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B. Wohlmuth

published in

NIC Symposium 2016
K. Binder, M. Müller, M. Kremer, A. Schnurpfeil (Editors)

Forschungszentrum Jülich GmbH,
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In many applications, physical models consisting of a Stokes-type equation that is coupled to a
convection-dominated transport equation play an important role, e.g., in mantle-convection or
ice-sheet dynamics. In the iterative treatment of such problems the computational cost is usually
dominated by the solution procedure for the Stokes part. Hence, we focus on massively scalable
and fast multigrid solvers for the arising saddle point problem. To gain deeper insight into the
performance characteristics, we evaluate the multigrid efficiency systematically and address the
methodology of algorithmic resilience. Three methods based on the HHG software framework
will be presented and are shown to solve FE systems with half a billion unknowns even on
standard workstations. On petascale systems they furthermore exhibit excellent scalability.
This together with the optimised performance on each node leads to superior supercomputing
efficiency. Indefinite systems with up to ten trillion (1013) unknowns can be solved in less than
13 minutes compute time.

1 Introduction

Thanks to the continuous improvements made in parallel computing technology, current
leading-edge supercomputers can provide up to several petaflop/s of performance provided
that suitable algorithms and implementations are designed. While this enables the devel-
opment of increasingly complex computational models with unprecedented resolution, it
also requires a novel co-design process that aims at maximal performance at all stages of
developing a simulator. This includes the appropriate choice of mathematical models, dis-
cretisations, and algorithms, as well as the matter of software implementation, which all
– in their interplay – must be carefully analysed, adapted, and possibly revised to avoid
unnecessary inefficiencies in data volume, data traffic, and arithmetic cost. To achieve
several levels of parallelism with hundreds of thousands of threads all components must
be specifically designed for avoiding synchronisation and communication where possible.
This often requires the use of complex hybrid programming models.

In this work, we use the hierarchical hybrid grids framework (HHG)1, 2 that realises a
compromise between structured and unstructured grids. It exploits the flexibility of finite
elements and capitalises on the algorithmic efficiency of geometric multigrid methods. The
HHG package was initially designed with scalar elliptic equations in mind, see Refs. 1,
2. In Refs. 5, 6 an extension to Stokes systems using a pressure-correction scheme was
presented and in Ref. 12 we discuss the conservative coupling to transport equations. For
the extension to other types of scalable multigrid-based Stokes solvers, see Ref. 10. In the
context of multigrid methods, the execution of a parallel smoothing step for the multigrid
algorithm consumes a major part of the total computational cost. The performance of such
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algorithms can be substantially improved, e.g. by using suitable discretisations that permit
a memory-efficient, matrix-free implementation.

Our application problem is motivated by fundamental geophysical questions revolving
around the physics of the Earth’s mantle, which extends from some tens of kilometres be-
low the surface down to the core-mantle-boundary at about 2 900 km depth. In this region,
convection patterns of solid material evolve on large time- and length-scales; e.g., Fig. 1
shows the rise of a typical plume formation, displaying the characteristic “mushroom”
shape of the iso-temperature surfaces.

Figure 1. Scaled temperature distribution for a coupled convection simulation. The convective part of the energy
balance equation is determined by the velocity solution of a Stokes system.

While the general structure of convection within the mantle is relatively well under-
stood, some important details remain open, including the potential thermo-chemical nature
of the convection currents (which are essentially a statement on the buoyancy forces) ap-
propriate rheological parameters and the importance of lateral viscosity variation11. Due
to the extreme conditions deep inside the Earth and the large time scales involved, answer-
ing these questions is mostly outside the scope of laboratory experiments. Thus, further
progress in mantle convection research relies on extracting meaningful answers from the
geologic record through a careful assimilation of observations into models by means of
fluid dynamics inverse simulations3. There are three aspects making the inversion feasible:
the strongly advective nature of the heat transport, the availability of terminal conditions
from seismic tomography, providing current temperatures and densities inside the mantle,
and the availability of boundary conditions, i.e. surface velocity fields for the past 130
million years, from paleomagnetic reconstructions.

2 Simulation Models

A popular model for mantle convection considers the conservation of mass, momentum
and energy in the following form:
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− divσ = ρg (1a)
∂tρ+ div(ρu) = 0 (1b)

∂t(ρe) + div(ρeu) = −divq +H + σ : ε̇ (1c)

Here, σ represents the stress tensor while ε̇ = 1
2 (∇u + ∇u>) denotes the rate of strain

tensor that is defined as the symmetric part of the gradient of the velocity field u. The vec-
tor g denotes the gravitational acceleration acting in vertical/radial direction. We further
denote the internal energy density by e, the heat flux per unit area by q, and the volumetric
radiogenic heat production rate by H . The density ρ = ρ(p, T ) is related to the pressure p
and the temperature T through an equation of state that is investigated in the field of min-
eralogy and usually represented via lookups or analytical expressions. Finally, the stress
tensor σ is defined as

σ = 2µ(ε̇− 1
3 tr ε̇ · I)− pI, (2)

where µ denotes the dynamic viscosity. As mentioned before, the rheology of the mantle
is not yet well understood4, and there are different models for the viscosity. As the focus
of this present study is on parallel scalability and efficiency, we only consider numerical
examples for a simplified model of mantle convection in the following.

Firstly, we employ the Boussinesq-approximation, i.e., we treat the flow as incom-
pressible everywhere apart from the buoyancy term ρg. The mass balance (Eq. 1b) then
simplifies to the incompressibility constraint divu = 0. It is well-known that for long term
dynamic simulations of coupled problems, local mass conservation is a crucial ingredient.
Although we are using stabilised P1 conforming finite element spaces for the velocity and
the pressure space, our simulation results do not suffer from the lack of mass conservation.
A local post-process7, 12 guarantees that the velocity flux entering the energy balance equa-
tion is locally conservative, and thus no spurious source or sink terms occur. The picture
on the right of Fig. 2 shows the vorticity field produced by the modified approach which
is in excellent agreement with the reference solution while the one on the left exhibits a
physically incorrect structure.

Figure 2. Uncorrected (left) vs. corrected (right) coupling approach: Vorticity contour surfaces for an isoviscous
Boussinesq flow with free-slip conditions and a Rayleigh-number of Ra = 7.7 · 104.
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If we additionally assume a constant viscosity, the model can be even further simplified
and instead of the symmetric strain operator, we can use the gradient operator in the mo-
mentum equation (Eq. 1a) which has the advantage that the different velocity components
decouple, and the associated stencils are smaller. By doing so, roughly a factor of two in
the time-to-solution can be saved.

Figure 3. Domain with ns = 305 equally sized, randomly placed spheres and velocity streamlines.

It should be mentioned that our HHG solver is not tailored towards the spherical shell
geometry. For instance, in Fig. 3 we present the velocity streamlines of the flow through a
cylindrical channel filled with randomly place spheres on which we impose no-slip bound-
ary conditions. In Fig. 4, we illustrate the effect of different radii. Setups of this type are
of relevance for instance when studying infiltration processes.

Figure 4. Domain with ns = 231 randomly placed spheres with three different radii and velocity streamlines.

3 Parallel Multigrid Performance

For the solution of the simplified mantle-convection problem on the spherical shell domain
we usually consider an iterative coupling, where we solve the mass-momentum system and
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the energy equation separately. Since the first part constitutes the most challenging part,
we shall in the following employ and compare different solver strategies.

Given a fast solver for a scalar positive definite system, the most natural approach to
extend the existing framework to the indefinite Stokes system is to consider the Schur
complement for the pressure. After formally performing an elimination of the velocity, the
discrete problem for the pressure reads as

Sp = r. (3)

Here S stands for the pressure Schur complement which is defined by S = BA−1B>+C,
where A stands for the discrete velocity operator in the momentum balance equation, B
denotes the discrete divergence operator, and C is the matrix resulting from the stabil-
isation term that suppresses spurious pressure modes resulting from the equal-order ap-
proximation (we use a P1 − P1 approximation below). The right-hand side is given by
r. In our numerical experiments, we solve Eq. 3 by a preconditioned conjugate gradient
method, where we choose a lumped mass matrix preconditioner that is known to be spec-
trally equivalent to S; see e.g. Ref. 8. This simple preconditioning reduces the effects
of varying element sizes and shapes and can be extended to account for non-isoviscous
flow. Since the direct assembly of the dense matrix S cannot be performed efficiently, it
is applied indirectly by replacing each multiplication of the discrete inverse A−1 by a few
cycles of a parallel geometric multigrid algorithm. In addition to the previously described
strategy we consider two competing approaches that deal directly with the indefinite nature
of the system. The first one is a preconditioned Krylov space method and the second one
a multigrid method applied directly to the saddle-point system. This method employs an
Uzawa type smoother10. To obtain a better understanding of the different solvers, we first
run the solvers on a conventional, low cost workstation for the serial case with a single
Intel Xeon CPU E2-1226 v3, 3.30 GHz and 32 GB shared memory.

SCG MINRES MG Uzawa
L DoFs iter time iter time iter time
2 1.4 · 104 26 0.11 108 0.23 9 0.08
3 1.2 · 105 28 0.56 83 0.78 8 0.29
4 1.0 · 106 28 3.33 73 3.99 8 1.79
5 8.2 · 106 28 24.28 70 26.53 8 12.70
6 6.6 · 107 31 205.84 67 189.27 8 95.85
7 5.3 · 108 out of memory out of memory 8 730.77

Table 1. Iteration numbers and time-to-solution (in sec.) on standard workstation for a constant viscosity.

Roughly speaking, the three approaches based on HHG outperform most competing
methods significantly and reach on a workstation the performance when less efficient meth-
ods may already require a supercomputer. Beyond this, the multigrid method for the in-
definite system with a suitable Uzawa type smoother (MG-Uzawa) outperforms the two
alternative approaches with respect to memory and time-to-solution. Tab. 1 shows in detail
that with our co-design it is already possible to solve indefinite systems with half a billion
unknowns in a few minutes on a standard low cost machine. To further investigate the
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characteristics of the different approaches, we identify the required operator applications
for all solvers in the same setting. To enable a fair comparison the stopping criteria for all
solvers are chosen in exactly the same way. In our results, which we depict in Fig. 5, it
can be observed that the Uzawa multigrid method for the indefinite system requires con-
siderably fewer operator evaluations of the operator A and consequently requires a shorter
runtime. This effect is expected to become even more significant when considering more
complex models, e.g., with varying viscosities.

SCG MINRES MG Uzawa
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Figure 5. Number of different operator evaluations for the three considered solvers.

Let us next restrict ourselves to the Uzawa multigrid method (MG-Uzawa) and demon-
strate some weak scaling results obtained on the JUQUEEN supercomputer (Jülich Su-
percomputing Centre, Germany), currently listed in the top 10 of the TOP500 lista. In
our numerical results that are presented in Tab. 2, we observe robustness with respect to
the problem size and excellent scalability. Additionally to the time-to-solution (time) we
present the time without coarse grid (time w.c.g.) and the total amount in % which is
needed to solve the coarse grid problems. To approximate the coarse grid problem, we
apply a preconditioned Krylov subspace solver. It can be observed that even for the largest
example computation, the latter fraction is smaller than one-eighth of the total run-time.
The largest problem exceeds 1013 unknowns.

Nodes Threads DoFs iter time time w.c.g. time c.g. in %

5 80 2.7 · 109 10 685.88 678.77 1.04
40 640 2.1 · 1010 10 703.69 686.24 2.48

320 5 120 1.2 · 1011 10 741.86 709.88 4.31
2 560 40 960 1.7 · 1012 9 720.24 671.63 6.75

20 480 327 680 1.1 · 1013 9 776.09 681.91 12.14

Table 2. Weak scaling results with and without coarse grid for the spherical shell geometry.

ahttp://top500.org
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4 Fault Tolerant Algorithms

In the future era of exa-scale computing systems, highly scalable implementations will
execute up to billions of parallel threads on millions of compute nodes. In this scenario,
fault tolerance will become a necessary property of hardware, software and algorithms.
Nevertheless, nowadays commonly used redundancy approaches, e.g., check-pointing, will
be too costly, due to the high memory and energy consumption. An alternative and less
consuming approach is to incorporate resilient strategies directly into the multigrid solver.

In Ref. 9, we introduce a methodology and data-structure to efficiently recover lost data
due to a processor crash (hard fault) when solving elliptic PDEs with multigrid algorithms.
We consider a fault model where a processor stores the mesh data of a subdomain including
all its refined levels in the multigrid hierarchy. Therefore, in case of a processor failure,
we assume that all data is lost in the faulty domain ΩF ⊂ Ω. We further assume that
the healthy domain ΩH ⊂ Ω is unaffected by the fault, and data in this domain remains
available. The nodes associated with the interface Γ := ∂ΩF ∩∂ΩH between the faulty and
healthy domain are used to communicate between neighbouring processors by introducing
ghost copies that redundantly exist on different processors. Therefore, a complete recovery
of these nodes is possible without additional storage.

To recover the nodal values (uF ,pF ) in ΩF which are lost during a fault, we propose to
solve a local Stokes (subproblem in ΩF ) with Dirichlet boundary conditions on Γ for veloc-
ity and pressure, respectively. To guarantee that the local system is uniformly well-posed,
we formally include a compatibility condition obtained from the normal components of
the velocity. If the local solution in ΩF is computed while the global process is halted,
then this procedure yields a local recovery strategy. In Ref. 9 this local strategy is ex-
tended to become a global recovery strategy. To this end, the solution algorithm proceeds
asynchronously in the faulty and the healthy domain such that no process remains idle.
Temporarily, the two subdomains are decoupled at the interface Γ, and the recovery pro-
cess in the faulty domain is accelerated by delegating more compute resources to it. This
acceleration is termed the superman strategy. Once the recovery has proceeded far enough
and has caught up with the regular solution process, both subdomains are re-coupled and
the regular global iteration is resumed. These approaches result in a time- and energy-
efficient recovery. In Fig. 6 (left), we consider a test scenario in Ω = (0, 1)3 in which we
continuously apply multigrid V(3,3)-cycles of the Uzawa multigrid method introduced in
Sec. 3. In total 23 iterations are needed to reach the round-off limit of 10−15. During the
iteration, a fault is provoked after 5 iterations affecting 2.1% of the pressure and velocity
unknowns. As approximate subdomain solvers we compare the fine grid Uzawa-smoother,
the minimal residual method, the block-diagonal preconditioned MINRES (PMINRES)
method and V, F, W-cycles in the variable smoothing variant from Sec. 3. For the block-
preconditioner in case of PMINRES a standard V-cycle and a lumped mass-matrix M are
used. Fig. 6 (left) displays also the cases in which no fault appears (fault-free) and when
no recovery is performed after the fault.

After the fault, we observe that the residual jumps up and when no recovery is per-
formed, the iteration must start almost from the beginning. A higher pre-asymptotic con-
vergence rate after the fault helps to catch up, so that only four additional iterations are
required. This delay can be further reduced by a local recovery computation, but only local
multigrid cycles are found to be efficient recovery methods.

339



0 5 5 10 15 20 25

100

10−4

10−8

10−12

10−16

F
A
U
L
T

&
R
E
C
O
V
E
R
Y

Iterations

R
es
id
u
al

Fault-Free

Fault

4×Vcycle

4×Wcycle

4×Fcycle

50×Smooth

50×MINRES

20×PMINRES

DN Strategy ηsuper = 4
Size nH = 0 2 3 4

7693 19.21 0.05 -0.38 4.22
1 2813 21.27 -0.15 -0.68 3.95
2 3053 18.50 -0.33 -0.87 3.76
4 3533 19.74 2.58 4.61 9.24

Figure 6. Laplace problem: left: Convergence of the relative residual for different local recovery strategies. right:
Time delay caused by global recovery in terms of a temporary domain decoupling and with a superman factor of
ηsuper = 4.

The table on the right of Fig. 6 summarises the performance of the global recovery
in terms of the time delay (in seconds compute time) as compared to an iteration without
faults. The tests are performed for a large Laplace problem discretised with up to almost
1011 unknowns. The undisturbed solution is obtained in 50.49 seconds using 14 743 cores
on JUQUEEN. Two faults are provoked, one after 5 V-cycles, one after 9. Both faults
are treated with both the global recovery strategy and a local superman process that is
ηsuper = 4 times as fast as a regular processor. Faulty and healthy domains remain decou-
pled for nH cycles with the Dirichlet-Neumann strategy, i.e., solving a Dirichlet problem
on ΩF and a Neumann problem on ΩH , then the regular iteration is resumed. The case
nH = 0 corresponds to performing no recovery at all and leads to a delay of about 20
seconds compute time. By the superman recovery and the global re-coupling after nH = 2
cycles, the delay can be reduced to just a few seconds. In some cases the fault-affected
computation is even faster than the regular one, as indicated by negative time delays in the
table.
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to the Jülich Supercomputing Centre and Leibniz Rechenzentrum for providing computa-
tional resources.

References
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