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This paper shows how recently developed features of the performance analysis tool Scalasca
helped gain important insights into the performance behaviour of state-of-the-art climate codes
in the CESM (Community Earth System Model) ensemble. Particular emphasis is given to the
load balance of the sea-ice model and the scaling behaviour of the atmospheric model. The
presented work is a result of the project Enabling Climate Simulation at Extreme Scale, which
has been funded through the G8 Research Councils Initiative on Multilateral Research Funding.

1 Introduction

Policy decisions for mitigating climate change or adapting to it are subjects of great dis-
cussion throughout the world. Uninformed decisions will impose a heavy cost on future
generations, both financial and human. Therefore, it is essential to reduce the current
uncertainties about future climate changes and their impact by running climate simula-
tions at 1,000 times larger scales than today. Exascale supercomputers are expected to
appear around 2020, featuring a hierarchical design and gathering 100 millions of com-
puting cores. The numerical models of the physics, chemistry, and biology affecting the
climate system need to be improved to run efficiently on these extreme systems. Without
improvement, these codes will not produce simulations results required to respond to the
societal and economical challenges of climate change.

The objective of the G8 ECS (Enabling Climate Simulation at Extreme Scale,
2011-2014) project was to investigate how to run efficiently climate simulations on fu-
ture exascale systems and get correct results. The project gathered researchers in climate
and computer science from Canada, Germany, Japan, Spain, and USA to focus on three
main topics: (i) how to complete simulations with correct results despite frequent sys-
tem failures, (ii) how to exploit hierarchical computers with hardware accelerators close to
their peak performance and (iii) how to run efficient simulations with very high numbers
of threads.

This article concentrates on the third aspect – the scalability. Subject of the study is
the CESM (Community Earth System Model)1, a fully-coupled ensemble of climate codes
maintained at the National Center for Atmospheric Research. It provides state-of-the-art
computer simulations of the Earth’s past, present, and future climate states. In this study,
we analyse the performance of selected CESM codes using new technologies developed
in the framework of the Scalasca project2, a performance analysis toolset designed for
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highly scalable applications. All performance experiments were carried out on the IBM
BlueGene/Q system JUQUEEN located at the Jülich Supercomputing Centre.
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Chapter 9. Use Cases

In our original example, b40.B2000, we used 128 pes with each component running
sequentially over the entire set of processors.

128-pes/128-tasks layout

Now we change the layout to use 1728 processors and run the ice, lnd, and cpl models
concurrently on the same processors as the atm model while the ocean model will run
on its own set of processors. The atm model will be run on 1664 pes using 832 MPI
tasks each threaded 2 ways and starting on global MPI task 0. The ice model is run
using 320 MPI tasks starting on global MPI task 0, but not threaded. The lnd model
is run on 384 processors using 192 MPI tasks each threaded 2 ways starting at global
MPI task 320 and the coupler is run on 320 processors using 320 MPI tasks starting
at global MPI task 512. The ocn model uses 64 MPI tasks starting at global MPI task
832.

1728-pes/896-tasks layout

Since we will be modifying env_mach_pes.xml after configure was invoked, the
following needs to be invoked:

> configure -cleanmach
> xmlchange -file env_mach_pes.xml -id NTASKS_ATM -val 832
> xmlchange -file env_mach_pes.xml -id NTHRDS_ATM -val 2
> xmlchange -file env_mach_pes.xml -id ROOTPE_ATM -val 0
> xmlchange -file env_mach_pes.xml -id NTASKS_ICE -val 320
> xmlchange -file env_mach_pes.xml -id NTHRDS_ICE -val 1
> xmlchange -file env_mach_pes.xml -id ROOTPE_ICE -val 0
> xmlchange -file env_mach_pes.xml -id NTASKS_LND -val 192
> xmlchange -file env_mach_pes.xml -id NTHRDS_LND -val 2
> xmlchange -file env_mach_pes.xml -id ROOTPE_LND -val 320
> xmlchange -file env_mach_pes.xml -id NTASKS_CPL -val 320
> xmlchange -file env_mach_pes.xml -id NTHRDS_CPL -val 1
> xmlchange -file env_mach_pes.xml -id ROOTPE_CPL -val 512
> xmlchange -file env_mach_pes.xml -id NTASKS_OCN -val 64
> xmlchange -file env_mach_pes.xml -id NTHRDS_OCN -val 1
> xmlchange -file env_mach_pes.xml -id ROOTPE_OCN -val 832
> configure -mach

Note that since env_mach_pes.xml has changed, the model has to be reconfigured
and rebuilt.

It is interesting to compare the timings from the 128- and 1728-processor runs. The
timing output below shows that the original model run on 128 pes cost 851 pe-
hours/simulated_year. Running on 1728 pes, the model cost more than 5 times as
much, but it runs more than two and a half times faster.

128-processor case:
Overall Metrics:
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Figure 1. A common configuration of running CESM.

The scalability of CESM is predominantly influenced by the spatial resolution and the
performance of the most time-consuming modules, the atmospheric model CAM and the
ocean model POP. CAM features very good scalability, while POP scales merely up to a
few thousands of cores and is therefore considered as the most severe scalability bottleneck.
Since in a common configuration (Fig. 1), the sea-ice model CICE is run alongside POP,
one way of compensating for POP’s limited scalability is to expand CICE’s. This is why
major efforts concentrated on this module of CESM. In this article, we focus on CICE and
CAM, two studies in which we demonstrate new performance-analysis methods. Whereas
we looked at the full model for CICE, we studied CAM using its dynamical core, which is
called HOMME3.

Initially, we used only the vanilla version of Scalasca2. With the help of Scalasca, we
identified critical performance factors and established causal relations between them. Dur-
ing the project, we also used recently added features, such as delay analysis4, and added
new features on our own whenever necessary. Since load imbalance emerged as a major
theme from this initial study, we finally came up with the new idea of a load-balancing
simulator that can be used to compare the benefits of different load-balancing strategies
without changing the code. We created a design of the simulator, implemented a prototype,
and present preliminary results for CICE, which suggest significant optimisation potential.
Finally, over the course of the project we developed a novel tool for the automatic detec-
tion of scalability bugs. The tool, which is based on automatically generated performance
models, was developed in collaboration with the DFG-funded project Catwalk. We applied
it to assess HOMME’s potential for running at very large scales. More details about the
three analysis methods and their results are given below.

2 CICE – The Sea Ice Model

Our study of the sea ice model revealed significant load imbalance. In an early version of
the code, all processes receive roughly the same amount of grid cells, which implies huge
computational imbalances across processes because the distribution of ice is not uniform.
This load imbalance entails wait states in communication sections.
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Figure 2. Indirect waiting time for one communication call path in the CESM sea-ice model. Indirect waiting
time is waiting time caused by previous wait states as opposed to direct delay. The higher the colour temperature
the larger the amount of indirect waiting time.

With our delay analysis extension, we were able to detect a phenomenon caused by
the nearest-neighbour exchange pattern used in the application: the propagation of wait
states. Near the poles, at the boundary between computationally intensive and less inten-
sive regions, processes with less work wait for messages from processes with more work.
This lets them appear overloaded to their neighbours closer to the equator, leading to a
chain reaction along which wait states propagate all the way from the poles to the equato-
rial regions. Fig. 2 depicts the indirect waiting time, which is the waiting time caused by
previous wait states and not direct delay through computation overload. It increases with
increasing distance from computationally intense regions (poles).

To visualise the performance characteristics with a more advanced domain decompo-
sition, as shown in Fig. 4, we recorded the required decomposition information at runtime.
We extended our study to the at that time latest CESM release, 1.0.4, with a decomposition
based on space-filling curves as a method for load balancing. This configuration is used
by NCAR for high-resolution climate simulations. Already by comparison of the applica-
tion profiles gained with Scalasca, we were able to measure the performance impact of the
different domain decomposition strategies. We experienced a very strong dependence of
the application’s execution time on the choice of domain distribution parameters, such as
block size and aspect ratio, maximum number of blocks that can be assigned to a process
and the kind of the space-filling curve.

Another functionality recently added to Scalasca is the reconstruction of the applica-
tion’s critical path5, the longest execution sequence without wait states in a parallel pro-
gram. The critical path identifies the activities that determine the overall program runtime,
and are therefore preferable candidates for performance optimisation. The higher-level
function “evp haloupdate3dr8” in the dynamics, including communication setup and near-
est neighbour data exchange, contributes 27%. Jointly with the computational routines
“evp” in the dynamics (with 17%) and “compute dedd” in the radiation step (16%), these
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functions have the largest share of the critical path. The latter two also show high critical
imbalance, the time difference between a call path’s contribution to the critical path and the
average time spent in the call path across all processes. In a perfectly balanced program,
their impact should only amount to 12.5% and 2.9% of the total runtime, respectively. This
indicates that the highest potential for performance improvement via better load balancing
rests in the function “compute dedd”.

2.1 Load-Balancing Simulation

In our studies on the scalability and efficiency of CICE, we were able to trace poor scal-
ability of some communication routines back to load imbalance in associated computa-
tion phases. Although load balance is crucial for efficient resource utilisation, it is often
very difficult for application developers to find a suitable load-balancing strategy that fits
their specific problem. The effectiveness of a strategy depends not only on the specific
combination of balancing criteria, e.g., computational weight and communication load,
but also on the application behaviour, e.g., the communication pattern and sequence of
computation and communication phases. Moreover, implementation and test of different
load balancing strategies are usually not possible without major code surgery. Therefore,
we designed and implemented a load-balancing simulator as a software engineering tool
that enables developers to easily test and experiment with different load-balancing strate-
gies. The load-balancing simulator facilitates experiments with different load-balancing
strategies and communication patterns without cumbersome analytical comparison or time
consuming modifications of the real code and subsequent tests. This information aids de-
velopers in choosing a specific method and gives them a guideline whether or not the per-
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Figure 3. Architecture of the load-balancing simulator. Based on an abstract problem and application description,
the simulator re-enacts the application’s communication behaviour under the assumption of different partitions,
facilitating an easy comparison in experiments.
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(a) Original partition (b) Alternative partition

Figure 4. The CESM sea ice model shows severe computational load imbalance between regions of sea ice and
open ocean, resulting in large MPI wait time. Using the load-balancing simulator, we replayed this behaviour
(left image) and compared it to an alternative partition (right image). The improved load balance reduces MPI
wait time and suggests a speedup of up to 2.7 on 256 cores.

formance improvement justifies the effort of software re-engineering. As an example, we
applied the load-balancing simulator to CICE and examined its behaviour under different
load-balancing strategies.

The architecture of the simulator is depicted in Fig. 3. The simulator operates on a
graph structure, where vertices store the computational weight of a geometry item, and
edges describe the communication links and volumes between them. This enables rep-
resentations of arbitrary static grid types, e.g., structured or unstructured meshes of any
shape, dimension, and element outline. The simulator also maintains an abstract descrip-
tion of the application’s computation and communication phases to re-enact its behaviour.
An application usually has multiple computation phases with communication phases in
between. A computation phase is a recurring part in the application where a process ex-
ecutes some local operations. The time required for these operations is specified in the
form of vertex weights, one constant weight for each computation phase. Computation is
simulated by performing dummy computations lasting the specified amount of time. Dur-
ing communication phases, the simulator re-enacts the specified communication operation,
e.g., a stencil operation, with dummy messages of realistic size. The simulator replays the
predefined sequence of phases to show how the application would perform under a given
input partition. The user can directly compare the runtime of simulations with different par-
titions or investigate the simulated application behaviour in more detail with performance
analysis tools such as Scalasca.

The modular framework of the simulator not only provides pre-defined implementa-
tions of common communication patterns, but also allows the user to extend the simulator
by adding more complex phase types or by exchanging the underlying communication li-
brary. The load-balancing simulator enables scientific application developers to study their
application’s behaviour and the associated potential performance yield without cumber-
some analytical comparison or time consuming modifications of the real code and subse-
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quent tests. We initially used the simulator to compare the current partition of the sea ice
simulation to an alternative partition. In contrast to the current partition, the alternative
partition does not restrict block sizes and is based on measured computational weights in-
stead of the probability of sea ice. We estimated a speedup after reconfiguration of 2.7 for
256 cores. Note that the speedup numbers do not yet take into account that to lift the limit
on block sizes it would be necessary to allocate the memory dynamically, which might
prohibit some compiler optimisations. An investigation of this issue is still in progress.

3 HOMME – The Dynamical Core of the Atmospheric Model

Many parallel applications suffer from latent performance limitations that may prevent
them from scaling to larger machine sizes. Often, such scalability bugs manifest them-
selves only when an attempt to scale the code is actually being made - a point where
remediation can be difficult. However, creating analytical performance models that would
allow such issues to be pinpointed earlier is so laborious that application developers at-
tempt it at most for a few selected kernels, running the risk of missing harmful bottlenecks.
We designed a lightweight performance modelling tool that improves both coverage and
speed of this scalability analysis6. Generating an empirical performance model automati-
cally for each part of a parallel program, we can easily identify those parts that will reduce
performance at larger core counts. Using the HOMME climate simulation as an example,
we demonstrated that scalability bugs are not confined to those routines usually chosen as
kernels.

Fig. 5 gives an overview of the different steps necessary to find scalability bugs using
our method, whose details we explain further below. To ensure a statistically relevant set
of performance data, profile measurements may have to be repeated several times - at least
on systems subject to jitter. This is done in the optional statistical quality control step.
Once this is accomplished, we apply regression to obtain a coarse performance model for
every possible program region. These models then undergo an iterative refinement process
until the model quality has reached a saturation point. To arrange the program regions in
a ranked list, we extrapolate the performance either to a specific target process scale or
to infinity, which means we use the asymptotic behaviour as the basis of our comparison.
Finally, if the granularity of our program regions is not sufficient to arrive at an actionable
recommendation, performance measurements, and thus the kernels under investigation,
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can be further refined via more detailed instrumentation.
Going beyond models for just runtime, we now also started to generate empirical

models that allow projections for application requirements. Application requirements can
be anything such as the required number of floating-point operations, network messages,
transmitted bytes, or even memory consumption. System designers can use process-scaling
models in tandem with problem-scaling models and the specification of a candidate system
to determine the resource usage of an application execution with a certain problem size.
Once analytical models are established for an interesting set of requirements, the designer
can use them to “play” with configurations such as the amount of memory per node or the
network injection speed etc..

To showcase how our tool helps to find hidden scalability bugs in a production code
for which no performance model was available, we applied it to HOMME. Being designed
with scalability in mind, it employs spectral element and discontinuous Galerkin methods
on a cubed sphere tiled with quadrilateral elements. While experiences in the past did
not indicate any scalability issues at up to 100,000 processes, HOMME has never been
subjected to a systematic scalability study. The result of our analysis was the identification
of two scalability issues, one of which was previously unknown6. The unknown issue
was found in the initialisation and is a reduction needed to funnel data to dedicated I/O
processes. It is of the kind usually overlooked when modelling manually. Fig. 6 shows the
projected execution times of these two problematic kernels. The initialisation problem is
expected to become serious already before hitting one million processes.

The requirements analysis of HOMME revealed some potential future bottlenecks that
would need to be mitigated or removed to achieve extreme scaling potential. Specifically,
two MPI-collective call paths ending in Allreduce and Bcast show prohibitively growing
message sizes (O(p) and O(p · log(p)), respectively).

insight into di↵erent parts of the system. For example, Boyd
et al. used performance models to assess the quality of a tool
chain, such as a compiler or runtime system [6]. A very im-
portant motivation for the use of performance models was
presented by Petrini et al. [28]. In their study, the di↵erence
between actual and predicted performance led to the discov-
ery of system noise as the source of seriously degraded per-
formance. In general, there is consensus that performance
modeling is a powerful tool for assessing an application’s
resource consumption and scalability.

Hoefler et al. aimed to further popularize performance mod-
eling by defining a simple six-step process to create applica-
tion performance models [16]. The described method leads
to insight into application scaling behavior but is tedious
to apply to real codes and has not yet been explicitly used
to predict the scaling behavior of applications. Bauer, Got-
tlieb, and Hoefler show how to model performance variations
in this framework using simple statistical tools [3]. They
also describe how to measure the influence of certain system
parameters such as the network topology.

Other approaches focus less on human-readable general-
purpose models but rather on models generated for a very
specific purpose. For example, Ipek et al. propose multi-
layer artificial neural networks to learn application perfor-
mance [20] and Lee et al. compare a set of di↵erent schemes
for automated machine-based performance learning and pre-
diction [22]. Zhai, Chen, and Zheng extrapolate single-node
performance to complex parallel machines [40]. Wu and
Müller [37] extrapolate traces to larger process counts and
can thus predict communication operations. Their extrapo-
lation relies on a trace compression scheme that assumes reg-
ular communications. Our method is based on lightweight
profiles which can be generated without making prior as-
sumptions. All these schemes aim to deliver the most accu-
rate prediction but do not try to find the simplest human-
readable scaling function, thus limiting insight.
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Figure 4: Runtime of selected kernels in HOMME as a func-
tion of the number of processes. The graph compares predic-
tions (dashed or contiguous lines) to measurements (small
triangles, squares, and circles).

A second objective of performance modeling is to predict
application performance on a di↵erent target architecture.
Carrington et al. propose a model-based prediction frame-
work for applications on di↵erent computers [7], Marin and
Mellor-Crummey demonstrate how application models can
be derived semi-automatically to predict performance on dif-
ferent architectures [24], and Yang, Ma, and Müller model
application performance on di↵erent architectures by run-
ning kernels on the target architecture [39].

A related line of work uses simulation to predict applica-
tion performance on di↵erent systems. Simulators range
from cycle accurate [5, 31] to abstract model-driven mes-
sage passing simulation [18]. Trace-driven simulators such
as SimGrid [9], DIMEMAS [33], and PSINS [34] simulate
more detailed network models. Other simulators, such as
BigSim [42], Silas [15], and MPI-SIM [1], use direct or ker-
nel execution to assess computation or communication times
more accurately. However, direct execution approaches of-
ten have prohibitive memory requirements [26]. As opposed
to our semi-analytic modeling method, simulations require
huge resources for their execution and deliver little insight
into scaling behavior on their own. However, they could
be integrated into our method as a way to generate larger
output predictions.

The PACE toolset [27] provides performance modeling fea-
tures but the techniques are not described in detail and the
tool was not available to us. We argue that our approach is
much simpler to implement in a tool. Coarfa et al. automat-
ically compare pairs of measurements at di↵erent scales to
identify scalability bottlenecks [10], whereas our approach
creates explicit predictive models that describe the scaling
behavior beyond the range of measurements. Barnes et al.
use regression analysis to predict the scalability of applica-
tions [2] and is probably the most similar work. The main
di↵erences are that they aim to predict the optimal num-
ber of CPUs to solve a certain problem while we are most
interested in predicting the CPU time consumed for a spe-
cific run. For this, their tool considers strong scaling of the
whole application while we focus on identifying non-scalable
functions in the code. In addition, Barnes et al. assume a
load-balanced application for their run while we are able to
detect the scalability limitations caused by load imbalance.

6. CONCLUSION
Our results confirm that automated performance modeling
is feasible and that the automatically generated models are
accurate enough to identify scalability bugs. In fact, in those
cases where hand-crafted models existed in the literature we
found our models to be competitive. The main lesson that
we learned during our work is that the advantages of mass
production also apply to performance models. First, approx-
imate models are acceptable as long as the e↵ort to create
them is low and they do not mislead the user. Second, code
coverage is as important as model accuracy. Having approxi-
mate models for all parts of the code can be more useful than
having a model with 100% accuracy for just a tiny portion
of the code or no model at all. Extending this argument be-
yond the boundaries of a single application, we believe that
our tool will make scalability modeling accessible to a much
wider audience of HPC developers and applications.

Figure 6. Projected execution times of selected functions in HOMME, two of them representing scalability bot-
tlenecks.
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4 Outlook

In the future, we plan to continue our work on load-balance optimisation and requirements
analysis for extreme scalability. With respect to the former, we plan to enhance the design
of the load-balancing simulator mainly with simplified usage in mind. This includes a more
automated way of extracting computation and communication weights from the application
and utilities for calibration and validation of the simulation’s accuracy. We also plan to
enrich the current portfolio of supported load-balancing strategies. Finally, we want to
facilitate the simulation of dynamic strategies by modelling them as a sequence of (static)
balancing steps.
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