
Quality of Service and Optimization
in Data Integration Systems

Reinhard Braumandl

DISSERTATION

Accepted by the Department of Mathematics and Informatics of the University of Passau.

First Referee: Professor Alfons Kemper, Ph.D.
Second Referee: Professor Dr. Donald Kossmann

Date of final doctoral examination: 28.02.2002

Acknowledgments

First of all, I have to thank my advisors Prof. Alfons Kemper and Prof. Donald Kossmann for
their support. They gave me the opportunity to participate in an ambitious and visionary project.
I could learn a lot from their insight and experience in doing research work. Their advices
provided invaluable guidance for my work.

I also wish to express my gratitude to all my colleagues at the University of Passau for many
helpful discussions and for the pleasant working atmosphere: Andr´e Eickler, Jens Claussen, Na-
talija Krivokapić, Konrad Stocker, Markus Keidl, Stefan Seltzsam, Christian Wiesner, Bernhard
Zeller and Bernhard Stegmaier.

André Eickler was the advisor for my master thesis and introduced me to the topic of name
services in object-oriented database systems. Together with Jens Claussen the work on func-
tional joins was done and his query processor for the Merlin project influenced my work on the
ObjectGlobe query processor. Natalija Krivokapi´c and I shared an office for several years and
we always had a really pleasant working atmosphere.

My doctorate work was done in the context of the ObjectGlobe project and the other project
members Konrad Stocker, Stefan Seltzsam, Markus Keidl and Christian Wiesner helped a lot in
making this project and thus my work, too, so dynamic. Konrad was our specialist on optimizer
technology and always had a lot of hints on work in this area. Stefan developed the security
system of ObjectGlobe and was responsible for the perfectly working computer pool. The meta
data service of ObjectGlobe was the work of Markus and he also provided the rest of us with
the latest KDE versions which he installed in our computer pool. Christian built his Hyperquery
system on top of ObjectGlobe and thus had to suffer a little bit from the bugs I had left in the
code.

Bernhard Zeller provided all colleagues with a big portion of black humor and Bernhard
Stegmaier was my hardware dealer of choice and the first person to ask for all kinds of problems
with PC hardware.

Stefan Pr¨ols and Alexander Kreutz did a perfect job in augmenting the ObjectGlobe prototype
with all the missing parts so that we could demonstrate the prototype to a broader audience. In the
scope of his master thesis, Martin Siller implemented the algorithms for the query optimization
techniques which are discussed in this work. Alexandra Schmidt provided support in all kinds of
administrative and non-technical tasks and thus helped in concentrating on the ’real’ work.
At last, I would like to thank my parents for their great support.

Tittling, June 2002

Reinhard Braumandl

Contents

1 Introduction 1
1.1 Status Quo for Data Processing on the Internet 1
1.2 A Framework for Query Processing on the Internet 2
1.3 The Outline of this Work 3

2 Data Integration Systems 5
2.1 Executing Queries on the Internet . 5
2.2 The Middleware Layer . 7

2.2.1 Query Processing . 8
2.2.2 The Role of Wrappers . 15

3 The Basic Ideas of the ObjectGlobe System 17
3.1 A new Architecture . 17

3.1.1 The Requirements . 17
3.1.2 A Possible Solution 18

3.2 Overview of the ObjectGlobe System . 20
3.2.1 Query Processing in ObjectGlobe . 20
3.2.2 Example Plans . 21
3.2.3 Quality of Service (QoS). 23
3.2.4 Privacy and Security Requirements in ObjectGlobe 24
3.2.5 Comparison to Other System Architectures 25

4 The Architecture of the ObjectGlobe System 28
4.1 Generating Query Plans . 28

4.1.1 Lookup Service 28
4.1.2 Parser and Optimizer . 31

4.2 Query Plan Distribution and Execution . 40
4.2.1 Distributing Query Evaluation Plans . 40
4.2.2 Authentication and Authorization . 41
4.2.3 Extensibility 41
4.2.4 Secure Query Engine Extensibility 42
4.2.5 Monitoring the Progress of Query Execution 46

i

CONTENTS ii

5 Performance Experiments 49
5.1 Overheads of Plan Generation . 49
5.2 Using a Cluster Tree for Optimization . 50
5.3 Query Execution Times . 53

5.3.1 Benefits of Operator Mobility 53
5.3.2 Costs of Secure Communication . 54
5.3.3 Costs of Dynamic Extensibility 54

6 QoS in Data Integration Systems 56
6.1 The Relevance of QoS for Data Integration Systems 56
6.2 Related Work . 58
6.3 The Quality of Service Model .. 60

6.3.1 The Quality of Service Dimensions 60
6.3.2 The Integration of QoS Management in Query Processing 61

7 Enforcement of QoS Constraints 65
7.1 Quality of Service Enhanced Plan Generation. 65

7.1.1 Selecting Providers . 66
7.1.2 Estimating QoS Parameters 67
7.1.3 Managing Uncertainty in Resource Availability 72
7.1.4 Pruning Query Evaluation Plans . 75
7.1.5 Relaxing some Constraints on Sub-Plans 77

7.2 QoS Enforcement during Plan Instantiation and Execution 79
7.2.1 Plan Instantiation and Admission Control 79
7.2.2 Plan Execution and Monitoring . 81

7.3 The Adaptation of a Query Execution Plan . 82
7.3.1 Adaptations . 83
7.3.2 Fuzzy Control . 84

8 QoS Experiments 88
8.1 The Effectiveness of Adaptations in a Distributed Environment 88

8.1.1 Monitoring and Adapting Wrapper Plans 88
8.1.2 Monitoring and Adapting Remote Sub-Plans 89

8.2 The Effectiveness of Run-Time QoS Management in Heavily Loaded Multi-User
Environments . 90
8.2.1 Experimental Results without QoS Management 91
8.2.2 Experimental Results with Admission Control Activated 92
8.2.3 Experimental Results with Full QoS Management Support. 95

9 The Role of Functional Joins 98
9.1 Applications for Functional Joins . 98
9.2 Functional Joins along Nested Reference Sets in Object-Relational and Object-

Oriented Databases . 100

CONTENTS iii

10 Implementing Functional Joins 102
10.1 Implementation of Object Identifiers . 102

10.1.1 Physical Object Identifiers 102
10.1.2 Logical Object Identifiers . 103

10.2 Functional Join Algorithms . 103
10.2.1 Known Algorithms . 104
10.2.2 The Partition/Merge-AlgorithmP(PM)∗M 105
10.2.3 An Example of theP(PM)∗M-Algorithm 109
10.2.4 P(PM)∗M, Physical OIDs, Path Expressions 109
10.2.5 Fine Points of theP(PM)∗M-Algorithm 110

11 Evaluation of Functional Join Algorithms 114
11.1 Proof of Concept . 114

11.1.1 Partition/Merge-Implementation 114
11.1.2 Benchmark Setup . 115
11.1.3 Comparison of Measured Running Times 116

11.2 Analytical Evaluation . 118
11.2.1 The Cost Model . 118
11.2.2 Varying the Memory Size . 121
11.2.3 Varying the Selectivity onR . 122
11.2.4 Varying the Set Cardinality 122
11.2.5 Inflating the OIDMap . 123
11.2.6 Comparing Different OID Mapping Techniques 124
11.2.7 Logical OIDs in Comparison to Physical OIDs 124

12 Conclusions 126

A The XML Representation of a Query Execution Plan 139

B The RDF Registration Code for a Collection 141

Chapter 1

Introduction

Over the past years, we have seen a substantial growth of the Internet with respect to the propaga-
tion of participating sites and the capacities for data transfer. This development was driven by the
desire of private individuals and commercial and non-commercial organizations for a global plat-
form for electronic communication. The applications initially used on the Internet were rather
simple and particularly targeted on personal information exchange. As the network capabilities
and the understanding of the possibilities a world-wide communication network provides were
improving, more advanced applications were developed. Today, we can find, for example, a large
number of online shops, multimedia learning courses, distributed scientific data analysis appli-
cations and all kinds of information services (e.g., for travel planning) on the Internet. Many
of these applications have in common that they offer data and in some cases also limited data
processing capabilities.

1.1 Status Quo for Data Processing on the Internet

Altogether, a huge amount of data can be accessed on the Internet. Therefore, many researchers
in the field of data integration systems claim that in some sense the Internet can be seen as a global
database [LKK+97]. The goal of research in data integration systems is to develop techniques,
which allow to use this global database in a similar way as usual database systems. The diversity
of data sources on the Internet, which is shown below, causes this task to be a rather difficult one.

The data sources on the Internet belong to many different domains:

• Some well known online stores provide catalogs for books, CDs, DVDs, software, etc.

• Car manufacturers provide information about the car models they are offering.

• Realtors provide descriptions of houses and flats they have under offer.

• Travel agencies inform about possibilities to travel by plane, train and ferry. They also
inform about available hotel rooms and rental cars.

1

CHAPTER 1. INTRODUCTION 2

• The results produced or gathered, for example, by earth observation, high energy physics
or genome research are interesting for a large number of scientists working in the corre-
sponding fields.

• Financial data like exchange or stock rates or economic data are provided by companies
which offer online stock trading.

This list could be continued nearly indefinitely. Naturally, each of these domains has its own set
of associations and rules which can be expressed in domain specific functions and operations.

We can further differentiate the data sources with respect to the applications which are used
to manage and deliver their data. One of the simplest data source would be a WWW-server with
staticHTMLpages. A more elaborate data source could deliverHTMLor XMLdocuments which
are generated dynamically from data managed by a database system. More powerful data sources
could offer aSOAPinterface to access a server application or even aJDBCinterface to access a
complete database system. Of course, these solutions differ vastly in their performance and the
flexibility they offer for retrieving the underlying data.

Two related aspects for Internet data sources are access control and payment. Most data
sources on the Internet are still publicly accessible. But there is also a growing number of data
sources with a restricted access from the Internet. Obviously, sites which charge for their in-
formation services only accept users which have paid for these services. The corresponding
data sources normally represent huge values for their providers due to the efforts of creation or
maintenance. Information services which are directly attached to the trading systems of stock
exchanges are examples for such information services since the delivery of real-time stock rates
is a costly task. Other data providers may restrict the access to their data sources to a closed
group of users. For example, a company which wants to support the customer relationship man-
agement (CRM) systems of its business customers, may provide access to parts of its business
data only to these customers.

1.2 A Framework for Query Processing on the Internet

All the Internet data sources from such a diverse set of domains could be used to satisfy various
information needs of private users and commercial and non-commercial organizations. Unfortu-
nately, these data sources cannot be used in concert to provide answers to user-defined queries if
the usual ways to access them are used. These systems are normally not able to perform queries
which try to find correlations between data in different sources. The reason for this is quite sim-
ple: The providers of data normally develop their services independently from each other and
at the moment there is no agreed upon standard which can be used to perform inter-site query
processing. Furthermore, the vastly differing demands and capabilities of data providers, as we
have seen above, complicate such a task enormously.

In this work we will concentrate on query processing in a wide area environment such as the
Internet. The demand for query processing in the way sketched above has already been iden-
tified in the literature before (for example, see [Wie93]). Several solutions were proposed for
the architecture of so-called data integration systems which allow database like query processing

CHAPTER 1. INTRODUCTION 3

on data sources on the Internet. This work introduces a new architecture for data integration
systems. This architecture is the foundation of the ObjectGlobe system which is our prototype
implementation used for assessing the techniques developed in this work. In contrast to most of
the previous architectures, our system utilizes a distributed architecture where distributed service
providers can cooperate in the processing of queries. ObjectGlobe allows different service pro-
viders to concentrate in the contribution of data, CPU power, or code for query operators. For
example, a specific query could use CPU power from providerA, the data from providerB, C, D
andE, and a domain specific query operator from providerF.

The resulting data integration system is open with respect to the providers which participate
in such a system. This means that new providers can be integrated in our system very easily.
Therefore, CPU power and application code can be made available according to the specific
requirements and this vastly increases the scalability of such a system.

In the end, this openness of our system can serve as a basis for an information economy
where commercial providers offer their services in a free market-economy. In such a market, the
customers which pose queries against a data integration system are interested in specifying and
controlling the quality of the service they get offered. For example, when providers charge for
their services and a query execution requires the services of several providers scattered on the
Internet, the users are certainly interested in restricting the cost and time consumption of their
queries. Thus, a data integration system has to support the customer in the enforcement of appro-
priate quality of service (QoS) constraints. The setup of a corresponding QoS management in our
data integration system and the necessary techniques which are used to enforce QoS constraints
will also be covered in this work.

QoS management in our setting has to trade off performance, costs and result quality aspects
of a query execution. Therefore, if the data integration system itself could improve performance
by the usage of better algorithms, the task of QoS management would be easier. Here, we
especially deal with data sources which only offer access by point queries and thus need to
be processed within a query execution by so-called functional joins. Since such data sources
appear quite often in data integration and most implementations for functional joins result in
time-consuming executions especially in the presence of nested data structures, we introduce
a new alogrithm for functional joins which is namedP(PM)∗M. This algorithm minimizes the
number of accesses to a data source and nevertheless retains the nested structure of input data as
far as possible.

1.3 The Outline of this Work

Chapter 2 introduces basic techniques and terminology in the areas of data integration systems
and query processing. In Chapter 3 the basic ideas of the ObjectGlobe system are explained.
We list the main requirements which guided the development of ObjectGlobe and explain how
these requirements are met by our architecture. An overview of this architecture is given in the
last section of this chapter. Chapter 4 presents the main architectural issues of the ObjectGlobe
implementation in detail. This includes the description of special techniques which were devel-
oped for the query generation, distribution and execution phases of query processing. Chapter 5

CHAPTER 1. INTRODUCTION 4

assesses these techniques with respect to their performance effects.
In the Chapters 6, 7 and 8, we concentrate on the QoS techniques developed for the Object-

Globe system. In Chapter 6 the relevance of QoS aspects in distributed data integration systems
is demonstrated. After that, related work in multimedia-, network-, and database literature is
listed. Then, we introduce a query processing specific quality of service model and explain the
basics of integrating the support for this model in our system. Chapter 7 explains this integra-
tion in more detail for the plan generation, instantiation and execution phases. Afterwards, we
discuss possible adaptations of query evaluation plans and their application for the enforcement
of quality constraints during query execution. The results of experiments in the area of QoS
management are summarized in Chapter 8.

In Chapter 9 we show the importance of functional join implementations for data integration
systems. The application of functional joins is shown in the context of object-oriented and object-
relational database systems. We also list related work regarding advanced implementations of
functional joins. In Chapter 10 we give a short overview of physical and logical object identifier
(OID) implementation techniques. Then, we list the known algorithms for functional joins and
introduce our newP(PM)∗M-algorithm. Chapter 11 explains the integration of our algorithm
into an iterator-based query engine and gives an initial performance comparison. After that, we
present a more comprehensive performance analysis based on a cost model. Chapter 12 provides
a conclusion.

Chapter 2

Data Integration Systems

In this chapter, we first examine the conventional way of answering queries with the technology
used on the Internet today. With that technology, more advanced queries cannot be evaluated
in a practical way. Therefore, data integration systems have been proposed in the literature.
Some basic techniques used in such systems are explained below. We do not provide a complete
overview of data integration systems here but concentrate on those techniques which are needed
to understand the remainder of this work.

2.1 Executing Queries on the Internet

Today, virtually everybody can publish a document by generatingHTML(or XML) and placing
it on some Web server; likewise, it is more or less standard to make data stored in relational
(or other) databases publicly available on the Web by establishing form-based interfaces and
by using CGI scripts or Servlets. WWW clients can retrieve individual documents by a simple
“click” and they can get specific information from a database (behind the Web server) by filling
out a form. In other words, WWW clients today can easily execute “point queries” (i.e., given
URL, return document) and they can execute queries that can be handled by a single database
behind a Web server.

Assume that we have such a WWW data source for real estate offers and another for infor-
mation about airports. A user looks for real estate offers with a distance to an airport less than 10
km. If a WWW client is used for this task, each data source would have to be browsed separately.
Furthermore, the search for qualifying pairs of real estate and airport data items would have to
be performed manually.

In Figure 2.1 such a scenario is depicted. We assume that the data sources for real estate
offers and airports are accessible through HTML forms. In the usual way of answering queries
in such a scenario, users have to fill out the corresponding HTML forms of the data sources
and find the correlating answers from the independently retrieved results. Therefore, users have
to perform the most tedious part for the processing of this query themselves. In essence, a user
would have to inspect every element of the cross product of the results of both sources and would
have to check if this element qualifies. This operation is calledjoin (logically a Cartesian product

5

CHAPTER 2. DATA INTEGRATION SYSTEMS 6

Client

Issue Point Queries
by Hand

Issue Point Queries
by Hand

Find Correlations
by Hand

Real Estate Airports

Figure 2.1: Tedious Query Processing by conventional Means on the Internet

followed by a selection) in database literature. In summary we can see that the present techniques
to access data which is published on the Internet, are mostly restricted to one data source at a
time. However, as seen in database technology, the ability to interrelate the contents of several
data sources enhances the expressiveness of queries by far.

If both data sources would have been physically integrated in a (relational) database system,
users could specify the requested interrelationship of the data items in a query and the data-
base system would compute the matching pairs of real estate offers and airports automatically.
Apparently, such a physical integration is not a viable solution since

• for most of the data providers their data represents a huge value which they would not give
away without any copy protection. However, the development of such copy protection
techniques is difficult and many solutions in the field of multimedia data have proved to be
not effective.

• it is not manageable to incorporate the data of every data provider on the Internet. There-
fore, such an integration approach will always be restricted to a rather small subset of the
data providers on the Internet.

• the size of the data provided by some data providers is just too large for a practicable data
integration. For example, see [BSG00].

Data integration systems, which are introduced in this chapter, can provide nearly the same
query processing capabilities as the database solution in such an environment. Data integration
systems are often also called middleware systems and we will use both terms to name these

CHAPTER 2. DATA INTEGRATION SYSTEMS 7

Middleware

Declarative Query

Wrappers

Query Result

Client

Point Queries issued
by Middleware

Point Queries issued
by Middleware

Real Estate Airports

Query Execution
by Middleware

Figure 2.2: Query Execution performed by Middleware Layer

systems1. The term middleware system results from the usage of an intermediate layer, called
mediator or middleware layer, which mediates between the information demands of a user and
the integrated data sources.

2.2 The Middleware Layer

A data integration system tries to unify the access to the integrated data sources by the use of a
middleware layer. The middleware layer translates a user-defined query into specific sub-queries
for the affected data sources and performs the remaining tasks to complete the execution of the
query itself. The basic architecture for middleware systems was proposed in [Wie93]. Figure 2.2
shows the interactions during a query execution performed by a middleware system. The client
machine just has to send the specification of a query to the middleware system and gets the
corresponding answer after the middleware server has executed the query. As we can see in the
figure, queries are executed by the middleware itself and by so-called wrappers which are used

1We do not deal with other middleware techniques like CORBA or J2EE here, so there should not emerge
misunderstandings about this term in the remainder of this work.

CHAPTER 2. DATA INTEGRATION SYSTEMS 8

to integrate external data sources into the middleware system.

2.2.1 Query Processing

One of the major ideas in the development of data integration systems was, to add the query
processing power which is missing at the data sources and which is necessary to perform the
integration itself, in the middleware layer. Several alternatives for the architecture of such mid-
dleware systems has been proposed and these approaches mostly differ in the expressiveness of
the queries which can be processed and in the kind of data which can be integrated. Two major
types of architectures are those based on information retrieval systems and database systems. In
this work we will concentrate on data integration systems which are based on database technol-
ogy. In the following, the basic architectural components of these data integration systems are
introduced.

Data Model

Obviously, the integrated data from external sources need a representation which can be used by
the query processing operations in the middleware layer. The data model which defines these
representations, has an impact on the applicability of specific query processing operations and
on the ability of the middleware system to integrate specific external data sources.

The data model determines a basic set of meaningful operations which can be applied in
query processing. Therefore, the query language for specifying declarative queries and the cor-
responding basic set of operations which can be used for query processing within the middleware
layer depend on the data model. For example, if the middleware layer uses a nested-relational
data model, SQL-92 as query language and the query processing operations in the relational
algebra are not sufficient, since non-atomic attributes could not be processed2.

Naturally the data model of the middleware layer also restricts the set of data sources which
can be integrated in a reasonable manner. For example, an XML encoded text of Shakespeare’s
‘Romeo and Juliet’ with annotated stage directions can hardly be integrated reasonably in a mid-
dleware system with a relational data model. However, it is also clear that a pure relational data
model is not sufficient since many data sources use more complex, especially nested structures to
represent their data. Therefore, nested relational or object-oriented data models are more com-
mon in data integration systems. In this work, we concentrate on middleware systems with a
nested-relational data model. ObjectGlobe has a nested-relational data model with the following
properties:

• The basic components of the data model are sets of records. In accordance with database
terminology, we also use the term relation for such a set and the term tuple for a record.
All the records of a set are structured according to a specific record type. Thus, this record
type is a property of the corresponding set. Curly brackets are used in type expressions to
denote a set type.

2See [KM94] for a discussion of relational, nested-relational and object-oriented data models.

CHAPTER 2. DATA INTEGRATION SYSTEMS 9

• Analogously to programming languages, record types consist of a fixed and ordered set
of attribute types. For each attribute type a data field exists in each record of the corre-
sponding record type. Square brackets are used in type expressions to denote a record
type.

• An attribute type can be one of the following:

– An atomic type likeBoolean , Integer , Float or String .

– A set of an atomic type like{Integer } or {String }.

– A record type like
[AttrName1: Integer, AttrName2: String] or
[AttrName1: {String }, AttrName2: Integer] .

– A set of a record type like
{[AttrName1: Integer, AttrName2: String] } or
{[AttrName1: {String }, AttrName2: Integer] }.

An example type for a relationrel is then given by the following expression:

rel: {[AttrName1: {[nestedAttrName1: Integer,
nestedAttrName2: String] },

AttrName2: String, AttrName3: {Integer }] }
The presented data model is expressive enough to allow the integration of a multitude of data
sources with structured or semi-structured data. Structured data is normally provided by server
applications like relational or object-oriented database systems. Semi-structured data likeHTML
or XMLdocuments may be provided, for example, by applications which are backed by a database
system, like a great deal of WWW applications today, or by desktop applications with XML-
based data formats.

Query Optimization

Most database systems provide a logical view expressed in the corresponding data model on the
physical representation of stored data. The internal, physical data representation can be varied
without breaking the logical view. Normal users and database applications work on the logical
view and thus, will not be affected by changes in the physical representation of the data. For
query processing, these database systems leverage query languages which allow to specify the
result of a query in adeclarativemanner based on this logical view. As shown at the left side
of Figure 2.3, a declarative query is translated in a plan generation step into aquery evaluation
plan (also called query execution plan and short QEP) which contains a procedural description
of the query execution. This means, that the declarative query determines the properties which
should be fulfilled by the result of the query, and the query evaluation plan determines how this
result can be computed. This procedural description is still based on the logical view on the data
and thus we call it a logical QEP. The fundamental work for this architectural aspects of query
processing in database systems has been reported in [SAC+79].

CHAPTER 2. DATA INTEGRATION SYSTEMS 10

select e.name, e.city, e.price
from Estate e, Airports a
WHERE e.city = a.city

Optimizer

Airports

Estate1 Estate2

Meta−Data

Repository

Lookup

Meta−Data

Declarative Query

Plan Generation

Query Evaluation Plan

Figure 2.3: Compiling a Query Evaluation Plan from a declarative Query

Query Evaluation Plans As shown at the right side of Figure 2.3, the component which is
used to generate a QEP is normally calledoptimizer. The input in the figure is a declarative
query expressed in a specificquery languagewhich is in this case SQL [ANS92] and the result
is a term expressed in aquery algebrawhich is in this case the relational algebra [Cod70]. The
term in relational algebra as shown in the figure is based on the logical view on the data. The
physical QEP can be obtained by replacing the logical operators in a logical QEP by appropriate
operator implementations which work on the physical data representation.

The effort for executing a QEP is estimated during optimization by a so calledcost model.
Depending on the application area this effort can be the work induced by the execution or the
response time of the execution or some other, application-specific measure. In general, we talk
abstractly of the costs of a query execution when we refer to the measure produced by a cost
model. A cost model is used during optimization to select a minimum cost QEP from several
equivalent alternatives.

Table 2.1 shows the operators of the query algebra used in our ObjectGlobe system. The first
seven operators are just the operators of the relational algebra. The remaining ones are needed
to support nested structures in tuples. Big characters denote relations or intermediate results
produced by terms of the algebra. Small characters without an index denote tuples of sets and
those with indexes represent attributes of tuples. An exception from this rule appears in the
description of themapoperator where thefi variables denote functions which are applied by the
map operator on the tuples3.

3External parameters for the functions are not shown in the description of the map operator.

CHAPTER 2. DATA INTEGRATION SYSTEMS 11

Name Symbol Description

set minus − A − B := {a|a ∈ A ∧ 6 ∃b ∈ B : b = a}
union ∪ A ∪ B := {c|c ∈ A ∨ c ∈ B}

intersection ∩ A ∩ B := {c|c ∈ A ∧ c ∈ B}
cross product × {[a1, . . . , an, b1, . . . , bm]|[a1, . . . , an] ∈ A ∧ [b1, . . . , bm] ∈ B}

selection σ σp(A) := {a|a ∈ A ∧ a fulfills predicatep}
projection Π Πi1,...,in(A) := {[ai1 , . . . , ain]|[a1, . . . , an] ∈ A},

constraint:{i1, . . . , in} ⊆ {1, . . . , n}
rename ρ ρa→b(A) renames attributea in the schema ofA into b

join 1 A 1p B := σp(A × B)
map χ χf1,...,fn(A) := {[f1([a1, . . . , am]), . . . , fn([a1, . . . , am])]|

[a1, . . . , am] ∈ A}
unnest µ µak

(A) := {[a1, . . . , ak−1, ak1 , . . . , akn , ak+1, . . . , am]|
[a1, . . . , am] ∈ A ∧ [ak1 , . . . , akn] ∈ ak},

constraint: attributeak is set-valued.
nest ν ν(aj1

,...,ajl
):ar(A) := {[ai1, . . . , ain , ar]|(∃[b1, . . . , bm] ∈ A :

(∀t ∈ {i1, . . . , in} : bt = at)) ∧ (∀[b1, . . . , bm] ∈ A :
(∀t ∈ {i1, . . . , in} : bt = at) => [bj1 , . . . , bjl

] ∈ ar)∧
{j1, . . . , jl} = {1, . . . , m}\{i1, . . . , in}}

Table 2.1: The Operators of the Query Algebra.

CHAPTER 2. DATA INTEGRATION SYSTEMS 12

Some algebraic properties of operators like associativity and commutativity lead to different
logically equivalent QEPs for a single query. For example, since thejoin operator is associative
the expressionsA 1 (B 1 C) and(A 1 B) 1 C are logically equivalent. However, depending
on the data size of the relationsA, B, andC and the size of the intermediate result of the first
executed join operation the join order can influence the computational costs of the query execu-
tion significantly. An overview of such algebraic transformations on the relational algebra can
be found in [KE99].

Furthermore, some logical operators can be implemented in different ways and depending
on the situation these implementations can also differ in their computational costs vastly. For
example, the nested-block join implementation is effective if one of its operands fits into main
memory, but if the operands are rather large and both are of equal size, the sort-merge join is a
better choice. The selection of an access path for base relations is strongly related with the appro-
priate selection of a physical operator. In database systems base relations can also be accessed by
persistent index structures if such structures were created by the database administrator. There-
fore, a QEP could use a a simpleTableScanoperator to access the tuples of the relation one
after the other or anIndexScancould be used which provides an associative access to the tuples.
Depending on the number of necessary accesses to the index structure, aTableScancan also be
better suited than anIndexScan.

The query execution costs can differ by orders of magnitudes for different configurations of
a QEP [IK91]. Thus, alternative physical QEPs should be regarded during the translation of a
declarative query. Discrete optimization algorithms are normally used to search for an acceptable
QEP. Many optimization algorithms has been studied in the literature [Ste95]. These algorithms
differ in the set of alternative QEPs which are regarded during optimization (this set is also called
search space) and the way they enumerate alternative QEPs. Two optimization algorithms which
are very common in this context are introduced in the following.

Dynamic Programming Optimization Dynamic programming based query optimization has
been introduced in a foundational work on query optimization [SAC+79]. Originally, join order
optimization and access path selection were the main tasks of these optimizers. Today, several
sophisticated optimizer frameworks have extended the original techniques to handle external
functions, new operators and external data [Loh88, HFLP89, PH92, HKWY97]. In general,
dynamic programming based optimization has proved to be a versatile and stable optimization
technique in database systems. Thus, such an optimizer can be found in nearly every commercial
database system.

The main idea of dynmanic programming is to solve each sub-problem of the given opti-
mization problem and to use the resulting solutions to construct a solution for the next, more
complex problem. This procedure is iterated until the solution for the overall problem has been
constructed. An example optimization run of dynamic programming for join order optimization
is depicted in Figure 2.4. Here, a QEP for a three-way join between the relationsA, B andC
should be constructed and the necessary steps are explained below.

1. The optimizer considers all access paths for the base relations and selects for each relation
the access path with the least costs.

CHAPTER 2. DATA INTEGRATION SYSTEMS 13

A B C

A B A C B C

A B

C

A C

B

B C

A Three−Way Join Plans

Two−Way Join Plans

Access Plans

Figure 2.4: Join Order Optimization with Dynamic Programming.

2. Based on these access paths, all possible two-way join plans between the relations which
are mentioned in the query are constructed.

3. Based on these two-way join plans, all three-way join plans for the relationsA, B andC
are constructed.

The arrows in Figure 2.4 show where the solutions for sub-problems of the given join order
problem are used in the construction of a more complex problem. For example, the solution for
the problemA 1 B is used for the solution(A 1 B) 1 C of the overall problem. All the
three-way join plans in the figure are logically equivalent and represent solutions for the overall
problem. The next step in the algorithm would be to prune those solutions which are inferior
regarding the costs which are calculated by the cost model for each solution. The remaining
three-way join plan is then used as the solution for the join between three relationsA, B andC.
This pruning step also occurs for every sub-problem which is tackled during the optimization.
Thus, if we consider different join implementations for theA 1 B problem, several solutions
exist for that problem and the one with the least costs is chosen and will be considered in the
solution of a more complex problem, whereA 1 B represents a sub-problem.

A dynamic programming optimization algorithm computes the optimum solution if Bell-
man’s principle of optimality is fulfilled by the underlying problem [Bel52]. In essence, this
principle says that an optimum solution can only be constructed out of the optimum solutions of
its sub-problems. For example, the optimum solution for(A 1 B) 1 C can only be constructed
with the optimum solutions forA 1 B andC. Unfortunately, this principle is not fulfilled in the
query optimization context. Thus, dynamic programming is just used as heuristics and will in
general not compute the optimum solution. Therefore, an often used enhancement is the usage
of then(n ≥ 2) best solutions of every considered sub-problem. Another enhancement is the

CHAPTER 2. DATA INTEGRATION SYSTEMS 14

A B C

A C

A C

B Decision about second Join

Decision about first Join

Access Plans

Figure 2.5: Join Order Optimization with a Greedy Algorithm.

introduction of plan properties (such as ‘attributea1 is sorted in ascending order in the result of
this plan’) additional to the cost property. This results in a multi-dimensional comparison be-
tween plans and consequently in incomparable plans. All incomparable plans for a sub-problem
will be regarded as a solution in the construction of a more complex problem. The mentioned
enhancements increase the space and time complexity of the optimizaton algorithm. But these
effects are normally accepted since these enhancements normally help to produce much better
solutions.

Since dynamic programming is used in many variations for query optimization, we will not
go into depth here and just leave it at the informal description from above. Detailed descriptions
of dynamic programming based query optimization can be found in [VM96, KS00, GLSW94].

Greedy Optimization The complexity of dynamic programming based optimization is expo-
nential in the number of relations which are used in the query. Therefore, the optimization time
for queries which use a large number of relations is not acceptable when dynamic programming is
used. The greedy algorithms which were proposed for query optimization (for example [OL90])
show a polynomial complexity in the number of relations. Therefore, they are much better suited
for queries with a large number of relations. Of course, the reduced complexity results in QEPs
which are often inferior to those which are found by a dynamic programming optimizer. Hence,
some systems use a two stage configuration where dynamic programming is used for queries
which use less relations than a given bound, and a greedy algorithm for all other queries.

Figure 2.5 shows the steps of a greedy algorithm for the optimization of the query which was
also used in the dynamic programming case. Obviously, the greedy algorithm generates a much
lower number of partial solutions than the dynamic programming algorithm. Just as the name of
the algorithm suggests, the greedy algorithm makes a sequence of local decisions which are fixed

CHAPTER 2. DATA INTEGRATION SYSTEMS 15

until the algorithm finishes. The steps of the greedy algorithm considered here, are summarized
in the following:

1. Analogously to the dynamic programming case, the access paths for base relations are
selected.

2. Those two relations are selected which can be joined at the cheapest costs. The resulting
plan will be augmented step by step in the next phase until a complete plan has been
produced.

3. In each step of this phase, that relation is selected which can be joined with the currently
constructed plan at the cheapest costs. The resulting plan is further augmented in the next
step until all relations have been used in the plan.

2.2.2 The Role of Wrappers

The heterogeneity of access techniques and formats which are inevitable for external data sources
are a great problem for data integration systems. Complex data and query processing tasks on a
set of such diverse data sources would be extremely tedious if these tasks could not be restricted
to the access technique and the data format of the middleware layer. In this way, providers of
new functions or operators would just have to deal with the requirements of the middleware layer
and their code could be applied no matter which data sources are used. Therefore, in [Wie93]
the concept of a wrapper is introduced. A wrapper transforms the specific access technique and
data format of a data source in the corresponding, general concepts of the middleware layer.
Of course, specific data source configurations regarding access technique and format also need
specific wrappers which are specialized on this transformation step. An architectural overview
of such a transformation process performed by a wrapper is depicted in Figure 2.6. In the data
source layer of the figure some examples for access techniques and formats of data sources are
given. A very common configuration at the moment would be that a data source is accessed
through theHTTPprotocol and the data is embedded inHTMLtext, for example in the form of
a table. However, it is generally preferable to access the data in a format which more closely
resembles its representation in the underlying management system. Access to data in this way
is normally provided with application specific proctols. These protocols based on, e.g.,RMI or
SOAPand standardized access protocols likeJDBCor Z39.50 offer a much faster and more
reliable access to data sources than WWW-based applications built on top ofhttp andHTML
techniques.

In summary, the separation of physical and logical properties of data and the mechanisms
for supporting declarative query languages are prominent features of database systems and also
help in the construction of data integration systems. External data sources can be seamlessly
integrated in the logical view on data regardless of the way they are accessed physically. In a
QEP the logical reference to a relation which represents an external data source is just replaced
by the wrapper operator which is used to transform its external data representation into the format
of the middleware4.

4We do not consider here data sources which require external bindings for attributes. For details on this topic see

CHAPTER 2. DATA INTEGRATION SYSTEMS 16

Middleware
Layer

Data Source
Layer

Iterator
Interface

Data Source

Data
Access Method Data Model

HTTP,RMI,SOAP, ... HTML,XML, ...

Middleware specific
Data Model

Wrapper

Figure 2.6: The Integration of Data Source in a Middleware Layer by a Wrapper.

[FLMS99]. The solution proposed in [FLMS99] has also been adopted in our system.

Chapter 3

The Basic Ideas of the ObjectGlobe System

Similar to the ubiquitous WWW infrastructure, a unique data integration system which can po-
tentially cover all the appropriate data sources on the Internet would increase the usefulness and
usability of such a system enormously. At the beginning of this chapter we identify the require-
ments for such a globally operating data integration system and from these we infer some basic
system properties. Afterwards, an overview of the ObjectGlobe architecture is given and the
differences to existing architectures for data integration systems are explained.

3.1 A new Architecture

Our objective is to allow the use of a data integration system in an Internet-wide scale. This
entails several challenges with respect to its architecture. For instance, in a data integration
system which is run by a single company, software distribution and security concerns could be
solved by a central or coordinated administration of the information technology infrastructure.
In an Internet scenario, such a form of administration is just not conceivable due to scalability
problems. Furthermore, the providers found on the Internet are mostly independent from each
other, and also the users normally do not have tight relations to providers. This means, that
different requirements of users and providers have to be considered with a higher precedence than
in a tighter coupled system. The different requirements of the respective parties are presented in
the following section.

3.1.1 The Requirements

The differing demands ofdata providersand users with respect to a global data integration sys-
tem show why current architectures for distributed databases ([CDF+94]) and mediator systems
([HKWY97, PGGMU95, JKR99]) are not sufficient. Data providers are interested in

• thesecurity of their computers. Thus, some data providers with higher security demands
would not be willing to execute mobile code in order to avoid the danger of a hostile system
intrusion.

17

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 18

• theprivacy of their data. Data providers could be interested in restricting and controlling
access to their data by the use ofauthorizationandauthenticationtechniques. Further-
more, they may demand the use of cryptography to avoid that somebody can steal their
data during network transmissions.

• thescalability of the system. The number of users in a global system could cause overload
situations on data providers. Therefore, data providers may allow no other operation to be
performed on their machines than a simple scan/index-scan on the data.

Naturally, users have completely different requirements which also seem to partly contradict the
requirements of data providers. Users are interested in

• anopensystem, where service providers can be integrated and spontaneously be used in
queries. As a consequence, there is no need to build several special-purpose data integra-
tion systems and a user just has to work withonedynamically extensible system.

• an automaticservice composition. Users want to state a declarative query and the com-
position of appropriate services in the form of aquery evaluation plan(QEP) should be
performed by aquery optimizer.

• anextensiblesystem in which user-defined code can be integrated in a seamless and rather
effortless manner. Especially in distributed and heterogeneous systems this is an impor-
tant issue. In such systems, it is essential to be able to apply data transformations or
user-defined predicates early (i.e., close to the data providers) in order to unify data repre-
sentations or to reduce the data volume.

• a quality-of-service (QoS) awaresystem. Query execution in a widely distributed sys-
tem can hardly be monitored by users. Therefore, they should be able to specify quality
constraints on the result and the properties of the query execution itself (e.g., time and
cost consumption) and the system should fulfill these constraints if possible or abort the
execution of the query as early as possible. [Wei98] gives a comprehensive motivation for
the need to integrate the handling of QoS guarantees in information systems.

3.1.2 A Possible Solution

In our ObjectGlobe project we have developed a distributed data integration system which works
along the lines stated above. In order to help both the data providers and the users, we introduced
the new services ofcycleandfunction providers.

• Function providers offer Java byte-code in different standardized forms (query operators,
predicate functions, data transformers, etc.) which are suited for the execution by a cycle
provider. For example, a function provider can offer wrappers for accessing data provi-
ders, predicate functions specialized on business areas like real estate data or new query
operators like join methods for spatial data.

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 19

• A cycle provider runs our Java-based query processing engine. It represents a node in our
distributed data integration system which can execute plan fragments of a distributed query
evaluation plan if the data providers are not willing or not suited due to their hardware
capacities or their position in the network to do so. They provide a core functionality
for processing queries but can also load new functionality from function providers, for
example, a wrapper for accessing a data provider. A specialized Java ‘sandbox’ is used to
secure the cycle provider’s machine against malicious effects of external code.

A distributed lookup service is used for registering and querying meta-data about all known in-
stances of services described above. Providers which want to offer one or a mix of the mentioned
services can register the description of their services with the lookup service. This description
is sufficient to integrate these services in the global system which can therefore be called a truly
opensystem.

The service descriptions can also contain authorization data for providers. In that way, data
providers can expressprivacypolicies for the usage of their services. These policies are enforced
either by the ObjectGlobe system or by the providers themselves. In the latter case the providers
have to use the authentication services of the ObjectGlobe system.

The ObjectGlobe query planner (later on also called query optimizer) performs aservice
compositionon a logical level. Based on the formulation of a specific query, the query planner
uses the lookup service to retrieve meta-data about relevant services. The query planner uses
this meta-data to produce a query evaluation plan, which takes into account the requirements of
the selected services (authorization, authentication, . . .) and the query itself (specification of the
query answer, QoS requirements). The generated query evaluation plan determines what services
have to be used for answering the query and how these services have to be used.

The query evaluation plan is some sort of programming code for the ObjectGlobe server
process which acts as an interpreter in this respect. Such a server has to be used by every cycle
provider, and in some cases will also be used by data providers. It includes a query processor
which is able to integrate mobile code from function providers into the processing steps of a
query. This feature provides theextensibilitywhich is required by users of such a system. The
security problems which are introduced by the execution of mobile code from third parties are
met by an adaptedsecuritysystem of the Java runtime system. The programming language Java
is used as the implementation basis of the ObjectGlobe system and the mobile code of function
providers. In this way, theportability of the system and a smooth exchange of mobile code also
across different system architectures is guaranteed.

The idea to create anopenmarket place for data providers, function providers, and cycle
providers where appropriate services can be selected for query processing, helps also to ensure
the scalabilityof this approach. For example, data providers which do not want to also act as
cycle providers perhaps due to load or security concerns, can offload processing tasks to cycle
providers. Cycle providers in turn do not want to administer all the code of special functionality
which should be executable on their machines. This task is performed by function providers.

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 20

lookup
service

optimize execute
XML

plugparse/lookup
XML

query

XML

res-list

resources
XMLsearch

query
plan

query
result

Figure 3.1: Processing a Query in ObjectGlobe

3.2 Overview of the ObjectGlobe System

The goal of the ObjectGlobe project is to distribute powerful query processing capabilities (in-
cluding those found in traditional database systems) across the Internet. The idea is to create an
open market place for three kinds of suppliers:data providerssupply data,function providers
offer query operators to process the data, andcycle providersare contracted to execute query
operators. Of course, a single site (even a single machine) can comprise all three services, i.e.,
act as data-, function-, and cycle-provider. In fact, we expect that most data and function pro-
viders will also act as cycle providers. ObjectGlobe enables applications to execute complex
queries which involve the execution of operators from multiple function providers at different
sites (cycle providers) and the retrieval of data and documents from multiple data sources. In
this section, we will outline how such queries are processed, give an example, and discuss the
security requirements of the system.

3.2.1 Query Processing in ObjectGlobe

Processing a query in ObjectGlobe involves four major steps (Figure 3.1):

1. Lookup: In this phase, the ObjectGlobe lookup service is queried to find relevant data
sources, cycle providers, and query operators that might be useful to execute the query.
In addition, the lookup service provides the authorization data—mirrored and integrated
from the individual providers—to determine what resources may be accessed by the user
who initiates the query and what other restrictions apply for processing the query.

2. Optimize: The information obtained from the lookup service, is used by a quality-aware
query optimizer to compile a valid (as far as user privileges are concerned) query execution
plan, which is believed to fulfill the users’ quality constraints. This plan is annotated with
site information indicating on which cycle provider each operator is executed and from
which function provider the external query operators involved in the plan are loaded.

3. Plug: The generated plan is distributed to the cycle providers and the external query oper-
ators are loaded and instantiated at each cycle provider. Furthermore, the communication
paths (i.e., sockets) are established.

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 21

4. Execute: The plan is executed following an iterator model [Gra93]. In addition to the
externalquery operators provided by function providers, ObjectGlobe hasbuilt-in query
operators for selection, projection, join, union, nesting, unnesting, and sending and receiv-
ing data. If necessary, communication is encrypted and authenticated. Furthermore, the
execution of the plan is monitored in order to detect failures, look for alternatives, and
possibly halt the execution of a plan.

The whole system is written in Java for two reasons. First, Java isportableso that ObjectGlobe
can be installed with very little effort; in particular, cycle providers which need to install the Ob-
jectGlobe core functionality can very easilyjoin an ObjectGlobe system. The only requirement
is that a site runs the ObjectGlobe server on a Java virtual machine. Second, Java provides secure
extensibility. Although many people complain about the execution speed of Java programs, we
noticed that by avoiding some pitfalls in the Java I/O library the execution speed of the Java vir-
tual machine is no bottleneck in wide area distributed systems. Like ObjectGlobe itself, external
query operators are written in Java: they are loaded on demand (from function providers), and
they are executed at cycle providers in their own Java “sandbox” (more details in Section 4).
Just like data and cycle providers, function providers and their external query operators must be
registered in the lookup service before they can be used.

ObjectGlobe supports a nested relational data model; this way, relational, object-relational,
andXMLdata sources can easily be integrated. Other data formats (e.g.,HTML), however, can
be integrated by the use of wrappers that transform the data into the required nested relational
format; wrappers are treated by the system as external query operators. As shown in Figure 3.1,
XMLis used as a data exchange format between the individual ObjectGlobe components. Part
of the ObjectGlobe philosophy is that the individual ObjectGlobe components can be used sepa-
rately;XMLis used so that the output of every component can be easily visualized and modified.
For example, users can browse through the lookup service in order to find interesting functions
which they might want to use in the query. Furthermore, a user can look at and change the plan
generated by the optimizer.

3.2.2 Example Plans

To illustrate query processing in ObjectGlobe, let us consider the example shown in Figure 3.2—
the corresponding query plan is sketched in Figure 3.3. The realXMLplan is given in Ap-
pendix A. In this example, there are two data providers,A andB, and one function provider. We
assume that the data providers also operate as cycle providers so that the ObjectGlobe system
is installed on the machines ofA andB. Furthermore, the client can act as a cycle provider in
this example. Data providerA supplies two data collections, a relational tableR and some other
collectionS which needs to be transformed (i.e., wrapped) for query processing. Data provider
B has a (nested) relational tableT . The function provider supplies two relevant query operators:
a wrapper (wrap S) to transformS into nested relational format and a compression algorithm
(thumbnail) to apply on an image attribute ofT .

Figure 3.3 shows the most important annotations—in particular, thecycle-provider, partition,
and codebaseannotations—of the query plan. Thecycle-providerannotation of an operator

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 22

Query Engine
ObjectGlobe

Client

Query Engine
ObjectGlobe

data provider B

�
�
�
�

�
�
�
�

Query Engine
ObjectGlobe

data provider A
FctProv

load function

recv

scanscan

thumbnail
wrap_S

display

recv

T

send

thumbnail

wrap_S

send

R S

Figure 3.2: Distributed Query Processing with ObjectGlobe

http://www.FctProv.com

thumbnail

scan

cycle-provider=beta.B.com

codebase=

cycle-provider=beta.B.com

partition=T

cycle-provider=client

http://www.FctProv.com

cycle-provider=alpha.A.com

scan

partition=R

wrap_S

codebase=

cycle-provider=...

display
cycle-provider=client

cycle-provider=alpha.A.com

Figure 3.3: Annotated Query Execution Plan

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 23

indicates at which machine the operator is executed; e.g., the final join and thedisplayoperators
are executed at the client. Thepartition annotation of ascaniterator indicates which collection
is to be read. Thecodebaseannotation indicates from which function provider an external query
operator is loaded.scan, display, and thejoins are built-in operators so that they do not have a
codebaseannotation.

Although the example above is rather small (in order to be illustrative) we expect Object-
Globe systems to comprise a large number of cycle providers and far more data providers, with
several of them contributing data to a specific theme. Figure 3.4 shows the structure of an exam-
ple query which extracts information from a number of online databases that belong to different
real estate brokers. The query uses a user-defined nearest neighbor operator (callednn 10 in
the figure) loaded from a function provider that is specialized on real estate data. The nearest
neighbor logical operator is transitive and reflexive and hence allows us to perform the search
for the ten nearest neighbors of a user-defined feature vector by first computing the ten nearest
neighbors at every data provider and then combining these results for computing the ten nearest
neighbors of the whole real estate data set. The Union operator could be carried out by one of
the cycle providers that carry out the low-levelnn 10operations or by a dedicated cycle provider
in order to increase (pipelined) parallelism. Pure, dedicated cycle providers are also necessary
in this example if one of the real estate data providers is not capable (e.g., not enough main
memory) or not willing (e.g., for security reasons) to serve as a cycle provider.

nn_10nn_10

scanscan

nn_10

scan

data prov. Zdata prov. Bdata prov. A

nn_10

real estatereal estate

FctProv

real estate

nn_10

Figure 3.4: Parallel Execution in ObjectGlobe

3.2.3 Quality of Service (QoS)

As seen in the real estate example query, query execution in ObjectGlobe can involve a large
number of different function, cycle and data providers. A traditional optimizer produces a plan

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 24

real estate

nn_10

real estate real estate

data prov. A data prov. B data prov. Z

Figure 3.5: Execution in a Middleware System

that reads all the relevant data (i.e., considers all real-estate data providers). Therefore, the plan
produced by a traditional optimizer will consume much more time and cost than an ObjectGlobe
user is willing to spend. In such an open data integration system it is essential that a user can
specify quality constraints on the execution itself. These constraints can be separated in dimen-
sions for the query result, the execution costs and the response times.

The techniques to support the enforcement of such quality constraints need to be integrated
in all steps of query processing. First, the optimizer generates a query evaluation plan whose
estimated quality parameters are believed to fulfill the user-specified quality constraints of the
query. For every sub-plan the optimizer states the minimum quality constraints it must obey in
order to fulfill the overall quality estimations of the chosen plan and the resource requirements
which are believed to be necessary to produce these quality constraints. If, during the plug phase,
the resource requirements cannot be satisfied with the available resources, the plan is adapted or
aborted. The QoS management reacts in the same way, if during query execution the monitoring
component forecasts an eventual violation of the QoS constraints.

3.2.4 Privacy and Security Requirements in ObjectGlobe

Safety is one of the crucial issues in an open and distributed system like ObjectGlobe. Object-
Globe provides the infrastructure to deal with the following privacy and security issues:

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 25

Protection of Cycle and Data Providers:

It has to be ensured that the resources of the cycle and data providers are protected from (pos-
sibly malicious) external operators loaded from unknown function providers. Based on the Java
security model, all external query operators are therefore executed in a protected area, a so-called
sandbox(Section 4.2.4).

Privacy and Confidentiality:

Data and function code that is processed in the ObjectGlobe system is protected against unau-
thorized access and manipulation. The communication streams between ObjectGlobe servers
are protected using the well-established secure communication standards SSL (Secure Sockets
Layer) [FKK96] and/or TLS (Transport Layer Security) [DA99, TLS] for encrypting and authen-
ticating (digitally signing) messages. Both protocols can carry out the authentication of Object-
Globe communication partners via X.509 certificates [HFPS99, PKI]. Furthermore, confidential
information or function code is protected from being transferred to untrusted cycle providers by
enforcing an authorization scheme on the flow of data and operator code specified in the site
annotations of the query plan.

User Authentication/Anonymity:

ObjectGlobe supports a flexible authentication policy. Users and applications that only access
free and publicly available resources can be anonymous and no authentication is required. If a
user accesses a resource that charges and accepts electronic money, then the user can again stay
anonymous and the electronic money is shipped as part of the “plug” step. Authentication is
only required for authorization or accounting purposes of providers. Cycle providers can also
require authenticated external operators to restrict the function providers; e.g., to execute only
code originating from trusted sources within the same company or Intranet.

Authorization:

Some providers constrain the access or use of their resources to particular user groups. As already
mentioned, providers can also constrain the information (function code) flow to ensure that only
trusted cycle providers are used in the query execution plan. In general, providers apply their
own autonomous authorization policy and control the execution of, say, query operators at their
site themselves. In order to generate valid query execution plans and avoid failures at execution
time, ObjectGlobe must know about these authorization constraints, which means, that they must
be incorporated in its lookup service.

3.2.5 Comparison to Other System Architectures

Distributed database systems have been studied since the late seventies in projects like Sys-
tem R∗, SDD-1, or Distributed Ingres. A survey of existing distributed query processing tech-
niques studied in these projects is given in [Kos01]. ObjectGlobe shares with all these projects

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 26

�
�
�
�
�
�

�
�
�
�
�
�

data provider A data provider B

Middleware System

U
se

r−
D

ef
in

ed
 O

pe
ra

to
rs

thumbnail

get get wrap_S

R
S T

wrap_S

thumbnail

Figure 3.6: Query Evaluation in a centralized Middleware System

the vision that a distributed system can be used as easily as a centralized system (i.e., trans-
parency) and that good performance can be achieved by sophisticated query optimization. The
architecture of ObjectGlobe is more general than that of a traditional system like System R∗. In a
traditional system, every site acts as a data and cycle provider which executes built-in query op-
erators; obviously, ObjectGlobe supports such a scenario as well. In addition, ObjectGlobe pro-
vides the flexibility to integrate external operators and a large number of non-database (legacy)
data sources.

Today, external operators and/or legacy data sources are typically integrated using a mid-
dleware architecture; examples are Garlic [C+95] from IBM, Information Manifold [LRO96],
TSIMMIS [PGGMU95], DISCO [TRV98] or Tukwila [IFF+99]. Again, ObjectGlobe’s architec-
ture is more flexible, resulting in better performance. Let us see how our example query shown
in Figure 3.2 would be processed in a middleware system. As shown in Figure 3.6, middleware
systems can only exploit the (limited) query processing capabilities that are hard-wired into the
(legacy) data sources. If new operators are needed, such aswrap S and thumbnail, these op-
erators are executed at a central middleware site. This is also true for distributed middleware
systems like AmosII [JKR99], because the corresponding server processes are restricted to the
mediator’s capabilities and cannot be extended by dynamically loaded mobile code. This means,
that only specific servers, which can be prepared by a user in advance, can execute his/her ap-
plication specific code. In Figure 3.4 the ObjectGlobe version of the nearest neighbor example
plan is depicted. In contrast to the traditional execution plan of middleware systems as shown
in Figure 3.5 the ObjectGlobe plan, which uses dynamic operator loading, can exploit parallel

CHAPTER 3. THE BASIC IDEAS OF THE OBJECTGLOBE SYSTEM 27

execution of several nearest neighbor operators and causes much less network traffic. As a result,
a middleware system incurs high communication costs for shipping the data to the middleware;
i.e., for data shipping [FJK96]. ObjectGlobe helps reduce such communication costs by allowing
to execute new and external query operators at or near the data providers.

Various aspects of the ObjectGlobe project have already been studied in other projects. The
notion of an open market place in which different providers compete for queries is borrowed
from Mariposa [SAL+96]—even though, ObjectGlobe does not enforce a particular business
model like Mariposa. Mariposa also has some notion of QoS, but we consider user-defined
quality constraints during all phases of query execution, whereas Mariposa tries to obey these
constraints only during its plan fragmentation step, which takes place after optimization. We
believe, that this is not sufficient in such an Internet-wide open query processor.

Extensibility has been studied in a number of database projects; e.g., Postgres [SR86], Star-
burst [HCL+90], or more recently in Predator [SLR97]. The safe execution of external functions
has been studied in [GMSvE98], but the scope of that work is too limited for our context.

There has also been a large body of related work on the integration of services in open dis-
tributed object systems. The most prominent examples are Jini [Wal99] and CORBA [MZ95]. A
related lookup service is HP’s Chai (Plug & Play) system [HPI99]. The UDDI standard [UDD00]
defines a framework for the management of meta data about electronic commerce Web ser-
vices. Architectures for distributed object systems have been devised in the SHORE [CDF+94],
Ninja [GWBC99], and AutO [Kri98] projects. The AutO project was also conducted at the
University of Passau and we adopted many results such as the AutO security model and infras-
tructure for ObjectGlobe. As part of the Ninja project, a secure distributed directory service
has been developed [CZH+99]. ObjectGlobe’s lookup service also bears some similarity with
X.500 [CCI88] and LDAP directory services [WHK97]. What makes ObjectGlobe different from
all these works is that ObjectGlobe is capable of complex query processing; that is, a single Ob-
jectGlobe query can involve the lookup and execution of many different services and it requires
optimization because of the large amounts of data that need to be processed. In this respect,
ObjectGlobe’s lookup service is similar to [MRT98]’s WebSemantics project which uses Web
documents to publish the location of components (wrappers and data sources) and a uniform
query language to locate data sources based on this meta-data and to access the sources.

In other lines of work, researchers have tried to “query the Web” using languages like Web-
SQL [MMM97, KS98]; these efforts, however, only support a navigational style of access of
Web pages. Junglee [GHR97] follows a data warehousing approach in order to integrate Internet
data for query processing. Furthermore, Web site management has been studied in a few recent
projects; e.g., Strudel [FFK+98]. The goal of systems like Strudel, however, is to improve the
services (and manageability) of a single site, rather than integrating services from multiple sites.

Chapter 4

The Architecture of the ObjectGlobe
System

In this chapter details of the ObjectGlobe architecture are shown. We concentrate on the tech-
niques used during query optimization and query execution. Special emphasis during query
optimization must be laid on the design and provision of meta-data and the handling of the huge
search space. Another important item is security which has to be regarded during optimization
and execution. Additionally, we describe the internal structures of the query processor which
enable the distributed execution of a QEP.

4.1 Generating Query Plans

In this section, we show how ObjectGlobe produces a plan for a query. In particular, we describe
the ObjectGlobelookup servicethat finds relevant resources for a query and the parser and the
optimizer that try to find a good plan to execute a query. Currently, ObjectGlobe supports a
subset of SQL; ObjectGlobe, however, does support the use of external functions as part of a
query.

4.1.1 Lookup Service

The lookup service plays the same role in ObjectGlobe as thecatalogor meta-data manage-
mentof a traditional query processor. Providers are registered before they can participate in
ObjectGlobe. In this way, the information about available services is incrementally extended as
necessary. A similar approach for integrating various business services in B2B e-commerce has
been proposed recently in the UDDI standardization effort [UDD00].

We expect the registration of providers’ services to become a similar market as the market
for the providers themselves. So, someone interested in using a service will register this service;
service providers themselves need not necessarily do this on their own. For example, wrapper
developers are of course interested in registering data sources for which they have written the
corresponding wrappers. Such an incremental schema enhancement by an authorized user is

28

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 29

possible in the ObjectGlobe lookup service just as in any other database system. This means,
that an ObjectGlobe system is normally not tailored for a specific data integration problem, but
can dynamically be extended with new data, cycle, and function providers by augmenting the
meta-data of its lookup service.

The ObjectGlobe parser and optimizer consult the lookup service in order to find relevant
resources to execute a query and obtain statistics. Furthermore, end users can use the lookup
service to browse through the meta-data and search for available query capabilities and data
sources for their applications.

ObjectGlobe’s Meta-data

The ObjectGlobe lookup service records the following information:

data provider: Each collection of objects stored by a data provider and theattributesof each
collection are recorded by the lookup service. A collection is either a materialized parti-
tion conforming to ObjectGlobe’s internal nested relational format or a virtual collection,
i.e., an Internet data source transformed into the collection’s recorded schema by a wrap-
per. Collections are associated to a specifictheme. A theme describes a special concept
with a set of terms, calledattributes. A theme’s attributes can be viewed as the union of
all attributes meaningful for the theme. Queries are formulated over the themes and their
attributes. Integration of a new data source is achieved by registering it as a new collection
and associating it to a theme. So collections can be seen as horizontal (possibly overlap-
ping) partitions. The attributes provided by the new collection must be a subset of the
attributes defined by the associated theme. Currently ObjectGlobe uses a non-hierarchical
set of themes, but more complex ontologies [BCV99] could be added on top of our flat
theme structure. As an example,www.HotelBook.com andwww.HotelGuide.com
provide different collections which are associated to the themehotel.

Furthermore, the lookup service stores binding patterns of a collection, statistics about
a collection like histograms for estimating the selectivity of simple (i.e., non-external)
predicates, and information about replicas (i.e., mirrors) of a collection, which could be
provided by some other data provider.

cycle provider: The CPU power, size of main memory, and temporary disk space of each cycle
provider is recorded. The load on the cycle provider regarding CPU power and available
main memory is stored as a function of time and likewise we store the latency and band-
width information for the network links between cycle providers.

function provider: The name and signature of each query operator is recorded. Furthermore,
formulas to estimate the consumption of CPU cycles, main memory, disk space, and the
selectivity for each query operator are kept by the lookup service. These formulas use a set
of parameters which describe the characteristics of the executing cycle provider (e.g., the
available CPU power/main memory) and the input data for a specific application of this
operator.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 30

ObjectGlobe differentiates betweeniterators like join or display andtransformerssuch
as thumbnail. (In addition, ObjectGlobe has also special categories forpredicatesand
aggregate functions.) Any kind of function, however, will automatically be wrapped by
ObjectGlobe into an iterator so that we ignore these distinctions in this work and use the
wordsfunctionandquery operatorinterchangeably for the general concept.

authorization information: the lookup service maintains authorization information which is
obtained from the providers and indicates which data may be processed at which cy-
cle provider and by which query operator. To guarantee privacy and confidentiality, the
providers can also restrict the flow of information (and code) in order to prevent data
(and functions) from being processed on untrusted cycle providers. Following the Ob-
jectGlobe authorization model, it is possible to specify positive and negative authoriza-
tions [RBKW91, BJS99]. Also, it is possible to group collections, functions, and cycle
providers into “authorization classes”—using role-based authorization [SCFY96]—in or-
der to reduce the overhead of maintaining and processing this information in the lookup
service.

Appendix B shows an exampleRDFdocument that can be used by a data provider to register
a hotelcollection. The meta-data kept in the lookup service can be outdated or incomplete. It
is possible, for instance, that a data provider revokes the privilege of some cycle providers to
process its data without notifying the lookup service; as a result, the execution of a query might
fail due to an authorization violation which is detected at execution time. ObjectGlobe relies on
data, function, and cycle providers to notify the lookup service if important meta-data changes.
If a plan fails due to stale meta-data in the lookup service, all the relevant meta-data is invalidated
so that providers that do not update their meta-data are eventually excluded from the ObjectGlobe
federation. As an alternative, [CZH+99] proposes to use atime-to-livescheme; in that scheme,
providers must periodically contact the lookup service if they want to continue to remain in the
federation.

Using the ObjectGlobe Lookup Service

As mentioned before, data, function, and cycle providers are registered by generatingRDFdoc-
uments describing their services. We useRDFbecause it is very flexible and a WWW standard
for describing resources [BG99]. Typical collections, such as relational orXMLdata sources, can
very easily be described usingRDF; it is also possible to automatically produce large fractions
of anRDFdescription from, say, anXML DTDor a relational schema. AnRDFdocument is also
used to update the meta-data if a provider changes or extends its services and the ID of anRDF
object is used to unregister (i.e., delete) services.

To find relevant resources and retrieve statistics and authorization information, the lookup
service provides a declarative query language. As an example, Figure 4.2 shows how to ask the
lookup service for all collections that supply data for thehotel theme. More specifically, the
query of Figure 4.2 asks forhotelcollections which havecity, address, andprice attributes and
the query asks for theuniqueId of the collection (used to identify replicas) and information
about allattributes. (The “?” in the query is ananyoperator.) The result of this query is shown

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 31

selectprice, address
from hotel
where city=’New York’

Figure 4.1: An Example SQL Query

searchPartition d
selectd.uniqueId, d.attributes.∗
where d.theme.name=“hotel”

and d.attritutes.?.topic=“city”
and d.attritutes.?.topic=“address”
and d.attritutes.?.topic=“price”

Figure 4.2: Example Lookup Search Query

<collection>
<uniqueId>4711</uniqueId>
<attribute topic="city" domain="String"/>
<attribute topic="price" domain="Integer"/>
<attribute topic="address" domain="String"/>

</collection>

Figure 4.3: Example Search Result

in Figure 4.3; here, we show the results for thehotelcollection specified in theRDFdocument of
Appendix B.

The lookup service also allows the definition of views. These views can be materialized.
Such materialized views are very helpful to supportsessionsin which search results are itera-
tively refined. For example, it is possible to first ask for all cycle providers which are allowed to
process objects of a specific collection and then, in a separate search request, ask which ofthese
cycle providers are capable to execute a specific query operator.1 This feature is important for
parsing and optimization and for users who interactively browse the meta-data. An advanced im-
plementation of the ObjectGlobe lookup service with a distributed and layered architecture was
devised in [KKKK02]. Additionally, this implementation uses a publish and subscribe mecha-
nism to allow an efficient distribution of meta-data.

4.1.2 Parser and Optimizer

Plans for a query are generated by the ObjectGlobe query parser and optimizer. As shown in
Figure 3.1, the parser looks up the relevant resources for a query and the optimizer produces a
plan based on (a subset of) these resources.

Parser

The main effort carried out during parsing is to issue search requests to the lookup service in order
to discover all relevant resources (i.e., collections, functions, and cycle providers). The parser

1Of course, these cycle providers could also be found in a single search request.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 32

Query
Collection

C2
Collection

C3

Theme "hotel"

Collection C1

Figure 4.4: Relationship of Theme, Collections, and Query Attributes

aborts the processing of a query if for some part of the query, no resources can be found. Relevant
collections are found using thethemesandattributesspecified in a query. All themes used in
the query’sFROMclause and their corresponding attributes used in theSELECTandWHERE
clauses define the query’s schema. The relationship between the attributes used in a query, the
attributes recorded for collections in the lookup service, and the attributes of a theme are depicted
in Figure 4.4. For everythemereferred to in the query, the parser queries allmatchingcollections
from the lookup service; a collection matches if it is associated to the requested theme and
provides a superset of all attributes used in the query. For example, assume the SQL query
given in Figure 4.1. From this query the parser determines a schema consisting of the attributes
hotel.city, hotel.address, hotel.price, represented by the gray filled circle in Figure 4.4. To find
all relevant collections the parser queries from the lookup service all collections associated to the
hotel theme (collections C1, C2, and C3) and providing at least the attributescity, address, and
price (only collections C2 and C3). The resulting search request to find relevant collections for
the query of Figure 4.1 is given in Figure 4.2.

As Figure 4.4 shows, collections may provide more attributes than are actually used in a
query. In the execution phase, the schema of a collection is projected to the schema required by
the query execution plan. So, in Figure 4.4, the operator used to access collection C2 will not
return all attributes represented by the dashed circle C2, but only the attributes of the intersection
of the sets C2 and Query (the attributescity, address, andprice).

Likewise, the parser looks for function providers for each external function used in a query;
again, external functions such asthumbnailcan have several implementations from different
function providers; all implementations that match the right name and signature are considered.
Query operators such asjoin, union, or displayare typically implicit in a query; forjoin and
union the parser will consider built-in variants and all variants provided by function providers.
For display, the parser will always consider ObjectGlobe’s built-in variant which producesXML
to represent query results; the parser will only consider a differentdisplayoperator if this is
explicitly requested.

In addition to discovering the relevant resources, the parser consults the lookup service in
order to retrieve all available statistics and authorization information. As a result, the parser
produces a (quite complex)XMLdocument which is then used by the optimizer in order to gen-
erate a plan. Figure 4.5 shows how the authorization and applicability information is represented
as acompatibility matrixfor the collections, functions, and cycle providers of the example of
Section 3.2.2. For each relevant data collection such a compatibility matrix is generated by the

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 33

6

function

-

cycle provider

Cl. = Client A B Cl.
scan(R)

wrap S

scan(T)

thumbnail

join

display

A B Cl.
scan(R)

wrap S

scan(T)

thumbnail

join

display

A B Cl.
scan(R)

wrap S

scan(T)

thumbnail

join

display

︸ ︷︷ ︸
R

︸ ︷︷ ︸
S

︸ ︷︷ ︸
T

Figure 4.5: Compatibility Matrices for the Example of Section 3.2.2

parser. A point at(c, f) in a matrix of a collection is set if cycle providerc is authorized to
see the collection, functionf is authorized to process objects of the collection,c is authorized
to executef , andc is capable of executingf (i.e., has enough memory and disk space). For
instance,wrap Smay be executed at all cycle providers in order to read collectionS, but it may
obviously not be used anywhere to read collectionR or T . In the matrix, built-in query operators
such asdisplay, scan, andjoin are treated in the same way as external functions (e.g.,thumbnail
andwrap S); it would be possible, for instance, that a cycle provider only allows its own join
methods to be executed on its machines.

Up to now we did not explain how the set of cycle providers which are considered for a
specific query, is initially fixed by the parser. Naturally, the selection of cycle providers for a
specific query depends on their abilities (CPU speed, network connection, memory sizes) and
their authorizations in respect of the used collections and functions. The abilities of a cycle
provider must be considered with respect to its assigned operators and the way these operators
are embedded in the QEP. Therefore, a meaningful decision about the cycle provider which
should be used for a specific operation in the QEP can only be made during optimization. The
parser just has to pre-select cycle providers which are allowed to work on relevant collections.
During optimization the compatibility matrices as explained above have to be consulted in order
to select potential cycle providers for specific operations.

Optimizer

The goal of the optimizer is to find a good plan to execute a query, if a plan exists. The “if a plan
exists” part is important because the ObjectGlobe optimizer, unlike a traditional optimizer, might
sometimes fail to find a plan, even if the parser was able to discover relevant resources. First of
all, limitations due to authorizations can make it impossible to find a valid plan; for instance, it
might happen that two collections cannot be joined because there is no cycle provider that has
permission to see both collections. Furthermore, ObjectGlobe users and applications can specify
quality parameters for the query execution itself as described later in this work. For example, if
the user’s upper bound for the costs of a query is 10¤ and the optimizer does not find a matching

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 34

plan for this constraint, the user is informed about this fact and no query execution takes place.
The optimizer enumerates alternative query evaluation plans using a System-R style dynamic

programming algorithm [SAC+79] or (optionally) a greedy algorithm. Both algorithms have in
common that the optimizer builds plans in a bottom-up way: first so-calledaccess plansare
constructed that specify how each collection is read (i.e., at which cycle provider and with which
scanor wrapperoperator). After that,join plansare constructed from theseaccess plansand
(later) from simplerjoin plans. The basic ideas of both optimization algorithms were already
presented in Section 2.2.1. To deal with unary external functions and predicates, the algorithms
are extended as described in [CS96].

In the following, we would like to highlight the peculiarities that make the ObjectGlobe
optimizer special:

Compatibility Matrix During query optimization every plan is annotated (among others) with
a compatibility matrix. The compatibility matrix of an access plan is identical with the com-
patibility matrix generated by the parser for the corresponding collection (4.5). The matrix of
a join plan which is composed of two sub-plans is generated by ANDing the two compatibility
matrices of the two sub-plans, resulting in a more restrictive matrix.

Sanity Checks Some sub-plans can be immediately discarded during plan enumeration based
on the sub-plan’s compatibility matrix. As an example, consider the following situation: collec-
tionsR1 andR2 belong to the same themeR and a query is interested inf(R) for some external
functionf . For collectionR1, f may only be executed by cycle providerx; for collectionR2, f
may only be executed by cycle providery. Now a sub-planR1∪R2 can immediately be discarded
because there is no way to executef on top ofR1 ∪ R2 (neitherx nor y work); in other words,
theR1 ∪ R2 plan has no points set in thef row of its compatibility matrix. (Note, however, that
anf(R1)∪ f(R2) plan is valid, if it is equivalent.) If several variants off exist, then theR1 ∪R2

plan can be discarded if there is no point set in theshelfof f rows. (A shelf is a set of rows in the
matrix for different variants of the same function.) Obviously, a plan can also be immediately
discarded if an estimated value for one of its quality parameters exceeds the specified limit.

We also carry out more sophisticated sanity checks at the beginning of query optimization.
For example, there must be at least one cycle provider which has permission and is capable to
execute thedisplayoperator for each collection. Typically, this must be the client machine at
which the query was issued. If such a cycle provider does not exist, then no plan exists and
the optimizer can stop without enumerating any plans. In theory, such sanity checks that span
several compatibility matrices could be applied in order to discard certain sub-plans during the
plan enumeration process; since these sanity checks are quite costly, however, they are only
carried out once, at the beginning before plan enumeration starts.

Compact Query Evaluation Plans As we have already seen in Section 4.1.1, several collec-
tions can contribute data for a specific theme. A similar situation can be found in distributed
databases, where the data for a relation can be splitted in several horizontal partitions. If in
a distributed database such a relation is referenced in a query, all the partitions of the relation

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 35

are unioned in the resulting QEP in order to consider all the data of the relation in the query
evaluation.

In a globally operating data integration system we must expect that a large number of data
providers contribute to the same theme. For example, data for real estate offers, hotel rooms, or
flight information are offered by many data providers on the Internet. Since these data providers
can be distributed over the whole Internet, the incorporation of all the corresponding collections
in a query execution would be too expensive for most practical applications. This means that the
response time of the query would be too large.

Therefore, the ObjectGlobe optimizer allows users to specify a completeness constraint for
every theme in a query. This constraint states the minimum percentage of all the data for the
corresponding theme which should be considered in the query execution. This is one aspect of
the quality of service properties which are explained in more detail later in this work. Here, we
are interested in the resulting possibility to select a subset of the collections of a theme in order
to fulfill a completeness constraint.

Naturally, the distribution of data providers affects the execution speed of the corresponding
query. Here, we assume that the predominant factors which affect the response time of a query,
are the bandwidths of the used network connections. Hence, if the completeness constraints
allow the selection of a reduced number of data providers, this selection should induce a rather
compact QEP in order to achieve a reduced response time. This means that the data providers
should be located as near as possible to one another, i.e., they should be connected by rather fast
network connections.

In the worst case, a brute force method would have to check all combinations of different
subsets (except for the empty set) of data providers for each theme. For each such combination
the respective optimization algorithm would have to be applied. Thus, the running time of the
optimizer is increased by the factor

n∏
i=1

(2si − 1)

where n is the number of themes referenced in the query andsi is the number of collections
registered for thei-th theme. Obviously, this factor has in almost all practical scenarios a value
which forbids the application of this brute force method. Therefore, we use heuristics which are
based on the bandwidth of the network connections between the data providers. We regard all
data providers and the corresponding network connections between them as a fully connected,
weighted graph. The data providers are the nodes, the network connections the edges, and the
bandwidth of a connection represents its weight. We recursively apply a clustering algorithm
[Ger96] on this graph. Each recursive application delivers a disjunctive partitioning of all data
providers and through the information of how the clusters evolved from former applications of
the clustering algorithm a so-called cluster tree can be constructed. An example for such a tree
is depicted in Figure 4.6.

Now, as a prerequisite for finding access paths for collections of a theme we are searching
for special clusters in the cluster tree. These clusters must contain a set of collections for the
respective theme which fulfills the completeness constraint for that theme. Obviously, the root
of the cluster tree is always such a cluster. Since a greater depth of the cluster in the tree means

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 36

> max_bw

> 200 kB/s

> 100 kB/s

> 0 kB/s

C1

C2 C3 C4

C5 C6 C7 C8 C9

Figure 4.6: A Cluster Tree informs about the Quality of the Network Connections between Data
Providers.

that the data providers in that cluster have better network connections to one another than in any
cluster above, we are searching for the deepest clusters which fulfill the completeness constraint.
For example, in Figure 4.6 we assume that all clusters with a thick border fulfill such a constraint
for a theme. The candidate clusters are thenC2, C4andC62. The search for such candidate
clusters for themes can be seen as a search for theme-level access plans. Analogously, we handle
these theme-level access plans as alternatives in the optimization process. This means that each
candidate cluster at least delivers one sub-plan for accessing the corresponding theme and this
sub-plan is considered during optimization. For example, assume that we join the themest1 with
candidate clustersC6 andC2 andt2 with candidate clustersC3 andC9. If we use our dynamic
programming optimizer in a configuration which keeps two alternative physical plans for each
logical plan, the plan which usesC6 for accessingt1 andC3 for accessingt2 will most likely be
chosen, since withinC3 a fast access to the collections oft1 andt2 is available.

Selecting Cycle Providers During optimization, for every operator which has to appear in
the QEP a cycle provider has to be determined which executes this operator. Again, testing all
registered cycle providers for their ability to execute a specific operator results in a prohibitively
high running time for the optimization process.

Naturally, the selection of cycle providers in a query has to consider the placement of used
collections. The clusters which were chosen for accessing data providers can also guide the selec-
tion of appropriate cycle providers which work on the corresponding data collections. Therefore,
additionally to data providers also cycle providers are considered in the construction process of
the cluster tree. In this way, every cycle provider (analogously to a data provider) is associated
with a path in the cluster tree which starts at the root cluster and ends in the leaf node which
represents the corresponding cycle provider.

During the bottom-up construction of a QEP, each of its sub-plans is associated with the
2Note that more than one such cluster can exist if the completeness constraint is below 50%.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 37

lowest cluster in the tree which covers all the data and cycle providers which appear in this sub-
plan. This cluster represents the tightest environment of this sub-plan which can be found in the
cluster tree. Initially every access plan for a data collection is associated with the leaf node of
the cluster tree which represents the respective data provider. This means that access plans are
associated with a clusteranda specific host. Every other kind of sub-plan has in addition to the
association with a cluster also a representative host which is the cycle provider executing the top
most operation in the sub-plan.

We assume now that the sub-planss1 ands2 with associated clustersc1 andc2 and associated
hostsh1 andh2 have to be combined by a binary operator. The cycle provider for executing this
operator is chosen from the set of cycle providers which appear in the cluster which is the lowest
common ancestor ofc1 andc2. For example, if the clusters areC2 andC6 of Figure 4.6, the cycle
provider is searched in clusterC1. Although, the number of cycle providers in such a cluster is
normally less than the overall number of cycle providers (unless the cluster is the root cluster)
it may be too expensive to test all the cycle providers during optimization time. Therefore, for
everyh1 andh2 we determine a set of candidate cycle providers which could be useful to execute
the operator which combines plans associated with these hosts. This selection does not depend
on a specific query but just on the bandwidths of the affected network connections and need not
be recomputed for every query.

Depending on the sizes of the intermediate results and the way a QEP can be completed
in further steps of the optimization process several strategies for choosing a cycle provider are
conceivable. The following cycle providers can be useful:

1. h1 andh2 themselves.

2. a cycle providercp with a high value forbandwidth(cp,h1) or3 bandwidth(cp,h2).

3. a cycle providercp with a high value forbandwidth(cp, h1) + bandwidth(cp, h2).

4. a cycle providercp with a high value forbandwidth(cp, h1) ∗ bandwidth(cp, h2).

The functionbandwidthdetermines the bandwidth between the hosts given as parameters. To
select the most appropriate cycle providers for the last three criteria, priority queues are used. A
user-defined boundb determines how many cycle providers from each such priority queue should
be selected. The optimization algorithm then has to check at most3 ∗ b + 2 cycle providers for
every binary operation. In Figure 4.7 some candidate cycle providers for the hostsh1 andh2

are shown. The cycle providers connected with a solid line toh1 or h2 are candidates due to the
second criterion. Analogously, the cycle providers connected with a dashed and dotted line are
candidates due to the third and fourth criteria, respectively.

Unary operators are not placed at separate cycle providers by our optimizer. If a unary oper-
ator must be inserted in a QEP, it is executed at the cycle provider which is associated with the
current sub-plan. If this is not possible (e.g., if the sub-plan is associated with a pure data provi-
der) the insertion of this operator is delayed until the cycle provider for the next binary operation
has been selected.

3Theor is an exclusive or here.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 38

1 h 2h

Figure 4.7: The Criteria for Selecting Cycle Providers for Binary Operations.

UNION Queries As shown earlier, several data providers can contribute data for the same
theme. The simplest way for incorporating the data for such a theme in a QEP would be to
performunionoperations on all the affected and selected (see above) data collections before any
other operation is considered for that theme. For example, if the themesR andS with collections
{s1, s2} and{r1, r2, r3} must be joined, the resulting QEP would then be

(s1 ∪ s2) 1 (r1 ∪ r2 ∪ r3).

In the following we say that this kind of QEP is in standard form. Since the union operator is
associative and a join operator distributes over a union operator, an equivalent expression to the
previous one would, for example, be

(s1 1 (r1 ∪ r2 ∪ r3)) ∪ (s2 1 (r1 ∪ r2 ∪ r3)).

The latter expression will normally result in a query execution with a better response time than
the execution of the standard form QEP. This is due to the join operations which can be executed
in parallel by different cycle providers and the reduced data volume each of the join operations
has to process. The savings in response time then simply result from the fact that a join operator
is in general much more expensive than a union operator.

Therefore, plans which are deduced from a standard form QEP by the application of such
equivalence transformations are normally good candidates during query optimization. Unfortu-
nately, the number of plans which have to be considered during optimization when all possible
equivalence transformations should be taken into account, is rather large. If we have to join the
themesA1 andA2 with corresponding numbers of collectionsa1 anda2, the number of QEPs for

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 39

this query can be computed by the functionUJ:

UJ(a1, a2) =
a1∑

j=1

({
a1

j

}
bell(a2)

j

)
+

a2∑
j=1

({
a2

j

}
bell(a1)

j

)
− bell(a1)bell(a2)

In this definition
{

n
k

}
denotes the Stirling number of the second kind which represents the num-

ber of ways a set with n elements can be partitioned into k disjoint, non-empty subsets. The term
bell(n) denotes the Bell number which represents the number of ways a set with n elements can
be partitioned into disjoint, non-empty subsets. The definition ofUJ follows the construction of
a QEP starting from its standard form. First we have to select a theme the collections of which
are partitioned first. Each such partition has to be joined with an expression which is equivalent
to the other theme. All these expressions are counted by the call to the function for the Bell
numbers. At the end we have to consider duplicate QEPs which are generated when for every
appearance of a theme in a QEP the same partitioning is selected. If the same partitionings are
selected, the order in which the themes are used in the construction of a QEP does not matter
anymore. Therefore, the last term of the definition ofUJ includes the number of QEPs with that
property.

For a join witha1 = 2 anda2 = 2 there are 8 different QEPs as counted byUJ4. The latter
number rises up to 913749304 fora1 = 5 anda2 = 5. The number of such plans for n-way join
plans can be computed by recursively applying the functionUJ on intermediate results of the
join plan.

The cluster tree from above also helps here to implement heuristics which allow us to consider
a promising subset of all QEPs which can be constructed from the standard form QEP by the
transformations shown above.

Suppose that we have to create a plan which joins the sub-plansR andS. R andS represent
joins of complete themes; that is, there exists two set of themes{A1, . . . , An} and{B1, . . . , Bm}
with R ≡ A1 1 . . . 1 An andS ≡ B1 1 . . . 1 Bm. R andSare in the formR = R1 ∪ . . . ∪ Rk

andS = S1 ∪ . . . ∪ Sl. Initially, every theme itself represented by the plan which unions all
selected collections of the theme fulfills these properties.

As shown above, a clusterCj for the join operation is selected. The direct sub-clusters of
Cj induce a partitioning onR1, . . . , Rk andS1, . . . , Sl. The corresponding partitions are named
RP1, . . . , RPp andSP1, . . . , SPq. The QEP which is then chosen for the join adopts the structure
of these partitionings:
 ⋃

r∈RP1

r


 1


 ⋃

s∈SP1

s


 ∪ . . . ∪


 ⋃

r∈RP1

r


 1


 ⋃

s∈SPq

s


 ∪ . . . ∪


 ⋃

r∈RPp

r


 1


 ⋃

s∈SPq

s


 .

The resulting QEP again fulfills the properties which were required forR andS. This means,
that this kind of partitioning can continue recursively during the QEP is completed.

Now, Cj is not necessarily used for the execution of a join because for every join operation
in the resulting QEP a cycle provider is searched anew. In this way, a cycle provider which best

4We do not regard QEPs which can be deduced by the associative law for the join operator.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 40

fits the positions of the corresponding partitions in the cluster tree, can be selected. In order to
demonstrate the construction of the QEP for our example cluster tree in Figure 4.6, assume that
R1 is associated with clusterC5, R2 with C8, S1 with C7 andS2 with clusterC9. Then,Cj is
determined asC1 and the resulting QEP is

(R1 1 (S1 ∪ S2)) ∪ (R2 1 (S1 ∪ S2)).

Note that the last join can be executed locally to clusterC4 which is better than an execution in
Cj = C1.

4.2 Query Plan Distribution and Execution

As mentioned before, ObjectGlobe was implemented in Java for two reasons: portability and se-
curity. In this section we will describe how we utilized Java’s features to achieve extensibility and
query operator mobility without compromising security. We will also describe ObjectGlobe’s
monitor concept for controlling the progress of distributed query plans.

4.2.1 Distributing Query Evaluation Plans

Query evaluation plans, represented in XML, constitute trees, where each node contains various
annotations: the query operator; if it is an external operator, the code base from which it is loaded;
the cycle provider on which the operator is executed; possibly some constants to substitute for
the operator‘s parameters; etc. The distribution of such a query plan starts at the client with a
depth-first traversal of the query evaluation plan. For each node, we check its annotations in
order to obtain the data needed for instantiating the operator. First, thecycle-providerannotation
indicates at what site the respective operator should be executed. If its value is not equal to the
current site, a Send-/Receive iterator pair is inserted into the query plan. The Receive iterator is
instantiated at the current site and the Send iterator at the remote site. A network connection is
created between the Send- and the Receive iterator, which will be used during query execution
for the transfer of the intermediate result stream.

The query plan’s annotation could require to use a secure communication channel, in which
case an SSL (Secure Sockets Layer) connection is established. SSL [FKK96]5 is a de-facto
standard for providing privacy and reliability of network communication by encrypting network
traffic and checking the data integrity using Message Authentication Codes (MAC). Also, the
SSL protocol can carry out the authentication of both ObjectGlobe communication partners via
certificates.

After the Send- and Receive iterators have been established, the instantiation of the query
sub-plan rooted at the current node is delegated to the remote host. The instantiation at the local
site continues as if the traversal of the sent-away sub-tree was finished.

If a node constitutes an external operator, thecodeBaseannotation contains the reference
(an URL) to the appropriate function provider. Every cycle provider loads the code of external

5There is also the standardized TLS (Transport Layer Security) protocol [DA99] of the Internet Engineering
Task Force (IETF) which is quite similar to the current SSL 3.0 protocol.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 41

operators with a specialized ObjectGlobe class loader (OGClassLoader). If a cycle provider
requires that the code is signed (authenticated), then the OGClassLoader will check the signature
of the code. The loaded code is used to create an instance of the specified external operator. The
security issues concerning such dynamically loaded code will be discussed in Section 4.2.4.

4.2.2 Authentication and Authorization

If a provider restricts the use of its resources and therefore requires some kind of authentica-
tion of users the authentication information will be part of the query plan (again, as part of
an annotation). Two possible authentication schemes are supported. (1) A user can provide a
password. The password is used to generate a secret key (using the PKCS#5 Password-Based
Encryption Standard [RSA99]) which is afterwards used to calculate a MAC (Message Authen-
tication Code) of the query plan and some additional data. (2) The user possesses a valid X.509
certificate [HFPS99, PKI]. The certificate is used to calculate a digital signature of the query
plan and some additional data.

One problem remains. What if a data provider does not support one of these schemes, i.e.,
requires the password in plain text? The password is included (as authentication information)
in the query plan. The wrapper accessing the data provider extracts the password and passes
it to the data provider. To keep the password secure it is encrypted with the public key of the
cycle provider that executes the wrapper. So no other cycle provider is able to access the plain
password.

Authorization is carried out by the individual providers when a query is instantiated. Each
provider autonomously decides if it allows the local execution of the query plan depending on
the local policy. Most providers will delegate this decision to a local security provider which is
included in the ObjectGlobe system. Data providers may also have their own security system (as
most DBMSs have) that they can use instead of the ObjectGlobe security provider.

The security provider uses a role-based access control (RBAC) model [SCFY96] to specify
authorization rules. RBAC distinguishes between users, roles which are assigned to users and
permissions which are assigned to roles. ObjectGlobe provides permissions for allowing or
denying access to a relation (i.e., executing a wrapper), loading and executing an operator and
using a cycle provider (i.e., execute a query plan at the cycle provider).

4.2.3 Extensibility

The ability to load external operators into ObjectGlobe’s query engine is a key feature for flex-
ibility and performance (e.g., by moving code to the data). Arbitrary tasks can be implemented
by an external operator as long as the rules of the security system are obeyed and the prescribed
interface is observed. The iterator interface, which is used in our system is nearly the same as
the one described in [Gra93]. The methods of this interface are shown below:

TypeSpec open();
ElementDescriptor next();
void close();
void reopen();

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 42

A sample call pattern is given in Figure 4.8. In the following we briefly describe theopen
method for iterators, since it has a special meaning for the incorporation of external operators.
In the open method the operator has to make preparations in order to be able to produce its
result tuples afterwards in the calls to itsnext method. So what an operator has to do first in
its open method is, to ensure thatits input operators (if it is not a leaf in the operator tree) can
produce their result tuples. Therefore, the operator calls theopen methods of its input operators.
Theopen method returns an object of a class namedTypeSpec . Such an object describes the
type of the tuples which will be produced in every call of thenext method. Type specifications
are also recorded in the lookup service; just like authorization information, however, the type
specifications recorded in the lookup service might be outdated or incomplete.

It is important that theTypeSpec is given by every iterator individually because only the it-
erator itself knows about its own structural modifications. Based on these (runtime)TypeSpecs
polymorphic functions can be constructed. Furthermore, it is possible to compute theouter union
of two collections that have different attributes; for example, twohoteldata sources on the Inter-
net (e.g.,www.HotelBook.com andwww.HotelGuide.com) might have slightly different
attributes and it is nevertheless possible in ObjectGlobe to ask aSELECT * query that retrieves
all attributes from both sources. For simple functions, such as aggregate- or transformer func-
tions (e.g., thumbnail), ObjectGlobe provides a simpler mechanism by “plugging” such functions
into generic (built-in) operators.

4.2.4 Secure Query Engine Extensibility

We have utilized Java’s security model [Oak98] to guarantee security of ObjectGlobe servers
while executing external operators from possibly unknown function providers. Java‘s five-layer
security model is illustrated in Figure 4.9. Java is a strongly typed object-oriented programming
language with information hiding. The adherence to typing and information hiding rules are
verified by the compiler and again by the class/bytecode-verifier before a Class object is gener-
ated from the bytecode because code could be generated by an evil compiler. The class loader’s
task is to load the bytecode of a class into memory, monitor the loaded code’s origin (i.e., its
URL) and to verify the signature of the authenticated code. The security manager controls the ac-
cess to safety critical system resources such as the file system, network sockets, peripherals, etc.
The security manager is used to create a so-calledsandboxin which untrusted code is executed.
A special, particularly restrictive sandbox is used, for example, by Web browsers to execute
Applets. The ObjectGlobe system is based on the latest Java Release 2, in which the Security
Manager interfaces with the Access Controller. The Access Controller verifies whether an access
to a safety-critical resource is legitimate based on a configurable policy, which is stored in the
PolicyFile . Privileges can be granted based on the origin of the code and whether or not it is
digitally signed (i.e., authenticated) code. In addition, the Access Controller allows to temporar-
ily give classes the ability to perform an action on behalf of a class that might not normally have
that ability by marking code asprivileged. This feature is essential, e.g., for granting access to
temporary files as explained below. Finally, the Java program is executed by the interpreter (the

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 43
tim

e

deeper higherlevel in iterator tree

call the open method of
the input iteratoropen

Compute the type of the
produced tuples and

allocate helper objects
from the runtime system

type

type

next

tuple

next

tuple

close

close

call the close method of the
input iterator

consume the tuples from the
input and produce the

result tuples of this iterator

open

iterator 2 iterator 3iterator 1

Figure 4.8: A Sample Call-Pattern for the Iterator Interface.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 44

PolicyFile

SecurityManagerClassLoader Interpreter/JIT
code Verifier
Class-/Byte-Compiler

AccessController

Figure 4.9: Java’s Five-Layer Security Model

JVM) which is responsible for runtime enforcement of security by checking array bounds and
object casts, among others. From a security perspective, it is irrelevant whether or not parts of
the code are compiled by a just-in-time (JIT) compiler to increase performance.

Of course, it would be unreasonable to grant unprotected access to system resources—such
as the file system, the network sockets, etc—to unknown code. Therefore, all external operators
are executed in a “tight” sandbox. Furthermore, the name spaces of concurrent queries are sep-
arated from each other (to be accurate every external operator runs within its own namespace to
avoid problems with name clashes and version mismatches). This way it is guaranteed, that they
cannot illegitimately exchange information via covert channels (“hidden communication paths”),
e.g., via static class variables of external operators. The name space separation is achieved by
using a new, dedicated class loader (calledOGClassLoader) for each query. This class loader
is responsible for loading any additional functions beyond the built-in ObjectGlobe classes. The
code bases (i.e., the function providers) from which these operators can be loaded are annotated
in the query execution plan. Since an external operator could abuse the connection to a function
provider as bidirectional communication channel, all (non built-in) classes required by an exter-
nal operator must be combined into a JAR6 file. This archive file is loaded and cached by a class
loader and the connection to the function provider is closed. All requests to non built-in classes
must point to classes in the cached JAR file otherwise they are rejected as illegal. Schematically,
the name space separation and the class loaders are illustrated in Figure 4.10.

Some user-defined query operators may require access to the cycle provider’s secondary
memory in order to store temporary results. Obviously, we cannot generally grant access to
the file system to any external operator. Instead, a particular built-in class, calledTmpFilehas
to be used. This built-in class provides a safe interface to create a temporary file, to write into
and read from the temporary file and to delete the temporary file. Furthermore, aTmpFileob-
ject ensures the automatic deletion of the corresponding file when it is garbage collected. This
way it is guaranteed that external operators can only operate on temporary files that they created
themselves (within the same query execution plan). This scenario is illustrated in Figure 4.11.

Access to network sockets is normally prohibited to external operators to prevent them from
sending any information about the data they process (to unknown locations). This restriction
needs to be relaxed when a cycle provider wants to execute a wrapper which accesses data that is
published by, e.g., a Web server. Therefore the policy of the Access Controller can be configured

6JAR (java archive) is a platform-independent file format that aggregates many files (compressed) into one (like
ZIP) and is supported by the Java Runtime Environment.

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 45

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

Query 1

Query 2

Query 3

(e. g. temporary files and network sockets)

access to local resources of the cycle provider

which are accessible

basic query operators

(e.g. TmpFile)
by external functions

runtime system

(namespace of the OG system)

classes of ObjectGlobe

(iterators) supplied

ObjectGlobe

by ObjectGlobe
interface to O

bjectG
lobe

sandbox for queries

Java Virtual Machine

system classloader

function providers
over the
Internet

OGClassLoader

namespaces for external functions

access to

access to class files in the CLASSPATH

OGClassLoader

OGClassLoader

Figure 4.10: Security of Dynamically Loaded Code

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 46

iterators supplied by ObjectGlobe

external iterators

temporary
files

TmpFileTmpFile

sandbox for query

TmpFile

Figure 4.11: Extending Privileged Access Rights to User-Defined Operators

to allow a trusted and authenticated wrapper to establish a connection to a particular host on a
given port. It is also possible to configure a relaxed policy that gives this privilege to arbitrary
wrappers. The more restrictive policy situation is, for example, suitable for a wrapper accessing
anFTP server to fetch a file. Granting the right to connect to this server to any external operator
would allow operators to store any kind of information at this server, which is certainly not
desirable. The more relaxed policy is applicable if granting access to a server is harmless; e.g.,
access to a server which only sends up-to-date exchange rates for given currencies.

The sandbox security model cannot protect providers from so-called denial of service attacks
where malicious code overconsumes CPU cycles or other resources. To protect cycle or data pro-
viders from this kind of attack, accounting and authentication can help for identifying intruders.
In a work [SBK01] which extends the security system described here, a (system dependent) java
library based on the Java Virtual Machine Profiler Interface (JVMPI) [Sun99] is developed. This
library keeps account of memory and CPU usage of external operators, other resources like the
number of bytes written to secondary memory can be determined using pure Java.

As a part of a general accounting mechanism we will describe our monitor component which
is used to control the progress of query operators. This way some simple overconsumption prob-
lems, such as operators which maliciously or accidentally consume resources without producing
results, can be detected and repaired by halting the query execution.

4.2.5 Monitoring the Progress of Query Execution

Obviously, users want to know if their queries still make any progress at all. The execution of
a distributed query can fail for various reasons: network failures, crashed servers, badly pro-

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 47

Monitor
Operator

Query 2Query 1
priority queue
for timeouts

Server 2

inform about failed sub-plans

terminates

sub-plan
a failed

insert
timeoutMonitor Thread

terminator 2

terminator 1

inform about failed sub-plans

Server 1

Server 3

Figure 4.12: The Architecture of the Monitor Component.

grammed external operators, extremely overloaded servers, etc. Without precautions such fail-
ures can lead to live- or deadlocked query execution plans, in which upper-level query operators
wait indefinitely for blocked sub-plans to deliver their results. Therefore, it is important to mon-
itor the progress of the query execution and inform the participating ObjectGlobe servers about
failures.

Each ObjectGlobe server uses a dedicated thread (we call it themonitor thread) for detecting
timed-out queries. A monitor thread operates on a data structure, which is organized as a priority
queue. The objects stored in this queue represent future points in time and the object with the
closest point in time has the highest priority. Such an object (we call it atimeout object) specifies
an event inside a query, which has to occur in that query until the specified point in time has been
reached. If its time has expired, the monitor thread removes the timeout object from the queue
and checks if the associated event has occurred. If this is the case, the object is discarded and
nothing else happens. Otherwise the affected sub-plan of the query is assumed to be blocked
and it is terminated by a special “terminator” thread. When a sub-plan is stopped due to an
error condition in an operator, the ObjectGlobe servers, executing the operators beneath and
above the failed one in the plan hierarchy will be informed about this fact. The sub-plans of the
operators below the blocked node will normally fail. The operators above it could react to the
failure in special ways (also fail, rearrange the plan, execute an alternative sub-plan, etc. [CD99]).
The propagation of an error up the hierarchy is performed by the standard exception handling
mechanism of Java ”with a little help” from our send-/receive operator pair for crossing network
connections. The servers of child operators cannot be informed with the exception mechanism.
A special (UDP) network protocol is used for this purpose.

So far we have not mentioned where the timeout objects come from. These objects are
created by a special type of operator, themonitor operator. A monitor operator can be inserted

CHAPTER 4. THE ARCHITECTURE OF THE OBJECTGLOBE SYSTEM 48

at arbitrary positions in a query evaluation plan, since it does not change its input tuple stream.
Positions where we will always insert monitor operators are above receive operators and above
any external operator. Its task is to observe the progress of the actions performed by the sub-plan
beneath. For example, at the beginning of its open method a monitor operator creates a timeout
object for the event “end of open reached” and inserts this object into the priority queue of the
monitor thread, while also keeping a reference to that object. After that, the open method of its
child operator is called. When the method invocation returns, the timeout object is informed, that
its awaited event has occurred.

The advantage of this architecture is that the decisions about where to monitor in a query
evaluation plan and with what parameters the timeouts should be initialized can be made in a
flexible manner. Setting timeouts is critical, just as in any other system. One option is to set the
timeout based on the response time estimates of the optimizer. Another option is to use a default
value. Other operators and especially external operators need not implement anything for the
monitor component. An overview of this architecture is given in Figure 4.12. Monitor operators
are not only used for observing the liveliness of a query execution, but also measure the current
status of the quality parameters of the execution. This is discussed in detail in Section 7.2.2.

As stated above a silent failure of a query should be made apparent by the monitor component.
But what are explicit errors and what do we do with them?

The Java programming language possesses a powerful exception handling mechanism, which
is consistently used to inform a program about all errors it could ever see. Naturally we also
use exceptions to indicate application specific error conditions, which are propagated from the
position where the error occurred up along the call stack until the exception is caught. In an
iterator based query processor this means, that error indications are propagated up the iterator
hierarchy of the query evaluation plan. This is quite helpful for us, since this enables an iterator to
deal with errors, which have occurred during the generation of its input stream(s). For example,
a union iterator could just ignore an input stream, if an error occurred during its generation and
this iterator could produce its output stream with the other, error free input streams.

Since query evaluation plans in ObjectGlobe are normally distributed, we also have the prob-
lem of sending exceptions across network links in order to let an exception be propagated up the
operator hierarchy of a plan. Exceptions in Java can only be used local to a thread, therefore
a Send-/Receive iterator pair, which constitutes a network connection between a parent- and a
child iterator in our system, transports the information about a thrown exception to the server of
the parent iterator and re-throws the exception there.

Chapter 5

Performance Experiments

In the following, we describe the results of benchmarks which assess the ability of the Object-
Globe implementation to perform the intended query processing tasks in a satisfying manner.
First, the combination of our optimizer and our external lookup service has to prove that the
access of meta-data during optimization does not incur too much overhead. Again, the optimizer
has to show that the additional techniques which are introduced to handle environments with
a large number of providers, are effective. One prominent feature of ObjectGlobe is operator
mobility and its potential is shown here in a benchmark. At last, the mechanisms for secur-
ing network connections and for loading external operators are examined for their performance
impacts.

5.1 Overheads of Plan Generation

To determine the overheads of plan generation, we measured thelookupandoptimizesteps of
processing a five-way join query1. The optimizer ran on a Sun Ultra 10 workstation; the lookup
service ran on a Sun Ultra 1 workstation. There were six relevant cycle providers and the opti-
mizer considered three different join variants (nested-loops, hash, and sort-merge). We studied
two different scenarios. In Scenario I, all joins could be executed at all cycle providers; in
Scenario II, joins with two of the five collections could only be executed at one specific cycle
provider. Table 5.1 summarizes the results. Even though the meta-database of the lookup service
is very small, most of the time is consumed in the lookup step; the reason is that twelve search
requests are required for this query and the overhead of each search request is rather high. The
optimization time is acceptable in this experiment (< 1 sec). The optimization time is much
lower for Scenario II than for Scenario I because the search space is much smaller for Scenario II
due to the authorization restrictions.

1The benchmarks in this section were performed by an older optimizer implemented in C++. The optimizer
benchmarks in the following section were performed by our new optimizer which is implemented in Java.

49

CHAPTER 5. PERFORMANCE EXPERIMENTS 50

Total Lookup Time Avg. Time per Search Optimization Time

Scenario I 5.64 secs 0.47 secs 0.83 secs
Scenario II 5.64 secs 0.47 secs 0.07 secs

Table 5.1: Overheads of Plan Generation

5.2 Using a Cluster Tree for Optimization

The modified optimization algorithms which were introduced in Section 4.1 should produce
compact and parallel-working QEPs in large environments with a great number of cycle and data
providers. In order to test these algorithms we implemented a meta-data generator which can
produce the meta-data for such environments. This generator program takes several parameters,
for example,

• the number of cycle providers,

• the number of data providers,

• the minimum bandwidth/maximum latency between two hosts in the environment, and

• the number of pools where providers are grouped.

We use the termpool for collections of providers which have network connections to one an-
other with a better bandwidth/latency than the average network connection. These pools are
counterparts to local area networks, research networks, metropolitan area networks and com-
pany intra-nets which appear at the leafs in the somewhat hierarchically structured Internet and
also show better performance properties than the rest of the Internet. The sizes of pools and
the quality of their internal network connections are varied randomly within some limits which
can be predefined. A user-defined percentage of all providers are placed randomly in such pools
and the remaining providers are randomly placed outside these pools. Analogously, the relative
quality of network connections between pools are also determined randomly.

Data collections for themes are also randomly generated and placed on data providers. The
user can steer this process by providing values for

• the number of themes,

• the number of tuples for a specific theme,

• the size of a tuple for a theme (in bytes), and

• the number of collections for a specific theme.

In the following, we present results from benchmarks which used an environment with 1000
data providers, 100 cycle providers and 50 pools. 200 providers were placed outside a pool, the
themes varied in size from 0.7 to 17 MBytes and in the number of tuples from 2000 to 400000.

CHAPTER 5. PERFORMANCE EXPERIMENTS 51

2010 30 40 50 60 70 80
0

50

100

150

200

completeness in percent

4 relations

6 relations

8 relations

co
st

s
in

 s
ec

on
ds

Figure 5.1: The Impact of the Completeness Constraint on Plan Quality.

The queries which are passed to the optimizer are also randomly generated. The constraints
for the generated queries are that there are 100 tuples in the result of the query, 50% of the join
operations are followed by a projection and for every third theme an aggregation operation is used
which decreases the size to about 20% of the original data. The benchmarks were conducted on a
Sun Enterprise 450 with 4 GBytes of main memory and four 400 MHz processors. The optimizer
internally does not use more than one thread which means that just one of the processors is used.
Every point in the following graphs represents the mean value of 20 experiments, each conducted
in a newly created scenario.

First, it is interesting to see, if our optimizer can take advantage of a lower demand for the
completeness of themes in a query. The cluster tree is utilized during optimization to find a more
local and hence faster QEP for a query. This task should be easier with more relaxed complete-
ness constraints since the optimizer then can choose between a greater number of data collection
subsets. In Figure 5.1 exactly this effect can be seen for the dynamic programming optimizer
with cluster tree support. The response time for queries with a more relaxed completeness con-
straint is much lower. Note that this effect cannot only be caused by the reduced amount of
data which has to be processed, since we use a response time cost model [GHK92] and in our
generated environments, just as in the Internet today, the network transfer times are the domi-
nant cost factors. Therefore, the distances of the used cycle and data providers to one another
are the critical parameters which has to be optimized. The corresponding experiments with the
greedy optimizer and the dynamic programming and greedy variants with recursive partitioning
of intermediate results produced similar results and are not shown here.

In the Figures 5.2 and 5.3 the dynamic programming (denoted as DP in the figures) and
greedy (GR) optimizers and the corresponding variants with recursive partitioning of interme-
diate results (RP-DP and RP-GR) are compared regarding the quality of the plans they produce

CHAPTER 5. PERFORMANCE EXPERIMENTS 52

DP

GR

RP−DP

RP−GR

2

number of relations

4 6 8 10

20000

8000

4000

12000

16000

0

co
st

s
in

 m
ill

is
ec

on
ds

Figure 5.2: Quality of different Optimizer Configurations.

and the time the optimizers are consuming. Naturally, greedy optimizers consume less time than
the corresponding dynamic programming counterparts, but they also produce plans with a lower
quality. This is a well known result and it is more interesting to study the behavior of the re-
cursive partitioning versions. The dynamic programming algorithm with recursive partitioning
was only tested for up to 8 themes in this benchmark because for more themes its running time
gets rather high. We see that additionally to the selection of providers with the cluster tree, when
we also use the structure of this tree to guide the construction of a QEP, the resulting dynamic
programming version produces better results than the version without recursive partitioning. The
same holds for the greedy algorithms. On the other hand, the recursive partitioning technique
results in increased optimization times since more cycle providers have to be selected for the
additional join operations on the partitions. Furthermore, it is interesting here that the recursive
partitioning greedy algorithm can compete with the standard dynamic programming algorithm
with respect to the running time of the optimizer and especially with respect to the quality of the
plans. But we must note that the greedy algorithms more likely produce outliers in the form of
very bad plans than the dynamic programming algorithms which show a more stable behavior in
this respect. At the end, we can say that none of the examined optimization algorithm is a clear
winner. Similar to standard database systems, the choice of the optimization algorithm depends
on the situation. For example, when a large number of themes is involved in an ad-hoc query
the standard greedy algorithm should be used in order to obtain acceptable optimization times.
If a query will run several times the recursive partitioning dynamic programming algorithm can
justify its own running time by producing a high quality QEP. For the cases in between these two
extremes the other two optimization algorithms can represent a good compromise between plan
quality and optimization effort.

CHAPTER 5. PERFORMANCE EXPERIMENTS 53

DP

GR

RP−DP

RP−GR

ru
nn

in
g

tim
es

 in
 m

ill
is

ec
on

ds

number of relations

0

10000

8000

6000

4000

2000

0 4 6 8 10 12 142

Figure 5.3: Running Times of different Optimizer Configurations.

5.3 Query Execution Times

5.3.1 Benefits of Operator Mobility

The following experiment shows the benefits of ObjectGlobe’s ability to execute query operators
near data sources. We measured the execution time of a query which determines the hotel in
Berlin with the greatest number of hotel rooms. The information about hotels is gathered from
two Internet sites namely HotelBook (www.hotelbook.com) and HotelGuide (www.hotel-
guide.com). To perform this task wrappers were used which first query a list of all hotels in a
given city and afterwards query detailed information for every single hotel in this list; according
to the query capabilities of the data sources. We measured two different plans for this query,
which structurally correspond to the plans shown in Figure 3.4 and Figure 3.5, except that we
use a group operator instead of a nearest neighbor operator. The traditional one is to execute
the wrappers at the client in Passau, the other one which is made available by ObjectGlobe is to
execute the wrappers and intermediate group operators at a cycle provider near the data sources.
Because it is impossible to execute the wrapper at the hosts serving HotelBook or HotelGuide,
we used a host in Maryland for this experiment.

We executed these two plans every two hours in a 24 hour range and as the results in Figure
5.4 show that there is a clear benefit if the wrappers are executed near the data sources, i.e., at a
cycle provider with a good network connection to the data sources. Therefore the latency time is
reduced when the wrapper iteratively accesses the HotelBook or the HotelGuide database. This
experiment does not demonstrate how parallelism can be used to speed up query execution, be-
cause the network costs dominated the CPU costs by far, but performance gains from parallelism
can also be achieved with ObjectGlobe.

CHAPTER 5. PERFORMANCE EXPERIMENTS 54

0

100

200

300

400

500

600

0 5 10 15 20

tim
e

(s
ec

)

daytime

central
distributed

Figure 5.4: Centralized versus Distributed Execution of Plans

5.3.2 Costs of Secure Communication

The use of SSL sockets [FKK96] and therewith encryption and Message Authentication Codes
(MACs) is an effective way to integrate secure communication into a distributed system. But
cryptographic algorithms have additional costs when transmitting data across a network. To
demonstrate this effect we executed a simple scan-display plan and varied sites of the scan op-
erator and the usage of SSL. In all cases the scan operator had to process 10 MB of data. As
Table 5.2 illustrates, costs for encryption and MAC calculation can be neglected in a WAN envi-
ronment. The first column contains information about where the scan and the display operators
were executed2 and across what kind of network the data was sent. The remaining three columns
list the times of query executions where the data was not encrypted and no MAC was calculated
(plain), where only a MAC was calculated (SHA) and where both, encryption and MAC calcu-
lation, were done (IDEA + SHA). The first row shows that secure communication increases the
query execution time in LAN environments (but the overall execution time is even with fully
secured communication much faster than query executions in a WAN environment with unse-
cure communication). The second row shows that in a WAN environment there is no significant
time difference between secure and insecure query execution because costs for cryptographic
algorithms are CPU costs and are superimposed by communication costs.

5.3.3 Costs of Dynamic Extensibility

One of the prominent features of ObjectGlobe is its dynamic extensibility by external opera-
tors. There are of course additional costs caused by loading classes from the network and the
separation of name spaces of different queries compared to loading locally available built-in op-

2X → Y means that the scan operator was executed at host X and the display operator was executed on host Y.

CHAPTER 5. PERFORMANCE EXPERIMENTS 55

plain SHA IDEA + SHA

scan[Passau→ Passau], 100 MBit LAN 3.54 secs 5.31 secs 11.86 secs
scan[Mannheim→ Passau], WAN 81.93 secs 81.86 secs 82.04 secs

Table 5.2: Costs of Secure Communication in Different Network Environments

erators. This separation of name spaces is achieved by using an individual OGClassLoader for
every query and it forbids the caching of Class objects for external operators. Instead, only the
bytecode (rather than the instantiated class object) of an external operator can be cached and this
bytecode is cached in a separate ClassFileCache. To measure the overheads of loading an opera-
tor from a remote site and from the ClassFileCache, we loaded built-in and external operators of
different size stored at different locations using our OGClassLoader: built-in operators from disk
and external operators from a local function provider in Passau and a remote function provider in
Maryland. For external operators, we measure three scenarios: (a) the bytecode is not cached at
all; (b) the bytecode is cached in the ClassFileCache; (c) the operator is cached as a class object
internally in the OGClassLoader. Scenario (c) is used as a baseline and simulates the behavior
of a system without security measures. Figure 5.5 shows the following effects:

• The costs for the initial loading of a class from disk or network are very high (the +-lines
in Figure 5.5) but can be heavily reduced by caching the class object of built-in operators
or caching the bytecode of external operators (the triangle lines).

• Comparing the×-lines (Scenario (c)) and triangle lines (Scenario (b)), we see that the
overheads to ensure security are relatively high; compared to the overall costs of query
processing on the Internet, however, the overheads for security can usually be neglected
(less than a second in all cases).

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e

[m
s]

size of class file [1000 byte]

class not cached
class cached by internal classloader
class cached by the OGClassLoader

a) Built-In Operator

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e

[m
s]

size of class file [1000 byte]

class not cached
class cached by ClassFileCache
class cached by OGClassLoader

b) Ext. Op./Local Prov.

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e

[m
s]

size of class file [1000 byte]

class not cached
class cached by ClassFileCache
class cached by OGClassLoader

c) Ext. Op./Remote Prov.

Figure 5.5: Costs of Loading an Operator by the ObjectGlobe Class Loader

Chapter 6

QoS in Data Integration Systems

In this chapter, we motivate, why the support for QoS mechanisms in a data integration system
like ObjectGlobe is necessary in order to increase its user acceptance. After that, we list related
work in the area of QoS management. In the last section, we describe the QoS parameters which
can be used in our system to specify QoS constraints and explain the basic aims and strategies of
our QoS management system.

6.1 The Relevance of QoS for Data Integration Systems

Accessing and processing distributed data sources have become important factors for businesses
today. This is especially true for the emerging virtual enterprises with their data and processing
capabilities spread across the Internet. Unfortunately, however, query processing on the Internet
is not predictable and robust enough to meet the requirements of many business applications. For
instance, the response time of a query can be unexpectedly high; or the monetary cost might be
too high if the partners charge for the usage of their data or processing capabilities; or the result
of the query might be useless because it is based on outdated data or only on parts (rather than
all) the available data. Here, we show how our ObjectGlobe system can be extended in order
to support quality of service (QoS) guarantees. We propose ways to integrate QoS management
in the various phases of query processing: (1) Query optimization uses a multi-dimensional
assessment (cost, time and result quality) of query plans, (2) query plan instantiation comprises
an admission control for sub-plans and (3) during query plan execution the QoS of the query is
monitored and a fuzzy controller initiates repairing actions if needed. The goal of our work is
to provide an initial step towards QoS management in distributed query processing systems and
do significantly better than current distributed database systems which are based on a best-effort
policy.

Our ObjectGlobe system with its distinction of cycle, data and function providers, enables an
open and distributed query processing services market. This market can also be regarded as an
information economy. In order to become commercially relevant, however, it is necessary to give
guarantees on the services provided. Today, almost all open systems on the Internet are based on
the “best-effort-principle” and nobody is willing to construct mission-critical applications in such

56

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 57

an environment because such applications would simply not be reliable enough. Specifically,
users would like to constrain the cost of running applications, the running times of applications,
and the quality of the results obtained by running the applications using external data sources.
To demonstrate these needs we give the following example:

A realtor in the USA has an appointment with a customer, who wants to buy a villa in the
Mediterranean area. The customer has mentioned his requirements regarding the maximum
distance to the next airport and the amount of building area in advance. The realtor poses a
query against a distributed query processing system which covers some European realtors as
data providers. There exists also a data provider which has information about airports in that
area. Since the requirements of the customer seem to be very selective the realtor requests
that at least 70% of the registered data about estate offers should be considered in the query
and at least 20 result tuples should be produced. The appointment is in 20 minutes; therefore
the data should be available in no more than 10 minutes since the realtor wants to check the
offers before. Considering the budget for IT-services and the prospects of a successful deal,
the realtor sets the upper bound for the query execution cost to 10 Euros.

The SQL-query for this application computes a join between the real estate information and the
data about airports. The join predicate uses a user-defined, external function which computes
the length of the bee-line between two locations. The query uses another external function for
scaling the images of the estate offers into a handy size. We used the real estate DTD [Pet99] as
a template for our real estate relation; the meaning of the attributes should be obvious.

select e.Price, e.Location.City, scale(e.Image,0.3), a.Name
from Estate e, Airports a
where e.building-area > 200 and

geoDistance(e.Location,a.Location) < 10 and
e.Location.region = ’Mediterranean’;

The data of each European realtor represents a partition of a relation namedEstate. For
theAirports relation we assume that there is only one data provider; therefore it does not make
sense to specify a completeness constraint for this relation. This means, that implicitly 100%
completeness is requested for theAirports relation. The quality constraints given in the textual
description are:

• completeness of the used real estate information≥ 70%.

• cardinality of query result≥ 20.

• total cost≤ 10 Euros.

• total response time≤ 10 minutes.

A possible query evaluation plan for the given query is depicted in Figure 6.1. The leaves
of the operator tree represent autonomous data providers which contribute their information to
the query. The plan fragment consisting of theunion andscale operation may be executed

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 58

scale

Ezy Properties Top RealtyEuro Property Network

AIRbase One

Figure 6.1: Query Evaluation Plan for the Example Query

at a cycle provider which has a good network connection to the data providers beneath it. The
scale operator itself could be loaded from a function provider, specialized on functions for
image processing.

This example demonstrates the need to give guarantees at the “application level” and that this
involves coordinating the services of several providers. Obviously, it is not possible to fulfill all
requests in such an environment since servers might be down, interconnects might be congested,
or simply because the right data providers might not be found. However, the goal should be
to fulfill as many requests as possible and to abort and inform the user as early as possible if a
request cannot be fulfilled. This is the challenge we would like to address in the remainder of
this work. Specifically, we will pick up this challenge for query processing as required in this
example.

6.2 Related Work

The term “Quality of Service” is mainly used in the area of networked multimedia applications.
These applications need more restrictive constraints for the service quality they get offered by the
underlying devices in order to, for example, provide for smooth video playing. For multimedia
data streams, precautions have to be taken in the server and the client machines as well as in the
network infrastructure. Frameworks for managing QoS in a distributed multimedia application
are presented, for example, in [LN99] or [ACH98]. In respect to our work, it should be noted
that the nature of QoS parameters in multimedia applications and distributed query processing
differ substantially. For multimedia applications the QoS parameters mainly constrain the current
execution of the application (Do we provide smooth playing at the moment?), whereas for query
processing most QoS parameters refer to the end of the execution (Is the result set sufficiently
large?).

[Wei99] gives a good motivation for the need to integrate the handling of service quality
guarantees in information systems. Of the many aspects discussed in [Wei99] we concentrate on
the quality of service in distributed query processing over autonomous data- and cycle providers
on the Internet. Work on service quality in the area of query processing is rare and the existing
work particularly concentrates on constraints for the response time. This can be seen in papers
about query scheduling like [BLR98], [GI97] or [BMCL94] and also in the area of real-time
databases [PCL95]. In many cases constraints cannot be defined for a single query but a query has

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 59

to be assigned to a query class with predefined constraints on response time. Query processing
in an open data integration system requires to also consider result quality and execution costs
and the definition of QoS constraints should be possible for single queries. In addition, a novel
aspect of our work is that the execution of a query utilizes the services of several autonomous
providers. The difficulty here is to find a plan for the query which uses these services in a way
so that the user-defined QoS constraints are fulfilled.

One aspect of QoS in a data integration system is certainly data quality. This topic has
already been tackled in the literature, for example, in [FKL97] and [NLF99]. The reliability
of a data provider, the accuracy of the corresponding data and its relevancy are example data
quality aspects. Data quality constraints for a query can be considered in a pre-selection phase
for data providers. In our work we also consider data quality constraints but we concentrate
on the interference of these constraints with those for costs and performance and how these
interferences can be treated in query optimization, distribution and execution. This means that
we deal with data quality constraints in another context than the existing work which concentrates
on the selection of data providers.

Our work is related to the Mariposa project [SAL+96]. In Mariposa a user can constrain
the ratio between the running time of a query and its execution cost by the means of a bidding
curve. Mariposa tries to obey these constraints during its plan fragmentation step which takes
place after optimization. In our work, we consider the user-defined quality constraints during all
phases of query processing. We think that this is necessary for achieving high rates of quality
conforming query executions in a distributed and open environment.

During query execution we use adaptations of the query in order to react to violations in
its QoS constraints. There is a great deal of work on adaptations of queries during execution
time. [GW89] and [INSS92] propose the generation of query execution plans with embedded
alternative sub-plans. The decision for a specific plan configuration is made at execution time,
depending on the current load situation. In [KD98] and [IFF+99] query execution steps are mixed
with re-optimization steps. Query scrambling [UFA98] tries to hide delays in data delivery of
remote data sources by re-scheduling executable sub-plans of the query. The authors of [AZ96]
suggest to start competing sub-plans in parallel and after a winner has emerged, the “losers” are
stopped. A more recent work on runtime adaptation can be found in [AH00]. These authors
propose to decide for each tuple and for every of its processing steps by which operator in a
pipeline it should be processed next. This decision is based on the back pressure observed at the
queues which are associated with every operator.

Our adaptations supplement those above because we mainly focus on resource allocation. But
this does not mean, that we only adjust local settings like CPU priority or memory allocation. In
our environment, cycle, data, and function providers are also resources. For example, if a cycle
provider becomes a bottleneck and, as a consequence a query seems to miss its guarantees on
response time, we could move the corresponding plan fragment to another, more suitable cycle
provider. The logical structure of the plan is not changed in this way.

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 60

6.3 The Quality of Service Model

Analogously to cost models in traditional database systems, we need a model for our quality
constraints in order to describe and assess the quality of queries, query evaluation plans and
query executions. The basics of this QoS model and its role for query processing are presented
in this section.

6.3.1 The Quality of Service Dimensions

As we have seen in Section 6.1, in an information economy a user should be able to constrain
the relationship between the qualities of the result and the execution itself and the costs for the
execution. Therefore, we need a set of QoS parameters which can be used for declaratively spec-
ifying QoS constraints for a query execution. In the query processing context QoS parameters
can belong to three different dimensions: the result quality of the query, the duration/timeliness
of the query execution and its monetary cost.

Query Result Quality We assume that a relation1Sis divided into several partitionsS1, . . . , Sn

which may be managed by independent data providers. In our example, every realtor participat-
ing in the data integration system, represents a data provider which contributes a partition of the
relationEstate. Usually only a subset of these partitions is used in a specific query. For each
relationS in a query, we can constrain the following QoS parameters:

• the oldest time stamp of the last update for a partitionp of S or its maximum staleness
factor as introduced in Mariposa. We call this parameterQRp

age.

• the share of the used partitions in respect to the whole data of the relationS (QRS
comp).

This parameter is called completeness later on.

The result cardinality can be characterized by

• a lower bound for the result cardinality (QRmin#). This parameter can be used to express
that the user expects a minimum number of result tuples. If a query uses just a share of
the available data for a relation, the system should incorporate as much data into query
processing as is necessary to accomplish at least this result cardinality. If all the data for
all relations in a query is used, this parameter need not be regarded anymore.

• an upper bound for the result cardinality (QRmax#). Such a parameter corresponds to a
stop afterclause, whose support in query optimization and execution has already been
studied in the literature [CK98]. Astop afterclause will normally be used only in con-
junction with anorder byon the result.

1The QoS techniques developed here are not restricted to data integration systems. Therefore, we use standard
database terminology and use the term relation instead of theme and partition instead of data collection in the
following.

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 61

Query Execution Time The execution of the query is characterized by the time spent in dif-
ferent phases of the execution of a plan:

• the time spent in theopen -phase of a plan (QTfirst). In an iterator based [Gra93] query
engine like ours, this is roughly the time from the start of the query execution until the first
tuple can be delivered.

• the time for producing all the result tuples of the plan—calledQTlast—starting at the point,
when the open-phase has finished and ending, when the last tuple has been produced by
the query. This phase is called thenext -phase.

A smallQTfirst value for the resulting query execution is important in a distributed environment
because the user can already look at the first tuples whereas the remainder of the (maybe long
lasting) query is still executed in the background.

Query Evaluation Cost Since providers can charge for their services, a user should be able
to specify an upper bound for the respective consumption by a query. Therefore, the quality
parameters regarding the cost of a query take into account:

• the cost for services of function providers (QCfunction), i.e., the cost for leasing a function
for the duration of the query.

• the cost for services of data providers (QCdata), i.e., the cost for reading the data at the
respective data providers.

• the cost for services of cycle providers (QCcycle), i.e., the cost for executing parts of the
query at foreign cycle providers.

In many cases not all quality parameters will be interesting for a user or perhaps just the sum
of some of them, like the total cost or the total response time. The quality constraints for a specific
quality parameter could also be expressed in the form of a continuous function over the space
given by some or all other quality parameters. For instance, the user is willing to pay more money
for the query execution, if more data was incorporated into the query processing. In our example,
the realtor posed constraints on the total cost, total response time and the completeness of the
Estaterelation. Similar to real-time systems (hard real-time, soft real-time) some constraints on
quality parameters could be strict and others could be handled in a relaxed way, by not aborting
the query, if the constraints are not fulfilled any longer during execution. For example, users
could limit the total response time for their queries, but they may still be interested in the result
even if it takes longer. For batch queries users might only be interested in the total cost and the
quality of the result because they do not wait for the completion of the query.

6.3.2 The Integration of QoS Management in Query Processing

It is currently not possible to construct a distributed and open query processing system on the
Internet which can enforce the quality constraints of an accepted query under all circumstances.

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 62

The corresponding obstacles are either caused by the environment or by system immanent in-
accuracies. Environmental factors, like network failures and unforeseeable load fluctuations on
network links and cycle providers can obviously inhibit a QoS conform execution of a query.
Likewise, difficulties in producing exact formulas for quality estimations and the limited accu-
racy of statistics for attribute value distributions of partitions or load distributions of resources
can lead to overestimations of quality parameters. In this section, we first describe and motivate
the overall goal of the QoS management component in our query processing systems. After that,
we give an overview of the responsibilities and tasks of our QoS management component.

The Goal of QoS Management

Naturally, the ability to guarantee QoS constraints depends on the service quality guarantees
one can get from the underlying shared resources. Among the common scheduling disciplines
best effort, priority-based scheduling, andreservation, only the latter allows to construct a QoS
management which can absolutely guarantee the QoS constraints for an accepted query. But
reservation normally entails over-booking and inefficient resource utilization and is therefore
rarely used for scheduling computer or network devices. Due to this fact, there remain two
obvious goals for QoS management in our context:

• The percentage of queries, whose quality constraints could be fulfilled, should be maxi-
mized. This percentage is calculated based on the overall number of queries which are
issued and not only on the number of those for which a constraint compliant query plan
could be determined.

• The execution of queries which cannot fulfill their QoS constraints, should be stopped as
early as possible. In this way the query does not waste the time an money of the user
anymore. Of course, if the missed quality constraint is a soft one, the query should not be
stopped but executed in a best-effort manner.

A query can only meet its quality constraints, if it gets a sufficiently good service from all in-
volved providers. The difficulty in achieving a high percentage of QoS compliant queries is to
find at optimization time a query plan which uses providers which can provide for a sufficiently
good service at execution time. The optimizer uses estimates about the providers to construct
such a query plan and the question is now, whether these estimates also hold during execution.
There are two possible solutions for obtaining these estimates:

• The optimizer could initiate a resource availability test for each of the resources during
optimization. Since we are expecting such a data integration system to consist of several
thousands of providers and a lot of these would have to be regarded during plan generation,
this approach is obviously not scalable enough.

• The remaining approach is then, to gather statistics about resource availability which is
used during plan generation to estimate the current values for the resources in question.

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 63

static plan adaptation

QEP with annotations:
- QoS constraints for subplans
- resource requirements
- resource alternatives

estimation resource
fluctuations

dynamic plan adaptation

errors

abort

Resource statistics

abort

Plan Execution

admission control:

Plan InstantiationPlan Generation

QoS monitoring:

QoS Constraints

Query

Meta-Data

Figure 6.2: The Interaction of Query Processing and QoS Management

In the latter approach imprecise estimations for the resource availability together with all the
other problems mentioned at the beginning of Section 6.3.2 could lead to failed quality con-
straints at run-time. In order to avoid a restrictive admission control which could reduce the
number of failed executions, we exploit that different queries often have different demands at
specific providers (e.g., batch queries in contrast to interactive queries). For every involved
provider we explicitly state these demands in the form of resource requirements and quality con-
straints in the query plan. During query instantiation and execution we can use this information
in order to check, if the demands of a query can be satisfied, and we can react appropriately. For
example, if a query seems to miss its quality constraints, it could try to get a greater share on the
resources of the provider at the expense of queries which can work sufficiently with a smaller
share. If such an adaptation is not possible and the query will not fulfill its QoS constraints our
second goal rules to stop the query in order to save the time and money of the user.

The Phases of Query Processing

An overview of processing a query in the context of our QoS management is depicted in Fig-
ure 6.2. The starting point for query processing in our system is given by the description of
the query itself, the QoS constraints for it and statistics about the resources which can be used
for processing the query. In our scenario cycle providers, the partitions from data providers and
the functions of function providers belong to these resources together with all the network links
connecting them.

Figure 6.2 also shows the activities of our QoS management during the query processing
phases of plan generation, instantiation and execution.

Plan Generation: The optimizer generates a query evaluation plan (QEP) which contains infor-
mation about the used data, cycle and function providers and about the way their services
are combined to compute a specific query. The optimizer itself is in essential an intelligent
search routine which is in many cases and also in ours dynamic programming based. It as-
sesses a huge number of different plans with different providers by a quality model which
provides formulas for estimating the quality parameters based on the structure of the plan
and statistics about the providers. Hereby, every considered plan is constructed piecewise
in a bottom-up manner and for every sub-plan which appears in such a process its quality
parameters are computed with the quality model. Only a plan which fulfills all the user

CHAPTER 6. QOS IN DATA INTEGRATION SYSTEMS 64

constraints is considered for the later phases and its plan description will be annotated with
the quality estimations and resource requirements for every sub-plan. Additionally, if the
optimizer can find approximately equivalent alternatives for resources used in the query
evaluation plan, these are also annotated in the plan.

Plan Instantiation: During plan instantiation, sub-plans are distributed to cycle providers, func-
tions are loaded from function providers and connections to data providers are established.
When a sub-plan of a query uses the service of a specific provider, it is checked, if the re-
source requirements resulting from the quality constraints for that sub-plan can be satisfied
by this provider. For a cycle provider this would mean that if the optimizer underestimated
the load on the respective cycle provider the newly arrived sub-plan will probably not be
able to meet its constraints. Furthermore, all the other sub-plans on that cycle provider
would be in danger of missing their quality constraints, if we execute the new sub-plan
there. As a result of this admission control, the execution of the new sub-plan would be
rejected or, if possible, the sub-plan will be adapted.

Plan Execution: During query execution, fluctuations regarding resource availability for, e.g.,
CPU time or network bandwidth and again estimation errors by the optimizer might violate
the constraints on the quality parameters. In order to detect these violations, a monitoring
component traces the current status of these parameters for every relevant sub-plan of the
query. If this component detects a potential violation of the quality constraints for a sub-
plan, it first tries to adapt the sub-plan so that it will meet its constraints again, or if this is
not possible, it will abort the execution of this sub-plan. The plan adaptations during the
instantiation phase can be performed rather easily because the plan is not instantiated yet.
Here we need adaptations which can be applied also after a sub-plan has started to execute.

By estimating the necessary quality constraints for sub-plans of a QoS compliant query plan the
QoS management can monitor the development of the quality parameters on a fine granularity.
This helps in detecting potential quality misses quite early. For example, if there are pipeline-
breaking operators in the plan, most of the work for the query could have already been done,
when the first tuples arrive at the top of the plan. In our case, the plan beneath the pipeline breaker
has its own quality constraints which must be monitored and enforced by the QoS management.

Chapter 7

Enforcement of QoS Constraints

The enforcement of QoS constraints needs to be considered during query optimization, distri-
bution and execution. Each of these steps with respect to the QoS enforcement builds upon
the achievements of the former one or relys to some extent on the abilities of the next one. The
corresponding techniques for QoS enforcement in each of these steps are shown in the following.

7.1 Quality of Service Enhanced Plan Generation

In this section we discuss the necessary modifications of a classic, dynamic programming based
query optimizer for supporting QoS constraints during plan generation. We concentrate on the
description of those parts of the optimization process which play an important role for QoS
management and thus need modifications compared to their standard form.

• In many cases, it will not be feasible to consider all possible data providers for a given data
set because the resulting amount of data processed in a widely distributed environment
would result in unacceptable running times. Thus, an additional task for QoS management
is to select the most relevant data providers and find appropriate cycle providers which are
able to efficiently process the data from the selected data providers. This aspect of query
optimization in ObjectGlobe has already been presented in Section 4.1 and we concentrate
here on the additional information which has to be produced in order to support admission
control and runtime adaptations.

• Query evaluation plans are constructed in a modular way using basic operators such as
join, union, or user-defined operators. Analogously, the cost (and other properties) of a
plans are computed in a modular way using cost functions for the individual operators.
For QoS management, an extended framework is needed in order to construct plans and
estimate the properties of plans in such a modular way.

• In order to estimate the running time of a plan, it is necessary to predict the load of re-
sources (machines and network interconnects). Like traditional optimizers, we use statis-
tics to estimate such loads. For QoS management, however, these statistics need to be

65

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 66

evaluated in a different way because the probabilities for specific load situations need to
be explicitly computed.

• The query optimizer enumerates alternative plans and prunes inferior plans based on their
properties (e.g., estimated cost). A QoS-enhanced optimizer requires a special pruning
metric in order to take all QoS parameters of a query into account.

In the following we will examine the problems which are listed above. Finally, some post-
optimization actions are explained which are needed to adjust the optimizer estimations so that
they are usable for admission control and monitoring.

7.1.1 Selecting Providers

Relevant data partitions from data providers and functions from function providers can be searched
by a lookup service query. The corresponding parameters for the query like the requested type
or freshness of the data and the class and signature of the function can be directly retrieved from
the query itself or its quality constraints. As a result we get sets of matching functions together
with the cost formulas registered by the respective developers and sets of matching partitions
together with information about cardinality, relevance, attribute value distributions (histograms)
and average tuple size. This level of detail in the meta-data for the relations can be reached even
in a heterogeneous environment by histograms constructed by query feedback [AC99], frame-
works which estimate data source relevance and overlap [LRO96, FKL97] and mediator costing
frameworks [ROH99]. Furthermore, we also need statistics about the load characteristics of
cycle providers and network links. Again, work on retrieving these statistics in a distributed
environment has already been done [GRZZ00, WSP97].

As described in Section 4.1, we use a cluster tree for selecting cycle and data providers for
a query. This cluster tree is based on the interconnection graph of data and cycle providers with
the bandwidth of a network connection as the weight of the corresponding edge. We use this
structure to search for the hot spot clusters of a query. In the context of QoS we also must
consider the constraints on staleness and cardinality in addition to the completeness constraints
when we search for these clusters. Figure 7.1 shows such a cluster tree.

The information about useful clusters is also utilized, when we group the sets of partitions,
cycle providers and functions in classes which we call similarity classes. The similarity classes of
resources will be annotated in the corresponding plan. These classes define a kind of environment
for the plan which can be utilized during plan distribution and execution to break up the resource
binding of the optimizer by replacing the initial resource with a better suited one out of its
respective environment. An informal description of these similarity classes follows:

• The similarity classSimR,dp
DP of a relationR and a data providerdp is the set of replicas of

p or other partitions, currently not used in the query evaluation plan whose data providers
appear in the same cluster asdp.

• The similarity classSimcp
CP of a cycle providercp, is the set of cycle providers which,

analogously, appear in the same cluster ascp.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 67

DP

CP

CP

DP

DP
7

2

3

6

5

DP
CP

DP

DPDP3

4

1

1

2

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Cluster Bandwith > 100 kByte/s

DPDP
CP

DP DPDP

DPCP
DP

CP

62

3 5

7

3

4

1

1

2

Cluster Bandwith > 500 kByte/s

Figure 7.1: A simple Cluster Tree with Levels defined by Minimum Bandwidth Interconnections.

• The similarity classSimf
FP of a functionf, is the set of all functions in the same class as

found in the lookup service.

7.1.2 Estimating QoS Parameters

The estimations of cost and time consumption at a cycle provider have in common that they are
based on the amount of workW which is induced by a specific plan. This dependency is obvious
for the time consumption. However, it is artificially introduced for the cost consumption. Hereby
we assume that the cost which is charged by cycle providers for the execution of plans depends
on the work these plans induce.

The foundation for estimating the response time of query evaluation plans was made in the
work done in [GHK92] and [GI97]. In the following, we refine this work by also considering
parts of query evaluation plans which are executed in parallel with the rest of the plan but within
these parts operators are executed in an interleaved way. Furthermore, we concentrate on the
definition of a clearly structured quality model which should be obvious to implement.

Estimating the performed Work of an Operator

The amount of work done by an operator depends on the respective processing informationPI
(e.g., definitions for selection or join predicates or other parameters which affect the process-
ing by the respective operator), the available main memoryM, and the propertiesDProps(e.g.,
cardinalities, attribute value distributions, mean attribute sizes) of the operator’s input streams.
The implementor of an operator has to provide awork function WFwhich can compute the work
performed by the operator based on that information. This function must adhere to the following
signature:

WF : PI × M × DProps→ W (7.1)

Additionally, the implementor of an operator must also provide a functionDPropsFwhich com-
putes the properties of the operator’s output stream in a specific context:

DPropsF: PI × DProps→ DProps (7.2)

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 68

For each operator the functionWF is itself constructed out of two functions:

WF(pi, M, dprops) = WOF(pi, M, dprops) + WNF(pi, M, dprops) (7.3)

The functionWOFestimates the work performed in the open phase of the operator andWNF the
work in the next phase, respectively. Furthermore, the return values for all three functionsWF,
WOF, andWNFare equally dimensioned vectors (we call themwork vectors), which means that
the+-operation in Equation 7.3 corresponds to the usual summation on vectors. Each dimension
in such a vector is associated with a resource, like CPU or disk. The unit of work for each
dimension is determined by the type of the corresponding resource. For a CPU, work is measured
by the number of instructions executed on it. If a more detailed model of the CPU should be
used, we could integrate several more dimensions in the work vector, one dimension for every
relevant kind of CPU instruction. The work functions would need to measure the quantities
for the different instructions separately for each operator. For disk drives, we introduce two
dimensions in the work vector, one for the number of disk accesses and the other for the overall
number of bytes transfered (read or written).

Network connections between plan fragments are modeled as virtual, unary operators which
use another work vector model than other operators. This work vector does not need information
about disk accesses but has an entry for the number of needed network round trips for messages
and the number of bytes which are transferred. The CPU related entries in the work vector of
a network operator are replicated in order to consider the work done at the sender and receiver
site separately. The CPU work estimated for a network operator also reflects the encryption or
compression techniques which can be applied to the transfered data. Just as for normal opera-
tors, a network operator has different work functions for the open and the next phase of query
execution.

Estimating the Time and Cost Consumption of Operators

The time and cost consumption of an operatorop can be computed easily on the basis of the
corresponding work vector. For each entry of such a vector the lookup service of our system
provides meta-data about the cost and time consumption per unit work for that resource (that is
CpU andTpU respectively) and the load (L) on it for the relevant range of time. For example,
for a specific cycle provider we can obtain the information that the execution of an instruction
lasts5µs and costs10−8 $ and the load on the CPU is40%. Now, we can compute the time and
cost consumption ofop for a specific resourceres. In the formulas, we use the resource name for
indexing the vectors for work, cost, and time consumption:

Cost Consumption (CC): CCres = (WF(pi, mem, dprops))res∗ CpUres

Time Consumption (TC): TCres= (WF(pi, mem, dprops))res∗ TpUres∗ 1/L

The overall time and cost consumption for an operator can then be computed as the summation
of the respective values over all the resources. Due to the structure ofWF , we can also compute
the time consumption in the open (TOC) and the next (TNC) phases separately. In Section 7.1.3
we will provide more details on the right choice of the load parametersL of resources, which is
correlated with the probability for load fluctuations on those resources.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 69

Estimating Quality Parameters of Plans

For each sub-plan considered during optimization a corresponding plan descriptor keeps the in-
formation about its estimated quality parameters, information about the propertiesDpropsof the
intermediate result produced by the sub-plan, and the associated resource requirements. The
plan descriptor contains not only entries for the time dimension of our quality model, but also for
the cost- and result quality dimensions. An example plan descriptor is shown below. For sim-
plicity, we omitted the resource requirements and theDpropsinformation and the result quality
parameters are restricted to one involved relationR.

PD := [QTfirst , QTlast︸ ︷︷ ︸
time sub-

dimensions

, QRR
comp , QRmin#︸ ︷︷ ︸

result quality
sub-dimensions

, QCcycle , QCdata , QCfunction︸ ︷︷ ︸
cost sub-dimensions

]

The computation of a plan descriptor for a sub-plan needs the information delivered by the
DPropsFandWF function of the operator which appears at the top of the sub-plan. This op-
erator is calledroot in the following. Additionally, we need the plan descriptors{ipd1, . . . , ipdn}
for the n sub-plans which produce the input data streams ofroot. Together with this information
the quality parameters, except for the time quality parameters and the resource requirements, are
easy to compute:

• The properties of the intermediate result of the sub-plan are given by theDPropsFfunction
of the root operator with parameters taken fromipd1, . . . , ipdn. If root is a leaf node the
information can be found in the meta-data.

• The computation of theQRcomp parameter for a specific relation depends on the kind of
root:

– root = union: Add the respective parameters fromipd1, . . . , ipdn.

– root 6= union: Take the minimum over the respective parameters fromipd1, . . . , ipdn.

Again, if root is a leaf node, the corresponding information can be retrieved from the
meta-data.

• The cardinality estimations for theQRmin# are done with histogram support in the usual
way [PIHS96] and the information for leave nodes can be found in the meta-data, again.

• The cost quality parameters for data, cycle, and function providers can be computed simply
by summing up the corresponding values fromipd1, . . . , ipdn androot.

The Scheduling Model of an Operator For the computation of the time quality parameters it
is important to know how operators schedule the actions of their input sub-plans. For example,
Figure 7.2 shows the chronology of two query evaluation plans with a join operator being fed
with input data by two scan operators. In the upper plan a double-pipelined hash join (DPHJOIN)

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 70

DPHJOIN

SCAN SCAN

GHJOIN

SCAN SCAN

��
��
��
�� : Open Phase

�������� : Next Phase

���� : Slack Time

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������������������
������������������
������������������
������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

������
������
������
������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�������������������
�������������������
�������������������
�������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������
���������
���������
���������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������
���������������
���������������
���������������

��
��
��
��

Time

SCAN:

SCAN:

GHJOIN:

SCAN:

SCAN:

DPHJOIN:

Figure 7.2: Chronology of Query Executions with different Scheduling Models

is used and in the lower plan a GRACE hash join (GHJOIN). As we can see in the picture, the
GRACE hash join consumes its input streams in parallel during the open phase whereas the
double-pipelined hash join does so in its next phase. Obviously, theQTfirst parameter is mostly
affected by the different scheduling behavior in this example.

We use a model, which we callscheduling modelof an operator, to describe for each operator
in a plan how it schedules its own actions together with the actions of its input plans. This model
does not only depend on the implementation of an operator but also on the kind of communication
between the operators. Communication between two operators can be realized by a synchronous
interface which results in a pipelined-sequential execution of the corresponding operators, or an
asynchronous interface which is used for communication across thread and machine boundaries
and results in a pipelined-parallel execution of the corresponding operators. The information
about the degree of parallelism in the execution can be expressed in the model by two operators:

• The binary sequence operator ‘;’ indicates that the execution of the left and right operands
is equivalent to a sequential execution. By this definition it is also allowed that the left and
right operand intermingle their execution as this occurs in a pipelined-sequential execution
of the next phases of two operators.

• The binary parallel operator ‘‖’ indicates that the left and right operands are executed in a
manner which is in its time consumption equivalent to a parallel execution.

The operands of these two operations can be

• op.openandop.nextwhich stand for the actions which are performed by operatorop in its
open and next phase, respectively.

• ipdk.openandipdk.nextwhich stand for the actions performed by the sub-plan associated
with the input plan descriptoripdk in its open and next phase respectively.

We define that the sequence operator has a higher precedence than the parallel operator and that
precedence can be modified by parentheses in the usual way. Both operators are associative.

We provide two different scheduling terms for an operator in order to reflect the scheduling
behavior in its open phase and in its next phase. For example, the corresponding terms for the
double-pipelined hash join and the GRACE hash join are:

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 71

DPHJOIN: open: op.open‖ipd1.open‖ipd2.open

next: op.next‖ipd1.next‖ipd2.next

GHJOIN: open: op.open‖(ipd1.open; ipd1.next)‖(ipd2.open; ipd2.next)

next: op.next

In these cases all connections between operators are assumed to be pipelined-parallel1. A com-
pletely pipelined-sequential scheduling model of the GRACE hash join is:

open: op.open; ipd1.open; ipd1.next; ipd2.open; ipd2.next

next: op.next

Evaluating Scheduling Models of Plans For the computation of the time quality parameters
of a plan we introduce a functionevalTimewhich is applied recursively to the scheduling models
of the open or the next phase of the operators which appear in the plan. Applied to the schedul-
ing model of the open phase of the operatorop it computes theQTfirst parameter of the sub-plan
rooted atop, applied on the scheduling model of the next phase it computes the valueQTlast . This
means, that for a given sub-plan which appears in the bottom-up optimization processevalTime
can be used to compute theQTfirst andQTlast parameters of the according plan descriptor.eval-
Timeis recursively defined as follows (for a simpler presentation we omitted all the parameters
of the function except for the scheduling model):

evalTime(x‖y) = max(evalTime(x), evalTime(y))

evalTime(x; y) = evalTime(x) + evalTime(y)

evalTime((x)) = evalTime(x)

evalTime(ipdk.open) = ipdk.QTfirst

evalTime(ipdk.next) = ipdk.QTlast

evalTime(op.open) = op.TOC

evalTime(op.next) = op.TNC

Although the definition ofevalTimeis already quite complex, applied on a complete query eval-
uation plan it still cannot assess the effects of parallel execution exactly. For example, look at
the query evaluation plan in Figure 7.3. The thick lines denote pipelined-parallel connections
and the thin lines pipelined-sequential ones. The evaluation ofevalTimewill take into account
that the actions of theunionoperator are executed in parallel with those of the operatorsscan2,
scan3, andscan4. Obviously, the actions of thescaleoperator do also run in parallel with the
three scan operators, but this will not be realized byevalTime.

1For the GRACE hash join, operator-internal parallelism is also needed to compute the join in the way the
scheduling model suggests, but this can be captured in the scheduling model by encapsulating each input operator
in a virtual operator which also performs some actions of the join operator.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 72

scan3

scalescan1

scan4scan2

v1

v2

scan3 scan4scan2

Plan Fragment Contraction

Figure 7.3: Fragmentation of QEPs in Parallel Working Plan Fragments.

Therefore, the time quality parameters are computed in two phases. First, we just consider
plan fragments which represent the maximum components in the graph of the query evaluation
plan, connected only by pipelined-sequential connections. These plan fragments are handled as
virtual operators. The time consumption of such a virtual operator is computed by the applica-
tion of evalTimeto the plan fragments scheduling model. This scheduling model is constructed
out of the fragment’s operators. An example for the relationship between those plan fragments
and the corresponding virtual operators is shown in Figure 7.3. In the second phase, we merge
the scheduling models of those operators of the plan fragment which have a pipelined-parallel
input link in order to obtain a scheduling model for the virtual operator. This merge operation
is rather simple since theop.openandop.nextactions of the operators’ scheduling models are
unified to represent the corresponding actions of the virtual operator and the actions of the input
plans are scheduled in the same way (parallel/sequential) as in the operators’ scheduling models.
This means that in the merge process ‘‖’-operators are merged before ‘;’-operators. In the vir-
tual operator scheduling model the termsop.openandop.nextrefer to the time estimates of the
plan fragment computed in the first phase. The time estimates of the resulting contracted query
evaluation plan are then computed by theevalTimefunction.

7.1.3 Managing Uncertainty in Resource Availability

In Section 7.1.2 we stated, that the optimizer needs meta data about the properties of the data, the
available main memory, and the load on resources used in a query evaluation plan. Obviously,
some of these environmental parameters exhibit a somewhat random behavior in the changes of
their values and can therefore be considered as random variables with an associated probability
distribution. This observation has also been made for central query processing which resulted
in a solution for finding a query evaluation plan with the least expected costs[CHS99]. In our
scenario with globally distributed cycle and data providers, it is even more inevitable to take
account of the uncertainty in the parameter estimates, especially for main memory availability
and load estimates. In the following, we will for simplicity of presentation only discuss load

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 73

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Probability 80%

Load
1

70%

0.60.53

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Probability 80%

Load
1

70%

0.720.5

Figure 7.4: Load Distribution of different Cycle Providers.

parameters of time shared resources (disk, CPU, network) but the availability of the space shared
resource main memory can be handled analogously.

For estimating the load on resources we use a statistical approach and roughly follow the
work reported in [GRZZ00] and [WSP97]. Naturally, the activity of users and the resulting load
on resources is based on time patterns which can be found within a day2, a week, a month or
a year. As described in [GRZZ00], a learning algorithm can be used to identify periods with a
rather stable usage of a specific resource. In spite of this classification of usage periods, the load
on resources will also vary in such periods. Therefore, for each such period a histogram as shown
in both graphs of Figure 7.4 is constructed to approximate the probability density function for the
random variable load for the corresponding resource. The load measurements for the learning
algorithm and the histogram construction are retrieved from a distributed resource monitoring
framework for computational and network resources. The architecture of such a framework in a
globally distributed environment is described in [WSP97].

Uncertainty in the Availability of one Resource

When we have to generate an evaluation plan for a given query, we could now use the load his-
tograms of potentially used resources for that period which belongs to the scheduled execution
time of the query. But the question is, how to use these statistics. The formulas for computing
the time consumption of a query use a fixed load parameter for each affected resource and can-
not operate on a histogram. One solution could be to compute the expected time consumption
of a query as proposed in [CHS99] for central query processing. But due to the properties of
the expectation, the plan will achieve a higher time consumption than the estimated one with a
probability of 50%. If the estimated time consumption exactly hits the corresponding quality
constraint of the user, the plan will fail this quality constraint with a probability of 50%. This
shows, that a dependability probability for the time consumption estimates of about 50% is not
adequate for a system which tries to enforce user-defined QoS constraints on this parameter3.

Therefore, we take the reverse way and allow the specification of a minimum dependability
2We assume that for the patterns within a day the load is logged with respect to a fixed time zone.
3Note, that the dependability probability itself depends on the accuracy of the resource statistics.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 74

probabilityPD for the time consumption estimates. This specification has to be translated into
a concrete load estimate for every resource such that the givenPD holds. Now assume, that the
whole plan just uses one resource. The optimizer then selects a maximum load valuemlvso that
the real load valuelv falls belowmlvaccording to the given histogram with probabilityPD:

P (lv ≤ mlv) = PD

If we use this value formlv in the computation of the time consumption, the query evaluation plan
will find a resource availability during execution which is with a probability ofPD as good as
assumed during optimization or even better. In the two histograms of Figure 7.4 load distributions
of two different cycle providers are depicted. The height of a bar in such a histogram gives us the
probability that a load value between the minimum and the maximum value of the bar’s extension
on the load axis will be discovered at run-time. The shaded areas in Figure 7.4 correspond to a
value of0.8 for PD. The largest value on the load axis which belongs to a shaded area denotes
the value formlv. Therefore, the shaded area represents the summed up probability that the load
value discovered at run-time will be less thanmlv. We can see in the figure, that a lower given
value forPD (0.7 in this example) results in a lower value formlv and consequently in a larger
assumed resource availability for the estimation process. Furthermore, the histograms suggest
that for thePD value of0.8 the resource corresponding to the left histogram is more suited than
that for the right histogram, but it is vice versa for thePD value0.7.

Uncertainty in the Availability of n Resources

If a plan usesn resources and the optimizer proceeds for each resource as explained above, the
overall dependability of the time consumption estimate will not be reached anymore if we assume
that the load on the resources is independent from each other. Due to independence, the overall
dependability can be computed by multiplying the individual probabilities (Pd for short) and the
following holds:

PD ≤ (PD)n, with n > 0 and0 ≤ PD ≤ 1 4

To correct this divergence fromPD, we set the individual dependability probabilities for each
resource ton

√
PD. For growingn the value forPd will approach the value 1 rather quickly, for

example,PD = 0.9 andn = 10 results inPd ≈ 0.9895. This means, that together withn the
mlv value for a resource grows and consequently the assumed availability and the utility of the
resource for enforcing the time quality constraints decreases. In this way, the number of eligible
data and cycle providers for the optimization process could be reduced considerably. This effect
can be mitigated and is not really a problem at all in many cases:

• Obviously, not all resources have independent load distributions, especially not those re-
sources (CPU, disk) which belong to the same provider. Thus, the optimizer treats these
resources and all the incoming network connections for a provider which are present in a
specific evaluation plan, as one resource in the computation ofPd. Furthermore, providers
with a small net distance to each other (this can be checked with the cluster tree introduced

4For example, if each of 5 resources havePd values of0.9, thenPD = 0.95 ≈ 0.6.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 75

Response
Time

Cardinality
of Result

max

min

max

QoS Space
QoS Window

Cost

Figure 7.5: The QoS Space and the QoS Window.

P4

Time

Cost
0

QoS Window

P3

P5

P1

P2

Figure 7.6: The Partial Order for
Plans.

in section 7.1.1) will most likely show a dependent load. These providers will often be
located in the same time zone and will therefore be exposed to the same activity patterns.
Hence, providers which appear in the same cluster at a user-defined level of the cluster
tree, should also be regarded as one resource in the computation ofPd.

• A rather large value forPd does not inevitably mean that we have problems in finding
suitable providers to produce a QoS compliant query evaluation plan. For example, think
of a cycle provider whose load never exceeds 40%. Even ifPd would have a value of
1, 60 % of the provider’s resources would be available for the query. Depending on the
resource requirements of the query and the nominal power of the provider this resource
availability can be much more than enough. Of course, with increasingPD andn the
number of providers which will not pass this kind of filter in the optimization process will
also increase. But only the fittest providers for a given query will pass this filter and this is
how it has to work in this setting.

7.1.4 Pruning Query Evaluation Plans

The quality dimensions span a space which we call QoS space, and the user-defined constraints
determine an area in that space which we call QoS window. This is shown in Figure 7.5 for
the (simplified) three dimensional QoS space. During optimization every enumerated plan is
mapped on a point in that QoS space by estimating the value for every quality parameter which
appears in the quality model. Only plans which lie within the QoS window, fulfill the constraints
of the user. For our realtor example the QoS window is given by four intervals:

• [0 , 10] is the valid range for the total cost.

• [0 min, 10 min] is the valid range for the total response time.

• [70%, 100%] is the valid range for theQREstate
comp parameter.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 76

• [20,∞] is the valid range for theQRmin# parameter.

In multi-objective optimization, pruning can only work with a partial order in such a setting.
This is depicted in Figure 7.6, where we restricted the QoS space even further to only two di-
mensions in order to simplify the illustration. The figure shows, for example, that the planP1 is
superior regarding time and cost consumption to the plansP4andP5. AlthoughP1produces the
query result faster, its execution is cheaper than the execution ofP4 andP5. P1, P2 andP3 are
incomparable, but onlyP1 andP2 are candidate plans becauseP3 lies outside the QoS window.
The arrows emanating from these incomparable plans mark the area in the QoS space which is
dominated by the respective plan. The planP4 lies inside the QoS window (i.e., the plan fulfills
the user constraints), but it is no candidate plan, because it is dominated by the plansP1 andP2
both of which are superior toP4 in all dimensions of the QoS space. Thus,P1 andP2 are the
only plans “surviving” pruning.

The definition of the partial order≤p which is used to compare alternative plans is shown be-
low. Naturally, this order has to work on the plan descriptors which contain the quality estimates
of the sub-plans generated during the optimization process.

PD1 ≤p PD2 ⇐>




PD1.QT ≤t PD2.QT
PD1.QR ≤r PD2.QR
PD1.QC ≤c PD2.QC

The comparison for each dimension in the definition above is itself defined with appropriately
oriented comparisons for each of its sub-dimensions. For example, in the case of the result
quality parameters, the following holds:

PD1.QR ≤r PD2.QR ⇐>PD1.QRcomp ≥ PD2.QRcomp ∧ PD1.QRmin# ≥ PD2.QRmin#

When we use≤p to prune plans from a set of semantically equivalent plans at some stage of the
dynamic programming algorithm a set of plans—the Pareto curve—will remain. Then, we can
further prune by just selecting these plans which lie within the intersection of the Pareto curve
and the QoS window.

As mentioned in [GHK92], in the worst case, the complexity of the optimization process can
increase by a factor which is exponential in the number of dimensions of the plan descriptor. This
worst case occurs, if the values for the different dimensions are distributed independently. In our
case, the plan descriptor has quite a lot dimensions, but it is apparently that several dimensions
are highly correlated. The dimensionsQTfirst , QTlast , andQCcycle are all based on the work
performed by the corresponding plan and the dimensionsQRcomp , QRmin#, andQCdata depend
on the selection of data providers for the plan. Furthermore, the possibilities for varying the
value for theQCfunction dimension will be rather limited and nearly equal for every semantically
equivalent plan. Therefore, the size of the Pareto curve should be much smaller than in the worst
case and should not restrict the applicability of multi-objective optimization here in a significant
way.

If there is more than one Pareto-optimal plan in the QoS window at the end of the optimization
process as in the example above we also need heuristics to choose one of the remaining plans.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 77

Here we must keep in mind, that possibly there will be some adaptation of the query execution
necessary at instantiation or execution time of the plan. These adaptations normally result in a
tradeoff between different quality parameters. Examples for such tradeoffs are

• cost versus result quality.

• cost versus response time.

• response time versus result quality.

For example, we could move a plan fragment from one cycle provider to another, in order to
react on an imminent quality loss in response time; however, this could lead to a higher cost for
theQCcycle parameter.

This shows, that we should choose a plan which is robust against quality violations caused
by resource fluctuations or side-effects of adaptations. Therefore, for every plan descriptor in
the QoS window we determine the minimal distance to each of the user-defined borders of the
window. Beforehand we normalize the values for the parameters with the maximal values occur-
ring for the respective parameter in these plan descriptors. Otherwise the distances could not be
compared in a fair way across dimensions. For our example we get:

Dist(PD) = min(costConstraint − PD.QC,
timeConstraint − PD.QT,
resultConstraint − PD.QR)

Again, the subtraction operation on each quality dimension is defined appropriately based on
the corresponding sub-dimensions. We then choose that plan descriptorPD out of the set
PD1, . . . , PDn of plan descriptors in the QoS window for which the following holds:

Dist(PD) = max(Dist(PD1), . . . , Dist(PDn))

For the simplified example in Figure 7.7 this definition results in the selection of the planP ,
becauseDist(P) = ps, Dist(Q) = qs andps > qs.

[PY00] deals with a restricted form of our multi-objective optimization problem where a
set of WWW data sources should be selected under a cost-time-quality tradeoff. The authors
of that work present an optimization algorithm which generates an approximate solution for an
instance of the problem and give some theoretical results on the complexity of finding such an
approximate solution.

7.1.5 Relaxing some Constraints on Sub-Plans

As we have described in Section 7.1.4 the optimizer selects a plan with a maximum distance to
the user-defined quality constraints. Therefore, the execution of the plan has some credits in the
quality parameters which result from the differences between the user-defined quality constraints
and the estimates of the optimizer. For example, in Figure 7.7 we see, that the planP is allowed
to costpc cost units more and to useps percent less data than estimated for the execution ofP

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 78

��
��
��
��

P

�
�
�
�
Q

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������

����������
����������
����������
����������

Cost

0 1

pc

ps

qc

Completeness

qs

Cost C
onstraint

R
es

ul
t

C
on

st
ra

in
t

Figure 7.7: Plan Descriptors in the QoS Window

and nevertheless will still meet the user constraints. These credits are collected in a so called
remainder account for the whole query execution plan. We do not only need these credits to
“finance” dynamic adaptations of the query at execution time, but also for slightly missed quality
constraints which are compensated with the credits of the remainder account instead of a more
risky adaptation.

Again, the response time must be treated in a special way. During optimization, the response
time part of the QoS model estimates the running time of a plan by detecting its critical path.
Thus, a plan fragment which is not on the critical path, may consume more time than initially
estimated by the optimizer because plan fragments executing in parallel consume more time than
this one. For example, in Figure 7.2 two simple join plans are depicted, one with a double-
pipelined hash join operator [WA91, IFF+99] and one with a grace hash join operator. Both join
operators drive their input plans in parallel and due to the different time consumptions of the
respective input plans, an extra time calledslack time, can be added to the time constraints of the
faster input plans.

Slack time cannot be distributed in a perfect manner during a processing step after optimiza-
tion, when in the corresponding plan slack time would have to be shared among sequentially
executed actions. For example, consider the Grace Hash Join plan in Figure 7.2. Available slack
time for theopen phase of this join operator can be distributed among theopen andnext
phases of both input plans. But theopen - and thenext phase of an input plan are executed
sequentially and we do not know in advance the needs of each of the phases for extra time. At
runtime we could assign all the available slack time first to theopen phase and after its execu-
tion, the remaining slack time can be assigned to thenext phase.

However, estimating a plan fragment’s resource requirements which are needed for admis-
sion control, demands a priori knowledge of its allowed running time. Furthermore, run time
distribution of slack time in a distributed environment is a complex task. Thus, we use heuris-
tics to distribute slack time statically after optimization. These heuristics work top-down on the
scheduling model of the contracted plan (see Figure 7.3) and distribute slack time to sequentially
executed actions proportionally to their estimated running time. We only have to define how the

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 79

critical path

t t t2 31

time

critical path

t1 t3t2�
�
�
�

��
��
��
��

��
��
��
��distribution

slack time

time

Figure 7.8: Slack Time Distribution

parallel and the sequence operator in the scheduling model of a plan have to be handled. Assume,
that t is a term in the scheduling model. The available slack time fort which is passed from the
operator above in the model is denoted ast.st and the estimated time consumption ast.et. The
slack time distribution is then defined by the following two formulas:

t = t1; . . . ; tn > ∀i ∈ {1, . . . , n} : ti.st= t.st· ti.et∑n
j=1 tj .et

t = t1‖ . . . ‖tn > ∀i ∈ {1, . . . , n} : ti.st= max(t1.et, . . . , tn.et) − ti.et

An example slack time distribution for the termcritical path‖(t1 ; t2 ; t3) is shown in Figure 7.8.
At the beginning, the extra time from the corresponding remainder account is assigned to the
whole scheduling model of the plan as slack time.

7.2 QoS Enforcement during Plan Instantiation and Execu-
tion

The tasks of QoS management in these two phases are somewhat similar. The assumptions
(resource or quality) determined by the optimizer are checked and in the case of an invalidated
assumption the plan is adapted or, if this is not possible, rejected or aborted, respectively.

7.2.1 Plan Instantiation and Admission Control

The assumptions of the optimizer are stated in the form of the resource requirements annotated
in the plan description. They will be checked by the admission control towards their validity
directly before the respective service will be activated. The following resource parameters are
rather easy to check, since a simple comparison of values is sufficient:

• The freshness and the size of requested data.

• The cost factors for CPU cycles, usage of functions and data consumption.

• The availability of main memory.

Admission control is more complicated for the resource requirements which more directly affect
the time quality parameters of the query. The optimizer produces estimations for the work per-
formed by plan fragments on resources like the CPU or the disk and with the help of operator

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 80

scheduling models the time consumption for the execution of plan fragments. As a result, the
optimizer produces for every plan fragment and resource a vector(W, T) whereW denotes the
work performed by the fragment on a resource andT the maximum amount of time the plan
fragment is allowed to consume. As in the work reported in [GI97] we assume that the work
performed by an operator and consequently by a plan fragment is equally distributed along its
execution. When a new plan fragment wants to be admitted, the admission control gathers for
each of the running plan fragments the information about the remaining workWr the fragment
still has to perform and the timeTr the fragment is still allowed to run. This information is de-
duced by monitor operators from the original(W, T) vector of the plan fragment. The fraction
Wr/Tr denotes the minimum average resource usage the corresponding fragment can tolerate.
The vertical bars forQuery1 to 3 in Figure 7.9 represent these resource usages for all active
plan fragments. Now, admission control can gather the information about available “resource
packages”, shown by the shaded boxes in the figure. The size of these resource packages will
increase in the future development because already running plan fragments will finish their exe-
cution and consequently release the occupied resources. This gathering process is limited to the
point in time when the maximum running timeT of the new fragment is reached. If the size of
the collected resource packages does not exceed the work informationW for the new fragment,
admission fails and the plan fragment is rejected. If this check succeeds for all types of resources
affected by the fragment, the plan fragment can start execution on this cycle provider.

resource availability
for new query

�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���������������
���������������
���������������

���������������
���������������
���������������

���������
���������
���������

���������
���������
���������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Load

Time

1

Query 1

Query 2

Query 3

maximum running
time of new query

Figure 7.9: Gathering Available Shares on a Resource During Admission Control

If admission control fails, the estimates of the optimizer have been too optimistic. The deci-
sion about the application of an adaptation or an abort of this plan fragment at this stage can be
made based upon information on the extent of the divergence and the kind of parameter which
does not comply with the estimates. Since we use the same framework here as for the control of
the adaptations during execution time which will be described later, we omit a further discussion
here.

If there is a violation in the resource requirements and there are no useful alternative re-
sources, then admission control aborts the plan fragment. As a result, the whole query needs to

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 81

be re-optimized with adjusted meta-data and re-started.

7.2.2 Plan Execution and Monitoring

Query evaluation plans in our system have a “natural” fragmentation which is given by the thread
and machine boundaries which appear in the instantiated operator tree. For example, the plan
fragmentation as shown in Figure 7.10 arises when the operators in the two fragments are exe-
cuted in two different threads on the same machine or on two different machines. Monitoring
and as we will see later also adaptation is done on the basis of plan fragments. Every plan frag-
ment monitors its inputs—these are leaf operators of the operator tree or the inputs from other
plan fragments—and its output by the use of monitor operators. For operators which represent
pipeline breakers we also introduce monitor operators within a plan fragment in order to mon-
itor the inputs of the pipeline breaker separately. A monitor operator traces the actual quality
parameters of its input plan and forecasts these parameters for the end of its execution. The
corresponding optimizer estimates for the respective sub-plan represent the target values for the
forecasted values and a comparison of these values shows if the corresponding sub-plan is still
within its quotas.

During query execution monitor operators keep track of the number of tuples produced, the
time and cost consumption of the execution and some rates like cost or time consumption per pro-
duced tuple. These rates are used for projecting the past development of the quality parameters
into the future. For example, the formula

TN + RTN(CE − CN)

uses the time consumption for the production of all the tuples so far (TN), the time consump-
tion per produced tuple (RTN) and the estimated and current result cardinality,CE andCN , to
compute an estimate for the overall time consumption of the sub-plan. For the calculation of the
mentioned rates we use a moving average computation in order to detect changes in the execu-
tion behavior in a prompt way. The window size of the moving average computation determines
how fast we can detect changes in the execution behavior. A larger window size results in a
slow, but more reliable forecast; a smaller window size results in a fast, but less reliable forecast
because the forecasting mechanism is more susceptible to bursty tuple production and skew in
the data. Thus, we adapt the window size during the execution according to the riskiness of a
sudden change to our quality parameters. This means that we start with a relatively large window
size which is decreased constantly during the course of the execution.

Additionally, we gather runtime information for plan fragments which helps in the analysis
of critical points in a query execution with jeopardized quality parameters. This information can
also be used to reason about the effects of specific adaptations executed on the plan fragment.
Some of the information we gather during runtime is listed below:

State Size: The size of the internal state of all operators in the plan fragment which would have
to be transmitted, if the plan fragment was moved to another cycle provider.

Execution Progress: This parameter comes in two flavors: the remaining time until the exe-
cution has to be finished and the number of result tuples, the plan fragment still has to

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 82

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

subplan
account

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

: Response Time

: Cardinality

: Costs

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

real estate

distances

cities

overall
account

Figure 7.10: QoS Accounts of a Query Plan.

produce. This variable is important for our adaptation rule set, because expensive adapta-
tions should not be executed, when a plan has nearly reached such a limit.

Buffer Pressure: In order to determine, if a plan fragment is itself a bottleneck or just suffers
from slow plan fragments below and above it, we compare the fill rate of the respective
input buffers and the output buffer. The difference between the fill rates of the input buffers
and the fill rate of the output buffer determines the buffer pressure. Therefore, a high buffer
pressure means, that the corresponding plan fragment is probably the bottleneck in the
execution. Conversely, if the input buffers have a low fill rate and the output buffer has a
high fill rate, we can deduce that the buffer pressure is low and the current plan fragment
is certainly not the bottleneck and therefore adaptations to improve the response time are
useless for this plan fragment.

Fragment Selectivity: The monitor measurements for the cardinality of the inputs and the out-
put together with the respective cardinality estimates of the optimizer can be used to com-
pute a current selectivity value for the whole plan fragment. This can be used to detect
skew in the data.

In summary, the gathered statistics should help to determine if there is a problem with a quality
constraint and if the current plan fragment is responsible for this problem. In the next section we
show, how a plan fragment can react to such a problem.

7.3 The Adaptation of a Query Execution Plan

Adaptations are used during the query instantiation and the query execution phase. In the fol-
lowing we will concentrate on the query execution phase because the adaptations for the query
instantiation phase are quite similar and the corresponding rule-based fuzzy controller uses only
a different set of input variables and therefore, also a different set of rules. When a violation
of the QoS constraints is expected during the runtime of a query, we can try to counteract this

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 83

violation by adapting the query execution plan. In this section we will first show some possible
adaptations for the prevention of quality losses. After that we will describe the control system
which decides when and how to adapt a plan.

7.3.1 Adaptations

The adaptations which we employ in our system to react to predicted QoS violations, operate
on the resource allocation of the query evaluation plan. The corresponding resources are, for
example, cycle providers, partitions from data providers and functions from function providers.

Prevention of Response Time Violation If a plan fragment seems to miss its constraints on
the response time, we can use adaptations on the machine resource- or the application resource
level. On the machine resource level we can change the priority of the respective thread (e.g.,
by a so calledincreasePriorityadaptation), the main memory allocation for the respective oper-
ators (e.g., by a so calledincreaseMemoryadaptation) or we can renegotiate the network service
quality (e.g., by a so calledalterNetServiceQualityadaptation), if the underlying network itself
supports QoS handling like an ATM network. The adaptations on the application resource level
comprise the activation of compression at runtime for the data sent through a network link (the
useCompressionadaptation) or the movement of plan fragments together with their state from
one cycle provider to another (themovePlanadaptation)—again, during the runtime of the query.
For example, if a monitor detects that a plan fragment suffers from a lack of computing power
at its current cycle provider, the QoS management component can decide to move this plan frag-
ment with all its state information to another, better suited cycle provider. This adaptation is
depicted in Figure 7.11, where the scale-union plan fragment is moved from the cycle provider
CP3 to CP2. The remainder of the plan fragment’s work is then performed on the new cycle
provider. All the other plan fragments of the same query above and beneath that plan fragment
are not affected by this move operation, because the relevant communication links between them
are disconnected and reestablished automatically by the runtime system of our query processor.

Prevention of Cardinality or Completeness Violation If the cardinality constraints or the
completeness constraints are in danger, a possible adaptation isaddSubPlanwhich integrates
additional data sources in the query execution which were not involved in the original query
execution plan. Of course the information about these additional data sources has to be annotated
in the plan during the optimization phase. To accommodate this adaptation we have a union
operator that can dynamically establish an additional sub-plan at runtime.

Prevention of Cost Violation If the costs of a plan fragment seem to exceed the corresponding
limit, we can try to reduce the amount of processed data, for example, by a so calledreduceCom-
pletenessadaptation which stops input plans before they are finished. Other ways for reducing
cost consumption are the movement of a plan fragment to a cycle provider which charges less
for the execution (e.g., to the client’s site), or the exchange of externally loaded functions , like

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 84

: original link

: adapted link

CP2

Scan

Join

Scale State Scale

CP3

Client

CP1

CP4

Scan Scan

CP5

Union Union

Figure 7.11: Moving a Plan Fragment from one Cycle Provider to another.

thumbnail encoders, with versions, that use a more lossy compression technique but which con-
sume less CPU time. The type of the latter adaptation is calledreduceStrength.

Naturally, there is also anabort adaptation which is initiated, when a quality violation in one
of the quality dimensions seems inevitable. The decision about the execution of an adaptation
depends on specific conditions like the forecasts of the quality parameters or information about
the state of the query plan. For example, if for a sub-plan the time quality parameter is jeopar-
dized and there is also little scope for the cost quality parameter, it does not make sense to move
this sub-plan to a faster, but more expensive cycle provider.

7.3.2 Fuzzy Control

Plan adaptation during runtime is controlled by the monitor operators themselves because they
are placed at the most interesting positions for adaptations in the query evaluation plan and also
gather most of the information which is needed for this task. As shown in Figure 7.12, a monitor
operator uses a rule-based fuzzy controller which gets the forecasts of the quality parameters
and other state descriptions of the respective plan fragment as input. After the application of
a rule-based fuzzy control technique which we describe later, the controller determines, if an
adaptation should be applied and what adaptation this should be. There are proposals in the lit-
erature [IFF+99] to control query plan adaptations by event-condition-action (ECA) rules which
also allow to construct a flexible controller. But such a controller is not suited for making deci-
sions on the basis of uncertain information which is common in a distributed and heterogeneous
environment.

The application of fuzzy controllers has been studied in different application areas, for ex-
ample, in [LN99] for a visual tracking system. One reason for the use of a fuzzy controller in
our system is that our runtime adaptations are discrete and this is quite easy to support in the
inference rules which form the basis of the fuzzy controller’s decisions. Furthermore, estimation
errors and resource fluctuations introduce some uncertainty factors in the control process which

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 85

distances

citiesreal estate

Monitor Operator

Forecasts

Action

Fuzzy Controller

Fuzzifier

Inference

Defuzzifier

Figure 7.12: Feedback Loop for QoS Adaptations.

can be modeled by fuzzy logic [KY95] quite easily. The inference rules of a fuzzy controller also
provide a highly configurable means to incorporate expert knowledge for the adaptation process
in a very intuitive way. Therefore, it becomes possible to experiment with varying adaptation
strategies by just changing the inference rules and perhaps the definition of the underlying fuzzy
sets. In the following we present the three components of a fuzzy controller in our context:
fuzzifier, fuzzy inference rules and defuzzifier.

Fuzzifier The task of the fuzzifier is to transform the input of the controller in a representation
which can be used to trigger the inference rules. In our case the input consists of values for fore-
casts of quality parameters and values for state information of the plan fragment. This numeric
values must be transformed tolinguistic valuesof linguistic variables. For each input variable
of the controller there exists one suchlinguistic variable. This transformation is depicted for
the forecasted cost parameter in Figure 7.13—we call the corresponding linguistic variablelfc.
We see, that the domain of the input is partitioned into different fuzzy sets, each fuzzy set rep-
resents a linguistic value oflfc, and theweightsof the forecasted value which specify the level
of containment to the fuzzy sets, can be determined. The linguistic values which correspond to
these sets are normally adjectives which qualify the corresponding input variable. In our case
the linguistic valueshopeless, endangeredandcompliantqualify the chance of meeting the QoS
constraints for this quality parameter. Figure 7.14 shows in more detail the partitioning of an
input variable in fuzzy sets. A fuzzy set is described by its member function and an input value
need not belong to exactly one set, but can belong to different sets with different weights—the
input value in the figure belongs to theendangeredfuzzy set with weightµe and to thecompliant
fuzzy set with weightµc.

Fuzzy Inference Rules The inference rules of a fuzzy controller are of the form

if X1 is A1 and . . . andXn is An then Y is B

whereX1, . . . , Xn andY are linguistic variables andA1, . . . , An andB are linguistic values with
accompanying fuzzy sets. A small portion of an example rule set is shown below. Herelfc, lfr

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 86

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

Fuzzy Sets

hopeless

endangered

compliant

estimated result
cardinalityof tuples

current number

#Tuples

Costs

lfc (forecasted cost)
Linguistic Values for

cost forecast

QC

Figure 7.13: Mapping Quality Parameter Forecasts on Fuzzy Sets.

1

0
Costs

endangered hopelesscompliant

forecasted costsQC

µe

µc

Figure 7.14: The Fuzzy Sets for the Cost Forecast Value.

CHAPTER 7. ENFORCEMENT OF QOS CONSTRAINTS 87

andlft are the linguistic variables for cost-, result- and time quality parameters;lep, lbp andlss
correspond to the execution progress, the buffer pressure and the state size.

if lfc is endangeredandlep is late then abort is preferred

if lft is endangeredandlbp is high andlss is small then movePlanis preferred

if lft is endangeredandlep is middleandlbp is high then increasePriorityis possible

if lfr is endangeredandlep is early andlfc is compliantthen addSubPlanis preferred

The variables in thethen part of a rule represent specific adaptations. Every adaptation defines
its own linguistic variable and the corresponding values, for examplenot recommended, possible
andpreferred, denote the applicability of the adaptation. Thus, our rule base consists of rules,
whose heads describe the premise of specific adaptations. The combined weights of the linguistic
variables of a rule’s premise then determine the weight of its conclusion. In our case, theand
operator in the premises of the rules is implemented by aminimumoperation on the weights of
the linguistic values. For example:

µendangered (lfc) = 0.8 ∧ µlate(lep) = 0.9 => µpreferred(abort) = minimum(0.8, 0.9) = 0.8

Defuzzifier After all rules have been applied, all the resulting weights for an output linguistic
variable are combined with an application-specific defuzzification method in order to get an
overall value for the corresponding, virtual applicability scale of an adaptation. Here we assign
every linguistic value a corresponding singleton out of the applicability scale; for our example,
−1 is assigned tonot recommended, 0.5 to possibleand1 to preferred. The overall applicability
valuexa for an adaptationa is then determined by:

xa = µnot recommended (a) ∗ (−1.0) + µpossible(a) ∗ 0.5 + µpreferred(a) ∗ 1.0

We then choose the adaptation with the highest applicability valuexa, if this value is above 0.5.
If there is no such adaptation, nothing will be done. For example, when for a certain adaptation,
saymovePlan, the combination of the inference rules yieldsµnot recommended (movePlan) = 0.6
andµpreferred(movePlan) = 0.7 then

xmovePlan = 0.6 ∗ (−1.0) + 0.7 ∗ 1.0 = 0.1

The adaptation will not be executed becausexmovePlan is smaller than the threshold of 0.5. This
shows, that during defuzzification the output of different rules regarding the same adaptation are
balanced. This is a special feature of a fuzzy controller in comparison to a pure ECA-rule based
mechanism, where the rules are evaluated in isolation. The balancing of all rules for a certain
adaptation helps in the design of the rule base. For example, for specific exceptional cases we
can add“veto rules” which inhibit the activation of the corresponding (default) adaptation.

Chapter 8

QoS Experiments

Naturally, if the optimizer makes the right choices during plan generation, enforcing QoS con-
straints during run-time is not so complicated then. But, as we already mentioned, there are a
lot of situations where these choices become disadvantageous at the end, for example, due to an
unforeseen load increase at a cycle provider or a network link. In the following experiments we
want to show that the local QoS management components at a cycle provider can also provide
acceptable QoS support even when the initial assumptions and estimations of the optimizer do
not hold.

8.1 The Effectiveness of Adaptations in a Distributed Envi-
ronment

In these experiments we want to investigate to what extent monitor operators can forecast quality
violations and if our adaptations can be used to react to such violations. For space limitations only
two experiments are presented. We use three Internet hosts in our distributed benchmark environ-
ment which are located inPassau, Mannheim, andMaryland. In the following descriptions we
use the locations to name the respective hosts. Each host is used as a cycle provider and addition-
ally as a data provider for theorder andlineitemrelations of the TPC-D benchmark. In the first
experiments, we also use wrappers for the data providers HotelBook (www.hotelbook.com)
and HotelGuide (www.hotelguide.com) which deliver tuples with information about hotels.

8.1.1 Monitoring and Adapting Wrapper Plans

This experiment assesses the efficacy of the monitoring component in collaboration with the
movePlanadaptation. The monitored sub-plan uses the two hotel data providers in order to
look for hotels in a given city and combines the results with a union operator. We assume, that
the sub-plan is executed under cost- and time constraints and thatPassauis the client machine
itself, therefore, inducing low costs (if at all), andMaryland is a commercial cycle provider. The
execution time of the sub-plan is restricted to 200 seconds.

88

CHAPTER 8. QOS EXPERIMENTS 89

0

50

100

150

200

250

300

350

400

450

500

0 4 8 12 16 20 24

tim
e

(s
ec

)

hour of day

sub−plan Passau
sub−plan Maryland

QoS enabled

Figure 8.1: Retrieving Data through Wrappers.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4 8 12 16 20 24

co
st

 *
 ti

m
e

(q
ua

lit
at

iv
e)

hour of day

sub−plan Passau
sub−plan Maryland

QoS enabled

Figure 8.2: Qualitative View on the Wrapper
Experiments.

We see in Figure 8.1, that the execution of the sub-plan at the client (in short:Passauplan)
can compete most of the time with the execution at the apparently better placed cycle provider
Maryland (in short:Marylandplan). Due to the low cost cycle providerPassau, the initial plan
chosen by a QoS-aware optimizer would be thePassauplan and by amovePlanadaptation, this
plan could be transformed into theMarylandplan. We used the daily rush hours on the Internet
as a substitution for an unforeseen resource fluctuation on the network. Normally a QoS aware
optimizer equipped with time dependent statistics would choose theMaryland plan instead of
thePassauplan during these hours.

We executed thePassausub-plan, theMaryland sub-plan and the QoS sub-plan every two
hours in a 24 hour range. Between 8:00 and 20:00 the monitor operator can forecast the imminent
quality miss and themovePlanadaptation is activated. This adaptation causes a decrease of
running time and an increase of execution costs, since the wrapper execution gets faster, but
also more expensive. A qualitative analysis of this experiment can be seen in Figure 8.2. This
figure shows that the QoS management here tries to find the best balance between cost and time
consumption. The cheaper plan is favoured as long as the time consumption does not exceed
our time limit and if this happens the execution switches to a more expensive, but faster plan.
Obviously, such an adaptation cannot always save a jeopardized quality constraint. For our
experiment one can find executions of the QoS sub-plan which do not fulfill the 200 seconds
limit. Normally, these failed executions would be aborted as soon as the quality miss appears
inevitable, but in order to get reasonable graphs, we disabled theabort adaptation during these
experiments.

8.1.2 Monitoring and Adapting Remote Sub-Plans

The query for this experiment uses a sub-plan with a scan operation atMannheim. The client
machine isPassauand the scan operation atMannheimis performed on alineitempartition with

CHAPTER 8. QOS EXPERIMENTS 90

a size of 10MB. Again, we assume that the query is executed under cost- and time constraints
and thatMannheimis a cycle- and here also a data provider, whose services must be paid. The
adaptation which we test here is calleduseCompressionand turns on compression for a network
connection at an arbitrary point during the query execution. Compression is performed with the
help of the ZLIB library on blocks of the respective intermediate result. The time constraint for
the sub-plan was set to 60 seconds.

0

20

40

60

80

100

120

140

160

180

0 4 8 12 16 20 24

tim
e

(s
ec

)

hour of day

compression adaptation disabled
compression adaptation enabled

Figure 8.3: Executing a remote Scan Operation

The compression of data increases the CPU time consumption at the receiver’s and even more
at the sender’s site. In our tests, the CPU time consumption at the sender increased by a factor
of three, when compression is turned on. The sender site isMannheimwhose services have to
be paid for, and as we see in Figure 8.3 the plan without compression is also able to fulfill the
time constraint most of the time. Therefore, analogously to the experiment before the initial plan
is that without compression turned on and the alternative for the resourcenetworkis to turn on
compression.

As before, we executed the QoS plan and the one without QoS support every two hours in a
24 hour range and again used the rush hours on the Internet to simulate resource degradations on
the network. In this experiment the sub-plan without compression missed the time constraint just
once. The monitor operator in the QoS plan detected this situation and activated the compression
on the network link which is clearly to see in the graph. The savings in time has to be paid for
by an increased cost for the execution atMannheim.

8.2 The Effectiveness of Run-Time QoS Management in Heav-
ily Loaded Multi-User Environments

Due to the challenging environment in the previous experiments, monitoring the quality param-
eters was difficult but the control operations were rather simple, since the necessary decisions
were of the form “adaptation on or off”. Therefore, we set up a further test scenario with one

CHAPTER 8. QOS EXPERIMENTS 91

server and three clients, where the clients concurrently initiate queries on the server. Each exper-
iment lasts a fixed amount of timeet and within the resulting time frame each client initiates a
fixed number of queriesnq. All clients use the same query on the server but the quality parameter
for the overall execution time of the query is varied among the clients. The query works on a
data set of about 2000 tuples which occupy about 23 MByte of memory. Each tuple contains a
picture in JPEG format which is scaled down in the query execution by a specialized operator.
The execution times of the queries are CPU-bound since this scale operation is very computing
intensive. The clientc1 issues queries with an overall execution time limit of 185 seconds and
due to the 130 seconds CPU time our query needs, it induces an average CPU load of 70% if
the query completely exhausts its time limit. The clientsc2 andc3 use execution time limits of
370 (twice the value ofc1) and 555 seconds (three times the value ofc1) and the induced loads
on the CPU are 35% and 23%, respectively. During our experiments we use annq value of 20
which means that each client issues 20 queries and we usedet values of 1, 2, 2.5 and 3 hours.
At the beginning of an experiment, each client randomly chooses thenq starting times in the
time frame given byet. In this way, the resulting arrival process for each client approximates a
Poisson process with parameterλ = nq/et. A client starts its queries at the randomly chosen
points in time and thus it is possible that two query executions of the same client overlap1 and
of course, queries from different clients overlap with a very high probability in this scenario.
The imaginary average loads on the server which would be reached if all the queries could be
executed in the corresponding time frames given by a specificet value, would be 217% (et = 1),
108% (et = 2), 87% (et = 2.5) and 72% (et = 3). This means, that foret = 2.5 andet = 3
all the queries could be executed within their time limits if their starting times are distributed in
an appropriate manner. But this is most probably not the case in our experimantal set-up and the
experiments without QoS management also show this.

8.2.1 Experimental Results without QoS Management

In Figure 8.4 the results are shown for an experiment as sketched above, where no QoS manage-
ment was activated. This means, that

• no admission control is used.

• all queries have the same priority.

• plans are neither adapted nor stopped if they miss their quality constraints.

This is a typical best-effort configuration as found in many distributed information systems today,
e.g., the WWW.

The left bar chart in Figure 8.4 shows the percentages of successful queries for differentet
values and in the right bar chart the percentage of successful queries is broken down for different
tl values. As the charts show, a very small fraction of queries fulfill their QoS requirements.
Naturally, queries with lower demands have a better chance to meet their constraints and in
experiments with a lower average load also more queries can succeed in this task. One of the

1Each query is issued by its own client process, so this overlap is possible.

CHAPTER 8. QOS EXPERIMENTS 92

0
10
20
30
40
50
60
70
80
90

100

8

et=3.0

5

et=2.5
3

et=2.0
0

et=1.0

% queries

Successful Executions for differenttl values.

0
10
20
30
40
50
60
70
80
90

100

0
tl=185

6

tl=370

6

tl=555

% queries

Successful Executions for differentet values.

Figure 8.4: The Success of Queries with no QoS Techniques applied.

main problems of this configuration is the overload situation which arises due to the unrestricted
access of queries to the server. More and more queries are admitted and accordingly, the share
of the CPU usage of each query in the system decreases. This causes a longer individual service
time for each running query and this again aggravates the congestion situation. For example, at
the end of the experiment with anet value of 2 hours, about 40 queries were still active and the
last of these queries finished its processing about 1 hour later. The overall running time of some
queries rose up to several thousands of seconds.

This result shows, that without a local QoS management cycle providers can get overloaded
very easily and the QoS properties become really poor in such a case. It should be noted that
in these experiments we just test the ability of cycle providers to execute queries within their
quality constraints. Of course, in a complete execution environment, the selection of appropriate
cycle providers based on load statistics as done by the optimizer could result in less overloaded
cycle providers. However, since we assume a global environment where each client uses an own
optimizer instance, the selections of cycle providers are performed independently by each such
instance and may nevertheless lead to highly loaded cycle providers. Therefore, it is inevitable
that the local QoS management components can handle overload situations in a graceful way.
Admission control is the corresponding means to limit the resource usage in a way that each
admitted query has a chance to fulfill its constraints. The effects of an activated admission
control are examined in the next experiments.

8.2.2 Experimental Results with Admission Control Activated

For the experiment with activated admission control we are interested in the percentages of
queries which

• succeeded in executing within their time limits.

• were rejected by admission control.

CHAPTER 8. QOS EXPERIMENTS 93

0
10
20
30
40
50
60
70
80
90

100

53

et=3.0

43

et=2.5

42

et=2.0

22

et=1.0

% queries

Successful Executions.

0
10
20
30
40
50
60
70
80
90

100

35

et=3.0

40

et=2.5

43

et=2.0

68

et=1.0

% queries

Stopped by Admission Control.

0
10
20
30
40
50
60
70
80
90

100

12

et=3.0

17

et=2.5

15

et=2.0

10

et=1.0

% queries

Missed Quality Constraint.

Figure 8.5: The Success of Queries for differentet values with Admission Control activated.

• were admitted but at the end failed to meet their time limits.

In Figure 8.5 the results are broken down for differentet values and in Figure 8.6 for differenttl
values. Obviously, the admission control has improved the results of the experiments by far. The
rejection of queries results in a higher resource availability for the remaining queries. For each
usedet value an acceptable number of queries finishes execution within the time limits. Without
admission control less than 10% of the queries could meet their time limits. Furthermore, none
of the queries with the shortest time limit could execute successfully in the former experiments.
But with activated admission control a considerable amount of these queries now do. Figure 8.6
shows that 24% of these queries were executed successfully.

The percentages of admitted but unsuccessful queries show that there is still some potential
for improvement. These percentages are rather high and especially the queries with more de-
manding time limits suffer from a relatively high probability for an overshot time limit. The
problem here is that the queries are not prioritized according to their demand. Analogously to
earliest deadline scheduling in real-time systems, queries with a shorter execution period should
get a higher execution priority than those with a more relaxed time limit. The results of the ex-
periments which use run-time adaptations to adjust such priorities are discussed in the following.

CHAPTER 8. QOS EXPERIMENTS 94

0
10
20
30
40
50
60
70
80
90

100

24

tl=185

30

tl=370

66

tl=555

% queries

Successful Executions.

0
10
20
30
40
50
60
70
80
90

100

60

tl=185

46

tl=370

34

tl=555

% queries

Stopped by Admission Control.

0
10
20
30
40
50
60
70
80
90

100

16

tl=185

24

tl=370
0

tl=555

% queries

Missed Quality Constraint.

Figure 8.6: The Success of Queries for differenttl values with Admission Control activated.

CHAPTER 8. QOS EXPERIMENTS 95

8.2.3 Experimental Results with Full QoS Management Support

The task of our QoS management in this experiment is to use the adaptationsincreasePriority
anddecreasePriorityin a way that as many queries as possible are executed within their time
limit. Furthermore, admission control and the usage of theabortadaptation must be used to stop
queries which obviously will miss their time limit. This means, that the affected components
of our QoS management are admission control, monitoring and adaptation control whereas the
latter is performed by our fuzzy controller.

0
10
20
30
40
50
60
70
80
90

100

65

et=3.0

62

et=2.5

50

et=2.0

25

et=1.0

% queries

Successful Executions.

0
10
20
30
40
50
60
70
80
90

100

35

et=3.0

35

et=2.5

40

et=2.0

62

et=1.0

% queries

Stopped by Admission Control.

0
10
20
30
40
50
60
70
80
90

100

0
et=3.0

3

et=2.5

10

et=2.0

13

et=1.0

% queries

Stopped by Abort Adaptation.

Figure 8.7: The Success of Queries with differentet Values.

In Figure 8.7 the results for the experiment with fully activated QoS management are pre-
sented. The different bar charts show for differentet values the percentage of queries, which
were successfully executed, stopped by admission control or stopped by theabort adaptation.
The bar charts for successful executions and for the aborts caused by admission control docu-
ment the rather obvious trend in QoS management that a lower base load on critical resources
improves the percentage of successful executions. This trend could also be seen in the previous
experiments with no QoS management and admission control, respectively. In all of our experi-
ments the number of initiated queries is the same but with differentet values the execution times
of the queries are distributed in differently sized time frames. Therefore, the number of collisions
where several, more demanding queries are executed at the same time is lower when a larger time

CHAPTER 8. QOS EXPERIMENTS 96

frame is used in the experiment.
The aborts initiated by the admission control are caused by the arrival process of queries and

the induced load of these queries. This cannot be influenced by the QoS management of a cycle
provider but depends on the decisions made by the corresponding optimizer instances. These
decisions themselves depend on the quality of the load statistics and the overall risk factorPD

which is specified by the user. Therefore, in order to assess the QoS management of a cycle
provider, we just have to consider the percentage of queries which were stopped by theabort
adaptation. In our benchmarks, at most 13% of the queries have passed admission control but
could not be executed within their time limits. First we must note, that the admission control
as described in Section 7.2.1 is rather aggressive in accepting queries for execution. Admission
control assesses the future development of already running queries in order to decide if a given
query can accumulate enough resources to fulfill its quality constraints. Here, the admission
control assumes that the fuzzy controller is able to stretch the execution of queries so that they
are executed rather exactly within their respective time limits. Of course, this control process
cannot be performed as precisely as assumed by admission control. Additionally, after a new
query had been admitted or after a query had finished, the fuzzy controller needs some time to
adapt the priorities of running queries to the new situation. Therefore, in a production system
these effects need to be assessed and accordingly considered during admission control. But
nevertheless, the number of aborted queries are even with such an aggressive admission control
quite impressive, especially for theet values of 2.0 and 2.5.

The above mentioned transition phases of the fuzzy controller especially affect long running
queries. This can be seen in Figure 8.8. The percentage of queries which have to be stopped
by theabort adaptation is much higher for the class of queries which have a time limit of 555
seconds than for the classes of queries with a time limit of 185 or 370 seconds. Queries with
a longer running time are more exposed to transition phases of the fuzzy controller and so,
when resources are scarce, these queries are more prone to quality misses regarding the overall
execution time. A more positive conclusion which can be drawn from Figure 8.8 is that the QoS
management at a cycle provider does not overly prefer a specific class of queries. Although
queries with smaller demands will meet their quality constraints much easier than the others, in
our experiments the queries with a time limit of 185 seconds also have a good chance to meet
their quality constraint.

CHAPTER 8. QOS EXPERIMENTS 97

0
10
20
30
40
50
60
70
80
90

100

31

tl=185

59

tl=370

56

tl=555

% queries

Successful Executions.

0
10
20
30
40
50
60
70
80
90

100

64

tl=185

40

tl=370

25

tl=555

% queries

Stopped by Admission Control.

0
10
20
30
40
50
60
70
80
90

100

5

tl=185
1

tl=370

19

tl=555

% queries

Stopped by Abort Adaptation.

Figure 8.8: The Success of Queries with different Time Limits.

Chapter 9

The Role of Functional Joins

The term functional join denotes specially structured join operations, where join partners for
tuples of one input are retrieved by performing some kind of function call on the other input. In
the next section, we will show some kinds of join operations which represent functional joins.
Functional joins appear, for example, in data integration systems, where they are also named
bind joins [HKWY97], and especially in object-oriented and object-relational database systems.
In the context of the latter systems we introduce a new algorithm for implementing functional
joins along nested sets.

9.1 Applications for Functional Joins

The term functional join does not denote a single join implementation but a special scheme for
join processing. In this scheme, the tuples for one input stream (sayR) of the join operation
are piped into the corresponding join operator as usual. But the tuples of the other input (say
S) are not available to the join operator in the same way. The tuples ofS are accessed by some
kind of function call implemented by a system component which we simply callmap in the
following. To find the join partners of a tuple fromR, the join attributes of this tuple are used as
arguments to the function call and the map delivers the join partners inS as the result of the call.
This procedure is depicted in Figure 9.1. Themapis responsible for performing the imaginary
function call which delivers the join partners for the current tuple fromR.

In data integration systems functional joins appear quite often and we already saw some of
them in this work. Every data provider which only allows to query its data by means of point
queries needs a wrapper which implicitly performs a functional join. Nearly all the data providers
which are accessed through anHTMLinterface or by aSOAP-based protocol belong to this kind
of data provider. For example, the providers for hotel data as mentioned in Chapter 5 need to be
passed an identification of a city for which they should deliver the data for corresponding hotels.
In these cases the wrapper works as a functional join operator and the data provider implements
themapwhich is quite often a complete database system which manages the data of the provider.

As an example application for functional joins, assume that personX wants to tour the United
States.X is interested in different routes, which are defined by the cities on a route, and hotels

98

CHAPTER 9. THE ROLE OF FUNCTIONAL JOINS 99

Map

R S

3. Retrieve Join Partners

1. Pass R−Tuple

2. Pass Join Attribute

4. Deliver Join Partners

Figure 9.1: The Schema of a Functional Join.

in these cities. We assume that the ObjectGlobe system which is used in this application is able
to perform a query which produces the routes with information about the means of transport, the
corresponding time tables and the set of visited cities. The schema of this result could look like
the following:

routes: {[..., visitedCities: {[cityName: String,
stateName: String] }] }

Then, the result of this query has to be joined with information from our hotel data provider. This
means, we have to perform a functional join along the nested set forvisitedCities . The
execution of the functional join should fulfill the following requirements:

1. Since the access to data providers like the hotel data source is extremely costly (http
network transfers, expensivemap operations at the provider), multiple accesses for the
same city should be avoided. This means that we have to break up the grouping ofvis-
itedCities in some way and reorder the cities in the intermediate result (partitioning,
sorting).

2. Naturally, personX is interested in retaining the grouping which is given by the nested
sets forvisitedCities . Therefore, this grouping has to be reestablished after the join
operation. Unfortunately, grouping is an expensive operation.

In order to fulfill these conflicting requirements in a satisfying manner we developed a new
algorithm for implementing functional joins along nested sets. The problem, as sketched above,
also appears in object-oriented and object-relational database systems. These systems use object
identifiers (OIDs) to represent relationships between objects and these identifiers have to be
mapped to the corresponding objects when a functional join on OIDs is performed. Due to the
importance of OIDs in modeling databases in these systems, functional joins play an even greater
role there than in data integration systems. Therefore, in the remainder of this work, we study
functional joins in the context of object-oriented and object-relational database systems.

CHAPTER 9. THE ROLE OF FUNCTIONAL JOINS 100

9.2 Functional Joins along Nested Reference Sets in Object-
Relational and Object-Oriented Databases

Inter-object references are one of the key concepts of object-relational and object-oriented da-
tabase systems. These references allow to directly traverse from one object to its associated
(referenced) object(s). This is very efficient for navigating within a limited context—so-called
“pointer chasing”-applications. However, in query processing a huge number of these inter-
object references has to be traversed to evaluate functional joins. Therefore, naive pointer chasing
techniques cannot yield competitive performance. Consequently, several researchers have inves-
tigated more advanced pointer join techniques to optimize the functional join. First of all, there
are approaches to materialize (i.e., precompute) the functional joins in the form of generalized
join indices [Val87]. [BK89] was the first proposal for indexing path expressions, and the access
support relations [KM90] are another systematic approach for materializing the functional join
along arbitrarily long path expressions; it was later augmented to join index hierarchies [XH94].
Many more proposals exist by now.

[SC90] were the first who systematically evaluated three pointer join techniques (naive, sort-
ing, and hash partitioning) in comparison to a value-based join. Their work was augmented by
[DLM93] to parallel database systems. [DLM93] also allowed nested sets of references, but
they did not report on how to re-establish the grouping of the nested sets after performing the
functional join. [CSL+90] incorporated some of the key ideas of pointer joins in the Starburst
extensible database system. The emphasis in this work was on supporting hierarchical struc-
tures, i.e., one-to-many relationships, with hidden pointers. [GGT96] concentrate on finding the
optimal evaluation order for chains of functional joins. Thus it complements our work: We de-
vise an algorithm to efficiently evaluate a functional join within the query engine while they are
concerned with finding the best evaluation order.

Unfortunately, the previous work on functional joins was constrained in two ways: (1) all
approaches we know assume references being implemented as physical object identifiers (OIDs)
and (2) most approaches are, in addition, limited to single-valued reference attributes. Both
are severe limitations since most object-relational and all object-oriented database systems do
support nested reference sets for modelling many-to-many and one-to-many object associations
and many object systems do implement references as location-independent (logical) OIDs. In
the following, we develop a new functional join algorithm that can be used for any realization
form for OIDs (physical or logical) and is particularly geared towards supporting functional joins
along reference sets. The algorithm can be applied to evaluate joins along arbitrarily long path
expressions which may include one or more reference sets. The new algorithm generalizes previ-
ously proposed partition-based pointer joins by repeatedly applying partitioning with interleaved
re-merging before evaluating the next functional join. Consequently, the algorithm is termed
P(PM)∗M whereP stands for partitioning andM denotes a merging.

Before going into the technicalities let us motivate our work by a further example, this time in
an object-oriented/relational context. We use a simplified order-inventory example application.
In an object-oriented or object-relational schema theLineItemsthat model the many-to-many
relationship betweenOrdersand the orderedProductswould most naturally be modelled as a

CHAPTER 9. THE ROLE OF FUNCTIONAL JOINS 101

nested set within theOrder objects:1

create typeOrderas(
OrderNumber number,
LineItemsset(tuple(Quantity number,

ProductRefref(Product)))
. . .);

create typeProductas(
ProductID number,
Cost number,
. . .);

Here,Order refers to the orderedProducts via a nested set of references in attributeLineItems.
Let Ordersbe a relation (or type extension) storingOrder objects. Then, in an example query
we could retrieve theOrders’ total values:

selecto.OrderNumber, (select sum(l.Quantity ∗ l.ProductRef.Cost)
from o.LineItemsl))

from Orderso;

Logically, the query starts at eachOrder o and traverses via the nested set of references to all the
orderedProductsto retrieve theCostfrom which the total cost of theOrder is computed. Note
that, unlike in a pure (flat) relational schema, the nested set ofLineItemsconstitutes an explicit
grouping of theLineItemsbelonging to oneOrder that is, in most systems, also maintained at the
physical level. Our new algorithm exploits this physically maintained grouping. However, we do,
of course, avoid the danger of “thrashing” that is inherent in a naive nested loops pointer chasing
approach. Our prototype implementation as well as a comprehensive analytical assessment based
on a cost model prove that this new algorithm performs superior in almost all configurations. In
particular, ourP(PM)∗M-algorithm performs very well even for small memory sizes.

1Throughout the remainder of this work we will use some (pseudo) SQL syntax that is close to the commercial
ORDBMS product that we used for comparison purposes. Unfortunately, the commercial ORDBMS products do
not entirely obey the SQL3 standard.

Chapter 10

Implementing Functional Joins

Functional joins in object-oriented and object-relational database systems work upon object iden-
tifiers (OIDs) which are embedded in objects to represent references to other, related objects.
Therefore, we first present the different implementation forms of object identifiers which appear
in object-oriented and object-relational database systems. After that, we explain alternative im-
plementations for performing a join operation on such object identifiers. Particularly, we give
a detailed description of our newP(PM)∗M algorithm and show some advanced applications of
this algorithm.

10.1 Implementation of Object Identifiers

Object identity is a fundamental concept to enable object referencing in object-oriented and
object-relational database systems. Each object has a unique object identifier (OID) that remains
unchanged throughout the object’s life time. There are two basic implementation concepts for
OIDs: physical OIDs and logical OIDs [KC86].

10.1.1 Physical Object Identifiers

Physical OIDs contain parts of the initial permanent address of an object, e.g., the page identifier.
Based on this information, an object can be directly accessed on a data page. This direct access
facility is advantageous as long as the object is in fact stored at that address. Updates to the
database may require, however, that objects are moved to other pages. In this case, a place holder
(forward reference) is stored at the original location of the object that holds the new address of the
object. When a moved object is referenced, two pages are accessed: the original page containing
the forward and the page actually carrying the object. With increasing number of forwards, the
performance of the DBMS gradually degrades, at some point making reorganization inevitable.
O2 [O2T94], ObjectStore [LLOW91], and (presumably) Illustra [Sto96, p. 57] are examples of
commercial systems using physical OIDs.

102

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 103

10.1.2 Logical Object Identifiers

Logical OIDs do not contain the object address and are thus location independent. To find an
object by OID, however, an additional mapping structure is required to map the logical OID to
the physical address of the object. If an object is moved to a different address, only the entry
in the mapping structure is updated. In the following, we describe three data structures for the
mapping. [EGK95] give details and a performance comparison.

Mapping with a B+-Tree

The logical OID serves as key to access the tree entry containing the actual object address
(cf. Figure 10.1 (a)). In this graph, a letter represents a logical OID and a number denotes the
physical address of the corresponding object (e.g., the object identified bya is stored at address
6). Here, we use simplified addresses; in a real system the address is composed of page identifier
and location within that page. For each lookup, the tree is traversed from the root. Alternatively,
if a large set of sorted logical OIDs needs to be mapped, a sequential scan of the leaves is pos-
sible. Shore [CDF+94] and (presumably) Oracle8 [LMB97] are systems employing B-trees for
OID mapping.

Mapping with a Hash Table

The logical OID is used as key for a hash table lookup to find the map entry carrying the actual
object address (cf. Figure 10.1 (b)). For example, Itasca [Ita93] and Versant [Ver97] implement
OID mapping via hash tables.

Direct Mapping

The logical OID constitutes the address of the map entry that in turn carries the object’s address.
In this respect, the logical OID can be seen as an index into a vector containing the mapping
information. Direct mapping is immune to hash collisions and always requires only a single
page access (cf. Figure 10.1 (c)). Furthermore, since the logical OIDs are not stored explicitly in
the map, a higher storage density is achieved. Direct mapping was used in CODASYL database
systems and is currently used in BeSS [BP95].

10.2 Functional Join Algorithms

The subsequent discussion of the algorithms is based on the following very simple abstract
schema:

create typeR t as(
R Data char(200),
SrefSetset(ref(S t)),
. . .);

create tableR of R t;

create typeS t as(
S Attr number,
S Data char(200),
. . .);

create tableSof S t;

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 104

(a, 6) (b, 2) (c, 3) . . . (i, 1)

(g, 9)
(e, 5)
(b, 2)
(f, 8)
(d, 7)
(c, 3)
(a, 6)
(h, 4)
(i, 1)

a 6
b 2
c 3
d 7
e 5
f 8
g 9
h 4
i 1

(a)B+-tree (b) Hash-Table (c) Direct Mapping

Figure 10.1: Mapping Techniques

The example queries we wish to discuss are the following—one with an aggregation, the other
without:1

selectr.R Data,
(select sum(s.S Attr)
from r.SrefSets)

from R r;

selectr.R Data,
(selects.S Attr
from r.SrefSets)

from R r;

10.2.1 Known Algorithms

The Naive Pointer-Chasing Algorithm

The naive, pointer chasing algorithm scansR and traverses every reference stored in the nested
setSrefSetindividually. For logical OIDs, first theMap is looked up to obtain the address of the
referencedS object which is then accessed. If the combined size of theMap andS exceeds the
memory capacity this algorithm performs very poorly.

In a system employing physical OIDs the naive algorithm does not need to perform the lookup
in theMap. However, the access to the page the physical OID is referring to may reveal that the
object has moved to a different page. In this case, theforwardpointer has to be traversed in order
to retrieve the object. Again, the algorithm performs very poorly if the size ofS exceeds the
memory capacity.

The Flatten-Algorithms

These algorithms flatten (unnest) theSrefSetattribute and partition or sort the flat tuples to
achieve locality. For logical OIDs the evaluation plan looks as follows:

νS Attr :SattrSet((µSrefSet :Sref (R) 1; Map) 1; S)

1Note that the query on the right-hand side is not standard SQL because the nested query returns a set of tuples.
However, some ORDBMS products do already support this—and in OQL this query is also possible (in a slightly
different syntax, though).

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 105

Here,µSrefSet :Sref denotes the unnest (flatten) operator which replicates theR objects and re-
places the set-valued attributeSrefSetwith the single-valued attributeSref. The nest operator
νS Attr :SattrSet forms a set-valued attributeSattrSetfrom S Attr [SS86]. The functional join is
denoted by1; to indicate that for every (left) argument the corresponding join partner of the
right argument is “looked up.” To perform the two functional joins with theMap and withS,
respectively, two techniques can be applied to achieve locality: partitioning and sorting.

If partitioning is applied, the flattenedR tuples are partitioned such that each partition refers
to a memory-sized partition of theMap. Upon replacing the logical OID inSref by the address
obtained from theMap the tuples are once again partitioned for the next functional join withS.
Instead of partitioning, one could also sort the flattenedR tuples. For theMap lookup the tuples
are sorted on theSref attribute and for the second functional join they are sorted on the addresses
of S objects.

The final ν (nesting) operation is evaluated by grouping the flattenedR tuples based on
the OIDs of the originalR objects. Grouping can be done by a sort-based or by a hash-based
algorithm.

For physical OIDs the evaluation plan omits the first functional join with theMap.

Value-Based Join

The value-based join plan is as follows:

νS Attr :SattrSet(µSrefSet :Sref (R) 1R.Sref =S .OID S)

We assume that every object “knows” its OID—hereS.OID. Note that this plan is equally appli-
cable for logical and physical OID realizations because the object references are not traversed
but only compared.

10.2.2 The Partition/Merge-Algorithm P(PM)∗M

The partition/merge-algorithm is an adaptation of the above flatten/partition-algorithm in the
way that it retains the grouping of the flattenedR tuples across an arbitrary number of func-
tional joins. This is achieved by interleaving partitioning and merging in order to retain (very
cheaply) the grouping after every intermediate partitioning step. This is captured in the notation
P(PM)∗M. We will first describe the basicP(PM)1M-algorithm which is applied when evaluat-
ing a single functional join under logical OIDs. More intermediatePM-steps are needed when
longer functional join chains are evaluated (cf. Section 10.2.4).

In theP(PM)1M-algorithm two joins are performed: (1)R is joined with theMap to replace
the logical OIDs by their physical counterparts and (2) the result is joined withS. For evaluating
the joins we will adapt the hash join algorithm. Theprobe inputis R for the first join andR with
the logical OIDs replaced by their physical counterparts—then calledRM—in the second phase.
Unlike the original hash join algorithm, only the probe input is explicitly partitioned.2 Thebuild

2For simplifying the presentation, we assume that the partitioning can be done in one recursion level—however,
this is not required for the algorithm to work.

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 106

input, i.e., theMapandS, are either faulted into the buffer or—if range partitioning is applied—
loaded explicitly (i.e., prefetched) into the buffer. In both cases, however, a partitioning step for
theMapandS involving additional disk I/O is not required.

The successive steps of the partition/merge-algorithm can be visualized as follows:

flatten and partition
R N -way

→
join with Map to obtainRM

and partitionRM
(N ∗ K)-way

→ · · ·

· · · → re-mergeRM to K partitions
and join withS

→ merge

That is, the partition/merge-algorithm first flattens theR objects and partitions them, then applies
the mapping from logical to physical OIDs, partitions the resultingRM, then re-merges the initial
partitioning and performs the join withS, and finally merges the partitions to restore the over-all
grouping of the flatR tuples belonging to the sameR object.

We need two partitioning functionshM andhS:

• hM partitions theMap into N memory-sized chunks by mapping logical OIDs ofS to the
partition numbers1 to N and

• hS partitionsS into K memory-sized chunks by mapping addresses ofS objects to the
partition numbers1 to K.

That is,Map is partitioned into partitionsM1, . . . , MN andS into S1, . . . , SK . Actually, these
partitioning functions are not applied onMap andS but on the logical OIDs stored in the nested
sets ofR and on their physical counterparts—inRM after applying the mapping.

In more detail, the algorithm performs the following four steps:

1. Flatten the nestedSrefSets and partition the flatR objects/replicas intoN partitions, de-
notedR1, . . . , RN . That is, for every object [r,{Sref1,. . . ,Srefl}] ∈ R generate thel flat
tuples [r,Sref1], . . . , [r,Srefl] and insert these tuples into their corresponding partitions
hM(Sref1), . . . , hM (Srefl), respectively. Of course, theR attributes (R Data in our exam-
ple query) need not be replicated. It is sufficient to include them in one of the flat tuples
or, often even better, to leave them out and re-merge them at the end (cf. Section 10.2.5).
The partitions are written to disk.

2. For all1 ≤ i ≤ N do:

• For (every) partitionRi theK initially empty partitions denotedRMi1, . . . , RMiK

are generated.

• ScanRi and for every element [r,Sref] ∈ Ri do:
– Replace the logical OIDSrefby its physical counterpartSaddrobtained (probed)

from thei-th partitionMi of theMap.
– Insert the tuple [r,Saddr] into the partitionRMij wherej = hS(Saddr).

Note that all OID mapping performed in this step concerns only partitionMi of the
Map, which is either prefetched or faulted into the buffer.

C
H

A
P

T
E

R
10.

IM
P

LE
M

E
N

T
IN

G
F

U
N

C
T

IO
N

A
L

JO
IN

S
1

0
7

R
OIDR SrefSet

r1 {b, e, c, g, i}
r2 {a, d, c, h, i}
...

...

- hM

�

N

OIDR Sref

R1

r1 b
r1 c
r2 a
r2 d
r2 c
...

...

R2

r1 e
r1 g
r1 i
r2 h
r2 i
...

...

;

;

A
d

d
re

ss

a
b
c
d

e
f
g
h
i

(Direct)
Map
Saddr

M1

6
2
3
7

M2

5
8
9
4
1 -

- hS

hS
-

N

�

N

OIDR Saddr

RM11

r1 2
r1 3
r2 3
...

...

RM12

r2 6
r2 7
...

...

RM21

r1 1
r2 4
r2 1
...

...

RM22

r1 5
r1 9
...

...

merge

merge

U

�

N

�
;

;

A
d

d
re

ss

1
2
3
4

5
6
7
8
9

S
OIDS S Attr

S1

i 17
b 11
c 19
h 13

S2

e 18
a 12
d 10
f 14
g 15

-

-

OIDR S Attr

RMS1

r1 11
r1 19
r1 17
r2 19
r2 13
r2 17
...

...

RMS2

r1 18
r1 15
r2 12
r2 10
...

...

merge
N

�

-

RMS
OIDR { S Attr }

r1 {11, 19, 17, 18, 15}
r2 {19, 13, 17, 12, 10}
...

...

Figure 10.2: An Example Application of the Partition/Merge-AlgorithmP(PM)∗M (; denotes the lookup of the functional join;
for simplicity, the handling of the additionalR attributeR Data is not shown)

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 108

Figure 10.3: The Partition/Merge-Pattern of theP(PM)∗M Algorithm

Having completed step 2., all theN ∗K partitionsRM11, . . . , RM1K , RM21, . . . , RMNK

are on disk.
3. For all1 ≤ j ≤ K do:

• Scan theN partitionsRM1j , . . . , RMNj simultaneously and merge them into a sin-
gle tuple stream. The merging is done to restore the grouping of the flatR tuples
according toR OIDs; that is, the merging generates the tuple stream [r1, . . .], . . . ,
[r1, . . .], [r2, . . .],

• For every tuple [r,Saddr] the functional join withS is performed by looking up theS
object at locationSaddrand the relevant information, hereS Attr, is retrieved. Insert
the tuple [r,S Attr] into partitionRMSj .

All S objects referenced in this step belong to thej-th partitionSj of S which is
prefetched or faulted into the buffer—again, the partitioning ensures that the entire
Sj fits into memory.

After completion of step 3., theK partitionsRMS 1,. . . ,RMSK are on disk.
4. Scan all partitionsRMS 1, . . . ,RMSK simultaneously and re-assemble the flat tuples into

the nested representation, i.e., group the tuples according toR-OIDs.

We note that the partition/merge-algorithm writes the (augmented)R to disk three times: (1) to
generate theN partitions of the probe input for the application of theMap, (2) to generate the
N ∗ K partitions after applying theMap, and (3) theK partitions obtained after joining withS.
The intermediateN ∗K-way partitioning and subsequentN-fold merging of theN ∗K partitions
into K partitions is the key idea of this algorithm. This way the grouping of the flattenedR
tuples is preserved across the two partitioning steps with different partitioning functionshM and
hS. Please observe that immediately distributing the objects into theK partitions after applying
the Map would have destroyed the grouping onR that we want to retain in every partition. It
is essential that the fine-grained partitions are generated first and that the re-merge is performed
afterwards, as highlighted in Figure 10.3.

In comparison, the partition/merge-algorithm induces the same I/O-overhead as the basic
flatten-algorithms of Section 10.2.1. However, the CPU cost of the partition/merge-algorithm
is far lower than for the basic flatten-algorithms because there is no in-memory re-grouping
involved. The flat tuples of the sameR object are always in sequential order in all the partitions—
it may only happen that some partitions do not contain any tuple. Furthermore, theP(PM)∗M-

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 109

algorithm gives room for optimizations based on the retained grouping that are not applicable to
other algorithms (cf. Section 10.2.5).

10.2.3 An Example of theP(PM)∗M-Algorithm

Figure 10.2 shows a concrete example application of theP(PM)∗M-algorithm with two partition-
ing steps. The tablesRi, RMij andRMSj are labelled by a disk symbol to indicate that these
temporary partitions are stored on disk.

We start with tableR containing two objects with logical OIDsr1 andr2—for simplicity, any
additionalR attributes are omitted. The set-valued attributeSrefSetcontains sets of references
(logical OIDs) toS. The first processing step flattens these sets and partitions the stream of
flat tuples. In our example, the partitioning functionhM maps{a, . . . , d} to partitionR1 and
{e, . . . , i} to partitionR2. The next processing step starts with readingR1 from disk, maps the
logical OIDs in attributeSref to object addresses using the portionM1 of theMap (note that the
Map is not explicitly partitioned) and in the same step partitions the tuple streams again with
partitioning functionhS (hS maps{1, . . . , 4} to partition 1 and{5, . . . , 9} to partition 2. The
resulting partitionsRM1j (here1 ≤ j ≤ 2) are written to disk. Processing then continues with
partitionR2 whose tuples are partitioned intoRM2j (1 ≤ j ≤ 2). Once again, let us emphasize
that the fine-grained partitioning into theN ∗ K (here2 ∗ 2) partitions is essential to preserve
the order of the flatR tuples belonging to the sameR object. The subsequent merge scans
N (here 2) of these partitions in parallel in order to re-merge the fine-grained partitioning into
theK partitions needed for the next functional join step. Skipping the fine-grained partitioning
into N ∗ K partitions and, instead, partitioningRM into theK partitions right away would not
preserve the ordering of theR tuples. In detail, the third phase starts with mergingRM11 and
RM21 and simultaneously dereferences theS objects referred to in the tuples. In the example,
[r1,2] is fetched fromRM11 and theS object at address 2 is dereferenced. The requested attribute
value (S Attr) of theS object—here 11—is then written to partitionRMS1 as tuple [r1,11]. After
processing [r1,3] from partitionRM11, [r1,1] is retrieved fromRM21 and the object address 1 is
dereferenced, yielding a tuple [r1, 17] in partitionRMS1. Now that all flattened tuples belonging
to r1 from RM11 andRM21 are processed, the merge continues withr2. After the partitionsRM11

andRM21 are processed,RM12 andRM22 are merged in the same way to yield a single partition
RMS2. As a final step, the partitionsRMS1 andRMS2 are merged to form the resultRMS. During
this step, the flat tuples [r,S Attr] are nested (grouped) to form set-valued attributes [r,{S Attr}].
If aggregation of the nestedS Attr values had been requested in the query, it would be carried
out in this final merge.

10.2.4 P(PM)∗M, Physical OIDs, Path Expressions

At first glance, repeatedly partitioning and re-merging appears unnecessary for systems employ-
ing physical OIDs where the intermediate join with theMap is not needed. In fact, in the simple
case of a one-step functional join the variantP(PM)0M is applied. However, the full-fledged
P(PM)∗M-algorithm is necessary if the query traverses a longer path expression. Consider, for

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 110

example, the following query where we want to group to eachCustomerthe set ofManufacturers
from which he or she has ever ordered goods:

selectc.Name, (selectl.ProductRef.ManufRef.Name
from c.OrderRefSeto, o.LineItemsl)

from Customersc

Here we assume additional typesCustomerandManufacturerwith the attributeName. Cus-
tomersrefer via a nested reference setOrderRefSetto the givenOrders. Manufacturersare
referenced fromProductsvia the reference attributeManufRef.

Another query would be to determine theCustomers’ aggregatedOrder volumes:

selectc.Name, (select sum(l.Quantity * l.ProductRef.Cost)
from c.Orderso, o.LineItemsl)

from Customersc

Let us, however, concentrate on the Manufacturer query. TheP(PM)∗M evaluation plans for
physical OIDs and logical OIDs are outlined in Figure 10.4 (a) and (b), respectively. Both plans
contain two unnesting operations to flatten theOrderRefSetand theLineItemssets, respectively.
When comparing the two plans, they differ mainly in the higher number of functional joins
needed for mapping logical OIDs. We assume differentMaps MapO, MapP , andMapM for
Orders, Products, andManufacturers, respectively. The plan based on physical OIDs draws
profit from the interleaved partition/merge (PM) steps in the same way as the one based on
logical OIDs, i.e., the grouping ofCustomers’ Ordersand theirLineItemsis retained across the
successive functional joins. Therefore, the final grouping operation is realized as a (very cheap)
merge, in both plans.

10.2.5 Fine Points of theP(PM)∗M-Algorithm

There are still some fine points in the design of theP(PM)∗M-algorithm that we have to address.

Obtaining an Order on R The algorithm requires an order on theR tuples for the merge
iterators. When comparing tuples from different partitions—e.g., [r2,6] from RM12 and [r1,5]
from RM22 in Figure 10.2—it has to be determined in what orderr1 andr2 were contained in
the originalR. If there is no such order given by the key onR, an additional sequence number
is inserted during the first “flatten and partition” step and used for the succeeding merge steps.
Note that all flattened tuples of oneR object are assigned the same sequence number.

Map Access For the first partitioning phase of theP(PM)∗M-algorithm the particular mapping
technique has to be taken into account. In general, a partitioning functionhM that achieves range
partitioning is favorable. For direct mapping and hash table mapping the difference between
range partitioning and “dispersed” partitioning is highlighted as follows:

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 111

M (group)

1;

PM

1;

PM

µ LineItems:l
1;

P

µ OrderRefSet:o
Customers

Orders

Products

Manufacturer

M (group)

1;

PM

1;

PM

1;

PM

1;

PM

µ LineItems:l
1;

PM

1;

P

µ OrderRefSet:o
Customers

MapO

Orders

MapP

Products

MapM

Manufacturer

Figure 10.4: Manufacturer Query Using (a) Physical and (b) Logical OIDs

(a) Dispersed Partitioning

M1 M2 M3 M1 M2 M3 M1 M2 M3

(b) Range Partitioning

M1 M1 M1 M2 M2 M2 M3 M3 M3

Range partitioning has two advantages: (1) Even if the pages of one partition are individually
faulted into the buffer, the disk accesses are all in the same vicinity. (2) Instead of demand
paging, range partitioning allows to prefetch the entire partition from disk, thereby transforming
random I/O into chained I/O. However, prefetching is only reasonable if (almost) all pages of the
Map are actually accessed in performing the OID mapping. In a system where the sameMap is
shared by many object types prefetching would not be reasonable.

Achieving range partitioning for direct mapping is quite simple given the range of pages in
theMapbecause every logical OID is composed of page identifier and slot within that page.

If a hash table mapping scheme is used, the same hash function has to be applied to the logical
OIDs and then the hashed values (containing the page identifier) can be range partitioned.

For a B+-tree mapping scheme prefetching a partition is only feasible if the pages of one
partition are physically adjacent which is typically not the case because of the dynamic growth
of the B+-tree. However, for OIDs that are sequentially generated the B+-tree may be built (or
reorganized) such that adjacent leaf pages are actually physically adjacent

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 112

Access toS Similarly to the partitioning step for theMap access, range partitioning is bene-
ficial in any following partitioning step if the accessed data structure is clustered and the query
engine has enough knowledge about the physical organization. If the partitioning function for
the access toS achieves range partitioning on the pagesS is stored on, the accesses toS objects
belonging to one partition are more localized. Furthermore, instead of faulting in each individual
page ofS, the whole range ofS that is used for a particular partition can be prefetched in large
chunks of sequential I/O.

Full Unnesting vs. Retaining Sets The P(PM)∗M-algorithm as described above flattens the
SrefSetattribute to a single-valued attributeSref. Instead of fully unnestingSrefSet, it is also
feasible to keep the set intact as much as possible, i.e., the partitioning operators split the set
into subsets each of which containing those elements that belong to the same partition. That
is, for every objectr ∈ R there is at most one tuple in every partition. This tuple contains a
nested set containing those references belonging to the particular partition. For example, the first
partitioning operator gets the complete setSrefSetas input and partitions it into at mostN tuples
and at most one tuple per partition, each of which again contains a set-valued attribute. Referring
to the example in Figure 10.2, the firstR object [r1,{b, e, c, g, i}] would be split into [r1, {b, c}]
(written to partitionR1) and [r1, {e, g, i}] (written toR2).

This approach avoids multiple flat tuples for the sameR object in the same partition; thus it
is most beneficial for larger setsSrefSet, for small partitioning fan-outs and for non-uniformly
distributed references. Of course, keeping the sets requires higher implementation effort. The
query engine has to offer “set-aware” variants of some iterators: The partitioning iterator must
be capable of splitting nested sets, and the join iterators must iterate through all elements of
the nested sets. Our query engine—described briefly in Section 11.1—is capable of processing
nested sets.

Projecting R Attributes If “bulky” attributes ofR are requested in the result, they may severely
inflate the amount of data that is written three times to partition files. To reduce this effect, sev-
eral measures can be taken: First, the replication of attributes during flattening is unnecessary.
Instead, for everyri ∈ R the attributes are written only once. Second, since the algorithm retains
the order ofR, the attributes could be projected out and merged in later for the final result. In
contrast to the value-based join and the standard flatten-algorithm, the re-insertion ofR attributes
is in fact very cheap, since bothR and the result have the same order and theR attributes are
simply handled as an additional—(K +1)-st—input stream of the last merge operator. If the sec-
ond scan onR would be expensive (e.g., because of high selectivity onR), the bulky attributes of
the qualifyingR objects might be saved in a temporary segment during the initial scan for reuse
in the final merge.

Early Aggregation If aggregation is requested on the result sets in addition to grouping, the
aggregation can be folded such that it is already applied to the subgroups belonging to the same
R object before they are written toRMSj. This may result in storage savings forRMSj . During
the final merge, the intermediate aggregation results are then combined. This is easily achieved

CHAPTER 10. IMPLEMENTING FUNCTIONAL JOINS 113

for the aggregationssum, min, max, countwhich constitute commutative monoids [GKG+97]—
i.e., operations that satisfy associativity and have an identity. For, e.g.,avgmore information has
to be maintained to enable early aggregation.

Buffer Allocation The algorithm consists of several consecutive phases, each of which stores
its intermediate results entirely on disk. This simplifies database buffer allocation, since the
memory available to the query can be allocated exclusively to the current phase. The four phases
may be easily derived from the example in Figure 10.2: They are delimited by the three sets of
partitionsRi, RMij, andRMSj that are stored on disk. Consequently, the four phases are: (1)
initial processing ofR ending with the first set of partitionsRi, (2)Map lookup, (3) dereferencing
S, and (4) final merge. For phases (2) and (3), the major amount of memory is allocated to
cache theMap andS, respectively, and only a small amount is allocated to input and output
buffers for the partitions. Summarizing, theP(PM)∗M algorithm is very modest in memory
requirements; that is, because of its phased “stop and go”-approach and since it does not require
a costly grouping, it tolerates small main memory sizes very well whereas other algorithms easily
degrade if main memory is scarce in comparison to the database size.

Chapter 11

Evaluation of Functional Join Algorithms

In order to show the benefits of ourP(PM)∗M algorithm, we implemented the algorithm in a
prototype of an object-oriented database system. We compare our algorithm with other join
implementations for functional joins which are also implemented in our prototype. Futhermore,
we compare these results with measurements for corresponding tests on a commercial object-
relational database system. For a broader analysis of functional join algorithms we use a detailed
cost model in order to compare the alternative implementations of functional joins under varying
scenarios.

11.1 Proof of Concept

To compare the evaluation algorithms, we have implemented them in our iterator-based query
engine. In this section we will first outline the implementation of theP(PM)∗M-algorithm and
then describe a few performance measurements we have taken with our query engine.

11.1.1 Partition/Merge-Implementation

Our query engine is based on the iterator model [Gra93] and is implemented in C++. Figure 11.1
gives an outline of the implementation of ourP(PM)∗M-algorithm. The dashed boxes indicate
the new special-purposePM-operators that are composed of two “off-the-shelf” iterators. For
the basic functional join fromR to S alongSrefSet, processing starts with a scan ofR, applying
an optional selection predicate and projecting out unwanted attributes, but keeping at least the
set-valued attributeSrefSetof R and a key forR. SrefSetis then flattened by the unnest operator
µ yielding tuples with single-valued attributeSref. The first partitioning iteratorPN partitions the
input intoN partitions based on a partitioning functionhM—as introduced before. The second
half of the iterator scans the partitions one at a time and passes the tuples to the functional join
with theMap, probing every logical OID inSref against theMapand replacing it by the address
Saddr. The partition size and the partitioning functionhM are chosen depending on the OID
mapping technique such that theMap lookup can be evaluated in memory (see Section 10.2.5).
The join output is directly fed into the next partitioning operatorPMNK . This time the physical

114

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 115

Aggr

merge
MK

cache

K foldY
* RMSj

1;

S

�next partition

merge

partition

N foldY
* RMij
N ∗ K way

PMNK

1;

Map

�next partition

scan

partition

Y
* Ri

PN

N way

µ

R

Figure 11.1:P(PM)∗M-Implementation

OIDs, now stored inSaddr, serve as partitioning key, and each of theN input partitions obtained
from the prior join is split intoK output partitions yielding totallyN ∗ K partitions stored on
disk. The dotted arrow betweenPN andPMNK symbolizes a communication channel that tells
PMNK to start a new set of partitions each time an input partition has been completed. Instead
of processing allN ∗ K partitions consecutively, we first re-merge thoseN partitions referring
to the same partition ofS objects. That is, we merge one matching subpartition from each of
the initial N partitions, yieldingK partitions as output of the merge operator. Each of theK
partitions is then in turn joined withS and the join result is again written to a partition file by
an operator called “cache.” In a final step, theK partitions are merged to form a single output
stream. If we projected out some “bulky”R attributes that are needed in the final result, we
would very cheaply re-merge this information in this final merge by simply addingR (or the
temporary segment containing the projected data ofR) as the(K + 1)-st merge stream to the
merge operator. If required, an aggregation is performed on the result, as indicated by “Aggr.”
Note that since the order ofR is retained, the result is already grouped by the key ofR such that
only the aggregation function itself (likesum) has to be computed.

11.1.2 Benchmark Setup

The benchmarks were performed on a Sun SparcStation 20 running under Solaris 2.6. The
database was held on the operating system disk together with the database system, and another
disk was used for temporary files. In order to avoid side effects because of file system caching,
the direct I/O option was turned on for all file accesses. Thus, we ensured thateachfile access of
the database system definitely caused disk I/O and could not be satisfied from the OS file system

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 116

cache. This is especially important for our first experiments on the small database. Writing the
result tuples to display/file was suppressed for all queries—also the relational ones (see below).

The database buffer cache was segmented and configured according to the optimizer (cost
model) estimation individually for each query plan. For the run time experiments, the total
amount of cache available to a query did not exceed 2 MB at any time. Direct mapping was
employed to resolve logical OIDs.

We restrict ourselves to the query with aggregation given in Section 10.2. For the query
without aggregation, the final aggregation operator would be replaced by a grouping operator.
Since for eachR object the complete group ofS Attr had to be conserved instead of a single
aggregation result, all algorithms requiring an explicit grouping, i.e., the flatten-algorithms and
the value-based join, would become even more expensive, whereas the algorithms that retain the
initial grouping would not suffer much from the larger result.

We have tried to evaluate the query on a commercial relational DBMS with object-relational
extensions (O/RDBMS).1 For this purpose, we have created types and tables as described in
Section 10.2. The references were scoped, i.e., they were constrained to point only to a single
table (S) using the SQL3-likescopeclause. However, the query crashed after a few hours with
DBMS errors for our initial (larger) database, such that we had to fall back to a smaller database
in order to get any results for comparison. The cardinalities of both the small and the larger
database are given in Table 11.1. The references inSrefSetwere distributed uniformly over the
full extent ofS.

The O/RDBMS was installed on a faster machine (SS20 with CPUs clocked 50% higher
and faster disks) and configured with 2 MB buffer—as in our other setup. For comparison,
we have also used the same commercial O/RDBMS for a pure (flat) relational representation
without using references and nested sets. In this schema, the reference setSrefSethas been
omitted and an additional tableRShas been created to implement the association betweenR
andS. Consequently, theRS table contained|R| ∗ 10 rows. To compensate for the lacking
OIDs, the tablesR andS were extended to contain additional integer (key) attributesR keyand
S key, respectively. Tuples ofR andS had a size of 204 byte each—the smallerR tuple size in
comparison to theR object size of 348 bytes is due to the missing nested reference set in the
pure relational schema. The tableRScontained only the two attributesRSRkeyandRSSkeythat
served as foreign keys forR andS, respectively. The following query, which (apart fromR key)
yields the same result as the object-relational one, was measured:
selectr.R key, r.R Data,sum(s.S Attr)
from R r, Ss, RSrs
where rs.RS Skey =s.S key and rs.RS Rkey =r.R key
group by r.R Key, r.R Data

11.1.3 Comparison of Measured Running Times

We have created both databases described in Table 11.1 on our prototypical OODBMS and im-
plemented all algorithms described in the previous section. For the plans either a cheap “stream”

1Our license prohibits to identify the particular product.

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 117

database |R| |S| |SrefSet| R pagesS pages
small 10000 10000 10 994 667
larger 100000 100000 10 9933 6667

databaseMappagesR object sizeS object size
small 61 348 228
larger 591 348 228

Table 11.1: Database Cardinalities

aggregation algorithm (only calculating the sum) was employed if the grouping onR was re-
tained (P(PM)∗M and naive) or a hash aggregation was used if the initial grouping has been
destroyed (sort, partition and value-based plans). The value-based plan was implemented using
a hybrid hash join withS as build input. For theP(PM)∗M-algorithm, some of the optimizations
described in Section 10.2.5 were implemented: The sets were retained (no full unnesting), range
partitioning was applied for the access toS, and the bulkyR Data attribute was projected out
and re-merged in the final step.

Table 11.2 gives an overview of the observed run times for all algorithms. For comparison,
the predictions of our cost model (cf. Section 11.2) are also shown. Furthermore, the run times
of the queries on the O/RDBMS are given for two variants: (1) based on the object-relational
schema of Section 10.2 with the nested reference setSrefSetand (2) on the pure flat relational
schema with the additional tableRS.

The value-based join performs quite well on the small database since the build input (S) is
projected to contain only two attributes, the OID andS Attr. It is, however, not cheaper than the
P(PM)∗M-algorithm since the final hash aggregation causes additional cost that does not occur
in theP(PM)∗M plan. On the larger database, it can no longer keep its complete build input in
memory and, as a consequence, has to perform an expensive hash aggregation. When comparing
theP(PM)∗M run time to the naive algorithm, there is a performance gap of more than an order
of magnitude: On the larger database, the absolute run time of the naive algorithm amounts to
more than fivehours, while ourP(PM)∗M-algorithm requires only less than fiveminutes. The
P(PM)∗M-algorithm also outperforms all the flatten-algorithms, though not as drastically as the
naive pointer chasing algorithm. The sort-based flatten plan suffers from high CPU cost for
sorting and small run files due to the restricted amount of memory.

For the object-relational schema, the commercial O/RDBMS shows an even worse perfor-
mance than the naive algorithm. On the other hand, the query on the flat relational schema takes
reasonable run time, although for the larger database still more than twice as much asP(PM)∗M
(in spite of the faster host for the O/RDBMS).

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 118

small database
method our cost commercial O/RDBMS

prototype model with ref. sets flat rels w/o refs
naive 356 461
flatten/partition 125 136
flatten/sort 140 168




1110
value-based 40 56 51
P(PM)∗M 29 34

larger database
method our cost commercial O/RDBMS

prototype model with ref. sets flat rels w/o refs
naive 14893 18219
flatten/partition 1868 2029
flatten/sort 4874 5432




−
value-based 1811 1389 721
P(PM)∗M 289 295

Table 11.2: Run Times in Seconds (2 MB Memory, avg.|SrefSet|=10, Direct Mapping)

11.2 Analytical Evaluation

In this section, we first present the basics of a cost model which was used to assess functional
join algorithms for different scenarios. Thus, this cost model is used as vehicle for a broader
analysis. The remainder of this section provides analyses which were conducted with this cost
model. Unless stated otherwise, these analyses are based on the larger database as described
in Table 11.1. Similarly, the default configuration was chosen as before, i.e., 2 MB of memory
was available and logical OIDs were resolved using direct mapping. The labels of the plots are
constructed from two parts, the first one describing the access method to theMap, the second
part describing the access to theS extent. The access methods are: no partitioning (N), i.e.,
directly chasing each individual pointer, partitioning (P) and merging (M), and sorting (S). The
value-based hash join does not fit into this classification and is simply labelled “hashjoin.”

11.2.1 The Cost Model

The design of our cost model is strongly influenced by the structure of modern query engines
implementing the iterator model. This means that cost estimations are calculated on a per iterator
basis. I/O costs are modeled according to [HCLS97] and the CPU operation assumptions are
mostly based on [PCV94] and [HR96]. Our cost model contains extensions to deal with set-
valued attributes and our newP(PM)∗M algorithm. The cost formulae model disk I/O quite
precisely by means of differentiating between seek, latency, and transfer time. As a consequence,
we are able to grasp the difference between sequential and random I/O and the influence of the

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 119

TS average seek time 10.2 ms
TL average latency time 5.54 ms
TT transfer time for a page (4 KB) 1.7 ms
TIO time to initiate an I/O operation 1.21 ms
Thash time to execute a hash function0.285 ms
Tadd time to add two integers 0.00719 ms
Tprobe time to test a hash table 0.02339 ms
Tcopy time to copy a byte 0.000115 ms
Tcomp time to compare two OIDs 0.00719 ms

Table 11.3: Parameters Describing the Hardware

PR number of pages in tableR (equivalently for
RM andRMS)

|R| cardinality of tableR
r average size of anR object
b read/write buffer size (in pages)
N number of partitions
|SrefSet | average number of elements in the nested

reference set

Table 11.4: Variables Used in the Cost Model Formulae

transfer block size. In modeling the CPU costs, we have included those operations that have
major influence on CPU time, e.g., sorting, hashing, buffer management (page hit/page fault)
and iterator calls.

For ease of presentation, we only describe the cost formulae of the iterators needed for im-
plementing the partition/merge algorithm as shown in Figure 10.2. That is, we only present the
formulae for direct mapping and if range partitioning on the references to theMap andS and
prefetching for reading these sets into main memory are used. For other strategies other formulae
apply. We would like to emphasize, however, that we did use the right formulae in order to obtain
performance results.

The cost model parameters for modeling the CPU and I/O costs are described in Table 11.3.
Note that the constants regarding CPU costs include all instructions related to the operations,
e.g.,Tcomp involves pointer arithmetics etc. and not only a single CPU instruction. The cost
model variables that describe characteristics of the database are described in Table 11.4.

Analysis of I/O Cost

TheP(PM)∗M algorithm with the above mentioned premises has very similar I/O access patterns
throughout all its phases. Therefore, we describe the patterns and list the phases in the algorithm
where the pattern shows up. In the cost formulae it is assumed that no inter-operator interference

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 120

occurs. The number of additional seeks caused by interference would be calculated separately
and added to the cost of the algorithm. Up to now we are only able to model interference if just
one disk is used at all. In our benchmarks, however, we used two disks and—although three disks
would be necessary to avoid all interference effects in the investigated algorithms—we decided
to neglect interference. Furthermore, we assume constant seek times here.

Reading from Disk We denote the number of pages read in one I/O operation asb. The merge
operator uses a buffer ofb pages for each input partition. The cost for readingRM (and also
analogously for readingRMS) by the merge operator is then given by the following formula:

⌈
PRM

b

⌉
· (TS + TL + TIO) + PRM · TT

For the initial reading ofR the cost can be computed as:

TS +
⌈
PR

b

⌉
· (TL + TIO) + PR · TT

For the scan operator reading the first set of partitionsRi (1 ≤ i ≤ N) we get:

N · TS +
⌈
PR

b

⌉
· (TL + TIO) + PR · TT

HereN is the number of partitions generated by the preceding partition operator. For the join
operator2 the same formula can be used, except thatR has to be replaced byMap or S, respec-
tively.

Writing to Disk We use the same variableb for the buffer size as before. The cost for the write
operations of the partition iterator for partitioningR (and also analogously for partitioningRM)
can be computed by the following formula:

⌈
PR

b

⌉
· (TS + TL + TIO) + PR · TT

The cache iterator which is applied onRMSproduces smaller cost with its writing operations:

TS +
⌈
PRMS

b

⌉
· (TL + TIO) + PRMS · TT

Analysis of CPU Cost

Again the actions consuming CPU time are listed together with their cost formulae and the iter-
ators performing those actions.

2The join operators readMapandS.

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 121

Copying of Elements The cost formula for copying all elements of a setX in main memory:

|X| · x · Tcopy

The smallx denotes the size of an element in a setX ∈ {R, RM, RMS}. This action is performed
by all the iterators writing temporary sets to disk, especially the partition and the cache iterator,
and by operators using in-memory working areas like sort and hash.

Comparing Elements The merge iterator has to compare sequence numbers attached to each
element for detecting those stemming from the same element of an initial input set. The cost for
such an operation is:

|R| · |SrefSet| · log2 (N) · Tcomp

Here the variableN denotes the number of partitions merged into one partition by the merge
iterator. Since the ordering of elements is done by a tournament tree, we only have to perform
log2 (N) comparisons for each element inR.

Computing Hash Functions For each join attribute in its input set, the partition iterator has to
call a hash function:

|R| · |SrefSet| · Thash

Performing Aggregation For each element inR we have to add an integer value for every
element in the nested set:

|R| · |SrefSet| · Tadd

Testing the Buffer Each join iterator in a partition/ merge algorithm uses a buffer for reading
S andMap. For each join attribute in the setR the join iterator has to look up the buffer for the
appropriate page. We assume that this look up is done by accessing a hash table. Then the cost
can be computed by:

|R| · |SrefSet| · Tprobe

11.2.2 Varying the Memory Size

The running times of the various algorithms under varying memory sizes are reported in Fig-
ure 11.2. The NN plan using (naive) pointer chasing both forMap lookup and dereferencing
S does not even show up in the plot due to its running time of 6’20 hours for 1 MB to 4’10
hours for a 6 MB buffer. The NS query still uses naiveMap lookup, but sorts the physical OIDs
before accessingS. When comparing NS with SS, sorting the flattenedR tuples for theMap
lookup does not pay off because theMap is smaller than 2 MB (For 1 MB the sort-based plans
are out of the range of the curve because for such small memory configurations they need several
merge phases.) Both sort variants suffer from high CPU costs for sorting. The partition plan
PP yields already significantly better performance than sort-based plans for small memory sizes.
The performance advantage of partitioning over sorting for small memory sizes is due to the large

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 122

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

NN
NS
SS

NPM
PP

PPMM
hashjoin

Figure 11.2: Cost Model Results for Larger Da-
tabase (Direct Mapping,|SrefSet|=10)

0

50

100

150

200

250

300

350

0.01 0.05 0.1 0.5 1 10 20 40 80

C
os

t (
se

c)

% of selected R objects

NN
PPMM

hashjoin (S build input)
hashjoin (R build input)

Figure 11.3: Selection onR (Direct Mapping,
|SrefSet|=10, 2 MB Memory)

number of run files generated for sorting. The value-based hash join performs even better than
PP, but is still quite costly compared to the winners PPMM (=P(PM)1M) and NPM (=P(PM)0M).
The latter one omits the first partitioning step and shows poor performance for very small mem-
ory sizes. For 2 MB and larger, the two plans have the same running time since PPMM uses
only one partition for theMap access anyway and, therefore, coincides with NPM. The most
impressive result of this curve is that theP(PM)∗M-algorithm tolerates very small memory sizes
under which all other algorithms degrade.

11.2.3 Varying the Selectivity onR

In Figure 11.3 the percentage ofR objects taking part in the functional joins is varied on the
(logarithmically scaled)x-axis. For a small number ofR objects, most pages of theMap are
hit at most once and some pages ofS are not referenced at all, such that one might expect a
break-even point betweenP(PM)∗M and the naive algorithm. However, for a high selectivity
(e.g., 0.01% corresponding to 10R objects) they have nearly the same running time. That is,
even if there are only very few references to be resolved, there is no significant overhead induced
by our P(PM)∗M-algorithm. On the other hand, the naive algorithm very quickly degrades if
the number of references to be mapped increases. Furthermore, we have plotted the value-based
hash join with two configurations, using eitherR or S as build input. Both variants are, however,
worse thanP(PM)∗M over the full selectivity range, and for a small number ofR objects they
are—due to the fix cost for the hash join and hash aggregation—even worse than the naive plan.

11.2.4 Varying the Set Cardinality

In the previous experiments, the number of elements inSrefSetwas constantly 10. Figure 11.4
shows running times of the algorithms with different set sizes. While theP(PM)∗M-algorithm
scales linearly, the running times for all others explode. The flatten variants behave poorly. The
naive plan suffers from an enormous amount of random I/O (up to50 ∗ 100, 000 references,

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 123

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

C
os

t (
se

c)

references per R object

NN
NS
SS
PP

PPMM
hashjoin

Figure 11.4: Varying the Cardinality ofSrefSet
(2 MB Memory, Direct Mapping)

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

NPM,100000
PPMM,100000

NPM,200000
PPMM,200000

NPM,500000
PPMM,500000
NPM,1000000

PPMM,1000000

Figure 11.5: Inflating the OIDMap under Vary-
ing Memory Sizes (Direct Mapping)

calculated running time of roughly 25 hours and is therefore not shown) and the flatten plans
suffer from large temporary files.

11.2.5 Inflating the OID Map

So far we assumed a distinctMap for theS objects which, as a consequence, is perfectly clus-
tered. In the following experiment, we analyze the behavior ofP(PM)∗M-algorithms for not-so-
well clustered OIDMaps, as they may occur if there is one global OIDMap or if only a small
fraction ofS is referenced, e.g., because of a selection onR. The OIDMap for S—previously
containing 100,000 entries—has been inflated by inserting unused entries—uniformly distributed
over all pages of theMap—to contain up to one million entries. The NPM and PPMM queries
have been run on the standard database (100,000 objects ofR andS each, 10 elements inSref-
Set) with different amounts of memory available. The legend of Figure 11.5 indicates the size of
theMap (100000,. . . , 1000000). The smallest symbols denote the configuration that was used
in Figure 11.2, i.e., theMap was optimally clustered. For largerMaps, the PPMM plan shows
only a slight running time increase, caused by the inevitably higher number of I/O accesses to
the largerMap. However, eachMap page is fetched from disk only once, since the number of
partitions in the first partitioning step is adapted such that one partition of theMapcan be cached
in memory. On the other hand, NPM cannot cope with largerMapssince it induces an enormous
number of page faults as long as theMapdoes not entirely fit into memory.

Figure 11.6 compares theP(PM)∗M-algorithm with the value-based hash join in an extreme
scenario: The set-valued attributeSrefSetcontains only three references on average and theMap
is inflated to contain one million entries—of which 900,000 are obsolete. The number ofR
andS objects remains at 100,000, respectively. This set-up favors the value-based hash join
extremely, since it does not use theMap anyway. Furthermore, the hash join draws profit from
larger amounts of memory in a larger scale thanP(PM)∗M because of the projection onS: The
(projected)S that serves as build input for the hash join can be kept in memory for large memory
configurations (beyond 4 MB) such that the join is an in-memory operation. On the other hand,

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 124

0

100

200

300

400

500

600

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

PPMM
hashjoin

Figure 11.6: Value-Based vs.P(PM)∗M Pointer
Join: |SrefSet|=3, Direct Mapping, 1,000,000
Map Entries

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

C
os

t (
se

c)

Memory (MBytes)

PPMM, DM
PPMM, BT
PPMM, HT

Figure 11.7: Comparison of Different OID Map-
ping Techniques: DM, BT, and HT, all with
P(PM)∗M-Algorithm

the P(PM)∗M-algorithm loads and keeps theS pages in their entirety in memory. Since the
wholeS extent of ca. 26 MB still does not fit in memory, the additional memory does not avoid
a partitioning step ofP(PM)∗M and the flattenedR must still be written to disk partitions.

11.2.6 Comparing Different OID Mapping Techniques

Figure 11.7 compares the three OID mapping techniques that we have discussed in Section 10.1.2
for our application, i.e., in combination with theP(PM)∗M-algorithm. Both B+-tree (BT) and
hash table mapping (HT) show two performance steps. The first step occurs when increasing
memory from 1 MB to 2 MB. Here, the scan and merge operators reach their optimal amount of
memory. The second step occurs when theP(PM)∗M-algorithm omits the first partitioning phase
since the OID mapping structure can be completely cached in memory. Since the total size of
the B+-tree is smaller than that of the hash table,3 this point is reached with a smaller memory
size for the BT curve. In addition, BT is generally more expensive due to higher CPU cost for
the tree lookup. The direct mapping (DM) approach is the cheapest: The first partitioning step
can already be omitted at a memory size of 2 MB due to the compact representation of theMap.
Furthermore, the compact storage of the (direct)Map reduces the total number of I/O calls. In
addition, the CPU overhead for a singleMap lookup is cheaper for DM than for the other two
mapping techniques.

11.2.7 Logical OIDs in Comparison to Physical OIDs

So far, we have assessed our algorithms for different scenarios using logical OIDs. Next, we
turn to physical OIDs. This simplifies all algorithms since the extraMap lookup operation is
omitted. Thus, the algorithms are no partitioning (N), sorting (S), partitioning (P), andP(PM)0M

3Due to prefix compression and a specialized splitting procedure [EGK95] the B+-tree contains more entries per
page than the hash table.

CHAPTER 11. EVALUATION OF FUNCTIONAL JOIN ALGORITHMS 125

0

500

1000

1500

2000

1 2 3 4 5 6

C
os

t(
se

c)

Memory(MBytes)

NPM
PPMM

hashjoin
N
S
P

PM

Figure 11.8: Physical OIDs vs. Logical OIDs
with Direct Mapping

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5
% of forwards in S

PPMM
S
P

PM

Figure 11.9: Effect of Forwards

(labelled PM). The value-based hash join is independent of the underlying OID realization. For
comparison, Figure 11.8 additionally includes the NPM and PPMM plans for logical OIDs real-
ized with direct mapping. The naive plan does not show up in the plot since it ranges between
four and five hours. The running time for the partition plan P is similar to the value-based hash
join while the sort-based query performs still significantly worse. Not surprisingly, the PM plan
performs slightly better than theP(PM)∗M plan for logical OIDs. However, the additional cost
of theMap lookup is kept at a low level. For example, for 3 MB of memory the PM plan was
only 14% cheaper thanP(PM)∗M.

While physical OIDs are definitely advantageous on a “clean” database, they incur a severe
performance penalty in the presence of forwards. We have created a varying percentage of for-
ward references (0% to 5%) in theS extent. Figure 11.9 shows that the sort-based plans are fairly
robust against forwards—although at a high cost level—because they “hit” the same forwarded
object consecutively whereas the multiple hits of the forwarded object are non-consecutive for
partition-based plans. Therefore, sort-based plans need to allocate only one additional page for
loading the currently “active” forwarded object whereas partition-based plans need to allocate
more buffer for a partition containing forwards. P and PM behave similarly (the lines are par-
allel), such that partition/merge retains its advantage. For comparison, the PPMM plan under
logical OIDs is also shown. Evidently, even for very low levels of forward references (e.g., 1%)
logical OIDs are superior to physical OIDs.

Chapter 12

Conclusions

We presented the architecture of a new kind of data integration system which represents the
blueprint of the ObjectGlobe system, an open, distributed and secure query processing system
targeted for data integration. The goal of the ObjectGlobe architecture is to establish an open
marketplace in which data, function, and cycle providers canoffer/selltheir services, following
some business model which can be implemented on top of ObjectGlobe.

ObjectGlobe provides the technology for a global data integration system which should make
proprietary small-scale data integration systems unnecessary. The overall efforts for data inte-
gration will be reduced by such a global system since the integration of different data sources has
to be performed once and not for every data integration system again. Furthermore, the system
supported classification of providers in cycle, data and function providers facilitates a division of
work which is a prerequisite for an Internet-wide scalability. Consequently, users and providers
can benefit from the resulting synergy effects. Providers can concentrate on their fields of exper-
tise and need not care about the provision of the remaining services which are necessary for a
complete query execution. Users profit from query executions which can request services from
a broad range of providers.

Techniques to enable such a global data integration system were developed in this work.
Our lookup service defines vocabularies for the registration data for all kinds of providers. This
meta-data covers all the information necessary to consider the respective service for an automatic
composition in a query execution. The query parser extracts relevant meta-data from the lookup-
service according to the specification of a query. The optimizer then compiles query evaluation
plans which contain all the necessary processing information in order to access the services of
selected providers. The number of cycle and data providers in our system can get rather large and
therefore, a cluster tree guides the selection of these providers during optimization. The cluster
tree contains condensed information about the network neighbourhood of providers and thus it
supports the construction of compact QEPs with low network costs. We also showed that the
cluster tree can be used to further determine the structure of a QEP which results in a reduced
overall response time of resulting query executions. We also showed, how the annotations in a
QEP are used to instantiate and distribute a query in our system.

Besides the techniques which provide the functionality of the system, we also eliminated
some obstacles which could cause that providers and users are not interested in using our system.

126

CHAPTER 12. CONCLUSIONS 127

For providers, security concerns have to be taken into account. Authentication and authorization
techniques are supplied to protect their services from unauthorized usage. Furthermore, data and
function providers can specify restrictions on the cycle providers which are allowed to see their
data or code. Cycle providers use an extended sandbox which protects their machines against
malicious code which could be loaded from function providers.

On the user side, the effects of query executions must be foreseeable and also manageable.
Therefore, we presented extensions for the query optimization, query plan instantiation and query
plan execution phases of our query processor in order to support user-defined QoS constraints
for queries. One of the main challenges here is that a query uses resources and services of
independent and autonomous providers for CPU cycles, data and functions. Based on statistics
about providers the optimizer constructs a plan which combines the services of selected providers
in a way, that its quality estimates are compliant with the user-defined quality constraints. For
each requested service, necessary resource requirements and quality constraints are annotated
in the plan and these are monitored during query plan instantiation and execution. If a service
quality forecast misses these constraints a fuzzy controller tries to reestablish the constraints
by the use of adaptations. In many cases an adaptation claims additional resources which are
not used by other queries at that time, in order to react to a predicted quality violation. If no
adaptation can be applied, the query is aborted.

Processing functional joins effectively is a key to good performing data integration systems.
Each data source which only accepts point queries has to be accessed by a functional join im-
plemented by the corresponding wrapper. A consequent usage of the nested data models which
are mainly used for data integration system, will very often require that these functional joins get
their arguments from nested sets. We have developed a new algorithm calledP(PM)∗M that is
based on successively partitioning and merging. This algorithms retains the grouping given by
the nested sets within the partitions and restores the overall grouping by efficient merge opera-
tions. Our prototype implementation and the quantitative assessment based on a cost model have
proven that the algorithm is superior to other methods.

Bibliography

[AC99] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building histograms
without looking at data. In SIGMOD [SIG99], pages 181–192.

[ACH98] C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of QoS architectures.
Multimedia Systems Journal, 6(3):138–151, 1998.

[AH00] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing.
In SIGMOD [SIG00], pages 261–272.

[ANS92] Database language SQL. Document ANSI X3.135-1992, 1992. Also available as:
International Standards Organization Document ISO/IEC 9075:1992.

[AZ96] G. Antoshenkov and M. Ziauddin. Query processing and optimization in Oracle
RDB. VLDB Journal, 5(4):229–237, 1996.

[BCK98] R. Braumandl, J. Claussen, and A. Kemper. Evaluating functional joins along
nested reference sets in object-relational and object-oriented databases. In VLDB
[VLD98], pages 110–121.

[BCKK00] R. Braumandl, J. Claussen, A. Kemper, and D. Kossmann. Functional join pro-
cessing.The VLDB Journal, 8(3-4):156–177, 2000. Invited Contribution to the
Special Issue “Best of VLDB 98”.

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources.ACM SIGMOD Record, 28(1):54–59, March
1999.

[Bel52] R. Bellman. On the theory of dynamic programming. InProceedings of the Na-
tional Academy of Sciences, volume 38, pages 716 – 719, Washington, D.C., 1952.

[BG99] D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema
Specification. Proposed Recommendationhttp://www.w3.org/TR/PR-
rdf-schema , WWW-Consortium, March 1999.

[BJS99] E. Bertino, S. Jajodia, and P. Samarati. A flexible authorization mechanism for
relational data management systems.ACM Transactions on Information Systems,
17(2):101–140, 1999.

128

BIBLIOGRAPHY 129

[BK89] E. Bertino and W. Kim. Indexing techniques for queries on nested objects.IEEE
Trans. Knowledge and Data Engineering, 1(2):196–214, 1989.

[BKK99] R. Braumandl, A. Kemper, and D. Kossmann. Database patchwork on the Internet
(project demo description). In SIGMOD [SIG99], pages 550–552.

[BKK +01a] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam, and
K. Stocker. ObjectGlobe: Ubiquitous query processing on the Internet.The VLDB
Journal: Special Issue on E-Services, 10(3):48–71, August 2001.

[BKK +01b] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, S. Seltzsam, and K. Stocker.
ObjectGlobe: Open Distributed Query Processing Services on the Internet. pages
64–70. March 2001.

[BLR98] K. S. Beyer, M. Livny, and R. Ramakrishnan. Protecting the quality of service
of existing information systems. InProceedings of the 3rd IFCIS International
Conference on Cooperative Information Systems, New York, USA, August 1998.

[BMCL94] K. P. Brown, M. Mehta, M. J. Carey, and M. Livny. Towards automated perfor-
mance tuning for complex workloads. In VLDB [VLD94], pages 72–84.

[BP95] A. Biliris and E. Panagos. A high performance configurable storage manager. In
Proc. IEEE Conf. on Data Engineering, pages 35–43, Taipeh, Taiwan, 1995.

[BSG00] Tom Barclay, Donald R. Slutz, and Jim Gray. Terraserver: A spatial data ware-
house. In Chen et al. [SIG00], pages 307–318.

[C+95] M. Carey et al. Towards heterogeneous multimedia information systems. In
Proc. of the Intl. Workshop on Research Issues in Data Engineering, pages 124–
131, March 1995.

[CCI88] CCITT International Telegraph and Telephone Consultative Committee. The Di-
rectory. Technical Report Recommendations X.500, X.501, X.509, X.511, X.518-
X.521, CCITT, 1988.

[CD99] L. Cardelli and R. Davies. Service combinators for Web computing.IEEE Trans.
Software Eng., 25(3):309–316, May 1999.

[CDF+94] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D. Schuh,
M. Solomon, C. Tan, O. Tsatalos, S. White, and M. Zwilling. Shoring up persistent
applications. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
383–394, Minneapolis, MI, USA, May 1994.

[CHS99] Francis Chu, Joseph Y. Halpern, and Praveen Seshadri. Least expected cost query
optimization: An exercise in utility. InProc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 138–147, Philadelphia, Pennsylvania,
USA, May 1999. ACM Press.

BIBLIOGRAPHY 130

[CK98] M. Carey and D. Kossmann. Reducing the braking distance of an SQL query
engine. In VLDB [VLD98], pages 158–169.

[Cod70] E. F. Codd. A relational model for large shared data banks.Communications of
the ACM, 13(6):377–387, 1970.

[CS96] S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates.
In VLDB [VLD96], pages 87–98.

[CSL+90] M. J. Carey, E. Shekita, G. Lapis, B. Lindsay, and J. McPherson. An incremental
join attachment for Starburst. In VLDB [VLD90], pages 662–673.

[CZH+99] S. Czerwinsky, B. Zhao, T. Hodes, A. Joseph, and R. H. Katz. An Architecture
for a Secure Service Discovery Service. InProc. of ACM MOBICOM Conference,
pages 24–35, Seattle, USA, August 1999.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0.ftp://ftp.isi.edu/
in-notes/rfc2246.txt , January 1999.

[DLM93] D. DeWitt, D. Lieuwen, and M. Mehta. Parallel pointer-based join techniques
for object-oriented databases. InProc. of the Intl. IEEE Conf. on Parallel and
Distributed Information Systems, San Diego, CA, USA, January 1993.

[EGK95] A. Eickler, C. Gerlhof, and D. Kossmann. A performance evaluation of OID map-
ping techniques. InProc. of the Conf. on Very Large Data Bases (VLDB), pages
18–29, Zürich, Switzerland, September 1995.

[FFK+98] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with
Strudel: experiences with a web-site management system. In SIGMOD [SIG98],
pages 414–425.

[FJK96] M. Franklin, B. J´onsson, and D. Kossmann. Performance tradeoffs for client-
server query processing. In SIGMOD [SIG96], pages 149–160.

[FKK96] A. Frier, P. Karlton, and P. Kocher.The SSL 3.0 Protocol. Netscape Communica-
tions Corp.,http://home.netscape.com/eng/ssl3 , November 1996.

[FKL97] D. Florescu, D. Koller, and A. Y. Levy. Using probabilistic information in data
integration. In VLDB [VLD97], pages 216–225.

[FLMS99] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the
presence of limited access patterns. In SIGMOD [SIG99], pages 311–322.

[Ger96] C. A. Gerlhof. Optimierung von Speicherzugriffskosten in Objektbanken: Clus-
tering und Prefetching. PhD thesis, Universit¨at Passau, Fakult¨at für Mathematik
und Informatik, D-94030 Passau, 1996. Dissertation, Universit¨at Passau.

BIBLIOGRAPHY 131

[GGT96] G. Gardarin, J.-R. Gruser, and Z.-H. Tang. Cost-based selection of path expression
processing algorithms in object-oriented databases. In VLDB [VLD96], pages
390–401.

[GHK92] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel
execution. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
9–18, San Diego, CA, USA, June 1992.

[GHR97] A. Gupta, V. Harinarayan, and A. Rajaraman. Virtual data technology.ACM
SIGMOD Record, 26(4):57–61, December 1997.

[GI97] M. Garofalakis and Y. Ioannidis. Parallel query scheduling and optimization with
time- and space-shared resources. In VLDB [VLD97], pages 296–305.

[GKG+97] T. Grust, J. Kr¨oger, D. Gluche, A. Heuer, and M. H. Scholl. Query evaluation in
CROQUE – calculus and algebra coincide. InProc. British National Conference
on Databases (BNCOD), pages 84–100, London, UK, July 1997.

[GLSW94] P. Gassner, G. M. Lohman, K. B. Schiefer, and Y. Wang. Query optimization in
the IBM DB2 family. Technical Report RJ9734, IBM Almaden Research Center,
March 1994.

[GMSvE98] M. Godfrey, T. Mayr, P. Seshadri, and T. v. Eicken. Secure and portable database
extensibility. In SIGMOD [SIG98], pages 390–401.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases.ACM Computing
Surveys, 25(2):73–170, June 1993.

[GRZZ00] J. R. Gruser, L. Raschid, V. Zadorozhny, and T. Zhan. Learning response time
for websources using query feedback and application in query optimization.The
VLDB Journal, 9(1):18–37, May 2000.

[GW89] G. Graefe and K. Ward. Dynamic query evaluation plans. In SIGMOD [SIG89],
pages 358–366.

[GWBC99] S. Gribble, M. Welsh, E. Brewer, and D. Culler. The MultiSpace: an evolutionary
platform for infrastructural services. InProc. of the Usenix Annual Technical
Conference, Monterey, CA, June 1999.

[HCL+90] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms, G. Lapis,
B. Lindsay, H. Pirahesh, M. J. Carey, and E. Shekita. Starburst mid-flight: As the
dust clears.IEEE Transactions on Knowledge and Data Engineering, 2(1):143–
160, March 1990.

[HCLS97] L. Haas, M. Carey, M. Livny, and A. Shukla. Seeking the truth aboutad hocjoin
costs.The VLDB Journal, 6(3):241–256, 1997.

BIBLIOGRAPHY 132

[HFLP89] L. Haas, J. C. Freytag, G. Lohman, and H. Pirahesh. Extensible query processing
in starburst. In SIGMOD [SIG89], pages 377–388.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infras-
tructure Certificate and CRL Profile.http://www.rfc-editor.org/rfc/
rfc2459.txt , January 1999.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing Queries Across
Diverse Data Sources. In VLDB [VLD97], pages 276–285.

[HPI99] Hewlett Packard Inc. Chai: Internet business solutions.
http://www.chai.hp.com/ , 1999.

[HR96] E. Harris and K. Ramamohanarao. Join algorithm costs revisited.The VLDB
Journal, 5(1):64–84, 1996.

[IFF+99] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An Adaptive Query
Execution Engine for Data Integration. In SIGMOD [SIG99], pages 299–310.

[IK91] Y. Ioannidis and Y. Kang. Left-deep vs. bushy trees: An analysis of strategy spaces
and its implications for query optimization. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 168–177, Denver, CO, USA, May 1991.

[INSS92] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis. Parametric query optimization. In
Proc. of the Conf. on Very Large Data Bases (VLDB), pages 103–114, Vancouver,
Canada, August 1992.

[Ita93] Itasca Systems Inc. Technical summary for release 2.2, 1993. Itasca Systems, Inc.,
7850 Metro Drive, Mineapolis, MN 55425, USA.

[JKR99] V. Josifovski, T. Katchaounov, and T. Risch. Optimizing queries in distributed
and composable mediators. InProc. of the IFCIS International Conference on
Cooperative Information Systems, pages 291 – 302, Edinburgh, Scotland, 1999.

[KC86] S. N. Khoshafian and G. P. Copeland. Object identity. InProc. of the ACM Conf.
on Object-Oriented Programming Systems and Languages (OOPSLA), pages 408–
416, November 1986.

[KD98] N. Kabra and D. DeWitt. Efficient mid-query re-optimization for sub-optimal
query execution plans. In SIGMOD [SIG98], pages 106–117.

[KE99] A. Kemper and A. Eickler.Datenbanksysteme – Eine Einführung (3. Auflage).
R. Oldenbourg Verlag, 1999.

[KKKK02] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A publish & subscribe ar-
chitecture for distributed metadata management. InProc. IEEE Conf. on Data
Engineering, San Jose, Ca, USA, 2002.

BIBLIOGRAPHY 133

[KM90] A. Kemper and G. Moerkotte. Access support in object bases. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 364–374, Atlantic City, NJ, USA,
April 1990.

[KM94] A. Kemper and G. Moerkotte.Object-Oriented Database Management: Applica-
tions in Engineering and Computer Science. Prentice Hall, Englewood Cliffs, NJ,
USA, 1994.

[Kos01] D. Kossmann. The state of the art in distributed query processing.ACM Comput-
ing Surveys, 2001. Accepted for publication. To appear.

[Kri98] N. Krivokapić. Control mechanisms in distributed object bases: Synchronization,
deadlock detection, migration, volume 54 ofDissertationen zu Datenbanken und
Informationssystemen. infix-Verlag, Ringstr. 32, 53757 Sankt Augustin, 1998.
ISBN: 3-89601-454-4, Dissertation, Universit¨at Passau, Germany.

[KS98] D. Konopnicki and O. Shmueli. Information gathering in the world wide web: The
W3QL query languge and the W3QS system.ACM Trans. on Database Systems,
23(4):369–410, December 1998.

[KS00] D. Kossmann and K. Stocker. Iterative dynamic programming: A new class of
query optimization algorithms.ACM Trans. on Database Systems, 25(1):43–82,
March 2000.

[KY95] G. J. Klir and B. Yuan.Fuzzy Sets and Fuzzy Logic. Prentice Hall, 1995.

[LKK +97] P. Lockemann, U. K¨olsch, A. Koschel, R. Kramer, R. Nikolai, M. Wallrath, and
H.-D. Walter. The network as a global database: Challenges of interoperability,
proactivity, interactiveness, legacy. In VLDB [VLD97], pages 567–574.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database
system.Communications of the ACM, 34(10):50–63, 1991.

[LMB97] L. Leverenz, R. Mateosian, and S. Bobrowski.Oracle8 Server – Concepts Manual.
Oracle Corporation, Redwood Shores, CA, USA, 1997.

[LN99] B. Li and K. Nahrstedt. A control-based middleware framework for quality of ser-
vice adaptations.IEEE Journal of Selected Areas in Communication, 17(9):1632–
1650, 1999.

[Loh88] G. Lohman. Grammar-like functional rules for representing query optimization
alternatives. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
18–27, Chicago, IL, USA, May 1988.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information
sources using source descriptions. In VLDB [VLD96], pages 251–262.

BIBLIOGRAPHY 134

[MMM97] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web.
Int. Journal on Digital Libraries, 1(1):54–67, 1997.

[MRT98] G. A. Mihaila, L. Raschid, and A. Tomasic. Equal Time for Data on the Internet
with WebSemantics. InProc. of the Intl. Conf. on Extending Database Technology
(EDBT), volume 1377 ofLecture Notes in Computer Science (LNCS), pages 87–
101, Valencia, Spain, March 1998. Springer-Verlag.

[MZ95] T. J. Mowbray and R. Zahavi.The Essential Corba – Systems Integration Using
Distributed Objects. John Wiley & Sons, Chichester, UK, 1995.

[NLF99] Felix Naumann, Ulf Leser, and Johann Christoph Freytag. Quality-driven integra-
tion of heterogenous information systems. In VLDB [VLD99], pages 447–458.

[O2T94] O2 Technology, Versailles Cedex, France.A Technical Overview of the O2 System,
July 1994.

[Oak98] S. Oaks.Java Security. O’Reilly & Associates, Sebastopol, CA, USA, 1998.

[OL90] K. Ono and G. Lohman. Measuring the complexity of join enumeration in query
optimization. In VLDB [VLD90], pages 314–325.

[PCL95] H. Pang, M. J. Carey, and M. Livny. Multiclass query scheduling in real-time
database systems.IEEE Trans. Knowledge and Data Engineering, 7(4), August
1995.

[PCV94] J. Patel, M. Carey, and M. Vernon. Accurate modeling of the hybrid hash join
algorithm. InProc. of the ACM SIGMETRICS, pages 56–66, Santa Clara, CA,
May 1994.

[Pet99] J. Petit. Real Estate DTD.http://www.4thworldtele.com , May 1999.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A Query Trans-
lation Scheme for Rapid Implementation of Wrappers. InProc. of the Conf. on
Deductive and Object-Oriented Databases (DOOD), pages 161–186, December
1995.

[PH92] J. Hellerstein H. Pirahesh and W. Hasan. Extensible/rule based query rewrite opti-
mization in starburst. In Michael Stonebraker, editor,Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 39–48, San Diego, USA, June 1992.

[PIHS96] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selec-
tivity estimation of range predicates. In SIGMOD [SIG96], pages 294–305.

[PKI] Public-Key Infrastructure (X.509) (PKIX).http://www.ietf.org/html.
charters/pkix-charter.html .

BIBLIOGRAPHY 135

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. InProc. of the 41st Annual Symposium on
Foundations of Computer Science, November 2000.

[RBKW91] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-
generation database systems.ACM Trans. on Database Systems, 16(1):88–131,
March 1991.

[ROH99] M. Tork Roth, F. Ozcan, and L. Haas. Cost models DO matter: Providing cost
information for diverse data sources in a federated system. In VLDB [VLD99],
pages 599–610.

[RSA99] RSA Laboratories. PKCS #5 v2.0: Password-Based Cryptography Standard.
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.
pdf , March 1999.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path
Selection in a Relational Database Management System. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 23–34, Boston, USA, May 1979.

[SAL+96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: A Wide-Area Distributed Database System.The VLDB Journal,
5(1):48–63, January 1996.

[SBK01] S. Seltzsam, S. B¨orzsönyi, and A. Kemper. Security for distributed E-Service
Composition. InWorkshop on Technologies for E-Services, Rome, Italy, Septem-
ber 2001.

[SC90] E. Shekita and M. Carey. A Performance Evaluation of Pointer-Based Joins. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 300–311, At-
lantic City, NJ, May 1990.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based Access
Control Models.IEEE Computer, 29(2):38–47, 1996.

[SIG89] Proc. of the ACM SIGMOD Conf. on Management of Data, Portland, OR, USA,
May 1989.

[SIG96] Proc. of the ACM SIGMOD Conf. on Management of Data, Montreal, Canada,
June 1996.

[SIG98] Proc. of the ACM SIGMOD Conf. on Management of Data, Seattle, WA, USA,
June 1998.

[SIG99] Proc. of the ACM SIGMOD Conf. on Management of Data, Philadelphia, PA,
USA, June 1999.

BIBLIOGRAPHY 136

[SIG00] Proc. of the ACM SIGMOD Conf. on Management of Data, Dallas, USA, June
2000.

[SLR97] P. Seshadri, M. Livny, and R. Ramakrishnan. The case for enhanced abstract data
types. In VLDB [VLD97], pages 66–75.

[SR86] M. Stonebraker and L. Rowe. The design of POSTGRES. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 340–355, Washington, USA, June
1986.

[SS86] H.-J. Schek and M. H. Scholl. The relational model with relation-valued attributes.
Information Systems, 11(2):137–147, 1986.

[Ste95] M. Steinbrunn.Heuristic and Randomised Optimisation Techniques in Object-
Oriented Database Systems. Dissertation, Universit¨at Passau, 94030 Passau, Ger-
many, 1995.

[Sto96] M. Stonebraker.Object-Relational DBMSs: The Next Great Wave. Morgan Kauf-
mann Publishers, San Mateo, CA, USA, 1996.

[Sun99] Sun Microsystems, http://java.sun.com/products/jdk/1.2/
docs/guide/jvmpi/jvmpi.html . Java Virtual Machine Profiler Interface
(JVMPI), 1999.

[TLS] Transport Layer Security (TLS). http://www.ietf.org/html.
charters/tls-charter.html .

[TRV98] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Acccess to Distributed Hetero-
geneous Data Sources with DISCO.IEEE Trans. Knowledge and Data Engineer-
ing, 10(5):808–823, October 1998.

[UDD00] Universal Description, Discovery and Integration (UDDI) Technical White Pa-
per. White Paper, Ariba Inc., IBM Corp., and Microsoft Corp., September 2000.
http://www.uddi.org/ .

[UFA98] T. Urhan, M. Franklin, and L. Amsaleg. Cost based query scrambling for initial
delays. In SIGMOD [SIG98], pages 130–141.

[Val87] P. Valduriez. Join indices.ACM Trans. on Database Systems, 12(2):218–246, June
1987.

[Ver97] Versant Object Technology. Versant release 5, October 1997.http://www.
versant.com/ .

[VLD90] Proc. of the Conf. on Very Large Data Bases (VLDB), Brisbane, Australia, August
1990.

BIBLIOGRAPHY 137

[VLD94] Proc. of the Conf. on Very Large Data Bases (VLDB), Santiago, Chile, September
1994.

[VLD96] Proc. of the Conf. on Very Large Data Bases (VLDB), Bombay, India, September
1996.

[VLD97] Proc. of the Conf. on Very Large Data Bases (VLDB), Athens, Greece, August
1997.

[VLD98] Proc. of the Conf. on Very Large Data Bases (VLDB), New York, USA, August
1998.

[VLD99] Proc. of the Conf. on Very Large Data Bases (VLDB), Edinburgh, GB, September
1999.

[VM96] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian prod-
uct. In SIGMOD [SIG96], pages 35–46.

[WA91] A. Wilschut and P. Apers. Dataflow query execution in a parallel main-memory
environment. InProc. of the Intl. IEEE Conf. on Parallel and Distributed Infor-
mation Systems, pages 68–77, Miami, Fl, USA, December 1991.

[Wal99] J. Waldo. The Jini Architecture for Network-centric Computing.Communications
of the ACM, 42(7):76–82, 1999.

[Wei98] G. Weikum. On the ubiquity of information services and the absence of guaranteed
service quality. InProc. of the Intl. Conf. on Extending Database Technology
(EDBT), volume 1377 ofLecture Notes in Computer Science (LNCS), pages 3–6.
Springer, 1998.

[Wei99] G. Weikum. Towards guaranteed quality and dependability of information ser-
vices. In Proc. GI Conf. on Database Systems for Office, Engineering, and
Scientific Applications (BTW), Informatik aktuell, New York, Berlin, etc., 1999.
Springer-Verlag.

[WHK97] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).
ftp://ftp.isi.edu/in-notes/rfc2251.txt , December 1997.

[Wie93] G. Wiederhold. Intelligent integration of information. InProc. of the ACM SIG-
MOD Conf. on Management of Data, pages 434–437, Washington, DC, USA, May
1993.

[WSP97] R. Wolski, N. Spring, and C. Peterson. Implementing a performance forecasting
system for metacomputing: The network weather service. InProceedings of Su-
percomputing’97 (CD-ROM), San Jose, CA, November 1997. ACM SIGARCH
and IEEE.

BIBLIOGRAPHY 138

[XH94] Z. Xie and J. Han. Join index hierarchies for supporting efficient navigations in
object-oriented databases. In VLDB [VLD94], pages 522–533.

Appendix A

The XML Representation of a Query
Execution Plan

<?xml version="1.0" encoding=’ISO-8859-1’?>

<plan>
<iterator id="display" code="iterators.display" cycle-provider="client">

<iterator id="join1" code="iterators.NestedLoops"
codebase="functionProvider"
cycle-provider="client">

<predicate>Sb = Tb</predicate>
<iterator id="join2" code="iterators.NestedLoops"

cycle-provider="alpha">
<predicate>Ra = Sa</predicate>
<iterator id="wrapperS" code="wrapper.wrap_S"

codebase="functionProvider" cycle-provider="alpha">
</iterator>
<iterator id="tbscanR" code="iterators.TbScan" cycle-provider="alpha">

<partition>R</partition>
</iterator>

</iterator>
<iterator id="thumb1" code="thumbnail" codebase="functionProvider"

cycle-provider="beta">
<toThumbNail>picture</toThumbNail>
<iterator id="tbscanT" code="iterators.TbScan" cycle-provider="beta">

<partition>T</partition>
</iterator>

</iterator>
</iterator>

</iterator>

<provider-information>
<og-provider id="client">

<dn-name>C=DE,O=University of Passau,OU=Department
for Mathematics and Computer Science,
CN=Mets.fmi.uni-passau.de

</dn-name>
<host-dns>Mets.fmi.uni-passau.de</host-dns>

</og-provider>
<og-provider id="alpha">

<dn-name>C=COM,O=A Incorporated,OU=Computing Center,CN=alpha.A.com
</dn-name>
<host-dns>alpha.A.com</host-dns>

</og-provider>
<og-provider id="beta">

<dn-name>C=COM,O=B Incorporated,OU=Computing Center,CN=beta.B.com

139

APPENDIX A. THE XML REPRESENTATION OF A QUERY EXECUTION PLAN 140

</dn-name>
<host-dns>beta.B.com</host-dns>

</og-provider>
<og-provider id="functionProvider">

<dn-name>C=COM,O=FctProv Incorporated,OU=Software Development,
CN=FctProv.com

</dn-name>
<code-location>http://www.FctProv.com/forGlobalUse</code-location>

</og-provider>
</provider-information>

</plan>

Appendix B

The RDF Registration Code for a
Collection

In the sample RDF-description shown below, the relevant information about a data provider can
be found enclosed in theDataProvider element. It contains information about the name
of the provider and a URL with which the data provider can be contacted. ThePartition
element contains information about a collection that the data provider makes available. At the
beginning of the collection description we can find the data provider of the collection, a plain-
text description of the content of the collection, the theme (i.e., HotelTheme) this collection
is associated with, etc. The elementwrapper specifies a reference for the wrapper which
performs the necessary transformations to integrate the collection into an ObjectGlobe system.
More interesting is the content of theattributes element. It contains the description of the
type of the tuples, given by the collection. In our case the type contains three attributes and for
each attribute the name and the type of the attribute are specified. It is possible to insert additional
information about attributes which is omitted for brevity.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.db.fmi.uni-passau.de/˜objglobe/ObjectGlobe-Metaschema.rdf#">

<DataProvider rdf:ID="HotelBook">
<dataProviderName>HotelBook</dataProviderName>
<dataProviderUrl>http://www.hotelbook.com</dataProviderUrl>

</DataProvider>

<Partition rdf:ID="HotelBookPartition">
<dataProvider rdf:resource="#HotelBook"/>
<partitionDescription>Description of hotels worldwide</partitionDescription>
<theme rdf:resource="file:/home/objglobe/Themes.rdf#HotelTheme"/>
<localName>hotelBookPartition</localName>
<wrapper rdf:resource="file:/home/objglobe/Operators.rdf#HotelBookWrapper"/>
<uniqueID>4711</uniqueID>
<cardinality>30000</cardinality>

<attributes>
<rdf:Bag>

<rdf:li><Attribute>

141

APPENDIX B. THE RDF REGISTRATION CODE FOR A COLLECTION 142

<topic rdf:resource="file:/home/objglobe/Themes.rdf#cityTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#StringDomain" />

</Attribute></rdf:li>
<rdf:li><Attribute>

<topic rdf:resource="file:/home/objglobe/Themes.rdf#addressTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#StringDomain" />

</Attribute></rdf:li>
<rdf:li><Attribute>

<topic rdf:resource="file:/home/objglobe/Themes.rdf#priceTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#IntegerDomain" />

</Attribute></rdf:li>
</rdf:Bag>

</attributes>
</Partition>
</rdf:RDF>

