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ABSTRACT

This lecture treats the magnetohydrodynamic (MHD) equi-
librium of axisymmetric plasmas, as given by the Grad-
Shafranov equation. In a brief introduction, equilibrium pa-
rameters such as the q-profile, the internal inductance, and
the poloidal beta are introduced. The properties of these
quantities will be illustrated in the case of the tokamak, by
applying the large aspect ratio tokamak approximation. The
properties of a non-circular plasma cross-section and the role
of the vertical field will also be discussed in this approxima-
tion. Some attention is given to the (numerical) problem
of solving the equilibrium equation and of reconstructing a
plasma equilibrium from external measurements. The nu-
merical methods themselves are presented in [1].

I. INTRODUCTION

Magnetic confinement experiments in fusion research have
a rich history in which a variety of magnetic configura-
tions [2, 3] have been tried, like stellarators, mirror machines
and pinch experiments. The first considerations were to con-
fine a plasma with as high as possible pressure in a magnetic
field that is limited in terms of required currents and external
forces. The confinement properties in many of these ‘op-
timized’ plasmas were below expectations due to instabili-
ties. As the theoretical understanding of plasma instabilities
grew, magnetic confinement devices that avoided these in-
stabilities were designed. More refined devices would often
be plagued by slightly more subtle instabilities. The toka-
mak emerged relatively late on the scene. Tokamaks are
characterized by a strong toroidal magnetic field. However,
as we will see, the force exerted by a purely toroidal field
is not pointed towards the plasma in all points. It cannot
prevent a toroidal plasma from expanding its major radius.
Therefore a poloidal field is required as well. The poloidal
field does not have to be as large as the toroidal field and in a
typical tokamak it is considerably smaller, by a factor which
scales with the aspect ratio (ratio of major radius to minor
radius) of the device. A poloidal field inside the plasma
is required for local force balance, and an external vertical
field has to be added to prevent the plasma as a whole from
increasing its major radius. The internal poloidal field can
only be created by a large toroidal plasma current. This cur-
rent is primarily created inductively, by the flux change in a

transformer yoke through the torus. An important disadvan-
tage of this scheme is that the flux can be changed only for a
finite duration, so that stationary operation is not possible. A
large research effort is presently being undertaken to drive a
major fraction of the plasma current by means of injected
radiofrequency waves and by the so-called bootstrap cur-
rent, created during the rather complex loss processes that
a high pressure tokamak plasma suffers. Another apparent
flaw of the tokamak design is the wastefully large toroidal
field, compared to the poloidal field and the plasma pres-
sure it can confine. The important advantage of the tokamak
is the inherent stability provided by both the strong toroi-
dal field and the large plasma current. The immunity of a
tokamak against some very fundamental and fast plasma in-
stabilities can easily be shown, but it seems that many less
straightforward plasma modes are naturally stabilized by the
‘robustness’ of this magnetic configuration.

In addition, some disruptive instabilities nowadays can
be avoided thanks to the increased experimental experience
with tokamak operation, and instabilities of the plasma posi-
tion are tackled with improved magnetic control techniques,
for instance. As a consequence, the most important insta-
bilities that are persistent in modern tokamaks have a rather
complicated spatial structure [2, 3, 4] and are likely to in-
volve subtle interactions between the kinetics of individual
particles and collective plasma motion.

On short timescales a tokamak plasmas show a vari-
ety of oscillations and turbulent phenomena. On sufficiently
long timescales (which depend on the size of the machine,
resistivity of the plasma, etc.) the plasma behaviour is gov-
erned by gradual changes in the magnetic configuration (in-
ternal or imposed by the coils) and by changes of the plasma
heating, the diffusive losses, and the ratios between particle
species. We will consider situations where there exists an
intermediate timescale on which the tokamak plasma is in
“equilibrium”. On this timescale, the plasma pressure and
the magnetic forces must balance. The proper equations for
this situation are provided by ideal MHD, which treats the
plasma as an idealy conducting fluid, subject to the low-
frequency Maxwell equations (no displacement current in
Ampère’s law: j = ∇ ×B). Ideal MHD equilibria satisfy
the force balance

∇p = j ×B . (1)

Together with the constraints ∇·B = 0 and ∇·j = 0, this
implies (according to a result from topology called Hopf’s
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theorem) that in a volume where ∇p 6= 0, the surfaces of
constant pressure are tori (either simply nested or in braids),
and one sees immediately from Eq. (1) that the field lines of
B and j lie in these surfaces [5]. The field lines can either
close in themselves after a finite number of revolutions, or
fill a magnetic surface ergodically. The third possibility, that
a field line fills a finite volume in space stochastically, can
happen in ideal MHD only if ∇p = 0 (and indeed, in a less
idealized plasma model, such a volume exhibits fast losses
of particles and energy). These results are applicable to all
closed confined plasma configurations and can even be gen-
eralized to cases with stationary plasma flow (rotation) or an
anisotropic pressure tensor. In the following, we will restrict
ourselves to magnetic fields that form a single set of nested
toroidal flux surfaces around a circular magnetic axis.

From the above we can conclude that closed flux sur-
faces are required to support a pressure gradient ∇p 6= 0,
i.e., to confine the plasma. This is also what one expects
after considering the microscopic picture, since individual
particles stick to a given flux surface as long as they con-
tinue gyrating around the same field line.

The constraint ∇·B = 0 implies that on a given mag-
netic surface field lines cannot cross each other. Therefore,
if one follows a field line around the torus, the ratio between
the numbers of toroidal and poloidal revolutions of the field
line converges to a constant q for n → ∞. The quantity q
is called the safety factor because of its importance in stabil-
ity criteria for a wide range of MHD modes. It is related to
the average pitch of the helical field on a magnetic surface.
Specifying the q values of all magnetic surfaces describes
the complete topology of the magnetic field lines. In partic-
ular, the q value of a magnetic surface with closed field lines
is a rational number, since each field line closes after integer
numbers of toroidal and poloidal revolutions.

II. THE GRAD-SHAFRANOV EQUATION

In order to describe axisymmetric MHD equilibria we will
initially use the right-handed cylinder coordinates (R, φ, Z),
where φ is the angle of symmetry and R measures the dis-
tance to the axis of symmetry (the major radius in a toroidal
system). Using

0 = ∇·B =
1
R

∂
∂R

(RBR) +
1
R

∂Bφ
∂φ

+
∂BZ
∂Z

, (2)

and the symmetry (∂/∂φ = 0 when acting on a a scalar) one
can write B in terms of a stream function ψ,

B = Bp +Btφ̂ ; Bp = ∇ψ ×∇φ ,

where φ̂ = R∇φ and where Bt and ψ do not depend on φ.
Whenever Bp 6= 0, the magnetic field lines lie on surfaces
of constant ψ. They are called flux surfaces because ψ is re-
lated to the poloidal flux ψp, for instance through an annulus
in the equatorial plane defined by

S = {Z = 0, R(ψ1) < R < R(ψ2)} . (3)

We write the poloidal field as Bp = ∇ × (ψ∇φ). The po-
loidal flux through the surface S is

ψp =

∫

S

Bp ·dA =

∫

S

∇× (ψ∇φ)·dA

=

∮

∂S

ψ∇φ·dℓ = 2π(ψ2 − ψ1) . (4)

The total poloidal flux (vacuum as well as plasma field)
through the circular magnetic axis is found by taking for ψ1

and ψ2 the values on the magnetic axis and at R = 0), re-
spectively.

The current density is given in terms of the magnetic
field by Ampère’s law,

j = ∇×B = ∇× (∇ψ ×∇φ+RBt∇φ)
= −△∗ψ∇φ+∇(RBt)×∇φ . (5)

where the elliptic, Laplacian-like Grad-Shafranov operator
△∗ is defined by

△∗ψ = R2∇·
(∇ψ
R2

)
= R

∂
∂R

(
1
R
∂ψ
∂R

)
+
∂2ψ

∂Z2 . (6)

(In the last step in (5) one can use the dyadic identity
R2∇∇φ = −∇R∇φ−∇φ∇R.) The final ingredient is the
momentum balance equation (1). We will discuss its three
vector components formed by taking the scalar products of
Eq. (1) with B, j, and ∇ψ, respectively. The first compo-
nent, B·∇p = 0, implies that the flux surfaces are surfaces of
constant p(ψ) (“p is a flux function”). Using this result, the
second component of the force balance, j·∇p = 0, tells that
the current flows along the flux surfaces. For expression (5)
it has the consequence thatRBt is a surface quantity as well.
We write

RBt = F (ψ) . (7)

This quantity F (ψ) is related to the poloidal current through
the surface S, given in Eq. (3). It follows from (7) that the
poloidal current density, which is the second term in expres-
sion (5), can be written as jp = ∇ × (F∇φ). Hence, the
total current through S can be derived as an integral similar
to the one for the poloidal flux (4), is

Ip =

∫

S

jp ·dA =

∫

S

∇× (F∇φ)·dA

=

∮

∂S

F∇φ·dℓ = 2π
(
F (ψ2)− F (ψ1)

)
.

If one takes R(ψ1) = 0, Ip includes the current flowing in
the toroidal field coils as well as the poloidal plasma current.
Finally, in terms of the two flux functions p(ψ) and F (ψ),
the force balance in the ∇ψ direction gives

△∗ψ = −R2 dp
dψ

− F
dF
dψ

. (8)
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This 2-dimensional partial differential equation in ψ is called
the Grad-Shafranov equation [6, 7, 8]. For given functions
p(ψ) andF (ψ), it is an elliptic second order nonlinear differ-
ential equation for ψ. Sufficient boundary conditions would
be to specify ψ everywhere on a closed contour, by speci-
fying the shape of one flux surface, for instance. If a fixed
outer surface of the plasma is specified, then in essence the
plasma-vacuum boundary is replaced by the surface of a per-
fect conductor (on which ψ is necessarily constant). This
is a fixed boundary condition, which defines ψ in the en-
tire plasma. By specifying a flux surface in the vacuum
region, one has a free boundary problem. Taking into ac-
count the currents in the coils leads to a somewhat different
approach [9]. One can use the known currents in the coils
and an assumed plasma current distribution to compute ψ
on a boundary which is convenient for the computations, a
rectangle, say. With these Dirichlet boundary conditions one
then solves the Grad-Shafranov equation in the interior. This
leads to a different plasma current distribution than origi-
nally assumed, and one iterates the procedure. As an al-
ternative, or in addition to considering the coil currents and
computing B in the metal parts as well as the vacuum, po-
loidal field measurements can be available close to the coils
or near the plasma. This makes the set of boundary condi-
tions altogether more inhomogeneous and a very adaptable
equilibrium solver is required. The system can even be over-
determined and to a certain extent the functions p(ψ) and
F (ψ) can then be computed.

III. FLUX COORDINATES

Of great importance in equilibrium calculations, but also in
the modelling of plasma transport and in stability analyses,
are flux coordinates (r, θ, φ). Here φ is the usual toroidal
angle. The radial coordinate r(ψ) labels the flux surfaces.
It can be the flux itself, or the volume enclosed by each
flux surface, or can be chosen to closely resemble the mi-
nor radius (distance to the magnetic axis). One possibility
is the minor radius at Z = 0. Another definition takes the
square root of the area of the cross section. The differences
between such definitions are easy to account for and usu-
ally not very important. The various definitions [10, 11, 12]
used for the poloidal angle θ, however, are convenient in
very specific applications: (i) the proper geometrical angle
can be used when the geometry is fixed, for instance in to-
mographic diagnostic methods, (ii) an orthogonal coordinate
system (∇r ·∇θ = 0) is convenient in ballooning stabil-
ity analysis and in solving the Grad-Shafranov equation by
means of the conformal mapping method [13], (iii) and most
universally applied, especially in stability studies, are coor-
dinates in which the field lines appear straight [14]. In these
coordinates the pitch dφ/dθ of the field lines is a constant
on each flux surface. This constant, of course, is precisely
q(ψ).

Figure 1: Flux coordinate systems. Left: proper poloidal angle;
center: straight fieldline coordinates; right: orthogonal coordinates

For general flux coordinates (r, θ, φ) the Jacobian is

J ≡ |∇r ×∇θ ·∇φ|−1 =
R

|∇r|
dℓ
dθ
.

The general line element and the metric tensor are now given
by

ds2 = grrdr
2 + 2grθdr dθ + gθθdθ

2 + gφφdφ
2 ,

grr =
J2

R2 |∇θ|2 , grθ = − J2

R2∇θ ·∇r ,

gθθ =
J2

R2 |∇r|2 , gφφ = R2 .

By applying the general operator identity

∇ = ∇r ∂
∂r

+∇θ ∂
∂θ

+∇φ ∂
∂φ

=
1
J

( ∂
∂r

∇r + ∂
∂θ

∇θ + ∂
∂φ

∇φ
)
J

to the operator △∗, we can derive the Grad-Shafranov equa-
tion in flux coordinates,

R2

J
ψ′
[
∂
∂r

(gθθψ′

J

)
− ∂
∂θ

(grθ
J

)
ψ′
]
+R2p′+FF ′ = 0 , (9)

where a prime denotes d/dr. This expression can immedi-
ately be adapted to any particular flux coordinate system. In
particular, we will use it in the next section, where we will
employ approximate flux coordinates to describe flux sur-
faces with almost circular poloidal cross sections.

We will now use the coordinate system to express the
safety factor q(ψ) in terms of the magnetic field. Due to
toroidal symmetry, the ratio between toroidal and poloidal
revolutions of the field lines can be found with an integral of
dφ/dθ over just one poloidal revolution,

q(ψ) =
1
2π

∫ 2π

0

dφ
dθ

dθ =
1
2π

∮
Bt
R

dℓ
Bp

.

Here we have used that the pitch of the field lines is locally
given by the ratio between the toroidal and poloidal field
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components. By writing B = ∇ψ × ∇φ + F (ψ)∇φ the
safety factor can be written as

q(ψ) =
F
2π

∮
dℓ

R|∇ψ| =
F

2πψ′

∮
J
R2 dθ . (10)

The last definition we introduce here in general flux coor-
dinates is the flux surface averaged value 〈X〉 of a given
quantity X . In order to be compatible with volume inte-
grals,

∫
〈X〉d3x =

∫
Xd3x, it is a suitably weighed integral

over the flux surface,

〈X〉 = lim
∆V→0

1
∆V

∫ ψ+∆ψ

ψ

X dV =

∮
X
dℓ
Bp

∮ dℓ
Bp

=

∫ 2π

0 XJ dθ
∫ 2π

0
J dθ

.

Here, V (ψ) is the volume enclosed by the flux surface given
by ψ. The integral in (10) can be written as a flux average,

q =
F
4π2

〈 1
R2

〉dV
dψ

.

IV. LARGE ASPECT RATIO EXPANSION

All tokamak equilibria have some global properties in com-
mon, which can be discussed either qualitatively or quan-
titatively, but in the latter case this generally requires nu-
merical solutions of the Grad-Shafranov equation. Instead,
we will restrict ourselves to a discussion of equilibria with
almost circular poloidal cross sections and a small inverse
aspect ratio ε, so that a purely analytic treatment is pos-
sible [2, 10, 11]. Thus we will discuss some properties of
plasma shaping effects (deviations from circular cross sec-
tions) and the outward shift, called Shafranov shift), of the
plasma centre under the influence of high plasma pressure.

Our flux coordinates will be θ, the geometric angle with
respect to the Shafranov shifted [10] center of each flux sur-
face (R,Z) = (R0 − ∆(ψ), 0), and r(ψ), the θ-averaged
minor radius of the flux surface. The distance ρ to the centre
of a flux surface will be subject to shaping functions Sm(r)
(m ≥ 2),

R = R0 −∆(r) + ρ cos θ

Z = ρ sin θ

ρ = r −
∑

m≥2

Sm(r) cos mθ .

The relation to the generally used notation

R = R0 + a cos(θ − δ sin 2θ)

Z = κa sin θ

is that the elongation is κ = 1+ 2S2/r and the triangularity
is δ = 4S3/r. Our approximation is ε = a/R0 ≪ 1; hence
we use the ordering r = O(εR). Deviations from centered
circles are taken to be one order smaller, ∆ = O(ε2R), and

Sm = O(ε2R). We will neglect smaller terms, O(ε3R),
throughout. In order to express the Grad-Shafranov equation
in these coordinates we need

grθ =
∂Z
∂r

∂Z
∂θ

+
∂R
∂r

∂R
∂θ

= r∆′ sin θ +
∑

m

mSm sin mθ +O(ε2r) ,

gθθ =
(∂Z
∂θ

)2
+
(∂R
∂θ

)2

= r2 − 2r
∑

m

Sm cos mθ +O(ε2r2) ,

J = R
(∂R
∂θ

∂Z
∂r

− ∂R
∂r

∂Z
∂θ

)

= −rR0

[
1 +

( r
R0

−∆′) cos θ

−
∑

m

(
S′
m +

Sm
r

)
cos mθ +O(ε2)

]
.

Substituting these expressions in Eq. (9), and keeping only
leading order and O(ε) terms in the result, we obtain

ψ′2

r

{
1 + (r∆′′ +∆′ − r

R0
) cos θ

+
∑

m

[
r2S′′

m + rS′
m + (1−m2)Sm

]
cos mθ

}

+ ψ′ψ′′
{
1 + 2∆′ cos θ + 2r

∑

m

S′
m cos mθ

}

+R2
0

(
1 + 2

r
R0

cos θ
)
p′ + FF ′ = 0 . (11)

The leading order terms do not depend on θ and form the
radial force balance,

1
2r2

(
r2ψ′2)′ +R2

0p
′ + FF ′ = 0 . (12)

It is the balance between the forces exerted by the plasma
pressure (∇p) and by the magnetic pressure (∇1

2B
2), and

describes how the poloidal and toroidal magnetic fields pre-
vent the plasma from expanding in the ∇r direction. It
would be the exact force balance if the plasma column were
a cylinder. We will define now the quantity poloidal beta, in
an arbitrary flux surface enclosing a volume V0 as

βp(r0) =
2
V0

∫ V0

0 p dV

〈B2
p〉0

,

In the case of circular cross sections this becomes

βp(r0) = −2
R4

0q
2

F 2r40

∫ r0

0

p′r2dr . (13)

Multiplication of Eq. (12) by r2 and integrating yields

βp(r0) = 1 +
1

r20ψ
′2

∫ r0

0

dF 2

dr
r2 dr .
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One sees that if βp > 1, then dF 2/dr > 0 and the toroidal
field contributes to confinement of the pressure. If βp < 1,
however, the toroidal field counters confinement since then
dF 2/dr < 0. However, due to the toroidal shape of the
configuration, radial confinement is not sufficient, since θ-
dependent terms unavoidably appear in the force balance
equation. They are the factors R that appear in the Grad-
Shafranov equation (10) and the operator (6). Consequently,
Eq. (11) contains O(ε) terms proportional to cos θ. This
component of the Grad-Shafranov equation yields a radial
equation for the Shafranov shift [10],

∆′′ +
(
2
ψ′′

ψ′ +
1
r

)
∆′ − 1

R0
+ 2

rR0p
′

ψ′2 = 0 . (14)

This equation expresses how the poloidal field prevents the
flux surfaces from expanding in the ∇R direction. Since
the shift ∆ is always smaller than the plasma minor radius,
this equation limits the pressure to values of the order of
RB2

p/a, which for Bp ∼ εBt implies that the pressure is
O(ε) smaller than the magnetic pressure,

β =
2p

B2 = O(ε) ,

which is called the high-β tokamak ordering. In our order-
ing, ∆′ = O(εr), which corresponds to the low-β tokamak
ordering,

β =
2p

B2 = O(ε2) .

Equation (14) can be integrated after writing ψ′ =
−rF/qR0 +O(ε2) and multiplying by r3/q2. This yields

∆′ = r
R0

(
βp +

1
2ℓi

)
, (15)

where the normalized internal inductance at a flux surface
with r = r0 and enclosed volume V0 is defined by

ℓi(r0) =
2Li
R0

=
4

I2p (r0)R0

∫ V0

0

1
2B

2
p dV . (16)

The plasma internal and external inductances are given by

1
2LiI

2
p =

∫

plasma

1
2B

2
p dV ,

1
2LeI

2
p =

∫

plasma

1
2B

2
p dV .

In the case of a circular cross section Eq. (16) gives approx-
imately

ℓi(r0) = 2
q2

r40

∫ r0

0

r3

q2
dr .

Equation (15) describes force balance in the ∇R direction in
the interior of the plasma. The first term to the right arises
because the plasma pressure tries to increase the plasma vol-
ume. Since V ≈ 4π2r20R, this can be done not only by
increasing the minor radius of a flux surface (p′-term in
Eq (12)) but also by increasing its major radius. The second

term on the right is due to the toroidal current. It is the hoop
force due to the self-inductance of a current carrying circuit.
The balancing term on the left is caused by the compression
of the flux surfaces, i.e., compression of the poloidal flux, at
the low field side of the torus.

At the plasma surface r = a, the horizontal force bal-
ance is not automatically satisfied. At the plasma surface the
poloidal field is

Bp =
|∇ψ|
R

=
ψ′g1/2θθ

J

= − ψ′

R0

[
1 +

a
R0

(
βp +

1
2ℓi − 1

)
cos θ

]
. (17)

These values of Bp on the surface should match the solu-
tion in the surrounding vacuum region. The vacuum field
satisfies ∇ × B = 0, i.e., △∗ψ = 0. It is possible to inte-
grate the vacuum equation outward starting with the initial
values (17). The dominant contribution in (17), the poloidal
field generated by the plasma current, vanishes for R → ∞.
The cos θ terms in (17) and in △∗ do not vanish at infin-
ity, however. The asymptotic value of Bp is proportional to
cos θ, i.e., it is a vertical field. In other words, the surface
poloidal field (17) cannot be generated by the plasma cur-
rent alone. An external vertical field is required. This field
can be provided by vertical field coils, but for short tokamak
discharges a conducting shell sufficiently close to the plasma
can provide the force balance. The poloidal flux is then com-
pressed between the plasma and the conducting shell when
the plasma shifts outward during heating. In practical situ-
ations the calculation of the external fields can be compli-
cated, but by computing the integrated quantity 〈Bp cos θ〉
from Eq. (17) one can arrive after some manipulations at the
following identity given by Freidberg [2],

2πR0IpBv =
1
2I

2
p
∂
∂R0

(Le+Li)−2π2

∫
dr r2

(
p′− FF ′

R2
0

)
.

The term on the left-hand side is the inward force of the ver-
tical field acting on the toroidal plasma current. It balances
the four outward forces on the right. The first two of these
represent the hoop force of the plasma current via the self-
inductance, to which the poloidal fluxes inside and outside
the plasma contribute. The third term is the tire tube force
due to the pressure gradient, and the last term is the (1/R)
magnetic force, directed outward if βp < 1 and inward if
βp > 1 (see comments below Eq. (13)).

Equation (17) also expresses that the quantity βp + 1
2ℓi

of the entire plasma can be deduced from the external poloi-
dal field, without knowing the pressure and current distribu-
tion in the plasma. However, this measurement alone does
not provide the total plasma pressure (as expressed in βp)
separately.

More information can be extracted from the vacuum
field if the plasma has a non-circular cross section. Equa-
tion (11) contains the higher poloidal harmonics due to shap-
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ing coefficients. The cos mθ terms are

S′′
m +

(
2
ψ′′

ψ′ +
1
r

)
S′
m +

1−m2

r2
Sm = 0 . (18)

Near the plasma centre, ψ′ is approximately proportional to
r so that this equation becomes

S′′
m +

3
r
S′
m +

1−m2

r2
Sm = 0 ,

which has solutions Sm ∼ r±m−1. Only the solution
∼ rm−1 is regular in r = 0. If one integrates Eq. (18)
outward, starting with the regular solution at r = 0, one
obtains Sm and S′

m at the plasma boundary. These values
can be determined by external measurements. Since equa-
tion (18) involves ψ′ ∼ r/q, these measurements provide
(crude) information about the q(r) profile. This gives an es-
timate of ℓi. Concluding, βp can be obtained directly from
magnetic measurements if there is sufficient plasma shaping,
especially elongation.

V. EQUILIBRIUM IDENTIFICATION

For several purposes it is required to know the equilibrium
configurations of tokamak plasmas, i.e., the current profile,
the pressure profile, and the positions and shapes of the flux
surfaces (or, alternatively, the direction and magnitude of
the poloidal magnetic field). Primarily, this information has
to be deduced from the known coil currents and magnetic
measurements well outside the plasma, typically near the
coils. The problem is to find a smooth solution of the Grad-
Shafranov equation that best fits the measurements (Neu-
mann conditions on a closed boundary) [9]. Smoothing, and
the inclusion of assumptions on ”reasonable” profiles is nec-
essary because the reconstruction problem is inherently ill-
posed: small changes (errors, inconsistencies) in the mag-
netic measurements outside the plasma cause changes in the
solution that inflate dramatically further inward.

When accuracy rather than speed and automatic opera-
tion is the issue, a lot can be gained by using additional in-
formation: density and temperature measurements provide
information on the pressure profile, motional Stark effect or
Faraday rotation give poloidal field values inside the plasma,
and hence information about the current density. In addition
there can be discrete pieces of information: is the plasma
touching the limiter? Do observed plasma oscillations give
the radius of a specific rational-q surface?

Much depends on the specific purpose of the reconstruc-
tion. Here we list a few.
1. Fast reconstruction during the discharge. During a dis-
charge, immediate knowledge about the plasma position is
often required for control. This requires good modelling
of the vacuum boundary conditions, the coils, and the iron
around the machine. The modelling of the plasma equilib-
rium itself need not be as accurate as in other applications.

Therefore crude assumptions about the plasma current and
pressure profiles may be used.
2. Interpretation of some plasma measurements. Some
tokamak diagnostics measure quantities inside the plasma
integrated over a line of sight. If the original quantity is a
flux function (for instance the electron density as measured
by an interferometer system), additional information is re-
quired to deduce this flux function from the set of line in-
tegrated measurements. This is required for instance if one
has to combine different flux quantities (density and tem-
perature in order to obtain the pressure). For such a profile
reconstruction one needs to know both the positions of the
lines of sight and the shapes and positions of the flux sur-
faces. Since the problem is entirely geometrical, accuracy
of the pressure and current profiles in the Grad-Shafranov
equation is only important insofar the shapes of the flux sur-
faces are concerned.
3. Plasma energy, heating and transport simulations. To
study transport rates and local power balance in the plasma
it is important to get optimal information about the plasma
pressure from magnetic and other measurements. For cor-
rect interpretation of the data, the presence of impurity par-
ticle species and non-thermal particle populations may have
to be accounted for.
4. Stability analysis. In order to analyze the stability of
plasmas (planned or experimentally produced), knowledge
of the current density (q-profile) and local pressure gradi-
ents is important. For many numerical stability calculations,
a precise numerical solution of the Grad-Shafranov-equation
is more important than an accurate fit to all available exper-
imental data.
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