
Algorithmic Strategies for Applicable

Real Quanti�er Elimination
1

Andreas Dolzmann2

July 26, 2000

1Im M�arz 2000 an der Fakult�at f�ur Mathematik und Informatik der Universit�at

Passau eingereichte Dissertation
2http://www.dolzmann.de/, andreas@dolzmann.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS - Volltextserver Universität Passau

https://core.ac.uk/display/35072888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 Introduction 7

1.1 Overview . 10

1.2 Main results . 11

2 Simpli�cation of Formulas 13

2.1 The Formal Framework . 14

2.2 The Notion of Simple Formulas 16

2.3 Atomic Formulas . 17

2.3.1 Squarefree Parts and Parity Decompositions 18
2.3.2 Semide�niteness and De�niteness Tests 19

2.3.3 Splitting of Tsq's . 20

2.3.4 Implementation and Outlook 20

2.4 Flat Formulas . 21
2.4.1 Boolean Simpli�cation 21

2.4.2 Smart Simpli�cation 22

2.4.3 Gr�obner Basis Methods 24

2.4.4 History and Implementation 27
2.4.5 Outlook . 27

2.5 Deep Formulas . 29

2.5.1 Constructing Implicit Theories 29

2.5.2 The Standard Simpli�er vs. Advanced Simpli�ers . . . 30

2.5.3 Illustrating Examples 31

2.5.4 Outlook and Implementation 31

2.6 Tableau Methods . 32

2.6.1 The Basic Tableau Idea and Extensions 32

2.6.2 History and Implementation 33
2.6.3 Outlook . 34

2.7 Boolean Normal Forms . 34

2.7.1 Computation of Boolean Normal Forms 35

2.7.2 Simpli�cation of Boolean Normal Forms 35
2.7.3 History and Implementation 37

3

4 CONTENTS

2.7.4 Outlook . 37

2.8 Related Work . 38

2.9 Quanti�ed Formulas . 40

2.9.1 Adaptions to Quanti�ed Formulas 40

2.9.2 Degree Shift . 40

2.9.3 Wu{Ritt Reduction . 42

2.9.4 History and Implementation 43

2.10 A Decision Heuristics . 44

2.11 Example Computations . 45

2.11.1 A Rectangle Problem 45

2.11.2 An Electrical Network 46

2.11.3 Practical Networks . 46

2.12 Conclusions . 48

3 Quanti�er Elimination by Virtual Substitution 51

3.1 History and Development . 52

3.2 An Overview of the Method 54

3.2.1 Elimination Sets and Virtual Substitution 54

3.2.2 Extended Quanti�er Elimination 58

3.2.3 Pseudo Terms for EÆciency 59

3.2.4 Boundary Type Selection 61

3.2.5 Trivial Gauss Elimination 62

3.2.6 Blockwise Elimination 62

3.3 The Phases of the Elimination Procedure 65

3.4 Boundary Type Determination for Quadratic Constraints . . . 68

3.5 Boundary Type Selection for Real Elimination Sets 69

3.6 Stronger Guards by Boundary Types 70

3.7 A Quadratic Special Case . 72

3.8 Conclusions . 74

4 Structural Elimination Sets 77

4.1 Quanti�er Elimination wrt. a Theory 77

4.1.1 Candidates wrt. a Theory 78

4.1.2 Gauss Elimination wrt. a Theory 80

4.2 Quanti�er Elimination with Implicit Theory 81

4.3 Generalized Gauss Elimination 84

4.3.1 Deep Gauss Elimination 84

4.3.2 Partial Gauss Elimination 87

4.4 co-Gauss Elimination . 89

4.5 The Invisible Theory . 91

4.6 Conclusions . 92

CONTENTS 5

5 Repeated Condensing 95

5.1 Condensing of Gauss Formulas 95

5.2 Positional Condensing . 97

5.3 Conclusions . 106

6 Local Quanti�er Elimination 107

6.1 Local Quanti�er Elimination by Substitution 109

6.1.1 Local Computation of Candidate Solutions 109

6.1.2 Local Simpli�cation . 111

6.1.3 Local Virtual Substitution 113

6.1.4 Local vs. Generic Quanti�er Elimination 113

6.2 Generic Local Quanti�er Elimination 114

6.3 A Remark on Complexity . 115

6.4 Implementation . 117

6.5 Application Examples . 117

6.5.1 Generic Quadratic Equation 117

6.5.2 Generic Polygon . 117

6.5.3 Kahan's Problem . 118

6.6 Conclusions . 119

7 Scheduling by Quanti�er Elimination 121

7.1 Optimization by Quanti�er Elimination 122

7.2 The Dedicated Machine Model 124

7.3 Formulating the Dedicated Machine Model 126

7.4 Adapting Quanti�er Elimination to Scheduling 129

7.4.1 Result Inheritance . 131

7.4.2 Estimating the Objective Function 132

7.4.3 Evaluating the Partial Order 134

7.4.4 Comparison of the Strategies 135

7.5 Multiple Resource Scheduling 136

7.5.1 Project Networks . 136

7.5.2 First-order Formulation of Project Networks 139

7.6 Railway Delay Management 142

7.6.1 The Interface . 144

7.6.2 First-order Formulation of Delay Management 148

7.6.3 Computing the Solution 150

7.7 Implementation . 151

7.8 Conclusions . 151

6 CONTENTS

8 The REDLOG Programming Environment 153

8.1 Introduction . 153

8.2 Application Examples . 155

8.2.1 Simpli�cation . 155

8.2.2 Geometry Proving . 155

8.2.3 Periodicity . 156

8.2.4 Network Analysis . 158

8.2.5 Parallelization . 158

8.3 From Computer Algebra to Computer Logic 159

8.4 A User's View on the System 160

8.4.1 Contexts . 160

8.4.2 Expressions . 161

8.4.3 Procedures . 163

8.4.4 Context Dependent Switches 163

8.5 Documentation . 164
8.6 Conclusions . 164

9 Conclusions 165

Chapter 1

Introduction

Consider the set R of real numbers. We are used to making assertions on

these numbers by using variables together with arithmetic operators and
relations, e.g. x2 � 2x+ 1 + y2 < 0.

Let us take a more formal look at such assertions. We allow ourselves to
combine variables and integer numbers by means of the arithmetic operators

\+," \�," and \�." Powers such as x2 are abbreviations for x � x; it follows
that variable exponents are not admitted.

Besides equality, we are interested in the relations \6=," \�," \<," \�,"
\>" with their usual meaning. Such atomic formulas can be combined by
boolean operators. The most interesting of these operators are negation

\:," conjunction \^," and disjunction _." We are furthermore interested
in implication \=)" and equivalence \()." This allows us to express things

like

x � 0 ^ y > 0 =) x + y + z2 6= 0;

which we refer to as quanti�er-free formulas.

We �nally add quanti�ers \9x" and \8x" ranging over real numbers as

they are very common in elementary calculus. As an example consider the

statement that quadratic polynomials are continuous:

8x8"�" > 0 =) 9Æ(Æ > 0 ^ 8x0(jx� x0j < Æ

=) jc2x2 + c1x + c0 � (c2x
2
0 + c1x0 + c0)j < "))

�
:

Formulas possibly involving such quanti�ers are called �rst-order formulas.

With our continuity example, there are three interesting points to be ob-

served:

1. We have not introduced the absolute value. This can however always

be expressed within our framework. For instance, jx� x0j < Æ can be

7

8 CHAPTER 1. INTRODUCTION

rewritten as x� x0 < Æ ^ �(x � x0) < Æ. The absolute value can thus

be viewed as an abbreviation.

2. Our formulation also covers the continuity of linear polynomials since

there is not speci�ed that c2 6= 0.

3. We cannot express this way that \all polynomials" are continuous. A

polynomial representation by means of variables numbers and arith-

metic operators will always have a maximal degree.

A quanti�er elimination procedure for the reals is an algorithm computing

to every �rst-order formula ' an equivalent quanti�er-free formula '0. For our
continuity example such a quanti�er-free equivalent is 0 = 0 which encodes

\true." In general we have to expect the quanti�er-free equivalent '0 to
contain the parameters, i.e. unquanti�ed variables of ', which in our case are
c0, c1, c2.

We give another example where the parameters do not disappear: Con-
sider the formula

9x(ax + b = 0)

stating that a parametric aÆne linear function fa;b(x) = ax + b has a zero.
It is easy to see that a quanti�er-free equivalent to this formula is given by
a 6= 0_ b = 0. We see that the quanti�er-free equivalent yields necessary and

suÆcient conditions in the parameters for the original quanti�ed formula to
hold.

Surprisingly, there exist quanti�er elimination procedures that compute
quanti�er-free equivalents for arbitrary formulas matching our above frame-

work. This has �rst been proved by Tarski [66] in 1948 by actually giving one
such algorithm. Unfortunately, Tarski's algorithm is not elementary recursive
and thus far beyond feasibility.

Around 1975, Collins [19] considerably improved this situation by giv-

ing a double exponential algorithm for quanti�er elimination: the cylindrical

algebraic decomposition method (cad). More precisely, cad is double expo-

nential in the number of di�erent variables contained in the input formula

making no distinction between quanti�ed variables and parameters. The

cad method has been implemented. The �rst implementation by Arnon was

�nished in 1981. Considerable theoretical improvements by Collins and Hong

[21] and more eÆcient implementations by Hong followed.

In 1988, Weispfenning studied linear problems in �elds, ordered �elds,

and discretely valued �elds, cf. [68]. He presented among others results a
quanti�er elimination procedure for linear formulas in ordered �elds which is

based on the computation of �nite elimination sets containing test points. A

9

linear formula is a �rst-order formula not containing any products of quan-

ti�ed variables. We refer to Weispfenning's method as quanti�er elimination

by virtual substitution. Using this algorithmWeispfenning proves that linear

quanti�er elimination for ordered �elds requires at most double exponential

space and time. On the other hand he also proves that in the worst case

this quanti�er elimination is at least double exponential in time and space.

These results are certainly correct when measuring the complexity in terms

of the word length of the input formula. Weispfenning's results, however, are

actually much more precise: His algorithm is double exponential only in the

number of quanti�er blocks. For like quanti�ers, it is single exponential in

the number of quanti�ers. The number and the size of the atomic formulas

in the input plays a very minor role. To be precise, both time and space

complexity are polynomially bounded in these parameters. Observe that in

contrast to quanti�ers and quanti�er changes, the number of parameters, i.e.,

free variables does not signi�cantly contribute to the complexity. This fact
suggested that Weispfenning's algorithms provide a reasonable supplement
to cad in particular for problems involving many parameters.

In the past ten years, Weispfenning has extended the virtual substitution
method in theory to arbitrary degrees. There are implementations available
up to degree two. The currently most sophisticated implementations are part

of the redlog package by the author et al.
redlog has been applied successfully for solving non-academic prob-

lems, mainly for the simulation and error diagnosis of physical networks [73].
Applications inside the scienti�c community include the following:

� Control theory [1, 49],

� stability analysis for pde's [38],

� geometric reasoning [31],

� non-convex parametric linear and quadratic optimization [70], trans-
portation problems [51],

� real implicitization of algebraic surfaces [25],

� computation of comprehensive Gr�obner bases,

� implementation of guarded expressions for coping with degenerate cases
in the evaluation of algebraic expressions [24, 27],

� analysis, design, and error diagnosis of physical networks [65, 73],

� applications in theoretical mechanics and mechanical engineering [40].

10 CHAPTER 1. INTRODUCTION

This thesis is concerned with algorithmic improvements of the virtual

substitution method for such practical applications. Besides this we are going

to analyze the suitability of redlog for the completely new application area

of scheduling.

1.1 Overview

In Chapter 2, we are going to discuss simpli�cation of �rst-order formulas as

an important subalgorithm of quanti�er elimination by virtual substitution.

In Chapter 3 we �rst introduce the virtual substitution method in the

form in which it has been discussed in the literature so far. After this we

analyze the method to consist in this version of four phases. This new point

of view allows us to systematize all known optimization approaches and, in
addition, our new contributions. The remainder of the chapter is devoted
to various improvements of the method that �t well into the traditional

framework introduced there.

In Chapter 4 we leave the traditional framework in that we do no longer
base our elimination on the set of atomic formulas in the input formula '.
Instead we make essential use of the boolean structure of '. We compute

test points not from the entire formula but only from parts that are relevant
due to the boolean structure.

In Chapter 5 we introduce and discuss the notion of condensing, which
provides a generalization of virtual substitution. With condensing, substitu-

tion does not take place into the entire formula but only into relevant parts.
These parts are determined during the substitution process.

In Chapter 6 we modify the speci�cation of quanti�er elimination to a
similar but more eÆcient algorithm, which is suÆcient for many practical

applications. The idea is that the quanti�er elimination is correct only in the
area around a certain point in parameter space. Accordingly this variant is

called local quanti�er elimination.

In Chapter 7 we return to regular quanti�er elimination and discuss
scheduling problems as an application area. For the case of scheduling, we

illustrate how quanti�er elimination by virtual substitution can be improved

based on information on the structure of the input formulas. We use the
term scheduling in a very general sense. Among the traditional scheduling

problems our applications include dedicated machine models and project net-

works. In addition we suggest an approach to delay management for railway

connections. This very general problem does not �t into any of the scheduling

models discussed in the literature so far.

In Chapter 8 we give an overview of the redlog system that consti-

1.2. MAIN RESULTS 11

tutes the framework for all our computations. We summarize the algorithms

provided by redlog, describe its look-and-feel, and give some application

examples from various areas of science and engineering.

In Chapter 9 we �nally summarize and evaluate our results.

1.2 Main results

We discuss improvements of quanti�er elimination by virtual substitution

for the reals. Our starting point is simpli�cation of �rst-order formulas over

the reals. We clarify the notion of simplicity and introduce simpli�cation

techniques for all types of redundancies, e.g. algebraic or boolean, occurring

in such formulas. As one crucial tool for simpli�cation, we introduce the idea

of using an explicit and an implicit theory. The former is used for entering

external information into the simpli�cation process, and the latter is used
for communicating information located on di�erent boolean levels in deeply
nested formulas. Wherever this is appropriate, our simpli�cation algorithms

are designed in such a way that they make use of an optional extra theory
argument. Our simpli�cation methods provide in a natural way a decision

heuristics for simple formulas.

Turning from the important subalgorithm of simpli�cation to the core

elimination procedure we analyze it to consist of four distinct phases. This
allows for the �rst time to systematize all optimizations of the procedure

known from the literature. We newly introduce a variety of optimization
strategies of a traditional kind, i.e., they �t into the traditional framework
of quanti�er elimination by virtual substitution.

We generalize our theory concept from simpli�cation to quanti�er elimina-

tion by virtual substitution. First restricting to an external theory we identify
various places to pro�t from external information. We then also adapt the
concept of an implicit theory to quanti�er elimination. The construction of

this implicit theory here slightly di�ers from that for simpli�cation. The in-
troduction of the implicit theory into quanti�er elimination requires to break
with the traditional approach to compute elimination sets essentially from

the set of atomic formulas contained in the input formula. This new liberal

view on quanti�er elimination by virtual substitution suggests in turn the

introduction of optimized elimination techniques for frequent special cases:
This includes the deep partial Gauss elimination of which only one extreme
special case was known so far. Reanalyzing this technique in terms of the

implicit theory leads us to the co-Gauss technique. This completely new

special case is in a highly non-trivial way complementary to our deep partial
Gauss. For the quanti�er elimination procedure we can in contrast to simpli-

12 CHAPTER 1. INTRODUCTION

�cation identify a third independent type of theory called \invisible," which

is based on the semantics of the procedure while the implicit and the explicit

theory are based on the syntax of the input. Concerning the applicability

the invisible theory is used like the implicit one.

The insights obtained from our new structural view suggest to replace

the virtual substitution of test points by a new concept, which we refer to as

condensing. With condensing, substitution takes place only within certain

subformulas, which we identify to be relevant due to their position in the

boolean structure of the target formula. All other subformulas are dropped

thus leading to much more concise elimination results.

Having optimized quanti�er elimination by virtual substitution at all

stages we turn to a variant called local quanti�er elimination. For a certain

subset of the parameters there is a point speci�ed. The modi�ed elimination

result will be correct for a neighborhood of this point. For this purpose the

local quanti�er elimination procedure is allowed to assume order and equa-
tion constraints compatible with the given point wrt. the chosen parameters.
As expected, this leads theoretically and practically to smaller intermediate

and �nal results, and to a speed-up of the elimination process. The theoreti-
cally expected gain in eÆciency of local quanti�er elimination in contrast to
the regular quanti�er elimination is even exceeded by the results of our test

implementations.
Restricting our attention to �rst-order formulations of scheduling prob-

lems as inputs we demonstrate how quanti�er elimination by virtual sub-
stitution can be tuned|in addition to all strategies already mentioned|by
making use of the knowledge that the input formula has a certain form. On

the scheduling side we can formulate and solve problems in the dedicated
machine model as well as project networks. Our test implementation cannot

compete with special purpose solvers at present. On the other hand we can
make use of the extreme exibility of our approach for considering new types
of scheduling problems, which have not been discussed in the literature so

far. Such a problem is delay management for railway connections.

Chapter 2

Simpli�cation of Formulas

The notion of simpli�cation plays an important role in connection with com-
puter algebra systems. It typically refers to the simpli�cation of algebraic
expressions. One wishes to reduce terms to canonical or at least simpler forms

[16]. A concrete example on which much e�ort has been spent is the simpli�-
cation of terms involving nested radicals [18, 6, 78]. Also the whole Gr�obner
basis theory has developed from the question whether given polynomials are

equal in the residue class ring modulo some ideal [14].

From a mathematical point of view the symbolic manipulation of terms
extends fairly naturally to that of quanti�er-free formulas and further to that

of �rst-order formulas. The well-known problem of �nding simpler counter-
parts occurs then for formulas instead of terms. Since quanti�er-free formulas
are certainly simpler than quanti�ed ones, quanti�er elimination procedures

such as partial cad [19, 21] or elimination set methods as discussed in this
thesis can be regarded as simpli�cation.

The simpli�cation algorithms described here have been developed with
the implementation of the quanti�er elimination by virtual substitution pre-

sented in this thesis. Due to the approach of iterating the substitution of

test points we obtain in contrast to the quanti�er elimination by partial

cylindrical algebraic decomposition, deeply nested, highly redundant formu-
las. The results have typically to undergo some sophisticated simpli�cation

before providing useful information to the human reader. Besides such so-

phisticated simpli�cation methods, it is crucial to have a fast simpli�cation
for the intermediate results at hand. The standard simpli�er presented in

this chapter provides such a fast simpli�er, which is used in our implemen-

tation of quanti�er elimination by virtual substitution: The time spent for

simpli�cation can be neglected compared to the gain of time obtained by

treating simpli�ed formulas.

The scope of formulas within computer algebra systems is not restricted

13

14 CHAPTER 2. SIMPLIFICATION OF FORMULAS

to quanti�er elimination but naturally combines with features already present

there. For instance, consider guarded expressions obtained as solutions to a

parametric problem (Fitch, private communication) such as for the following

integration:

Z
xa

b
dx =

��
a+ 1 = 0 ^ b 6= 0;

lnx

b

�
;
�
a + 1 6= 0 ^ b 6= 0;

xa+1

(a+ 1)b

��
:

We claim that it is generally reasonable to develop both a fast standard

simpli�er and more sophisticated advanced simpli�ers. The former can be

applied implicitly to any formula input while the latter are decided for and

called explicitly by the user for crunching hard problems.

The mathematical principles underlying our simpli�ers are mostly well-

known. In this chapter we present a collection of practicable methods that
have been implemented and extensively tested for their relevance. We further

show how to combine the di�erent ideas from algebra and logic to simpli�ers
in such a way that they produce formulas that cannot be further simpli�ed
by iterating these simpli�ers. In other words, our simpli�ers viewed as a

function are idempotent. Achieving this is by no means trivial.
In view of the literature on simpli�cation of formulas in propositional

calculus, cf. [7] and the references there, we wish to point out that our sim-

pli�cation techniques do not require a boolean normal form computation,
which would possibly produce an output of exponential size.

On the algorithmic side, we introduce the concept of a background the-

ory that is implicitly enlarged when entering a formula for simpli�cation.
Originally developed for detecting interactions between atomic formulas on

di�erent boolean levels, it has turned out that this concept captures also
other simpli�ers developed earlier. These simpli�ers, namely the Gr�obner

simpli�er and the tableau simpli�ers, could be generalized due to this new
viewpoint.

We have implemented our simpli�cation methods within our reduce

package redlog [30, 28].
In this chapter, we will �rst of all discuss simpli�cation methods for

quanti�er-free formulas. Then we introduce two simpli�cation methods for

quanti�ed formulas.

2.1 The Formal Framework

Our quanti�er-free formulas combine atomic formulas using the boolean con-
nectives \^," _," \=)," \(=," \()," and \:." Conjunction and disjunc-

tion are not binary but allow an arbitrary number of arguments. The atomic

2.1. THE FORMAL FRAMEWORK 15

formulas are equations constructed with \=," disequations constructed with

\6=," strong orders constructed with \<" and \>," and weak orders con-

structed with \�" and \�." Strong orders and disequations together are

called strong relations and weak orders together with equations are called

weak relations. This variety of relations allows us to eliminate any occur-

rence of \:" from a formula by moving it to the inside and then encoding

the negation in the atomic formulas. Throughout this thesis we use \%" to

denote one of the above relations. A quanti�er-free formula is called positive

if it contains only the boolean operators \^," and _." For the terms we do

as usual not use the language of �elds but that of ordered rings. Abbrevi-

ating variable-free subterms by integers, every term can then be written as

a multivariate polynomial over Z wrt. some �xed term order. Moreover, we

may consider all right hand sides of atomic formulas to be zero.

Non-atomic formulas are called complex. We divide the complex formulas
into at formulas and deep formulas. Flat formulas combine atomic formu-

las to one boolean level. Examples are conjunctions of atomic formulas or
implication between two atomic formulas. Boolean normal forms are dis-

junctive normal forms (dnf) and conjunctive normal forms (cnf). A dnf

is a disjunction of conjunctions including degenerate cases; a cnf is its dual
counterpart.

We call a quanti�er-free formula of degree d in a variable x if all poly-

nomials occurring in have an x-degree of at most d. The xi-degree of
f 2 Z[x1; : : : ; xn] is the degree of the univariate polynomial

f 2 Z[x1; : : : ; xi�1; xi+1; : : : ; xn][xi]:

Existential formulas are of the form 9x1 : : :9xn (u; x1; : : : ; xn), where
is a quanti�er-free formula. Similarly, universal formulas are of the form
8x1 : : :8xn (u; x). The variables xi in the matrix of an existential or an

universal formula are called quanti�ed. A prenex formula has several alternat-
ing blocks of existential and universal quanti�ers in front of a quanti�er-free

formula. Intermixing the quanti�ers and the boolean operators yields gen-

eral �rst-order formulas. One can easily compute to each given �rst-order

formula an equivalent prenex formula.

A formula ' is called linear in fx1; : : : ; xng, if each atomic formula in '

is of the form
Pd

i=1 cixi+ c % 0, where the ci are terms not containing any of

the xi.

Real quanti�er elimination is the task to �nd to a given �rst-order formula

' a quanti�er-free formula '� such that both ' and '� are equivalent in the
reals. A procedure computing such a '� from ' is called a real quanti�er
elimination procedure.

16 CHAPTER 2. SIMPLIFICATION OF FORMULAS

2.2 The Notion of Simple Formulas

It is not obvious which formulas should be considered simple. We summarize

some simpli�cation goals:

Few atomic formulas Currently, this is our main goal. Quanti�er elim-

ination output is in general too large to be understood by a human.

However, it is often small enough for applications where it is processed

automatically, typically by repeatedly �xing the values of some vari-

ables and then evaluating by resimpli�cation. Small formulas then

minimize memory consumption and evaluation time.

Comprehensible boolean structure When using quanti�er elimination

as a tool for solving mathematical problems it is essential that the out-

put is comprehensible. Examples for comprehensible boolean structures
are comparatively at formulas or case distinctions.

Few di�erent atomic formulas This is convenient for quanti�er elimina-
tion by elimination set methods. In addition, it supports many simpli-

�cation strategies.

Simple terms We consider it unintuitive when information that can be
encoded logically is actually encoded algebraically. For instance, we

would prefer the disjunction a = 0 _ b = 0 to the product ab = 0.

Small satisfaction sets of the contained atomic formulas. This leads to a
formula that is less redundant. If we know e.g. that a 6= 0 for some
reason, we can replace a 6= 0 by a < 0, which has a smaller satisfaction

set.

Convenient relations For elimination set methods, weak orders are more
convenient than strong ones. On the other hand, equations and dise-

quations can be considered simpler than orders.

Convenient boolean operators We consider conjunction and disjunction

to be simpler than implication, replication, and equivalence.

Some of the simpli�cation goals given above contradict one another. For

these cases, the simpli�ers are parameterized in such a way that the user can
decide which goal to prefer for a particular problem. This parameterization

is implemented via some global switches:

We optionally prefer non-orders to orders and, independently, prefer weak
orders to strong orders. These options come out to preferring the goal of

convenient relations to that of small satisfaction sets.

2.3. ATOMIC FORMULAS 17

Concerning \simple terms" vs. \few atomic formulas" we have the possi-

bility to select no expansion, expand always, or expand if operator matches.

The latter selection never violates the simpli�cation goal of a comprehensible

boolean structure. These switches toggle in fact only expansions. The op-

posite contractions, e.g. encoding conjunctions into multiplication, are never

performed.

The option to pass a theory as extra parameter is a key feature of our

simpli�ers. A theory � is a set of atomic formulas considered as a conjunc-

tion. The target formula ' is simpli�ed wrt. �. For this purpose, we consider

the variables in our atomic formulas as constants in the sense of logic. For

instance, the theory fa2 � a = 0g does not contain a multiplicative idem-

potency rule but information on the constant a that may also occur in '.

Formally, we compute a formula '0 equivalent to ' in all ordered �eld models

of �: ^
� �! (' ! '0):

As an example consider
Vfa � 0g �! (a < 0 ! a 6= 0). The theory

parameter allows to enter extra information into the simpli�cation process
without adding it conjunctively to the target formula. Note that it would be

a problem to remove conjunctively added information from the simpli�cation
result since it cannot be recognized easily.

The simpli�ers typically start with simplifying the input theory treating

it as a conjunction. If they detect in this way that the theory is inconsis-
tent, they raise an error. Under an inconsistent theory any two formulas are

equivalent, so the simpli�cation result would make no sense. Mind that a
necessary and suÆcient inconsistency test for the theory amounts to the deci-
sion problem for existential formulas in ordered �elds; this is not practicable

for our purposes.
The theory concept may appear like some toy feature. It will, however,

play an important role in our simpli�cation algorithm for deep formulas.

There the theory|possibly empty in the beginning|is implicitly enlarged

during recursion.

2.3 Atomic Formulas

A simpli�cation procedure derived from the methods described in this section
is both an algorithm for simplifying a formula in the special case that it is

atomic and a subalgorithm to an algorithm that simpli�es a complex formula.

For applying the theory concept to an atomic formula the latter is viewed as

a (trivial) conjunction, i.e., as a at formula. Such formulas are treated in

the next section.

18 CHAPTER 2. SIMPLIFICATION OF FORMULAS

Variable-free atomic formulas are evaluated to truth values. In other

atomic formulas the left hand side polynomial is replaced by its primitive

part over Z with positive leading coeÆcient wrt. the chosen term order.

Throughout this section we assume all polynomials to be of such a form.

Making the leading coeÆcient positive requires mapping \�" to \�," \<"

to \>," and vice versa.

2.3.1 Squarefree Parts and Parity Decompositions

A polynomial f is squarefree if it has no divisor of multiplicity greater than 1.

The squarefree decomposition of f is a list
�
(p1; 1); : : : ; (pn; n)

�
where the pi

are primitive over Z with positive leading coeÆcient. Moreover, they are

squarefree and pairwise relatively prime, and
Q
pii = f . We call

Q
pi the

squarefree part of f . The parity decomposition of f is de�ned as the pair

� Y
odd i

pi;
Y
even i

pi

�
:

Parity decompositions can easily be computed from the respective squarefree
decompositions. It is an interesting open question if there is a faster way.

Proposition 2.1. Let f 2 Z[X], let F be the squarefree part of f , and let

(p; q) be the parity decomposition of f . Then the following equivalences hold:

(i). f = 0 ! F = 0 ! p = 0 _ q = 0

(ii). f 6= 0 ! F 6= 0 ! p 6= 0 ^ q 6= 0

(iii). f > 0 ! pq2 > 0 ! p > 0 ^ q 6= 0

(iv). f � 0 ! pq2 � 0 ! p � 0 _ q = 0

(v). f < 0 ! pq2 < 0 ! p < 0 ^ q 6= 0

(vi). f � 0 ! pq2 � 0 ! p � 0 _ q = 0

The decision which equivalences to use depends on the simpli�cation

goals. The latter choices meet the simpli�cation goal of simple terms but

not that of few atomic formulas. In addition, the expansions can complicate

the boolean structure. To overcome this diÆculty, our implementation of-

fers here and in similar situations the option to expand only if the boolean
operator coming into existence matches the operator of the current level.

2.3. ATOMIC FORMULAS 19

2.3.2 Semide�niteness and De�niteness Tests

A polynomial is positive (semi)de�nite if all evaluations in the ordered �eld

considered are greater than (or equal to) zero.

Proposition 2.2. For positive de�nite f 2 Z[X] we have

f = 0 ! f < 0 ! f � 0 ! false;

f 6= 0 ! f > 0 ! f � 0 ! true:

In case that f is positive semide�nite, we have

f < 0 ! false; f � 0 ! true; f > 0 ! f 6= 0; f � 0 ! f = 0:

Note that in the last two cases f can be replaced by its squarefree part
according to Proposition 2.1. The decision between f > 0 and f 6= 0 depends
on whether the simpli�cation goal of convenient relations, here no orders, or

that of small satisfaction sets is preferred.
Recognizing de�niteness or semide�niteness, i.e. deciding 8(f > 0) or

8(f � 0) respectively, is too hard to become part of a simpli�er. We sketch
some suÆcient conditions for (semi)de�niteness, which we use as fast tests.
Due to a famous result by Artin [2], exactly positive semide�nite polynomials

can be written as sums of squares of rational functions with real coeÆcients.
Our simpli�er recognizes trivial examples for this representation. We call a
polynomial a trivial square sum (tsq) if in its sparse distributive represen-

tation all exponents are even and all coeÆcients are non-negative. A trivial
square sum is strict (stsq) if it has a positive constant term.

Proposition 2.3. (i). stsq's are positive de�nite, and tsq's are positive

semide�nite.

(ii). A polynomial with parity decomposition (p; q) is positive semide�nite if

p is a tsq. It is positive de�nite if both p and q are stsq's.

Obviously, none of the above tests is a necessary condition. For the rele-

vance of testing the parity decomposition consider x2�2x+1 with squarefree

part x� 1 and parity decomposition (1; x� 1).

The following proposition contains obvious closure properties of tsq's

and stsq's.

Proposition 2.4. For trivial square sums f and g the following hold:

(i). The product fg is a tsq, and fg is strict if and only if both f and g

are strict.

20 CHAPTER 2. SIMPLIFICATION OF FORMULAS

(ii). The sum f + g is a tsq, and f + g is strict if at least one of f , g is

strict.

These assertions extend by induction to multiple products.

Part (i) has two interesting consequences. First, compared to the square-

free part F , a parity decomposition (p; q) o�ers no extra information on

de�niteness: If both p and q are stsq's, then f is positive de�nite but the

proposition states that in this case F = pq is already an stsq.

Second, a squarefree decomposition does not yield more information than

a parity decomposition (p; q): Test (ii) of Proposition 2.3 could be extended

to squarefree decompositions by testing all odd-degree squarefree factors on

being tsq's. Part (i) of Proposition 2.4 shows that whenever this test suc-

ceeds, p is already a tsq.

2.3.3 Splitting of Tsq's

In Proposition 2.2 we have seen that an atomic formula whose term is an
stsq can be decided with any relation. In case that the term is a non-strict

tsq, an atomic formula can be decided if its relation is \<" or \�." In all
other cases, one can additively split the trivial square sum

P
si according to

the following equivalences:

X
si � 0 !

X
si = 0 !

^
si = 0;

X
si > 0 !

X
si 6= 0 !

_
si 6= 0:

After splitting, the new equations or inequalities have to undergo atomic
formula simpli�cation themselves.

2.3.4 Implementation and Outlook

All methods described above in this section are part of the current imple-

mentation. We use a multivariate extension of the univariate squarefree
decomposition algorithm proposed by Yun, cf. [77].

The multiplicative splitting of terms in Proposition 2.1 can be extended

in various ways. Computing squarefree decompositions instead of parity

decompositions, one obtains more factors. With non-orders all of these can

be split. With orders one would only split those with even multiplicity. For

those with odd multiplicity a case distinction of exponential size would be
necessary.

2.4. FLAT FORMULAS 21

The next improvement would be a complete polynomial factorization

treating factors of odd and even degree as described above. Although in

reduce we have an eÆcient polynomial factorization at hand, squarefree

decomposition is, of course, much faster. The current implementation pro-

vides factorization of equations and inequalities as an option.

2.4 Flat Formulas

Similar to the previous one, this section is not devoted to an isolated al-

gorithm that simpli�es at formulas, but to the \at part" of a general

simpli�er. In particular, the simpli�cations described make not use of the

fact that there are no complex constituents in the formulas considered.

One can imagine to simplify at formulas by applying the converse of
the additive and multiplicative splittings discussed in the previous section.

We do not so because this would increase the complexity of the terms dra-
matically. Later, with Gr�obner basis methods and with deep simpli�cation,

we will see how one can make use of atomic formula encoding of conjunc-
tions or disjunctions in a more sophisticated way than simply regarding it as
simpli�cation rule.

2.4.1 Boolean Simpli�cation

We apply the simpli�cation rules given by the following equivalences, which
are of a purely boolean nature. They hold for arbitrary formulas '.

� :true ! false; :false ! true,

� false =) ' ! ' =) true ! ' =) ' ! true,

� true =) ' ! '; ' =) false ! :',

� '() true ! '; '() false ! :'; '() ' ! true,

� ' ^ true ! ' ^ ' ! '; ' ^ false ! false,

� ' _ false ! ' _ ' ! '; ' _ true ! true.

All replications are turned into implications. Within conjunctions, disjunc-

tions, and equivalences the atomic formulas are being sorted. For this we use
an order on the terms which we extend to atomic formulas by �rst sorting

wrt. the left hand side term and then wrt. the relation.

22 CHAPTER 2. SIMPLIFICATION OF FORMULAS

Table 2.1: Order theoretical smart simpli�cation

^ t = 0 t � 0 t � 0 t 6= 0 t < 0 t > 0

t = 0 t = 0 t = 0 t = 0 false false false

t � 0 t � 0 t = 0 t < 0 t < 0 false

t � 0 t � 0 t > 0 false t > 0

t 6= 0 t 6= 0 t < 0 t > 0

t < 0 t < 0 false

t > 0 t > 0

2.4.2 Smart Simpli�cation

Smart simpli�cation makes use of non-boolean dependencies between the
atomic formulas combined on a boolean level. This includes the dependencies

that become non-boolean by moving negations into the atomic formulas.

Encoding negation into the atomic formula relation is already the �rst
smart simpli�cation. For any given relation % there is a unique % among our

relations considered such that t % 0 is equivalent to :t % 0 for any term t.
We call % the negation of %, and we extend this notion to the atomic formula
involved. Our rule for simplifying at negations is hence given by :� ! �.

Conjunctions and disjunctions are dual to each other. It suÆces to treat
the conjunction case. The �rst idea is to consider order theory. For instance,
x � 0 ^ x 6= 0 can be contracted to x > 0. Actually, every conjunction of

two atomic formulas whose left hand sides are equal can be contracted to one
atomic formula or \false" (cf. Table 2.1).

This idea can be extended using the theory of ordered �elds. The left hand

side polynomials can be additively split into their parametric part and their
constant term. Then we can contract atomic formulas involving polynomials
with identical parametric parts. Recall that our atomic formula simpli�cation

normalizes the left hand side terms such that they are primitive over Z. In

order to recognize more possible contractions, we temporarily renormalize

the terms such that their parametric part is primitive over Z obtaining a
rational constant term. Given a conjunction

t % 0 ^ t0 � 0;

with t = p+ c, t0 = p+d, and c, d 2 Q , we can decide c � d with � being any
of our considered relations. This makes it often though not always possible

to contract or even decide the above conjunction (cf. Table 2.2). Consider

2.4. FLAT FORMULAS 23

Table 2.2: Additive smart simpli�cation assuming c < d

^ t = 0 t � 0 t � 0 t 6= 0 t < 0 t > 0

t0 = 0 false t0 = 0 false t0 = 0 t0 = 0 false

t0 � 0 false t0 � 0 false t0 � 0 t0 � 0 false

t0 � 0 t = 0 | t � 0 | | t > 0

t0 6= 0 t = 0 | t � 0 | | t > 0

t0 < 0 false t0 < 0 false t0 < 0 t0 < 0 false

t0 > 0 t = 0 | t � 0 | | t > 0

for instance

x > 0 ^ 2x� 1 > 0 ^ 3x + 5 6= 0 ! 2x > 1;

x2 + y + 4 � 0 _ 7x2 + 7y + 4 � 0 ! true:

Given an n-ary conjunction, the simpli�cation result is invariant wrt. the
order in which these (binary) simpli�cations are performed. In other words:

one cannot make a mistake when contracting the atomic formulas one by
one as they occur. This can be veri�ed via a �nite though tedious case
distinction.

We next clarify how to bring the theory into this process. The equiva-
lences underlying the theory application are always the same as those un-

derlying the corresponding local simpli�cation. We turn the theory into a
conjunction and join it with the conjunction to be simpli�ed. Then we per-

form smart simpli�cations as long as possible. As mentioned above we arrive
at a unique result, either \false"|then we are �nished|or a conjunction .
The simpli�ed conjunction is obtained from by extracting all atomic formu-

las that are not part of the original theory. If there is no such atomic formula,
the result is \true." We will see in the next section that plays yet another

role when at simpli�cation is viewed as a part of the deep simpli�cation we

are going to introduce in Section 2.5.

The result obtained with the above methods meets the simpli�cation
goal of small satisfaction sets for the atomic formulas. We also have to
provide the optional simpli�cation goal of convenient relations. Therefore,

for any extracted atomic formula that does not meet the currently speci�ed

simpli�cation goals, the original theory is checked for whether an alternative
is possible (cf. Table 2.3).

For disjunctions we exploit the duality to conjunctions: The target dis-

junction is negated obtaining a conjunction of the negated atomic formulas

24 CHAPTER 2. SIMPLIFICATION OF FORMULAS

Table 2.3: Convenient relations

theory t � 0 t � 0 t 6= 0 t 6= 0 t � 0 t � 0

formula t < 0 t = 0 t < 0 t > 0 t = 0 t > 0

alternative t 6= 0 t � 0 t � 0 t � 0 t � 0 t 6= 0

by de Morgan's law. Then we proceed as for conjunctions. Finally we negate

the simpli�ed conjunction back. This leads to atomic formulas with large

satisfaction sets. Here we have to apply the technique of checking the old

theory also for obtaining small satisfaction sets.

An implication � =) � between two atomic formulas is resolved into the

disjunction � _ �. If the simpli�cation result is a truth value or one atomic

formula, then we are �nished. Else both � and � are independently simpli�ed
as trivial conjunctions wrt. the theory.

Equivalences are resolved into deep formulas containing only \^" and _"
as operators. To these we apply our deep simpli�er with one of the following
results: We either obtain a truth value, an atomic formula, a conjunction or

disjunction of two atomic formulas, or a deep formula again. In the last case
we simplify both the original left hand side and right hand side separately

as trivial conjunctions and then sort the result. In all other cases we are
�nished.

2.4.3 Gr�obner Basis Methods

Gr�obner basis methods [14, 5] allow us to take advantage of certain algebraic

interactions between the atomic formulas when equations are involved. The
Gr�obner basis theory requires the polynomial coeÆcients to be �eld elements.
For our purpose however, it suÆces to consider polynomials over the integers.

By the Gr�obner basis we mean the unique reduced Gr�obner basis wrt. to a
�xed term order which contains only primitive polynomials with positive

leading coeÆcients. We naturally extend the notion of the Gr�obner basis

to sets of equations and that of reduction to atomic formulas. For �nite
families faigi2I we write faig for short. In contrast to all other simpli�cations
described in this chapter, here both the performance of the simpli�er and
the simpli�cation results depend on the chosen term order. The following

proposition states the mathematical background for the method we use. By

rad(M) we denote the radical of the ideal generated by a setM of polynomials
over a �eld K.

2.4. FLAT FORMULAS 25

Proposition 2.5. Let ffig, fgjg, f ~fkg, and f~gjg be �nite subsets of K[X].

Suppose further that rad(ffig) = rad(f ~fkg) and that gj � ~gj mod rad(ffig)
for each j. Then

^
i

fi = 0 ^
^
j

gj %j 0 and
^
k

~fk = 0 ^
^
j

~gj %j 0

are equivalent. The %j are any of the relations considered.

This proposition can also be applied to disjunctions by simplifying their

negation. It is then instructive to write the disjunctions as implications:

�^
i

fi = 0
�
=)

�_
j

gj %j 0
�

i�
�^

k

~fk = 0
�
=)

�_
j

~gj %j 0
�
:

It was actually this form that gave the idea for Gr�obner simpli�cation. As
an example consider the formula

xy � 1 = 0 ^ yz � 1 = 0 =) x� z = 0:

Reducing x� z wrt. the Gr�obner basis fyz�1; x� zg of fxy�1; yz�1g this
formula can be simpli�ed to \true." In the sequel we restrict our attention

to the simpli�cation of conjunctions again.

For the implementation the left hand sides of all equations are put into

ffig. Next, we clarify how the new left hand sides of Proposition 2.5 are
determined. For f ~fig we use either ffig or the Gr�obner basis G of ffig|this
is a parameter of our simpli�er. For obtaining a ~gj, we �rst compute the

unique normal form h of gj modulo G. Then we check if the methods of
Section 2.3 can decide h %j 0. If so, we may either drop the atomic formula

in question or evaluate the whole conjunction to \false." Else, we perform
a radical membership test, which can be done without computing a radical
basis [5]. If gj 2 rad(ffig) we may again drop the atomic formula or replace

the conjunction by \false." Finally, we either keep gj or, as an option, we set
~gj = h.

Substituting the equations in the conjunction with their Gr�obner basis
and reducing the other atomic formulas leads to normal forms of the con-

junctions in the following sense: The left hand sides of all equations are the

Gr�obner basis of their ideal and all other terms are in normal form wrt. this
Gr�obner basis. Di�erent subformulas on a boolean level can thus become

equal enabling one of the boolean simpli�cations above. On the other hand,
these options may contradict our simpli�cation goals: Firstly, a reduced term

can be less simple than the original one. Secondly, since at formulas are in

26 CHAPTER 2. SIMPLIFICATION OF FORMULAS

general parts of complex formulas, reduction can increase the number of dif-

ferent atomic formulas. This is because like terms are reduced wrt. di�erent

Gr�obner bases when occurring at di�erent places. Thirdly, the size of the

Gr�obner basis can exceed the size of the given ideal basis thus increasing the

number of atomic formulas.

The following proposition contains one of the indicated examples for mak-

ing use of the possibility to encode certain conjunctions multiplicatively into

one atomic formula.

Proposition 2.6. Let %j 2 f<;>g, let ~%j denote the weak counterpart of %j,
and let �k be any of our relations. Then the following are equivalent:

(i).
V
i pi 6= 0 ^Vj qj %j 0 ^

V
k rk �k 0

(ii).
Q

i pi �
Q

j qj 6= 0 ^Vj qj %j 0 ^
V
k rk �k 0

(iii).
Q

i pi �
Q

j qj 6= 0 ^Vj qj ~%j 0 ^
V
k rk �k 0

Since Id(ffig) is not necessary prime, this o�ers a chance to improve our
method: The decision of an atomic formula after Gr�obner reduction or the
radical membership test might succeed on the constructed product but not on

the single factors. If the product inequality is decided to be \true" and hence
dropped, one may choose between strong or weak orders. This corresponds
to an application of (ii) or (iii), respectively. Recall that obtaining weak

orders can be a simpli�cation goal.
If the decision fails, there are several possible ways to continue in view

of the parameterization. The �rst is to forget the product and proceed as

described above but saving the radical membership tests for the inequalities.
Secondly, if we keep the product, we can choose between the forms in (ii) and

(iii). Finally, a choice has to be made whether the product itself is taken or
its normal form wrt. G. When selecting (ii) one might prefer to take

Q
i pi

instead of
Q

i pi �
Q

j qj.

With the techniques described above we can once more make use of our

theory concept. Denote by fFig and fGjg the sets of left hand sides of

theory equations and theory non-equations respectively. The fi are optionally
reduced modulo the Gr�obner basis of fFig in the beginning. The gj are

reduced modulo the Gr�obner basis H of ffig [fFig instead of G. We also
reduce each Gj moduloH trying to evaluate its corresponding atomic formula

this way. If it becomes \false," the whole conjunction is \false," otherwise we

ignore it. The left hand sides of the inequalities and strong orders among the
Gj can contribute to the corresponding product in Proposition 2.6 enlarging

the chance for a successful radical membership test.

2.4. FLAT FORMULAS 27

2.4.4 History and Implementation

Smart simpli�cation developed from the pure order theoretic approach over

the parametric part splitting to the discussed version involving theories. Con-

tracting atomic formulas whose terms are identical monic variables but with

di�erent absolute summands has already been indicated by Hong, cf. [35].

None of the described smart simpli�cations has led to any problems concern-

ing the speed of our simpli�er.

With smart simpli�cation, one can avoid the temporary resimpli�cation of

the left hand side terms by normalizing them generally to monic polynomials

over Q instead of primitive ones over Z. Our decision for the primitive

normalization is older than this kind of simpli�cation. We had preferred it

for readability reasons.

Gr�obner bases have been introduced by Buchberger, cf. [14]. Based on

ideas by Becker, Pesch, and Weispfenning, the �rst related Gr�obner basis
methods have been developed with the implementation of comprehensive
Gr�obner basis [69] computation. This application involved ideal and radical

membership tests for conjunctions containing only equations and inequalities.
The implementation was done by Pesch, cf. [54] in the cgb-package of the

computer algebra system mas by Kredel, cf. [45, 44].
Two further mas implementations for simplifying boolean normal forms

were done by the author. Both were still restricted to equations and inequal-

ities. The latter includes polynomial factorization and recognizes interaction
between di�erent clauses. Currently, these two features are not part of the

implementation described here.
The Gr�obner methods are considerably slower than the smart simpli�ca-

tion and are thus not part of our standard simpli�er.

2.4.5 Outlook

We have introduced order theoretical contraction of atomic formulas and an
extension of this using the theory of ordered �elds. This extension was addi-

tive in nature. There is also a multiplicative extension: Given a conjunction
s % 0 ^ t � 0; one can check if s divides t or vice versa. Let wlog. t = rs,

then simpli�cation of terms, reduction of the number of atomic formulas, or

evaluations to truth values are possible in many cases (cf. Table 2.4). We
give some examples: xy � 0 ^ x < 0 ! y � 0 ^ x < 0,

xy � 0 ^ x = 0 ! x = 0; xy 6= 0 ^ x = 0 ! false:

With equations involved (in the conjunctive case), there are even some sim-

pli�cations possible if s divides t only up to a constant residue (cf. Table 2.5);

28 CHAPTER 2. SIMPLIFICATION OF FORMULAS

Table 2.4: Multiplicative smart simpli�cation

st % 0

= �;� 6= <;>

t = 0 t = 0 t = 0 false false

t � 0 | | t < 0 ^ s 6= 0 t < 0 ^ 0 % s
t � 0 | | t > 0 ^ s 6= 0 t > 0 ^ s % 0
t 6= 0 t 6= 0 ^ s = 0 | st 6= 0 st % 0

t < 0 t < 0 ^ s = 0 t < 0 ^ 0 % s t < 0 ^ s 6= 0 t < 0 ^ 0 % s
t > 0 t > 0 ^ s = 0 t > 0 ^ s % 0 t > 0 ^ s 6= 0 t > 0 ^ s % 0

Table 2.5: Multiplicative smart simpli�cation with constant residue

^ r < 0 r > 0

st + r = 0 ^ t = 0 false false
st + r < 0 ^ t = 0 t = 0 false

st + r > 0 ^ t = 0 false t = 0
st + r 6= 0 ^ t = 0 t = 0 t = 0
st+ r � 0 ^ t = 0 false t = 0

st+ r � 0 ^ t = 0 t = 0 false

for instance

xy � 1 > 0 ^ x = 0 ! false; xy + 1 > 0 ^ x = 0 ! x = 0:

This kind of simpli�cation does not involve any factorization. Extreme spe-
cial cases have been mentioned by Hong, Liska, and Steinberg, cf. [38]. Some

problems remain to be solved with the multiplicative smart simpli�cation:

Firstly, in contrast to the additive variant, the order in which the binary sim-

pli�cation rules are applied becomes relevant for the �nal result. Secondly,

additive smart simpli�cation can both create and destroy possibilities for

multiplicative smart simpli�cation, and vice versa. Good and fast strategies

for combining both concepts still have to be found.

For the Gr�obner basis methods we are planning to extend the factorization
ideas of the latest mas implementation to ordered �elds. The basic idea there

is to factorize the polynomials in the Gr�obner basis of the equations.

2.5. DEEP FORMULAS 29

2.5 Deep Formulas

To begin with, recall that the boolean simpli�cation rules of Subsection 2.4.1

hold for arbitrary formulas. They are, of course, applied during the recursion

process described below. In particular, we check for identical subformulas.

In contrast to the atomic formula situation, the time required for this cannot

be neglected.

2.5.1 Constructing Implicit Theories

As already indicated, we are going to use our concept of a theory for relating

information located on di�erent boolean levels. Our technique is based on

the following observation.

Proposition 2.7. Let ' and be quanti�er-free formulas. We use dots to

indicate that may be deeply nested inside the formula considered. Then the

following equivalences hold:

' ^ (: : : : : :) ! ' ^ �: : : (' ^) : : : �;
' _ (: : : : : :) ! ' _ �: : : (:' ^) : : : �

and the corresponding dual variants

' ^ (: : : : : :) ! ' ^ �: : : (:' _) : : : �
' _ (: : : : : :) ! ' _ �: : : (' _) : : : �:

We have in mind to apply the implication part of the equivalences, then

to simplify, and �nally to step back. More precisely, we use atomic formulas
located at a certain boolean level deeper inside the formula by enlarging the

theory. This technique of theory inheritance is the content of the following

proposition, which is concerned with the simpli�cation of a formula
V
� ^

or
W
� _ , where � is the set of toplevel atomic formulas of the considered

one. We extend the implicit negation � of atomic formulas � introduced in
Subsection 2.4.2 to the sets � of atomic formulas.

Proposition 2.8. Let � be a theory, let � be a �nite set of atomic formulas,

and let be a formula.

(i). Let 0 be such that
V
(� [�) �! (! 0). Then

^
� �! �^

� ^ !
^

� ^ 0�:

30 CHAPTER 2. SIMPLIFICATION OF FORMULAS

(ii). Let 00 be such that
V
(� [�) �! (! 00). Then

^
� �! �_

� _ !
_

� _ 00�:
The idea is that 0 or 00 respectively are simpli�ed equivalents of .

Within this simpli�cation process the proposition itself can be applied recur-

sively.

Algorithmically we proceed as follows: The target formula is traversed

recursively. On every boolean level we enlarge the theory in dependence on

the boolean operator of the corresponding level. In conjunctions all atomic

formulas are added. In disjunctions the negations of all atomic formulas

are added. In implications atomic premises are added literally, and atomic

conclusions are added negated. If the theory becomes inconsistent, the whole
considered subformula is \false."

Let us see how some particular boolean level ' of the formula is simpli�ed.
We have obtained a theory � consisting of the user input enlarged by possibly
negated atomic formulas from higher levels.

1. Update � to �0 wrt. the toplevel atomic formulas of '.

2. Simplify the complex constituents wrt. �0.

3. If new toplevel atomic formulas come into existence in step 2, then
update �0 wrt. these and go to 2.

4. Use methods as described in Section 2.4 for simplifying the toplevel
atomic formulas present now wrt. the original theory �.

Step 3 and hence the loop is necessary for making the simpli�er idempotent.

The termination follows immediately from the fact that the number of com-
plex subformulas on our considered level decreases by at least 1 with every
iteration of the loop. Without complex subformulas no new atomic formu-

las can come into existence. Note that new atomic formulas can come into

existence by simplifying a complex formula to another one with a matching

level operator. In the implementation we, of course, abort step 2 when new

atomic formulas occur.

2.5.2 The Standard Simpli�er vs. Advanced

Simpli�ers

At this point, we have described all concepts underlying our standard sim-

pli�er, i.e., the simpli�er that is fast enough to be used within algorithms

2.5. DEEP FORMULAS 31

where it is called extremely often. It includes all described concepts except

for the Gr�obner basis methods. The various switches discussed for the in-

cluded simpli�cation methods are chosen in such a way that simple terms

are preferred in contrast to both view atomic formulas and a comprehensi-

ble boolean structure: More precisely, with equations and disequations we

always factorize; with orders this is certainly not reasonable. Furthermore

on the level of user calls we prefer equations and disequations to orders pre-

ferring with disequations convenient relations to small satisfaction sets. For

calls from inside our quanti�er elimination procedures we prefer instead or-

derings, which meets the simpli�cation goals of small satisfaction sets as well

as that of convenient relations.

Using Gr�obner basis methods within the deep simpli�cation is the �rst

example for an advanced simpli�er. In the following two sections, we will

describe further concepts of advanced simpli�ers, which make use of the

standard simpli�er as a subalgorithm.

2.5.3 Illustrating Examples

As �rst example consider the formula a = 0 ^ �b 6= 0 _ (c � 0 ^ (d > 0 _ a =
0))
�
: Starting with the empty theory, we successively add a = 0, b = 0, c � 0,

and d � 0. On the innermost level, it is �nally possible to apply the a = 0

of the theory to the local a = 0 yielding \true." The �nal result is

a = 0 ^ (b 6= 0 _ c � 0):

If the intermediate levels were missing, this would come out to an application
of a law of absorption.

Our second example illustrates the necessity of a loop for idempotency.

a = 0 ^ �b = 0 _ (c = 0 ^ d � 0)
� ^ (d 6= 0 _ a 6= 0):

The initial theory for the toplevel complex subformulas is fa = 0g. This

is used for simplifying the last constituent through which d 6= 0 is lifted to

the toplevel and thus becomes part of the theory. With this enlarged theory
the second constituent can be simpli�ed wrt. the simpli�cation goal of small

satisfaction sets. As �nal result we obtain a = 0 ^ �b = 0 _ (c = 0 ^ d >
0)
� ^ d 6= 0.

2.5.4 Outlook and Implementation

Possible extensions of the deep simpli�cation are cut and absorption between

sibling conjunctions or disjunctions. Furthermore, atomic formulas can be

32 CHAPTER 2. SIMPLIFICATION OF FORMULAS

put outside the brackets where possible but, in general, this complicates the

boolean structure. The order between atomic formulas on the single levels

should be extended to complex subformulas.

We turn once more to the possibility of encoding a conjunction or disjunc-

tion of equations or inequalities into one atomic formula. We had decided

not to do so. However, the atomic formula that would come into existence in

the corresponding cases should be added to the theory. Note that the theory

extended by such an atomic formula must not be used for simplifying that

very conjunction or disjunction.

A theory containing complex formulas would o�er more possibilities. Al-

lowing the theory to contain possibly negated at formulas might be a rea-

sonable �rst step into this direction.

We have not yet implemented the Gr�obner basis methods as part of the
deep simpli�cation. Our current Gr�obner simpli�er works by �rst construct-

ing a boolean normal form and then simplifying it as described. It already
uses ideas related to the theory enlargement by the product of equations or

inequalities suggested in Section 2.4. The implementation is not idempotent
yet.

2.6 Tableau Methods

Although our deep simpli�er already combines information located on dif-
ferent boolean levels, it preserves the basic boolean structure of the for-

mula. The tableau methods, in contrast, provide a technique for changing
the boolean structure of a formula by constructing case distinctions. Com-
pared to the standard simpli�er they are much slower. They provide an

advanced simpli�er.

2.6.1 The Basic Tableau Idea and Extensions

Given a formula ', we systematically construct a bigger equivalent formula

from it by adding a disjunctive toplevel. We obtain a formula
_
�2A

(� ^ ') with
_
�2A

� ! true;

where A is a set of atomic formulas. In other words: we form a complete case

distinction. This roughly multiplies the size of the formula by the size of A.

The idea is to choose a good A such that using each � 2 A as the theory for

the simpli�cation of ' inside the single branches, the �nal result is smaller
than '.

2.6. TABLEAU METHODS 33

It can happen that several simpli�cations of ' in di�erent branches are

equal. Writing a simpli�cation result of ' wrt. � as '�, we obtain a formula

of the form

(�0 ^ '�0) _
_
�2A1

(� ^ '�0) _
_
�2A2

(� ^ '�) with A = f�0g [A1 [A2:

Applying a law of distributivity, this can be simpli�ed to��
�0 _

_
�2A1

�
�
^ '�0

�
_
_
�2A2

(� ^ '�):

To make this more precise, consider �0 � t > 0, A1 = ft < 0g, and ' does

not contain any ordering constraint involving the term t in a way relevant

for simpli�cation.

This is a simpli�cation that our deep simpli�er does not know. We call
it contraction of tableau branches. Note that afterwards the at disjunction

�0 _
W
�2A1

� can be simpli�ed using the methods of Section 2.4.
Good candidates for A are case distinctions ft < 0; t = 0; t > 0g wrt. the

sign of a term t that occurs often in '. Here, the at disjunction coming

into existence after a contraction of branches can always be simpli�ed to one
atomic formula. We call a tableau wrt. an A of such a form a tableau step

wrt. t.

There is an automatic tableau, which tries tableau steps wrt. all terms in
'. In the end, if there was a tableau result smaller than the input, one of
the smallest results is returned. Else, the original formula is returned. Thus

the result of an automatic tableau application is at least as simple as the
input taking the number of atomic formulas as measure. Our implementation
provides ways to restrict the number of terms tried for the automatic tableau.

In contrast to the simple tableau, the automatic tableau is not idempo-

tent. Iterative application can lead to a �nite sequence of increasingly smaller
results. There is an iterative automatic tableau, which automates this repe-

tition. Optionally, the iterations can be performed on the single branches '�
of an automatic tableau result, which leads to smaller results in most cases
though not generally.

Continuing with the smallest result is a heuristic approach. Examples can

be constructed where smaller �nal results are obtained by continuing with a
tableau result that is even larger than the original input formula.

2.6.2 History and Implementation

The tableau methods described here including automatic and iterated auto-

matic tableaux after fully implemented in redlog. The method is related

34 CHAPTER 2. SIMPLIFICATION OF FORMULAS

to the analytic tableaux used for automated theorem proving [62]. A spe-

cial case of the tableau method described here was originally suggested by

Loos [51, Weispfenning, private communication] and �rstly implemented by

Burhenne, cf. [17]. This version performed tableau steps wrt. a given term

t without contraction of branches. The simpli�cations in the branches were

restricted to deciding atomic formulas with t as their left hand side.

Before our deep simpli�er performed the theory inheritance described in

Section 2.5, the iterative tableau method provided considerable simpli�ca-

tions in many cases. Meanwhile, there are only few formulas that can be

simpli�ed via the tableau method after simpli�cation with the standard sim-

pli�er.

2.6.3 Outlook

There is the following dual variant of the tableau: Instead of performing a
complete case distinction one can construct^

�2A
(� _ ') with

^
�2A

� ! false

for a set A of atomic formulas. One would then de�ne a tableau step wrt. a
term t as taking A = ft � 0; t 6= 0; t � 0g. Since these atomic formulas enter
the theory negated, there are the same simpli�cations performed within the
single branches as in the normal case. If the toplevel operator of ' is _"
one obtains one boolean level less when applying the dual tableau. There is

no problem with the automatic or iterative tableau when deriving a selection
strategy from this observation.

A promising variant of the tableau method is an in-place tableau that
applies tableau steps wrt. a term t not to the whole formula but to the
smallest subformula containing all occurrences of t.

Provided that the multiplicative variant of smart simpli�cation described
in the outlook of Section 2.4 is available, there is an interesting variant of

the automatic tableau: One can �rst factorize all terms occurring in the
target formula and then perform the tableau wrt. all the irreducible factors
instead of all the terms. We expect the result to meet the simpli�cation goal

of simple terms better than that of few atomic formulas. One thus has to

de�ne criteria for �nding the simplest formula obtained this way.

2.7 Boolean Normal Forms

We consider boolean normal form computation as simpli�cation because the

results meet our simpli�cation goal of a comprehensible boolean structure.

2.7. BOOLEAN NORMAL FORMS 35

Anyway, a computed boolean normal form can also have less atomic formulas

than the input formula. We restrict our attention to dnf computations. The

computation of a cnf is dual to this.

2.7.1 Computation of Boolean Normal Forms

We assume that the input formula is in negation normal form, i.e., it contains

only \^" and _" as boolean operators. In order to avoid case distinctions we
allow ourselves to consider atomic formulas as trivial conjunctions. Assuming

that at formulas are dnf's we recursively compute dnf's from disjunctions

or conjunctions of dnf's. The former case is trivial, in the latter we have

to apply a law of distributivity. The following proposition shows how this

corresponds to a Cartesian product computation.

Proposition 2.9. For i = 1, : : : , m and j = 1, : : : , ni let ij be conjunc-

tions of atomic formulas. Set N = f1; : : : ; n1g � : : :� f1; : : : ; nmg. Then
m^
i=1

� ni_
j=1

ij

�
and

_
(c1;::: ;cm)2N

� m^
i=1

ici

�

are equivalent. After attening the nested conjunction, the latter formula is

a dnf.

Note that the method described does not introduce any atomic formulas

di�erent from those already present in the input.

2.7.2 Simpli�cation of Boolean Normal Forms

In addition to the simpli�cation methods already presented we are now going
to discuss some methods particular to the simpli�cation of boolean normal
forms. Firstly, we have implemented a method corresponding to the propo-

sitional logical cut. We apply the equivalence

(�1 ^ : : : ^ �n ^ t % 0) _ (�1 ^ : : : ^ �n ^ t � 0) ! (�1 ^ : : : ^ �n ^ �);

where � is the result of the smart simpli�cation of t % 0 _ t � 0. As an
example consider (' ^ t = 0) _ (' ^ t < 0) _ (' ^ t > 0), which is simpli�ed

to '.

Two further simpli�cations are based on the following proposition.

Proposition 2.10. Let ' and be formulas such that ' implies . Then

' _ is equivalent to , and ' ^ is equivalent to '.

36 CHAPTER 2. SIMPLIFICATION OF FORMULAS

Verifying the premise of this proposition corresponds to the decision prob-

lem for universal formulas. This is not practicable for our purposes. There-

fore, we use tests for implication that are only suÆcient. Formally we intro-

duce relations \�" such that ' � implies ' �! for conjunctions ' and

 of atomic formulas.

We further consider two properties that are relevant for the implemen-

tation. The �rst one is transitivity. The second one is compatibility with

conjunctions, which is de�ned as

' � �! ' ^ � ^ for conjunctions of atomic formulas.

A dnf is simpli�ed by testing for each pair (';) of conjunctions if ' �

holds. If so, ' is deleted from the disjunction. If \�" is transitive, the order
in which the pairs are tested is irrelevant for the result. In particular, this
allows us to make use of eÆcient simultaneous tests for ' � and � '.

Compatibility ensures that one �nal simpli�cation after the dnf com-

putation yields the same result as that obtained by applying intermediate
simpli�cations after each recursion step. This follows easily from its de�ni-

tion and the way we compute the dnf.
The �rst possible choice for such a relation is subsumption de�ning ' �

by � � 	 where � and 	 are the sets of atomic formulas contained in ' and

 respectively. This idea treats atomic formulas like propositional logical
variables. In our situation, subsumption can be extended in the following

way: We de�ne ^
i2I
ti %i 0 �sub

^
j2J

tj �j 0

if and only if I � J and for all j 2 J the smart simpli�cation of Section 2.4.2

simpli�es tj %j 0 _ tj �j 0 to \true." As an example consider

a > 0 ^ b > 0 ^ c > 0 �sub a > 0 ^ b � 0:

Subsumption is transitive and compatible with conjunctions. There are ef-
�cient tests for subsumption|possibly into both directions|using the fact

that atomic formulas are canonically ordered within the conjunctions.

A smarter though less eÆcient choice is simpli�er-recognized implication

\�rec," which once more makes use of our theory concept.

We de�ne that ' �rec if can be simpli�ed to \true" with the atomic
formulas from ' as theory. Using the standard simpli�er this is both tran-

sitive and compatible with conjunctions, which obviously depends on the

simpli�er used. The test ' �rec has turned out to be very time consuming.
We thus apply it only at the end of each dnf computation making use of the

compatibility with conjunctions.

2.7. BOOLEAN NORMAL FORMS 37

2.7.3 History and Implementation

Since quanti�er elimination by virtual substitution does not require boolean

normal form computation we have, until recently, not spent much e�ort into

this topic. Originally, we computed our boolean normal forms using the pure

Cartesian product method. The next step was the application of the standard

simpli�er that was under development at the same time. The implementation

of the ordering of the atomic formulas led to an enormous improvement in

boolean normal form computation. The idea of subsumption led to further

considerable improvements. We also have an ad hoc implementation of the

simpli�er-recognized implication. It has led to some minor improvements but

it is extremely time consuming. The best boolean normal forms are currently

obtained by applying the Gr�obner simpli�er.

2.7.4 Outlook

In the outlook of Section 2.4 we have already indicated the alternative of
making the terms monic instead of primitive. Recall from Subsection 2.4.1

how the atomic formulas are canonically ordered within the conjunctions.
With monic left hand sides any reasonable order \v" on the terms extends

to an order on the atomic formulas with the following property: Let p, q be
left hand side terms with zero absolute summand, and let c, d be rational
constant terms. Then

p @ q �! p+ c % 0 @ q + d � 0:

Both p + c and q + d are again valid left hand side terms. Thus the order
\v" is in some sense compatible with the addition of rational constants.

This fact together with the observation that the at simpli�er described
in Subsection 2.4.2 performs simpli�cations only between atomic formulas

with the same parametric part in the monic sense gives rise to the following
proposition. It provides a fast test for the failure of simpli�er-recognized

implication. This test can be used as a �lter before the actual test.

Proposition 2.11. Let ' denote the conjunction

p1 + c1 %1 0 ^ : : : ^ pm + cm %m 0 with p1 + c1 @ � � � @ pm + cm;

and let denote the conjunction

q1 + d1 �1 0 ^ : : : ^ qn + dn �n 0 with q1 + d1 @ � � � @ qn + dn:

Suppose that q1 @ p1 or pm @ qn. Then ' �rec does not hold.

38 CHAPTER 2. SIMPLIFICATION OF FORMULAS

With normalization of left hand sides to primitive polynomials such a

compatibility with adding rational constants cannot be achieved so easy:

Replacing p + c and q + d by their primitive part can change the order

between them wrt. many natural orders on terms.

Boolean normal form computation in propositional logic has been tack-

led in several papers by Quine and McCluskey, cf. [56, 57, 58, 52]. They

have shown how minimal boolean normal forms can be obtained. All these

methods combine a boolean variable � with its negation :� in some way,

where the point is that � _ :� ! true. Subsumption is used as a test for

implication between clauses. In the case of propositional logic this test is

even suÆcient after some obvious simpli�cations inside the clauses.

Our adaptions of cut and subsumption provide the basic tools for imple-

menting an analogue of these methods. More sophisticated adaptions of cut
and subsumption would take parametric parts into account.

2.8 Related Work

The simpli�cation of quanti�er-free �rst-order formulas over the reals is a
relatively new research area. In contrast to this the minimization and the ef-

�cient treatment of boolean functions are studied carefully by many authors.
Boolean functions are usually de�ned by combining of boolean variables using

the usual logical operations \:," \^," and _."
We have mentioned a �rst relation between the simpli�cation of boolean

functions and the simpli�cation of formulas in the previous section on the

simpli�cation of boolean normal forms. Starting with papers by Quine and
McCluskey [56, 57, 58, 52] the minimization of boolean normal forms in
propositional logic was intensively studied. The notion of cut and subsump-

tion as introduced by Quine can be easily extended to our framework by
considering an atomic formula � and its negated variant �, in which the

negation is encoded into the relation of �. Here, we were the �rst time
faced with the observation that atomic formulas correspond somehow to the

boolean variables. Considering multiple-valued logic as done by Hong [35]

suggests to identify terms with logic variables.
Bryant [12, 13] has introduced ordered binary decision-diagrams (obdd)

as an eÆcient representation of boolean functions. Ordered binary decision-
diagrams are rooted directed acyclic graphs representing boolean functions.

They allow to perform many important operations such as evaluation, satis-

�ability tests, or equality tests on boolean functions very eÆciently. Fixing
an order between the variables one can transform an obdd into a minimal

normal form. The size of an obdd can be, however, exponential in the num-

2.8. RELATED WORK 39

ber of involved variables. obdd's are used as an alternative representation

of boolean functions which are not longer represented as formulas in proposi-

tional logic. It is by no means clear how to translate an obdd into a formula

representation without loosing its \good" properties. In particular, the con-

version of a formula into an obdd and back to a formula may increase its

size.

There are three major obstacles to using obdd's as a tool for the simpli-

�cation of �rst-order formulas over the reals:

1. As indicated above atomic formulas or the terms involved in atomic

formulas correspond to the boolean variables. Our formulas involve

many di�erent terms and thus many di�erent atomic formulas. The

study of multi-valued decision-diagrams [42] suggests that we can en-
code our relations into the framework of multiple valued logic. This

would allow to more elegantly identify terms instead of atomic for-
mulas with boolean variables. This decreases the absolute number of
di�erent \boolean variables" but still leaves us with the problem of a

large number of di�erent terms.

2. The size of obdd may be exponential in the size of the number of

variables. Taking into account that we have to deal with many variables
suggests that obdd's obtained from our formulas are too large to be
handled in reasonable space and time. Recall that in particular our

standard simpli�er is designed to be called very often as a subroutine
of our quanti�er elimination procedure presented in the next chapter.
This forbids to incorporate such time consuming algorithms into our

simpli�er.

3. Any straightforward generalization of algorithms dealing with boolean

functions to algorithms dealing with formulas over the language of or-

dered rings neglects the algebraic dependencies between di�erent terms.

Making use of these dependencies is a key feature of our simpli�ers and

one of the main reasons for their great success in particular in the

framework of quanti�er elimination.

Nevertheless �nding an suitable generalization of ordered binary decision-

diagrams which respects the algebraic dependencies and allows simpli�ca-
tions that are not lost by switching back to a formula representation is cer-

tainly an interesting research topic for its own.

40 CHAPTER 2. SIMPLIFICATION OF FORMULAS

2.9 Quanti�ed Formulas

Up to now we have restricted ourselves to the simpli�cation of quanti�er-free

formulas. In this section we discuss how to simplify �rst-order formulas that

involve quanti�ers. Firstly, we describe the adaption of the simpli�cation

methods introduced so far to formulas involving quanti�ers. Secondly, we

describe a technique for reducing the degrees of the occurrences of quanti�ed

variables. Thirdly, we introduce a method for simplifying formulas wrt. one

chosen variable. This method is viewed as a simpli�er for quanti�ed for-

mulas, because the distinguished variable is in our framework of quanti�er

elimination by virtual substitution a quanti�ed variable.

2.9.1 Adaptions to Quanti�ed Formulas

All simpli�cation methods introduced in the previous sections can be ex-
tended to formulas involving quanti�ers. The general idea is to simplify the
scope of the formula by using the known methods without using the knowl-

edge about the quanti�er. The simpli�er should, however, remove quanti�ers
binding variables that do not occur freely in their scope.

Using the theory concept for formulas involving quanti�ers requires some
adaptions. Recall that all variables occurring in a theory are treated as
constants in the sense of logic. In the scope of a quanti�er \9x," or \8x,"
respectively, the quanti�ed variable x is not related with a variable occurring
in some atomic formula contained in the theory. Therefore atomic formu-
las containing x do not contribute to the simpli�cation of the scope of the

quanti�er. Technically, we delete all atomic formulas from the theory that
contains the quanti�ed variables. This deletion is, in particular, performed

for the implicit theory: The simpli�cation result of ' � x = 0 _ 9x(x = 0)
is again ', which is obviously equivalent to true, and not x = 0 obtained by
simplifying the x = 0 occurring in the scope of \9x" wrt. the implicit theory
fx 6= 0g.

2.9.2 Degree Shift

According to our simpli�cation goal of simple terms we want to reduce the

degree of the terms. The degree shift reduces the degree of a quanti�ed

variable which occurs only with certain powers. This is particularly useful
for quanti�er elimination by virtual substitution introduced in the following

chapter. Since quanti�er elimination by virtual substitution has certain de-
gree restrictions the degree shift can even necessary for making possible its

application.

2.9. QUANTIFIED FORMULAS 41

To begin with consider, e.g. the formula 9x(u1x2+u2 < 0). This formula

is equivalent to

9y(y � 0 ^ u1y + u2 < 0):

For proving the implication, choose y = x2 and for proving the replication

choose x =
p
y, with exists due to the condition y � 0. We have \shifted"

the x to a lower degree.

We generalize this observation in the following proposition:

Proposition 2.12. Let ' � 9x (u; x), where is a quanti�er-free formula

with normalized atomic formulas. Let xd1, : : : , xdn be the occurrences of x

in the monomials of . Suppose that d = gcdfd1; : : : ; dng 6= 0. Let 0 be
the formula which is computed from by replacing xdi by xci, where ci is the

cofactor of d and di, i.e. di = ci � d. Then

9x (u; x)() 9y 0(u; y);

provided that d is odd, and for d even we have

9x (u; x)() 9y�x > 0 ^ 0(u; y)�:
The proof of the general case is analogous to the prove of our illustrating

example using y = xd and x = d
p
y, respectively. The case of a universally

quanti�ed variable is, as usual, handled by negation.

The shift reduces the degree of x without increasing the degree of any

other variable. In particular, we can sequentially apply shifts for a set of
quanti�ed variables in an arbitrary order without inuencing other shifts.
Applying a degree shift can, however, make other simpli�cations possible

and can also make simpli�cations impossible.

Example 2.13 (Kahan's Problem). Kahan's problem, cf. [41] is one of
the most well-known benchmark problems for quanti�er elimination proce-

dures:

8x8y�b2(x� c)2 + a2y2 � a2b2 = 0 =) x2 + y2 � 1 � 0
�
:

This can be equivalently replaced by

8x8y�y � 0 =) �
b2(x� c)2 + a2y � a2b2 = 0 =) x2 + y � 1 � 0

��
:

In particular with quanti�er elimination by virtual substitution this leads

to much faster running times and simpler results. We are going to discuss

quanti�er elimination for Kahan's problem in more detail in Section 6.5.3.

42 CHAPTER 2. SIMPLIFICATION OF FORMULAS

2.9.3 Wu{Ritt Reduction

Similar to the degree shift, the Wu{Ritt reduction [75, 76] provides a simpli-

�cation method for reducing the degree of a variable. This new method is

not restricted to quanti�ed variables. It may lead, however, to an increase of

the degree of other variables. In our framework of quanti�er elimination we

will choose the variable to be eliminated next as the main variable for the

reduction. This is the reason why we consider the Wu{Ritt reduction as a

simpli�cation method for quanti�ed formulas.

Consider as a �rst illustrating example the formula

9x(x3 + c2x
2 + c0 = 0 ^ x3 + d1x + d0 > 0):

Rewriting the equation x3 + c2x
2 + c0 = 0 as x3 = �c2x2 � c0 allows us to

replace each occurrence of x3 by �c2x2 � c0. We then obtain the equivalent

formula
x3 + c2x

2 + c0 = 0 ^ �c2x2 + d1x� c0 + d0 > 0:

This formula contains an atomic formula with an x-degree of 2 while in the
original formula all atomic formulas had an x-degree of 3.

We describe the general strategy for applying the Wu{Ritt simpli�cation
to an atomic formula. Suppose c0xd

0

+ t0 = 0 is an equation contained in the

theory of an atomic formula cxd + t % 0, where t is a term with an x-degree
smaller than d and t0 is a term with a x-degree smaller than d0 and d0 � d.
Suppose moreover that c0 6= 0 for all values of the parameters. Note that an

equation in an implicit theory can actually be a disequation that occurred
disjunctively.

In this situation we can deduce from the knowledge contained in the

theory the equation c0

c
x(d�d

0) � (c0xd0 + t0) = 0. This equation has an x-degree
of d and the x-initial is c. We can therefore replace the atomic formula

cxd + t % 0 by the atomic formula

cxd + t� c0

c
x(d�d

0) � (c0xd0 + t0) % 0:

The original atomic formula and the new one are equivalent wrt. the implicit

theory. Moreover the x-degree of the new one is less than d. Let 0 denote the
formula that results from the replacement. Then and 0 are equivalent, and
the number of atomic formulas with an x-degree not less than d is decreased

by 1. This process can, of course, be iterated. The degree of variables besides
x may be increased by this process due to the multiplication with c0

c
.

The assumption c0 6= 0 can be avoided by generating an explicit case

distinction on the formula level. For instance, we can switch from to

(c0 6= 0 ^) _ (c0 = 0 ^):

2.9. QUANTIFIED FORMULAS 43

In this case we can apply the Wu{Ritt reduction to the �rst subformula

of the disjunction. In the second subformula we can replace the equation

c0xd
0

+ t0 = 0 by t0 = 0, which is also a degree reduction of one atomic

formula.

The following is an application example for real quanti�er elimination in

the area of computational geometry [64].

Example 2.14. Consider in real 3-space the parabola u2 = u21 ^ u3 = 0.

The following formula describes for parametric r 2 R its r-o�set wrt. the

Euclidean metric. This is the set of all points with distance exactly r to the

parabola:

� � 9x19x29x39s9t
�
x2 = x21 ^ x3 = 0 ^

(x1 � u1)2 + (x2 � u2)2 + (x3 � u3)2 = r ^
�2sx1 = u1 � x1 ^ s = u2 � x2 ^ t = u3 � x3

�
:

Due to certain degree restrictions, which we are going to discuss in Chapter 3,

quanti�er elimination by virtual substitution can eliminate all the quanti�ers
except for \9x1." It thus stops with the result

�� � 9x1(f1 = 0 ^ f2 = 0)

f1 = r � u21 + 2u1x1 � u22 + 2u2x
2
1 � u23 � x41 � x21

f2 = u1 + 2u2x1 � 2x31 � x1:
The reason that the procedure cannot continue here is that x1 occurs in the
two equations with degree 4 and 3, respectively, where at most degree 2 is

allowed. Applying our Wu{Ritt based simpli�cation we replace f1 = 0 by
another equation containing the remainder h of the pseudo division wrt. x1
between f1 and f2:

��� � 9x1(h = 0 ^ f2 = 0)

h = 2r � 2u21 + 3u1x1 � 2u22 + 2u2x
2
1 � 2u23 � x21

f2 = u1 + 2u2x1 � 2x31 � x1:
The presence of the new equation, which is quadratic in x1, allows quanti�er

elimination by virtual substitution to �nally succeed wrt. an explicit theory

f2u2 � 1 6= 0g. See Section 3.2.5 and Section 4.1.2 for details.

2.9.4 History and Implementation

In the current distributed version of redlog the standard simpli�er can,

of course, be applied to quanti�ed formulas. All other variants have to be
applied explicitly to the quanti�er-free parts of formulas.

44 CHAPTER 2. SIMPLIFICATION OF FORMULAS

The degree shift is not part of any of the simpli�ers but it is integrated

in the quanti�er elimination procedures. It is one of the heuristics included

in redlog for treating formulas with higher degrees.

Similar to the degree shift, the Wu{Ritt reduction is currently not im-

plemented in the simpli�ers. A �rst test version implementing some special

cases of the Wu{Reduction described above are included in the quanti�er

elimination code of redlog. This implementation is based on some code by

Schweighofer [61]. Like the degree shift the Wu{Ritt reduction is of particu-

lar importance for the quanti�er elimination and provides another technique

for coping with higher degrees. We have obtained promising results of us-

ing the Wu{Reduction. A full version will become part of the next redlog

release.

2.10 A Decision Heuristics

In the previous section we have seen several methods for the simpli�cation of

a formula, possibly in some normal form, wrt. a background theory. In this
section we present a decision heuristics for simple formulas wrt. a background
theory.

A decision heuristics is a function that maps a formula ' and a theory �
to a value � 2 ftrue; false; dontknowg such that for � = true we know that

8
�V

� =) '
�
, and for � = false we know :9

�V
� =) '

�
. If � = dontknow

we do not know anything about the formula, i.e. it may be either tautological,

contradictory, or nothing of both.
Our simpli�er provides such a decision heuristics. For heuristically de-

ciding a formula we simplify it to � by one of our simpli�ers. The result � is

then de�ned as follows

� �
�
� for � 2 ftrue; falseg
dontknow otherwise

The correctness of a decision heuristics de�ned this way follows immediately

from the correctness of the simpli�er.

Note that a function mapping an arbitrary formula to \dontknow" is also

a decision heuristics. Note also, that there is a decision method for the real

numbers with ordering. We will, however, have to apply the decision heuris-

tics during the quanti�er elimination very often to very simple formulas, in

particular to atomic formulas. This is, however, still reasonable since is em-

pirically turns out that the gain is enormous. The application of a decision

method is not possible due to its complexity. The more time consuming
Gr�obner simpli�er is also suitable for the application in a decision heuristics.

2.11. EXAMPLE COMPUTATIONS 45

It should, however, not be called very often. The results are better than the

results of a decision method based on the standard simpli�er, in particular

if the theory contains many equations.

Up to some extreme special cases a successful application of a decision

heuristics based on the standard simpli�er is restricted to atomic formulas

and at formulas. We �nally give some examples of deciding simple formulas

in the form (�; ') � :

(fa > 0; b > 0g; a+ 1 > 0) true

(fa > 0; b > 0g; b+ 1 < 0) false

(fa > 0; b > 0g; a+ b > 0) dontknow

(;; c 6= 0 _ c+ 1 6= 0) true

Note that in the third example we can actually prove that a + b > 0 is
a consequence of the theory. Our simpli�er, however, cannot �gure this

out. The last example demonstrates that the successful application of the
heuristics is not restricted to a non-trivial theory.

2.11 Example Computations

All computations were done with our reduce package redlog on a sun

sparc-4 using a heap size of 3 � 106 Lisp items. The timings are cpu times
including garbage collection times, which make up about 3{7%.

2.11.1 A Rectangle Problem

There is a formula with 6 existential quanti�ers followed by 2 universal quan-
ti�ers that asks for side lengths a, b of a rectangle such that it can be covered

disjointly by two squares of di�erent size, which is obviously impossible.

Using the standard simpli�er without theory inheritance, our quanti�er

elimination procedure takes 171 s to compute a quanti�er-free formula in a

and b. This formula contains 3669 atomic formulas. It can be veri�ed to be

contradictory by applying a successive quanti�er elimination to its existential
closure, which takes 3.5 s.

With theory inheritance the elimination yields after only 13.3 s the result

2a� b < 0 ^ a� b = 0 ^ a > 0 ^ b > 0;

which the Gr�obner simpli�er recognizes to be \false" in 0.03 s.

46 CHAPTER 2. SIMPLIFICATION OF FORMULAS

tt

t
@@R

@@R

..........................

�
�..................

.......
.�
�

�
�
�
�
��

�
�
�
�
�
��

?

t

-
i3

?........	

-
r01

r23

r13r02

u1

u2

u3

u0

i02

i01

i13

i23

i12

r12

i0

Figure 2.1: An electrical network

2.11.2 An Electrical Network

By quanti�er elimination we compute for the electrical network in Figure 2.1
a quanti�er-free formula which describes the currency i12 in terms of the

resistances and the voltage u3 � u0. With the standard simpli�er we obtain
31 atomic formulas in 0.5 s. If we turn o� the additive smart simpli�cation
described in Subsection 2.4.2, we obtain 47 atomic formulas in 0.8 s.

2.11.3 Practical Networks

We summarize an example series obtained from quanti�er eliminations in
networks that describe a part of a motor. We apply our simpli�ers to the
�nal quanti�er elimination results obtained with a simpli�er corresponding

to our standard simpli�er without additive smart simpli�cation and without
theory inheritance.

The results are collected in Table 2.6, which reads from left to right as
follows: subproblem number; input formula; standard simpli�er; dnf with

subsumption and cut; Gr�obner application to this dnf; dnf with subsump-

tion, cut, and simpli�er-recognized implication; Gr�obner application to this
dnf; branchwise iterative tableau. Table 2.7 gives some exemplary timings.

Here the theory inheritance does not play such an important role as in

Example 2.11.1. The dnf's obtained are in general much larger than the

original input. After Gr�obner simpli�cation they provide in most cases the

best result. Simpli�er recognized implication sometimes yields smaller dnf's

2.11. EXAMPLE COMPUTATIONS 47

Table 2.6: Motor series result sizes

no. input standard dnf Gr�obner good dnf Gr�obner tableau

1 710 674 3000 164 3000 164 536

2 1420 966 2948 604 2948 604 829

3 94 88 57 40 30 29 35

4 292 259 439 257 273 165 203

5 157 139 162 146 102 96 97

6 994 908 3694 448 3694 448 716

7 710 199 425 107 425 107 159
8 473 410 1920 135 1920 135 376

9 235 188 389 96 389 96 158
10 478 461 1607 283 1607 283 375
11 168 156 139 133 87 87 53

12 2176 2100 2995 489 2995 489 756
13 358 342 1189 183 1189 183 251
14 710 674 3000 164 3000 164 536

Table 2.7: Motor series exemplary timings

no. standard dnf Gr�obner good dnf Gr�obner tableau

3 0.1 s 0.3 s 0.5 s 0.5 s 0.3 s 3.4 s

6 1.4 s 10.3 s 93.1 s 491.0 s 92.7 s 48.5 s
12 4.2 s 18.7 s 45.7 s 355.4 s 45.3 s 1400.0 s

48 CHAPTER 2. SIMPLIFICATION OF FORMULAS

but it is excessively time consuming. The tableau method is irrelevant for

most cases and it is also extremely time consuming, in particular for large

input formulas. There is no relation between the size of the input formula

and the method of choice.

All input formulas are of a form better suited for dnf computation than

for cnf computation. For clarity, we should point out that our methods can

compute boolean normal forms for formulas of such sizes as in the example

only if the latter are not too deeply nested.

There is a similar series of 10 formulas describing a stop light circuit. It

con�rms the results obtained from the motor series.

2.12 Conclusions

We have discussed the problem of simplifying quanti�er-free formulas over

ordered �elds. In Section 2.2 we have speci�ed what kind of formulas are
considered simple thus making the notion of simpli�cation more precise.

Furthermore, we have introduced the notion of a theory, which is used
on one hand for entering external information into the simpli�cation process,

and on the other hand for relating information located on di�erent boolean
levels in deep formulas. The at simpli�cation methods (Section 2.4), namely

smart simpli�cation and the Gr�obner method make use of the theory, while
the deep simpli�cation method (Section 2.5) constructs an implicit theory
inheriting it to deeper boolean levels. The tableau methods (Section 2.6)

systematically construct external theories, and then apply the deep simpli�-
cation method.

We distinguish between a fast standard simpli�er and sophisticated ad-

vanced simpli�ers. The former consists of the deep simpli�er with all the
simpli�cation methods for atomic formulas (Section 2.3) and the boolean
methods (Subsection 2.4.1) and smart simpli�cation (Subsection 2.4.2) for

at formulas. Adding the Gr�obner method (Subsection 2.4.3) for at formu-
las to the standard simpli�er yields an advanced simpli�er. Further examples

for advanced simpli�ers are the tableau methods (Section 2.6) and our sim-

plifying boolean normal form computation (Section 2.7).

All simpli�ers obey to parameterizations, which are implemented via

global switches. There are three kinds of parameterization: Firstly, there are
switches for resolving conicts between di�erent simpli�cation goals (cf. Sec-
tion 2.2). Secondly, time consuming simpli�cation steps can be turned o�,

such as factorization (cf. Subsection 2.3.4), several features of the Gr�obner

method (cf. Subsection 2.4.3), or checking for simpli�er-recognized implica-
tion with boolean normal form computations (cf. Subsection 2.7.2). Thirdly,

2.12. CONCLUSIONS 49

one can turn o� methods that may be disadvantageous such as branchwise

iteration with the iterative tableau (cf. Subsection 2.6.1).

Our simpli�cation methods provide in a natural way a decision heuristics

for simple formulas. Such a decision heuristics has many applications in other

algorithms, in particular, in our quanti�er elimination.

The simpli�cation methods are implemented in redlog, which is a part

of reduce, cf. [30, 28]. In the current implementation, the Gr�obner simpli�er

is restricted to boolean normal forms. redlog currently focuses on simpli�-

cation and quanti�er elimination. Numerous non-trivial examples illustrate

the applicability and the relevance of our methods (Section 2.11).

50 CHAPTER 2. SIMPLIFICATION OF FORMULAS

Chapter 3

Quanti�er Elimination by

Virtual Substitution

In the previous chapter, we have exhaustively treated simpli�cation as an
important tool and subalgorithm for real quanti�er elimination. This applies

in particular to real quanti�er elimination by virtual substitution, which we
have made the method of our choice. Throughout this chapter we present
a variety of algorithmic approaches for gaining eÆciency. In contrast to the

conceptual frameworks of structural elimination sets and repeated condens-
ing discussed in the following chapters these approaches are very local in
nature. At the same time we take the opportunity to give a general survey

of quanti�er elimination by virtual substitution, which will serve as a basis
for the rest of this thesis. Our particular contributions mentioned above are

the following:

� We analyze quanti�er elimination by virtual substitution to consist of
four distinct phases. This point of view allows us to systematically

describe optimizations which otherwise appear to be quite ad hoc (Sec-
tion 3.3).

� Boundary type selection strategies for formulas containing arbitrary

quadratic constraints (Section 3.4).

� Corresponding selection strategies with elimination sets containing only

terms that can be interpreted as real numbers (Section 3.5).

� Analysis of the interplay between our selection strategies and virtual
substitution. This analysis is also extended to other selection strategies

already present in the literature (Section 3.6).

51

52 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

� EÆcient treatment of formulas of a special type where the quanti�ed

variable occurs only linearly except for exactly one occurrence in a

quadratic ordering constraint. We exhibit that this approach cannot

be combined with the selection strategies discussed before (Section 3.7).

3.1 History and Development

In 1988, Weispfenning studied linear problems in �elds, ordered �elds, and

discretely valued �elds, cf. [68]. Inuenced by ideas of Cooper [23] and

Ferrante, and Racko� [34], he presented among others results a quanti�er

elimination procedure for linear formulas in ordered �elds which is based

on the computation of �nite elimination sets containing test points. These

test points are substituted into the original formula. Using this algorithm

Weispfenning proves that quanti�er elimination for ordered �elds requires at
most double exponential space and time. On the other hand he also proves
that this quanti�er elimination is in the worst-case at least double exponen-

tial in time and space. These results are certainly correct when measuring the
complexity in terms of the word length of the input formula. Weispfenning's

results, however, are actually much more precise: His algorithm is double
exponential only in the number of quanti�er blocks. For like quanti�ers, it
is single exponential in the number of quanti�ers. The number and the size

of the atomic formulas in the input plays a very minor role. To be precise,
both time and space complexity are polynomially bounded in these para-

meters. Observe that in contrast to quanti�ers and quanti�er changes, the
number of parameters, i.e., free variables does not signi�cantly contribute to
the complexity. This fact suggested that Weispfenning's algorithms provide

in particular for problems involving many parameters a reasonable supple-
ment to the only implemented quanti�er elimination procedure at that time:
Collins' cylindrical algebraic decomposition method [19].

In 1990 Burhenne [17] �nished a �rst experimental implementation of
Weispfenning's algorithm for ordered �elds. At the same time Weber, who

was then a student of Loos, independently worked on �rst implementations.

Although the application range of these implementations was extremely re-
stricted, it inspired further work in this area, which resulted in a common

paper by Loos and Weispfenning [51]. Besides a more liberal notion of elim-
ination sets, which we are going to discuss in Section 3.2.1, this joint paper

contains the treatment of an extreme special case of Gauss elimination strate-

gies, which we are going to discuss and to generalize in the next chapter.

In the following years, Weispfenning extended the idea of virtual substitu-
tion to arbitrary degrees making concrete the case of quadratic occurrences of

3.1. HISTORY AND DEVELOPMENT 53

some quanti�ed variable [72]. Independently he has handled the special case

of cubic occurrences in [71]. This great theoretical progress restimulated the

interest in virtually eÆcient implementations of the methods. Sturm started

to prepare such implementations in 1992.

Since 1995 the author together with Sturm has continuously been develop-

ing the computer logic system redlog containing besides the simpli�cation

methods discussed in the previous chapter and numerous general purpose

algorithms on �rst-order formulas over various theories also highly optimized

implementations of real quanti�er elimination based on Weispfenning's ideas.

The current Version 2.0 of redlog, cf. [28, 30], is available in the com-

mercial supported and distributed computer algebra system reduce 3.7.
The real quanti�er elimination of redlog 2.0 is still restricted to formulas

in which the quanti�ed variables occur with \low" degrees.

Beside the main development branch in reduce, the method was stud-
ied and implemented also in other systems. An alternative implementation

of the quanti�er elimination algorithm was done by Sturm [63] in the com-
puter algebra system Risa/Asir. Meanwhile this implementation includes the
simpli�cation techniques described in this thesis implemented by the author

together with Sturm. Sturm has parallelized the quanti�er elimination using
a parallel reduce [53] based on pvm on a Cray T3D. Another implementa-
tion was done in C using the saclib library [39, 15]. This version was then

parallelized by the author, Gloor, and Sturm [26] using parsac [46, 47, 48].

The development of variants of quanti�er elimination is closely connected
to the development of the pure quanti�er elimination algorithm. Extended

quanti�er elimination was �rstly described by Weispfenning for solving op-

timization problems, [70] and �rstly implemented by Kappert, cf [43]. The
redlog implementation of the quanti�er elimination provides also the pos-

sibility to compute sample points. A generic quanti�er elimination based on
virtual substitution was presented in a joint paper by the author together

with Sturm and Weispfenning, [31]. Redlog includes both a generic quan-

ti�er elimination and an extended generic quanti�er elimination.

The most recent variant of quanti�er elimination in the framework of

virtual substitution is local quanti�er elimination [32], which we are going to

discuss in Chapter 6.

54 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

3.2 An Overview of the Method

3.2.1 Elimination Sets and Virtual Substitution

In an intuitive way an existential quanti�er can be considered as an in�nite

disjunction over all real numbers. The basic idea of quanti�er elimination

by virtual substitution is to restrict this disjunction to a disjunction over a

�nite elimination set E of terms given parametrically in some suitable form.

It will turn out that this idea in fact always works. There are, however,

a variety of obstacles, which one has to take care of. Consider, e.g. the

following extremely simple situation: We wish to eliminate a single existential

quanti�er in front of a parametric linear equation:

' � 9x(ax + b = 0):

In view of the discussion so far, it is a straightforward idea to simply substi-

tute the formal solution of our equation:

E =

�
� b
a

�
; '0 �

_
t2E

(ax + b = 0)[x==t]:

After formally performing the substitution and formally reducing to lowest
terms this uncovers the �rst problem:

(ax+ b = 0)

�
x==� b

a

�
 ! �ab

a
+ b = 0 ! 0 = 0 ! true:

Our result \true" is obviously not correct since for a = 0 and b 6= 0 this

equation does not have a real zero. Observe that exactly for the case a = 0
our formal solution � b

a
is not de�ned over the reals. This gives rise to the

following modi�cation of our initial idea: We rede�ne elimination sets to

not simply contain test terms but additionally guarding conditions, which

guarantee the existence of the corresponding terms in the �eld of the reals.

E =

��
a 6= 0;� b

a

��
; '0 �

_
(;t)2E

 ^ (ax+ b = 0)[x==t]:

This results in

a 6= 0 ^ (ax + b = 0)

�
x==� b

a

�
 ! a 6= 0;

which is, unfortunately, still wrong. This result does not cover the case a = 0
and b = 0 in which there exists zeroes. It is not hard to see that this second

3.2. AN OVERVIEW OF THE METHOD 55

obstacle can be overcome by substituting at least one arbitrary test term

without guard or, formally, with a guard that is equivalent to \true:"

E =

��
a 6= 0;� b

a

�
; (true; 0)

�
; '0 �

_
(;t)2E

 ^ (ax + b = 0)[x==t]:

This �nally leads to a correct quanti�er elimination result:

a 6= 0^ (ax+ b = 0)

�
x==� b

a

�
_ true^ (ax+ b = 0)[x==0] ! a 6= 0_ b = 0:

Note that our test term � b
a
is not a term in the language of rings, which

we have �xed in Section 2.1 to be the basis for all our considerations. A

test term is thus formally de�ned as a term over some suitably expanded
language. In the sequel we refer to such terms as pseudo terms, and we

denote by test terms both regular terms and pseudo terms. The substitution
of pseudo test terms into atomic formulas is always performed in such a way
that the substitution result � has the following properties:

1. � is a quanti�er-free formula over the language of rings.

2. � is|wrt. the expanded language|equivalent to the formal substitu-
tion result.

We refer to such substitutions as virtual substitutions, which explains the
above notation \==" in contrast to the standard \=."

We turn the knowledge informally obtained from our example into a for-
mal de�nition: Let (u; x) be a quanti�er-free formula. An elimination set

for wrt. x is a set of pairs (; t), where is a quanti�er-free formula in the

parameters u and t is a test term in the parameters u, such that

R j= 9x((u; x)) !
_

(;t)2E
 ^ [x==t]:

The following properties of the elimination sets are straightforward but

extremely important from a computational point of view.

Proposition 3.1. Let (u; x) be a quanti�er-free formula and E an elimi-

nation set for wrt. x. Then the following hold:

� Each superset of E is an elimination set for (u; x) wrt. x.

� Let 0(u; x) be a formula equivalent to (u; x) then E is also an elimi-

nation set for 0(u; x) wrt. x.

56 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

In his initial work [68] Weispfenning has used Skolem sets as elimination

sets: Let (u; x) be a quanti�er-free positive formula. Denote by A the set

of atomic formulas contained in . A Skolem set S for and x is a set

of test terms such that the following holds: For any interpretation a of the

parameters u and any choice of x 2 R, there is some test term t(u) 2 S

that when substituted for x simultaneously simulates the truth values of all

atomic formulas in A.

In all later publications starting with [51] this framework has been con-

siderably relaxed. All elimination problems were �rst reduced to the elimina-

tion of an existential quanti�er in front of a quanti�er-free positive formula.

Then the elimination terms need not precisely simulate the truth values of

all atomic formulas. Instead, it is suÆcient to turn all those atomic formu-

las into \true," which are \true" for the chosen x. This is the framework

we are going to follow in this chapter. In the following chapters on struc-
tural elimination sets and repeated condensing we will ourselves introduce a
much more liberal framework, which does not at all simulate truth values of

isolated atomic formulas but of entire subformulas.

Following the discussion in [51, 72] we give an outline of the algorithmic

construction of elimination sets for linear and quadratic formulas starting
with the linear case. Let (u1; : : : ; um; x) be a positive quanti�er-free for-

mula, and assume wlog. that all right hand sides of the contained atomic
formulas are normalized to be zero. We are going to discuss how to elimi-
nate the quanti�er from 9x (u; x). This is suÆcient because as mentioned
in Section 2.1 any �rst-order formula can be turned into a positive prenex
one, and then the quanti�ers can be eliminated one by one starting with the
innermost one; universal quanti�ers are reduced to existential ones via the

equivalence

8x (u; x) ! :9x: (u; x):
Let a1; : : : ; am 2 R. We de�ne the solution set of for x wrt. a as

Sxa () = f c 2 R j (a1; : : : ; am; c) g:

For 1 and 2 we have obviously that

Sxa (1 ^ 2) = Sxa (1) \ Sxa (2); Sxa (1 _ 2) = Sxa (1) [Sxa (2):

These identities together with the fact that the solution set of a polynomial
inequality is a union of disjoint intervals show that Sxa () itself is a union of

disjoint intervals. Consider a conjunction 1 ^ 2. It is easy to see that any

endpoint of an interval in Sxa (1 ^ 2) is also an endpoint of an interval in
Sxa (1) or it is an endpoint of an interval in Sxa (2). This same holds for a

3.2. AN OVERVIEW OF THE METHOD 57

disjunction 1_ 2. Iterating this argument we �nd that �nally any endpoint
of an interval in Sxa () is an endpoint of an interval described by some atomic

constraint

f % 0; % 2 f�; <;=; 6=; >;�g;
which occurs literally in . Note that the number, the kind, and the location

of the intervals in Sxa () depend on our choice of a. There will, however, be

suitable atomic formulas f % 0 for any choice of a 2 Rm .
Keep in mind that we have �xed a 2 Rm , and let us for the moment

restrict our attention to the case that our formula is linear and involves

only weak relations in the sense of Section 2.1. For such formulas all intervals

in Sxa () are of one of the following forms:

a; [a; b];]�1; a] ; [a;1[; R:

If Sxa () = R, then it obviously suÆces to substitute any test term. Recall

that we already have encountered this situation with the discussion of our
introductory example. In all other cases the intervals contain at least one

of their endpoints. It is thus suÆcient to add to the elimination set all
these endpoints, which obviously are the solution to the linear equations
derived from the weak atomic formulas contained in . As in our introductory

example the guards will state that the corresponding denominators are non-
zero.

We next turn to the case, where our linear contains also strong relations.

Then Sxa () includes in addition intervals of the form

]a; b] ; [a; b[;]a; b[;]�1; a[;]a;1[:

The �rst two cases are already covered by our above elimination set construc-
tion: They contain one endpoint stemming from a weak atomic formula. For

the third case]a; b[we have to construct a point inside the interval. We
take the exact midpoint a+b

2
, where a and b are derived as usual as solutions

of linear equations corresponding to the strict atomic formulas in . The

guard of this test term will state that the denominators of both a and b are
non-zero. The last two cases are covered similarly by taking a� 1 and a+1,

respectively. This concludes the discussion of the purely linear case.

The introduction of quadratic constraints does not change anything in
our case distinction wrt. the interval structure. The interval boundaries are

now possibly solutions

�c1 �
p
�

2c2
; � = c21 � 4c2c0

58 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

of quadratic equations c2x
2 + c1x + c0 = 0. We refer to such pseudo terms

of the form a+b
p
c

d
as root expressions. The corresponding guards are c2 6=

0 ^ � � 0. It is not hard to see that the substitution of a root expres-

sion into a polynomial yields another root expression. This observation cov-

ers in particular our computation of the arithmetic mean for intervals]a; b[.

Weispfenning [72] has developed a virtual substitution for root expressions.

As an example we give the substitution of a+b
p
c

d
for x into an atomic formula

f � 0. According to our observation the substitution of our root expression

into f yields another root expression a0+b0
p
c

d0
, and we then have

a0 + b0
p
c

d0
� 0 ! (a0d0 � 0 ^ a02 � b02c � 0) _ (b0d0 � 0 ^ a02 � b02c � 0):

To conclude the discussion of the quadratic case observe that a quadratic
constraint c2x

2 + c1x + c0 % 0 can be a \hidden" linear one for choices of

parameters with c2 = 0. For this reason such a constraint does not only
generate square root expressions but also the test term � c0

c1
with guard c2 =

0 ^ c1 6= 0.

3.2.2 Extended Quanti�er Elimination

Quanti�er elimination by virtual substitution as sketched so far proceeds as

follows: For the elimination of an existential quanti�er there is an elimination
set computed. Then the test points of this elimination set are virtually
substituted into the original formula. Finally there is a �nite disjunction

formed over all the substitution results. We will give a more detailed analysis
of the procedure into several phases in Section 3.3.

For now, consider the point at which the substitution of the elimination

terms is performed. Here we actually loose some piece of information: The
real numbers described by the substituted terms are actually sample values

for the existentially quanti�ed variable. Such sample values cannot be re-
constructed from the �nal elimination result, which only gives necessary and

suÆcient conditions in the parameters for such values to exist. The idea of

the extended quanti�er elimination is now to retain this information.

For this purpose we do not construct the disjunction in the end but keep

all substitution results separately and associate them with the corresponding
test terms. The result for the extended elimination of one existentially quan-

ti�ed variable via an elimination set E =
�
(1; t1); : : : ; (n; tn)

	
is a scheme

3.2. AN OVERVIEW OF THE METHOD 59

of the following form:

2
64
�
1 ^ [x==t1]

�
(u) x = t1(u)

...
...�

n ^ [x==tn]
�
(u) x = tn(u)

3
75 :

This scheme has to be interpreted as follows: Consider the original formula

9x (u; x). Whenever this formula holds for some choice a 2 Rm of the

parameters u, then at least one of the i ^ [x==ti] holds for a, and the

corresponding x = t1(a) 2 R provides one sample solution for x. Conversely,

whenever one of the i ^ [x==ti] holds, then also holds for x = ti(a) and

hence obviously 9x holds.

Eliminating in this extended sense a block of several existential quanti-

�ers we straightforwardly obtain an unnested scheme of the above form with
sample solutions for all the involved variables obtained by backsubstitution.

For a block of universals quanti�ers this semantics of the obtained scheme
is dual to that of existential quanti�ers: Whenever the original universally

quanti�ed formula does not hold then for the corresponding choice of para-
meters at least one of the i ^ [x==ti] is \false," and the corresponding ti
provides one counterexample.

Note that we have explained extended quanti�er elimination for an out-
most prenex quanti�er block. All inner quanti�er blocks are eliminated con-

ventionally.

In Section 2.9.2 we have described the degree shift as a simpli�cation strat-
egy reducing the degree of quanti�ed variables. Due to the degree restrictions
imposed by quanti�er elimination by virtual substitution this simpli�cation

is certainly of particular importance. In connection with extended quanti-
�er elimination there remains one point to be clari�ed. We have to adapt

our sample solution terms obtained from a degree shifted formula in such a
way that it is a sample solution for the corresponding original non-shifted
formula. For this purpose, the answer x = t in the extended elimination of a

variable that was shifted at the degree d is replaced by x = d
p
t.

3.2.3 Pseudo Terms for EÆciency

So far we have computed elimination sets by generating test terms from
solution interval boundaries. For any choice of parameters these test terms

described suitable real numbers inside the interval. It has already turned out

necessary for representing both fractions and roots to switch from proper
terms over our formal language of ordered rings to pseudo terms over some

expanded language. This in turn gave rise to the introduction of the notion

60 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

of virtual substitution. Virtual substitution takes care that the substitution

result is again a quanti�er-free formula over the unexpanded language of

ordered rings.

We are now going to introduce, for the sake of eÆciency, further pseudo

terms, which cannot even be interpreted as real numbers but live in some

suitable real closed extension �eld R� . Again, we can, however, give a virtual
substitution for these objects, which is semantically adequate and yields a

quanti�er-free formula in the language of ordered rings. To be more precise,

our new pseudo terms will involve symbols 1, which stands for an element

larger than all standard real numbers, and " which stands for a positive

in�nitesimal element.

Let us �rst turn to1. The pseudo term1 is used to replace all the test

points of the form a + 1 for intervals extending to in�nity. Accordingly we

use �1 for replacing the test points of the form a�1 for intervals extending
to minus in�nity.

Concerning the virtual substitution of e.g. 1 note that there is always

some �xed real number � larger than all zeroes of polynomials involved in
the input formula, and for all � 0 � � the signs of all polynomials and thus the
truth values of all corresponding atomic formulas are �xed for given choices

of parameters. It is not hard to see that for the virtual substitution1 should
behave like �. This reduces the task of substitution to an analysis of whether

the polynomial to be substituted into goes to plus or to minus in�nity as x
goes to in�nity. This analysis in turn corresponds to a case distinction on
the sign of the parameters.

For illustration we give the virtual substitution of 1 into a constraintPd

i=0 cix
d > 0. The result of the substitution is the quanti�er-free formula

�(cd; : : : ; c0), which is recursively de�ned as follows:

�(cd; : : : ; c0) � cd > 0 _ cd = 0 ^ �(cd�1; : : : ; c0); �(c0) � c0 > 0:

Denote by n the number of atomic formulas contained in our target for-

mula . The introduction of in�nity has reduced some O(n) part of the
elimination set to O(1). Recall that the overall size of our elimination set

is O(n2). The introduction of pseudo terms involving our positive in�nitesi-

mal " will reduce this overall size to O(n) by replacing the arithmetic means
causing the quadratic size.

Intuitively it should by now be clear that we wish to introduce test terms

a+ " or b� " for the bounded open intervals]a; b[in Sxa (). Then we do no

longer have to blindly combine all strict upper with all strict lower bounds,

which caused the quadratic growth. It remains to be clari�ed how to virtually
substitute t � " into atomic formulas. For non-trivial equations it is clear

3.2. AN OVERVIEW OF THE METHOD 61

that any substitution of some t� " results in \false" because t� " describes
a standard real number and thus cannot be a real zero of the left-hand side

polynomial. Accordingly, substitutions into non-trivial disequations result in

\true." For ordering constraints, there are again recursive schemes, which

consider the signs of the substitution of t into the left hand side polynomials

and into its derivatives.

As an example we describe the substitution of t + " into f < 0, where

f =
Pd

i=0 cix
i. The result is �(f)[x==t], where �(f) is recursively de�ned as

follows:

�(f) � f < 0 _ �f = 0 ^ �(f 0)�; �(c0) � c0 < 0:

With extended quanti�er elimination, unfortunately, we have to pay a

price for our gain of eÆciency: The \sample solutions" then do not provide

precise sample values but have to be interpreted very carefully. In particu-

lar, when there occurs several symbols1 or several symbols " in one sample
solution for the variables of a quanti�er block, then we do not know anything

about the ordering between these symbols. In particular, it can be necessary
for the correctness of a sample point in R� that non-standard numbers in-
troduced at di�erent times are not identical in R� . It is thus reasonable to
index these symbols with consecutive natural numbers such that de�nitely
identical symbols can be identi�ed in the end.

3.2.4 Boundary Type Selection

Recall that quanti�er elimination by virtual substitution has to substitute
for �xed parameter values at least one point from intervals

a; [a; b];]�1; a] ; [a;1[; R;

]a; b] ; [a; b[;]a; b[;]�1; a[;]a;1[:

For this purpose, we currently substitute all interval boundaries, shifted by

�" where necessary. As mentioned above, it actually suÆces, however, to

substitute one point from each interval. Consider some interval boundary �
coming from a linear atomic ordering constraint in which the head coeÆcient

wrt. x of the left hand side polynomial is parameter-free. Then we know by
combining the sign of this head coeÆcient with the ordering relation whether

� imposes an upper bound or a lower bound (if it is relevant at all). Note

that equations and disequations impose both upper and lower bounds. We
call such boundaries � known boundaries. All others are called unknown

boundaries. In Section 3.4 we will extend this idea to quadratic constraints.
Among the known boundaries we may decide for either upper or lower

bounds. In either case we have to add all unknown boundaries because they

62 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

match our choice in the worst-case. Of course, we will use this freedom of

choice to minimize the size of the elimination set.

There is one subtle point with boundary type selection: Assume we have

decided for lower bounds, but for �xed parameters a all lower bounds imposed

by atomic constraints in are actually irrelevant for the interval boundaries

within Sxa (). In other words Sxa () is unbounded from below. Then we

are missing a relevant test point. For this case we add (true;�1) to the

elimination set. This simultaneously serves as the point with trivial guard,

which always has to be substituted. Analogously we add (true;1) when

deciding for upper bounds.

3.2.5 Trivial Gauss Elimination

Let us consider an equation ax + b = 0 and assume that a 2 Q n f0g. The
special role of such an equation compared to all other relations is that its
solution set contains only one point, namely � b

a
. Let be of the form

ax+ b(u) = 0 ^ 0(u; x);

and assume that we would like to eliminate 9x . Using the method described
so far we would compute the elimination set from all atomic formulas in
together with the equation. We have, however, already discussed that

Sxa () = Sxa (ax + b = 0) \ Sxa (0) � Sxa (ax + b = 0) =

�
� b
a

�
:

It follows that G =
��
true;� b

a

�	
is a suitable set of test points. We call this

special case of the elimination of a variable Gauss elimination, which has in
this form been introduced in [51].

Weispfenning [72] has extended the idea to a quadratic equation instead

of a linear one. In fact, this extension of Gauss elimination gave the key ideas

to extend the general virtual substitution approach to the quadratic case.

3.2.6 Blockwise Elimination

For the discussion of the elimination algorithm we have restricted ourselves

to the case of one existential quanti�er. For several like quanti�ers as in

' � 9xn � � � 9x1 (u; x1; : : : ; xn);

we have argued to simply start with the elimination of the innermost one
and then to proceed step by step to the outside.

3.2. AN OVERVIEW OF THE METHOD 63

Recall that the elimination result '� for the elimination of some innermost
quanti�er is obtained by disjunctively combining intermediate results '�i .
Each of these '�i is obtained by substituting a test point into . For the

elimination of the second quanti�er the situation thus looks as follows:

9xn � � � 9x2
_
i

'�i :

Suppose that we naively proceed to the elimination of \9x2." That is, we

would generate an elimination set from the atomic formulas in
W
i '

�
i and

disjunctively substitute these test points into
W
i '

�
i . This would mean that

we substitute test points generated by atomic formulas of some '�i also into
all '�j with j 6= i. This is not really necessary due to the obvious equivalence

9xn � � � 9x2
_
i

'�i !
_
i

9xn � � � 9x2'�i :

We refer to the application of this equivalence as blockwise elimination, which
is clearly preferable.

For a block of like quanti�ers the equivalence can be applied after the
elimination of each quanti�er. Due to the treatment of universal quanti�ers

by the rule 8x ! :9x: a quanti�er change from \9" to \8" corresponds
to switching from \

W
" to \

V
" and vice versa. At this point the current

sequence of an applications of our blockwise elimination rule terminates. This

corresponds to the fact mentioned in Section 3.1 that quanti�er elimination
by virtual substitution is double exponential only in the number of quanti�er
changes.

Let us again restrict our attention to the blockwise elimination of one
single existential quanti�er block.

' � 9xn � � � 9x1 (u; x1; : : : ; xn);
Our iterated application of our blockwise elimination rule can be considered

as the computation of an elimination tree of the following form:

� Each node consists of a quanti�er-free formula kl plus a list Vkl of
variables. The corresponding partial elimination problem is 9Vkl kl.
� The root is (11; V11) = (; fxn; : : : ; x1g).
� For each node (kl; fxn; : : : ; xkg) the children are

(k+1;1; Vk+1;1) = (1 ^ kl[xk==t1]; fxn; : : : ; xk+1g);
...

(k+1;l0; Vk+1;l0) = (l0 ^ kl[xk==tl0]; fxn; : : : ; xk+1g);

64 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

������������

HHHHHHHHHHHH

J
J
J
J
J
J

(; fx1; x2g)

([: : :]; ;;)

(3 ^ [x1==t3]; fx2g)

([: : :]; ;)([: : :]; ;)(1 ^
0

1 ^ [x1==t1; x2==t
0

1]; ;)

(2 ^ [x1==t2]; fx2g)(1 ^ [x1==t1]; fx2g)

Figure 3.1: An elimination tree

where
�
(1; t1); : : : ; (l0; tl0)

	
is an elimination set for kl wrt. xk.

Figure 3.1 shows an example.

Elimination trees have the following properties: On each level the number
of variables in all variable lists is identical. At the current state of our discus-
sion the entire lists are actually identical but we will loosen this restriction

soon. The number of variables decreases by one with each new level. All
leaves of the tree contain the empty list. For each level with nodes (k1; Vk1),
: : : , (kl; Vkl) we have

l_
i=1

9Vki ki ! 9xn � � � 9x1 :

This holds in particular for the leaves of the tree for which Vn1 = � � � = Vnl =

;. Hence the left hand side of the above equivalence is then quanti�er-free.

Note that one can equivalently permute the variables within a prenex

quanti�er block. Consequently one can, as indicated above, choose the next

variable to be eliminated independently for each node of the tree. The next
variable is usually selected in such a way that the obtained elimination sets

are small. It is not hard to see that this local criterion does not necessarily
lead to an optimal �nal result.

A new insight we obtain from our elimination tree point of view is the

following: Blockwise quanti�er elimination as described above traverses the
tree in a breadth-�rst search manner. Of course one can straightforwardly

modify the elimination algorithm in such a way that it traverses the tree in

3.3. THE PHASES OF THE ELIMINATION PROCEDURE 65

a depth-�rst search manner. Both approaches have their advantages. Re-

call that we are actually interested only in generating the leaves of the tree.

Breadth-�rst search keeps entire levels simultaneously in storage. This en-

ables simpli�cations on the single levels including, in particular, elimination

of duplicate nodes. Weispfenning [73] has shown that the majority of such

duplicates comes into existence systematically. They can be detected inde-

pendently on the traversion scheme by means of the so called passive list.

Depth-�rst search saves storage and has the chance to discover a \true" leaf.

If this happens the overall elimination result is \true," and the computation

can immediately be aborted without constructing the entire tree. This fact

makes depth-�rst search de�nitely preferable for decision problems.

Let us return once more to the idea of intermediate degree shift simpli�ca-

tions according to Section 2.9.2, which help us to avoid degree violations. It

is reasonable to apply the shift not only for the next variable to be eliminated

but to all variables of the current block. The reason is that simpli�cations
after the elimination of one variable can destroy possible shifts.

3.3 The Phases of the Elimination Procedure

At �rst sight, quanti�er elimination by virtual substitution proceeds as fol-
lows for the elimination of the prenex existential quanti�er from 9x :

� Compute the set A of atomic formulas in .

� Compute an elimination set E from A. There are numerous possible

optimization strategies to be considered.

� Disjunctively substitute the test points from E into using some suit-
able virtual substitution.

Finally we simplify the �nal result using the methods provided by Chapter 2.
We agree to consider this simpli�cation, in spite of its extreme importance,
to be not part of the elimination procedure.

The next example shows that the simpli�cation of the quanti�er elimina-

tion results is an essential part of an eÆcient implementation of the quanti�er

elimination by virtual substitution:

Example 3.2 (Brown's Problem). The following problem has been given

by Brown [10]: Let (an)n2N be a sequence of real numbers satisfying the
relation

an+2 = jan+1j � an:

66 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

Prove that (an)n2N is periodic with period 9. We translate this problem into

the following �rst-order formula:

' � 8x1 � � � 8x11
� 9̂

i=1

'i �! (x1 = x10 ^ x2 = x11)
�
;

'i � xi+2 = jxi+1j � xi
� (xi+1 � 0 ^ xi+2 = xi+1 � xi) _

(xi+1 < 0 ^ xi+2 = �xi+1 � xi); 1 � i � 9:

Our quanti�er elimination by virtual substitution including the simpli�ca-

tion of all intermediate results using the standard simpli�er described in

Section 2.5.2 computes the result \true" within 5 s. Without simpli�cation

we need 50 s to obtain the same result.

We are now at the point to state the optimized elimination set occurring
computation more systematically. This is achieved by introducing another
intermediate stage between the set of the atomic formulas on one side and

the �nal elimination set on the other side. This new intermediate level is the
candidate solution set.

Let A be a set of atomic formulas contained in . A candidate solution

set for is a subset of the set of the formal solutions wrt. x of all equations

f(u; x) = 0; where f(u; x) % 0 2 A for some % 2 f<;�;=; 6=; >;�g

with their usual guards. This subset contains suÆciently many test points
to provide for any interpretation of the parameters a superset of all real
interval boundaries in Sxa (). The candidate solution sets used throughout

this chapter are always the entire set of formal solutions as speci�ed above.
Accordingly we allow ourselves to speak of the candidate solution set for A.

More restricted candidate solution sets will be introduced in the following

chapter on structural elimination sets.
Compare the discussion of elimination set computation in Section 3.2.1

for details. The obtained pairs are expanded to triplets containing additional
information on the boundary type. We know the following boundary types:

Strict lower bounds Test terms of which we de�nitely know that they

describe the boundary a of some interval of one of the forms]a; b],

]a; b[,]a;1[.

Strict upper bounds Test terms of which we de�nitely know that they

describe the boundary b of some interval of one of the forms]a; b[,
[a; b[,]1; b[.

3.3. THE PHASES OF THE ELIMINATION PROCEDURE 67

Strict bounds Test terms of which we know that they describe either a

strict upper bound or a strict lower bound, but we cannot decide which

of both. Recall from Section 3.2.4 that this happens whenever the head

coeÆcient wrt. the current variable of some polynomial with a strict

ordering is parametric.

Weak lower bounds Test terms of which we de�nitely know that they de-

scribe the boundary a of some interval of one of the forms [a; b], [a; b[,

[a;1[.

Weak upper bounds Test terms of which we de�nitely know that they

describe the boundary b of some interval of one of the forms]a; b],

[a; b],]1; b].
Weak bounds Test terms of which we know that they describe either a

weak upper bound or a weak lower bound, but we cannot decide which

of both.

Isolated points Test terms which are formal solutions to equations.

Exception points Terms describing points excluded by a disequation. Note
that in a certain sense such a point is quite similar to the boundary of

an open interval.

Within this framework it turns out that all remaining subtasks of the

elimination set computation use exactly the information encoded in our can-
didate solution set. We identify the following subtasks:

� The computation of the arithmetic means for coping with open inter-
vals.

� The decision for whether to add or subtract ".

� The decision for whether to add or subtract 1 for open intervals ex-

tending to 1 or �1.

� All boundary selection strategies.

� The decision whether 1, �1, or any other point has to be added.

A suitable selection of these subtasks turns our candidate solution set into

an elimination set.

We �nally summarize our discussion as follows: From an algorithmic point

of view, quanti�er elimination by virtual substitution splits into the following
four phases:

68 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

1. Compute the set A of atomic formulas in .

2. Compute the candidate solution set C from A.

3. Compute an elimination set E from C. This is exactly the point where

the boundary selection strategies can be applied.

4. Disjunctively substitute the test points from E into using some suit-

able virtual substitution.

3.4 Boundary Type Determination for

Quadratic Constraints

We consider again the elimination of 9x for positive quanti�er-free . Con-

sider � c2x
2+c1x�c0 � 0 with 0 6= c2 2 Z and discriminant � = c21�4c2c0

contained in the atomic formulas of . For � = 0 it is easy to see that con-
cerning the boundary type, yields either an isolated point or an exception

point. Let us now focus on the case where � > 0, i.e., delivers bounds.
The test terms of the candidate solutions are then

s1 = �c1 +
p
�

2c2
; s2 = �c1 �

p
�

2c2
:

The guards are obvious. The square root
p
� exists and is greater than zero.

Suppose now that wlog. c2 > 0. Then we have obviously s1 < s2. Taking
the relation \�" of the considered atomic formula into account, it is obvious

that
Sxa () = f x 2 R j x � s1 _ x � s2 g:

In other words s1 is a weak upper bound and s2 is a weak lower bound,
and we have thus also determined the boundary types of our two candidate

solutions. This information allows us to proceed as for the linear case in

Section 3.2.4: After deciding for either substituting upper or lower bounds

we are now able to also drop some quadratic test terms. The above described

boundary determination can, of course, be easily extended to all other or-

dering constraints.

Weispfenning has sketched in [72] how to extend quanti�er elimination

by virtual substitution to formulas of arbitrary degree. This generalization

considers, like the elimination procedure for the linear and quadratic case,

the zeroes of the involved polynomials. For each parametric univariate poly-

nomial f(u; x), we determine not only the zeroes in an appropriate way but
in addition

3.4. BOUNDARY TYPE SELECTION 69

� the number of distinct zeroes,

� the multiplicities of all zeroes,

� the ordering among all zeroes.

This information together with the sign of the head coeÆcient allows us to

extend our ideas for boundary determination to the general case.

3.5 Boundary Type Selection for Real

Elimination Sets

Recall our overview of quanti�er elimination by virtual substitution in Sec-

tion 3.2. Already within Section 3.2.1 we have described a completely work-
ing variant of the method. The remainder of that section focussed on the
introduction of extended quanti�er elimination and on optimizations. One

of these optimizations was the introduction of pseudo terms containing 1
an " for eÆciency reasons in Section 3.2.3. The new idea of this pseudo
terms was that they can, in contrast to the terms used in Section 3.2.1, not

be interpreted as real numbers. Accordingly, we will from now on refer to
elimination sets not containing such terms as real elimination sets.

We have already discussed in Section 3.2.3 that non-real elimination sets,

i.e., elimination sets containing1 or ", are not perfectly suited for extended
quanti�er elimination because the sample points cannot be interpreted easily.

On the other hand our discussion of boundary type selection in Section 3.2.4
was based on the availability of non-standard pseudo terms and did not
discuss the compatibility of the arithmetic means required for real elimination

sets with boundary type selection.

Since we will be particularly interested in extended quanti�er elimination
answers and thus in real elimination sets in Chapter 7, we are now going to

analyze this issue.

The idea behind boundary type selection is as follows:

� For �xed parameters u = a, the solution set of our formula wrt. to the

variable x to be existentially eliminated is a disjoint union of possibly

degenerate intervals.

� We can symbolically derive from a superset of the endpoints of these

intervals. Moreover, for certain endpoints we can decide whether they
are lower or upper interval boundaries.

70 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

� We have to substitute at least one point from each interval. Due to

the availability of 1 and " we can use the boundaries as test points

possibly shifting them by �" for open intervals.

� Boundary type selection now means to either drop all upper or all lower

bounds. This decreases the size of the elimination set and still yields

one point in each interval.

With real elimination sets, there is no " and we thus cannot substitute bound-

aries for open intervals. Instead we have computed the arithmetic means of

all strict bounds, which are exactly the candidates for boundaries of open

intervals. This guarantees to �nd a point exactly in the middle of each of

the open intervals.

Let us try to save as much of the boundary selection idea as possible: We
still substitute the arithmetic means of all strict bounds but concerning the

weak bounds we decide for, say, upper bounds. This is not correct! Assume,
e.g., that

Sxa () = [�; �[;

and the largest strict lower bound is so small that +�

2
< �. Then our

choice of test points obviously does not hit Sxa ().

It is easy to see that everything works �ne when we additionally combine
all strict bounds with all weak bounds except the upper bounds we have

decided for to substitute. Unfortunately, as soon as there is any strict bound
present at all, this elimination set grows at least as large as our initial one
without any boundary selection. The reason is that the dropped weak lower

bounds now yield by combination with strict bounds at least one test term
instead of exactly one test term.

There is, however, one boundary type based optimization possible. We

proceed as with the initial approach: No boundary type selection for the weak
boundaries plus arithmetic means of the strict boundaries. Here we can drop

all arithmetic means between like strict bounds. This yields, in general, an

improvement but still keeps the size of the elimination set quadratic.

In the discussion so far we have skipped the elimination terms of the form

a � 1 where a is a strict bound. Here it is obviously suÆcient to use a � 1
for upper bounds a and a+ 1 for lower bounds a.

3.6 Stronger Guards by Boundary Types

Let us now return to the general non-real elimination set types, where we

are allowed to perform the usual boundary selection of Section 3.2.4 together

3.6. STRONGER GUARDS BY BOUNDARY TYPES 71

with our optimizations of Section 3.4. For explaining our idea, it suÆces to

restrict to linear formulas.

Assume wlog. that we have decided for upper bounds, and we discover

some atomic formula � c1x + c0 > 0, where c1(u) is a parametric term,

which we cannot decide the sign of. This means that is in the worst case an

upper bound. Consequently a corresponding test term for has to be added

to our elimination set. Formally, the entry for in the candidate solution

set is �
c1 6= 0; �c0

c1
; \strict bound"

�
:

As indicated above, is only necessary for the worst case that our choice

of parameters u = a turns it into an upper bound, i.e., c1(a) < 0. This

observation allows us to change the guard c1 6= 0 to the more restricted

guard c1 < 0.
The crucial point is that this new guard c1 < 0 is much more convenient

at the substitution stage. Consider the substitution of � c0
c1

for x into a
constraint f(u; x) % 0. The result after the formal substitution into f has the

following form:
T

c
deg

x
(f)

1

% 0:

In the spirit of virtual substitution this has to be turned into a quanti�er-free
formula over the language of ordered rings. Assume now that degx(f) is odd
and that % is an ordering relation. On the assumption that c1 6= 0 we have

to multiply both sides by c
2 deg

x
(f)

1 to preserve the direction of the ordering

for any sign of c1. With our improved knowledge that c1 < 0 we can instead

simply multiply by c
deg

x
(f)

1 and inverse the ordering relation % to %. The

result is then T % 0 in contrast to Tc
deg

x
(f)

1 % 0.

This is actually a great gain in view of the fact that c1 is in general a
parametric term containing also variables that are quanti�ed from further

outside. Avoiding a degree explosion, as we do here, can thus be crucial
for quanti�er elimination by virtual substitution to succeed on our current

input.

All our observations are straightforwardly applicable also to quadratic

bounds and also for arbitrary degrees. Again only the head coeÆcient wrt. x

is relevant for the direction of the bound, and again this head coeÆcients

enters the guard in a disequation.

To conclude this section we give an example demonstrating the gain of

taking the chosen boundary type into account:

Example 3.3. Consider the formula

9x ; � (ax+ b � 0 ^ cx + d � 0):

72 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

For eliminating the quanti�er \9x"we obtain the candidate solution set

n�
a 6= 0;� b

a
; \weak bound"

�
;
�
c 6= 0;�d

c
; \weak bound"

�o
:

Choosing upper bounds for the computation of an elimination set allows us

to change the guards a 6= 0 into a < 0 and c 6= 0 into c > 0. This results in

the elimination set
�
(a < 0;� b

a
); (c > 0;�d

c
); (true;1)

	
for and x. The

substitution of these test points into , using the knowledge introduced by

the stronger guards, results �nally in the following quanti�er-free formula:

(a < 0 ^ ad� bc � 0) _ (c > 0 ^ ad� bc � 0) _�
(a > 0 _ (a = 0 ^ b � 0)) ^ (c < 0 _ (c = 0 ^ d � 0))

�
:

Without taking the boundary type into account we would obtain the elimina-

tion set
�
(a 6= 0;� b

a
); (c 6= 0;�d

c
); (true;1)

	
. Substituting these test points

we would obtain higher degrees in some terms:

(a 6= 0 ^ a2d� abc � 0) _ (c 6= 0 ^ acd� bc2 � 0) _�
(a > 0 _ (a = 0 ^ b � 0)) ^ (c < 0 _ (c = 0 ^ d � 0))

�
:

3.7 A Quadratic Special Case

In the previous sections we have briey addressed the problem that substi-
tution of elimination terms into formulas will in general increase the degree

of the involved parameters. We have seen that we essentially eliminate the
quanti�ers in a prenex block from the inside to the outside always treating
all variables quanti�ed from further outside as parameters. We thus have

the problem that increasing the degree of a \parameter" can actually mean
increasing the degree of a quanti�ed variable, which has to be eliminated

later.

For a degree restricted implementation this means the following:

� The elimination procedure can fail although all occurrences of quanti-

�ed variables in the input are at most quadratic.

� We cannot straightforwardly decide by inspection of the input whether
this will happen or not.

Weispfenning [68] has shown that this problem does not occur when all oc-
currences of all quanti�ed variables are linear. Recall that the product of

two quanti�ed variables is not a linear occurrence.

3.7. A QUADRATIC SPECIAL CASE 73

In the non-linear case it is thus crucial for the success of the elimina-

tion to at least heuristically keep the degrees low as much as possible. One

such heuristics was the improved substitution of the previous section. Other

heuristics are polynomial factorization, or the degree shift discussed in Sec-

tion 2.9.2.

In this section we take a more systematic approach. We are going to

identify situations, where quadratic occurrences of quanti�ed variables are

involved but an increase in the degrees can systematically be avoided.

The following proposition describes the relevant con�guration, which we

refer to as the quadratic special case. For certain quadratic constraints it

suÆces to substitute the zeroes of the formal derivatives of their left hand

side wrt. the current quanti�ed variable. These derivatives are obviously

linear in this variable.

Proposition 3.4 (A Quadratic Special Case). Let '(u) � 9x (u; x),
where is a positive quanti�er-free formula. Moreover, is linear in x

up to one quadratic constraint � � c2x
2+ c1x+ c0 % 0 with % 2 f<;�; >;�g.

Let C 0 be a candidate solution set obtained only from the linear constraints

in . Then an elimination set E for and x can be computed as follows:

1. Compute an elimination set E 0 from C 0 without applying any boundary

selection strategies.

2. Obtain E from E 0 by adding
�
c2 6= 0; �c1

2c2

�
,
�
c2 = 0 ^ c1 6= 0; �c0

c1

�
,

(true;�1), and (true;1).

Note that the term � c1
2c2

is the zero of the formal derivative of c2x
2+c1x+c0.

Proof. We �x the parameters u to a 2 Rm. Assume that Sxa () is non-
empty. The case of an unbounded interval is covered by the test points
(true;�1) and (true;1). Assume now that Sxa () is bounded. The end-

points of Sxa () are contained in the set of zeroes of the terms in . The case
that at least one of these endpoints is given by a formally linear constraint in

 , then it is covered by E 0 obtained from C 0. The case that c2(a) degenerates
to 0 is covered by the test point

�
c2 = 0 ^ c1 6= 0; �c0

c1

�
. The only remain-

ing case is that both endpoints of Sxa () are given by our quadratic ordering

constraint �. That is, we have a parabola describing a bounded interval.
Then, obviously, the extremum of the parabola lies inside the interval. This

extremum is described by the formal derivative of the parabola wrt. x.

Note that from the fact that the degrees in the quanti�ed variables are
not relevantly increased we may not immediately conclude that our quanti�er

74 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

elimination procedure will de�nitely succeed for a block of quanti�ers involv-

ing a quadratic special case. For this one has in addition to take care that the

hypothesis of Proposition 3.4, i.e., exactly one quadratic ordering constraint

is invariant under the elimination of one variable. The blockwise elimina-

tion discussed in Section 3.2.6 supports this. One can, however, still easily

construct examples where the iteration fails. This can �nally be avoided by

suitable variable transformations.

In practice, the quadratic special case has one major disadvantage: We are

not allowed to choose a boundary type for selecting an elimination set from

the set of all candidates. This increases the size of the computed elimination

set considerably. Our experiences with the quadratic special case suggest to

use it only for a second elimination run after a degree violation.

We conclude this section with an example illustrating the incompatibility

of the quadratic special case with boundary type selection. Consider the

following formula, which is obviously \true:"

9x(x2 � 1 � 0 ^ 2x� 1 � 0)

In the elimination set of Proposition 3.4 only the substitution of the test
point (true; 1=2) results in \true." This test point would be removed by

selecting only upper bounds.

3.8 Conclusions

After briey sketching the historical development of the virtual substitution

method for real quanti�er elimination we have given an overview over the
method in general. This presentation will serve as a reference also for the

remainder of this thesis.
In Section 3.3 we have analyzed quanti�er elimination by virtual substi-

tution to consist of four distinct phases. This point of view has enabled us

to systematically locate the application of boundary selection strategies on

one hand and the addition of certain test points not originating from atomic

formulas on the other hand.

In Section 3.4 we have generalized selection strategies for test points dis-

cussed elsewhere to the quadratic case. This is a particularly exciting re-

sult since the corresponding strategies for the linear case have extended the

practical application range of quanti�er elimination by virtual substitution

dramatically.

In Section 3.5 we have extended the idea of selection strategies based on

boundary types to elimination sets not containing pseudo terms. Such elimi-
nation sets are|though obviously less eÆcient|of particular importance for

3.8. CONCLUSIONS 75

extended quanti�er elimination approaches, which we will extensively use in

the context of generalized scheduling in Chapter 7.

In Section 3.6 we have demonstrated how to obtain an additional gain

from all the selection strategies discussed so far: The decisions for certain

boundary types, which have been originally introduced for reducing the size

of the elimination set, can be reused at the substitution stage. This is a �rst

evidence for the fact that in view of practical applicability it is not adequate

to consider the various \phases," which we have identi�ed in Section 3.3,

isolated. We will rediscover this fact in Chapter 5.

Section 3.7 yields besides some relevant algorithmic \tricks" another im-

portant conceptual insight: We are now faced with two independent valuable

strategy types, which are, unfortunately, incompatible. Any reasonable im-

plementation of quanti�er elimination by virtual substitution will thus not

simply include a variety of optimization strategies but also some suitable

heuristics on which strategy to apply.

76 CHAPTER 3. QE BY VIRTUAL SUBSTITUTION

Chapter 4

Structural Elimination Sets

For the computation of elimination sets we have up to now restricted our
attention to the set of atomic formulas contained in the given formula. The
boolean structure of the formulas was never considered except for the extreme

special case of Gauss elimination discussed in Section 3.2.5. Structural elim-
ination sets, in contrast, provide a concept for making use of the boolean
structure of the formula. This will considerably decrease the size of the can-

didate solution sets introduced in Section 3.3. The main idea of structural
elimination sets is to compute candidates not from atomic formulas but from

suitable complex subformulas. Moreover, this idea is combined with the con-
struction of an implicit theory similar to that used for deep simpli�cation in
Chapter 2.

4.1 Quanti�er Elimination wrt. a Theory

Our simpli�ers discussed in detail in Chapter 2 allow the user to specify an

explicit background theory. The impressive results of simpli�cation wrt. a
theory, which is not explicitly added to the formula, gave rise to modify our

quanti�er elimination procedure in such a way that it also allows a back-

ground theory � for the elimination of quanti�ers from some formula '. In

analogy to the simpli�cation situation the output will then not be perfectly

equivalent to ', but we have

^
� �! (' ! '�):

Recall from the introduction of the concept of a theory in Section 2.2 that

our theory � is a set of atomic formulas. From Section 2.9 it is clear that any
atomic formula � 2 � that contains bound variables is explicitly deleted.

77

78 CHAPTER 4. STRUCTURAL ELIMINATION SETS

Let in the situation above u1, : : : , um be the parameter variables in '

and �. We de�ne the range of the quanti�er elimination as the following

subset of the parameter space Rm :

n
(a1; : : : ; am) 2 Rm

��� ^�(a1; : : : ; am)
o
:

Parameter interpretations in the range are called admissible.

The �rst use of the speci�ed background theory � inside the quanti�er

elimination procedure is to simplify all intermediate results wrt. �. But we

can do much more.

First we can make use of the theory for the computation of the candi-

date solution set. Second the theory will enable us to apply further Gauss

eliminations, which we have introduced in Section 3.2.5.

4.1.1 Candidates wrt. a Theory

Recall from the discussion of quanti�er elimination by virtual substitution

in Section 3.2 and in Section 3.3 that with the computation of candidate
solution sets some assumptions on coeÆcient terms are introduced. These

assumptions state that certain coeÆcients of the polynomials contained in
the considered formula do not vanish or are non-negative. The assumptions
are encoded into the guards of the candidate solutions and are inherited to

the test points of the elimination set. They �nally enter the quanti�er-free
result formula in the substitution phase where they are conjunctively added
to the virtual substitution result of the corresponding term.

In Section 3.2.4 and in Section 3.4 we have improved the step from the

candidate solution set to the elimination set by introducing boundary type
selection strategies. These strategies use the signs of the head coeÆcients of
the polynomials involved in the considered formula.

With both the candidate solution set computation and the elimination set
computation we are thus faced with the situation that we would like to know

the signs of certain polynomials in the parameters. Such sign information
would allow us on one hand to generate simpler guards and on the other

hand to improve the elimination set computation by knowing the boundary

type of the corresponding candidate solutions.

The sign computation for a polynomial in the parameters is trivial in the

case that the polynomial is actually an integer. For polynomials containing
parameters, however, the sign may also be �xed for any values of the pa-

rameters. Consider, e.g., u2 + 1 which is greater zero for any choice of real

numbers for the parameter u. It is easy to see that using a decision procedure
for the reals we can actually compute the sign in such cases. This is of some

4.1. QUANTIFIER ELIMINATION WRT. A THEORY 79

theoretical interest but not suited for improving the practical applicability of

our quanti�er elimination: The gain won by knowing the sign information is

not so big that it is reasonable to accept a decision procedure as a frequently

called subalgorithm. Note that the complexity of the decision problems of

the reals is double exponential and thus close to the quanti�er elimination

itself. We can and will, however, apply a decision heuristics as discussed in

Section 2.10 to handle simple cases such as u2 + 1 above. We have already

seen that this can be done very eÆciently.

We summarize where we can use knowledge of coeÆcient signs in our

quanti�er elimination by virtual substitution:

� For the computation of a candidate solution of a linear atomic formula

c1x + c0 % 0 we have to assume c1 6= 0.

� In the case of a quadratic atomic formula we �rst have to distinguish

between the proper quadratic case, given by the condition of a non-
vanishing head coeÆcient on one hand and the degenerate linear case

on the other hand. In the proper quadratic case we have to assume in
addition that the discriminant of the corresponding quadratic equation
is not negative.

� For both linear and quadratic constraints we can determine the bound-

ary type if we know the sign of the head coeÆcient of the polynomial
involved in the constraint.

Recall from Chapter 2 that all our simpli�ers are designed in such a way
that they accept an optional input theory. This is in particular true for the

heuristics of Section 2.10, which we have suggested for checking signs. We
thus specify that quanti�er elimination by virtual substitution also accepts

an optional input theory. This allows us to compute signs of polynomials
not only when these signs are �xed over the entire parameter space but also

when the signs are �xed only for the admissible parameter values. As a

consequence, the elimination result is then, of course, only correct on the

assumption in the input theory. The more we restrict the range of the quan-
ti�er elimination by using stronger theories the more successful sign decisions

we may expect.

With respect to a theory it can happen that a non-zero polynomial con-
taining parameters vanishes for all admissible parameter values. Consider,

e.g., the quadratic constraint x2+ux+1 � 0. The discriminant is � = u2�4.
Specifying in the background theory that u2 � 5 > 0, our decision heuristics
decides � � 0 to be \true" wrt. the theory, and we can drop the correspond-

ing guard. If we add u2 � 4 = 0 to our theory, then we can detect that the

80 CHAPTER 4. STRUCTURAL ELIMINATION SETS

quadratic constraint provides only one rational candidate solution �u

2
. This

avoids the virtual substitution of a square root expression. In Section 3.7 we

have seen that this can be crucial for the success of the overall elimination.

Our use of a background theory can be extended to determine boundary

types that are only known wrt. the range of the quanti�er elimination.

4.1.2 Gauss Elimination wrt. a Theory

In the previous section we have discussed how to make use of a background

theory for the computation of candidate solutions. We are now going to

discuss how to extend the use of the background theory from the candi-
date solution computation in the general case to the special case of Gauss
elimination. Recall from the discussion of the trivial Gauss elimination in

Section 3.2.5 that we can apply Gauss elimination only if the considered
equation is non-trivial. That is for any choice of the parameters the equa-

tion has a �nite solution set. A suÆcient condition for this is that at least
one coeÆcient of the considered equation does not vanish. More formally an
equation

Pd

i=0 cix
i = 0 has a �nite solution set, if ci 6= 0 for at least one

of the ci. We try to decide this condition by again applying the decision
heuristics of Section 2.10.

To be more precise we de�ne the notion of a Gauss equation wrt. a theory

�. An equation � �Pd

i=0 cix
i = 0 is called a Gauss equation wrt. � if

^
� �! (c0 6= 0 _ � � � _ cd 6= 0):

Note that even with the empty theory this condition detects more Gauss

cases than the informal requirement above that at least one of the ci is non-

zero. Consider e.g., the equation u1x
2 + (u1 + 1)x + u2 = 0 and an empty

background theory. Using our new approach we can successfully apply our

decision heuristics to verify that u1 6= 0 _ u1 + 1 6= 0 _ u2 6= 0 is \true" for
any parameter values. The old approach cannot detect this because neither

u1, u1+1, nor u2 can be guaranteed to be di�erent from zero. This condition

is actually equivalent to the condition that � has a �nite solution set for all
parameter values in the range. Again we make use of our simpli�er-based

decision heuristics to test if a given equation is a Gauss equation. Due to the
heuristics approach we can, of course, not detect all Gauss equations, but

again we considerably improve the practical applicability of the procedure.

4.2. QUANTIFIER ELIMINATION WITH IMPLICIT THEORY 81

4.2 Quanti�er Elimination with Implicit

Theory

The concept of an implicit theory has been introduced in Section 2.5.1 for

evaluating the relation between atomic formulas contained in a formula on

di�erent boolean levels. In this section we are going to describe how to make

use of this concept for quanti�er elimination by virtual substitution extending

the ideas of the previous section for handling an explicitly given background

theory.

We give a formal de�nition of the notion of the implicit theory � of

a subformula of a quanti�er-free positive formula '. As introduced in

Section 2.4.2 we denote for an atomic formula � by � its implicit negation:

1. If � ', then its implicit theory is � = f'g, provided that ' is an
atomic formula and � = ; if ' is a complex formula.

2. Assume that occurs in a conjunction '0 � ^�1^� � �^�k^ 1^� � �^ l
inside ', where the �i are atomic formulas and the j are complex
subformulas. Assume that �0 is the implicit theory of '0. Then the

implicit theory of is

� = �0 [f�1; : : : ; �kg:

3. Assume that occurs in a disjunction '0 � _�1_� � �_�k_ 1_� � �_ l
inside ', where the �i are atomic formulas and the j are complex

subformulas. Assume that �0 is the implicit theory of '0. Then the
implicit theory of is

� = �0 [f�1; : : : ; �kg:

Note that this de�nition of an implicit theory di�ers from that given in Sec-

tion 2.5.1: In our new de�nition also an atomic inherits a theory enriched
by its atomic neighbors.

The following proposition shows how to apply the implicit theory within

the elimination process.

Proposition 4.1. Let ' be a quanti�er-free positive formula, let be a sub-

formula of ', and let � be the implicit theory of in '. Let '0 be the

formula constructed from ' by replacing with
V
�^ . Then ' and '0 are

equivalent.

82 CHAPTER 4. STRUCTURAL ELIMINATION SETS

Proof. Fix an interpretation of all variables, and �rst assume that '0 eval-
uates to \true." Since both ' and '0 are positive, this evaluation cannot

depend on
V
�^ evaluating to \false." We can thus replace

V
�^ by .

Assume now vice versa that ' evaluates to \true," and assume further-

more that it is relevant for this that evaluates to \true;" otherwise we

can certainly substitute it with anything. Assume for a contradiction that

substituting with
V
� ^ turns ' into \false." Then there must be some

2 � that evaluates to \false." There are two possible sources for this #.

Firstly, it can occur conjunctively with a subformula containing . Then this

conjunction is \false," and thus is irrelevant for the truth value of ', which

contradicts our assumption. Secondly, some # equivalent to :# can occur

disjunctively with a subformula containing . Since # is \true," the entire

disjunction is \true," and again is irrelevant, which again contradicts our

assumption.

Example 4.2. Consider the formula ' � a > 0 _ (b � 0 ^ ax + c > 0) and
let us focus on the subformula � ax + c > 0. Its implicit theory � is
fa � 0; b � 0g, and we have

a > 0_ (b � 0^ax+ c > 0) ! a > 0_ �b � 0^ (a � 0^ b � 0^ax+ c > 0
�

as predicted by Proposition 4.1. We are going to return to our formula ' in

Example 4.4.

Note that the simultaneous application of the above proposition to two

subformulas and their implicit theory is not correct. We illustrate this in our
next example

Example 4.3. Consider the formula ' � a = 0 _ a = 0. The implicit
theory of both occurrences of a = 0 is fa 6= 0g. A simultaneous application
of Proposition 4.1 for both occurrences of a = 0 would result in

(a 6= 0 ^ a = 0) ^ (a 6= 0 ^ a = 0)$ false= ':

Fortunately, there is no risk from this observation for applying the implicit

theory within a quanti�er elimination step exactly like the explicit one: All
decisions made for applying the theory for the candidate solution compu-

tation or for Gauss elimination combine an atomic formula containing the
current variable with atomic formulas in the theory not containing it.

In Section 3.3 we have introduced the notion of a candidate solution set for

a set of atomic formulas. In the previous chapter our candidate solution sets
for a positive quanti�er-free formula and a variable x always consisted in

the set of all guarded solutions of equations derived from the atomic formulas

4.2. QUANTIFIER ELIMINATION WITH IMPLICIT THEORY 83

in plus the corresponding boundary type. The de�nition was, however,

more liberal. A candidate solution set contains at least the candidates for the

interval boundaries of Sxa () for all a 2 Rm . In Section 4.1.1 we have already
silently allowed ourselves to sort out certain candidates. The framework of

an implicit theory now enables us to fully exploit the freedom provided by

the de�nition of candidate solution sets: Our future candidate solution set

computations will no longer be based on the set of atomic formulas but on

 itself making full use of its boolean structure by means of implicit theory

construction.

The theory approach actually a�ects all three aspects of a candidate so-

lution, the guard, the term, and the boundary type:

1. It allows improved guards as we have already seen in Section 4.1.1.

2. A candidate solution can be completely dropped. In a certain sense this

corresponds to \a�ecting the term." Below we will introduce another
more sophisticated theory based technique that a�ects the term.

3. The theory yields important information concerning the boundary type.

For instance, c1 > 0 2 � determines c1x + c0 > 0 to be a strong lower

bound.

As long as restricting to explicit theories theory application is a very

simple deal: We receive better elimination results from the theory, and we
pay with the fact that these results are equivalent only wrt. the corresponding
explicit theories. With implicit theory construction in contrast it appears

that we have a similar gain from the implicit theories but the �nal elimination
result is perfectly equivalent. There is, however, a price to pay also with

implicit theory optimizations: Assume that we use the implicit theory to
turn some bound t coming from an ordering constraint � into an upper
bound. In general, we have to expect that � occurs also at some other point

in our formula, where a di�erent implicit theory is valid. We furthermore

have to expect that this other theory is not suitable for turning t into an
upper bound. We then have to decide between two possibilities:

1. Generate two di�erent candidate solutions from �.

2. Do not make use of the upper bound information for t in the �rst

position.

In the �rst case we pay for better candidates by obtaining more di�erent

candidates. In the second case we do not pay anything, but we also do not
receive any gain from the implicit theory. Most interestingly, in the next

84 CHAPTER 4. STRUCTURAL ELIMINATION SETS

chapter on repeated condensing we will observe nearly the same trade-o� in

a completely di�erent context.

Let us now turn to an example that illustrates that the application of the

implicit theory approach is actually useful in general.

Example 4.4. As in Example 4.2 consider the formula ' � a > 0 _ (b �
0^ ax+ c > 0) and let us perform the quanti�er elimination for 9x'. Recall
that the implicit theory of � ax + c > 0 is fa � 0; b � 0g. We thus know

that the formal solution � c
a
represents an upper bound.

The implicit theory may contain not only atomic formulas in the parame-

ters but also atomic formulas involving the current quanti�ed variable. Such

atomic formulas are actually useful. One example for using such atomic

formulas is the application of the Wu{Ritt reduction as described in Sec-

tion 2.9.3: For computing the candidate solutions of an atomic formulas we
can reduce the involved term wrt. all non-trivial equations contained in the
implicit theory. This observation is what we have announced above to be

another theory based technique a�ecting the term of a candidate solution.

4.3 Generalized Gauss Elimination

In Section 4.1.2 we have generalized the Gauss elimination of Section 3.2.5

to Gauss elimination wrt. an implicit or explicit background theory. In this
section the notion of Gauss elimination is further extended: We transfer the
de�nition of Gauss equations to Gauss formulas, i.e. complex formulas with

the same properties as Gauss equations resulting in deep Gauss elimination.
The key observation not only to consider atomic formulas but also complex

ones as prime constituents of a formula will lead us to the concept of partial
deep Gauss elimination, which provides a natural way to extend the idea
of Gauss elimination to subformulas of formulas and provides a clean way

to incorporate all variants of Gauss elimination in our quanti�er elimination

procedure.

4.3.1 Deep Gauss Elimination

Recall that Gauss elimination has so far been applied to formulas of the form

f = 0^ . To begin with we summarize the properties of the equation f = 0

that are relevant for Gauss elimination:

� The equation is a Gauss equation, i.e., it has only a �nite solution set

Sxa (f = 0) for any admissible a 2 Rm .

4.3. GENERALIZED GAUSS ELIMINATION 85

� The Gauss equation occurs conjunctively on the toplevel of the input

formula.

We have also made use of the following three properties, which are generally

required for the quanti�er elimination by virtual substitution.

1. Each candidate solution of the equation can be expressed by a suitable

pseudo term.

2. All occurring pseudo terms can be handled by an appropriate virtual

substitution.

3. A superset of the candidate solutions can be computed from the equa-

tions.

Let us return to our formula f = 0 ^ ', and suppose that f = 0 is a
Gauss equation. The condition that Sxa (f = 0) is �nite implies that

Sxa (� ^ ') � Sxa (�)

is also �nite for all admissible a 2 Rm . This observation gives rise to the
idea of the deep Gauss elimination: We call a quanti�er-free formula (u; x)

a Gauss formula if it has a �nite solution set Sxa () for all a 2 Rm . This
notion extends in a natural way to the notion of a Gauss formula wrt. a
theory.

We have to clarify how to recognize a formula to be a Gauss formula
and how to compute the corresponding candidate solution set. Again it is

not our aim to recognize all Gauss formulas, but to �nd a suitable method
to recognize as many formulas as possible in a reasonable time. The basis
here is to recognize equations as Gauss equations using our simpli�er based

decision heuristics.

We give a description which formulas are recognized as Gauss formulas

wrt. a theory and which candidate solution sets are computed:

� Each Gauss equation � is a Gauss formula. Its candidate set consists

of all its formal solutions wrt. x together with the usual guards and

boundary type \isolated point."

� Let '1 be a Gauss formula with candidate set C1, then the conjunction

'1 ^ '2 ^ � � � ^ 'n is a Gauss formula also with candidate set C1.

� Let '1, : : : , 'n be Gauss formulas with candidate sets C1, : : : , Cn.

Then '1 _ � � �_'n is a Gauss formula with candidate set C1 [� � �[Cn.

86 CHAPTER 4. STRUCTURAL ELIMINATION SETS

In the case of a conjunction we need only that one of the constituents is

a Gauss formula. It is, however, possible that some other constituent 'i is

also a Gauss formula. In this case one can choose between '1 and 'i and

thus C1 and Ci.

Consider the formula ' � 9x (u; x), where is a Gauss formula, and let

C be the corresponding candidate solution set in the sense of the recursive

de�nition above. Then it is easy to see that this C

1. contains only terms which are formal solutions equations belonging to

formulas in ,

2. for any interpretation of the parameters C provides a superset of the

interval boundaries in Sxa ().

The notion of a candidate solution set used here is thus compatible with our
earlier de�nition in Section 3.3.

We conclude this section with an example that gives a �rst impression of
the great improvement provided by the deep Gauss elimination. Recall that
trivial Gauss elimination was restricted to formulas of the form 9x�f(u; x) =
0 ^ (u; x)�.
Example 4.5. Consider the formula

9x ; � �x = a(u) _ (x = b(u) ^ 1(u; x))
� ^ 2(u; x):

Then x = a is a Gauss equation. The same holds for x = b with the
consequence that x = b ^ 1 is a Gauss formula. Together we have that

x = a _ (x = b ^ 1) is a Gauss formula. Finally the entire is a Gauss
formula. Its candidate solution set provides the terms a and b as isolated
points with guard \true." It follows immediately that f(true; a); (true; b)g is
an elimination set for and x. The subformulas 1 and 2 are completely
irrelevant for this elimination set computation.

The next example demonstrates the dramatic improvements of our quan-

ti�er elimination by virtual substitution obtained by introducing the deep

Gauss elimination.

Example 4.6 (Hydraulic Network). We consider a hydraulic network as

shown in Figure 4.1. This example was originally considered by Weispfen-

ning [73]. The aim is to compute the pressure p3 and the ow f12 in terms

of v01, v02, v12, v13, and v23. Our quanti�er elimination including the deep

Gauss elimination computes in 38 s a result formula containing 900 atomic

formulas. Without using the deep Gauss elimination and using only the triv-

ial Gauss elimination as discussed in Section 3.2.5 we need 17 min to compute

an output formula containing 27 771 atomic formulas.

4.3. GENERALIZED GAUSS ELIMINATION 87

f0=1

f3=1

f12

f23

p0=0

v23

p3

f02

v12
v02

v01 p1f01

v13

p2

f13

Figure 4.1: A hydraulic network

4.3.2 Partial Gauss Elimination

In the previous section we have generalized Gauss elimination to deep Gauss
elimination resulting in a candidate solution set for Gauss formulas. In this
section we further generalize deep Gauss elimination to partial deep Gauss

elimination. This new generalization will lead us to a point of view where
(deep) Gauss elimination is not longer a special case at all but can be incor-
porated into the process of regular elimination set computation.

In the following we will for simplicity speak about \initially computing
the set of atomic formulas," and we will generalize this concept. The reader

should keep in mind that in view of the discussion in Section 4.2 this also
involves computation and application of the implicit theory concept in some
computationally reasonable way.

When computing from the set of atomic formulas the set of all candidates,

these candidates represent the zeroes of the equations associated with the

atomic formulas. The idea is that these zeroes are candidates for the interval

boundaries of the solution set. For a Gauss formula, which has by de�nition

a �nite solution set, the corresponding intervals are isolated points, and all

these points are included into the Gauss elimination set. Gauss elimination

thus naturally combines with general elimination set computation.

We modify the �rst two phases of our quanti�er elimination: In the �rst

phase we do not compute the set of all atomic formulas but a set of prime

constituents of the subformulas. Given a quanti�er-free positive formula '

the prime constituents of ' are

88 CHAPTER 4. STRUCTURAL ELIMINATION SETS

1. Gauss subformulas that are not proper subformulas of other Gauss

subformulas,

2. the atomic subformulas that are not contained in any Gauss subfor-

mula.

Obviously, our ' can be rewritten as an ^-_-combination of its prime con-

stituents.

Our modi�ed candidate set computation will now proceed as follows: In-

stead of initially computing the set of all atomic subformulas of ', it computes

the set of all its prime constituents. Within this set atomic prime formulas

can obviously be distinguished from Gauss prime formulas. For the atomic

formulas we proceed as usual obtaining a partial elimination set Eat. Simul-

taneously, we compute the union Eg of all the candidate sets of the Gauss

prime constituents. Their union E = Eat [Eg yields our revised elimination

set.
Recall, that Gauss candidate sets are in general much smaller than cor-

responding conventionally computed candidate sets. This gain in size is now

lifted to our E.
Since a conventional Gauss formula consists of a single prime constituent,

deep Gauss elimination as introduced in the previous section is obviously a

special case of the partial deep Gauss elimination introduced here.
Again we can use our theory concept for generalizing partial Gauss elim-

ination: The notion of a Gauss prime constituent can straightforwardly be
generalized to that of a Gauss prime constituent wrt. the current theory.

In the discussion of the application of the implicit theory in Section 4.2

theory we have already mentioned that it is possible that the implicit theory
contains atomic formulas involving the current quanti�ed variable. Suppose

now that such an atomic formula is a non-trivial equation �, and denote by
 the subformula for which we have computed this particular implicit theory
�. It is then easy to see that is a Gauss formula wrt. �. Recall that an

equation can enter the theory in two di�erent ways:

1. There is a superformula 0 of that forms a conjunction with �.

2. There is a superformula 0 of that forms a disjunction with �.

In the �rst case we need not do anything because the corresponding sub-
formula 0 ^ � forms a Gauss formula and is recognized as such. In the
second case, in contrast, we can actually pro�t from our observation and

immediately generate the formal solution of � as the only test point.

The observation that in the �rst case there is the deep partial Gauss as a
structural counterpart to our observation within the theory gives rise to the

4.4. CO-GAUSS ELIMINATION 89

idea that there is also such a counterpart for the second case. It is not hard

to see that not all deep partial Gauss situations can be identi�ed within the

theory; Example 4.5 provides a counterexample for this assumption. It thus

looks like we have got on the track of another powerful elimination technique

with a certain duality to Gauss elimination.

Examples for partial deep Gauss elimination are easily obtained by deeply

nesting into a boolean combination the matrix formula of some regular deep

Gauss example.

Example 4.7. Consider the formula

9x�(_ 0) ^ 00�; � �x = a(u) _ (x = b(u) ^ 1(u; x))
� ^ 2(u; x);

where is chosen as in Example 4.5. According to our discussion, in this
section it suÆces to compute an elimination set from 0 and 00, and then to
unite with the elimination set f(true; a); (true; b)g obtained for in Exam-
ple 4.5.

4.4 co-Gauss Elimination

In the previous section we have indicated that for a formula ' � 9x with
 � x 6= 0 _ 0, we can recognize 0 to be a Gauss formula wrt. its implicit
theory fx = 0g. Doing so, we easily see that

�
(true; 0; \isolated point"); (true; 0; \exception point")

	

is a candidate solution set for our formula and x.

The solution set Sxa () is co-�nite, i.e., its complement is �nite. We are,
in a certain sense, in a situation complementary to the Gauss elimination,

which we shortly refer to as co-Gauss. More precisely we refer to as a
co-Gauss formula. It is easy to see that for such a formula with a co-�nite

solution set, the set f(true;1)g is an elimination set.

The co-Gauss should not be confused with the dual counterpart of Gauss

elimination, which occurs for the elimination of 8x(x 6= 0 _ 0). With our
approach this dual Gauss elimination is automatically translated to a regular

Gauss elimination by our treatment of universal quanti�ers.

The elimination of ' above is trivial: Move the existential quanti�er into

the disjunction; then we see that 9x(x 6= 0) and thus ' is \true," and for the

elimination of 9x(x 6= 0) it actually suÆces to substitute 1. Summarizing
the co-Gauss appears to be less interesting than the regular Gauss because it

appears in a situation, where the toplevel operator of the matrix is compatible

90 CHAPTER 4. STRUCTURAL ELIMINATION SETS

with the quanti�er. This changes when we extend the co-Gauss to deep

partial co-Gauss as we have done for the regular Gauss.

For recognizing formulas to be co-Gauss formulas we proceed as for Gauss

formulas, but we consider non-trivial disequations instead of non-trivial equa-

tions:

� A disequation � =
Pd

i=0 cix
i 6= 0 is called co-Gauss disequation wrt. a

theory � if ^
� �! (c0 6= 0 _ � � � _ cd 6= 0):

This condition is actually equivalent to the condition that � has a co-

�nite solution set Sxa (�) for all admissible a 2 Rm . Each such co-Gauss
disequation is a co-Gauss formula. Its candidate solution set consists

of all formal solutions wrt. x of the corresponding equation together
with the usual guards and boundary type \exception point."

� Let '1 be a co-Gauss formula with candidate set C1, then the disjunc-
tion '1 _ '2 _ � � � _ 'n is a co-Gauss formula also with candidate set
C1.

� Let '1, : : : , 'n be co-Gauss formulas with candidate sets C1, : : : , Cn.

Then '1^� � �^'n is a co-Gauss formula with candidate set C1[� � �[Cn.

As with the de�nition of regular Gauss formulas it is not too hard to see that

the notion of a candidate solution set implicitly de�ned here is compatible
with our standard notion.

Co-Gauss formulas are particularly nice for elimination set computation.

In fact, they are even nicer than regular Gauss formulas: They have a candi-
date solution set containing only exception points. For such candidate solu-
tion sets, f(true;1)g is obviously a suitable elimination set. This concludes
the discussion of deep co-Gauss elimination.

It remains to discuss the partial (deep) co-Gauss elimination as an analog

to the partial Gauss elimination. This analogy requires the notion of co-

Gauss prime constituents, which are subformulas with a co-�nite solution set.
In complete analogy to regular partial Gauss elimination it turns out that
co-Gauss primes can play the role of co-Gauss disequation in the recursion

basis of the de�nition above.

Example 4.8 (Deep Partial co-Gauss). Consider the formula

9x ; � ��x 6= a(u) ^ (x 6= b(u) _ 1(u; x))
� _ 2(u; x)� ^ 3;

4.5. THE INVISIBLE THEORY 91

where 3 is not a co-Gauss formula. According to our de�nition the subfor-

mula
�
x 6= a(u)^(x 6= b(u)_ 1(u; x))

�_ 2(u; x) is then the largest co-Gauss
formula contained in . Its candidate solution set is

�
(true; a; \exception point"); (true; b; \exception point")

	
:

To obtain the candidate solution set for the entire and x, we unite this with

the candidate solution set of 3. From this we can compute an elimination

set, to which 1 and 2 do not contribute anything. Mind that the substi-

tution of (true;1) for a co-Gauss elimination set does not work with partial

deep co-Gauss elimination because there are candidate solutions contributed

from outside, which are not exception points.

4.5 The Invisible Theory

Throughout this chapter we have seen that our theory concept originally

introduced for the purpose of simpli�cation in Chapter 2 can be used in
numerous ways to improve the candidate solution sets and as a consequence

the elimination sets. We have distinguished two types of theories:

1. An explicit theory provided as an extra argument to the corresponding
algorithm.

2. An implicit theory constructed by the algorithm itself, when traversing
recursively through the formula.

Observe that in both cases the theory information is to a certain extent syn-

tactically represented. In this section we turn to another theory for which
this is not the case. Accordingly we call it the invisible theory. To be more

precise, the invisible theory is, as the implicit theory, constructed when re-
cursing through the formula for candidate solution set computation. This

time, however, the collected information is not taken from the formula itself

but derived from the computation process.

We illustrate this by means of an example. Consider the formula

9x(� ^ %); � � u1x+ u2 = 0; % � (u1 + 1)x+ u3 = 0 ^ 1(u; x):

The matrix �^% is a Gauss formula, which cannot be easily detected because
both equations viewed isolated are possibly trivial. Certainly, for the purpose

of candidate solution set computation, � will serve as an implicit theory for %

and thus for the second equation. This implicit theory is, however, only used
for heuristics checks based on the simpli�cations in Chapter 2. For this case

92 CHAPTER 4. STRUCTURAL ELIMINATION SETS

our particular simpli�cations will fail on recognizing that � and the second

equation cannot be trivial simultaneously.

The invisible theory will enable us to apply Gauss elimination anyway.

Let us �x in our minds the parameters u to a 2 R3 and focus on �. There

are two possibilities:

1. One of u1 and u2 is non-zero for our interpretation. Then we can apply

Gauss elimination, and % is completely irrelevant for the candidate

solution set computation.

2. Both u1 and u2 are zero. Then we cannot apply Gauss elimination, �

vanishes, and % becomes the only source for candidate solutions.

We see that % is relevant if and only if u1 = 0 and u2 = 0. This constitutes
the invisible theory I = fu1 = 0; u2 = 0g for %. It is not hard to see that
this invisible theory can be used for the candidate solution set computation

for % exactly as we use the implicit theory, which is � = f�g, provided, of
course, that we also add the formal solution of � to the candidate solution

set. Summarizing we either have a Gauss situation or an extremely strong
theory: We always win.

In our particular example, the invisible theory is even strong enough to
�nally discover the applicability of Gauss elimination: Our additive smart

simpli�cation introduced of Section 2.4.2 easily derives u1 + 1 6= 0 from
(u1 = 0) 2 I.

We �nally wish to emphasize that the invisible theory is not a tool for
detecting Gauss formulas but has exactly the same power and relevance as

the implicit theory.

4.6 Conclusions

In this chapter we have generalized our theory concept for simpli�cation in-

troduced in Chapter 2 to quanti�er elimination by virtual substitution, more
precisely to the candidate solution set computation. Starting in Section 4.1

with the concept of an external theory we have identi�ed the places where one

can pro�t from external information there: saving guards, simplifying dis-
criminant conditions, improving boundary type information, and detecting
Gauss formulas.

These results have encouraged us to adapt in Section 4.2 also the concept

of an implicit theory. The construction of this implicit theory for candidate

solution set computation slightly di�ers from that for simpli�cation. In anal-
ogy to the simpli�cation case, it turns out that concerning the application

4.6. CONCLUSIONS 93

there is no di�erence between implicit theory and explicit theory. With sim-

pli�cation we have observed that the construction of implicit theories is the

tool for performing simpli�cations in spite of complicated boolean structures

and for even pro�ting from these structures. Accordingly we have observed

the same e�ect for candidate solution set computation now. We thus have

�nally dropped the restriction to compute the candidate solutions from the

set of atomic formulas.

In the spirit of this observation we have introduced in Section 4.3 further

structural concepts generalizing the Gauss elimination of Section 3.2.5 in two

ways: First, the idea of a non-trivial equation generalizes to that of a sub-

formula with �nite solution set. Second, it turns out that the corresponding

Gauss formula need not be on the toplevel.

Reanalyzing our generalized Gauss elimination of Section 4.3 in terms

of the implicit theory of Section 4.2 has led us to the insight that there is

the concept of a co-Gauss which is related to Gauss elimination exactly as
co-�nite sets are related to �nite sets.

In Section 4.5 we have �nally introduced another type of theory, which is

implicit in nature, but does not collect information syntactically present in
the formula. Instead the collected information is derived from the elimination
process. Concerning the applicability this new theory plays the same role as

the implicit theory and can be used simultaneously.

94 CHAPTER 4. STRUCTURAL ELIMINATION SETS

Chapter 5

Repeated Condensing

On our way to applicable quanti�er elimination we have studied so far two
major strategies: The �rst one consists in sophisticated simpli�cation of

formulas occurring as input formulas, as intermediate results, and as �nal re-
sults. The second strategy combines the improvement of the elimination set
computation with improved substitution methods of test points into atomic

formulas. In this chapter we are going to analyze the substitution in more
detail, and we present the concept of condensing as a replacement for sub-

stitution. Roughly speaking condensing means substituting a term only into
some parts of a formula removing all other parts. This obviously results in
simpler formulas.

To begin with, we are going to discuss in Section 5.1 condensing in the case
of partial deep Gauss elimination. In Section 5.2, we develop similar ideas

for the general case of quanti�er elimination via an arbitrary elimination set.

5.1 Condensing of Gauss Formulas

Recall from the discussion of Gauss elimination in Section 4.3.2 that in the

case of a partial deep Gauss elimination on some formula the elimination
set is divided into a set Eat of candidates from atomic prime constituents plus

a set Eg = E
g
1 [� � � [Eg

k of Gauss candidates obtained from Gauss prime

constituents 1, : : : , k of . Our idea is that we can neglect the Gauss prime
constituents for the substitution of the candidates in Eat. Moreover, for the

substitution of candidates Eg
i we can neglect all Gauss prime constituents j

for j 6= i.

To make this precise, let be a quanti�er-free positive formula, and let 1
be a Gauss prime constituent of . Then we denote by � 1 the formula that

is obtained from by replacing 1 with \false." Here 1 uniquely identi�es

95

96 CHAPTER 5. REPEATED CONDENSING

one particular subformula although can in general contain several copies of

 1. This de�nition naturally extends to �f 1;::: ; kg for several Gauss prime

constituents 1, : : : , k of . We obviously have

�f 1;::: ; kg �! :

This is the key observation for condensing and makes precise what we mean

by \neglecting" 1.

Assume that we want to eliminate from a positive quanti�er-free formula

 (u; x) the existentially quanti�ed variable x. We have obtained correspond-

ing elimination set parts Eat and Eg = E
g
1 [� � �[Eg

k 6= ;. That is, there is at
least some Gauss prime constituent 1 with �nite solution set S = Sxa (1) for

any choice a 2 Rm for the parameters and candidate solution set C 1 = E
g
1 .

Let
�
(u); t(u)

�
be an arbitrary test point, where t is possibly a pseudo term.

Note that we can evaluate t(a) in some suitable extension �eld R� . We have

either t(a) 2 S � R or R j= : 1[x==t](a). In the former case there is ob-
viously (0; t0) in Eg

1 with t(a) = t0(a). We have thus proved the following
equivalence:

_
(;t)2Eat

 ^ [x==t] _
_

(;t)2Eg

 ^ [x==t] !

_
(;t)2Eat

 ^ [x==t] _
k_
i=1

_
(;t)2Eg

i

 ^ [x==t] !

_
(;t)2Eat

 ^ � 1 [x==t] _
_

(;t)2Eg

1

 ^ [x==t] _
k_
i=2

_
(;t)2Eg

i

 ^ � 1 [x==t];

and more generally

_
(;t)2Eat

 ^ [x==t] _
k_
i=1

_
(;t)2Eg

i

 ^ [x==t] !

_
(;t)2Eat

 ^ �f 1;::: ; kg [x==t] _
k_
i=1

_
(;t)2Eg

i

 ^ �f j j1�j�k;j 6=ig [x==t]:

This describes Variant 1 of condensing substitution.

Observe that Eg = E
g
1 [� � � [Eg

k is in general not a disjoint union. Con-
sequently Variant 1 of condensing above will in contrast to the naive substi-

tution approach possibly substitute one test point several times. Moreover
these substitutions lead to di�erent substitution results since there are di�er-

ent condensing operators involved. The following example shows that due to

5.2. POSITIONAL CONDENSING 97

the di�erent condensing operators it would in fact not be correct to simply

drop one of the substitutions:

Example 5.1. Consider the input formula

' � 9x
�
(x = 0 ^ u1 > 0) _ �u2 > 0 ^ �u3 > 0 _ (x = 0 ^ u4 > 0)

���
:

It is easy to see that this formula is equivalent to

'� � u1 > 0 _ �u2 > 0 ^ �u3 > 0 _ u4 > 0)
�
;

which is actually generated by our quanti�er elimination procedure. The two

Gauss prime constituents x = 0 ^ u1 > 0 and x = 0 ^ u4 > 0 generate both

the test point (true; 0). The corresponding Gauss condensing results are

u1 > 0 and u2 > 0 ^ �u3 > 0 _ u4 > 0);

respectively. None of them can be dropped from '� without destroying the
equivalence.

We are now going to devise another variant of condensing, which correctly
avoids multiple substitutions. While Variant 1 kept Eg

1 , : : : , E
g
k separated

we now actually compute the union Eg as with the naive method but labeling
each test point in Eg with all the j generating it, i.e.,

�
�
(; t)

�
= f i j 1 � i � k; (; t) 2 Eg

i g:

Let accordingly �
�
(; t)

�
= f 1; : : : ; kg n �

�
(; t)

�
. It is not hard to see

from the discussion above that the following Variant 2 of condensing is also
correct: _

(;t)2Eat

 ^ [x==t] _
_

(;t)2Eg

 ^ [x==t] !
_

(;t)2Eat

 ^ �f 1;::: ; kg [x==t] _
_

(;t)2Eg

 ^ ��((;t)) [x==t]:

5.2 Positional Condensing

The results of the previous section on condensing of Gauss formulas can be

summarized as follows:

For the substitution of a particular test point, certain parts of

the formula can be neglected because they are irrelevant on the
premise that the test point itself is relevant.

98 CHAPTER 5. REPEATED CONDENSING

∆2

∆1

α

Figure 5.1: Positional Condensing

More precisely a Gauss prime constituent 1 of can be condensed, i.e.
assumed to be \false" for the substitution of a test point stemming from an

atomic prime �: Whenever, for �xed parameters, it is crucial for to hold
that 1 is \true", then our considered substitution branch stemming from �

is superuous anyway since 1 will provide all satisfying test points itself.

We observe that this type of condensing is based on a particular property of
the condensed formula 1, namely its �nite satisfaction set.

We now turn to a second type of condensing, which is not based on in-
herent properties of the condensed formula parts but on their position within

in the formula. Consider e.g. the situation in Figure 5.1. We �x all para-
meters to real values and restrict our attention to the substitution branch,
where some test point (; t) generated from � is substituted. Then we see

immediately that �1 can be condensed because the substitution of (; t) will
obviously turn � into \true." More surprisingly, also �2|and more gen-
erally each subtree occurring disjunctively on the path from � to the root

of |can also be condensed. This requires, however, a more sophisticated

argumentation than that for �1: Recall that is positive, and assume that

the validity of �2 is crucial for to hold. In such a situation we can immedi-
ately conclude two facts: First, it is crucial for to hold that the disjunction
immediately containing �2 becomes \true," and second, the other branch of

this disjunction, which contains �, becomes \false." From our second con-

clusion it follows that (; t) and thus our considered substitution branch is
superuous.

5.2. POSITIONAL CONDENSING 99

For the de�nition of our new condensing operator �p we identify formulas

with their operator trees and introduce a formalism for identifying positions

within these trees. A �rst-order formula ' corresponds to a tree (V;E) with

�nite V � N� =
S
n2N N

n and E � V � V . Each node v 2 V is labeled with

either a boolean operator, a quanti�er, or an atomic formula. We recursively

de�ne the tree representation of ' as follows:

� An atomic formula ' is represented by the tree
�f(1)g; ;� where the

label of (1) is '.

� Let ' be a conjunction '1 ^ � � � ^ 'n, a disjunction '1 _ � � � _ 'n, or a
quanti�ed formula 9x('1), 8x('1). For 1 � i � n let (Vi; Ei) be the

tree representations of 'i. We adapt each (Vi; Ei) to (V
0
i ; E

0
i) by setting

V 0
i = f (i; v1; : : : ; vk) j (v1; : : : ; vk) 2 Vi g;
E 0
i =

� �
(i; v1; : : : ; vk); (i; w1; : : : ; wk)

� ���
(v1; : : : ; vk); (w1; : : : ; wk)

� 2 Ei 	:
The label of (i; v1; : : : ; vk) 2 V 0

i is inherited from (v1 : : : ; vk) 2 Vi. We
obviously have that V 0

i \ V 0
j = ;, (1) =2 V 0

i , (i) 2 Vi, and E 0
i � V 0

i � V 0
i .

Thus (V 0
i ; E

0
i) is a labeled tree. The tree representation (V;E) of ' is

then given by

V =

n[
i=1

V 0
i [f(1)g; E =

n[
i=1

E 0
i [f ((1); (i)) j 1 � i � n g:

We de�ne the label of (1) to be the toplevel operator of '. As an
example we show the tree representation of the formula a = 0 ^ (b =
0 _ a = 0) in Figure 5.2.

Let v = (v1; : : : ; vk) be a node in the tree representation of '. Then

(v1; : : : vk) is not only the object representing the node, but it is also the
path from the top node to v. In this sense (v1; : : : ; vk) is called the position
of v.

Each node in the tree representation of a formula identi�es a subformula.

Conversely we can identify a subformula with the node. This allows us to

identify positions with subformulas and vice versa. For instance, we can

identify a speci�c atomic formula of a formula with its position avoiding
a conict with other atomic formulas that are equal but occur at another

position.

In analogy to the Gauss condensing operator �f 1::: ; lg our new condens-
ing operator �p� is parameterized via a subscript �. This subscript �, however,

100 CHAPTER 5. REPEATED CONDENSING

(1)

(1,1) (1,2)

(1,2,1) (1,2,2)

a=0

b=0 a=0

Figure 5.2: Tree representation of a = 0 ^ (b = 0 _ a = 0)

does not denote the condensed part of the formula but the atomic formula

yielding the current test point and thus justifying the positional condensing.
Completely analogous to Gauss condensing, � does not simply denote some
atomic formula but a particular occurrence of this formula within the target

formula . In our newly introduced formalism � thus corresponds to a tree
position, say

�p� = �p(v1;::: ;vk):

Given a positive quanti�er-free formula we construct �p� = �p(v1;::: ;vk)

as a subtree of = (V;E) by specifying a subset V 0 � V of the nodes.
Simultaneously, there will be certain labels of nodes in V 0 modi�ed to \false."
We constructively describe V 0 by following the path

(v1; : : : ; vk); (v1; : : : ; vk�1); : : : ; (v1) = (1)

from � to the root of . For 1 � i � k we obtain nodes for V 0 as follows:

� If the label of (v1; : : : ; vi) is _," then (v1; : : : ; vi) is copied to V 0.
Note that the node (v1; : : : ; vi+1) is captured by another instance of

the rule we are just de�ning. There are now possibly further descen-

dents (v1; : : : ; vi; w1), : : : , (v1; : : : ; vi; wl). These descendents are also
copied to V 0 with their label changed to \false." Note that possible

descendents of (v1; : : : ; vi; w1), : : : , (v1; : : : ; vi; wl) are dropped.

� If the label of (v1; : : : ; vi) is di�erent from _," then (v1; : : : ; vi) is

copied to V 0. Again the node (v1; : : : ; vi+1) is captured by another

5.2. POSITIONAL CONDENSING 101

instance of our rule. Possible further descendents

(v1; : : : ; vi; w1); : : : ; (v1; : : : ; vi; wl)

are recursively copied to V 0.

Following the discussion so far we can use �p for constituting the substi-

tution rule of positional condensing. We compute an elimination set E in

which each point (; t) is labeled with all prime constituents generating it,

say

�
�
(; t)

�
= f�1; : : : ; �kg;

where the �i include both atomic and Gauss prime constituents. For the

sake of formal cleanness, we specify that (true;�1) is labeled with f1g,
and �p1 = . Positional condensing is then given by the equivalence

_
(;t)2E

 ^ [x==t] !
_

(;t)2E

_
�2�((;t))

 ^ �p� [x==t]:

Observe that we possibly have multiple substitutions for test points. In

this concern, our notion of positional condensing corresponds to Variant 1 of
Gauss condensing in the previous section. Accordingly we call it Variant 1
of positional condensing, and turn to the question whether there is some

\Variant 2" that avoids such multiple substitutions.
From Variant 2 of the Gauss case we have obtained the intuition that

for the substitution of multiply labeled test point, we have to be somehow
careful not to condense \too much." The domain for a combined position
condensing �pf�1;::: ;�kg is determined by the intersection of the domains of all

the �i. In terms of tree representations of formulas this corresponds to the
part of the tree above the smallest common ancestor of all the �i. In our

framework the position of this smallest common ancestor is described by the
largest common pre�x of the positions of �1, : : : , �k. Using this extended
notion of �p, Variant 2 of positional condensing is given by

_
(;t)2E

 ^ [x==t] !
_

(;t)2E
 ^ �p

�((;t))
 [x==t]:

It is not hard to see that positional condensing can be straightforwardly

combined with the Gauss condensing discussed in the previous section. When

applying both condensing operators � and �p to it is formally clean to apply
� �rst, since �p might kill the Gauss prime constituent � is looking for. Vice

versa there is no such problem.

In the remainder of this section we consider condensing from a di�erent
point of view: Instead of the structure of the involved formulas we focus

102 CHAPTER 5. REPEATED CONDENSING

on certain properties of the disjunctive normal forms corresponding to the

formulas before and after condensing, respectively.

Algorithm 5.2. Let ' be a quanti�er-free positive formula and let � be a

prime constituent of '. Then the following algorithm computes quanti�er-

free positive formulas '̂, , and ̂ such that

(1) '̂ is a disjunctive normal form of '.

(2) ̂ is a disjunctive normal form of .

(3) ̂ � '̂.

(4) at(̂) = at() � at(') = at('̂).

(5) If � =2 ', then = ' and '̂ = ̂.

(6) If � occurs in ', then for every conjunction � 2 '̂ with � 2 � we have
that � 2 ̂.

For computing '̂, , and ̂ from ' and � we assume wlog. that all occurrences

of \^" and _" in ' are binary.
If ' is atomic, then we set '̂ = = ̂ = '. This obviously ful�lls all

required conditions.

If ' is not atomic, then it is of the form '1 ^ '2 or of the form '1 _ '2.
In both cases we recurse on '1 and � as well as on '2 and � obtaining

'̂1 = '11 _ � � � _ '1m; 1; ̂1 = 21 _ � � � _ 2p
and

'̂2 = '21 _ � � � _ '2n; 2; ̂2 = 21 _ � � � _ 2q;
respectively. We make a combined case distinction on the actual operator

and on the occurrence of � in '.

1. Let ' be a conjunction '1 ^ '2 and let � 2 ', wlog. � 2 '1. This

implies that � =2 '2. We set

'̂ = ('11 ^ '21) _ � � � _ ('11 ^ '2n) _
('12 ^ '21) _ � � � _ ('12 ^ '2n) _ � � � _
('1m ^ '21) _ � � � _ ('1m ^ '2n);

and = '1 ^ '2. Using the identity ̂2 = '̂2 we de�ne

 ̂ = (11 ^ '21) _ � � � _ (11 ^ '2n) _
(12 ^ '21) _ � � � _ (12 ^ '2n) _ � � � _
(1p ^ '21) _ � � � _ (1p ^ '2n):

5.2. POSITIONAL CONDENSING 103

Since '̂ is computed by applying the distributive law for ^ over _ to

the disjunctive normal forms '1 and '2 we have that '̂ is a disjunctive

normal form of '. Analogously we have that ̂ is a disjunctive normal

form of . This proves the properties (1) and (2).

We prove the subset relation (3): Let (1i ^ '2j) be a branch of ̂.

From the subset relation between 1 and '1 we know that there is an

i0 such that 1i = '1i0 . This implies

(1i ^ '2j) = ('1i0 ^ '2j) 2 '̂:

Property (4) is trivially ful�lled. Since � 2 ' we �nally have to prove

claim (6). Let � 2 ('1i ^ '2j). Recall that we have assumed that � 2
'1i. According to our speci�cations there is an i

0 such that 1i0 = '1i.
Thus we have

('1i ^ '2j) = (1i0 ^ '2j) 2 ̂:

2. Let ' be a conjunction '1 ^ '2 and let � =2 '. Then we have that

'̂1 = ̂1 and '̂2 = ̂2. To meet condition (5) we set = ', and we set

 ̂ = '̂ = ('11 ^ '21) _ � � � _ ('11 ^ '2n) _
('12 ^ '21) _ � � � _ ('12 ^ '2n) _ � � � _
('1m ^ '21) _ � � � _ ('1m ^ '2n):

Again this is obviously a disjunctive normal form of both ' and .
Condition (3) is trivially ful�lled, and one can easily verify condition
(4).

3. Let ' be a disjunction '1 _ '2 and let � 2 '. We assume wlog. that
� 2 '1 and thus � =2 '2. In this case we can reduce the size of

compared to that of ': We de�ne = 1. The corresponding dnf ̂ is

then simply ̂1. This implies in particular (2). The dnf '̂ is computed

by simply merging the disjunctive normal forms '̂1 and '̂2:

'̂ = '11 _ � � � _ '1m _ '21 _ � � � _ '2n:

Since ̂1 � '̂1 we have again ̂ � '̂ proving (3). One can easily check

condition (4).

It remains to prove (6): Assume we have a � 2 '̂ with � 2 �. Then
actually � 2 '̂1. This implies that � 2 ̂1 and thus � 2 ̂.

104 CHAPTER 5. REPEATED CONDENSING

4. Finally, we have to describe how to treat the case that ' is a disjunction

'1 _ '2 and � =2 ': We set = ' and

'̂ = ̂ = '11 _ � � � _ '1m _ '21 _ � � � _ '2n:
This is a dnf of because we know that '̂1 = ̂1 and '̂2 = ̂2. It is

clear that these de�nitions ful�ll the requirements (3), (4), and (5).

Note that a restriction of the above algorithm to the computation of is

already suÆcient for condensing. The additional formulas '̂ and ̂ are used

for the following more formal proof for correctness of condensing.

Given a quanti�er-free formula ' and a variable x we proceed as follows.

We compute by the above algorithm a disjunctive normal form '̂ = '1 _
� � � _ 'n of '. Then we compute an elimination set E for ' using any of

the method discussed throughout this thesis. Then we have that E can be

considered as a union
Sn

i=1En, where the Ei are elimination sets for 'i.
This property, which is not correct for an arbitrary elimination set, follows

immediately from the fact that we compute elimination sets form candidate
solution sets stemming from prime constituents. In this situation we have
the following equivalence:

9x(') ! 9x(
n_
i=1

'i)

 !
n_
i=1

9x('i)

 !
n_
i=1

_
(;t)2Ei

 ^ 'i[x==t]:

Recall that each Ei is non-empty, and thus we have that for each 1 � i � n

there is some t 2 Sn

j=1Ej with i 2 It = f i j t 2 Ei g. This allows us to group
the 'i[x==t] in a di�erent way, and we arrive at the following equivalence:

n_
i=1

_
(;t)2Ei

 ^ 'i[x==t] !
_

(;t)2E

_
i2It

 ^ 'i[x==t]

 !
_

(;t)2E
 ^

_
i2It

'i[x==t]

 !
_

(;t)2E
 ^ (t)[x==t]:

It is easy to see that in the case of an existential quanti�er in front of a
disjunction, say 9x(1 _ 2), condensing will take care that there are neither

5.2. POSITIONAL CONDENSING 105

test terms coming from 1 substituted into 2 nor vice versa. Obtaining this

e�ect was the major motivation for introducing blockwise quanti�er elimi-

nation in Section 3.2.6. At this point we wish to emphasize that blockwise

elimination is still relevant also with condensing. The reason for this is the

existence of selection strategies like deciding for either upper or lower bounds

as described in Section 3.5. If in our example 1 would contain upper bounds

and 2 would contain only lower bounds, then elimination set computation

cannot recognize that it is suÆcient to substitute �1 and 1, respectively,

since at this point 1 and 2 are not isolated from one another. The notion of

\repeated condensing" refers, however, to the idea of eliminating several (ex-

istentially) quanti�ed variables by repeating the application of an elimination

step using the condensing operators.

To conclude this section we give an example. This example is not only

an example for the idea of condensing but shows also that all our strategies

for applicable quanti�er elimination by virtual substitution can be combined
perfectly.

Example 5.3. Consider the following quanti�er elimination problem:

9x
���

(x = a1_x = a2)^b1x � b2
�_c1x � c2

�
^(d1x � d2_x � e1_d1 < 0)

�
:

Using the strategies described in this chapter, in the previous chapter on
structural elimination sets, and in Section 3.6, if applicable, we obtain the

following quanti�er-free result containing 15 atomic formulas.

b1a1 � b2 ^ (d1a1 � d2 _ a1 � e1 _ d1 < 0) _
b1a2 � b2 ^ (d1a2 � d2 _ a2 � e1 _ d1 < 0) _
c1 < 0 ^ (c2d1 � c1d2 _ c2 � c1e1 _ d1 < 0

c1 > 0 _ c1 = 0 ^ c2 � 0:

The current version of redlog computes the following result formula con-

taining 29 atomic formulas:

(b1a1 � b2 _ c1a1 � c2) ^ (d1a1 � d2 _ a1 � e1 _ d1 < 0) _
(b1a2 � b2 _ c1a2 � c2) ^ (d1a2 � d2 _ a2 � e1 _ d1 < 0) _
b1 6= 0 ^ �(b2 = b1a1 _ b2 = b1a2 _ b1b2c1 � b21c2) ^

(b1b2d1 � b21d2 _ b1b2 � b21e1 _ d1 < 0)
� _

c1 6= 0 ^ (c1c2d1 � c21d2 _ c1c2 � c21e1 _ d1 < 0)

d1 6= 0 ^ (((d2 = d1a1 _ d2 = d1a2) ^ b1d1d2 � b2d
2
1) _ c1d1d2 � c2d

2
1) _

c1 > 0 _ c1 = 0 ^ c2 � 0:

106 CHAPTER 5. REPEATED CONDENSING

The lower degrees in our new result are mainly obtained by using the stronger

guards introduced in Section 3.6. A reduction of 9 atomic formulas is ob-

tained by using the structural elimination sets of Chapter 4. Using both

Gauss condensing and positional condensing leads to a reduction of 5 atomic

formulas. All strategies together are the reason for the simpler boolean struc-

ture of the new result formula.

We want to emphasize that the previous example demonstrates that ap-

plying our strategies leads to a simpler result formula obeying the simpli�-

cation goals of simple terms, of few atomic formulas, and of comprehensible

boolean structure as they have been stated in Section 2.2 though they are

not really simpli�cation algorithms.

5.3 Conclusions

In this chapter we have introduced two independent though related con-
cepts: Gauss condensing and positional condensing. Both these concepts

can be combined without problems. In addition they perfectly combine with
all other ideas presented throughout this thesis. With condensing we have
discovered a new place, where optimizations can take place: The disjunction

of virtual substitutions as opposed to the virtual substitutions themselves.
We may expect a dramatic decrease in the size of the quanti�er-free re-

sults. On the other hand we have observed that there is a trade-o� between
removing redundant parts of the result and multiple substitutions. Our vari-
ants of condensing were designed to cope with this trade-o�.

On our way to a more liberal view of quanti�er elimination by virtual
substitution we have performed yet another step: Instead of operating on
atomic formulas as syntactical objects we now think in terms of tree positions.

At the end of the chapter we have sketched another approach to con-
densing. This approach was via consideration of equivalent dnf's. We wish

to emphasize once more that this point of view very often provides a valu-

able alternative intuition within the framework of quanti�er elimination by

virtual substitution.

Chapter 6

Local Quanti�er Elimination

In the previous chapters we have introduced quanti�er elimination by vir-
tual substitution and we have presented algorithmic strategies for improv-

ing this quanti�er elimination procedure. In this chapter we are going to
present strategies for improving the quanti�er elimination procedure based
on a modi�ed speci�cation of quanti�er elimination, namely local quanti�er

elimination. Local quanti�er elimination make use of the observation that
in some application areas it is not necessary to compute a quanti�er-free

formula which is equivalent for all parameter values: Given a �rst-order for-
mula '(u1; : : : ; um; v1; : : : ; vn) in the language of ordered rings and a point
(a1; : : : ; an) 2 Rn we compute a quanti�er-free formula '�(u; v) and a theory
�(v) such that

^
� �! (' ! '�) and

^
�(a1; : : : ; an):

In other words we compute from ' a quanti�er-free formula '� and a semi-
algebraic set S � Rn containing a, such that for all r 2 Rm , and s 2 S we

have that '(r; s) and '�(r; s) are equivalent. Note that the theory � contains
only atomic formulas in the parameters v1, : : : , vn.

We call the variables v1, : : : , vn local parameters, and a = (a1; : : : ; an)
suggested point for the local variables. Terms and formulas containing only

variables from the set fv1; : : : ; vmg are also called local. The semi-algebraic

set
S =

n
x 2 Rn

��� ^�(x)
o

is called range of the local quanti�er elimination applied to '.
Local quanti�er elimination is designed for both decreasing the size of the

output formula and for decreasing the computation time. This is achieved by

restricting the parameter space to an interesting area around the suggested
point.

107

108 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

The scope of local quanti�er elimination is between regular quanti�er

elimination applied to '(u; v) and applied to '(u; a). If m = 0 the latter

case is actually a decision problem, whereas the former one is a quanti�er

elimination problem. Both of these special cases can be viewed as local

quanti�er elimination by setting either � = ; or setting � = f vi = ai j 1 �
i � n g, respectively.

We are, however, not interested in these degenerated cases. Though the

range will be restricted by our method, the range will as a rule not be re-

stricted to the pure trivial case. Instead it will in almost all cases be an in-

�nite semi-algebraic set containing the suggested point, and most frequently

a neighborhood of this point. In comparison to regular quanti�er elimina-

tion the output formula will be signi�cantly smaller and will be computed

faster. The local quanti�er elimination procedure, as presented here, is based

on the quanti�er elimination by virtual substitution. Constraints for � are
generated, whenever they support the algorithm.

The concept of local quanti�er elimination is closely related to the generic
quanti�er elimination. For details on generic quanti�er elimination, cf. [31].

Generic quanti�er elimination computes to an input formula '(u1; : : : ; um)
a formula '�(u1; : : : ; um) and a theory �(u1; : : : ; um) such that

^
� �! (' ! '�);

where � contains, in contrast to the local quanti�er elimination, only dis-

equations. As a consequence the theory � holds for almost all parameter
values. So the range of generic quanti�er elimination applied to ' is usually
larger than the range of local quanti�er elimination. On the other hand the

corresponding output formula will be much bigger in generic quanti�er elim-
ination. The resulting trade-o� between the size of the range and the size of

the output formula varies with the type of input formulas.

The plan of this chapter is as follows: In Section 6.1 we describe how to

adapt quanti�er elimination by virtual substitution to a local quanti�er elim-
ination algorithm. In Section 6.2 we discuss the combination of local quan-

ti�er elimination together with the ideas of generic quanti�er elimination.

In Section 6.3 we give an explicit series of examples, for which local quanti-
�er elimination has a better complexity than regular quanti�er elimination.

Section 6.4 introduces our implementation of local quanti�er elimination. In
Section 6.5 we give some computation examples. Finally, in Section 6.6 we

summarize the results of this chapter.

6.1. LOCAL QUANTIFIER ELIMINATION BY SUBSTITUTION 109

6.1 Local Quanti�er Elimination by

Substitution

In this chapter we present a local quanti�er elimination procedure based

on the quanti�er elimination by virtual substitution introduced in Chap-

ter 3. We describe in detail how we have adapted the phases of the virtual

substitution method to obtain an eÆcient local quanti�er elimination. All

modi�cations described here are compatible with the optimization strategies

discussed in the Chapter 4 and in Chapter 5.

In contrast to regular quanti�er elimination we distinguish between non-

local parameters u1, : : : , um and local parameters v1, : : : , vn. For the latter

we specify in the input of the local quanti�er elimination the suggested point

(a1; : : : ; an) 2 Rn . Recall that local quanti�er elimination computes for '

and a a quanti�er-free formula '� and a theory �, such that

^
� �! (' ! '�) and

^
�(a1; : : : ; an):

Note that the condition �(a) guarantees, that � cannot become inconsis-
tent. The constraints contained in � are generated according to the following
scheme: Let t be a local term, a 2 Rn , and de�ne

R(s) =

8<
:

> for s = 1

= for s = 0
< for s = �1

:

We can automatically evaluate t(a) and compute the sign s of t(a). De�ning

�a(t) � t R(s) 0;

it follows obviously that �a(t)(a) holds.
In the following subsections we discuss how to make use of a and � for

speeding up the computation and for obtaining smaller output formulas. We
consider modi�cations of three phases of the quanti�er elimination: The com-

putation of all candidate solutions, the virtual substitution of some candidate
solutions, and the simpli�cation of the result formula.

6.1.1 Local Computation of Candidate Solutions

Both computation time and output size of the quanti�er elimination by vir-

tual substitution depend heavily on the size of the computed elimination set.
For an input formula of size j'j and an elimination set with size jEj we com-
pute, roughly speaking, an output formula of size j'j � jEj. Our major goal is

110 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

thus to reduce the size of E. Recall from Section 3.3 that in the worst-case we

compute for each atomic formula in the input formula a candidate solution

including an appropriate guard. From the set of all candidate solutions we

compute then an elimination set.

To begin with, consider an atomic formula � � c1x+c0 % 0 where % is one

of our relations and suppose that c1 is a local term. Adding the constraint

�a(c1) to the theory �, ensures that the sign of c1 is constant and known on

the range of the local quanti�er elimination. Hence we can decide whether

� yields an upper bound, or a lower bound, or whether � is equivalent to

c0 % 0. In the latter case we do not need to generate a candidate solution

at all. The knowledge about the type of bound will support the elimination

set computation. If c1 is not local, i.e. it contains variables besides the

parameters v we proceed as for regular quanti�er elimination.

Constraints of the form t > 0 and t < 0 are valid not only for the suggested

point a, but also for all points in a neighborhood of a. This is obviously
false for equation constraints. We have therefore introduced restricted local
quanti�er elimination, which assumes only strict order relations in the theory

�. If �a(c1) is an equation constraint, we do not add it to � and we proceed
as for regular quanti�er elimination.

Next we consider a quadratic atomic formula c2x
2 + c1x+ c0 % 0. In this

case our regular quanti�er elimination procedure generates �rst a condition
that c2 does not vanish together with at most two candidate solutions be-

longing to the roots of c2x
2+ c1x+ c0. Furthermore it generates a condition,

that c2 vanishes together with the candidate solution for the atomic formula
c1x + c0 % 0.

If the highest coeÆcient c2 is local we add �a(c2) to �. We do not consider
the linear case provided that sign(c2) 6= 0 and we do not consider the pure

quadratic case provided that sign(c2) = 0. If c2 is not local we consider both
the quadratic and the linear case separately. The linear case is discussed
above. So we only have to clarify how to proceed in the pure quadratic case,

i.e. we assume c2 6= 0. We start with the computation of the discriminant

� = �4c2c0 + c21 and we check if it is local. If it is not local we proceed

as usual. Otherwise we add the constraint �a(�) to �. If sign(�) < 0,

which means that c2x
2 + c1x + c0 does not have a real zero, we compute no

candidate solution. If sign(�) > 0 we can drop the appropriate guard in

front of the substitution result. If sign(�) = 0 we have to consider only the

candidate solution �c1
2c2

. Note that in this case, we either cannot determine
the sign of c2 or it is de�nitely di�erent from 0. The restricted local quanti�er

elimination would, analogously to the linear case, not generate any equation

constraints for �. In case that a local term evaluates to 0 the restricted
quanti�er elimination proceeds as the regular quanti�er elimination. Thus,

6.1. LOCAL QUANTIFIER ELIMINATION BY SUBSTITUTION 111

we have to code certain sign conditions into the output formula such that

the output is, in general, not so short as in the unrestricted case.

The local quanti�er elimination allows us to recognize more formulas as

Gauss formulas or as co-Gauss formulas. The local quanti�er elimination is

here not only compatible with the strategies describe in Chapter 4 but con-

tributes to the optimizations discussed there. For deciding c2x
2+c1x+c0 = 0

to be non-trivial, we check, starting with c2, successively if sign(ci(a)) 6= 0. If

sign(cj(a)) 6= 0 for one j we add �a(cj) to � and apply the Gauss elimination

as usual.

Finally, we summarize the number of constraints added to �, for the

elimination of 9x(). We compute to each atomic formula in at most

two candidate solutions. Recall, that during the computation of a candidate

solution we add at most two constraints to �. This means, that the size of

� is in O(n), where n is the number of atomic formulas in '. Of course, we

simplify the obtained theory � at the very end of the quanti�er elimination
by applying our simpli�cation algorithm.

6.1.2 Local Simpli�cation

Simpli�cation has been turned out to be crucial for a successful application

of quanti�er elimination. This suggests to modify the simpli�cation algo-
rithm in order to take advantage of the additional features of local quanti�er
elimination.

Only two steps of our standard simpli�er are a�ected by the modi�ca-

tions for a local simpli�cation. These steps are discussed in Chapter 2 on
simpli�cation of quanti�er-free formulas. We adapt the following two steps
to our framework of local quanti�er elimination:

� The potential simpli�cation of an atomic formula to a truth value. For
example our simpli�er recognizes x2+y2 � 0 to be equivalent to \true."

� The potential simpli�cation of a conjunction of two atomic formulas to

a single atomic formula. For example we simplify 3x�2 � 0^4x�3 � 0

to 3x � 2 � 0. Our simpli�er can combine only two atomic formulas

of the form t + q1 %1 0 and t + q2 %2 0, where t is a term and q1, q2
are rational numbers. Note that not all conjunctions matching this

condition, can be simpli�ed.

In the next subsections we sketch how to improve these two steps in the
framework of local quanti�er elimination. We denote again with a the sug-
gested point for the local parameters.

112 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

Consider a local atomic formula t % 0, where % is an arbitrary relation.

Adding �a(t) to �, the atomic formula is for all points in the range equivalent

either to \true" or to \false." The respective truth value can be computed

using the sign of t(a). We can, hence, replace the atomic formula by \true"

or \false," respectively. This supports the simpli�cation in particular in the

case of \true" in a disjunction or \false" in a conjunction. In this case a not

necessarily local subformula can be replaced by one truth value.

Using this simpli�cation one is faced with a larger growth of � than in the

elimination phase. A larger � means in general a smaller range. Simplifying

the result formula with the above sketched method can, in the worst case, add

for each atomic formula in the input formula a new constraint to �. In our

case the input formula is actually the output formula of the local quanti�er

elimination. This implies that in this case the size of � is in O(n2) instead of

O(n), where n is the number of atomic formula of the elimination input '.

The output formula, however, will be much shorter using this simpli�cation.
A naive extension of our simpli�er would apply this simpli�cation for

atomic formulas to each atomic formula contained in the input formula. Be-

sides the disadvantage of the growth of � one has to deal with the problem
of adding obviously unnecessary constraints to �. Consider, e.g. the subfor-
mula v1 > 0^v2 > 0 of a complex formula and suppose that (a1; a2) = (1; 1).

Then the simpli�er would make the assumptions v1 > 0 and v2 > 0 but it
is suÆcient to assume either v1 > 0 or v2 > 0. This situation cannot be

resolved uniformly, because the decision which constraint is more suitable
depends on the given application. Adding further constraints to � means in
general to further restrict the range. For a �rst implementation we suggest

the heuristics to add successively some constraints until no more atomic for-
mulas can be simpli�ed this way. This avoids adding unnecessary constraints

to � but cannot exclude that � is restricted much more than necessary, be-
cause this depends heavily on the added constraints and not on the number
of the constraints in �.

Next we discuss how to combine two atomic formulas. For the general

simpli�er this was only possible for terms that di�er only in the absolute

summand. This concept can be easily extended in the framework of the local

quanti�er elimination. Here we can combine two atomic formulas of the form

t + p1 %1 0 and t + p2 %2 0, where t is a term, that does not contain a local

summand and both p1 and p2 are local terms. Adding �a(p1 � p2) to � one

can decide whether p1 < p2, p1 > p2, or p1 = p2. Using this information, we
can straightforwardly generalize the techniques for simplifying conjunctions

of our simpli�er. As an example consider the formula 3x � v1 � 1 >= 0 ^
4x� 2v2� 1 >= 0 and suppose (a1; a2) = (1; 1). Then we add the constraint
4v1 + 4 < 6v2 + 3 and simplify the formula to 4x � 2v2 � 1 >= 0. As for

6.1. LOCAL QUANTIFIER ELIMINATION BY SUBSTITUTION 113

the simpli�cation of atomic formulas this simpli�cation technique can add

for each atomic formula in the input a new constraint to �. Again it is easy

to see, how to de�ne a restricted local simpli�er that does not assume any

equation constraints.

6.1.3 Local Virtual Substitution

We can take advantage of the possibility to decide the sign of a local term

for obtaining better substitution results. Here we can both consider the

assumptions already made and assume new constraints. The former case

does not increase the size of �. In the latter case we may increase the size of

� and are faced with problems similar to those discussed in the description

of local simpli�cation.

Consider a candidate solution - c0
c1

and an atomic formula b1x + b0 >

0. The candidate solution is necessary and valid only in the case c1 6= 0.
Rewriting the substitution result without an denominator yields the formula
�b1c0c1�b0c21 > 0 guarded with the condition c1 6= 0. If we can strengthen the

condition to c1 > 0 or c1 < 0, respectively, as in the case of the local quanti�er
elimination, the result can be simpli�ed to �b1c1� b0 > 0 or �b1c1� b0 < 0,
respectively. Note that for a quotient � c0

c1
obtained as candidate solution

of a linear constraint c1x + c0 % 0 our theory � contains already one of the
constraint c1 > 0 and c1 < 0, provided that c1 is local. This observation can

be easily generalized for the substitution into atomic formulas containing
polynomials of an arbitrary x-degree and for the substitution of other terms
containing denominators.

As discussed in the previous subsection local atomic formulas can al-
ways be evaluated to \true" or \false." Such atomic formulas are gener-
ated systematically for resolving the substitution of improper test points in

atomic formulas. Consider for example the substitution of 1 for x into an
atomic formula ax + b > 0, where a and b are local. We obtain the result

a > 0 _ a = 0 ^ b > 0. Both a > 0 and b > 0 are local and can by enlarging
� appropriately be simpli�ed.

6.1.4 Local vs. Generic Quanti�er Elimination

In this subsection we discuss the relation between generic quanti�er elimi-
nation, cf. [31] and local quanti�er elimination. Even if the speci�cations
of both variants of quanti�er elimination are di�erent, they are closely re-

lated to each other. Both variants automatically generate assumptions over

terms in a speci�ed subset of all parameters. These assumptions are col-
lected in a theory �. The equivalence between input and output of both

114 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

local and generic quanti�er elimination is restricted to the semi-algebraic

set represented by �. The main di�erence between the local and the generic

quanti�er elimination is the form of and the requirements on the theory. The

generic quanti�er elimination assumes only disequations. This implies on one

hand that the equivalence holds for almost all parameter values. On the other

hand it guarantees that � cannot become inconsistent. In case of the local

quanti�er elimination we restrict the range possibly to a zero-dimensional

set. The restricted local quanti�er elimination, however, does not assume

equation constraints and thus the range has the full dimension of the local

parameter space. The suggested point guarantees that the range contains an

interesting part of the parameter space. In both variants � cannot become

inconsistent, due to the requirement that � holds for the suggested point.

A second di�erence between the generic and the local quanti�er elimi-

nation is more technical. Generic quanti�er elimination may generate con-
straints only for the elements of the actually chosen elimination set. The

local quanti�er elimination, in contrast, may generate constraints for each
candidate solution. Though this implies that local quanti�er elimination
assumes more constraints, the number of generated constraints is for both

variants linear in the number of atomic formulas in the input. This changes
if one allows to generate constraints for the simpli�cation of the result or for

the substitution of an elimination term into an atomic formula as described
above. The idea to improve the substitution of test terms by introducing
additional constraints into the theory can also be used in the framework of

generic quanti�er elimination.

6.2 Generic Local Quanti�er Elimination

Up to now, our local quanti�er elimination was only allowed to assume con-
straints restricting the local parameters. One can, of course, combine both

the ideas of generic quanti�er elimination and local quanti�er elimination

obtaining a \generic local quanti�er elimination." For this variant of quanti-

�er elimination we allow ourselves to assume order constraints restricting the

local parameters and to assume disequations restricting all parameters. As
in the case of the generic quanti�er elimination, we may allow ourselves to

specify a subset of all parameters on which we do not assume any constraint.

The idea is in this case, that the speci�ed parameters are actually bounded
by some quanti�ers outside of the considered formula.

6.3. A REMARK ON COMPLEXITY 115

6.3 A Remark on Complexity

In general local quanti�er elimination has the same complexity as the regular

quanti�er elimination. In this section we give a series of examples with

increasing number n of atomic formulas, such that the output formula of

regular quanti�er elimination as well as the generic quanti�er elimination is

exponential in n, whereas the output of the local quanti�er elimination is

only polynomial in n for an any suggested point.

We consider a parametric box in real n-space, which is given by the

following formula:

9x1 � � � 9xn
� n̂

i=1

aixi � 1 ^ bi(xi � 1) � 1
�
:

We consider the following slightly modi�ed input

9x1 � � � 9xn
� n^
i=1

aixi � 1 ^ bi(xi � 1) � 1 ^ ��;
where � is a quanti�er-free formula in the parameters ai and bi.

For the elimination of xn, regular quanti�er elimination computes the
following three candidate points:

�1; 1

an
;

1 + bn

bn
;

together with guards an 6= 0 and bn 6= 0, respectively, for the latter two test
points. Only all three points together form an elimination set. With other

words, we cannot drop any candidate solution. The virtual substitution of
the terms of the elimination set for xi into the input formula results in the

following formula:

9x1 � � � 9xn�1
�

n�1̂

i=1

aixi � 1 ^ bi(xi � 1) � 1 ^

an � 0 ^ bn � 0 ^ �[xn==1] _
n�1̂

i=1

aixi � 1 ^ bi(xi � 1) � 1 ^

an 6= 0 ^ bn(an � a2n) � a2n ^ �
�
xn==

1

an

� _

116 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

n�1̂

i=1

aixi � 1 ^ bi(xi � 1) � 1 ^

bn 6= 0 ^ an(1 + bn � b2n) � b2n ^ �
�
xn==

1 + bn

bn

��
:

Even the generic quanti�er elimination cannot drop one of the three candi-

date solutions. It may, however, add the conditions an 6= 0 and bn 6= 0 to the

theory and remove these atomic formulas from the substitution result.

For the elimination of the next quanti�ers we interchange them with

the toplevel disjunction. Thus we get 3 subproblems; each of them can be

eliminated independently. Each of the subproblems has again the form of the

considered input. Thus for the elimination of each quanti�er we alway get 3

test points and we can always interchange the resulting disjunction and the

remaining quanti�ers. During the elimination we obtain a computation tree

of depth n such that each node has exactly 3 successors. Altogether, this
proves that the number of atomic formulas in the output of both regular and
generic quanti�er elimination is in O(3n), in other words it is exponential in

n.
Next we consider the same elimination problem as an input of the local

quanti�er elimination procedure together with an arbitrary suggested point

(a1; : : : ; an; b1; : : : ; bn) = (�1; : : : ; �n; �1; : : : ; �n):

We will discuss all possible cases: To begin with, we start with the worst case

for our local quanti�er elimination, namely sign(�n) = � sign(�n), where
wlog. we may assume that sign(�n) = 1. We consider, as above, the elim-
ination of \9xn." The local quanti�er elimination then adds �(�;�)(an) and

�(�;�)(bn) to �. This restricts the range such that anxn � 1 is an upper bound,
whereas bi(xi�1) � 1 is a lower bound. Due to the fact, that the constraints
occur conjunctively on the toplevel and that � guarantees an 6= 0, one can

easily see that, e.g. f 1
an
g is an elimination set. The substitution result is

9x1 � � � 9xn�1
�n�1̂
i=1

aixi � 1 ^ bi(xi � 1) � 1 ^

bn(an � a2n) � a2n ^ �
�
xn==

1

an

��
:

In all other cases either our elimination procedure computes either f1g or
f�1g as an elimination set.

In all cases the substitution result matches the form of the input formula.

Thus we can simply iterate the local quanti�er elimination and we obtain

6.4. IMPLEMENTATION 117

in each iteration an elimination set containing only one element. Altogether

we obtain a result formula, which is linear in n and a theory containing 2n

constraints.

6.4 Implementation

An implementation of the local quanti�er elimination in redlog is under

development. The current version contains all discussed features except local

virtual substitution and local simpli�cation.

6.5 Application Examples

We present some example computations. All computations have been per-
formed on a sun ultra 1 computer with 140 Mhz and a heap space of

32 MByte for reduce.

6.5.1 Generic Quadratic Equation

In the �rst toy example we demonstrate the behavior of the implemented
local quanti�er elimination in contrast to the regular quanti�er elimination
and to the generic quanti�er elimination. We consider the input formula

' � 9x(v2x2 + v1x+ v0 > 0) and the point a = (1; 1; 1).
Local quanti�er elimination computes the result v0 > 0 together with

the theory 4v0v2 � v21 > 0. Quanti�er elimination of 9x(v2x2 + v1x + v0 >

0)[v0=1; v1=1; v2=1] yields the result \true," whereas regular quanti�er elimi-
nation of 9x(v2x2 + v1x+ v0 > 0) produces the result

v2 > 0 _ 2v0v1v2 � v31 > 0 ^ v1 6= 0 ^ v2 = 0 _
_v2 = 0 ^ (v1 > 0 _ v0 > 0 ^ v1 = 0) _
4v0v2 � v21 < 0 ^ v2 < 0:

Generic quanti�er elimination computes the result 4v0v2 � v21 < 0 _ v2 � 0

together with the theory v2 6= 0. The computation time is in all cases smaller

than the smallest measurable time of 10 ms.

6.5.2 Generic Polygon

We consider the input formula

9x9y
� n^
i=1

aix + biy � ci

�
;

118 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

which describes, whether a convex polygon is non-empty.

We �x n = 3 and specify the ai and bj as local parameters, suggesting

the point

(a1; a2; a3; b1; b2; b3) = (1;�3; 5;�7; 11;�13):
Local quanti�er elimination produces in 50 ms the output formula

a1b
2
2c3 � a1b2b3c2 � a2b1b2c3 + a2b2b3c1 + a3b1b2c2 � a3b22c1 � 0;

together with the theory

a1 > 0 ^ a2 < 0 ^ a3 > 0 ^ b1 < 0 ^ b2 > 0 ^ b3 < 0 ^
a1b2 � a2b1 < 0 ^ a2b3 � a3b2 < 0:

Regular quanti�er elimination computes in 350 ms an output formula con-
taining 78 atomic formula. Generic quanti�er elimination computes in 450 ms

the same output together with \true" as theory. Substituting the suggested
point in the input the regular quanti�er elimination computes in 10 ms the
equivalent formula 8c1 + 11c2 + 5c3 � 0.

For n = 10 and the suggested point

(a1; : : : ; an; b1; : : : ; bn) = (p1;�p2; p3; : : : ; p2n);
where pi is the i-th prime number we obtain the following results: The lo-
cal quanti�er elimination computes in 2:6 s a theory containing 55 atomic

formulas and an output containing 160 atomic formulas. The regular quanti-
�er elimination computes in 26 s a formula containing 1520 atomic formulas.
This formula is also computed in 33:5 s by the generic quanti�er elimination

together with \true" as theory. Fixing the point allows us to compute in
190 ms a result with 160 atomic formulas.

6.5.3 Kahan's Problem

Kahan's problem, cf. [41] is one of the most well-known benchmark problems

for quanti�er elimination procedures:

The problem concerns four variables a, b, c, d to be interpreted

as center (c; d) and principal semiaxes a, b of an ellipse

E :
�x� c

a

�2
+
�y � d

b

�2 � 1 = 0:

We wish to know when E lies inside the unit disk

D : x2 + y2 � 1:

6.6. CONCLUSIONS 119

An optimal solution was computed by Lazard, cf. [50].

We consider here the special case d = 0, and suggest the point

a = 1=2; b = 1=2; c = 1=2:

Local quanti�er elimination computes in 160 ms the result

a2 + 2ac+ c2 � 1 � 0 ^ a2 � 2ac+ c2 � 1 � 0;

together with the theory

a2 � b2 = 0 ^ a2 > 0 ^ b2c > 0 ^ b2 6= 0:

Note that the theory does not imply the result formula. In other words, �

does not restrict the problem to a trivial special case.

Regular quanti�er elimination computes in 910 ms a formula containing

59 atomic formulas, and if we �x the suggested point we yield in 10 ms the
result \true." Generic quanti�er elimination computes a formula containing

35 atomic formulas together with the theory a + b 6= 0 ^ a� b 6= 0 ^ a 6= 0.

6.6 Conclusions

We have introduced local quanti�er elimination as a variant of real quanti�er

elimination. For local quanti�er elimination we allow ourselves to assume ar-
bitrary order and equation constraints on local terms. As expected, this leads

theoretically and practically to shorter output formulas than those produced
by both regular and generic quanti�er elimination. One consequence of the
shorter (intermediate) results is the considerable speed-up of the elimination

process. The suggested point for the local parameters guarantees that the
range of the elimination is not empty and includes at least one point on

which the user is interested in. Our concept of the restricted local quanti-
�er elimination, guarantees furthermore that the range contains actually a
neighborhood of the suggested point and has therefore the same dimension

as the local parameter space. The theoretically expected improvements of

local quanti�er elimination in contrast to the regular quanti�er elimination

were exceeded by the results of our test implementation.

Wherever it suÆces to restrict the equivalence of output and input to

a neighborhood of the suggested point, the concept of local quanti�er elim-

ination is superior both to regular quanti�er elimination and the generic

quanti�er elimination.

Local quanti�er elimination is like the generic quanti�er elimination one

prominent example how to optimize the elimination process by a problem

oriented adaption of the speci�cation of quanti�er elimination.

120 CHAPTER 6. LOCAL QUANTIFIER ELIMINATION

Chapter 7

Scheduling by Quanti�er

Elimination

Scheduling problems arise in many areas of science and economics. The
application areas range from scheduling jobs on multi-processor machines

to designing production facilities or distributing patients to physicians in a
hospital. In almost all applications it is not suÆcient to compute only a valid
schedule but it is required to compute a schedule minimizing a given objective

function. In practice one is faced with two tasks inuencing each other:
Selecting an appropriate model on one hand and modeling the situation on

the other hand.

The general machine model is a very exible approach to the formulation
of scheduling problems [55, 11]. It is based on the production of some goods

using some machines. It is, however, not restricted to this situation. It
can, e.g., also be used to assign aircrafts to gates on an airport [8]. Many

di�erent algorithms have been developed to solve instances of the machine
model eÆciently. Most of the algorithms are exponential, even though some
algorithms for extreme special cases are polynomial. Project networks, cf. [33,

59, 4] provide a more exible model than dedicated machines. They are of
particular importance for building and construction.

We examine, as a new modeling tool, the applicability of �rst-order for-

mulas to describe scheduling problems. For solving scheduling problems de-
scribed this way we will use extended quanti�er elimination. Our approach

covers both the dedicated machine model and the project networks. In addi-

tion �rst-order formulas allow the precise formal speci�cation of scheduling
problems that are far beyond the scope of both the dedicated machine model

and project networks. For some cases they are highly relevant although cur-
rently no practical instance of the corresponding scheduling problem can be

solved within reasonable time, because our �rst-order approach provides the

121

122 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

only known adequate modeling tool.

For the restricted class of scheduling problems, where we have to compete

with the dedicated machine model or the project networks it turns out that

we can formulate the problems using only one block of existential quanti-

�ers. The worst case complexity of our algorithm is in this situation only

exponential, and we are thus in the same complexity class as the traditional

algorithms. Note, however, that from a theoretical point of view the tradi-

tional approaches are better in a certain sense: They are in NP.

Our approach of solving scheduling problems by quanti�er elimination is

inuenced by the idea to solve optimization problems with quanti�er elimi-

nation [70, 73]. The formulation of scheduling problems within the dedicated

machine model is related to that of solving them with constraint logic pro-

gramming, cf. [67, 9].

It is not at all surprising that the �rst-order formulas obtained for the
formulation of scheduling problems show certain structural similarities. We
can use this knowledge of the structure of the formulas to dramatically im-

prove the eÆciency of quanti�er elimination by virtual substitution for this
special case.

This makes the entire discussion �t perfectly into our thesis. After having

optimized the elimination procedure and all its subalgorithm to the most
possible extent, we now show that there is still additional tuning possible by
using information on class problems to be solved.

The plan of this chapter is as follows: In Section 7.1 we sketch a method
for solving optimization problems with quanti�er elimination. Section 7.2
summarizes the basics of the dedicated machine model. In Section 7.3 we

present an algorithmic strategy for translating instances of the dedicated
machine model into a �rst-order formula. In Section 7.4 we present various
strategies how to use the knowledge about special problem classes to improve

the quanti�er elimination. The treatment of project networks is discussed in
Section 7.5. In Section 7.6 we demonstrate the enormous scope of �rst-order

formulation of scheduling problems by means of a case study. The example

there also demonstrates how to realize multi-objective optimization.

7.1 Optimization by Quanti�er Elimination

Quanti�er elimination can be used for �nding the optimum of certain real
functions subject to real constraints. This obviously works, when the objec-

tive function can be expressed as a term. We will later extend this obser-

vation to functions that can be described by means of �rst-order formulas.
Extended quanti�er elimination can be used for �nding not only the optimal

7.1. OPTIMIZATION BY QUANTIFIER ELIMINATION 123

value but also some optimal point.

The major part of the �rst-order formulation of such an optimization

problem is obviously given by the constraints. Forming a conjunction of the

constraints exactly corresponds to the classical optimization situations, where

there is a list of constraints given, which are considered conjunctively. Within

our framework we have in addition the expressive power of disjunctions and

negations available.

We now have to clarify how to integrate the objective function into our

�rst-order formulation. For the classical purely conjunctive optimization

problem it is well-known from other elimination oriented approaches, such

as the Fourier{Motzkin method, how to proceed [60]: The objective function

enters the formulation as an additional constraint with a new variable. This

new variable is the only one, which is not eliminated such that the condition

in this variable obtained from elimination describes the optimal value of the

objective function. The following proposition collects these well-known facts
more precisely and within our framework.

Proposition 7.1. Let be a �rst-order formula in the variables x1, : : : , xn
and let

f : D = f (x1; : : : ; xn) j (x1; : : : ; xn) g ! R:

De�ne '(z) by

9x1 � � � 9xn
�
 (x1; : : : ; xn) ^ z � f(x1; : : : ; xn)

�
and let m 2 R. Then the following holds:

1. '(z) is contradictory if and only if D = ;.
2. '(z) is tautological if and only if D 6= ; and there is no lower bound

for f .

3. '(z) is equivalent to z � m if and only if D 6= ; and min(f) = m.

4. '(z) is equivalent to z > m if and only if D 6= ;, inf(f) = m, and there

is no minimum of f .

5. The formula ' is equivalent to one of \true," \false," z � m, or z > m.

We see that the minimum m of f is provided by some quanti�er-free
formula equivalent to z � m. We are, however, faced with the problem that
in general we may not expect our quanti�er elimination result to have such

a nice syntactic form. In fact, for non-rational m 2 R our chosen language

of ordered rings imposes that there must be non-linear polynomials involved,
which algebraically describes m.

124 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

Suppose, in contrast, the special case that the input is a linear formula.

It is then clear that m will be rational or �1. This follows on one hand

from the fact that all the input constraints describe intervals with rational or

in�nite boundaries. On the other hand this follows independently from the

syntactic form of the elimination result, which is a linear formula over the

language of ordered rings. Moreover, our simpli�cation methods in Chapter 2

are powerful enough to guarantee that we obtain a result of the form az+b �
0 ! z � m with a, b 2 Z. Our whole discussion is certainly also applicable
to the in�mum case.

Note that we obtain the straightforward form az + b � 0 for the mini-

mum of the objective function only with regular quanti�er elimination. With

extended quanti�er elimination, which we want to use for simultaneously de-

termining some point of minimal value, we obtain conditions with sample

solutions

�� �

2
64
(1)(z)

�
x
(1)
1 = t

(1)
1 (z); : : : ; x

(1)
n = t

(1)
n (z)

	
...

...

(k)(z)
�
x
(k)
1 = t

(k)
1 (z); : : : ; x

(k)
n = t

(k)
n (z)

	

3
75 ;

such that
Wk

i=1
(i) is a quanti�er-free equivalent. According to our introduc-

tion of extended quanti�er elimination by virtual substitution in Section 3.2
there is, however, no simpli�cation between the single (i) performed, i.e.,

we do not obtain our nice description of the minimum. We thus apply the
following straightforward algorithm to ��:

1. Compute
Wk

i=1
(i) and simplify. The result will for linear input formu-

las be of the form az + b � 0, and generally have the same quality as
the corresponding result obtained by regular quanti�er elimination.

2. Substitute � b
a
for z into ��, and simplify all the substitution results

for the (1), : : : , (k) to either \true" or \false." This yields ���. All
\true" lines in ��� provide sample points with minimal value � b

a
of the

objective function.

7.2 The Dedicated Machine Model

The dedicated machine model is a common way to formalize scheduling prob-
lems. The two main concepts of this model are jobs and machines. To each

job there is exactly one machine assigned on which the job can be processed.

Once started, a job can neither be interrupted nor cancelled. The time
needed for processing a job is known and �xed in advance. In particular, it

7.2. THE DEDICATED MACHINE MODEL 125

is independent of its starting time or of the processing of other jobs. The

machines are available over the entire considered time period. Each machine

can process only one job at a given time.

Scheduling means to compute a schedule, i.e. an assignment of starting

times to the jobs, such that the above requirements are ful�lled. The set of

valid schedules can furthermore be restricted by additional constraints: The

period within which a job i can be processed can be restricted by a release

date r(i) and a strict due date e(i). Between some of the jobs there can be

a precedence relation � given. For jobs i, j the meaning of i � j is that

the execution of job i must be �nished before the execution of job j can be

started.

The costs of schedules can be measured by cost functions de�ned on the

set of all schedules. Optimal scheduling consists in �nding a valid schedule,

which has minimal costs among all other valid schedules. Cost functions are

usually de�ned in terms of the completion time Ci and the due date d(i) of
the jobs i. The completion time Ci is the time at which the execution of a
job i terminates. The due date d(i) of a job i|not to be confused with the

strict due date e(i)|speci�es a desired end time but does not restrict the
set of valid schedules. To support the satisfaction of such due dates, there
are penalties introduced for each job that is �nished before or after its due

date. Note the di�erence between the functional notation of quantities that
are given independently of the schedule on one hand and the index notation

of quantities depending on a chosen schedule on the other hand.
Almost all cost functions considered are de�ned in terms of the following

quantities:

Lateness Li = Ci � d(i)
Earliness Ei = max

�
0; di � C(i)

�
Tardiness Ti = max

�
0; Ci � d(i)

�
Absolute deviation Di = jCi � d(i)j
Unit penalty Ui = 0 provided that Ci � d(i); Ui = 1 otherwise.

In practice, one almost always restricts to cost functions Gmax and G� of the

following form:

Gmax(J) = max(f!i �Gi j i 2 J g) and G�(J) =
X
i2J

!i �Gi;

Here J is a subset of all jobs, which identi�es a schedule. The !i 2 Q are
rational weights, and G is a syntactic placeholder for one of C, L, E, T ,

126 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

Table 7.1: Processing times and machine assignments

Job i 1 2 3 4 5 6 7 8 9 10 11

Time p(i) 40 20 15 20 20 20 10 15 15 20 15

Machine m(i) 4 2 1 1 2 4 3 2 1 3 4

D, and U . One of the most frequent cost functions is Cmax. It is called

makespan.

Since we want to minimize the costs we refer to the costs functions also

as objective functions. Such an objective function is called regular if it is

monotone in the Ci.

Some authors consider a variant of the machine model, in which the jobs

are divided into tasks. The tasks are ordered linearly, and the start time of a
job is the start time of the �rst task, the end time of the job is the end time

of the last task. Each problem formulated using this formalism can easily be
restated using our model. The idea for this is identifying tasks with jobs and
choosing an appropriate precedence relation for the jobs.

We conclude this section with the description of an example by Breitinger
and Lock, cf. [9], adapted to our formalism. Its automatic solution is dis-

cussed in the following sections. The problem consists of 11 jobs which have
to be scheduled on four machines. We identify the jobs with the numbers
from 1 to 11 and the machines with numbers 1 to 4. The processing times

p(i) and machine assignments m(i) are given in Table 7.1. The precedence
relation was in the original example given only by a job/task relation. We
formulate it explicitly by

1 � 2 � 3; 4 � 5 � 6 � 7; 8 � 9 � 10 � 11:

The objective function is Cmax(1; : : : ; 11) which is equal to Cmax(3; 7; 11) due

to the given precedence relations.

7.3 Formulating the Dedicated Machine

Model

In this section we describe how to transform an instance of the dedicated

machine model into a �rst-order formula. We consider here the scheduling
problem as a special case of an optimization problem and make use of the

technique introduced in Proposition 7.1. We give moreover hints how to

7.3. FORMULATING THE DEDICATED MACHINE MODEL 127

use our exible approach to handle generalizations of the dedicated machine

model.

Let I be the set of all jobs. For a job i 2 I we denote by p(i) its processing
time and by m(i) the machine assigned to the job. If for a job i one of the

functions r, d, or e is not de�ned, we will denote this by a value of ?.
The main idea for �rst-order formulation is to identify jobs within a sched-

ule with their start time. We accordingly introduce for each job i a variable ti
representing its start time. This idea was originally introduced by Breitinger

and Lock [9] for solving optimal scheduling problems by constraint logic pro-

gramming. The end time of job i is then obviously given by ti + p(i). Using

ti and ti + p(i) we can easily code all general restrictions of dedicated ma-

chine models together with our concrete scheduling problem in a �rst-order

formula: We de�ne time to start at some certain point, which we denote by

0, and to extend to in�nity:

T �
^
i2I
ti � 0;

For our example we obtain T � V11
i=1 ti � 0. The requirement that one

machine can process only one job at a given time is formalized as follows:

� �
^
i<j2I

m(i)=m(j)

�
(ti + p(i) � tj

� _ �ti � tj + p(j)
�
;

for our example

� � (t3 + 15 � t4 _ t3 � t4 + 20) ^ (t3 + 15 � t9 _ t3 � t9 + 15) ^
(t4 + 20 � t9 _ t4 � t9 + 15) ^ (t2 + 20 � t5 _ t2 � t5 + 20) ^
(t2 + 20 � t8 _ t2 � t8 + 15) ^ (t5 + 20 � t8 _ t5 � t8 + 15) ^
(t10 + 20 � t7 _ t10 � t7 + 10) ^ (t1 + 40 � t6 _ t1 � t6 + 20) ^
(t1 + 40 � t11 _ t1 � t11 + 15) ^ (t11 + 15 � t6 _ t11 � t6 + 20):

The precedence constraints for the jobs are written down in the subformula

	 �
^

i;j2I;i�j
ti + p(i) � tj:

This formulation of 	 produces more constraints than necessary, because �
is transitive. Instead of �, it is possible to use a suitable relation �0 the
transitive hull of which equals �. The corresponding variant of 	 is then

denoted by 	0. For our scheduling problem we state

	0 � t1 + 40 � t2 ^ t2 + 20 � t3 ^
t4 + 20 � t5 ^ t5 + 20 � t6 ^ t6 + 20 � t7 ^
t8 + 15 � t9 ^ t9 + 15 � t10 ^ t10 + 20 � t11:

128 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

The release date constraints are translated into the following formula:

P �
^

i2I;r(i)6=?
ti � r(i)

The following formula guarantees that all strict due dates are ful�lled:

� �
^

i2I;e(i)6=?
ti + p(i) � e(i):

For our example there are neither release dates nor strict due dates given,

and we can ignore the previous two formulas.

It remains to be clari�ed how to specify the constraint involving the

cost function, which is in general not a polynomial, as objective function:
There is no need for encoding the objective function in one single constraint.

Instead it suÆces to give a suitable formula encoding the restriction z �
f(x). This allows a large class of objective functions including in particular

all piecewise linear functions. For our example we can thus optimize the
makespan maxfCi j i 2 Ig by encoding the constraint z � maxfCi j i 2 Ig
as follows: ^

i2I
z � Ci:

Similarly, all other common objective functions can also be coded. We gener-

ally denote the formula description of the constraint for the objective function
by
. For our concrete example we obtain

 � z � t3 + 15 ^ z � t7 + 10 ^ z � t11 + 15:

So far we have collected for the formulation of our scheduling example

the formula T ^� ^	 ^ P ^� ^
. We denote by 9z the existential closure
of a formula up to the variable z, and obtain

9z(T ^ � ^	 ^ P ^� ^
)

as the �rst-order formulation of dedicated machine scheduling.

We use our the extended quanti�er elimination of redlog, cf. Chapter 8,

to solve our scheduling problem. From the extended quanti�er elimination

result we obtain both the minimal costs and sample values for the ti deter-
mining the optimal schedule. On a Sun Sparc Ultra 1 we obtain in 3:5 s

the minimal value 75 together with the sample solution shown in Table 7.2.

This concludes the discussion of the translation of our dedicated machine
schedule. This solution can be automatically translated into a Gantt chart

7.4. ADAPTING QUANTIFIER ELIMINATION TO SCHEDULING 129

Table 7.2: Optimal start times

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
0 40 60 0 20 40 65 5 25 40 60

-

4 9 3

5 2

10 7

1 6 11

8

t0 20 40 60 75

1

2

4

3

Figure 7.1: The Gantt chart of our solution

representing it graphically. It is shown in Figure 7.1.
To conclude this section let us once more turn our attention to the range

of possible objective functions. Recall from above that the objective function
is encoded in a formula. This approach is very exible and admits the encod-

ing of all usual considered objective functions. This is already an advantage
to many algorithms for solving scheduling problems, which allow only a very
restricted class of objective functions. In addition, we can encode more ob-

jective functions than covered by the usual solvers. In particular we can
handle non-regular objective functions.

Note �nally that we can even use quanti�ers for expressing our objective

function. Although this is due to the existence of a quanti�er elimination pro-
cedure never really necessary, it sometimes o�ers more elegant descriptions.

An example can be found in Section 7.5.2.

7.4 Adapting Quanti�er Elimination to

Scheduling

In Chapter 3 we have presented quanti�er elimination by virtual substitution.

In the following chapters 4 and 5 we have discussed optimization strategies
for this quanti�er elimination procedure. All the optimizations discussed so

far have been of a general nature, i.e., they did not tune the procedure for

130 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

particular types of input. One may certainly expect that it is well possible

to �nd a variety of possible optimizations based on the assumption that

the input formulas have a particular form. The idea of this chapter is to

exemplify optimization of this kind for the special case of input formulas

describing scheduling problems.

On one hand we can make use of certain properties of the formula oc-

curring during our computations, and on the other hand we can explicitly

specify knowledge to our quanti�er elimination procedure which is encoded

into the formula but cannot be recognized later by the quanti�er elimination

procedure.

For verifying the quality of our improvements we have implemented a

special version of the general quanti�er elimination procedure discussed in

the thesis. This version is restricted to the linear weakly parametric case

and allows only positive formulas that do not contain any strict relations.

We have included in this implementation the generalized Gauss elimination
discussed in Section 4.3 and the passive list approach discussed at the end of
Section 3.2.6.

For the purpose of this analysis we consider two measures on an elimina-
tion run: First, the time it takes, and second, the number of nodes contained
in its elimination tree, which has been de�ned in Section 3.2.6. This sec-

ond number shows how often a particular optimization has been successfully
applied. The comparison between the computation time and the number of

nodes shows the trade-o� between the extra time needed for applying this
optimization and the gain in reducing the number of nodes.

Using our implementation in the basic form described above, we obtain

the optimal schedule for our dedicated machine model example of the previ-
ous section in 3:5 s computing 894 nodes. In a variant without the passive

list we compute the same result in 3:2 s but computing 1235 nodes. This
illustrates how the combination of both our measures of complexity provide
interesting insights into the e�ect of optimizations: The passive list idea

causes an impressive decrease in the number of nodes to be computed, but
more research has to be spent into its eÆcient realization.

For tuning our general quanti�er elimination to become a specialized

scheduling problem solver we analyze the e�ects of three independent op-

timizations ideas, which can easily be combined:

1. Result inheritance.

2. Estimating the objective function.

3. Evaluating the partial order.

The following subsections are devoted to these ideas.

7.4. ADAPTING QUANTIFIER ELIMINATION TO SCHEDULING 131

7.4.1 Result Inheritance

We �rst discuss the result inheritance, a technique which is related to the

well-known \branch-and-bound" approach in optimization algorithms. The

main idea for result inheritance is to make use of the partial results obtained

earlier.

For this, we consider the elimination of all quanti�ed variables. Recall

moreover from Section 3.2.6 that we can process the elimination tree either

in a depth-�rst search manner or in a breadth-�rst search manner. We now

consider the case that we process the elimination tree in a depth-�rst search

manner. The leaves of the tree are the partial results '�i which are combined
disjunctively to the result of the elimination. We are thus in the situation

'� � '�1 _ � � � _ '�k:

By transforming the disjunction into a disjoint disjunction we obtain the
equivalent formula

'�1 _ (:'�1 ^ '�2) _ � � � _ (:'�1 ^ � � � ^ :'�k�1 ^ '�k):

Traversing the elimination tree during the quanti�er elimination in the depth-

�rst manner we sequentially obtain '�1, : : : , '
�
k. It is easy to see that we can

assume � � :'�1 ^ � � � ^ :'�i�1 already during the computation of '�i . This
is, of course, correct also for the general quanti�er elimination and is not

restricted to the situation of scheduling or optimization. There are now
two things to be clari�ed: First, we certainly have to explain how to use this

knowledge. Second, we have to explain how to technically communicate these
information, since we certainly do not want to explicitly modify the formula
as we have done for didactic reasons above. It is a straightforward idea in this

concern to pass down the information as an implicit theory f:'�1; : : : ;:'�i�1g.
Unfortunately, the '�i are in general complex subformulas, which we have
not allowed to enter a theory. It would not help to weaken this restriction,

because Chapter 2 does not o�er suitable heuristics for the application of
non-atomic theories. In other words, there would be no way to eÆciently

make use of the knowledge.

Luckily, it turns out that in the special case of scheduling problems the

majority of the information contained in � can be extracted in the form

of atomic formulas and can thus be added to the implicit theory �. We

explain how to extend an already constructed implicit theory � after having

computed the partial result '�i . Recall from Proposition 7.1 that the output

formula '� describes an interval [m;1[bounded from below, where m is the

minimum we are looking for. Thus each of the solution sets of the '�i are

132 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

also bounded from below. In almost all cases, we have heuristically observed

that '�i is actually an atomic formula describing an interval [m0;1[where

m � m0. If '�i is a disjunction of atomic formulas, and thus the negation :'�i
is equivalent to a conjunction '�i of atomic formulas, we can extend � by the

atomic formulas contained in '�i . In all other cases we proceed as follows:

We turn :'�i into an equivalent positive conjunctive normal form

�1 ^ � � � ^ �k ^ 1 ^ � � � ^ q;

where the �1, : : : , �k are atomic formulas and the 1, : : : , q are complex

formulas. We then extend � by �1, : : : , �k.

For almost all applications of quanti�er elimination by virtual substi-

tution to scheduling problems it turns out that this approach considerably

decreases both the computation time and the number of nodes. In our ex-
ample we compute 819 nodes in 2:6 s without using the passive list and 652
nodes in 2:9 s using the passive list.

The simpli�cations that take place here can be described in terms of
scheduling. The simpli�er can by means of the implicit theory discussed
here simplify an intermediate result to \false," which belongs to a branch

encoding a lower interval bound m0 such that m � m0, where m is the actual
minimum. In other words, we prune a branch that encodes a lower bound
not less than the minimal value m.

7.4.2 Estimating the Objective Function

In the previous section we have seen that we can use intermediate results

to prune superuous branches. A branch is superuous if it provides an
optimal value worse than an already known optimal value. In the approach
of the previous section this was recognized by our standard simpli�er. In

this section we extend this approach by providing information about the
scheduling problem explicitly. This external information is accessed and used

during the quanti�er elimination run.

We restrict our attention to the case of a minimizing makespan. Our
results can then be easily adapted to other objective functions. Our idea

is to maintain during the quanti�er elimination process an estimate for the

lower bound of the objective function. We prune the current branch if our

estimate tells us that its local optimal value will de�nitely be worse than

that inherited from some other branch already processed.

One ingredient for the estimate is the set of o�sets !(i) of all jobs i. These
o�sets are in an initial step computed from the speci�cation of the scheduling

problem. They remain invariant during the entire elimination process. The

7.4. ADAPTING QUANTIFIER ELIMINATION TO SCHEDULING 133

Table 7.3: Computed o�sets

i 1 2 3 4 5 6 7 8 9 10 11

!(i) 75 35 15 70 50 40 10 65 50 35 15

o�set of a job i to the end is the time which is at least necessary to complete

all jobs j with i � j, formally

!(i) =
X
i�j

p(j):

Example 7.2 (O�set). Consider the Breitinger{Lock example introduced

at the end of Section 7.2. We obtain for obeying 1 � 2 � 3 for job 1 the sum
!(1) = p(1) + p(2) + p(3) = 75. In Table 7.3 we summarize all other o�sets
that can be obtained for our example.

We may now assume that the elimination knows all the o�sets. We de-
scribe how the elimination step for a particular node of the elimination tree is

performed. Let be the formula contained in our node. We can assume that
the toplevel operator of is \^" since all disjunctions are split into separate
nodes. We extract from the conjunctive toplevel of all linear weak lower
bounds of the form qti � p % 0 with p, q 2 Z. In view of the additive smart
simpli�cation of Section 2.4.2 we may assume that there is at most one such

bound present for each job i. From the present bounds we derive the lower
interval boundary p

q
and denote it by �i where i is the job number. For jobs

j for which there is no bound present we set �j = 0; recall that the time axis

starts at time 0. The global o�sets !i together with the local boundaries �i
enable us to compute the following lower estimate for the makespan:

� = max
i2I

(�i + !i):

Summarizing, we have just started the elimination step for one node of
the elimination tree. As our �rst action we have computed a lower estimate

� for the objective function. Recall now from the previous section that we

inherit from neighboring branches an upper bound m0 on the minimum of

the objective function. It follows that for m0 � � our current branch cannot

improve the already found temporary minimum m0. In this case we can

immediately abort the treatment of our node and backtrack to the next
branch. Otherwise our heuristics has failed, and we continue as usual.

Our lower estimate of the objective function leads to dramatic improve-

ments both on the number of processed nodes and on the computation time.
In our example we now compute 199 nodes in 1:0 s.

134 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

7.4.3 Evaluating the Partial Order

The success of the approach of the previous section results from a lower

estimate of the objective function. For this estimate we have made use of the

o�sets computed for each job. Using the o�sets we have actually made use

of the partial order � given with the speci�cation of the scheduling problem.

This partial order � is successively extended during the computation of a

schedule. This gives rise to the idea not only to consider � but the current

extension �0 of � for the estimate.

Even though the transitivity of �0 is encoded implicitly into the formula

it is neither recognized by our simpli�er nor does it enter the estimate for

the objective function discussed in the previous section. Consider, e.g., the

formula

10 � t1 ^ t1 + 10 � t2 ^ ;
where is an arbitrary formula. Then it follows that 20 � t2 and thus
20 + p(2) is a lower bound for makespan. Without the information that
t1 � t2 we cannot recognize this by means of the technique described in the

previous section.
This gives rise to the idea to explicitly store and update the ordering

information on the jobs within the nodes of the elimination tree. Recall from
Section 7.3 that the typical atomic formula of our formulation has the form
c1t1 + c2t2 + c0 % 0, where c0, c1, and c2 2 Z and % 2 f�;�g. Let us for the
moment refer to such formulas as job connections. Suppose we substitute a
corresponding test point

�
true;�c2t2 + c0

c1

�

for the elimination of t1 into another job connection. In terms of scheduling
the substitution of this test point means �xing the ordering between t1 and
t2. This information is stored in the elimination tree node that origins from

the substitution. Note that the substitution result is again a job connection,

which means that we can iterate the process on our child nodes.

From above, we already know one possible application for our new knowl-

edge: It enables us to detect lower bounds. There is, however, another appli-

cation of the same importance: The ordering information successively stored

within the nodes can become inconsistent. In such a case we may abort the

corresponding branch, and backtrack to the next one.

Technically, it is convenient to use a graph representation for the ordering

information within the elimination tree nodes.

Using this approach our example computes 189 nodes in 4.1 s. This is
a slight improvement in the number of nodes even compared to the surpris-

7.4. ADAPTING QUANTIFIER ELIMINATION TO SCHEDULING 135

Table 7.4: Strategies and their combination

Strategy R R,E R,O R,E,O

Nodes 1235 819 228 219 219

Time (s) 3.1 2.6 0.7 4.9 1.9

Strategy P R,P R,P,E R,P,O R,P,E,O

Nodes 894 652 199 189 189

Time (s) 3.5 2.8 1.2 4.1 1.49

ingly good result of the optimization techniques discussed in the previous

section. The computation time, however, indicates a considerable overhead

introduced by the implementation of the strategy discussed here. We have

experimentally veri�ed that this is caused mainly by adding and extracting
ordering information.

7.4.4 Comparison of the Strategies

In Table 7.4 we summarize computation times and node numbers of our
scheduling problem solver using the di�erent strategies and combinations of

these strategies. The strategies are abbreviated as follows:

R Result inheritance

P Applying the passive list

E Estimating the objective function

O Evaluating the partial order

Note that application of \E" or \O" requires \R". The data for the com-

putation without result inheritance are given only for comparison purposes.

The use of \R" has no disadvantages in our framework because it does not

introduce any relevant overhead.

The table shows that the strategy of estimating objective function should

de�nitely be applied. It reduces both the number of nodes and the computa-

tion time. The use of the passive list reduces the number of computed node

but increases the computation times slightly. The evaluation of the partial

order is time consuming and provides only a slight improvement.

It is, however, a promising idea to look for heuristics that lie somehow

between the estimation of the objective function described in Section 7.4.2
and the evaluation of the partial ordering described in Section 7.4.3. An

136 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

natural approach would be using strategy \O" for a simpler homomorphic

image of the partial order.

7.5 Multiple Resource Scheduling

With the increasing relevance of solving scheduling problems there were many

generalizations of the machine model discussed. Project networks, cf. [33, 4],

provide an important alternative to the dedicated machine model discussed so

far. In this alternative framework we consider jobs exactly as in the dedicated

machine model. In addition, we introduce the notion of resources, which are

a generalization of the machines of the dedicated machine model. There is

an essential di�erence between resources and machines: We can have more

than one instance of each resource type. The notion of \multiple resource
scheduling" refers exactly to the possibility of such multiple instances of a

resource type.

7.5.1 Project Networks

For each job we specify how many instances of which resource types are

required. Moreover, within a project network one can specify not only the
precedence between two jobs but it is also allowed to specify in addition
both minimal and maximal times between these two jobs. This can be done

in various ways, which we are going to discuss below. For now note that
these intermediate time constraints are concerned with time periods passing
between jobs, in contrast to periods within which resource instances have to

remain unused.

Project networks are given as directed graphs with labeled vertices and

edges. The labeled vertices of such a graph represent jobs. The labeled edges
give the temporal dependencies. Figure 7.2 shows a sample project network.

Figure 7.3 explains the layout of the vertices, which contain the job identi�er

i, the processing time p(i), and the resource requirements r(i) explaining
which number of units of which resource type is required. The directed

edges are labeled with the minimal time between the jobs they connect and
with the maximal time between these jobs. Both these labels are optional.

Omitting them formally corresponds to a zero minimal time and an in�nite

maximal time.

There are several locations at the vertices where edges are allowed to start

or to end. The various choices correspond to the information which times,
start times or end times, of the two connected jobs are related to one another.

Since we have two time information for each of the two jobs there are four

7.5. MULTIPLE RESOURCE SCHEDULING 137

0 0

r(1)

r(2a) r(2b) r(5) r(7)

r(E)r(M2)r(4b)r(4a)r(M1)

r(3) r(6)

S M1 4a

63

4b M2

1

2b 5 7

3 3 2

5 2 0 0

2 1 7 4

r(S)

E

2a

Min 0

Max 0

Min 4

Max 0

Min 0

Max 15

Max 14

Job 1 2a 2b 3 4a 4b 5 6 7 S M1 M2 E

Resource Type 1 1 3 2 0 0 0 0 0 0 0 0 0 0
Resource Type 2 0 0 0 1 1 0 1 0 0 0 0 0 0
Resource Type 3 0 0 0 0 0 0 1 1 0 0 0 0 0

Figure 7.2: Bartusch's Example

i

p(i) r(i)

Figure 7.3: Job representation in project networks

138 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

i

p(i) r(i) p(j) r(j)

j
Normal sequence

i

p(i) r(i)

i

p(i) r(i)

i

p(i) r(i)

p(j) r(j)

j

p(j) r(j)

j

p(j) r(j)

j
End sequence

Start sequence

Jump sequence

Figure 7.4: Types of sequences

possible con�gurations, which are pictured in Figure 7.4: A normal sequence

relates the end time of one job with the start time of the next job, an end

sequence relates the end times of two jobs, a start sequence relates the start
times of two jobs, and �nally a jump sequence relates the start time of a job

with the end time of the next job. It is clear that all these sequences can be
formally described by appropriate additional labels for the edges. Since we
know the processing times of the jobs, we can translate all these sequences

to standard sequences. They thus simply provide a nice modeling tool but
not a conceptual extension.

Our task is now to compute a schedule, i.e., a set of suitable start times
for the jobs. In the literature, there are certain special cases sometimes

considered separately:

� Computation of the technological project time together with a corre-

sponding schedule. This is the time within which the project can be
�nished on the assumption that there is an arbitrary number of in-

stances of each resource type available.

� Computation of the project time by resource shortness together with

a corresponding schedule. This is the project time on the assumption
that there is exactly one instance of each resource type available. This

is only feasible if no job requires more than one instance of a certain
resource type.

7.5. MULTIPLE RESOURCE SCHEDULING 139

7.5.2 First-order Formulation of Project Networks

For the description of how a given project network can be translated into a

�rst-order formula, we start with the special cases discussed above, and then

proceed to the general case.

For the computation of the technology project time we identify, as with

the dedicated machine model, each job i with a variable ti representing its

starting time. Due to our special case we can ignore the information about

the resource requirements. It remains to clarify how to translate the edges

into constraints: Consider two jobs i and j and the normal sequence between

these two jobs labeled with min = Æ and max = �. Then we translate the

edge into the constraints

ti + p(i) + Æ � tj; tj � ti + p(i) + �:

The second constraint is dropped in the case � =1. The objective function
is usually the end time of the last job. We can, however, also use more

sophisticated objective functions as discussed with the dedicated machine
model.

In the case of resource shortness we have to add to our �rst-order formu-
lation above further constraints for managing the resources. Assume �rst,

that there is only one resource type required for each job. Then we can use
the same technique as for the dedicated machine model: We state for each

pair of jobs requiring the same resource type that they are processed during
disjoint time intervals. The situation that a job may require a set of resources
can be handled similarly: Instead of considering pairs of jobs that require the

same resource type we then consider pairs of jobs with non-disjoint resource
requirements.

Finally, we have to discuss how to handle the general case, which includes

the existence of multiple instances of certain resource types. To begin with,

we restrict our attention to the case that there is only one resource type. In
analogy to the discussion in [4] we will use the concept of minimal forbidden

sets. A forbidden set is a set of jobs that cannot be processed in parallel
due to their resource requirements. A forbidden set is minimal if there is no

proper subset that is forbidden. Bartusch [3] has given algorithms for the

eÆcient computation of the system M of all minimal forbidden sets for a
given project network. From [4] we know that we only have to guarantee

that no two jobs appearing together in some M 2 M run in parallel. We
thus only have to sequence all minimal sets. After that we can proceed as

for the technological project time case. Sequencing of the minimal sets can

140 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

be described by a �rst-order formula as follows:

^
M2M

:9t
^
i2M

ti < t < ti + p(i):

Note that here we have for the �rst time used our option to code constraints

by quanti�ed formulas. There is a surprisingly concise quanti�er-free equiv-

alent for our constraint, which we are going to use for our formulation. We

certainly cannot expect our quanti�er elimination to �nd such elegant so-

lutions. The following lemma provides the key idea for getting rid of the

quanti�er.

Lemma 7.3. Let S be a �nite set of non-empty open bounded real intervals.

Then we have that I \ J 6= ; for all I, J 2 S with I 6= J if and only ifT
I2S I 6= ;.

Proof. Assume that I \ J 6= ; for all I, J 2 S with I 6= J . We identify the

largest lower boundary � = maxI2S inf I and the smallest lower boundary
� = minI2S sup I among the intervals in S. There are intervals I� =]�; ��[2
S and I� =]��; �[2 S with I�\ I� 6= ; and thus we have � < �. Assume for

a contradiction that �+�

2
=2 TI2S I. Then there is some interval]�0; � 0[2 S

such that
� + �

2
� �0 or � 0 � � + �

2
:

The former case implies

�0 + �

2
� � + �

2
� �0;

which implies �0 + � � 2�0 and thus we have � < � � �0 a contradiction to
our choice of � as the largest lower bound. For the case � 0 � �+�

2
we can

analogously derive a contradiction.

The quanti�ed subformula 9tVi2M ti < t < ti + p(i) actually states that

\
i2M

]ti; ti + p(i)[6= ;:

By our Lemma, we only have to say that all pairs of intervals]ti; ti + p(i)[

and]tj; tj + p(j)[for i, j 2M are non-disjoint. Note that two intervals]a; b[

and]a0; b0[are non-disjoint if and only if a < b0 ^ a0 < b. We thus obtain

^
M2M

:
^
i;j2M

ti < tj + p(j) ^ tj < ti + p(i):

7.5. MULTIPLE RESOURCE SCHEDULING 141

In the case of several distinct resource types we apply our approach sepa-

rately for each resource type and conjunctively add all obtained conjunctions

to our formulation.

We are now going to model and to solve Bartusch's project network ex-

ample in Figure 7.2, which is taken from [4]. There are 3 instances of resource

type 1, 2 instances of type 2, and 1 instance of type 1. The cost function is

speci�ed as follows:

10 + 2CE +max(0; CE � 15) +
5

CE � 18
�max(0; CE � 18) +

3max(0; CM2 � 12) + 2max(0; C6 � 12) + 3min(0; CM2 � 14);

where Ci denotes the end time of a job i.

In a �rst step we compute the forbidden sets for all three resource types:
For resource type 1 one easily sees that f2a; 1g and f2a; 2bg are the minimal
forbidden sets. We can restrict ourselves to the minimal set f2a; 1g due
to the fact that a parallel processing of the jobs 2a and 1 are excluded by
the speci�ed temporal dependencies. This minimal set is translated into the

subformula

t1 + 3 � t2a _ t2a + 2 � t1:

It is easy to see that f3; 4a; 5g and f5; 6g are the only minimal forbidden sets
for resource type 2 and 3, respectively.

Altogether we obtain as the �rst-order formulation of Bartusch's example
the formula

9t19t2a9t2b9t39t4a9t4b9t59t69t79te9tm19tm2(� ^ % ^ !);

where the precedence constraints �, the resource constraints %, and the de-

scription ! of the objective function are given as follows:

� � 0 � t1 ^ t1 + 3 � t3 ^ tm2 � te ^ t6 + 2 � 15 ^ 4 � tm1 ^ tm2 � 14 ^
t1 + 3 � t4a ^ 0 � t2a ^ t2a + 2 = t2b ^ t2b + 1 � t4a ^ t2b + 1 � t5 ^
tm1 � t3 ^ t3 + 3 � t6 ^ t3 + 3 � tm2 ^ tm1 � t4a ^ t4a + 5 = t4b ^
t4b + 2 � t6 ^ t4b + 2 � tm2 ^ t4b + 2 � t7 ^ tm1 � t5 ^ t5 + 7 � tm2 ^
t5 + 7 � t7 ^ t6 + 2 � te ^ t7 + 4 � te

% � (t1 + 3 � t2a _ t2a + 2 � t1) ^ (t5 + 7 � t6 _ t6 + 2 � t5) ^
:(t4a < t3 + 3 ^ t3 < t4a + 5 ^ t5 < t3 + 3 ^ t3 < t5 + 7 ^
t5 < t4a + 5 ^ t4a < t5 + 7)

142 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

! � 9me19me29mm29nm29m6

�
�
(me1 = te � 15 ^ te � 15 � 0) _ (me1 = 0 ^ te � 15 � 0)

� ^�
(me2 = 1 ^ te � 18 � 1) _ (me2 = 0 ^ te � 18 � 0)

� ^�
(mm2 = tm2 � 12 ^ tm2 � 12 � 0) _ (mm2 = 0 ^ tm2 � 12 � 0)

� ^�
(nm2 = tm2 � 14 ^ tm2 � 14 � 0) _ (nm2 = 0 ^ tm2 � 14 � 0)

� ^�
(m6 = t6 � 12 + 2 ^ t6 � 12 + 2 � 0) _
(m6 = 0 ^ t6 � 12 + 2 � 0)

� ^
k = 10 + 2te +me1 + 5me2 + 3mm2 + 2m6 + 3nm2

�
:

This is input into our scheduling problem solver which computes an optimal

schedule within 43 s. Our schedule di�ers only slightly from that given by

Bartusch [4].

7.6 Railway Delay Management

In this section we give an example of how to solve a very complex scheduling

problem by an approach analogous to that for the dedicated machine model
and the project networks:

1. Generation of a �rst-order formula describing the problem,

2. extended quanti�er elimination,

3. interpretation of the extended quanti�er elimination result in terms of
scheduling.

Our new example does not �t into any class of scheduling problems described

by common machine models. The previous sections have shown that there
is a certain correspondence between the syntactic form of our �rst-order
description on one hand and scheduling models on the other hand. In view

of these facts already a successful �rst-order formulation has the status of a

theoretical result by giving a precise formal description of the problem.

We consider a railway system. Our general assumptions about such a

system are the following:

� Trains connect towns via �xed tracks.

� Trains run according to a �xed schedule.

� The set of all station pairs that are connected directly, i.e., o�er con-

nections without changing trains, is relatively small compared to the
set of all station pairs.

7.6. RAILWAY DELAY MANAGEMENT 143

Passengers travel from one station to another station using a connection

given by a sequence of trains with the obvious restrictions. The problem

we are going to solve is the following: Trains may arrive at a station later

than the scheduled arrival time. We call such trains delayed. Besides the

problem that some passengers in these trains arrive a little late at their

�nal destination there is a much more annoying problem: Other passengers

miss their connections. They have to choose alternative connections that

in general arrive at the destination much later than the original ones. This

usually causes a serious delay for this group of passengers.

The railway company can support our second group of passengers by

delaying their connection trains. This is perfect for those who reach their

�nal destination with the connection train. It is also good for those who

have to change trains once more but do not run into trouble because this
intentional delay is usually not too long. For the remaining group of our

passengers it simply shifts the problem to the next station. On the other
hand there are passengers in the intentionally delayed train that now run into
trouble. Their trouble is not caused by some unexpected accidental delay but

a decision of the railway company. This usually makes them angry. From
an objective point of view any such decision is critical because it causes two

delayed trains running in the system.

However we proceed, some passengers will have to choose alternative con-
nections. They can be supported by the railway company by providing them

as early as possible with detailed information on their complete new connec-
tion scheme.

It is clear that not all problems of delayed trains can be solved without
increasing the travel time of some passengers. We are looking for a solution
that minimizes the sum of the relative delay of all passengers. Note, however,

that simply using this sum as an objective function is not suÆcient. This
would cause, e.g., some trains without any passenger aboard to be delayed

without any reason. Another objective function to be minimized is thus given

by the sum of all additional waiting times introduced for trains. We see that

we are faced with a multi-objective scheduling problem. Clearly, the sum of

relative delays of passengers is our main objective and the sum of additional

waiting times of trains plays a subsidiary role.

The plan is as follows: In Section 7.6.1 we de�ne the interface of our
scheduler. That is, we summarize the available input information, and we

specify the required output information. In Section 7.6.2 we discuss how to

generate the �rst-order formula input from the input information. In Sec-
tion 7.6.3 we �nally discuss how to translate the elimination result obtained

from the input formula into the required output information.

144 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

winsbruk

grazspil

leob

klagspit

lien

schw

worginsbbreg

selzbisc

winwpoltlinz

salz

Figure 7.5: The Austrian intercity net

7.6.1 The Interface

We �rst summarize all data available for the generation of our input for-
mula. We give some illustrating examples for such data taken from our

experimentation environment, which models the Austrian intercity (ic) net.
This intercity net consists of quali�ed trains connecting major cities. Fig-
ure 7.5 shows all stations together with the existing direct connections. This

network graph provides an interesting background information but is in this
isolated form not part of our input. Instead it is implicitly contained in the
schedule of all trains.

By train we denote a train starting its journey at some station and reach-
ing after various intermediate stops �nally some destination station. When it

then returns to its origin we consider it a di�erent train. The schedule of all
trains is a list containing for one day the relevant information for each train.

This relevant information is the list of stations served by this train together
with the arrival time and the departure time for each station. Figure 7.6

displays a clipping of the Austrian ic schedule. The entire schedule contains

161 trains.

For each train t and each station s there is a minimal waiting time �(t; s)

speci�ed. That is, whenever t reaches s it must stop there for at least time
�(t; s). Our schedule, of course, ful�lls this requirement. The idea for this

constraint is to prevent delayed trains from leaving stations to soon.

Our schedule says what should happen. Of course we need in addition the
information what has actually happened: For each train we have available

the actual arrival and departure times in all stations that have been already
served. We think of this information as functions mapping trains and stations

to times. In practice these functions can be realized in various di�erent

7.6. RAILWAY DELAY MANAGEMENT 145

{

{ic190,{

{wins,start,1255},

{bruc,1457,1501},

{leob,1512,1514},

{klag,1720,1722},

{spit,1824,1827},

{schw,1944,1946},

{bisc,2000,2003},

{salz,2046,end}

}},

{ic505,{

{linz,anfang,0957},

{selz,1135,ende}

}},

{ic640,{

{winw,anfang,0728},

{linz,0926,0929},

{salz,1050,1105},

{bisc,1150,ende}

}},

...

}

Figure 7.6: Part of the Austrian ic schedule

146 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

{1,

{winw,linz,0926,0728},

{linz,selz,0957,1135}

}

Figure 7.7: A connection from Wien (West) to Selzthal

ways ranging from requests to databases that are updated automatically to

telephone calls from single stations.

Besides the actual arrival and departure times we have a list of expected

delays. A delay consists of a train, a pair of adjacent stations, and the

number of minutes of an expected additional delay between these stations.

One reason for such delays can be that the train has to pass this track segment
slowly for technical reasons. Another possible reason is that the train has to

run around the segment because some delayed train with a higher priority
passes it. Of course, only delays after stations for which we know the actual
arrival time are of interest.

Another obvious piece of information, which should, however, be explic-
itly mentioned is the current time.

Finally we turn to the passengers. Since there is no obligatory reservation
system in the Austrian ic net, we cannot expect to know in detail how many

passengers with which destination are using which train. Note that when
considering cargo transportation, with pieces of cargo corresponding to single
passengers, we usually have this full information at hand. For our situation

we thus approximate this information by de�ning the notion of a traveling
stream. A traveling stream is a considerable number of people starting at
time t0 in station s0 and arriving at time t1 in station s1. For this they usually

have to change trains. The entire stream uses the same trains. Formally a
stream uses a connection.

A connection is a sequence of steps subject to certain constraints. A

step consists of an origin station with the scheduled departure time and a
destination station with the scheduled arrival time. Figure 7.7 shows a sample

connection based on our schedule clipping in Figure 7.6. There we also see
that each connection is uniquely labeled by some integer. This label is used

for algorithmic purposes. The constraints mentioned for a connection require

that destination station and origin station of neighboring steps match. There
is, however, no constraint on the corresponding arrival and departure times.

For scheduled connections one would obviously require that the train of step
n arrives in station s before the departure time of the train in step n + 1

there. We will, however, not only consider scheduled connections but also

7.6. RAILWAY DELAY MANAGEMENT 147

connections involving delayed trains. Such trains can possibly be used as

connection trains where this is impossible by schedule.

Assume now that there is a traveling stream with a delayed train in-

volved such that a connection train cannot be reached. We then have to

consider alternative connections for this stream. It is not hard to see that

there are essentially only �nitely many alternative connections and that all

these alternative connections can be computed from the information we have

introduced so far. This produces, of course, an enormous overhead. We in-

stead introduce one �nal input information. We assume to have available a

set of reasonable alternative connections in such a situation. Note that as

soon as our stream has left one of its initial or intermediate stations, we are

interested only in alternatives for the remaining parts of the journey. An

alternative connection for a given stream is a connection starting at any of

the stations of the stream and ending at its destination station.

Let us summarize all the input information we have speci�ed above:

1. The schedule of all trains,

2. the minimal waiting time for each train in each relevant station,

3. actual arrival time, actual departure time for all trains and stations,

4. the expected delays for all trains,

5. the current time,

6. all traveling streams,

7. a set of reasonable alternative connections for each stream.

Our algorithm will be started on this input whenever there is the chance

that the situation in our railway system has changed in such a way that we
have to delay some trains or that we have to communicate a new schedule
to some traveling stream. Note that these decisions are independent: it is

possible that some stream has to switch to an alternative connection train t1
in some station although the scheduled train t0 can be reached and starts in

time. One reason might be that there is a considerable expected delay for t0.

Let us now turn to the output of our delay management system. The out-

put splits into two parts. First, we obtain for each of the input streams one

possibly alternative connection. Using the list of output connections guar-

antees that the sum of the relative delays of the streams is minimized, and,

moreover, among all these minimal delays for the streams we have minimized

the sum of additional waiting times of all trains.

Second, we obtain additional waiting times for trains and stations wher-
ever this is necessary to make the alternative connections work.

148 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

7.6.2 First-order Formulation of Delay Management

As already discussed in the introduction to this section applying our algo-

rithm means generating a �rst-order formula on the basis of the input data

speci�ed above. To this �rst-order formula we then apply quanti�er elimina-

tion and interpret the results as the solution to our problem. For constructing

the formula we introduce the following variables:

1. For each stream S we introduce a variable zS. It is intended to be the

estimated remaining travel time of the stream. This period of time

starts with the current time speci�ed in the input and ends with the

arrival time of the stream at their �nal destination station.

2. For each train t and each station s served by t we introduce the variable

xt;s. It is intended to be the total waiting time of t in s. Total waiting

times are obtained as sums of scheduled waiting times and additional
waiting times. Recall from the previous section that the scheduled
waiting time can be obtained from the schedule of all trains, and that

the additional waiting time is one of the values we want to compute.

3. For each stream S we introduce a variable cS. In the elimination result
cS will describe the alternative connection for S by being assigned its

unique label.

4. The variable z is as usual the tag variable for introducing the main

objective function into the �rst-order formulation. Recall that this ob-
jective function is the sum of all relative delays of the streams possibly
weighted by the size or the importance of the single streams.

5. The variable z� is the tag variable for minimizing our subsidiary ob-
jective, i.e., the sum of all additional waiting times of all trains. To
be precise we actually use the sum

P
t;s
max(0; xt;s) of all total waiting

times, which is equivalent.

Before constructing the �rst-order input formula, we have to introduce

various concepts and notations: T is the current time contained in the input.
We denote by S the set of all streams, which is contained in the input. For
each stream S 2 S we denote by acon(S) the set of alternative connections

in the input.

By T we denote the set of all trains, which is itself not part of the input

but can immediately be derived from the schedule of all trains. The same
holds for the set st(t) of all stations served by train t 2 T , and for the

scheduled time of departure std(t; s) of train t 2 T in station s 2 st(t). Recall

7.6. RAILWAY DELAY MANAGEMENT 149

that we denote by �(t; s) the minimal waiting time of train t in station s,

which is explicitly given in the input.

We now turn to some more sophisticated notions. These notions can

also be derived from the input data but much less straightforwardly than

those introduced so far. The �rst new notion is the estimated time of arrival

eta(t; s) of train t in station s. Syntactically eta(t; s) is a term. If t has

already reached s, then eta(t; s) equals the actual time of arrival for t in s.

This is part of the input. Otherwise there are three pieces of information

participating in its generation:

1. The actual departure time of train t in the last station s0 it is known

to have left. This is part of the input.

2. The expected delays for train t behind station s0. This is also part of

the input.

3. Additional waiting times in stations s0 between s0 and s. These waiting
times can be derived from the variables xt;s0 , which are the correspond-
ing total waiting times.

There is a very similar notion of the estimated time of departure etd(t; s) of

train t in station s. We use this for de�ning etd(c) = etd(t0; s0), where t0 is
the �rst train of the connection c starting in s0. In the same way we extend

std(c) = std(t0; s0).
The next notion is the compatibility relation �(S; c) for S 2 S and c 2

acon(S). Recall that one essential part of a stream is a connection. We can

thus view streams as connections. In this sense s is compatible with c if c
is feasible and the travelers have the opportunity to change from s to c. A

connection is feasible if all future changes of trains will be possible. Note that
again the xt;s will contribute to the relation, which is consequently given as
a formula.

Our next notion is the term �(c) for a connection c describing the overall
travel time for this connection. This again depends on the xt;s. Finally, id(c)

extracts the unique integer label from connection c.

The notions introduced so far allow us to specify the constraints, in con-
trast to the encodings of the objective functions, of our �rst-order formulas:

 �
�^
S2S

_
c2acon(S)

�(S; c) ^ cS = id(c) ^ �(T � etd(S) ^ zS = �(c)) _

(etd(S) � T ^ zS = �(c) + etd(c)� T)�� ^
�^
t2T

^
s2st(t)

xt;s � max
�
std(t; s)� eta(t; s); �(t; s)

��
:

150 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

Note that max(a; b) � c can be written in our language of ordered rings as

a � c ^ b � c. Combinations of maximums terms with the other relations

can be expanded similarly.

For the description of the objective functions we have to introduce one

more concept: The relative delay Æ(S) of a stream S 2 S given by

Æ(S) = max

�
1;
ett(S)

stt(S)

�
:

The estimated travel time ett(S) of the stream S is a term containing zS. The

scheduled travel time stt(S) is, in contrast, a constant number and may thus

appear as a denominator. We �nally explain why the maximum is introduced

here: There will in general be streams arriving earlier than scheduled. Either

their last train arrives a little early, or some delay allows the passengers to
reach a faster connection than possible by schedule. We �lter out these cases
for our objective function, because we want to avoid delaying streams for

such accelerations of other streams.
The part of our formula describing the objective functions reads as follows:

! �
X
S2S

Æ(S) � z ^
X
t2T

X
s2st(t)

max(0; xt;s) � z�:

In the formulation of the input for extended quanti�er elimination both tag
variables z and z� remain unquanti�ed:

% � � � � 9zS � � � 9xt;s � � � 9cS � � � (^ !):
We �nally wish to mention that % is a linear formula.

7.6.3 Computing the Solution

Recall from our previous scheduling models and from optimization the role

of the tag variable z. We apply extended quanti�er elimination to the �rst-

order description of our problem obtaining a set of conditions on z each
with the corresponding sample solution. In the linear case these conditions

will always have the nice form z � min, where min is the minimum of the
objective function.

Our multi-objective formulation % above unfortunately contains two tag

variables z and z�, where z is the main one. They both have remained
unquanti�ed. Consequently, the result of extended quanti�er elimination

will not provide the optimal solution for z in such an explicit form.
We proceed as follows: From the extended quanti�er elimination result

we compute a quanti�er-free equivalent %0 for % by disjunctively combining

7.7. IMPLEMENTATION 151

all conditions in the parameters z and z�. Then we apply regular quanti�er

elimination to 9z�%0. The quanti�er-free equivalent for this will explicitly

provide the rational optimal value for z. This optimal value is substituted

for z into %0 explicitly yielding the rational optimal value for z�. Finally,

both rational optimal values are substituted into the extended quanti�er

elimination result for %.

The sample solutions for the xt;s now provide the total waiting times for all

trains t 2 T and stations s 2 st(t). From this we can compute the additional

waiting times. From the sample solutions cS we obtain the unique identi�er

for a connection c that can serve as an optimal alternative connection for the

passengers traveling with stream S.

7.7 Implementation

In the previous section we have discussed the construction scheme of the
�rst-order formulation of our delay management system. Though the formula

structure and the ideas of the single constraints can be easily described in
terms of some function, the actual generation of the formula is much more
diÆcult. For the purpose of the generation we have implemented a module

for the generation of the �rst-order formula. This implementation contains
about 1000 lines of code. It includes code for functions like std extracting

information from the input, code for functions like eta computing terms by
combining several input data, and procedures for automatically resolving the
maximum terms that appear during the formula generation.

In addition we have implemented a front end for our system. This front

end provides functions for adding and removing expected delays, a function
for setting the \current" time, and a function to compute the solution. This
function generates the formula, performs all necessary quanti�er elimination

steps, extracts the used data from the sample points obtained by the ex-
tended quanti�er elimination, and converts the raw output data into precise

information for the railway system. Implementing this front end we have

shown that the underlying mathematical ideas can be completely hidden
from the user.

7.8 Conclusions

In this chapter, we have examined the application of our extended quanti�er
elimination strategies to the area of scheduling in a very general sense. We

have naturally started in Section 7.2 with the description of the dedicated

152 CHAPTER 7. SCHEDULING BY QUANTIFIER ELIMINATION

machine model, which plays a very prominent role in this research area. In

Section 7.3, it has turned out that we can straightforwardly describe schedul-

ing problems of this model by �rst-order formulas, and then solve them by

extended quanti�er elimination. The timings for a computation example

suggest, however, that we cannot compete with dedicated special-purpose

algorithms.

This has motivated the new approach in Section 7.4 to tune the quanti�er

elimination on the basis of the special type of input formulas obtained for

scheduling problems. This constitutes an entirely new class of tuning ideas,

and is thus the link to the remainder of this thesis. We have discussed and

analyzed the e�ects of various kinds of such optimizations. The results are

very convincing, but still we cannot compete with established methods at

present.

This gives rise to the idea to make use of the extreme exibility of our

approach considering much more general scheduling problems. In particu-
lar, we attack new types of problems, which have not been discussed in the
literature so far.

As a �rst step on this way, we have considered in Section 7.5 another
scheduling model common in the literature: project networks, which are
more general then the dedicated machine model. The formulation of project

networks has given a good impression of various techniques for �rst-order
formulation. Again, we can solve non-trivial problems within reasonable

time and space, but again there are dedicated algorithms superior to our
approach available.

In Section 7.6, we �nally have turned to a very general problem that,

to our knowledge, does not �t into any known scheduling model: We have
performed delay management for railway connections. Here, the �rst-order

formulation is so complex that we have to provide dedicated algorithms for its
computation. Similarly the automatic interpretation of the results requires
some minor algorithmic ideas. We have furthermore used this example to

demonstrate how to realize multi-objective optimization. At the current state
of the research it is not yet possible to solve non-academic problems within
a reasonable time, and this is certainly a research project on its own. Note,

however, that already the formal speci�cation of the problem by means of

our �rst-order input formula is a theoretical result in its own right. The most

important result of this section for our purposes, however, is the successful
formulation of this very general problem.

Chapter 8

The REDLOG Programming

Environment

In Section 2.4.4 we have mentioned that much e�ort has been spent by the

author and others to provide highly optimized and reliable well-designed
and well-documented implementations of quanti�er elimination by virtual

substitution and related algorithms. The latest product resulting from this
e�ort is the Version 2.0 of the computer logic system redlog, which is part
of the computer algebra system reduce. In this chapter we conclude our

thesis with an outline of redlog with which we have performed all practical
computations mentioned throughout our thesis. Our description follows a

publication on redlog [28] by the author of this thesis at al.

8.1 Introduction

redlog stands for reduce logic system. It provides an extension of the
computer algebra system (cas) reduce to a computer logic system (cls)

implementing symbolic algorithms on �rst-order formulas wrt. temporarily
�xed �rst-order languages and theories. As underlying theories currently
available there are ordered �elds, discretely valued �elds, and algebraic closed

�elds. The system is designed to be easily extensible by further theories.

The redlog design allows to implement algorithms generically for di�erent
theories. The present algorithms have already been implemented generically

wherever this appeared reasonable. In fact, they share the largest part of
their code.

The focus of the system is on simpli�cation as described in Chapter 2,
e�ective quanti�er elimination by virtual substitution, and corresponding

applications. The implemented algorithms include the following:

153

154 CHAPTER 8. THE REDLOG PROGRAMMING ENVIRONMENT

� The majority of the simpli�cation algorithms presented in Chapter 2.

� Quanti�er elimination by virtual substitution. Implementations of the

ideas of Chapter 4 through 6 currently have experimental status. They

are scheduled to be integrated into redlog 3.0.

� Generic quanti�er elimination: An eÆcient variant of the quanti�er

elimination procedure developed for geometric theorem proving: Non-

degeneracy conditions are detected automatically [31]. This approach

has also turned out valuable for physical network analysis.

� Extended quanti�er elimination as described in 3.2.2.

� Linear optimization using quanti�er elimination techniques [70].

� Numerous valuable tools for constructing, decomposing, and analyzing

formulas.

redlog is designed as a general-purpose computer logic system. As such,
its scope goes beyond that of sac/aldes [20], which has been very suc-

cessfully used for the implementation of quanti�er elimination by (partial)
cylindrical algebraic decomposition [21, 36]. In contrast to constraint logic

programming systems [22], the algebraic component is not only used for sup-

porting the logical engine but the largest part of the logical algorithms is
de�ned and implemented in terms of algebraic algorithms.

redlog has been applied successfully for solving non-academic problems,

mainly for the simulation and error-diagnosis of physical networks [73].
Applications inside the scienti�c community include the following:

� Control theory [1].

� Stability analysis for pde's [37].

� Geometric reasoning [31].

� Disjunctive parametric scheduling.

� Non-convex parametric linear and quadratic optimization [70], trans-

portation problems [51].

� Real implicitization of algebraic surfaces.

� Computation of comprehensive Gr�obner bases.

� Implementation of guarded expressions for coping with degenerate cases

in the evaluation of algebraic expressions [24, 27].

8.2. APPLICATION EXAMPLES 155

8.2 Application Examples

8.2.1 Simpli�cation

We start with an example using the redlog implementation of the Gr�obner
basis simpli�cation of Section 2.4.3. [29].

REDUCE 3.6, 15-Jul-95, patched to 22 Dec 96 ...

%

1: load rl;

2: phi := x*y+1<>0 or x=z or y*z+1<>0;

phi := x*y + 1 <> 0 or x - z = 0 or y*z + 1 <> 0

3: rlgsn phi;

true

This computation requires 17ms of cpu time on a sun sparc 4. Let us once
more discuss by example how this simpli�cation works: The formula phi can
be rewritten as

xy + 1 = 0 ^ yz + 1 = 0 �! x� z = 0:

It is not hard to see that it can be equivalently transformed by reducing x�z
modulo the Gr�obner basis fyz + 1; x� zg of fxy + 1; yz + 1g.

8.2.2 Geometry Proving

For the situation in Figure 8.1, we wish to prove that \ACB = \AMB=2.
Our algebraic translation of this problem is described in [31].

REDUCE 3.6, 15-Jul-95, patched to 22 Dec 96 ...

1: load rl;

2: geo := all({b,c,tan1,tan2,tan0},c**2=a**2+b**2 and

2: c**2=x0**2+(y0-b)**2 and tan1*y0=(a+x0) and

2: tan2*y0=(a-x0) and tan0*(1-tan1*tan2)=tan1+tan2

2: impl tan0*b=a)$

3: rlgqe geo;

{{y0 <> 0},true}

156 CHAPTER 8. THE REDLOG PROGRAMMING ENVIRONMENT

This generic quanti�er elimination requires 119ms of cpu time on a sun

sparc 4. Besides the elimination result \true" we obtain a non-degeneracy

condition y0 6= 0 stating that AMB is a proper triangle.

8.2.3 Periodicity

Consider the in�nite sequence of real numbers de�ned by xi+2 = jxi+1j � xi
where x1 and x2 are arbitrary numbers. Our aim is to show that this sequence

is always periodic and that the period is 9. Colmerauer has proved this

automatically using Prolog III [22].

Our approach requires much less human intelligence than writing a logic

program. The assertion can be encoded straightforwardly into a �rst-order

formula:

8x
�� 11̂

i=3

xi = jxi�1j � xi�2
� �! (x1 = x10 ^ x2 = x11)

�
:

In practice, we have to encode the absolute value into a case distinction. The
equation xi = jxi�1j � xi�2 amounts to

(xi�1 � 0 ^ xi = xi�1 � xi�2) _ (xi�1 < 0 ^ xi = �xi�1 � xi�2):

REDUCE 3.6, 15-Jul-95, patched to 22 Dec 96 ...

1: load rl;

2: p9 := rlall(

2: (for i:=3:11 mkand

2: (mkid(x,i-1)>=0 and

2: mkid(x,i)=mkid(x,i-1)-mkid(x,i-2) or

2: mkid(x,i-1)<0 and

2: mkid(x,i)=-mkid(x,i-1)-mkid(x,i-2)))

2: impl x1=x10 and x2=x11)$

3: rlqe p9;

true

redlog eliminates the 11 universal quanti�ers in 9.2 s of cpu time on a sun
sparc 4.

8.2. APPLICATION EXAMPLES 157

2γ1 γ

C

A B

M

ζ ζ

Figure 8.1: Geometry proving: The angle at circumference is half the angle
at center.

r2

��
��

t

t

t

t

t

t

t�����

? ?

HH
HH

H

A

v1

+vs

�vs

r1

+

�

v3

Figure 8.2: An inverting operation ampli�er circuit

158 CHAPTER 8. THE REDLOG PROGRAMMING ENVIRONMENT

8.2.4 Network Analysis

This example is taken from [65]. For the operation ampli�er circuit shown in

Figure 8.2, we want to determine the output voltage VOUT = v1 as a function

of the input voltage VIN = v 3. The algebraic formulation ! of the circuit is

the conjunction over the following equations:

v 1 = v1

v 2 = �v pm op1

v 3 = v og op1

v 1 + i v0 � r1 = v 2

v 2 � r1 + v 2 � r2� v 3 � r1� v 1 � r2 = i pm op1 � r1 � r2
v 3 + i og op1 � r2 = v 2

v og op1� v pm op1 � x op12 = 0

vs2 � x op12 + a � v og op12 = a � vs2
i pm op1 = 0:

The variables to be (existentially) eliminated are

V := fi og op1; v 2; i pm op1; v 1; i v0; v pm op1; v og op1; x op1g
We apply generic quanti�er elimination. The result obtained for 9V (!) after
323ms is:

a � r1 � v 33 � a � r1 � v 3 � vs2 + a � r2 � v1 � v 32 � a � r2 � v1 � vs2 � r1 �
v 3 � vs2 � r2 � v 3 � vs2 = 0 ^ a � v 32 � a � vs2 � 0 ^ vs 6= 0

valid under the following conditions:

a 6= 0; r1 6= 0; r2 6= 0; v3 + vs 6= 0; v3 � vs 6= 0; v3 6= 0:

None of the conditions is a problem: a is the ampli�cation factor, r1 and r2

are resistors, the absolute value of the output voltage v 3 can certainly never
get equal to the supply power vs.

8.2.5 Parallelization

The quanti�er elimination based linear optimization code of redlog has

been parallelized on a cray ymp4/t3d using the pvm version of psl based
reduce. There is a switch rlparallel for actually using the parallel code

on such a machine.

Table 8.1 summarizes some timings obtained with small standard opti-
mization benchmarks. We obtain a speedup factor of about 3 with 8 proces-

sors.

8.3. FROM COMPUTER ALGEBRA TO COMPUTER LOGIC 159

Table 8.1: Sequential vs. parallel (8 processors) timings for linear optimiza-

tion benchmarks from the zib netlib library.

problem time seq. time par. factor

a�ro 333 s 95 s 3.5

sc50a >900 s 272 s >3.3

sc50b 70 s 25 s 2.8

8.3 From Computer Algebra to Computer

Logic

When we originally started the implementation, our aim was to make the

quanti�er elimination procedures available to others for solving practical
problems in physics and engineering [37]. The decision for taking an existing
computer algebra system like reduce as basis has the following advantages

compared to a completely new implementation:

� cls user interfaces require no concepts that go beyond that of cas
interfaces. Hence there is no reason for spending time designing and

implementing yet another interface. In addition, we expect the large
community of reduce users to be quickly familiar with redlog.

� The underlying system provides a reliable well-tested implementation
of polynomials, which can serve as �rst-order terms in many languages.

In addition, there is a large library of up-to-date algebraic algorithms
available.

� There is no need for portability considerations. The system will simply
run with all architectures and operation systems to which reduce is

ported.

On the other hand, the underlying cas itself bene�ts from the implemen-

tation �rst-order formulas and corresponding algorithms. Consider, e.g., the

implementation of guarded expressions. The need for guarded expressions

arises naturally with the implementation of parametric algorithms, such as
symbolic integration, computation of Gr�obner systems [69], or parametric

optimization. For details on guarded expressions cf. [24, 27].

Another possible application is with the widespread solve operator for
solving systems of equations and, possibly, inequalities. The solutions to

such systems can be conjunctions as for x2 < 25, disjunctions as for x2 > 25,

160 CHAPTER 8. THE REDLOG PROGRAMMING ENVIRONMENT

or more complicated formulas. The solutions are typically given as nested

lists encoding dnf's. Here, the use of formulas would be more natural. At

this point, one should mention that mathematica actually o�ers the option

for printing the result as formula. Except for distributive expansion, there

are, however, no algorithms operating on these formulas [74].

8.4 A User's View on the System

This section focuses on the usage of redlog, mainly from the algebraic mode

(am) of reduce. The last subsection sketches the symbolic mode interface.

After loading redlog into reduce as a package, a context has to be selected.

8.4.1 Contexts

A context determines a language and a theory in the sense of �rst-order
logic. These selections are not independent from each other. The language
selection is weak in the following sense: A context does not specify which

predicate symbols are allowed or prohibited. The algorithms associated with
the context, however, know certain predicates. We hence speak of known

and unknown predicates. Some algorithms can handle unknown predicates
straightforwardly. Simpli�cation, for instance, simply leaves unknown predi-
cates unchanged. This behavior is quite similar to that of algebraic reduce

operators for which no rules are known. Quanti�er elimination, in contrast,
would exit with an error. Schemes allowing the user to determine for un-
known predicates how to behave within certain redlog algorithms are under

consideration.

Each context is encoded into a context identi�er, for example ofsf, which

stands for ordered �elds (with standard form term representation). The name
ofsf is a relic from early versions which restricted the quanti�er elimina-

tion to the linear case. In its current state the context actually implements
real closed �elds. Certain contexts are parameterized. When selecting, e.g.,

dvfsf (\discretely valued �eld standard form") one has to pass the character-

istic of the residue class �eld wrt. the valuation. All following computations
are performed wrt. the selected context until a di�erent decision is made.

When the context is changed, formulas produced in the old context can

become invalid, but they need not. Certain formulas of the old context
may still be meaningful in the new context. Consider for instance a formula

produced in an ordered �eld context: If it happens to contain only variables

as terms, it can be reused in an ordered set context. The same applies to
formulas that can be straightforwardly rewritten in such a form as, e.g.,

8.4. A USER'S VIEW ON THE SYSTEM 161

a � b < 0, which would automatically be converted into a < b with every

access.

After �xing a context, the reduce functionality is extended in two ways:

1. In addition to the built-in data types such as rational functions or

matrices, one can input �rst-order formulas.

2. There are new procedures available that apply to �rst-order formulas.

In the sequel, we assume that the context ofsf is selected, which knows the

binary predicates =, 6=, �, �, <, and >.

8.4.2 Expressions

We have extended the look-and-feel of reduce to �rst-order formulas. In-

valid expressions are detected, and appropriate error messages are given.

Expression Format and Input

The format for the truth values, quanti�ers, and propositional connectives
is speci�ed uniformly for all contexts. Besides the reserved identi�ers true
and false, there are the following operators: a unary not, binary in�x impl,

repl, equiv, and n-ary in�x and, or. Binary pre�x operators ex and all

serve as quanti�ers. Their �rst argument is a variable, and their second

argument is a formula.
In general, all atomic formulas are constructed with operators that are

considered as predicates. Here again in�x operators are possible. What is

left to the context is determining which predicates are known and what the
terms are. Furthermore, a context can impose some extra restrictions on

the form of the atomic formulas. Consider for instance ofsf: The known
predicates given at the end of the last subsection can all be written in�x.
Terms are polynomials over the integers. As an additional restriction, all

right hand sides of the predicates must be zero.
The handling of the input is much more liberal than the speci�cation of

valid expressions. For the easy input of large systematic conjunctions and

disjunctions the for-loops have been extended by actions mkand and mkor,

in analogy to sum or product. With the quanti�ers ex and all, the �rst

argument may be a list of variables. In ofsf the input may contain rational
coeÆcients and non-zero right hand sides. In all these cases the input is
converted to the right expression format immediately.

The ofsf context further allows the input of chains such as a<>b<c>d=f,

which is turned into a-b<>0 and b-c<0 and c-d>0 and d-f=0. Here, only
adjacent terms are considered to be related.

162 CHAPTER 8. THE REDLOG PROGRAMMING ENVIRONMENT

Simpli�cation vs. Evaluation

Polynomials entered into reduce are automatically converted into some

canonical form, say into distributive polynomials wrt. some term ordering.

Canonical means that expressions that are mathematically equal are con-

verted into syntactically equal forms. We refer to this conversion as evalua-

tion.

The natural extension of evaluation to �rst-order formulas would be con-

verting equivalent formulas into syntactically equal forms. Generally, this is

impossible since in non-recursive structures there is no algorithm converting

sentences that hold into true. Even in most recursive structures it is by no

means obvious, how to obtain suitable canonical forms for open formulas.

Note that such normal forms must be user-friendly and fast to compute.

Instead of evaluation, we use the weaker concept of simpli�cation [29].

This means, we replace formulas by equivalents that are more user-friendly
though not canonical. Automatic simpli�cation can be toggled by a reduce
switch.

Interface Problems

Similar to other computer algebra systems, in reduce, interpreter variables
are identi�ed with the transcendental elements occurring in rational func-

tions. When introducing �rst-order formulas, such an identi�cation leads to
problems.

Firstly, for many contexts the �rst-order terms will be implemented as
rational functions or some suitable subset. One would certainly like to iden-
tify the kernels occurring inside these terms with the interface variables.

If such a kernel is quanti�ed, any non-kernel assignment to it violates the
well-formedness of the respective formula. The problem of expressions be-
coming ill-formed due to subsequent assignments is actually not new. This

also happens with the rational function 1=x when assigning x := 0. To avoid

confusion, we invalidate a formula in case of any assignment to a quanti�ed

variable including kernel assignments.

Another problem arises from the fact that interpreter variables inter-
preted as kernels are valid rational functions. They are, in contrast, not

valid formulas. Hence the user is not allowed to enter things like

f := ex(x,g); g := x>0;

such that afterwards f be evaluated to ex(x,x>0). It is, however, possible to

input the above statements in reverse order. Note: The expansion of inter-
preter variables should not be mixed up with substitution, which is correctly

implemented for quanti�ed formulas.

8.4. A USER'S VIEW ON THE SYSTEM 163

8.4.3 Procedures

In order to avoid name conicts, all redlog procedures and switches avail-

able in the am are pre�xed by rl. The procedure names are to be understood

declaratively, e.g., rlqe stands for \apply the default procedure for quanti�er

elimination." Which algorithm is actually applied depends on the selected

context. This pattern makes redlog easy to learn. Moreover, it allows to

combine procedure calls to new (am) procedures that do not depend on the

context.

As usual in reduce we have a fairly liberal syntax including optional

arguments with default values, procedures expecting either an expression of

a certain type or a list of such expressions, and procedures for which the

format of the return value depends on a switch.

Most of the redlog algorithms o�er numerous options. Options are
selected by setting corresponding switches.

Some procedures provide the option to protocol the progress of the com-
putation onto the screen. We refer to this as verbosity output. In future

versions there might be di�erent levels of such output. It is speci�ed, how-
ever, that there is one switch, namely rlverbose, by which all verbosity
output can be turned o�.

Concerning the return values, our procedures are designed to cooperate
with the standard reduce. For example, in the ordered �eld context, the

quanti�er elimination can optionally compute sample points for existentially
quanti�ed formulas. The coordinates of such a point are returned as a list of
equations because there are many built-in algorithms that operate on such

lists.

8.4.4 Context Dependent Switches

There is a mechanism for passing the control over certain switches, say si,
to a context c. This means when c is turned on, the current setting of the

si is saved and then replaced by context speci�c values. Anyway, the user

is allowed to change the setting. When the context is changed again, the
current values of the si become the new context speci�c values for c, and the

original values are restored. The new context can in turn take control over

some switches.

This may appear to be bad style since the system modi�es global settings

which the user expects to be completely under his control. We need this
option, however, for situations where options are not available or extremely

undesirable in a certain context.

164 CHAPTER 8. THE REDLOG PROGRAMMING ENVIRONMENT

8.5 Documentation

The redlog user manual [30] is written in the gnu Texinfo format from

which an online hypertext manual and a TEX document are created. There

are also tools available for creating an html version of the document.

8.6 Conclusions

redlog is an algebraic computer logic system, which is freely available to

the scienti�c community. Several research groups have found applications of

redlog in their area. There is currently no other published system com-

parable to it. We have discussed typical applications of redlog and its

look-and-feel.

Chapter 9

Conclusions

In this thesis, we have concerned ourselves with algorithmic improvements

of quanti�er elimination by virtual substitution for the reals.

We have started in Chapter 2 by optimizing a crucial tool, which is quite
isolated from the actual quanti�er elimination procedure: simpli�cation of
formulas. After having speci�ed what kind of formulas are considered \sim-

ple" thus making the notion of simpli�cation more precise, we have thor-
oughly investigated all aspects of both quanti�er-free and quanti�ed formulas

where simpli�cation can take place. The focus was on quanti�er-free formu-
las. This is adequate not only for simplifying the �nal result of quanti�er
elimination but also for application during the quanti�er elimination proce-

dure, where mainly quanti�er-free intermediate results occur, which have to
be simpli�ed.

As one crucial tool for simpli�cation, we have introduced here for the �rst

time our ubiquitous idea of using an explicit and an implicit theory. The for-
mer is used for entering external information into the simpli�cation process,
and the latter is used for communicating information located on di�erent

boolean levels in deeply nested formulas. Wherever this is appropriate, our

simpli�cation algorithms are designed in such a way that they make use of

an optional extra theory argument. In later chapters, we have reencountered
the theory concept for quanti�er elimination itself, where it participates in a

variety of optimization strategies.

On the conceptual side we have introduced the distinction between a fast

standard simpli�er and sophisticated advanced simpli�ers. All simpli�ers
admit parameterizations, which are implemented via global switches. Our

simpli�cation methods provide in a natural way a decision heuristics for
simple formulas.

In Chapter 3 we have turned to the core elimination procedure by virtual

substitution. After some historical information, we have given an overview

165

166 CHAPTER 9. CONCLUSIONS

over the method as described in the literature so far. This description has

served as a reference for the remainder of the thesis.

Our new contributions for this chapter start with Section 3.3. Here we

have analyzed the procedure to consist of four distinct phases. This allows

for the �rst time a systematization for all already present optimizations.

The remainder of the chapter was devoted to a variety of newly developed

optimization strategies of a traditional kind, i.e., they perfectly �t into the

traditional framework mentioned above.

In Chapter 4 we have generalized our theory concept from simpli�cation

to quanti�er elimination by virtual substitution. Starting with the concept

of an external theory we have identi�ed the places where one can pro�t from

external information there. These results have encouraged us to adapt also

the concept of an implicit theory. The construction of this implicit theory

for candidate solution set computation slightly di�ers from that for sim-

pli�cation. With simpli�cation we have observed that the construction of
implicit theories is the tool for performing simpli�cations in spite of compli-
cated boolean structures and for even pro�ting from these structures. Here

we have observed the same e�ect for the candidate solution set computation
phase of our quanti�er elimination procedure. We have thus dropped the re-
striction of the traditional approach to compute elimination sets essentially

from the set of atomic formulas.
In the spirit of this observation we have introduced further structural

concepts generalizing the Gauss elimination special case of the traditional
approach in various ways. Moreover, reanalyzing our generalized Gauss elim-
ination in terms of the implicit theory has led us to the co-Gauss technique.

This is a new special case unknown so far, which is in a highly non-trivial
way complementary to our generalized Gauss.

Finally, we have introduced another type of theory, which is implicit in
nature, but does not collect information syntactically present in the formula.
Instead the collected information is derived from the elimination process.

Concerning the applicability this new theory plays the same role as the im-
plicit theory and can be used simultaneously with it.

In Chapter 5 we have introduced two independent though related con-

cepts: Gauss condensing and positional condensing. The concepts can be

combined without problems. In addition they perfectly combine with all

other ideas presented throughout this thesis. With condensing we have dis-
covered a new place, where optimizations can take place: The disjunction of
virtual substitutions as opposed to the virtual substitutions themselves.

On our way to a more liberal view of quanti�er elimination by virtual

substitution we have performed yet another step: Instead of operating on
atomic formulas as syntactical objects we now think in terms of tree positions.

167

In Chapter 6, we have introduced local quanti�er elimination as a variant

of real quanti�er elimination. For a certain subset of the parameters there

is a point speci�ed. The modi�ed elimination result will be correct for a

neighborhood of this point. For this purpose the local quanti�er elimination

procedure is allowed to assume order and equation constraints compatible

with the given point wrt. these variables. As expected, this leads theoretically

and practically to smaller intermediate and �nal results, and to a speed-up

of the elimination process. Wherever it suÆces to restrict the equivalence of

output and input to a neighborhood of the suggested point the concept of

local quanti�er elimination is superior both to regular quanti�er elimination

and generic quanti�er elimination. The theoretically expected improvements

of local quanti�er elimination in contrast to the regular quanti�er elimination

are even exceeded by the results of a test implementation.

Local quanti�er elimination provides an example for gaining eÆciency and

thus applicability by modifying the speci�cation of quanti�er elimination. In
other words: We do not perform quanti�er elimination but instead something
similar, which we know to be suÆcient for certain problems.

In Chapter 7, we have examined the application of our extended quanti-
�er elimination strategies to the area of scheduling in a very general sense.
We have started by demonstrating that we can formulate by �rst-order for-

mulas and solve by extended quanti�er elimination scheduling problems of
both the dedicated machine model and project networks. These models have

extensively been discussed within the scheduling community. Our compu-
tation times for some small non-trivial examples are reasonable but cannot
compete with existent dedicated special-purpose algorithms.

This gives rise to the idea to make use of the extreme exibility of our
approach considering much more general scheduling problems. In particular,

we attack new types of problems, which have not been discussed in the lit-
erature so far. Such a problem that, to our knowledge, does not �t into any
known scheduling model is delay management for railway connections. Here,

the �rst-order formulation is so complex that we had to provide dedicated
algorithms for its computation. Our current test implementation cannot
compute practical examples of reasonable size yet. Anyway, already the for-

mal speci�cation of the problem by means of our �rst-order input formula is

a theoretical result in its own right. Furthermore this example demonstrates

that we can easily formulate multi-objective optimization.
The �nal Chapter 8 does not contain new contributions but gives an

overview of redlog, which is an algebraic computer logic system. redlog

has been realized by the author and others. It provides the programming

environment for all our implementations mentioned throughout this thesis.

168 CHAPTER 9. CONCLUSIONS

Bibliography

[1] Chaouki T. Abdallah, Peter Dorato, Wei Yang, Richard Liska, and

Stanly Steinberg. Applications of quanti�er elimination theory to control

system design. In Proceedings of the 4th IEEE Mediterranean Sympo-

sium on Control and Automation, pages 340{345. IEEE, 1996.

[2] Emil Artin. �Uber die Zerlegung de�niter Funktionen in Quadrate. Ham-

burger Abhandlungen, 5:100{115, 1927.

[3] Martin Bartusch. An algorithm for generating all maximal independent

subsets of posets. Computing, 26(4):343{354, 1981.

[4] Martin Bartusch. Optimierung von Netzpl�anen mit Anordnungs-
beziehungen bei knappen Betriebsmitteln. Technical Report MIP-8618,
FMI, Universit�at Passau, D-94030 Passau, Germany, 1986. Nachdruck

der Dissertation, RWTH Aachen, 1983.

[5] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gr�obner Bases,
a Computational Approach to Commutative Algebra, volume 141 of
Graduate Texts in Mathematics. Springer, New York, 1993.

[6] Allan Borodin, Ronald Fagin, John E. Hopcroft, and Martin Tompa. De-

creasing the nesting depth of expressions involving square roots. Journal
of Symbolic Computation, 1(2):169{188, June 1985.

[7] Robert King Brayton, Gary D. Hachtel, Curtis T. McMullen, and Al-

berto L. Sangiovanni-Vincentelli. Logic Minimization Algorithms for

VLSI Synthesis. The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, The Hague,

Dordrecht, Lancaster, 1984.

[8] Robert P. Brazile and Kathleen M. Swigger. GATES: An airline gate as-

signment and tracking expert system. IEEE Expert, 3(2):33{39, Summer

1988.

169

170 BIBLIOGRAPHY

[9] Silvia Breitinger and Hendrik C.R. Lock. Using constraint logic pro-

gramming for industrial scheduling problems. In Christoph Beierle and

Lutz Pl�umer, editors, Logic Programming: Formal Methods and Practi-

cal Applications, volume 11 of Studies in Computer Science and Arti�cal

Intelligence, chapter 9, pages 273{299. Elsevier, Amsterdam, 1995.

[10] Morton Brown. Problem proposal in the Problems and Solutions section.

American Mathematical Monthly, 90(8):569, October 1983.

[11] Peter Brucker. Scheduling Algorithms. Springer, Berlin, Heidelberg,

1995.

[12] Randal E. Bryant. Graph-based algorithms for boolean function manip-

ulation. IEEE Transactions on Computers, C-35(8):677{691, August

1986.

[13] Randal E. Bryant. Ordered binary-decision diagrams. ACM Computing

Surveys, 24(3):293{318, 1992.

[14] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basisele-

mente des Restklassenringes nach einem nulldimensionalen Polyno-

mideal. Doctoral dissertation, Mathematical Institute, University of
Innsbruck, Innsbruck, Austria, 1965.

[15] Bruno Buchberger, George E. Collins, Mark J. Encarnacion, Hoon Hong,
Jeremy R. Johnson, Werner Krandick, R�udiger Loos, Ana M. Mandache,
Andreas Neubacher, and Herbert Vielhaber. Saclib 1.1 user's guide.

RISC-Linz Series Technical Report 93-19, Research Institute for Sym-
bolic Computation, Johannes Kepler University, A-4040 Linz, Austria,

1993.

[16] Bruno Buchberger and R�udiger Loos. Algebraic simpli�cation. In Bruno

Buchberger, George E. Collins, R�udiger Loos, and Rudolf Albrecht, ed-
itors, Computer Algebra: Symbolic and Algebraic Manipulation, pages

11{44. Springer-Verlag, Wien, New York, second edition, 1982.

[17] Klaus-Dieter Burhenne. Implementierung eines Algorithmus zur Quan-

torenelimination f�ur lineare reelle Probleme. Diploma thesis, Universit�at

Passau, D-94030 Passau, Germany, December 1990.

[18] Bob F. Caviness and Richard J. Fateman. Simpli�cation of radical ex-

pressions. In R. D. Jenks, editor, Proceedings of the 1976 ACM Sym-

posium on Symbolic and Algebraic Computation, pages 329{338, New

York, 1976.

BIBLIOGRAPHY 171

[19] George E. Collins. Quanti�er elimination for the elementary the-

ory of real closed �elds by cylindrical algebraic decomposition. In

H. Brakhage, editor, Automata Theory and Formal Languages. 2nd GI

Conference, volume 33 of Lecture Notes in Computer Science, pages

134{183. Gesellschaft f�ur Informatik, Springer-Verlag, Berlin, Heidel-

berg, New York, 1975.

[20] George E. Collins. The SAC-2 computer algebra system. In Bob F.

Caviness, editor, EUROCAL '85; Proceedings of the European Confer-

ence on Computer Algebra, volume 104 of Lecture Notes in Computer

Science, pages 34{35. Springer, Berlin, Heidelberg, New York, Tokyo,

April 1985.

[21] George E. Collins and Hoon Hong. Partial cylindrical algebraic decom-
position for quanti�er elimination. Journal of Symbolic Computation,

12(3):299{328, September 1991.

[22] Alain Colmerauer. Prolog III. Communications of the ACM, 33(7):70{

90, July 1990.

[23] D. C. Cooper. Theorem proving in arithmetic without multiplication. In

Machine Intelligence, volume 7, pages 91{99, New York, 1972. American
Elsevier.

[24] Robert M. Corless and David J. Je�rey. Well : : : it isn't quite that
simple. ACM SIGSAM Bulletin, 26(3):2{6, August 1992.

[25] Andreas Dolzmann. Solving geometric problems with real quanti�er
elimination. In Xiao-Shan Gao, Dongming Wang, and Lu Yang, editors,

Automated Deduction in Geometry, volume 1669 of Lecture Notes in Ar-

ti�cial Intelligence (Subseries of LNCS), pages 14{29. Springer-Verlag,
Berlin Heidelberg, 1999.

[26] Andreas Dolzmann, Oliver Gloor, and Thomas Sturm. Approaches to

parallel quanti�er elimination. In Oliver Gloor, editor, Proceedings of the
1998 International Symposium on Symbolic and Algebraic Computation

(ISSAC 98), pages 88{95, Rostock, Germany, August 1998. ACM, ACM

Press, New York, 1998.

[27] Andreas Dolzmann and Thomas Sturm. Guarded expressions in prac-

tice. In Wolfgang W. K�uchlin, editor, Proceedings of the 1997 Interna-

tional Symposium on Symbolic and Algebraic Computation (ISSAC 97),

pages 376{383, Maui, HI, July 1997. ACM, ACM Press, New York, 1997.

172 BIBLIOGRAPHY

[28] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra

meets computer logic. ACM SIGSAM Bulletin, 31(2):2{9, June 1997.

[29] Andreas Dolzmann and Thomas Sturm. Simpli�cation of quanti�er-

free formulae over ordered �elds. Journal of Symbolic Computation,

24(2):209{231, August 1997.

[30] Andreas Dolzmann and Thomas Sturm. Redlog user manual. Technical

Report MIP-9905, FMI, Universit�at Passau, D-94030 Passau, Germany,

April 1999. Edition 2.0 for Version 2.0.

[31] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. A new

approach for automatic theorem proving in real geometry. Journal of

Automated Reasoning, 21(3):357{380, 1998.

[32] Andreas Dolzmann and Volker Weispfenning. Local quanti�er elimina-

tion. Technical Report MIP-0003, FMI, Universit�at Passau, D-94030
Passau, Germany, February 2000.

[33] Salah E. Elmaghraby. Activity Networks: Project Planning and Control

by Network Models. Wiley Interscience, New York, London, Sydney,

Toronto, 1977.

[34] Jeanne Ferrante and Charles W. Racko�. The Computational Complex-

ity of Logical Theories. Number 718 in Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1979.

[35] Hoon Hong. Simple solution formula construction in cylindrical alge-
braic decomposition based quanti�er elimination. In Paul S. Wang,
editor, Proceedings of the International Symposium on Symbolic and Al-

gebraic Computation (ISSAC 92), pages 177{188, Berkeley, CA, July
1992. ACM, ACM Press, New York, 1992.

[36] Hoon Hong, George E. Collins, Jeremy R. Johnson, and Mark J. En-
carnacion. QEPCAD interactive version 12. Kindly provided to us by

Hoon Hong, September 1993.

[37] Hoon Hong, Richard Liska, and Stanly Steinberg. Testing stability by

quanti�er elimination. To appear in the Journal of Symbolic Computa-
tion, 1996.

[38] Hoon Hong, Richard Liska, and Stanly Steinberg. Testing stability by
quanti�er elimination. Journal of Symbolic Computation, 24(2):161{187,

August 1997. Special issue on applications of quanti�er elimination.

BIBLIOGRAPHY 173

[39] Hoon Hong, Andreas Neubacher, and Wolfgang Schreiner. The design

of the SACLIB/PACLIB kernels. Journal of Symbolic Computation,

19(1{3):111{132, January{March 1995.

[40] Nikolaos I. Ioakimidis. REDLOG-aided derivation of feasibility con-

ditions in applied mechanics and engineering problems under simple

inequality constraints. Journal of Mechanical Engineering (Strojn��cky
�Casopis), 50(1):58{69, 1999.

[41] W. Kahan. An ellipse problem. ACM SIGSAM Bullitin, 9(3):11, August

1975. SIGSAM Probem #9.

[42] Timothy Kam, Tiziano Villa, Robert King Brayton, and Alberto

Sangiovanni-Vincentelli. Multi-valued decision diagrams: Theory and

applications. Multiple-Valued Logic, 4(1{2):9{62, 1998.

[43] Michael Kappert. Eliminationsverfahren zur linearen und quadratischen

Optimierung. Diploma thesis, Universit�at Passau, D-94030 Passau, Ger-
many, December 1995.

[44] Heinz Kredel. MAS modula-2 algebra system, interactive usage. Tech-

nical report, Universit�at Passau, Passau, February 1993. Available for
anonymous ftp from alice.fmi.uni-passau.de.

[45] Heinz Kredel. MAS modula-2 algebra system, speci�cations, de�nition

modules, indexes. Technical report, Universit�at Passau, Passau, Febru-
ary 1993. Available for anonymous ftp from alice.fmi.uni-passau.de.

[46] Wolfgang W. K�uchlin. PARSAC-2: A parallel SAC-2 based on threads.

In Shojiro Sakata, editor, Applied Algebra, Algebraic Algorithms, and

Error-Correcting Codes: 8th International Conference, AAECC-8, vol-

ume 508 of Lecture Notes in Computer Science, pages 341{353, Tokyo,
Japan, August 1990, 1991. Springer-Verlag, Berlin, Heidelberg, New

York.

[47] Wolfgang W. K�uchlin. The S-threads environment for parallel symbolic

computation. In Richard E. Zippel, editor, Computer Algebra and Paral-

lelism, Second International Workshop, volume 584 of Lecture Notes in

Computer Science, pages 1{18, Ithaca, USA, May 1990, 1992. Springer-

Verlag, Berlin, Heidelberg, New York.

[48] Wolfgang W. K�uchlin. PARSAC-2: Parallel computer algebra on the

desk-top. In J. Fleischer, J. Grabmeier, F. Hehl, and W. K�uchlin, edi-
tors, Computer Algebra in Science and Engineering, pages 24{43, Biele-

feld, Germany, August 1994, 1995. World Scienti�c, Singapore.

174 BIBLIOGRAPHY

[49] Gerardo La�erriere, George J. Pappas, and Sergio Yovine. A new class

of decidable hybrid systems. In Frits W. Vaandrager and Jan H. van

Schuppen, editors, Hybrid Systems and Control. Proceedings of the Sec-

ond International Workshop, HSCC'99, Berg en Dal, The Netherlands,

March 1999, volume 1569 of Lecture Notes in Computer Science, pages

137{151. Springer, Berlin, Germany, 1999.

[50] Daniel Lazard. Quanti�er elimination: Optimal solution for two classical

examples. Journal of Symbolic Computation, 5(1&2):261{266, February

1988.

[51] R�udiger Loos and Volker Weispfenning. Applying linear quanti�er elim-

ination. The Computer Journal, 36(5):450{462, 1993. Special issue on

computational quanti�er elimination.

[52] E. J. McCluskey. Minimization of Boolean functions. Bell Systems

Technical Journal, 35:1417{1444, April 1956.

[53] Herbert Melenk and Winfried Neun. RR: Parallel symbolic algorithm
support for PSL based REDUCE. Preliminary Draft, 1995.

[54] Michael Pesch. Die MAS-Implementation des Algorithmus zur Berech-

nung umfassender Gr�obnerbasen. Enclosure of a DFG application, April
1994.

[55] Michael Pinedo. Scheduling: Theory, algorithms, and systems. Prentice
Hall international series in industrial and system engineering. Prentice-

Hall, Englewood Cli�s, New Jersey, 1995.

[56] W. V. Quine. The problem of simplifying truth functions. American

Mathematical Monthly, 59:521{531, November 1952.

[57] W. V. Quine. A way to simplify truth functions. American Mathematical

Monthly, 62:627{631, November 1955.

[58] W. V. Quine. On cores and prime implicants of truth functions. Amer-

ican Mathematical Monthly, 66:755{760, November 1959.

[59] F. J. Radermacher. Scheduling of resource constraint project networks.
Technical Report MIP-8405, FMI, Universit�at Passau, D-94030 Passau,

Germany, 1984.

[60] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-

Interscience Series in Discrete-Mathematics. John Wiley & Sons, Chich-

ester, New York, Brisbane, Toronto, Singapore, October 1987.

BIBLIOGRAPHY 175

[61] Markus Schweighofer. Algorithmische Beweise f�ur Nichtneagtiv- und

Positivstellens�atze. Diploma thesis, Universit�at Passau, D-94030 Pas-

sau, Germany, March 1999.

[62] Raymund M. Smullyan. First-order Logic. Springer-Verlag, Berlin, Hei-

delberg, New York, 1968.

[63] Thomas Sturm. Real quadratic quanti�er elimination in Risa/Asir. Re-

search Memorandum ISIS-RM-5E, ISIS, Fujitsu Laboratories Limited,

1-9-3, Nakase, Mihama-ku, Chiba-shi, Chiba 261, Japan, September

1996.

[64] Thomas Sturm. Real Quanti�er Elimination in Geometry. Doctoral

dissertation, Department of Mathematics and Computer Science. Uni-

versity of Passau, Germany, D-94030 Passau, Germany, December 1999.

[65] Thomas Sturm. Reasoning over networks by symbolic methods. Applica-
ble Algebra in Engineering, Communication and Computing, 10(1):79{

96, September 1999.

[66] Alfred Tarski. A decision method for elementary algebra and geometry.
Technical report, RAND, Santa Monica, CA, 1948.

[67] Pascal van Hentenryck. Constraint Satisfaction in Logic Programming.
MIT Press, Cambridge, Massachusetts, 1st edition, 1989.

[68] Volker Weispfenning. The complexity of linear problems in �elds. Jour-

nal of Symbolic Computation, 5(1{2):3{27, February{April 1988.

[69] Volker Weispfenning. Comprehensive Gr�obner bases. Journal of Sym-

bolic Computation, 14:1{29, July 1992.

[70] Volker Weispfenning. Parametric linear and quadratic optimization by
elimination. Technical Report MIP-9404, FMI, Universit�at Passau, D-

94030 Passau, Germany, April 1994.

[71] Volker Weispfenning. Quanti�er elimination for real algebra|the cubic
case. In Proceedings of the International Symposium on Symbolic and

Algebraic Computation (ISSAC 94), pages 258{263, Oxford, England,

July 1994. ACM Press, New York, 1994.

[72] Volker Weispfenning. Quanti�er elimination for real algebra|the

quadratic case and beyond. Applicable Algebra in Engineering Com-

munication and Computing, 8(2):85{101, February 1997.

176 BIBLIOGRAPHY

[73] Volker Weispfenning. Simulation and optimization by quanti�er elimi-

nation. Journal of Symbolic Computation, 24(2):189{208, August 1997.

Special issue on applications of quanti�er elimination.

[74] Steven Wolfram. The Mathematica Book. Wolfram Media and Cam-

bridge University Press, 3rd edition, 1996.

[75] Wen-Tsun Wu. Basic principles of mechanical theorem proving in el-

ementary geometries. Journal of Systems Sciences and Mathematical

Sciences, 4:207{235, 1984.

[76] Wen-Tsun Wu. Basic principles of mechanical theorem proving in ele-

mentary geometry. Journal of Automated Reasoning, 2:219{252, 1986.

[77] David Y. Y. Yun. On square-free decomposition algorithms. In R. D.
Jenks, editor, Proceedings of the 1976 ACM Symposium on Symbolic

and Algebraic Computation, pages 26{35, New York, NY 10036, August
1976. The Association for Computing Machinery.

[78] Richard Zippel. Simpli�cation of expressions involving radicals. Journal
of Symbolic Computation, 1(2):189{210, June 1985.

