), (n:splist), ca//[(p,cost_new +ca!p)])
where (l_new,u_new,cost_new) = inner_body_STM2 (a,l,u) n [t,p]

inner_body_STM2 (a,l,u) n [t,p] =
if ((ceilDiv (2+t) 2) <= p)
then (stmnt1 a l u (t,p,n), u, (l2cost t p)+6.0)
else (l, stmnt2 a l u (t, p, n), (u2cost t p)+6.0)
where stmnt1 a l u (t,p,n) =

let i = p
j = t+2-p

in l // [((i,j) , a!(i,j)
- sum ([ l!(i,k)*u!(k,j)

| k <- [1..(j-1)]]))]
stmnt2 a l u (t,p, n) =

let r = p
q = t+2-r
i = r
j = q

in u// [((i,j), (a!(i, j)
- sum ([ l!(i,k)*u!(k,j)

| k <- [1..(i-1)]]))
/ l!(i,i))]

Figure 6.8: Synchronous APM Code of LU Decomposition (STM2)
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Any predefined synchronous machine requires an instance declaration of class Synchronizing.
In order to distinguish different instances using the same memory data type, we define a label type
for every program and include it in the instance declaration. Here the label type is LU_SynAPM. As
we do not require any memory synchronisation for this program, no body for synchronizeMem is
supplied. In that case the run time system inserts the default instance of synchronizeMem which
is the identity.

The computational work for elements of L and U differs; the two functions lcost and ucost
capture these cases. The main cost stems from the scalar product ranging over k . In the case of
L, for each of the t

2 k ’s there is a multiplication of cost lfact, plus some additional cost for the
subtraction of the scalar product and the if guards governing the statement.

Most of the details of the STM1 program above also apply to the STM2 version as depicted in
Figure 6.8. The different space time mapping results in different loop bounds: (0 ≤ t < 2 ∗ n − 2,
stride 1) and an inner parallel loop (min(max(1, 2+ t−n), d 2+t

2 e) ≤ p < max(min(n, 1+ t), b 1+t
2 c),

stride 1). The indices within the loop body are adapted and, due to the different computation
structure, the computation cost differs from the STM1 version.

6.3.1 Evaluation of Two Alternative Programs

At this point we have two alternative SynAPM programs that lead to separate development
branches further on. We can either pursue both or try to decide upon one of them.

sequential LU

SynAPM STM2SynAPM STM1

One instrument of decision support in the PolyAPM framework is the execution of an APM
program in order to get the estimated run time cost. To compare the two programs, we run them
with an input of a 512× 512 matrix A on four processors. The cost model instance used is again
the SCI Linux cluster. First the result of STM1:

Original: final of L: 6.0247297, final of U: -2.4276931

SynAPM - STM1 - Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total (no comms): 1.5718965e8, agg. work: 1.351341e8

This simulation took 7 minutes on a Dual Intel Xeon 2.4 GHz. We observe that the results of
the SynAPM program coincide with the sequential LU program. The anticipated cost is about
1.571 ∗ 108. The corresponding result of STM2 is:

SynAPM - STM2 - Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total (no comms): 1.5703896e8, agg. work: 1.3565974e8

In this case, the estimated cost is 1.570 ∗ 108. Considering that the PolyAPM cost model is quite
simplistic and produces only rough estimates, these two results are too close to justify any bias
towards either space-time mapping. In the following we will pursue both branches.

In this programming model, each virtual processor is considered to be a real one and thus
is communicating. The SynAPM program does not define any communication operations, as it is
considered to be shared memory, but a global synchronisation is necessary after each time step to
enforce correctness. The amount of aggregated work on all processors is about 1.35 ∗ 108, which is
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less than the PolyAPM cost, yielding a theoretical speedup of 0.86. The reason is that the amount
of work on each of the 512 processors at each time step is outweighed by the synchronisation cost.
So, at this stage, the parallelisation was not yet worth the effort.

These are just example data points. More runs with different input sizes show a similar
picture, although the speedup gets slightly better the bigger the input size is. So, from examining
this very abstract program with different input sizes, we can already deduce that we can expect
better speedups with greater problem sizes. Note that there is no analytical evidence of this, we
just draw conclusions from operational observations.

6.4 First APM Transformation: Processor Tiling

The PDG in Figure 3.1 contains several tiling choices. We will explore two of them in this case
study, namely blocked tiling and cyclic tiling.

Both have a similar effect on the synchronous code: the parallel loop performs fewer iterations
and an additional inner sequential loop is inserted to compensate for the missing iterations. As
a result, fewer parallel processors do more work at each time step. Since these changes do not
require new machine characteristics, the resulting tiled programs also run on SynAPM.

Each of the two space-time mapped programs can have any of the two tiling methods applied
to them, thus yielding four new APM programs:

sequential LU

SynAPM STM2SynAPM STM1

SynAPM STM1 CyclicSynAPM STM1 Block SynAPM STM2 Block SynAPM STM2 Cyclic

The tiled APM programs differ from their predecessors only in their loop bounds. Therefore,
we just present the loop bounds of the four tiled programs, starting with STM1.

Here are the STM1 block tiled loop bounds with tile size defined as b n−1
maxpc + 1. Note the

stride of 1 in the innermost loop – neighbouring virtual processors are mapped onto the same
physical processor.

loop_bounds_s_tl =
[ (Seq, \([],(n:maxp:_))-> 0,

\([],(n:maxp:_))-> 2*n,
\([],(n:maxp:_))-> 1),

(Par, \([t],(n:maxp:_))-> 0,
\([t],(n:maxp:_))-> maxp,
\([t],(n:maxp:_))-> 1),

(Seq, \([t,rp],(n:maxp:_))-> max (rp*(tilesize_lu n maxp)+1)
(t‘div‘2+1),

\([t,rp],(n:maxp:_))-> min ((rp+1)*(tilesize_lu n maxp)+1)
(n+1),

\([t,rp],(n:maxp:_))-> 1)]

In the STM1 cyclic tiled loop nest, those virtual processors whose processor numbers differ by a
multiple of maxp are mapped onto the same physical:
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loop_bounds_s_ctl =
[ (Seq, \([],(n:maxp:_))-> 0,

\([],(n:maxp:_))-> 2*n,
\([],(n:maxp:_))-> 1),

(Par, \([t],(n:maxp:_))-> 0,
\([t],(n:maxp:_))-> maxp,
\([t],(n:maxp:_))-> 1),

(Seq, \([t,rp],(n:maxp:_))-> 1+rp+ (ceildiv (t‘div‘2+1-rp-1)
maxp)*maxp,

\([t,rp],(n:maxp:_))-> n+1,
\([t,rp],(n:maxp:_))-> maxp)]

The STM2 loop bounds have corresponding properties. First, the block tiled version:

loop_bounds_s2_btil =
[ (Seq, \([],(n:maxp:_))-> 0,

\([],(n:maxp:_))-> n*2-2+1,
\([],(n:maxp:_))-> 1),

(Par, \([t],(n:maxp:_))-> max (ceildiv (-(tilesize_lu n maxp)+1)
(tilesize_lu n maxp))

(ceildiv (t-n-(tilesize_lu n maxp)+2)
(tilesize_lu n maxp)),

\([t],(n:maxp:_))-> (min (t ‘div‘ (tilesize_lu n maxp))
((n-1) ‘div‘ (tilesize_lu n maxp)))+1,

\([t],(n:maxp:_))-> 1),
(Seq, \([t,rp],(n:maxp:_))-> max (max (t-n+2) 1)

((tilesize_lu n maxp)*rp+1),
\([t,rp],(n:maxp:_))-> (min (min n (t+1))

((tilesize_lu n maxp)*rp+
(tilesize_lu n maxp)))+1,

\([t,rp],(n:maxp:_))-> 1)]

And the STM2 cyclic tiled loops:

loop_bounds_s2_ctil =
[ (Seq, \([],(n:maxp:_))-> 0,

\([],(n:maxp:_))-> 2*n-2+1,
\([],(n:maxp:_))-> 1),

(Par, \([t],(n:maxp:_))-> 0,
\([t],(n:maxp:_))-> maxp-1+1,
\([t],(n:maxp:_))-> 1),

(Seq, \([t,rp],(n:maxp:_))->
max (ceildiv (t-rp-n+1) maxp)

(ceildiv (-rp) maxp),
\([t,rp],(n:maxp:_))->
(min ((-rp+n-1) ‘div‘ maxp)

((t-rp) ‘div‘ maxp))+1,
\([t,rp],(n:maxp:_))-> 1)]

These different processor tilings result in different computational loads. Cyclic tiling is often
able to smooth an unbalanced load distribution. The STM1 index space in Figure 6.5(b) shows
a continuous increase of load for higher processors. It is obvious that a cyclic tiling changes the
load imbalance.

At this time, one would like to terminate the development of at least some of the branches
in the evolving program tree. A cost model evaluation of the tiled APM programs provides some
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guidance for this purpose. In the following, we present APM simulations on four processors and
an input size of 512.

SynAPM - STM1 - Blocked Tiling Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total (no comms): 7.891381e7, agg. work: 1.351341e8
----------------------------------------
SynAPM - STM1 - Cyclic Tiling Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total (no comms): 3.4998304e7, agg. work: 1.351341e8
----------------------------------------
SynAPM - STM2 - Blocked Tiling Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total (no comms): 7.599721e7, agg. work: 1.3565974e8
----------------------------------------
SynAPM - STM2 - Cyclic Tiling Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total (no comms): 3.4982304e7, agg. work: 1.3565974e8

The total PolyAPM costs show that, in the cost model, the two cyclic tiled programs are far
superior to their blocked counterparts. It further shows that the PolyAPM cost is less than the
accumulated workload, so that we can expect speedups in all four cases. However, a distinction
between the two space-time mappings cannot be made. It is also good practise not to regard the
absolute cost values too seriously as the cost model is simplistic and not a complete hardware
simulation.

A shared memory OpenMP program written in C could be derived directly from the tiled
programs, and the above results clearly suggest to use a cyclic tiling.

In practise, one might want to pursue only the two cyclic branches. In this case study, however,
we follow all four branches to see whether the cost model is right in its bias.

6.5 Second APM Transformation: Generation of Commu-
nications

The second transformation performs the generation of communications, aiming at a point-to-point
message passing library, while still keeping a shared memory. The changes of the previous tiling
transformation only affected the loops. With the generation of the messages, we need to:

• change the memory data type into a state data type that combines memory and message
queue and change the body function accordingly,

• add the implementation of generateMsg, and

• updateMem and change the APM to SynCommAPM.

This transformation only allows for one possible result for each input program so that the four
tiled APM programs lead to four SynCommAPM programs:
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sequential LU

SynAPM STM2SynAPM STM1

SynCommAPM STM2 Block

SynAPM STM1 Cyclic

SynCommAPM STM1 Block

SynAPM STM1 Block

SynCommAPM STM1 Cyclic

SynAPM STM2 Block SynAPM STM2 Cyclic

SynCommAPM STM2 Cyclic

It is not necessary to report on all four code examples to present the effects of this transformation.
We show just the changed and added parts of the STM1 block tiled program in the order of the
list above.

6.5.1 From Abstract Memory to Machine State

The memory type of the previous LU APM programs is called LUmem and contains a triple of the
three arrays A, L and U . The new state that SynCommAPM uses is GlobStateSC and it comprises
the global shared memory of type LUmem and a message queue for the communications. The loop
body does not deal with communications, so the only change is that a different data structure now
contains the memory and only that memory is updated. The message queue is left untouched by
the body function and just passed through.

body_s_sc:: (GlobalStateShM LUmem b c d, [Idx]) -> [Int]
-> ((GlobalStateShM LUmem b c d, [Idx]), [Int])

body_s_sc (GStateShM (a,l,u) msgs
((Comps crange (ca:compsal)):clist),[n,maxp]) (idxlist@[t,rp,p]) =

((GStateShM mem msgs
((Comps crange ((ca//[(rp,cost+ca!rp)]):compsal)):clist), [n,maxp]), idxlist)
where (mem,cost) = ...

6.5.2 Generating Point-to-Point Messages with genMsg

After each body iteration the interpreter calls generateMsg to create messages that send the values
just computed, if necessary. In the polytope model communication takes place along data depen-
dences in the target space. Relevant are only those dependences whose source and destination are
located on different processors. To match this model, we define a list of dependences deps_s_sc
and a function genMsgforDep that generates necessary messages for one such dependence. All
that the function generateMsg has left to do is to call genMsgforDep for each dependence and
place all results in a single list.
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deps_s_sc = [(2, \([t,rp,p],(n:maxp:_)) ->(t ‘mod‘ 2 == 1)&&(2*p-2>t), U,
\([t,rp,p],(n:maxp:_)) -> [(rp’, t+1) | rp’ <- [rp+1 .. maxp-1]]),

(3, \([t,rp,p],(n:maxp:_)) ->(t ‘mod‘ 2 == 0)&&(t/=p+1), L,
\([t,rp,p],(n:maxp:_)) -> [(rp’, t+1) | rp’ <- [rp+1 .. maxp-1]]),

(5, \([t,rp,p],(n:maxp:_)) ->(t ‘mod‘ 2 == 0)&&(t==p+1), L,
\([t,rp,p],(n:maxp:_)) -> [(rp’, t+1) | rp’ <- [rp+1 .. maxp-1]])

]

instance Sendable LU_blocked_SynCommAPM LU_Dom (Int,Int) Float LUmem where
generateMsg LU_blocked_SynCommAPM [t,rp,p] splist (a,l,u) =

recur deps_s_sc (genMsgforDep [t,rp,p] splist (a,l,u))

genMsgforDep [t,rp,p] splist (a,l,u) (nr, guard, dom, generator) =
([Msg (rp, to_p, t, to_tm, dom,

if dom == L then (p,t‘div‘2+1) else ((t+1)‘div‘2, p),
if dom == L then l!(p,t‘div‘2+1) else u!((t+1)‘div‘2, p),1)

| (to_p,to_tm) <- generator ([t,rp,p],splist),
guard ([t,rp,p],splist)

], (rp,gen_cost))

However, the above code is going to be inefficient, whether used in an APM program or translated
to a function in a target program. The automatic generation helps to derive a correct program, but
it has only few optimisation options to offer. Instead, we retreat to a semi-automatic generation.
After testing the SynCommAPM program with messages as generated above, we started to derive
a hand optimised version of it. It can be seen easily that dependence 5 is just an extension of
dependence 3, so that both can be combined. Furthermore, in all cases the just computed value is
sent to processors with a higher id than the sender. Dependence 2 does this during odd numbered
time steps, and dependences 3 and 5 do this for the even numbered ones. It is just the additional
boolean guard 2p − 2 > t in dependence 2 that needs special attention. It prevents message
generation at some points of the index space that the loop bounds enumerate. Based on these
findings, we now present a hand optimised version of generateMsg. The generation costs have
been adapted. A detailed comparison and many tests confirmed the notion that both versions of
generateMsg are equivalent.

instance Sendable LU_blocked_SynCommAPM LU_Dom (Int,Int) Float LUmem where
generateMsg LU_blocked_SynCommAPM [t,rp,p] (n:maxp:_) (a,l,u) =

if(t‘mod‘2==0) -- L computation? Deps 3 and 5
then ([Msg (rp, to_p, t, t+1, L, (p,t‘div‘2+1), l!(p,t‘div‘2+1),1)

| to_p <- [rp+1 .. maxp-1]], (rp, gen_cost_B1))
else if (2*p-2>t) -- U computation? Dep 2

then ([Msg (rp, to_p, t, t+1, U, ((t+1)‘div‘2, p), u!((t+1)‘div‘2, p),1)
| to_p <- [rp+1 .. maxp-1]],(rp, gen_cost_B1+3.0))

else ([], (rp, 5.0))
where gen_cost_B1 = fromIntegral ((maxp-1)-(rp+1)) -- msgs cost

+ 2.0 -- 1st if guard

6.5.3 Receiving Messages with updateMem

When the interpreter scans through the global message queue at the end of each time step, it
identifies all messages that are to be delivered before the next time step. Those messages are
removed from the queue and the function updateMem is called on each of them to deliver the
message, i.e., to make the message’s content persistent in memory. At this point, a run time check
is included that prevents the input array A from being updated.
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instance Updatable LU_blocked_SynCommAPM LU_Dom (Int,Int) Float LUmem where
updateMem LU_blocked_SynCommAPM

msg@(Msg (from_p, to_p, from_tm, to_tm, dom, idx, val, cost)) (a,l,u) =
(case dom of
A -> error "no update of A!"
L -> (a,l//[(idx,val)],u)
U -> (a,l,u//[(idx,val)]))

6.5.4 Evaluating the Transformation

The introduction of communications has an impact on the calculation of the cost model. The
cost model computation must now take the sending and receiving of messages into account. The
calculated cost for each run differs therefore from the tiled program’s results. To get more insight
into the operational behaviour of the program, the following numbers are presented as lists with
one entry per processor:

• the total computation cost (work totals): this is a sum of the entire computation cost per
processor

• the number of sent messages per processors (send totals)

• the number of received messages per processors (recv totals)

• the sum of the communication costs of all time steps per processor (comm totals)

The following results are taken from a simulation with four processors and an input size of
512. For STM2 we have omitted the communication details.

SynCommAPM - STM1 - Blocked Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 8.010185e7
work totals: [2302656.0,1.5246016e7,4.0706752e7,7.868487e7]
send totals: [765,1022,767,0] = 2554
recv totals: [0,255,766,1533] = 2554
comm totals: [977420.94,1092062.5,1238611.3,1417066.8]
----------------------------------------
SynCommAPM - STM1 - Cyclic Pt2PT SHMEM Comms Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 3.6484896e7
work totals: [3.4075012e7,3.4272008e7,3.4469752e7,3.4668264e7]
send totals: [3051,3049,3047,3045] = 12192
recv totals: [3039,3045,3051,3057] = 12192
comm totals: [1809754.8,1812032.5,1814315.6,1816597.0]
----------------------------------------
SynCommAPM - STM2 - Blocked Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 7.801139e7
...
----------------------------------------
SynCommAPM - STM2 - Cyclic Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 3.6487444e7
...
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We observe that the cyclic program’s workload is balanced over the processors, while this is not
true for the blocked programs (line work totals). Similarly, sending and receiving messages are
unevenly distributed in the blocked programs and more evenly in the cyclic programs (lines send
and recv totals). Although the number of messages in the cyclic case is almost five times higher
than in the blocked case (12192 > 2554), this ratio is not reflected in the communication costs
(line comm totals). This is because their largest component is the cost for the synchronisations,
which is equal for all processors. The only difference in the total PolyAPM cost between the tiled
SynAPM program and the SynCommAPM program is the message cost.

The overall judgement of the four programs does not change with the introduction of commu-
nications: the cyclic programs are still ahead and close to each other, and the blocked programs
remain also close, but way behind. This is because the Scali cluster has fast and low latency com-
munications. Using a cost model profile of a machine with slower communications would exhibit
a greater difference in the performance prediction.

6.6 Third APM Transformation: Memory Distribution

So far, the global shared memory consists of a triple of n by n matrices. The SynDMAPM requires
a local memory for each processor. The simple approach is to replicate this triple on all processors,
which is what we do in the current program. A further transformation could eliminate unused
parts of each matrix by performing a memory footprint analysis. However, the index expressions
would become more complicated so that there is a trade-off between memory consumption and
computational complexity.

Code-wise the changes are located in those parts where memory is accessed. This applies
to the body, updateMem and generateMsg functions. However, only the memory accesses have
to be adapted to the new memory layout. The rest of these functions remains unchanged. Each
SynCommAPM program turns into one SynDMAPM program, yielding a new set of four LU program
variations:

sequential LU

SynAPM STM2SynAPM STM1

SynCommAPM STM2 Block

SynAPM STM1 Cyclic

SynDMAPM STM1 Block

SynCommAPM STM1 Block

SynAPM STM1 Block

SynCommAPM STM1 Cyclic

SynDMAPM STM1 Cyclic

SynAPM STM2 Block

SynDMAPM STM2 Block

SynAPM STM2 Cyclic

SynCommAPM STM2 Cyclic

SynDMAPM STM2 Cyclic

As for the actual code changes, we present the STM1 blocked program for SynDMAPM as an
example. The GlobStateSC is replaced by the local DM_State that contains a computation cost
list (CCL) to store the computation cost of a body call. At the end of each time step, all local
CCLs are emptied and their values are aggregated into the global cost structure.
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body_s_dm:: (LU_DM_State, [Idx])
-> [Idx]
-> ((LU_DM_State, [Idx]), [Idx])

body_s_dm (LState (a,l,u) msgs (CCL statl),[n,maxp]) (idxlist@[t,rp,p]) =
((LState mem msgs (CCL (cost:statl)),[n,maxp]), idxlist)
where (mem,cost) = ...

The other function that needs to be changed is updateMem, where also a trivial change from
GlobStateSC to DM_State is necessary. Interestingly, the function generateMsg does not need to
be changed: as the new, user defined local memory type is the same as the former global shared
memory type (a triple of arrays), the instance from SynCommAPM can be used.

The cost model values of SynDMAPM programs are typically the same as the ones of Syn-
CommAPM programs, unless due to an increase of complexity of index values (see above) the
computation costs are adjusted. The split of the shared memory did not impact the cost model
computations. In the following results, we have omitted the detailed communication information:

SynDMAPM - STM1 - Blocked Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 8.010185e7
----------------------------------------
SynDMAPM - STM1 - Cyclic Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 3.6484896e7
----------------------------------------
SynDMAPM - STM2 - Blocked Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 7.801139e7
----------------------------------------
SynDMAPM - STM2 - Cyclic Result:
final of L: -558.78735, final of U: 5.9737787
Cost model, total: 3.6487444e7

While the cost model results did not change with the last transformation, the simulation times
using the APM interpreters did. In general, SynCommAPM programs are slower than their Syn-
DMAPM counterparts, because the interpreter keeps only one global message queue, which is
inefficient compared to separate message queues for each processor as in SynDMAPM.

6.7 The Results of the APM Transformations

The following table is an overview of the cost model results we have obtained so far:

STM1 STM2
SynAPM 15.718965e7 15.703896e7

tiling block cyclic block cyclic
SynAPM 7.891381e7 3.4998304e7 7.599721e7 3.4982304e7
SynCommAPM 8.010185e7 3.6484896e7 7.801139e7 3.6487444e7
SynDMAPM 8.010185e7 3.6484896e7 7.801139e7 3.6487444e7

It is obvious that the transformations after tiling did not change the order in which the cost model
ranks the different programs. Therefore our observation after the tiling transformation, namely
that the cyclic tiled programs should be used and the block tiled programs disregarded, still holds.
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The introduction of communication did not significantly change the total cost model values.
This is because the Scali cluster’s cost model profile allots relatively small send and receive costs
for a message compared to the synchronisation costs. The latter are used from SynAPM programs
onwards, so that only the message costs are new in SynCommAPM programs.

In the next section we show how to derive an MPI program and how that compares with the
performance predictions of our cost model.

6.8 Generating C+MPI Target Code

Starting from the four SynDMAPM programs, we create C+MPI programs using the mpi_apm
library (Section 4.3.1). In the following, we describe how the key parts of an SynDMAPM program
– loops and body, updateMem and generateMsg – are transformed to C+MPI.

The body and its statements can be easily translated to C. The data types Int and Double
have correspondences in C, and so do arrays. The list comprehension is translated into a for loop.
The if structures correspond directly to their APM counterparts.

void stmnt1(int t, int p, int n){
double sum=0;
int k;
for(k=1; k<= (t/2); k++){
sum += l[p][k]*u[k][t/2+1];

}
l[p][t/2+1] = a[p][t/2+1] - sum;

}

void stmnt2(int t, int p, int n){
double sum=0;
int k;
for(k=1; k<= ((t-1)/2); k++){
sum += l[(t+1)/2][k]*u[k][p];

}
u[(t+1)/2][p] = (a[(t+1)/2][p] - sum)/l[(t+1)/2][(t+1)/2];

}

void body(int t, int rp, int p, int n){
if ( /*(t/2 +1 <= p) &&*/ t% 2 == 0 ) { /* L */
stmnt1(t,p,n);

} else /*if ((t/2 < p) && (t%2==1)) */{ /* U */
if ((t+2)/2 != p)
stmnt2(t+1, p, n) ;

};
}

The apm_main_loop_block follows the structure of all APM main loops as outlined in Figure
4.8. Inside the time loop, at first all communication buffers are cleared. The virtual processor
loop calls the body function and subsequently generates messages to distribute the new values. In
the communication phase we store the number of messages the processor is about to send in the
non-zero entries of the send-number buffer. In the global communication routine all messages are
exchanged and the processors are synchronised, thereby concluding the time step.



6.8 Generating C+MPI Target Code 91

void apm_main_loop_block(int n){
int t,p,ub,lb,i;
int rp = rank;
for (t = 0; t < MIN( (2*n), (2*((maxp_s_mm+1)*tilesize_s_mm(n)))); t++) {
clear_senddata();
lb = MAX(rp*tilesize_s_mm(n)+1, (int)(t/2 +1));
ub = MIN((rp+1)*tilesize_s_mm(n)+1,n+1);
for(p=lb ; p < ub; p++) {
body(t,rp,p,n);
genmsgs_blocked(t,rp,p,n);

}

for(i=0; i<maxp; i++){
if(sendnr_buf[i]>0) sendnr_buf[i] = sendmsg_cntr;

}
send_msgs_a2a(n, maxp,

sendmsg_cntr, sendnr_buf,
displ, sendbuf_size, rcvnr_buf,
psendmsg_buf, prcvmsg_buf,
MYCOMM);

}
}

Just like the corresponding APM function, genmsgs_blocked generates messages to be placed in
the send buffer. In the C program each message is a struct of type Msg, comprising an integer valued
domain, the array indices and a message value of type double. For each generated message, the
global sendmsg_cntr is incremented, so that at the end of each time step the number of messages
to be sent is known. The ith entry of sendnr_buf is set to one. This means that the current
message is to be sent to processor i . At the end of the time step, the complete message buffer is
sent to all processors that receive at least one message. The send buffer’s fill size is denoted by
sendmsg_cntr, so this value is the length of the MPI message that the current processor sends.

void genmsgs_blocked(int t, int rp, int p,int n){
int i;
if(t%2 == 0){ /* L extra guard aus dep? */

psendmsg_buf[sendmsg_cntr].msgdomain = L ;
psendmsg_buf[sendmsg_cntr].xidx = p ;
psendmsg_buf[sendmsg_cntr].yidx = t/2+1 ;
psendmsg_buf[sendmsg_cntr].value = l[p][t/2+1] ;
sendmsg_cntr++;
for(i=rank+1; i<maxp; i++){
sendnr_buf[i]=1; /* Deps 3,5 */

}
}else{ /* U */

psendmsg_buf[sendmsg_cntr].msgdomain = U ;
psendmsg_buf[sendmsg_cntr].xidx = (t+1)/2 ;
psendmsg_buf[sendmsg_cntr].yidx = p ;
psendmsg_buf[sendmsg_cntr].value = u[(t+1)/2][p] ;
sendmsg_cntr++;
for(i=rank+1; i<maxp; i++){
sendnr_buf[i]=1; /* Deps 2 */

}
}

}
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The updateMem function receives a message struct and updates the memory accordingly. The
function’s structure is a direct correspondence to the APM version.

void updateMem_with_msg(struct Msg a){
if (a.msgdomain==L){
l[a.xidx][a.yidx]=a.value;

} else if(a.msgdomain==U){
u[a.xidx][a.yidx]=a.value;

} else {
printf("proc %d received unknown message domain: %d.\n",rank,a.msgdomain);

}
}

6.9 Benchmarking the C+MPI Target Code

We have presented the development of four branches of abstract programs for the LU decomposi-
tion problem and given rough cost estimates based on a calibration for a ScaMPI/Linux cluster.
The ultimate goal of parallel programming is to have good speedups on a parallel machine. In this
section, we present benchmarking results of the final C+MPI target programs and compare them
with the cost model estimates.

size sequential time
64 0.001

128 0.008
256 0.114
512 1.522

1024 12.295
2048 98.150
4096 1237.396

Figure 6.9: Sequential C-Program LU Execution Times (in seconds)

The benchmarks are performed with all four program variations of the LU decomposition.
Each of the four programs is run with problem sizes from n = 64 up to 4096 and on 1 to 16
processors. As run time we consider only the execution time of the apm_main_loop, but not
initialisation and output. These times are measured with the MPI_Wtime() call. We have also
implemented a sequential LU decomposition in C and benchmarked its executions times with the
same problem sizes. The results are depicted in Figure 6.9. Therefore we can compare the multi-
processor execution times with the single-processor sequential time to obtain absolute speedups.
For the complete benchmark results see Figure 6.11. All times shown are rounded to an accuracy
of 10−2, but the values used in calculations have a precision up to 10−6s.

The benchmarks reveal significant differences between the four variations. All of them yield
speedups if the problem size is big enough, but the two cyclically tiled versions are certainly
faster than the blocked ones. Good speedups are only achieved with problem sizes of n ≥ 512.
This behaviour is often seen with parallel programs, as with small problem sizes the amount of
computational work is not big enough to outweigh the constant communication overhead.

The highest speedups and efficiency yields the cyclic STM1 program for big problem sizes.
In the case of n = 4096, the efficiencies range from 73.5% to 44.7%, while cyclic STM2 is a close
runner up with 69% to 42%. The speedups of the four programs in this case are presented in
Figure 6.10.
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Figure 6.10: LU Speedups for n = 4096

At first glance we see two results: for one, the run time efficiency of the four programs is quite
different, basically the cyclic programs are good and the blocked programs are less so. Secondly,
the absolute efficiency of the fastest program (cyclic STM1) is quite satisfactory.

A conclusion is that the PolyAPM development process is able to produce an efficient target
program in C, starting out from a sequential Haskell program. As a side note: the speedups of the
final C+MPI program, when compared to the sequential Haskell specification, are quite good. As
an example, take the decomposition for n = 512 on four processors: the C+MPI programs take
between 0.88 and 1.38 seconds, the sequential C program 1.5 seconds and the sequential Haskell
program with standard Haskell arrays finishes after 1 minute and 45 seconds of computation. This
means that we can safely use a high level (and often comparably slow) specification language as
our initial implementation without worrying that the efficiency of the target program might be
negatively affected by this choice.

The cost model predictions are now to be compared with the benchmark results to find
whether both comply. The largest problem size that we are able to use with the APM interpreters
on the available hardware is 512. Figure 6.12 relates the cost model values of the four SynDMAPM
programs, measured in ticks, to the benchmarked run time of the C+MPI program, measured in
seconds. The purpose of the cost model is to provide a performance prediction in the form of an
integer value that relates to the run time. We have stated earlier that the cost model’s accuracy
should not be overestimated since only few hardware properties are taken into account. Because
of this, we propose the use of the model chiefly for relative comparisons. However, the expectation
is that, if the prediction is accurate, the cost model values will still relate to each other in the same
way the benchmark times do. In other words, the quotient of each cost model prediction and the
corresponding run time should be a fixed value. We have calculated these quotients, divided by
106 (see Figure 6.12).

We see that in practise the quotients differ. The more similar the four quotients are, the more
accurate the cost model prediction is. Unfortunately the quotients differ significantly for a given
number of processors. While in all three cases the blocked programs are correctly considered more
expensive than the cyclic ones, the order among the blocked and cyclic programs is often wrong.
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1 processor 2 processors 4 processors 8 processors 16 processors

STM1
blocked tiling

size time speedup time speedup time speedup time speedup time speedup

64 0.001 0.73 0.01 0.08 0.08 0.01 0.25 0.00 0.53 0.00

128 0.008 0.95 0.02 0.39 0.09 0.09 0.27 0.03 0.59 0.01

256 0.116 0.99 0.13 0.85 0.17 0.67 0.31 0.37 0.70 0.16

512 1.555 0.98 1.42 1.07 1.07 1.42 0.90 1.69 1.14 1.33

1024 12.386 0.99 11.09 1.11 8.08 1.52 6.72 1.83 8.04 1.53

2048 97.908 1.00 86.57 1.13 64.57 1.52 35.45 2.77 27.13 3.62

4096 1265.065 0.98 1235.29 1.00 961.91 1.29 640.04 1.93 363.92 3.40

cyclic tiling

size time speedup time speedup time speedup time speedup time speedup

64 0.001 0.72 0.01 0.07 0.07 0.01 0.25 0.00 0.55 0.00

128 0.008 0.94 0.02 0.36 0.09 0.09 0.30 0.03 0.57 0.01

256 0.117 0.97 0.11 1.06 0.18 0.63 0.33 0.34 0.74 0.15

512 1.555 0.98 1.12 1.36 0.88 1.74 0.82 1.85 1.18 1.28

1024 12.384 0.99 8.44 1.46 6.01 2.05 5.20 2.36 7.87 1.56

2048 106.067 0.93 65.48 1.50 40.13 2.45 22.82 4.30 17.73 5.53

4096 1529.823 0.81 843.82 1.47 449.51 2.75 253.53 4.88 173.08 7.15

STM2
blocked tiling

size time speedup time speedup time speedup time speedup time speedup

64 0.002 0.61 0.02 0.07 0.07 0.01 0.25 0.00 0.49 0.00

128 0.010 0.82 0.02 0.34 0.08 0.10 0.34 0.02 0.58 0.01

256 0.218 0.52 0.19 0.61 0.19 0.61 0.31 0.37 0.74 0.15

512 2.189 0.70 1.83 0.83 1.38 1.11 1.11 1.37 1.24 1.22

1024 17.303 0.71 14.31 0.86 10.51 1.17 8.24 1.49 8.93 1.38

2048 136.367 0.72 111.58 0.88 76.86 1.28 47.76 2.06 30.46 3.22

4096 1466.411 0.84 1285.57 0.96 953.60 1.30 611.62 2.02 384.63 3.22

cyclic tiling

size time speedup time speedup time speedup time speedup time speedup

64 0.001 0.85 0.02 0.07 0.08 0.01 0.26 0.00 0.53 0.00

128 0.007 1.07 0.02 0.38 0.08 0.10 0.27 0.03 0.58 0.01

256 0.209 0.55 0.16 0.71 0.19 0.61 0.31 0.36 0.68 0.17

512 2.107 0.72 1.39 1.09 1.11 1.37 0.91 1.67 1.14 1.33

1024 16.894 0.73 10.68 1.15 8.08 1.52 6.31 1.95 8.24 1.49

2048 133.784 0.73 84.86 1.16 57.95 1.69 31.36 3.13 21.42 4.58

4096 1422.203 0.87 895.04 1.38 551.95 2.24 317.14 3.90 184.22 6.72

Figure 6.11: LU ScaMPI Benchmarks (time in seconds)
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2 processors 4 processors 8 processors
CM BM quot. CM BM quot. CM BM quot.

B1 11.98 · 107 1.42 84.59 8.01 · 107 1.07 74.97 4.77 · 107 0.90 52.82
C1 6.93 · 107 1.12 61.76 3.65 · 107 0.88 41.64 2.10 · 107 0.82 25.51
B2 11.33 · 107 1.83 61.78 7.80 · 107 1.38 56.64 4.73 · 107 1.11 42.58
C2 7.04 · 107 1.39 50.55 3.65 · 107 1.11 32.74 2.05 · 107 0.91 22.45

Figure 6.12: Cost Model and Benchmark Comparison for n = 512

While the big picture is correct, on a smaller scale the results are not, so that they should not be
relied upon.

The reason for this discrepancy may be the sum of several causes:

• The cost model calibration was done for a large number of messages and the problem sizes
used for the APM predictions might not have been big enough.

• Even though the benchmarked times are averages of 10 runs, the absolute run times are very
small (usually less than a second), so that other processes’ interference on the Linux cluster
nodes becomes significant.

• Due to the small problem size, buffers and caches might not or only sometimes be full. Such
effects are ignored by the cost model.

Unfortunately the available hardware restricted LU APM simulations to a problem size of n ≤ 512.
However, the four programs’ cost model predictions do not change too much in relation to each
other if we increase the problem size. Therefore we can expect that the absolute cost model values
for a problem size of n = 4096 are higher, but their relations will be similar to the 512 case. Based
on this argument, in Figure 6.13 we compare the cost model values from the problem size n = 512
to benchmark values for n = 4096.

2 processors 4 processors 8 processors
CM BM factor CM BM factor CM BM factor

B1 11.98 · 107 1235.29 0.097 8.01 · 107 961.91 0.083 4.77 · 107 640.04 0.075
C1 6.93 · 107 843.82 0.082 3.65 · 107 449.51 0.081 2.10 · 107 253.53 0.083
B2 11.33 · 107 1285.57 0.088 7.80 · 107 953.60 0.082 4.73 · 107 611.62 0.077
C2 7.04 · 107 895.04 0.079 3.65 · 107 551.95 0.066 2.05 · 107 317.14 0.065

Figure 6.13: Cost Model for n = 512 and Benchmark for n = 4096 Comparison

In this case we observe a surprisingly good match. As the problem size is significantly bigger
and the benchmark run time longer, all of the three reasons mentioned above for the discrepancy
do not apply anymore. Thus we have a situation where the cost model predictions – quite inde-
pendently from the simulated problem size – match large problem sizes on the target machine. As
parallel programs only deal with large problem sizes, this fact is welcome.

In this case study we have shown that some properties of the final parallel program can be
observed in the intermediate APM programs.
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Chapter 7

Evaluation of PolyAPM Based on
the Case Studies

The initial presentation of PolyAPM in Chapter 3 outlines a programming approach that needs
to prove its usefulness in practise. We now present our experiences based on the case studies in
Chapters 5 and 6 as well as our general experiences with using the implementation, and subject
them to a critical evaluation. We divide the presentation of our experiences into more general
remarks, that refer to the PolyAPM approach itself and that are not directly related to the current
implementation, and into more specific remarks that deal with our set of Haskell interpreters and
the mpi_apm library.

7.1 Experiences with the General PolyAPM Approach

Although all of our experiences relate to the practical work we did in the case studies, some of
them are of a more general nature and do not refer to specific implementation properties. It
should be noted that our example implementation of APM interpreters and the mpi_apm library
are replaceable. All the ideas that we have described in Chapter 3 are independent of our specific
implementation. The following remarks refer to the PolyAPM ideas themselves.

Separating concerns using multiple transformations worked. The transformations were in
fact simple enough for manual coding. In Chapters 5 and 6 we go through sequences of trans-
formations of APM programs. Each change is explained in detail, in particular all parts of
the APM program that are affected by the transformation are mentioned. The list of changes
is usually short. A student who has a background in parallel programming was able to write
APM programs only after a short introduction. This suggests that the main challenge in
writing APM programs is dealing with the transformations themselves, not with implement-
ing their result as APM programs.

Many functions comprising APM programs can be reused. The additional effort of the
exploration of alternative transformation paths scales sub-linearly. In addition to saving
work, the reuse of functions structures the program generation. We get more insight into
how different branches of the PDG relate than if we just produce variations of the final target
code.

To demonstrate how frequent the reuse is, Figure 7.1 contains a table with all APM functions
of the various APM programs from the LU case study in Chapter 6. A function name in
roman letters means that the function is defined in that particular program, while a name
in italics means that a function defined elsewhere is reused. An arrow leads to the reused
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function. A dashed arrow denotes a function reuse within a small wrapper function, so there
is a little bit of additional code. A total of 44 functions is listed in the table, and 24 functions
reuse other implementations.
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Figure 7.1: Code Reuse in the LU Case Study

The initial effort of manual APM programming may be substantial. First off, if our pro-
vided set of synchronous APMs does not meet the requirements, one has to implement new
machine interpreters, one for each needed APM.

In addition, to derive even a single target program using PolyAPM, several intermediate
APM programs have to be written. In the case of LU, we have one declarative specifica-
tion, followed by a sequence of four APM programs before writing the target program. The
traditional approach in parallel programming is to write the target program directly. This
additional effort is pays off if several target programs are derived and alternative transfor-
mations are pursued, but for the generation of a single target program it probably does
not.

Significant decision support by the cost model. The LU case study shows that the cost
model serves the purpose of providing support for the decision between several transfor-
mations. Sometimes its results are quite accurate, but in general one cannot completely rely
on them. We have found the error margin in some cases to be a factor of 2, so that we cannot
use the cost function as a clear prediction of target code efficiency. However, we use it in
PolyAPM primarily for relative comparisons of transformations, so that absolute accuracy is
not really needed. For this purpose the cost model is well suited.

As we show in both case studies, the predictions are more accurate the larger the problem
size is. Reasons for the inaccuracy of the model are discussed in detail in the next section.

From the programmer’s point of view, the prediction’s accuracy depends on the precise
provision of computation and communication cost in the APM programs. In the LU case
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study, we find that the computation cost for generating messages does not contribute much
to the final cost function result, so one might argue to omit it. However, with the finite
difference program, message generation is comparably costly and must not be left out. The
problem is finding the right level of detail for the costs. But even with foremost care there
remains some inherent inaccuracy due to simplicity of the model. This will also be discussed
in more detail below.

7.2 Experiences with our Implementation

Our APM infrastructure as depicted in Chapter 4 leads to observations that we discuss now. These
remarks are rather implementation specific and do not relate to general PolyAPM properties.

Advantages of using Haskell. There are many advantages of using Haskell for the APM inter-
preters. The syntax is concise and programs tend to be quite short. This enables the display
of significant parts of the work in papers, while the gist of the programs can be grasped by
readers not familiar with Haskell. The advanced type system helps to embed the APM pro-
grams within a Haskell program. The APM program can be type checked and is accessible
as a data item to other Haskell functions, such as the APM interpreters. In Chapter 3, we
motivate the use of Haskell for writing the source programs. In that case, the computations
can be transferred directly into the APM program without a rewrite in a different language.

A specific feature of the type system that enables the separation of APM interpreters and
programs is described further below.

The combined interpreter/compiler of the Glasgow Haskell Compiler [GHC] provides an
excellent development platform. The interpreter is able to load precompiled modules auto-
matically for better run time efficiency, but retreats to interpretation if the object file is not
recent. This combines the advantages of interpreters and compilers.

Profiling information provides insight into the algorithm’s behaviour. The APM inter-
preters provide more profiling data than just the mere cost function value. The SynAPM
displays the total computation cost over all processors. This is equivalent to the total com-
putational work, and therefore the workload of a sequential program. The SynCommAPM
and SynDMAPM programs output details of the communication: the sum of sent and re-
ceived messages per processor. Together with the workload, these values can be used to
identify computation and communication hot spots and, therefore, the possible need for a
load balancing scheme. In the LU case study, we can observe that the cyclic programs are
much more balanced than the blocked ones.

The cost model results must be interpreted in the right context. We argue in the pre-
vious section that the inaccuracy of the cost model is no impediment, since the results are
sufficient for our purpose and are actually of surprising quality considering the model’s sim-
plicity. As long as the results are seen in this context, the use of the model is of value. We
now want to provide reasons for the inaccuracy.

• The cost model assumes that the performance of the machine scales linearly with the
problem size. This linearity is a simplification. There are many buffers and caches
in contemporary machines. The performance of accesses through buffers and caches
takes a leap whenever certain thresholds are reached, such as a buffer being full. These
leaps contribute to non-linear behaviour, especially if many such effects superimpose.
Other sources of non-linearity include the non-exclusive use of the machine and reaching
the bandwidth of internal buses and external communication infrastructure. In short,
every cost model short of a complete hardware simulation will exhibit inaccuracies in
the prediction.
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• The cost model is less accurate for small problem sizes, but more accurate for large
ones. As for the communication costs, we argue in Chapter 6 that we have calibrated
the message costs for a large number of PolyAPM messages. With bigger problem
sizes we usually get more messages, so that the predictions will be more accurate.
The computation costs were measured under high load. We have performed many
computations in a loop, taking care that at least one operand was not in the processor
cache, so that a memory access was needed. The factors which determine the efficiency
of such a computation are the ratio of cache misses and the percentage of memory
bandwidth being used. Again, our calibration setup is geared towards a high load
situation.

APM program syntax with pros and cons. A design goal for APM programs was to achieve
executability while retaining human readability. This was made possible through embedding
the APM programs as algebraic data types into the language. The programs are inter-
pretable, but the concise syntax is accessible to a reader with some familiarity with Haskell.
This way, one even gets type checking of the APM programs for free.

But we learnt from feedback that some parts of an APM program are not easy to understand
for readers not familiar with Haskell. Most notably, the loop bounds that are represented as
lambda-abstractions may be difficult to grasp. While readability is always debatable, we ex-
pect that the current APM programs, that are embedded in Haskell, will always require some
basic knowledge of the language. There is room for future work to find an alternative, more
accessible representation for APM programs and means to convert different representations
into each other.

Additionally, any automatic transformation would need to parse such a program, apply the
transformation to the parse tree, and generate again an APM program. Similarly to the
point above, this issue is about a more machine accessible representation. Ideally, there
would exist all three representations and conversion functions between them.

Haskell’s laziness complicates debugging of APM programs. While laziness undoubtably
is a powerful evaluation strategy, we found laziness a drawback when debugging programs
with array accesses. Lazy evaluation means that expressions are evaluated as far as needed,
which in practise means that an expression in the course of an program execution is at first
only partially evaluated, maybe later on further evaluated, before finally a value is obtained.
Over time a lot of partially evaluated computations build up. Driven by the need to output
results, eventually the partially evaluated expressions are evaluated to completion.

When, due to a programming error, an undefined array element is referenced and the pro-
grams aborts with a run time error, the expression which contains the erroneous reference
cannot be easily identified. This is because the evaluation order of all expressions and
subexpressions is difficult to follow. Haskell provides the trace function to output debug
information before evaluating an expression. But the output of several trace calls may
occur in surprising order. Strict programs have a clearer connection between the flow of
the program’s syntax and the control flow. Thus, debug output helps better to locate an
erroneous expression.

The available options in Haskell include: forcing strictness with the seq operator, creating
debug output with the trace function, and more involved debugging with tracers (most
notably HAT [HAT]). But we found seq to be only of limited use because it forces only a weak
head normal form and does not completely evaluate the expression immediately. The complex
evaluation order makes the tracing through expressions very difficult. In addition, the tracers
do not support all extensions of the ghc compiler that we use in our implementation.

Efficiency problems using APM interpreters. The delayed complete evaluation of expres-
sions due to lazy evaluation is intended to save computations. If a computation is delayed
until it is needed, it may not be done at all. The problem is that the intermediate, partially
evaluated expression consumes significant amounts of memory. If the result of an expression
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is needed anyway, it would be more space efficient to evaluate it completely right away.
Again, strictness annotations can only reduce the inefficiency problem, but not solve it.

Another source of inefficiency are the updates of standard Haskell arrays. This problem was
solved using more efficient, linear arrays.

However, even with linear arrays the space inefficiency restricts the maximal problem size
significantly. The LU decomposition program with an input size of 512×512 gets dangerously
close to the 2 GB process size limit of a 32-bit operating system. Larger problem sizes cannot
be dealt with.

To increase the space efficiency, we see two options for the future: either the interpreters
are rewritten in Haskell using the state transformer monad that can force evaluations im-
mediately and employs in-place array updates, or the interpreters are written in a strict
functional language like OCaml [OCa]. The second option restricts the generality as only
those computations can be allowed in the Haskell specification that are easy to translate to
OCaml as a part of an APM program.

Haskell enables tight relation of interpreters and programs. The APM interpreters are
part of a library that a Haskell module containing APM programs imports. The APM
programs, comprising the loops and a body function, are passed to the interpreter. The
interpreters also need to call other functions of the APM program, such as memory update
and message generation. They need to match the loop nest. The link, together with the
data types that comprise a message, is the common memory type that they all operate on.
The interpreter library needs to be able to call the correct, say, memory update function to
a given loop program. In order for this to be type safe, it must be ensured that the update
function is written for the same memory and message types.

Haskell’s type classes solve the problem for just one type. The Glasgow Haskell Compiler
has an extension for multi-parameter type classes [WB89, PJJM97]. They help to solve the
problem nicely. Every APM program provides the necessary instance declarations of such
classes. In these instances the memory update functions are defined (see Section 4.1). The
type classes attach these functions to the memory type and export them globally, so that
the APM interpreters automatically call the correct ones.

A solution to inefficient array accesses. The inefficiency of array updates in non-strict, purely
functional languages has been the source of many research papers (e.g., [EL97]). Conceptu-
ally, every update results in a new array which differs only in the updated element from the
old one, all other elements are copied. With Haskell arrays, this copying takes place with
each update. Old arrays are eventually garbage collected, but often not immediately.

In many cases, one would prefer to have in-place updates without the space and time overhead
of an additional array copy. In general, this is not possible with Haskell arrays. Even after
the update, references to the old array exist and may still be used for some time, thus the
need for the copy. However, APM programs are imperative by nature, so that old arrays are
never referenced after an update. The arrays are used linearly, so that the update could be
made in place, without copying the whole array. Haskell does provide such a kind of arrays
in the state monad, but this means to convert the entire interpreter into monadic style.

We use an alternative array implementation named LArray in Haskell that implements linear
arrays (see Section 2.1.2). Here, the user must ensure that the arrays are only used linearly,
i.e., old versions of the array are never referenced, otherwise the result might be wrong. An
important property of this implementation is that it overloads the syntax of standard Haskell
arrays, so that the interpreters need not be changed. After switching from standard Haskell
arrays to LArrays, the APM interpreters use significantly less memory and run time.

Good speedups using mpi_apm. Our implementation uses our collective communication library
mpi_apm (Section 4.3.1) to ease the transition from the SynDMAPM program to a target
program in C+MPI. The communication structure of the APM program is based on one-sided
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calls performed by the sender. The MPI-2 standard defines one-sided calls, but the ScaMPI
implementation on our cluster lacks their implementation. The collective communications
are chosen because we can mimic easy-to-program one-sided calls with them.

Most programs do not exhibit an alltoall communication pattern. When compared to tradi-
tional send/receive communication, a collective call in such programs sends many superfluous
messages. However, the detailed LU benchmarks show that nevertheless good speedups were
obtained. The efficiency exceeds 50% in some cases, which is a good result for a communi-
cation intensive program.

The explanation is that MPI_All_to_All is very fast on the Scali cluster. Since it is simpler
to use than a collection of send/receive pairs, one should seriously consider this programming
style with synchronous programs on low latency cluster hardware.

7.3 Evaluation Summary

The purpose of the PolyAPM approach is outlined in Chapter 3. Based on the above experiences,
we now summarise our findings.

• We provide a framework in which an end user can implement an algorithmic specification as
a non-parallel, declarative program. The most important aspect is the ease of programming,
while the drawback may be unsatisfactory sequential run time and space efficiency. This
declarative program can then be transformed into an APM program and be subjected to
several code transformations until a target program is generated. Such a target program
runs efficiently on a parallel machine, but would be difficult to write directly.

• The programming process is structured into a sequence of source-to-source transformations.
Input and output of the transformations are programs for abstract parallel machines. These
intermediate programs can be accessed, evaluated and even executed using APM interpreters.

• The PolyAPM framework is flexible enough to cater for manual, semi-automatic and auto-
matic parallelisation, depending on the number of program transformations that are auto-
mated.

• There are several options for decision support when selecting one of multiple alternative
transformations. The options are manual code inspection of the APM programs, run time
behaviour observation using the APM interpreters with real input, and a cost model analysis
targeting a real machine.



Chapter 8

Related Work

There exists work in several different areas that is related to PolyAPM. First we provide an overview
of different ways to write a parallel program manually. The focus is laid upon standardised libraries
for imperative languages and several approaches in parallel functional programming. The next
section deals with compilation systems which can be subdivided into parallel compilers and more
academic program generation frameworks. Finally we discuss other work on abstract parallel
machines.

8.1 Manual Parallel Programming

Originally, parallel computers were programmed manually. There was no compiler support what-
soever and the distribution of the computation across different processors as well as the com-
munication between the processors had to be done explicitly. Usually, the manufacturer of the
parallel machine provides proprietary libraries to access the machine’s features efficiently. While
this happens until today, for a long time such programs are known not to be portable to other
parallel machines and the programming interfaces are often difficult to deal with and change fre-
quently. Thus, there is a need for more hardware abstraction to ease programming and to provide
portability.

8.1.1 Standardised Libraries for Parallel Programming

The need for standardised and portable programming produced two major message passing li-
braries: PVM (Parallel Virtual Machine) [G+94] and MPI (Message Passing Interface) [DHHW93].
The decline of the use of PVM in recent years leaves MPI as the de facto standard. MPI is de-
signed as an SPMD communication library for distributed memory machines. The standard defines
an API for three kinds of communication: sends/receives, collective communication and remote
memory access. The most common language bindings are for C and Fortran. The MPI imple-
mentations try to map the communication functions efficiently on given hardware, a task in which
proprietary implementations of MPI succeed than portable ones. However, all of these libraries
have their drawbacks: explicit communications are error prone, and programming with over 150
MPI functions is a complex task.

Based on these experiences, the BSP (Bulk Synchronous Programming) [SHM97] library was
designed with two main differences in mind: a much smaller API (around 50 functions) and
a simpler communication mechanism. A BSP program consists of a series of supersteps, each
starting with a computation phase and ending with a synchronised, global communication. This
programming style provides less flexibility than MPI in that the communication pattern is fixed.
BSP received particular attention in the academic world.
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Another library, OpenMP [DM98], is a multi-vendor effort to provide a standard for SMP
programming. It consists of compiler directives and a corresponding library for C/C++ and
Fortran. The directives are provided as special key words in the program’s comments, so that an
OpenMP program can be compiled with a sequential compiler without any change.

8.1.2 Parallel Functional Programming

In the 1980s, parallel programming with functional languages was thought to have a bright fu-
ture. Due to their different semantics compared to imperative languages, it is easy to identify
independent expressions that can be evaluated in parallel. In fact, most functional programs are
embarrassingly parallel. However, the early hopes were not fulfilled, mainly for two reasons. For
one, most functional languages require a big run time system that adds quite some overhead in
contrast to imperative programs. The second reason is that it turned out to be the main challenge
to contain the parallelism, not to find it.

Sisal [BOCF92] is a single-assignment, first-order, monomorphic functional language designed
for scientific computation. Its syntax resembles Fortran. As it lacks a lot of advanced concepts of
modern functional languages, it could be implemented very efficiently.

Most existing functional languages received extensions to incorporate explicit parallelism. As
an example, the team of the Glasgow Haskell Compiler [GHC] developed the Glasgow Parallel
Haskell specification, whose only implementation is GUM [THM+96]. It works by inserting the
infix operators seq and par into the program to denote expressions that have to be evaluated
sequentially (the first argument’s evaluation is forced) or may be done in parallel (which is a hint
to the run time system to create a separate thread). The difficulty with this approach is that you
only give hints to the run time system concerning parallel execution, but the run time system may
choose to ignore the hints, while it incurs quite some overhead at the same time.

Eden [BLOMP98] is an extension of GHC supporting parallel programming by explicit pro-
cess creation and communication between processes with uni-directional channels. The channels
behave like lazy lists and model a stream based data exchange. Sending and receiving is done by
manipulating the channel lists. Lower level communication management is not necessary. Eden
enforces strict evaluation in places where laziness would restrict parallelism. Explicit machine
control like process placement is not possible.

Another approach is to find a common execution pattern in a set of algorithms, then to
implement this pattern efficiently as a parallel program, and subsequently to instantiate this
pattern with the specifics of a required algorithm. For all other algorithms later on, only the
instantiation has to be done again. These patterns are called skeletons [Col89]. A skeleton is
defined as a program that takes functions as parameters to be instantiated for a specific algorithm.
The program then consists of the skeleton together with the instantiating functions. If specified in a
functional language, skeletons are implemented as higher-order functions. There exist compilation
systems that transform skeleton programs into target code suitable for a parallel machine [Her01].
Others perform the implementation manually, but in a systematic way [Gor98].

The aim of the skeletons community is to have a library of skeletons, each providing an efficient
implementation for a set of algorithms. Thus, a programmer may choose the right skeleton and
instantiate it, yielding an efficient parallel implementation. It is possible to combine skeletons to
form larger programs.

Aldinucci et al. presented the Functional Abstract Notation [AGLP01], which implements
skeletons based on higher-order functions like map, reduce, etc. as Haskell programs. His META
tool [Ald02] extends his work with a graphical environment which lets the user select code trans-
formations. A simple cost model associates the transformations with a performance prediction.
Sequences of such transformations yield a final target program.
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8.2 Compilation Systems

Systems to compile programs for parallel machines fall into two categories: production grade
compilers, often for general purpose languages with some support for parallel execution, and
research systems with the focus on understanding the parallelisation rather than on producing
code.

8.2.1 Commercial and Academic Compilers

Most compilers focus on the generation of efficient SPMD programs from source languages like
Fortran. The source programs usually have to be augmented with parallelisation and data dis-
tribution annotations. However, some systems feature “automatic parallelisation” switches that
enable either simple or semi-automatic parallelisation schemes. This group includes among others
Adaptor [Bra98], Polaris [BEF+95] and Parafrase [PGH+90]. A special role plays Bert77 [Ber02], a
Fortran77 source-to-source compiler that employs both static and dynamic parallelisation schemes,
and focuses on performance prediction. A graphical user interface guides the semi-automatic pro-
cess to improve the parallel performance based on a machine dependent cost model.

The SUIF [WFW+94] system serves as a compiler’s workbench; the SUIF kernel defines an
“intermediate representation” of a program between compiler phases and provides functions to
access and manipulate it. SUIF is distributed with a set of example phases which includes a
data dependency analysis and simple parallelisation techniques. However, parallelisation is not
the foremost goal of the SUIF project.

In any case, each compiler has been designed with a rather fixed compilation process in mind.
The compilation phases usually can be influenced by run time options, but more flexibility is rare.
The most flexible parallelising compiler appears to be Bert77, which is claimed to be able to choose
automatically between three different parallelisation schemes.

8.2.2 Parallelisation Systems in Research

Automatic parallelisation systems still remain mostly a research topic. They are very specialised
and work only on a restricted set of input programs. On this set, they usually provide an effective
detection of parallelism. However, as they rely on a particular parallelisation method, their selec-
tion and ordering of transformations is mostly fixed. In this respect, they are more restricted than
PolyAPM. However, they are often workbenches for the transformation development of researchers,
so that for their domain these systems provide the state of the art.

PAF [FCB+98] is an automatic paralleliser for a restricted class of Fortran program based
on the polytope model [Len93]. The LooPo [GL96] system extends this to a variety of input and
output languages. It implements several alternative algorithms for space-time mapping and code
generation. It can deal with more general programs than PAF. PIPS [ACC+96] is a compiler’s
workbench with many different transformations. It works on Fortran code and aims primarily at
the signal processing domain.

OPERA [LM96] was an academic system designed for the parallelisation of affine recurrence
relations. It consists of a dependence analysis, scheduler and allocator as well as a tool to visualise
the index spaces.

8.3 Abstract Machine Models

This section is about the closest work of all that are presented here. They are program transfor-
mation systems targeting abstract machines.
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John O’Donnell and Gudula Rünger have presented Abstract Parallel Machines (APMs)
[OR97], providing a starting point for others to work on parallel compilation using an abstract
machine approach. APMs are defined as simple distributed memory machines without buffers
and caches, connected with a network of unspecified topology. Semantically, APMs are defined by
their input/output characteristics. An APM program consists of one or several parallel operations
(ParOps), each of which are designed for small tasks. Chapter 3 has more details.

Joy Goodman extended the above work [Goo01], included input and output via monads
and investigated and formalised the decision making process. She focused on formalising the
transformations. Her APM programs are Haskell programs of a certain form so that there is
no need for APM interpreters. The cost of the programs is manually derived by inspecting the
algorithmic behaviour of the APM programs, but no formal cost model is defined.

Noel Winstanley also uses the APM methodology in his PEDL system [Win01]. He compiles
array-based numerical programs to the parallel, imperative target language SAC. However, he uses
a special, restricted source language, tailored for his specific problem domain, and focuses on a
high degree of optimisation and automation of the compilation.

Our work differs from the above in several respects: PolyAPM defines loop programs for
APMs that are embedded in Haskell, but need interpreters to be run. These interpreters are used
to observe the behaviour of the APM program on real input data and they provide profiling data
of these executions. We provide a cost model that uses this profiling data to make a performance
prediction for a chosen machine. The APM programs as defined in PolyAPM are more general than
Winstanley’s so that a greater application domain is applicable. PolyAPM defines no fixed target
language, so our approach is more flexible. We address the parallel program generation for scientific
algorithms with special focus on the comparison and selection of alternative transformations.

8.4 Compiler Generation

Although the construction of a complete compiler by automating all transformations was no goal
set for the current work, it is an area of possible future application. We will therefore briefly
describe some significant advances.

Most tools supporting compiler construction are designed to generate scanners and parsers.
Tools for code transformations, be it on source-to-source level or on abstract syntax trees, are
quite rare.

The Synthesizer Generator [RT89] is a system to automate the creation of language-aware
editors. Its editors use attributed grammars as their internal representation and are able to
perform rule-based source-to-source transformations on the edited programs. With a suitable set
of formalised transformations, one could build an editor that can perform these transformations
directly on the code. Such an editor can be seen as a user-guided transformation tool.

Baxter et al. present the Design Maintenance System [BP97]. It is a transformational develop-
ment process focusing on incrementally adapting the design. From each design an implementation
is to be derived automatically. Some program generation tools have been written, but the vision
of DMS has not yet been accomplished.
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Conclusions

PolyAPM is a framework in which code transformation techniques for a parallelising compiler can
be implemented and evaluated. For a given problem, one can explore alternative transformations
and determine which selection of transformations is best suited. It is even conceivable to make
statements about which one of a set of machines seems to be best suited for a given class of
problems.

9.1 Summary

We have presented an approach for the systematic development of parallel programs by applying
a sequence of source-to-source transformations, which provides for a demand-driven selection pro-
cess of transformation techniques as well as means of evaluating and profiling the intermediate
representation.

9.1.1 Main Contributions

The following lists briefly the main contributions of this work.

• We have presented PolyAPM, a flexible framework for manual, semi-automatic and automatic
parallelisation. Its main features are:

– Organisation of the compilation process into a sequence of source-to-source transforma-
tions, some with alternatives. The transformations construct a directed graph, usually
a tree.

– Source and target of each transformation are abstract programs that can be manually
written, inspected and executed with real input on abstract machine interpreters.

– Effects of transformations can be immediately observed, evaluated and compared.

– Investigation of alternatives is done by navigating through the program graph. Alterna-
tive transformations create independent sub-graphs. If a particular path that is chosen
later turns out not to be optimal, the program generation only needs to backtrack to
the point where the decision for this path was taken. Then, one of the alternative
paths may be pursued. Thus, one backtracks along the program graph only as far as
necessary. New programs need not always be compiled or generated from the initial
specification. This saves significant work if several program alternatives are manually
derived.
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– We provide a cost model that predicts the run time efficiency of target programs on
target machines evolving from a given abstract program. This cost model can be used
independently from PolyAPM.

• We have performed two case studies which validated the framework.

• We have shown that, on a low latency communication cluster, it is very efficient to use
collective communications. We claim that it is also easier opposed to programming with
send/receive pairs.

• We have shown that implementing numerical algorithms in a high-level, declarative program-
ming language is easy and does not impose superfluous data dependences by an unnecessary
sequencing of computations. Writing a functional program before transforming it into an
APM program is therefore beneficial for the programming and parallelisation process.

9.1.2 Main Features of the PolyAPM Framework

The main contribution, the PolyAPM framework, has several key properties that distinguish it
from available alternatives, such as traditional parallelising compilers. These properties are now
highlighted in more detail.

Evaluation of transformation effects: In contrast to classic compilation systems, one can eas-
ily observe the effects of a transformation in PolyAPM by looking at the APM program code,
as well as by retrieving simple profiling information from the interpreter. This is achieved by
running an APM program with different run time options and inputs using the interpreter
for the corresponding APM and by comparing the interpreter’s cost model predictions. Es-
pecially with a long sequence of transformations, it is often difficult to deduce from a final
sub-optimal compilation result which particular transformation has had the negative effect.
PolyAPM enables the user to evaluate each transformation step as if looking inside a compiler.

Well-founded selection of transformations: Based on the fact that we can evaluate transfor-
mations, we can decide against bad ones and go for a different transformation path. In case
of a manual compilation process, a lot of unnecessary work can be avoided by cutting off the
unwanted branch.

Furthermore, the modularity and extensibility of PolyAPM enables us to provide alternatives
for transformations where traditional monolithic compilers just provide one fixed, built-in
transformation. A selection may be based on different criteria: the problem domain, the
characteristic properties of available parallel machine(s) (possibly of importance are, among
others, the number of processors, network topology, memory hierarchy), the properties of a
preferred message passing library, and so on. In addition, if the right choice is not evident,
one has the opportunity to continue with a breadth-first search style of programming by
selecting, transforming and evaluating a program, possibly followed by a backtracking step
if the evaluation was not satisfactory.

A problem arises when two (or more) transformations at different levels of the PDG interact
in such a way that the choice of the latter influences the validity of the evaluation of the
former. In this case, a design decision cannot be based solely on the evaluation of the first
transformation. Even if these interactions are not known beforehand, one has to be aware
that they might exist, as rare as they may be.

Step-by-step automation of the program generation towards a compiler: We have ap-
plied our PolyAPM transformations manually. But the system is designed to keep the changes
to the program introduced by one transformation as small as possible. One reason for this is
that they can then be easier performed automatically. This will lead to a potentially large,
but finite number of automatic transformations. If all transformations along one path in the
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derivation tree are automatic, we have created a compiler. But, also a mix of manual and
automatic transformations is possible, which allows for a stepwise development of a compiler.
For special transformations an automatic solution might be too difficult and rarely needed,
so that one is satisfied with the manual solution, rendering the entire system semi-automatic.

9.2 Who Should Use PolyAPM?

Due to its generality, the presented approach is suitable for a variety of different users. The
following is a short list of potential users in different scenarios.

Developers of compilation techniques for parallel programming, especially if the infrastructure
for a complete compiler is missing. For example, if a specific tiling technique is being devel-
oped, an evaluation of its effects is difficult without a compiler infrastructure. Incorporating
the technique into an existing compiler may be difficult, and writing a new and simple com-
piler may be too much work for a research project. PolyAPM can be used to deal with a
transformation manually without the overhead of an existing compiler.

Programmers who need to write many variations of a parallel program and/or are targeting
many different hardware platforms. Variations also include consecutive improvements of a
target code program. The use of PolyAPM can save work and provide a better understanding
for the effects of the transformations.

Experienced programmers and researchers who need manual to semi-automatic compila-
tion, e.g., in order to combine some automated standard program transformations with their
expertise in cases where automation is not feasible.

9.3 Outlook

The following lists proposals for future work extending or building upon PolyAPM. The experiences
with the current prototype motivate these extensions.

• Use additional formats to represent APM programs. The current Haskell-embedded pro-
grams are suitable for interpretation, but less so for human reading and automatic program
transformation (see Section 7.2). Two additional formats might be sensible: a data structure
containing the parse tree of the program, so that automated program transformations are
easier to implement, and a more readable textual representation with less syntactic overhead.
Automatic conversions between the three formats should be provided.

• Explore the cost model on a variety of different hardware platforms. Develop a process where
the selection of the most suitable hardware platform for a given problem is possible. With
all due caution regarding the sufficient accuracy of the cost model, such predetermination of
suitable target hardware matches the requirements of Grid computing.

• Re-implement the APM interpreters in either completely monadic style or in a strict pro-
gramming language. The deferred evaluation of Haskell yields space-inefficient interpreters.

• Implement more APMs and transformations, such as an asynchronous line of interpreters.

• Automate some or all transformations: a case study could show that an iterative compiler
construction is feasible. This could be done by automating some transformations and pro-
viding tool support to connect manual and automatic transformation processes.

• The correctness of transformations can be ensured by using equational reasoning on the
Haskell APM programs. A further case study could analyse whether a proof is worth the
effort.
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Appendix A

LooPo Specifications

A.1 LooPo Specification for STM1

// first STM for LU
CONSTANT n
LOOPS i,j(i),r,q(r)
STATS l(i,j),u(r,q)
PSEUDOS k,kk

i: 1<=i, i<=n
j: 1<=j, j<=i

// q=j, r=i fuer u(i,j)
// index space for u is enumerated reversely
q: 2<=q, q<=n
r: 1<=r, r<=q-1

k: 1<=k, k<=n
kk: 1<=kk, kk<=n

STAT l : L[i,j] := A[i,j] - SUM(L[i,k0]*U[k0,j])
STAT u : U[r,q] := A[r,q] - SUM(L[r,kk0]*U[kk0,q])

DEP(): l(i,k) -> l(i,j) : j<=i, 1<=k, k<=j-1
DEP(): u(k,j) -> l(i,j) : j<=i, 1<=k, k<=j-1
DEP(): u(kk,q) -> u(r,q) : r<=q-1, 1<=kk, kk<=r-1, q>=2
DEP(): l(r,kk) -> u(r,q) : r<=q-1, 1<=kk, kk<=r-1, q>=2
DEP(): l(r,r) -> u(r,q) : r<=q-1, 1<=kk, kk<=r-1, q>=2

//result:
//schedule for statement 1: t(i,j,r,q) = 2*j-2
//schedule for statement 2: t(i,j,r,q) = 2*r-1 i.e., 2*i-1
//placement for statement 1: p(i,j,r,q) = i
//placement for statement 2: p(i,j,r,q) = q i.e., j
//deps 1,3 cut, 2,4,5 not cut
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A.2 LooPo Specification for STM2

// second STM for LU
CONSTANT n
LOOPS i,j(i),r,q(r)
STATS l(i,j),u(r,q)
PSEUDOS k,kk

i: 1<=i, i<=n
j: 1<=j, j<=i

// q=j, r=i for u(i,j)
// index space for u is enumerated reversely
q: 2<=q, q<=n
r: 1<=r, r<=q-1

k: 1<=k, k<=n
kk: 1<=kk, kk<=n

STAT l : L[i,j] := A[i,j] - SUM(L[i,k0]*U[k0,j])
STAT u : U[q,r] := A[q,r] - SUM(L[r,kk0]*U[kk0,q])

DEP(): l(i,k) -> l(i,j) : j<=i, 1<=k, k<=j-1
DEP(): l(r,kk) -> u(r,q) : r<=q-1, 1<=kk, kk<=r-1, q>=2
DEP(): l(r,r) -> u(r,q) : r<=q-1, 1<=kk, kk<=r-1, q>=2
DEP(): u(kk,q) -> u(r,q) : r<=q-1, 1<=kk, kk<=r-1, q>=2
DEP(): u(k,j) -> l(i,j) : j<=i, 1<=k, k<=j-1
// for compatibility of the schedule with the placement:
DEP(): u(r,q-1) -> u(r,q) : q>=2
// for additionally having the same schedule in both statements:
DEP(): l(i-1,j) -> l(i,j) : i>=2

// result:
// schedule for statement 1: t(i,j,r,q) = i+j-2
// schedule for statement 2: t(i,j,r,q) = r+q-2 i.e., i+j-2
// placement for statement 1: p(i,j,r,q) = i
// placement for statement 2: p(i,j,r,q) = r i.e., i
// deps 1-3,6 cut ; 4,5 not cut
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[DR95] Michèle Dion and Yves Robert. Mapping affine loop nests: New results. In Bob
Hertzberger and Giuseppe Serazzi, editors, High-Performance Computing & Net-
working (HPCN’95), LNCS 919, pages 184–189. Springer-Verlag, 1995.

[EL97] Nils Ellmenreich and Christian Lengauer. On indexed data structures and functional
matrix algorithms. Glasgow Functional Programming Workshop 1997, October 1997.
http://www.dcs.gla.ac.uk/fp/workshops/fpw97/.

[FCB+98] Paul Feautrier, Jean-François Collard, Michel Barreteau, Denis Barthou, Albert Co-
hen, and Vincent Lefebvre. The Interplay of Expansion and Scheduling in PAF.
Technical Report 1998/6, Laboratoire PRiSM, Université de Versailles, 1998.
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[HAT] HAT – A Haskell Tracer. York Functional Programming Group, University of York,
United Kingdom. www.haskell.org/hat.

[Her01] Christoph Armin Herrmann. The Skeleton-Based Parallelization of Divide-and-
Conquer Recursions. PhD thesis, Fakultät für Mathematik und Informatik, Uni-
versität Passau, March 2001.

[HPF97] High Performance Fortran Forum. HPF Language Specification, 1997.
http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/hpf2/index.cfm.

[LAM] LAM MPI. Indiana University, USA. www.lam-mpi.org.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor,
CONCUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.
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