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The QCD phase diagram, specifying the form of strongly interacting matter as a function of
temperature and density, is important in many disciplines of physics. Finite densities are not
amenable to standard Monte Carlo simulations and knowledge of the phase diagram remains
scarce. We report from a long term project to determine the phase diagram of QCD with two
mass degenerate quark species at zero and imaginary chemical potential, where there is no sign
problem, in order to constrain the phase diagram of physical QCD at real chemical potential.

1 Introduction

The fundamental theory of the strong interactions governing the forces between nuclear
and subnuclear particles is Quantum Chromodynamics (QCD). Its fundamental degrees of
freedom are light u- and d-quarks, a heavier s-quark and gluons. A key feature of the
theory is asymptotic freedom with the coupling strength depending on the energy scale of
a scattering process. For energies below a few GeV, the coupling is large and quarks and
gluons combine into numerous tightly bound states, the hadrons, among them the familiar
nucleons proton and neutron. On the other hand, at large temperatures or densities, the av-
erage energy per particle is higher and the theory enters a weak coupling regime, where the
quarks and gluons form a plasma. The QCD phase diagram determines the form of mat-
ter under different conditions as a function of temperature, T , and chemical potential for
baryon number, µB , as sketched in Fig. 1. Whether and where these regions are separated

Figure 1. The QCD phase diagram as a function of temperature and chemical potential for baryon density.
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Figure 2. Possible scenarios for the QCD phase diagram at µ = 0 as function of quark mass.

by true phase transitions has to be determined by first principle calculations and experi-
ments. Since QCD is strongly coupled on scales of hadronic matter, a non-perturbative
treatment is necessary and Monte Carlo simulations of lattice QCD are the only fully re-
liable approach. Unfortunately, the so-called sign problem prohibits straightforward sim-
ulations at finite baryon density. There are several approximate ways to circumvent this
problem, all of them valid for µ/T <∼ 1 only1 (with quark chemical potential µ = µB/3).
On the other hand, at imaginary chemical potential there is no sign problem. Results from
such simulations can be either analytically continued after fitting to power series, or used
as a way to constrain the phase diagram at zero and real µ.

The order of the finite temperature phase transition at zero density depends on the quark
masses and is schematically shown in Fig. 2 (left), where Nf denotes the number of mass
degenerate quark flavours. In the limits of zero and infinite quark masses (lower left and
upper right corners), order parameters corresponding to the breaking of a global symmetry
can be defined, and for three degenerate quarks one numerically finds first order phase
transitions at small and large quark masses at some finite temperatures Tc(m). On the
other hand, one observes an analytic crossover at intermediate quark masses, with second
order boundary lines separating these regions. Both lines have been shown to belong to
the Z(2) universality class of the 3d Ising model2–4. The critical lines bound the quark
mass regions featuring a chiral or deconfinement phase transition, and are called chiral and
deconfinement critical lines, respectively. The former has been mapped out on Nτ = 4
lattices5 and puts the physical quark mass configuration in the crossover region. The chiral
critical line recedes with decreasing lattice spacing6, 7: for Nf = 3, on the critical point
mπ(Nτ = 4)/mπ(Nτ = 6) ∼ 1.8. Thus, in the continuum the physical point is deeper in
the crossover region than on coarse lattices.

An open question to this day remains the order of the transition in the limit of zero
light quark masses, called the chiral limit. As explained below, this limit cannot be directly
simulated. Consequently, it is still not known whether the chiral phase transition for two
quark flavours is of first or second order. Hence an alternative scenario is Fig. 2 (right).
Clarifying this question is important because of the proximity of the critical line to the
physical point.
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Figure 3. Left: As Fig. 2 with an additional axis for quark chemical potential. Right: Bottom plane of the left.

2 Imaginary Chemical Potential

At imaginary chemical potential µ = iµi the sign problem is absent and standard sim-
ulation algorithms can be applied. Because of an exact symmetry Z(µ) = Z(−µ), the
partition function is a function of µ2. We can then plot Fig. 2 with a third axis, Fig. 3 (left).
The chiral and deconfinement critical lines now become critical surfaces as functions of
µ2, with analytic continuations between real and imaginary µ. The curvature of the chiral
critical surface has been computed8. In this region of phase space, there is an exact periodic
(Roberge-Weiss (RW)) symmetry9,

Z (µ) = Z (µ+ 2πik/3 ) , k ∈ N , (1)

with critical values of µci = (2k + 1)π/3, (k ∈ N), marking boundaries between adjacent
centre sectors of the SU(3) gauge group of QCD. The first boundary constitutes the bottom
of Fig. 3 (left) and is shown separately in Fig. 3 (right). First order transition regions
for light and heavy quarks are bounded by tricritical lines on which the critical surfaces
terminate10. Note that at this value of imaginary chemical potential, the first order region
for two light quark flavours is large enough so that it can actually be seen in simulations
on Nτ = 4, 6. In this work, we compute the positions of the tricritical points on the upper
Nf = 2 line in that diagram on finer Nτ = 6 lattices using Wilson fermions. We also map
out the boundary line of the chiral critical surface in the Nf = 2 plane on Nτ = 4 lattices.

3 Simulating Thermodynamical Systems in Lattice QCD

The central object in statistical physics is the partition function Z of a system. For lattice
QCD it is expressed as a path integral over the gluon fields U , including a determinant of
the Dirac operator for the quarks. An expectation value of some observable A then reads

〈A〉 = Z−1

∫
DUA detD[U ] exp {−Sg[U ]} . (2)
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Figure 4. Benchmark of /D for the L-CSC GPUs (taken from Ref. 14).

For our study we used the standard Wilson gauge action Sg[U ] as well as the standard
Wilson Dirac operator D[U ], for detailed expressions see Ref. 11.

The bare parameters are the lattice gauge coupling β = 6/g2, and the bare quark mass
mu,d ≡ m, which is encoded in the hopping parameter κ

κ =
1

2(am+ 4)
.

A finite temperature T is specified by the inverse spatial lattice extent

T = (a(β)Nτ )−1 . (3)

On a lattice with givenNτ , temperature is tuned by changing the lattice spacing a indirectly
via the running coupling β(a). On the other hand, a continuum limit at fixed temperature
implies a→ 0, Nτ →∞, and larger values of Nτ imply smaller lattice spacings.

The determinant of the fermion matrix D is expressed in terms of pseudo fermions φ,

detD[U ] ∼
∫
Dφ† Dφ exp

{
−φ†D−1[U ]φ

}
, (4)

yielding the effective action Seff[U, φ] = Sgauge[U ] + φ†D−1[U ]φ. Importance sampling
methods are used to evaluate this high-dimensional integral. Using the Boltzmann-weight
p[U, φ] = exp {−Seff[U, φ]} as probability measure, an ensemble of N gauge configura-
tions {Um} is generated. Then, 〈A〉 may be approximated by

〈A〉 ≈ 1

N

∑

m

A[Um] . (5)

The standard simulation algorithm to generate QCD gauge configurations is the Hybrid
Monte-Carlo (HMC) algorithm, where the effective action is embedded in a fictitious clas-
sical system evolved over a time τ according to the Hamiltonian equations of motion.

Since the fermion matrix D is high-dimensional and sparse, iterative Krylov space
methods are used. D−1 is calculated indirectly out of equations like

Dφ = ψ ⇒ φ = D−1ψ . (6)
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This inversion is the most cost-intensive part of a simulation. Thus, for performance it is
crucial to have a well tuned implementation, in particular of the derivative term /D. The
numerical costs for the HMC scales like V 5/4 andm−6

π . This illustrates that LQCD studies
are very cost-intensive, especially when going towards the chiral limit, and efficient simu-
lation programs are needed. We thermalised configurations on JUQUEEN. For production
we employed our publicly availablea OpenCLb-based code CL2QCD12, which is optimised
to run efficiently on the GPUs of the LOEWE-CSC13 at Goethe-University Frankfurt and
the L-CSC14 at GSI in Darmstadt. The latter was recently ranked as the most energy ef-
ficient computing cluster in the worldc. Fig. 4 shows the performance of the /D on this
cluster and underlines the efficient implementation.

4 Identifying Phase Transitions

Crossover 1st triple Tricritical 3D Ising
B4 3 1.5 2 1.604
ν − 1/3 1/2 0.6301(4)
γ − 1 1 1.2372(5)

Table 1. Critical values of ν, γ and B4 ≡ B4(X,αc) for the universality classes needed here16.

In order to identify the phase transition as a function of the QCD parameters, we use the
Binder cumulant15 defined as

B4(X,α1, . . . , αn) ≡
〈
(X − 〈X〉)4

〉
〈
(X − 〈X〉)2

〉2 ,

whereX is a general observable and α1, . . . , αn is a set of parameter on whichB4 depends.
Our observables are the Polyakov loop and the chiral condensate, and the QCD parameters
are {αi} = {β, κ, µi}. First we find the location of phase transitions by the vanishing third
moment of the fluctuations in the observables, 〈(X − 〈X〉)3〉 ≈ 0, for critical parameter
sets αci . The nature of the transition then has to be extracted from finite size scaling on
those parameter values. Non-analytic phase transitions only exist in the thermodynamic
limit V → ∞, for which the Binder cumulant takes different values depending on the
nature of the phase transition (see Tab. 1). Even though B4 is a non-analytic step function
for V →∞, at finite volume it gets smoothed out and its slope increases with the volume.
Around the critical coupling βc, the Binder cumulant is a function of x ≡ (β − βc)N1/ν

σ

only and can be Taylor-expanded around 0. The first finite-size corrections are

B4(β,Nσ) = B4(βc,∞) + a1 x+ a2 x
2 +O(x3) . (7)

aSee github.com/CL2QCD/ .
bSee www.khronos.org/opencl for more information.
cSee http://www.green500.org/news/green500-list-november-2014 .
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Figure 5. Binder cumulant for κ = 0.13 and Nτ = 6. Left: Reweighted data including linear fits. Right:
Collapse plot with second order exponents.

Close to the thermodynamic limit, the intersection of different curves from different vol-
umes gives βc and the critical exponent ν takes its value depending on the type of transition.
While the value of the Binder cumulant is very sensitive to finite size corrections and in
some cases not close to its infinite volume value, the exponents are more stable.

Our strategy to locate the two tricritical values of κ is described in detail in Ref. 17. For
each simulated quark mass parametrised by κ, we measured the Binder cumulant around
the critical coupling βc and extracted the value of ν fitting our data according to Eq. 7.
Because of the particularly delicate fitting procedure required to extract the critical expo-
nent ν from Eq. 7, we usually produced four different Markov chains for each value of the
coupling in order to acquire statistics in a faster manner and also to better understand if the
collected statistics was enough. Ferrenberg-Swendsen reweighting18 was used to produce
additional β-points and thus to smooth the data. An example is shown in Fig. 5 (left). We
then check the consistency of our fitted exponents by replotting the data with the nearest
exact critical exponent. To the extent that the data are correctly described by these expo-
nents, they collapse onto a universal curve in the neighbourhood of the critical coupling as
in Fig. 5 (right).

5 Results

Fig. 6 shows the critical exponents ν for QCD with two flavours of Wilson quarks simulated
at µi = πT/3 as a function of hopping parameter and thus quark masses onNτ = 4 (left)17

and Nτ = 6 (right) lattices. We clearly observe the change from a first order behaviour to
second order values and back, passing through tricritical points. These correspond to the
tricritical points on the upper boundary of Fig. 3 for two different lattice spacings. As is
the case for µ = 0, the chiral first order region is shrinking with growing Nτ , i.e. as the
lattice gets finer. Additional finer lattice spacings are required in future simulations before
extrapolations to the continuum can be undertaken and conclusions can be drawn.

In a second set of calculations we have mapped out the critical boundary line in the
Nf = 2 backplane of Fig. 3 (left)19, following a recent suggestion to allow for a determi-
nation of the nature of the chiral phase transition at µ = 020. The situation and its particular
interest are shown in Fig. 7 (left). The boundary line coming from the tricritical point at
µi = πT/3 has to terminate in another tricritical point on the µ2-axis. If the line hits the
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axis at µ < 0, the chiral phase transition at µ = 0 is of second order, whereas if it hits
at µ > 0 there is a first order region around the chiral limit. The boundary line is in the
3D Ising universality class and we can again use the Binder cumulant to identify and map
it out. Fig. 7 (right) shows the results of our simulations. Note that, in order to be able
to compare different lattice spacings as well as different lattice discretisation, the horizon-
tal axis of the figure is the pion mass rather than κ or the quark mass. This is because the
quark mass receives renormalisation factors specific to a particular choice of discretisation,
whereas the pion mass is a renormalisation group invariant physical quantity, that directly
depends on κ and can be compared between different lattice discretisations.

The figure illustrates that Wilson fermions on coarse lattices clearly feature a large re-
gion of first order chiral transitions. Note that this region is much larger than in the case of
staggered fermions, which are also shown. This difference must be due to discretisation ef-
fects, since the physics in the continuum must be independent of the discretisation scheme
chosen. One may speculate that the Wilson results have the larger discretisation effects,
since there are already simulations with improved Wilson actions at smaller lattice pion
masses which are in the crossover region. The huge discrepancies illustrate the need to go
to much finer lattices, and hence require significantly more High Performance Computing
time, before any conclusions for the continuum can be drawn.

37



6 Summary

We have started a systematic investigation of the phase structure of QCD with two flavours
of standard Wilson fermions at zero and imaginary chemical potentials. On coarse lat-
tices we find clear evidence for a first order chiral phase transition. However, comparison
between different lattice spacings and different discretisation schemes shows huge discreti-
sation artefacts. These have to be removed by future simulations on much finer lattices in
order to draw conclusions for continuum physics. This highlights the continued and grow-
ing need for High Performance Computing in elementary particle and nuclear physics.
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