-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Juelich Shared Electronic Resources

Dynamical Simulations of Lattice QCD

K. Jansen, S. Schaefer, H. Simma, R. Sommer

published in

NIC Symposium 2016
K. Binder, M. Miiller, M. Kremer, A. Schnurpfeil (Editors)

Forschungszentrum Jalich GmbH,

John von Neumann Institute for Computing (NIC),

Schriften des Forschungszentrums Julich, NIC Series, Vol. 48,
ISBN 978-3-95806-109-5, pp. 39.
http://hdl.handle.net/2128/9842

© 2016 by Forschungszentrum Jilich

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.


https://core.ac.uk/display/35070463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamical Simulations of Lattice QCD

Karl Jansen, Stefan Schaefer, Hubert Simma, and Rainer Sommer

John von Neumann Institute for Computing, DESY, Platanenallee 6, 15738 Zeuthen
E-mail: {karl.jansen, stefan.schaefer, hubert.simma, rainer.sommer} @desy.de

1 Introduction

Lattice calculations of Quantum Chromodynamics (QCD) are continuously becoming
more realistic. Where Ukawa' famously concluded only fourteen years ago that simu-
lations including two physically light sea quarks are basically impossible even with to-
day’s computers, algorithmic developments over the last years have changed this situation
drastically. Nowadays up and down quark masses light enough to control the chiral extrap-
olation reliably are standard and also the sea quark effects of strange (and charm) quark
are included.

Modern lattice simulations are an intricate interplay between a large variety of numer-
ical methods on one side and the computer hardware on the other side. The main areas
of progress have been the solvers used for the Dirac equation, fermion determinant fac-
torisations and better integrators for the molecular dynamics which is at the heart of most
algorithms used for QCD simulations.

In lattice QCD simulations the path integral is computed via a Markov Chain Monte
Carlo method. In virtually all projects with dynamical fermions a variant of the Hybrid
Monte Carlo algorithm is employed to generate the Markov chain, where the fields are
updated using molecular dynamics. But there is considerable freedom in how to include
the fermion determinant into the simulation. Factorisations>* of this determinant have
been essential in the progress of recent years, being successful in particular together with
improved integrators of the molecular dynamics®.

The solution of the Dirac equation constitutes the most computer time consuming el-
ement of simulations with fermions. The dramatic speedup for small fermion mass due
to locally deflated solvers™® has therefore had a significant impact on what is possible in
the simulations. These algorithms have practically eliminated the increase in cost of the
solution as the quark mass is lowered.

1.1 Autocorrelations

One of the main difficulties of Markov Chain Monte Carlo is the presence of autocor-
relations: subsequent field configurations depend on previous ones and one essential re-
quirement of a correct simulation is that the whole chain is much longer than the modes
decorrelating most slowly.

In the study of the autocorrelations it has also become clear that significantly more
statistics is required to reach precision results than previously thought. In particular ob-
servables constructed from smoothed gauge fields’ turned out to be particularly sensitive
to these long autocorrelations.
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Figure 1. Scaling of the autocorrelation times of the action density E constructed from smoothed links and
the topological charge ) with the lattice spacing a. The results are from the CLS 2+1 simulations using open
boundary conditions. For E we observe scaling compatible with the theoretical expectation with a dynamical
critical exponent of 2. There is no abnormal slowing down of the charge observed.

Finally, in the standard setup with periodic boundary conditions in space and time a
dramatic critical slowing down of the algorithms has been observed®, i.e. lowering the
lattice spacing the number of update steps to reach an independent configuration in the
Markov chain needed to be increased drastically. This was due to topological modes which
need more and more time to decorrelate. This topological freezing is a property of the
continuum theory which exhibits disconnected sectors in field space labelled by an integer
topological charge.

A way out is to use open boundary conditions in time®. This avoids the sector formation
in the continuum and avoids the presence of exceptionally slow modes in the Markov chain.
These boundary conditions have therefore been adopted in the CLS simulations described
below!?. In Fig. 1 it is demonstrated that in simulations with open boundary conditions no
dramatic slowing down is observed, even for quantities know for their sensitivity to slow
modes.

2 Status of Dynamical Simulations

By their nature, three principal effects have to be controlled in simulations of lattice QCD:
the effect of the finite lattice spacing a, the finite size of the box L and the unphysical
quark masses. Furthermore also the consequences of the finite computer time available,
and therefore a limited statistics of the Monte Carlo estimates, including the problem of
the autocorrelations.

In these simulations, a compromise has to be found between the prominance of these
various sources of systematic error. For example at fixed physical volume smaller light
quark masses will lead to larger volume effects. Equally smaller lattice spacing will lead to
longer autocorrelations — due to the critical slowing down of the algorithms — and therefore
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ensemble Jé] Ke aje L/a N- Neont T Tint (P)
cA2.09.48 2.10 0.13729 0.0009 48 6900 2950 1 15(6)
cA2.30.24 2.10 0.13730 0.0030 24 3400 1300 1 3.2(8)
cA2.60.24 2.10 0.13730 0.0060 24 9000 4000 1 3.8(6)
cA2.60.32 2.10 0.13730 0.0060 32 11840 5350 1 2.9(5)

Table 1. The Ny = 2 ETMC ensembles, all of which have temporal extent 7' = 2L with L/a the spatial lattice
extend. In addition we give the total number of trajectories /N, the number of thermalised configurations N¢opn¢
and the HMC trajectory length 7 and the integrated autocorrelation time of the plaquette Tint (P).

observable cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32
aM, + 0.06196(09) (732 0.1147(7) (%) 0.15941(38)(T33)  0.15769(26)(113)
aM_ .« 0.1191(05)(F97)  0.1541(13)(F02)  0.18981(61)(F35)  0.18840(44)(735)
aM, o -t 0.09(1)* 0.11(2)* 0.13(2)*

Table 2. The splitting between the charged and the neutral pion is a discretisation effect for twisted-mass
fermions. In the new simulations it is much reduced compared to the previously used formulation. f: For
cA2.09.48, disconnected diagrams have not been computed yet. x: For the full neutral pion, a study of systematic
effects from excited states was not possible due to the poor signal.

require increased length of the simulations.

In the following we will present two sets of such simulations: one by the ETM collabo-
ration using twisted mass fermions, one by CLS with non-perturbatively improved Wilson
fermions. Some of the choices of these simulations are similar, some also different and
therefore allow for complementary checks concerning the control of systematic effects.

2.1 ETMC

Along with the Ny = 2 4+ 1 + 1 simulations pursued by the European Twisted Mass
collaboration (ETMC) in recent years, there has been a renewed interest in Ny = 2 flavour
simulations'!. The leading discretisation effects of twisted mass fermions at maximal twist
come always at O(a?), but by adding the clover term with a suitably tuned coefficient, their
magnitude could be reduced.

The simulation parameters are summarised in Tab. 1. As can be seen from the table,
these simulations are so far restricted to one lattice spacing and relatively small volume
(m.L = 3 at the physical point), however, varying the lattice size L allows to study the
volume effects and give estimates for these effects.

The main effect of the reduction of discretisation effects can be seen in the difference
between the mass of the neutral and the charged pion. Where this has been quite noticeable
in previous simulations without the clover term, the effect is now significantly reduced as
can be seen from the results in Tab. 2.

41



600 ® ‘Nf:2“|‘1

H00 | .
= 400 F @ . . 4
<P}
= 3001 |
= e @

g 200} @ :

100‘_ _______________ g -7

O L L L L
0.000 0.002 0.004 0.006 0.008 0.010
a? [fm]

Figure 2. Lattice spacing a and pion mass m, of the CLS 2+1 ensembles. The size of the circle is proportional
to the number of independent gauge field configurations. The blue diamond indicates the physical point.

22 CLS

The Coordinated Lattice Simulations (CLS) have a programme to simulate Ny = 2 + 1
flavours of non-perturbatively improved Wilson fermions. The project started in 2013
and by now has generated lattices at four different lattice spacings between 0.085 fm and
0.05 fm'2. Lattice spacing and pion mass of these ensembles are visualised in Fig. 2, from
which it becomes clear that the control over both, the chiral and the continuum limit is
an essential part of this project. Both can bring significant corrections with respect to the
lattice results. An example of this is given in Fig. 3 where the product of the pion decay
constant with the gluonic scale parameter ¢, defined through the Wilson flow” is displayed.
As we can see, the accuracy which can be reached in such a quantity is on the level of 1%.

The extrapolation towards the continuum limit agrees with leading scaling violations
of O(a?), as expected for this non-perturbatively O(a) improved theory. From the plot it
is also obvious that only the fine lattices used here can lead to such a 1% accuracy — the
points at 0.085 fm and 0.065 fm being O(5%) away from the continuum result.

Also the chiral corrections are well under control as can be seen from Fig. 4. We show

ok = S+ o f) M)

along the line of constant sum of quark masses m,, +mq +ms. In particular in comparison
to Fig. 3 it becomes clear that chiral and continuum extrapolations are equally important
and to reach per cent level accuracies it is pivotal to control both at a high level of accu-
racy. It is remarkable that in the full range of quark masses, next-to-leading order chiral
perturbation theory describes the effect to the 20% level.

With these lattices the foundation of a large variety of projects has been laid which are
currently pursued in a number of European groups.
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Figure 3. Continuum extrapolation of the dimensionless product fr+/8tg of the pseudoscalar decay constant fr
and the gluonic scale ¢g along the line m» = mg ~ 420 MeV. Fine lattices are needed to reach a per cent level

result.
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Figure 4. Chiral extrapolation of frx = %(fK + %fﬂ) along the line of constant sum of quark masses my +
mq + Ms.

3 Anomalous Magnetic Moments

One particular result of the ETMC simulations described above are hadronic contributions
to anomalous magnetic moments of the leptons, which give the deviation of Dirac’s lead-
ing order value of the magnetic moment of a fermion g = 2. Hadronic contributions are
the dominant source of uncertainty in the comparison of the quantum field theory predic-
tion of the quantity to experiments which are accurate to eight digits for the electron and
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Figure 5. Comparison of the chiral extrapolation of the light quark contributions to the three lepton anomalous
magnetic moments obtained from Ny = 2 + 1 + 1 simulations to the values at the physical value of the pion
mass (black square). The dark green diamonds correspond to a = 0.086fm and L = 2.8fm and the circles to
a = 0.078fm, the violet one stands for L = 1.9fm, the blue ones for L = 2.5fm, and the pink for L = 3.7fm.
The orange triangle shows the value obtained for a = 0.061fm and L = 1.9fm and the light green triangle
denotes a = 0.061fm and L = 2.9fm.

seven digits for the muon anomalous magnetic moments. Since the tau lepton has a very
short lifetime O(10~!3seconds) there is presently no experimental result for its anoma-
lous magnetic moment. Deriving the anomalous moment from field theory, one may, and
does, employ an expansion in the electromagnetic and weak couplings but not in the strong
coupling. The hadronic contribution is the given by

[e'e] 2 2
a)"P = o i %w (Q) Mr(Q?) )

2
my

with TIg (Q?) the renormalised hadronic vacuum polarisation function and w(x) a known
function.

In Fig. 5 a comparison of the previous results in Ny = 2+ 141 flavours at pion masses
above the physical point and the new N = 2 numbers is shown. The two results are
consistent. Note that in this plot there is a significant variation of the number of flavours
in the sea, the lattice volume, pion mass and the lattice spacing. A mutual agreement
between these results is therefore not trivial and suggests that these systematic errors are
under control.
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Conclusion

The ability to simulate QCD on the lattice has progressed significantly over the last years,
to the extent that we can now control all systematic effects coming from the finite vol-
ume, the non-physical quark masses and the finite lattice spacing to the level of per cent
accuracies for a number of observables.

This is due to improved algorithms, computational strategies and codes which exploit

the improved hardware resources. Of course challenges remain. Many observables are still
not accessible to lattice calculations with the accuracies required to make an impact in the
phenomenological analysis of high-energy physics data. And ever changing hardware will
also pose new requirements on the algorithms and the software.
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