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Abstract
The understanding of the forces among nucleons is fundamental to the whole of
nuclear and hadronic physics. The nucleon-nucleon (NN) scattering is the ideal
probe to study the nuclear forces. The scattering amplitudes for the complete
description of the NN interactions can be reconstructed from phase-shift analyses
(PSA), which requires measurements with polarized experiments. The existing
data allow to extract unambiguous proton-proton (pp) amplitudes below 2 GeV.
However, there is very little known about the neutron-proton (np) system above
800 MeV nucleon energy. THE ANKE-COSY collaboration has embarked on a sys-
tematic program which aims to extract the np scattering amplitudes through the
deuteron-proton charge-exchange process dp→ {pp}sn. First part of the program
via polarized deuteron beam and hydrogen target allowed successful measurement
of np amplitudes up to 1.135 GeV nucleon energy, which is the maximum nucleon
energy that can be accessed with deuteron beam at COSY. Via inverse kinematics,
i.e. using a proton beam incident on a polarized deuterium target will allow to
enhance the np study up to 2.8 GeV, the highest energy available at COSY. The
method of inverse kinematics has to be validated prior to the production experi-
ment. As the proof-of-principle (POP) experiment, the initial research has been
conducted at proton energy Tp = 600 MeV using a polarized deuterium target. The
projectiles were measured by two silicon tracking telescopes (STT) placed closed
to the target and by the ANKE sub-detection systems. Four polarization modes
of the deuterium target were employed. In order to increase the effective target
thickness, polarized deuterium atoms produced by the atomic beam source (ABS)
was filled into a storage cell, where the circulating COSY beam collides with the
target. The target polarizations were measured using the proton-deuteron elastic
reaction. The vector and tensor analyzing powers Ay and Ayy of pd⃗ → n{pp}s
were measured for momentum transfers q > 160 MeV/c. These data connect s-
moothly with the previous measurements at q 6 140 MeV/c performed using a
polarized deuteron beam. The data presented in present thesis are well reproduced
by the impulse approximation using the SAID np amplitudes. The results there-
fore proves that it is possible to continue the np programme at higher energies at
ANKE.
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Chapter 1

Introduction

1.1 Physics Motivation
Human’s inherent curiosity is the driving force which pushes physics develop-

ing forward. What on earth is the world we live in? How does it operate? What
is it made of? What holds it together? Every human being asks these questions
in the childhood. For thousands of years, people tried to find the answers to those
questions by investigating different aspects of the world, and several branches of
physics haven been developed. On this exciting journey, many physicists devoted
enormous wisdom and efforts, which have crystallized into the precious knowledge.
By studying the motions of the planets, the classical mechanics was established, it
describes how an object moves, provided that this object is neither too small nor
too fast. The classical mechanics is the foundation upon which the other branches
of the physics were built. Thermodynamics deals with the phenomena such as
heat, temperature, energy and work, its applications directly resulted the first in-
dustrial revolution. Another branch of physics, the electrodynamics, generalizes
the laws of the electric and magnetic phenomena by the brief and nice Maxwell
equations, which is usually regarded as the most beautiful theory in physics.

The above branches all belong to the classical physics, they were so successful
that physicists once thought the whole physics had been established perfectly. In
the late nineteenth century, two untackled problems, i.e. the black-body radiation
problem and the surprising result of the Michelson-Morley experiment [1], trig-
gered the discovery of the modern physics: the quantum physics and the relativity
theory, which have developed rapidly in both depth and width in the twentieth
century. As results, many new subjects were established. Among these new sub-
jects, the subatomic physics has always been at the frontier of modern physics, it

1
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studies the elementary building blocks of the world and the interactions between
them. In 1897, via studying the cathode rays J. J. Thomson discovered the elec-
tron [2], which is the first subatomic particle ever been found. J. J. Thomson
measured the velocity and the specific charge of electron using (crossed) electric
and magnetic fields. The experiment results showed that the specific charge of
electron is nearly two thousands larger than that of hydrogen ion, which was re-
garded as the lightest particle before 1897. Moreover, J. J. Thomson found this
new particle could be produced from various materials, thus he postulated that
electron was a common constituent of all atoms, spreading uniformly in a homo-
geneous bulk of positively charged material, like the plums in a pudding. Starting
from 1909, Ernest Rutherford, together with his assistants Geiger and Marsden,
began to perform an experiment to test Thomson’s plum pudding model. They
fired α particles at a thin gold foil, and observed the deflection of the outgoing α
particles. According to the plum pudding model the α particles should go straight
through the gold foil, at most be deflected just a little bit. Astonishingly, they
found although most of the α particles passed through the gold foil almost undis-
turbed, a little fraction of them (about one in ten thousand) were deflected at
very large angles. In 1911 Ernest Rutherford published the results and proposed
his new model of the atom [3]. According to Rutherford’s model, the positive
charge and the most mass of atom are concentrated in the center, occupying only
a tiny fraction of the space, while the electrons are spread around. In this famous
experiment Rutherford and his cooperators discovered the nucleus, which started
the era of nuclear physics. Based on Rutherford’s model, Niels Bohr proposed
the Bohr model for atoms and the primitive quantum theory in 1913 [4], which
successfully explained the spectrum of the hydrogen atom. Rutherford named the
core of the hydrogen atom as proton. At first physicists naturally thought that
the heavier nuclei should be composed of more protons bound together, hence the
atomic mass was supposed to be proportional to the atomic number. However, ex-
periments showed that the atomic masses of the heavier atoms are evidently larger
than expected. in 192, in order to account for this fact, Rutherford postulated
that, besides the protons there ought to be neutral and massive particles inside
the atomic nucleus yet to be discovered. In 1930 James Chadwick, Rutherford’s
student, discovered a nuetral and radioactive stream when he bombed Beryllium
target with an α beam. Unlike gamma rays, this stream didn’t induce the photo-
electric effect. In 1932 Chadwick declared that the neutral stream was the particle
which Rutherford had postulated, i.e. the neutron [5, 6]. Not only did Chadwick
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discover the neutron, but also he determined the mass of neutron by applying
momentum conservation technique to the following reaction.

4
2α + 9

4Be → 12
6 C + 1

0n

Remarkably, the neutron mass was measured to be almost the same as the proton
mass. It seems that Chadwick’s discovery completed the scenario of the nucleus,
however, since there only positive and neutral constituents, the nucleus could not
exist due to the repulsive electric force. Eugene Wigner asserted there must be an
attractive force which hold the nucleus together. This attractive force is the nuclear
strong force. In view of that proton and neutron have almost identical masses,
Heisenberg came up with the concept of isospin soon after the discovery of the
neutron, he proposed to regard the proton and neutron as two states of a single
particle, i.e. the nucleon. According to Heisenberg’s hypothesis, the strong force,
unlike the electromagnetic force, is irrelevant to the electric charge. Furthermore,
the nuclear strong force must act over a very short range, otherwise it would
manifest itself earlier. These distinct features suggested that the nuclear strong
interaction was completely different from the other interactions which physicists
were familiar with, indeed its properties were barely unknown at that time. Since
then, many physicists have pursued to uncover the nature of the nuclear force.

The first scientist who attempted to theoretically describe the nuclear strong
interaction was Hideki Yukawa, he assumed in 1935 that there ought to be some
particle mediating the nuclear force [7], just like the photon mediates the electro-
magnetic interaction. Given the short range of the nuclear strong force, Yukawa
postulated that the mediator must be quit heavy, his calculation indicated that
the mass of the mediator should be about one sixth of the proton mass. Since its
mass is between those of electron and proton, this mediator was named as meson.
Later in 1947, π meson was discovered in the cosmic rays, which coincided with
Yukawa’s particle. Yukawa was awarded the Nobel prize for physics in 1949 “for
his prediction of the existence of mesons on the basis of theoretical work on nu-
clear force”. However, Yukawa’s one-pion theory of the nuclear force itself is not
successful. Heavier force carriers were required to account for the nuclear force
at shorter distances. Moreover, the dynamical behaviors of pion itself was not
taken into account in Yukawa’s theory. Later, more theories and modes for the
nuclear interaction appeared. Some physicists introduced the multi-pion exchange
model, where several pions can be treated as a single boson thanks to the strong
correlation between them. With the discoveries of heavier mesons, heavy-meson
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exchange theories were also developed. Except for the meson exchange theories,
other theoretical attempts such as phenomenological potentials and quark models
based on QCD theory were also proposed. Unfortunately, none of the present
theories can satisfactorily explain all the experiments, and there are usually too
many free parameters in those theories and models.

Through above discussion one can see that the nature of the nuclear strong
interaction is so complicated that it is not possible to deduce it only from several
experiments, as is possible in the cases of gravitational law and electromagnetic
law. A lot of measurements are needed to acquire information on the nuclear
strong interaction. Besides the bound systems of nucleons such as deuteron, the
nucleon-nucleon (NN) scattering is the best probe to study the nuclear force. To
perform the comparison between experiment and theory, it is convenient to define
some quantities which can not only be derived directly from the theories but
also summarize the experiment results. In fact the scattering amplitudes are very
suitable to be such quantities, they could be deduced using the phase-shift analysis
(PSA) from the experimental observables such as cross section, analyzing powers
and spin correlation coefficients etc. Reversely, the experimental observables can
be calculated from the amplitudes by the impulse approximations. On the other
hand, the scattering amplitudes can be calculated from theory.

In the the following a short review of the NN scattering experiments in the
intermediate and high energies is given in section 1.2. Since the polarized experi-
ments involve many spin observables, it is necessary to introduce these quantities.
In section 1.3 the complete description of reactions with spin is discussed in detail,
through which the polarized observables are introduced.

1.2 Overview of the NN Scattering Investigation
The nucleon-nucleon (NN) system is an object with spin degree of freedom,

therefore a thorough NN investigation is not possible without the polarized ex-
periments. In the following, a brief introduction to the types and basic principles
of the polarized beams and polarized targets which are most often utilized in the
NN investigations is given first, then the measurements of the NN scattering at
intermediate and high energies are summarized.
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Polarized Beams

Generally speaking, the polarized beams can be classified into two categories
according to their production approaches. The first type of the polarized beams
are realized by collecting the products of certain nuclear reactions, whose final par-
ticles are usually polarized due to their spin-dependent dynamics. On the other
hand, the second approach is based on the properties of spin itself, in this ap-
proach the particles are first polarized in the ion sources by the static magnetic
fields and the radio-frequency electromagnetic fields, and then accelerated to the
required energies by accelerators. In the early investigations in 1950s and 1960s
the polarized beams were largely prepared through the nuclear reactions, where
the unpolarized targets were bombarded by the unpolarized beams, the products
were usually polarized thanks to the spin-dependence of the nuclear reactions. If
a secondary beam of certain final particle was produced with small energy spread,
low emittance and high polarization, it can be used as polarized beam to perform
polarized measurements by bombarding other targets. These experiments are of-
ten referred as double-scattering experiment as they involve two scatterings. It is
obvious that in the double-scattering experiments it is hard to adjust the energy ,
and the qualities1 of the secondary beams are not good. Later, with the advance
of the polarized ion sources [8] and the development of the polarized-beam acceler-
ation, most laboratories started to perform experiments with the polarized beams
provided directly by the accelerators. For instance, the IUCF at Indiana Universi-
ty, the TRIUMF at Canada’s national laboratory for particle and nuclear physics,
the LAMPF at the Los Alamos Laboratory, the SATURNE at the Saclay research
center, the COSY at the Jülich research center, the RHIC at the Brookhaven
laboratory etc., have hosted many polarized experiments. Since neutron can not
be accelerated, the method of nuclear reaction is used for producing the polarized
neutron beams. Unlike the double-scattering experiment mentioned previously,
polarized proton/deuteron beams are impinged on certain targets, and the polar-
ization are transferred form the primary beams to the secondary neutron beams by
the deuteron breakup or by the collisions between the free proton and the bounded
neutron. In such processes the energy of the neutron beam can be controlled. The
SATURNE II–IKAR collaboration first obtained the free neutron beam with po-
larization of 0.59± 0.02 via the dueteron breakup on the Be target [10, 11]. Later
the SATURNE II–NN collaboration also did experiments with polarized neutron
beam. TRIUMF laboratory produced the polarized neutron beams through the

1i.e. the beam intensity and the phase space density.
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reaction between the polarized proton and unpolarized deutron target [13]. At Los
Alamos laboratory, targets of D, Be, as well as 6Li and 7Li were employed to col-
lide with the polarized proton for the polarized neutron beam production [14–16].
PSI obtained the polarized neutron beams via the proton-carbon scattering [17].

Polarized Targets

According to the production principle, the polarized targets used for the NN
scattering investigations can be classified into two types, i.e. the polarized solid
target [18] and the polarized gas target [19].

In the production of the polarized solid targets, the first step is to polarized
the unpaired electrons in some specific sold material. The unpaired electrons have
spin magnetic moments of µ⃗e = ge

µB

~ S⃗
2, when subjected to external magnetic field

B⃗ and temperature T the distribution of the unpaired electrons in equilibrium obey
the Boltzmann statistics

n↑↓ = n0 · e
µ⃗e·B⃗
kT = n0 · e

∓µBB

kT , (1.1)

where n↑ and n↓ denote the number of the unpaired electrons with spin parallel and
antiparallel to the external magnetic field B⃗, and n0 =

n↑+n↓
2

stands for the half of
the unpaired electrons. It can be derived from Eq. 1.1 that the spin polarization
of the unpaired electron is

Pe =
n↑ − n↓

n↑ + n↓
=
e−

µBB

kT − e
µBB

kT

e−
µBB

kT + e
µBB

kT

= tanh
(
−µBB

kT

)
. (1.2)

Assuming that B = 2.5 T and T = 1K, using the constants µB = 5.8×10−15eV /T

and k = 8.6 × 10−5eV /K one can get the electron polarization Pe = −0.93. It
shows the polarization of the unpaired electrons in the solid material are very high
under the circumstance of low temperature and high magnetic field. Customarily
the mechanism for producing polarization descried above is called Brute-force
polarization. On the contrast, due to the extremely small proton magneton ( µp

µB
=

1.52 × 10−3), the proton spin polarization are smaller than that of the unpaired
electrons by 3 orders of magnitude for the same magnetic field and temperature. It
is therefore obvious that the Brute-force polarization mechanism can not be used
for polarizing the spin of proton or deuteron. To obtain the nuclear polarization

2ge ≈ −2 and µB = e~
2me

are the electron spin g factor and the Bohr magneton respectively.
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one has to utilize the so called Dynamic Nuclear Polarization (DNP) [20] to transfer
the polarization from electron to proton (or deuteron).

Figure 1.1: Principle of the dynamic nuclear polarization (DNP).

Fig. 1.1 illustrates the basic principle of the nuclear dynamic polarization. In
a solid target, the unpaired electrons and the protons in the lattice form hydrogen-
like systems, which split into four Zeemman states in a external magnetic field B⃗.
If B = 5 T , the split caused by the interaction between the external field and the
electron is 140 GHz, and the split caused by the interaction between the electron
and the proton is 210 MHz, corresponding to the Larmor precession frequencies of
electron (ωe) and proton (ωp) respectively. As shown by the plot, the electron spin
is polarized due to the Brute-force mechanism, i.e. more hydrogen-like systems
populate in the states |↓↓⟩ and |↓↑⟩ than in the states |↑↓⟩ and |↑↑⟩. If a radio-
frequency magnetic field Brf with frequency ωe − ωp is applied transversely with
respect to the static magnetic field B⃗, the hydrogen-like systems at the state
|↓↓⟩ will absorb energy and transit to the state |↑↑⟩. Then the electron spin
flips and the hydrogen-like system transit to the low-energy state |↓↑⟩. In this
manner most of the proton spins will align parallel to the external magnetic field
B⃗, thus positively polarized protons are prepared. Similarly, negative proton spin
polarization will be achieved when a rf magnetic field with frequency ωe + ωp

is applied. Note the influence of the dipole coupling between the electron spins
on the energy levels has to be taken into account when the concentration of the
unpaired electron is high [18]. Actually, there should be enough unpaired electrons
in the solid target in order to have high polarizing efficiency. Chemical doping
and radioactive irradiation are used for producing unpaired electrons [18]. For
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instance at Saclay and Gatchina, polarized targets were made of chemically doped
butanol (C4H9OH) and propanediol (C3H8O2) [21], while ammonia targets such
asNH3 andND3 were irradiated with electron beams. After the polarizing process
is completed, the target will be transferred to the target zone where a medium
magnetic holding field (0.3-0.4 T) and extremely low temperature ( 50 mK) present
for experiment. Such operation manner is customarily referred as frozen spin
mode. In principle polarization in any direction can be realized by setting the
direction of the holding field. Therefore, various observables can be accessed with
solid polarized target in frozen spin mode.

Different from the polarized solid target, the polarized gas target [19] first
makes use of inhomogeneous magnetic field at room temperature to polarize the
electrons and then get the nuclear polarization by inducing certain Zeeman tran-
sitions using rf electromagnetic fields. The principle and the components of the
polarized gas target are discussed in detail in section 3.3 of present thesis. Nucleon-
nucleon scatting researches with polarized gas target mainly include the EDDA
experiment [22] and ANKE experiment [23].

Summary of the NN Scattering Measurements at Interme-
diate and High Energies

With the advances of polarized beam and polarized target, many research
institutions studied the nucleon-nucleon systems extensively. In what follows we
shall briefly summarize the pp and np experimental investigations at intermediate
and high energies respectively.

In order to completely describe the NN system of isospin I = 1 around 1 GeV,
Saclay and Gatchina performed series of polarized pp experiments in the 80’s of
last century. In 1985, the NN collaboration at Saclay measured a set of analyzing
powers and spin correlation coefficients of pp scattering in the angular region of
45◦ < θcm < 90◦ at 834，874，934，995 and 11095 MeV [24] using the polar-
ized proton beam provided by SATURNE II and the polarized solid target [21],
which was supplemented by Gatchina’s measurements of the same observables be-
tween 35◦ and 95◦ at 690，850，890 and 950 MeV [25]. In addition, Gatchina
also measured several spin transfer coefficients at 800，850，900，970 MeV using
both vertically and horizontally polarized beams in conjunction with the polarized
solid target [26, 27]. In late 1980’s, SATURNE II –NN collaboration carried out
systematic measurements of 15 spin observables of pp scattering at 11 energies
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between 0.84 and 2.7 GeV, collected more than 3000 data [28]. In order to search
for dibrayon, KEK and SATURNE II studied the distribution of the analyzing
power of pp scattering with respect to the center-of-mass energy at 1-3 GeV and
0.655-1.017 GeV respectively. KEK found two distinct resonant structures at the
invariant mass of proton pair Mpp = 2.16, 1.129 GeV [29], while the SATURNE
data showed that the analyzing power distributed smoothly below 1 GeV [30].
The internal target detector EDDA built in the middle of 1990s at COSY was a
dedicated spectrometer for pp study. From 1997 to 2005 the EDDA collaboration
published series of pp data of 30◦ < θcm < 90◦ at 500-2500 MeV, which include
the unpolarized differential cross section [31], the analyzing powers [32] and the
spin correlation coefficients [33–35]. Those high-precision data had imposed great
impact on the pp database. At high-energy regions, CERN and BNL measured
the dependences of the analyzing power and the spin correlation coefficient on
the transverse momentum at 18-28 GeV/c, which manifested strong resonance at
large transverse momenta [36, 37]. This phenomenon indicates that the spin de-
pendence of the nuclear force decreases at large transverse momenta, which has
not been satisfactorily interpreted yet.

The investigations on np scattering are much scarcer in comparison with the
pp case. Using free neutron beams produced by (un)polarized deuteron breakup
on Be target, the SATURNE II–IKAR collaboration measured the unpolarized
differential cross section [11] as well as the neutron analyzing power [10, 11] of np
scattering between 378 and 1135 MeV. SATURNE II–NN collaboration measured
11 spin observables of the np scattering between 312 and 1100 MeV, as results large
amount of data were accumulated [38, 39]. Most of the data in their research were
measured with free polarized neutron beam while some data were also collected
with the quasi free neutron inside deuteron. Remarkably, the free neutron data
and the quasi-free neutron data were in consistent with each other, which meant
dueteron could be used as neutron source. In order to check isospin invariance of
nuclear force Indinan university and TRIUMF measured both analyzing powers
and spin correlation coefficients of np scattering at 181 MeV and 477 MeV re-
spectively [40, 41], both of their results indicated that the nuclear force were not
completely charge independent. Los Alamos also performed measurements of np
spin correlation coefficients [42, 43].

The above summary shows that great efforts have been put on the nucle-
on–nucleon scattering research, yielding lots of valuable data. Many databases
and programme, such as SAID [44], NN-online [45], Saclay-Geneva PSA [46] and
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Bonn-Gatchina PWA [47] etc., have been developed to analysis and interpreter
these experimental data. Thanks to the wealth of experimental data and theoret-
ical analyses, the scattering amplitudes of pp scattering below 2 GeV are known
with little ambiguity. On the contrast, due to lack of experimental data the
phase-shift analyses can be performed only upto 1.3 GeV with large uncertainties
above 800 MeV. Therefore, better understanding of the nuclear force demands fur-
ther investigations at specific energies and in specific kinematical regions where
measurements can impact the PSA significantly.

1.3 Complete Description of a Nuclear Reaction
One of the important features of the nuclear force is that it is spin dependent,

which has been realized long before. In principle one can not acquire sufficient
information on the spin dependence through unpolarized experiments since the
spin effects are averaged out. Therefore the polarized experiments have to be
performed in order to investigate the spin dependence of nuclear force. A general
description of a nuclear reaction3 is given from the point view of experiment.
First the density matrix and its expansions, as well as the polarizations which
characterize the polarized ensembles are discussed in section 1.3.1. In the following
section, the M matrix which represents the dynamical process is discussed, and
the corresponding cross section are also derived, all the experimental observables
are contained in the cross section. Finally the necessary measurements are briefly
discussed. Note even though the subscription given in this section is particularly
for the polarized experiments, it also applies to the unpolarized cases, as the
unpolarized case itself is actually a special polarized cases.

1.3.1 Polarized Ensemble: Density Operator and Polariza-
tions

For an ensemble of identical particles with spin S⃗, imagine there are n different
quantum states which are represented respectively by their spin wave functions ψi

(where i = 0, ..., n), each with probability fi of being occupied. If one performs
a number of measurements of an observable Â on this ensemble, the result4 then
is the weighted average of the expectation values of all the occupied states, which

3In this thesis, the phrase “reaction”also means “scattering ”.
4For convenience, hereafter we express the measurement result of an observable on an ensem-

ble as ensemble expectation.
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reads
⟨A⟩ =

n∑
i=1

fi ⟨ψi| Â |ψi⟩ . (1.3)

Insert the unit operator Î =
∑2S+1

k |k⟩ ⟨k| into Eq. 1.3, ⟨A⟩ can be rewritten as

⟨A⟩ =
n∑

i=1

fi

2S+1∑
m=1

2S+1∑
k=1

⟨ψi|m⟩ ⟨m| Â |k⟩ ⟨k|ψi⟩

=
n∑

i=1

fi

2S+1∑
m=1

2S+1∑
k=1

⟨k|ψi⟩ ⟨ψi|m⟩ ⟨m| Â |k⟩

=
2S+1∑
m=1

2S+1∑
k=1

⟨k|
n∑

i=1

fi |ψi⟩ ⟨ψi|m⟩ ⟨m| Â |k⟩

=
2S+1∑
k=1

⟨k = 1|
n∑
i

fi |ψi⟩ ⟨ψi| Â |k⟩

= Tr
( n∑

i=1

fi |ψi⟩ ⟨ψi| Â
)
.

(1.4)

Based on above derivation one can conclude that the ensemble expectation of an
observable Â on a ensemble can be calculated as the trace of its product with the
operator

∑n
i fi |ψi⟩ ⟨ψi|. Since the physical state of a quantum system is complete-

ly5 determined by the expectations of a complete set of Hermitian operators, an
ensemble is described as completely as possible by its density operator

ρ̂ =:
n∑

i=1

fi |ψi⟩ ⟨ψi| . (1.5)

With this definition, the ensemble expectation of an observable Â can be calculated
as

⟨A⟩ = Tr(ρ̂Â) (1.6)

However, since the wave functions |ψi⟩ are usually unknown for an ensemble, the
density operator is not suitable for the experiments. It is convenient to expand it
into some measurable quantities. It is obvious that the density is Hermitian, i.e.
ρ = ρ†.

In the spin space, the density operator is represented by a (2S+1)× (2S+1)

matrix, which is named as density matrix and denoted by ρ. The density matrix
can be expanded into any complete set of base matrices, (2S + 1)2 base matrices

5Actually the phase can not be determined by the expectation, however we still use the phrase
”completely” because the phase doesn’t play a role in the measurement.
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Pj are needed since there (2S + 1)2 matrix elements for ρ. These base matrices
are required to be Hermitian (Pj = P†

j ) so that they represent experimental
observables. For simplicity, the base matrices are required to be orthogonal to
each other, i.e.

Tr
(
PjP

†
k

)
= Tr

(
PjPk

)
= (2S + 1)δjk (1.7)

where 2S+1 is the conventional normalization coefficient. Generally the expansion
of a density matrix ρ is expressed as

ρ =
1

2S + 1

(2S+1)2∑
j=1

PjPj. (1.8)

The one-to-one correspondence relation between operator and matrix suggests
there is an operator P̂j for every bases matrix Pj, whose expectation is calculated
as

Tr
(
ρ̂P̂j

)
= Tr

( 1

2S + 1

(2S+1)2∑
k=1

PkPkPj

)
=

1

2S + 1

(2S+1)2∑
k=1

PkTr
(
PkPj

)
= Pj.

(1.9)

It can be seen from above derivation that the expansion coefficients Pj in Eq. 1.8
are the ensemble expectations of the base matrices Pj. These coefficients are
able to describe an spin ensemble in the form of measurable observables, they
are defined as the polarizations of the spin ensemble (beam or target). The most
conventional expansions are the Cartesian and spherical expansions. The spherical
expansion are more suitable in the cases of high spins. In the following subsections
the Cartesian expansions for the particles of spin = 1

2
and spin = 1 are given.

1.3.1.1 Cartesian Expansion of Density Operator for S = 1
2

For the particles of spin = 1
2

four orthogonal matrices are needed to expand
the density matrix. The the unit matrix together with the Pauli spin matrices are
used as the bases, which read

P1 = I =

(
1 0

0 1

)
(1.10a)
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P2 = σx =

(
0 1

1 0

)
P3 = σy =

(
0 −i
i 0

)
P4 = σz =

(
1 0

0 −1

)
(1.10b)

Insert above bases into the general formula Eq. 1.8, the density matrix of spin− 1
2

is written as
ρ =

1

2
(1 + Pxσx + Pyσy + Pzσz) (1.11)

where px, py and pz are the familiar vector polarizations which are commonly
used. For example if the quantization axis is taken along the z axis of a Cartesian
coordinate, then the polarization Pz is related to experiment by

Pz =
N↑ −N↓

N↑ +N↓ (1.12)

where N↑ and N↓ stand for the number of particles with spin projected along and
opposite the z axis respectively. The same is true for Px and Py.

1.3.1.2 Cartesian Expansion of Density Operator for S = 1

In principle nine base matrices are needed for the expansion of the density
matrix of spin− 1 ensembles. Unlike the case of spin− 1

2
, five more matrices have

to be constructed except for the unit and angular momentum matrices

I =


1 0 0

0 1 0

0 0 1

 (1.13a)

and

Px = Sx =
1√
2


0 1 0

1 0 1

0 1 0

 Py = Sy =
1√
2


0 −i 0

i 0 −i
0 i 0

 Pz = Sz =


1 0 0

0 0 0

0 0 −1


(1.13b)

which are tensor of rank−0 (scalar) and tensors of rank−1 (vector) respectively.
Looking from the perspective of mathematics, the number of complete orthogonal
bases of a tensor of rank − k is 2k + 1. Given there are 1 scalar (Eq. 1.13a) and
3 vector6 (Eq. 1.13b) bases already, the remaining bases of the density must be
tensors of rank − 2. Mathematically，a tensor of rank − 2 could be constructed

6Note the three matrices in Eq. 1.13b is normal to each other
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as the out product of two vectors. In what follows, we shall discuss the procedure
of seeking the bases, and finally give the prescription. As the first step the out
product of two matrices of angular momentum from Eq. 1.13b, e.g. Si and Sj are
expressed as one symmetric term and asymmetric term:

SiSj =
1

2
(SiSj + SjSi) +

1

2
(SiSj − SjSi). (1.14)

In view of the commutation between the angular momenta Si and Sj:

SiSj − SjSi = iεijkSk (1.15)

one finds out the asymmetric term does not provide a second order tensor but
a vector Sk (multiplied by a constant) which is a known base matrix. Therefore
we discard the asymmetric term and keep the symmetric one. As result, the new
tensor is formed:

Sij =
1

2
(SiSj + SjSi) (1.16)

From the discussion in last subsection we know that the ensemble expectation of
a base matrix is the polarization that corresponds to the base matrix, thus it is
natural to expect the ensemble expectation be 0 for an unpolarized ensemble. So
an base matrix ought to be traceless. The tenors defined in Eq. 1.16 don‘t meet
this requirement. By transforming Sij further, the traceless tensors are obtained:

Pij = 3Sij − 2δijI (1.17)

where I is the 3× 3 unit matrix. Beside the above requirement, the normalization
condition 1.7, i.e. Tr(PjPk) = 3δjk should also be satisfied, so the normalization
factors

√
3

Tr(PijPij)
are multiplied to Pij and

√
3

Tr(SiSi)
are multiplied to the

matrices in Eq. 1.13b. Finally we get totally ten matrices including the unit
matrix, which are given below.

P1 = I =


1 0 0

0 1 0

0 0 1

 (1.18a)
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P2 =

√
3

2
Px =

√
3

2


0 1 0

1 0 1

0 1 0

 (1.18b)

P3 =

√
3

2
Py =

√
3

2


0 −i 0

i 0 −i
0 i 0

 (1.18c)

P4 =

√
3

2
Pz =

√
3

2


1 0 0

0 0 0

0 0 −1

 (1.18d)

P5 =

√
2

3
Pxy =

√
3

2


0 0 −i
0 0 0

i 0 0

 (1.18e)

P6 =

√
2

3
Pyz =

1

2
√
3


0 1 0

1 0 −1

0 −1 0

 (1.18f)

P7 =

√
2

3
Pzx =

√
3

2


0 −i 0

i 0 i

0 −i 0

 (1.18g)

P8 =

√
1

2
Pxx =

√
1

8


−1 0 3

0 2 0

3 0 −1

 (1.18h)
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P9 =

√
1

2
Pyy =

√
1

8


−1 0 −3

0 2 0

−3 0 −1

 (1.18i)

P10 =

√
1

2
Pzz =

√
1

2


1 0 0

0 −2 0

0 0 1

 (1.18j)

With the prescription give above the density of ensembles composed of spin-1
particles is expanded as

ρ =
1

3
{I + 3

2
(PxPx + PyPy + PzPz)

+
2

3
(PxyPxy + PyzPyz + PzxPzx) +

1

3
(PxxPxx + PyyPyy + PzzPzz)}

(1.19)

where Pi in the first row are the vector polarizations while Pij in the second row are
the tensor polarizations. They are named vector and tensor polarizations because
their corresponding base matrices Pi and Pij rotate in the spin space as vector
and tensor respectively. Again the polarizations defined here are identical to the
commonly used definition. For example if the quantization axis is taken along the
z axis of a Cartesian coordinate, then the vector polarization is

Pz =
N↑ −N↓

N↑ +N↓ (1.20)

and the tensor polarizarion is

Pzz =
N↑ +N↓ − 2N0

N↑ +N0 +N↓ (1.21)

where N↑, N↓ and N0 denote the number of particles with spin up, down and
sideways respectively.

As mentioned before, nine orthogonal matrices are sufficient to expand the
density matrix of a spin-1 ensemble. Instead, there are ten base matrices construct-
ed from above procedure, so the bases matrices listed above are not completely
independent. In fact the independent bases are Pxx, Pyy and Pzz, the relation
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among them is

Pxx + Pyy + Pzz =


0 0 0

0 0 0

0 0 0

 (1.22)

It is evident that with this relation, the last three base matrices in 1.18 can be
substituted by any of the following combinations,

(Pxx − Pyy, Pzz), (Pyy − Pzz, Pxx), (Pzz − Pxx, Pyy). (1.23)

The density matrix can be rewritten by using for instance the first combination
(Pxx − Pyy, Pzz) as

ρ =
1

3
{I + 3

2
(PxPx + PyPy + PzPz)

+
2

3
(PxyPxy + PyzPyz + PzxPzx) +

1

6
(Pxx − Pyy)(Pxx − Pyy) +

1

2
PzzPzz}

(1.24)

1.3.2 Dynamics: M Matrix and Cross Section

Having given the prescription of describing a spin ensemble in last subsection,
it is ripe now to deal with the nuclear reactions involving particles with spin.
Consider a process with two particles in both the entrance and exit states

a+ b→ c+ d (1.25)

whose wave functions of the initial and and final states are ψi = ψa ⊗ ψb and
ψf = ψc ⊗ ψd respectively. Provided the dynamical process which transforms the
initial system into the final system is described by the operator S, i.e. ψf = Sψi,
the density matrix of the final system ρF is derived from the initial density matrix
ρi as

ρF = SρiS
† (1.26)

as the density matrices are tensors in the spin space. Considering the particles
which didn’t participate the interaction, the operator S should be substituted with
R = S− 1. Therefore, instead of ρF , the density matrix which directly relevant to
the experimental observables is

ρf = RρiR
†. (1.27)
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So far the discussion is only confined in the spin space. The momentum degree of
freedom has also to be taken into account to completely describe an experiment.
Suppose the initial and final relative momenta7 are k⃗i and k⃗f , and the correspond-
ing wave functions in the momentum space are denoted by

∣∣∣⃗ki⟩ and
∣∣∣⃗kf⟩. The

initial density matrix in the case of a specific momentum state
∣∣∣k⃗i⟩ is

ρi(k⃗i) =
⟨
k⃗i

∣∣∣ ρi ∣∣∣⃗ki⟩ , (1.28)

it is essentially a diagonal element of the general density matrix ρi in the mo-
mentum space. On the dynamical side, the operator R which characterizes the
dynamical process is also represented by a matrix in the momentum space. Like-
wise, the matrix element of this matrix, for instance

⟨
k⃗f

∣∣∣R ∣∣∣⃗ki⟩, is also a matrix
in the spin space, whose elements, if multiplied by the normalization factor, are in
turn the amplitudes for individual initial and final spin states. Conventionally, the
spin matrix

⟨
k⃗f

∣∣∣R ∣∣∣⃗ki⟩ multiplied the normalized factor is denoted as M(k⃗f , k⃗i).
Finally the density matrix for the final momentum state k⃗f becomes

ρf (k⃗f ) =M(k⃗f , k⃗i)ρi(k⃗i)M
†(k⃗f , k⃗i) (1.29)

With above notations the differential cross section, which is defined as the intensity
of the outgoing particles normalized by the incident intensity8, is expressed as

dσ

dΩ
(θ, ϕ) =

Trρf (k⃗f )

Trρi(k⃗i)
=
TrM(k⃗f , k⃗i)ρi(k⃗i)M

†(k⃗f , k⃗i)

Trρi(k⃗i)
(1.30)

The purpose of investigating a reaction is to uncover the law behind the dynamical
process, the only way is to compare our understanding and hypothesis about the
law, which are generalized as theory, with the fact, namely the experiment. In
Eq. 1.30 the experimental observable is the cross section dσ

dΩ
, it is expressed in

the form of the M matrix, which can be derived from the theory, in this sense
the comparison between experiment and theory could in principle be performed.
However the relation between cross section and M matrix expressed by Eq. 1.30
is too abstract, it would be convenient if this relation can be more factorized. The
expansion of M matrix for NN scattering in terms of several scalar amplitudes

7For simplicity, “relative momentum”is referred as “momentum”in the following.
8The intensity of an ensemble described by the density matrix ρ is calculated as the expec-

tation value of the unity matrix I, i.e. TrρI = Trρ.
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is given in section 1.3.2.1. The polarized differential cross section in the form of
variant spin observables are discussed in section 1.3.2.2.

1.3.2.1 Expansion of M Matrix for NN Interaction

As a tensor in the spin space, the M matrix can be expanded in the base
matrices, just as the expansion of density matrix. Since the object of this thesis is
studying the nucleon-nucleon system, the expansion is only given for NN scatter-
ing. In the center-of-mass system, the M matrix M(k⃗f , k⃗i) only depends the initial
and final momenta, for simplicity, the M matrix and the expansion are expressed
as functions of the momentum transfer q⃗. For a system composed of two identical
spin-1

2
particles the M matrix is expanded as

M(q⃗) =α(q⃗) + iγ(q⃗)(σ⃗1 + σ⃗2) · n̂+ β(q⃗)(σ⃗1 · n̂)(σ⃗2 · n̂)

+ δ(q⃗)(σ⃗1 · m̂)(σ⃗2 · m̂) + ε(q⃗)(σ⃗1 · l̂)(σ⃗2 · l̂)
(1.31)

if the the system is invariant under rotation, spatial reflection and time rever-
sal [48]. In the above expansion σ⃗1 and σ⃗1 are the Pauli matrices acting on the
wave functions of the two nucleons respectively. The unit vectors in Eq. 1.31 is
defined in terms of the initial and final momenta k⃗i and k⃗f :

l̂ =
k⃗i + k⃗f

|⃗ki + k⃗f |
, m̂ =

k⃗f − k⃗i

|⃗kf − k⃗i|
, n̂ =

k⃗i × k⃗f

|⃗ki × k⃗f |
. (1.32)

Evidently, these unit vectors are orthogonal among each other. This expansion is
applicable for both proton-proton (pp) and neutron-proton (np) systems, provided
the isospin invariance is maintained strictly.

1.3.2.2 Cross Section in Form of Spin Observables

In this subsection we shall introduce the spin observables by decomposing the
differential cross section (defined in Eq. 1.30). Note the initial density matrix of
the reaction a+ b→ c+ d is the direct product of the density matrices of particle
a and b, i.e. ρi(k⃗i) = ρa(k⃗i)⊗ ρb(k⃗i), it can be expanded according to Eq. 1.8 as9

ρi =
1

(2Sa + 1)(2Sb + 1)

(2Sa+1)2∑
ja=1

(2Sb+1)2∑
jb=1

P a
jaP

b
jb
Pa

jaP
b
jb
. (1.33)

9To shorten the formulae, the dependences on momentum is not written out explicitly some-
times.
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Substitute the density matrix ρi(k⃗i) in Eq. 1.30 with above expression, one obtains

dσ

dΩ
=
TrMρiM

†

Trρi

=
1

(2Sa + 1)(2Sb + 1)

1

Trρi
Tr
∑
ja=1

∑
jb=1

P a
jaP

b
jb
MPa

jaP
b
jb
M †

=
1

(2Sa + 1)(2Sb + 1)

1

Trρi

[
TrMM †

+
∑
ja=1

P a
jaTrMPa

jaM
† +

∑
ja=1

P b
jb
TrMPb

jb
M †

+
∑
ja=1

∑
jb=1

P a
jaP

b
jb
TrMPa

jaP
b
jb
M †

]
.

(1.34)

It has already been demonstrated by Eq. 1.9 that P a
ja and P b

jb
are polarizations of

ensembles a and b respectively, thus for an unpolarized experiment above formula
reduces to

dσ

dΩ

0

=
TrMM †

(2Sa + 1)(2Sb + 1)Trρi
(1.35)

which is the usual unpolarized cross section. Utilizing the expression of unpolarized
cross section Eq. 1.35, Eq. 1.34 can be rewritten as

dσ

dΩ
=
dσ

dΩ

0
[
1 +

∑
ja=1

P a
ja

TrMPa
jaM

†

TrMM † +
∑
jb=1

P b
jb

TrMPb
jb
M †

TrMM †

+
∑
ja=1

∑
jb=1

P a
jaP

b
jb

TrMPa
jaP

b
jb
M †

TrMM †

]
.

(1.36)

Compared with the unpolarized cross section Eq. 1.35, the polarized cross section
contains some extra terms, each of these terms is a product of certain polariza-
tion(s) and a quantity composed of the dynamical M matrix and the base matrix(s)
corresponding to the polarization(s). Take the term P a

ja

TrMPa
ja

M†

TrMM† as example, P a
ja

is a polarization component characterizing ensemble a and TrMPa
ja

M†

TrMM† contains the
dynamical information, which measures how the reaction a + b → c + d is influ-
enced by this polarization component. Conventionally TrMPa

ja
M†

TrMM† and TrMPb
jb
M†

TrMM†

are defined as analyzing powers, while TrMPa
ja

Pb
jb
M†

TrMM† is called spin correlation co-
efficient.

Since the nuclear force is spin dependent, the particles from the exit channel
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(c and d in our case) are usually polarized, even in an unpolarized experimen-
t. Therefore the spin dependence of the nuclear force can be also investigated
via measuring the polarization(s) of the outgoing particle(s). By definition the
polarization component corresponding to a density matrix base Pc

jc is10

P c
jc =

TrρfPc
jc

Trρf
. (1.37)

Together with the definition of differential cross section (Eq. 1.30) it can be derived
that

P c
jc

dσ

dΩ
(θ, ϕ) =

Trρf (k⃗f )Pc
jc

Trρi(k⃗i)
=
TrM(k⃗f , k⃗i)ρi(k⃗i)M

†(k⃗f , k⃗i)Pc
jc

Trρi(k⃗i)
, (1.38)

this expression can be expanded as

P c
jc

dσ

dΩ
=
dσ

dΩ

0
[

TrMM †Pc
jc

TrMM †

+
∑
ja=1

P c
jcP

a
ja

TrMPa
jaM

†Pc
jc

TrMM † +
∑
jb=1

P c
jcP

b
jb

TrMPb
jb
M †Pc

jc

TrMM †

+
∑
ja=1

∑
jb=1

P c
jcP

a
jaP

b
jb

TrMPa
jaP

b
jb
M †Pc

jc

TrMM †

]
(1.39)

where the quantities containing the M matrix are spin observables. For example,
TrMM†Pc

jc

TrMM† is the polarization component of base Pc
jc produced in a unpolarized ex-

periment, thus is called polarizing power. TrMPa
ja

M†Pc
jc

TrMM† is the polarization transfer
coefficient which measures the influence of the polarization component P a

ja of the
initial particles a to the polarization component P c

jc of the final particle c. It is
possible to measure the spin correlation coefficient of the final particles when the
polarizations of both the particles in the exit channel are measured in coincidence.

From above discussion we see some observables such like analyzing power and
final polarization contain only one polarization, while some ones contain more.
According to the number of polarization components involved, the observables
can be classified as one-spin observables, two-spin observables, and so on. Usually
more polarizations one observable contains, more difficult the measurement is. As

10Here the polarization of particle c is given as an example.
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a summary, observables involving up to two spin components are listed below for
reaction of type a+ b→ c+ d.

� Zero-spin observable.

Unpolarized differential cross section:

dσ

dΩ

0

=
TrMM †

(2Sa + 1)(2Sb + 1)Trρi
. (1.40)

� One-spin observables.

Analyzing powers:

Aa
ja =

TrMPa
jaM

†

TrMM † , (1.41a)

Ab
jb
=
TrMPb

jb
M †

TrMM † . (1.41b)

Polarizing powers:

P c
jc =

TrMM †Pc
jc

TrMM † , (1.42a)

P d
jd
=
TrMM †Pd

jd

TrMM † . (1.42b)

� Two-spin observables:

Spin correlation coefficients of entrance channel:

Cja,jb =
TrMPa

jaP
b
jb
M †

TrMM † . (1.43)

Spin correlation coefficients of exit channel:

Cjc,jd =
TrMM †Pc

jcP
d
jd

TrMM † . (1.44)

Spin transfer coefficients:

T jc
ja

=
TrMPa

jaM
†Pc

jc

TrMM † , (1.45a)
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T jd
ja

=
TrMPa

jaM
†Pd

jd

TrMM † , (1.45b)

T jc
jb

=
TrMPb

jb
M †Pc

jc

TrMM † , (1.45c)

T jd
jb

=
TrMPb

jb
M †Pd

jd

TrMM † . (1.45d)

So far the polarized cross section as well as the spin observables for a two body
reaction have been introduced. However, the cross section defined in Eq. 1.34 can
not be directly compared with the experimental distributions. The reason is ex-
plained below. Note the formula for the differential cross section given by Eq. 1.34
is defined in the projectile helicity reference coordinate which is determined by the
initial momentum k⃗i and the final momentum k⃗f , while on the other hand, the
(beam or/and target) polarizations are conveniently described in the laboratory
reference coordinate, which is usually defined by the detectors. The polarizations
in the laboratory coordinate are consistent for any given polarized ensembles, but
on the contrary, in the helicity coordinate the polarizations are variant since k⃗f
is different for each specific process. Fig. 1.2 depicts the relation between the
laboratory frame XY Z and the projectile helicity frame x′y′z′. Both Z and z′ are
set along the incident momentum k⃗i; y′ is defined by the vector k⃗i × k⃗f ; the x′ is

Figure 1.2: Relation between the laboratory coordinate system XYZ (drawn
in black) and the projectile helicity coordinate system x′y′z′(drawn in red). k⃗i
and k⃗f represent the initial and final momenta respectively. Both Z and z′ are
parallel to k⃗i; y′ is defined by k⃗i × k⃗f ; x′y′z′ forms a right-hand coordinate
system. The polarization quantization axis S⃗ is indicated (in green) as well, its
spherical coordinate in the projectile helicity coordinate system is (1, β, ϕ).
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chosen in such a manner that x′, y′ and z′ forms a right-handed coordinate. The
spin quantization axis of the polarized ensemble is parallel to an unit vector S⃗,
which is described by the spherical coordinate (1, β, ϕ) in the projectile helicity
coordinate system. The polarization is most conveniently described in a coordi-
nate system xyz11 where z axes is chosen to be parallel to the quantization axis
S⃗, and x and y axes are taken arbitrarily in the plane which is perpendicular to
S⃗ because of symmetry. For instance, in the case where the polarized ensemble
is produced by a polarized atomic beam source (ABS)(refer Sec. 3.3.1) the z axis
is parallel to the atomic beam direction. In the polarization system, the vector
polarization only have z component. In view of the cylindrical symmetry and the
anticommutativity between the angular momentum operators, it can be seen from
Eq. 1.17 that there are only three nonvanishing tensor polarizations pzz, pxx and
pyy. Because pxx = pyy and pxx + pyy + pzz = 012, the relation

pxx = pyy = −1

2
pzz (1.46)

holds. The transformation from the polarization system xyz to the projectile
helicity system x′y′z′ is given by

p⃗′ = T p⃗ (1.47)

for a polarization of the first-rank tensor (vector polarization) p⃗, and by

⇀⇀
p = T

⇀⇀
p T̃ (1.48)

for a polarization of the second-rank tensor (tensor polarization) ⇀⇀
p , with

T =


Txx Txy − sin β cosϕ
Tyx Tyy sin β cosϕ
Txz Tzy cosϕ

 (1.49)

and T̃ being the transposed matrix of T [49]. Note the matrix elements in the
first and second columns of T are irrelevant to the transformation. The polarized
differential cross section in the polarization frame is obtained by substituting the
polarizations in Eq. 1.34 by the values calculated from Eq. 1.47 and 1.48. As

11In the present thesis this frame is referred as polarization (coordinate) system.
12which can be derived from the relation 1.22
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examples, the cross sections in the polarization system of the single-polarized
reactions of the types 1⃗

2
+ b→ c+ d and 1⃗ + b→ c+ d are derived below.

The differential cross section of the reaction 1⃗
2
+ b → c + d in the helicity

coordinate is
dσ

dΩ
=
dσ

dΩ

0[
1 + py′Ay(θ)

]
. (1.50)

Note the analyzing powers Ax and Ay must vanish to preserve the parity conser-
vation [48]. The vector polarizations in the helicity frame is deduced from Eq.1.47
as

px′ = −pz sin β sinϕ, (1.51a)

py′ = pz sin β cosϕ, (1.51b)

pz′ = pz cos β. (1.51c)

Combining formulae 1.50 and 1.51b, one obtains the differential cross section of
the reaction 1⃗

2
+ b→ c+ d in the polarization system:

dσ

dΩ
=
dσ

dΩ

0[
1 + pz sin β cosϕAy(θ)

]
. (1.52)

The differential cross section of the reactions induced by polarized spin-1
particle 1⃗ + b→ c+ d is

dσ

dΩ
=
dσ

dΩ

0[
1 +

3

2
py′Ay(θ) +

2

3
px′z′Axz(θ)

+
1

3
px′x′Axx(θ) +

1

3
py′y′Ayy(θ) +

1

3
pz′z′Azz(θ)

]
,

(1.53a)

or equivalently

dσ

dΩ
=
dσ

dΩ

0[
1 +

3

2
py′Ay(θ) +

2

3
px′z′Axz(θ)

+
1

6
(px′x′ − py′y′){Axx(θ)− Ayy(θ)}+

1

2
pz′z′Azz(θ)

]
.

(1.53b)
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providing the parity conversation is maintained [48]. Similarly, by substituting
the polarizations in Eq. 1.53 with

px′y′ = −3

2
sin2 β sinϕ cosϕpzz (1.54a)

px′z′ = −3

2
sin β cos β sinϕpzz (1.54b)

py′z′ =
3

2
sin β cos β cosϕpzz (1.54c)

px′x′ =
1

2
(3 sin2 β sin2 ϕ− 1)pzz (1.54d)

py′y′ =
1

2
(3 sin2 β cos2 ϕ− 1)pzz (1.54e)

pz′z′ =
1

2
(3 cos2 β − 1)pzz (1.54f)

which are deduced from Eq. 1.48 and 1.46 , the differential cross section of single-
polarized reactions 1⃗ + b→ c+ d in the polarization system is derived as

dσ

dΩ
=
dσ

dΩ

0[
1 +

3

2
pz sin β cosϕAy(θ)− sin β cos β sinϕpzzAxz(θ)

+
1

6
(3 sin2 β sin2 ϕ− 1)pzzAxx(θ)

+
1

6
(3 sin2 β cos2 ϕ− 1)pzzAyy(θ)

+
1

6
(3 cos2 β − 1)pzzAzz(θ)

]
(1.55a)

or

dσ

dΩ
=
dσ

dΩ

0

{1 + 3

2
pz sin β cosϕAy(θ)−

1

2
sin 2β sinϕpzzAxz(θ)

+
1

4
sin2 β cos 2ϕpzz[Ayy(θ)− Axx(θ)] +

1

4
(3 cos2 β − 1)pzzAzz(θ)}.

(1.55b)



Chapter 2

Neutron-Proton Scattering
Investigation at ANKE

In the first chapter we have stressed the physics motivation of the investiga-
tions of the nucleon-nucleon (NN) interaction, and also discussed the description of
the nucleon-nucleon (NN) scattering at length, where our knowledge about the NN
scattering is expressed as various observables and amplitudes. Many databases,
such like SAID and NN-OnLine, were set up with the purpose of collecting and an-
alyzing the data (of the observables and amplitudes) that have been accumulated
over decades around the world. Besides their intrinsic importance for the under-
standing of the nuclear forces, these valuable data are also imperative elements in
the study of the nuclear many-body system as well as the meson production. As
mentioned in the previous chapter, theoretical models can be directly expressed
in the term of amplitudes, and on the other hand, experimental observables are
summarized as amplitudes through the phase-shift analysis (PSA). Fitting all the
available NN scattering observables, the amplitudes up to a certain orbital angular
momentum can be obtained by the phase-shift analysis (PSA), with the increase
of the experimental observables, the amplitudes of higher orbital angular momen-
ta will be obtained. Conversely, observables can be calculated from amplitudes
using the impulse approximation. It is possible to deduce the amplitudes at the
energies where no experiment has been conducted via extrapolation or utilizing
the dispersion relation, thus predictions can be made for the unknown observables.
It goes without saying that the more the experimental observables are exploited
in the phase-shift analysis, the more precisely the amplitudes are extracted, the
reverse is also true.

27
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There exist large amount of data of observables of the proton-proton (p-
p) scattering. As examples, the abundance plot of the unpolarized differential
cross section and the analyzing power of the pp elastic scattering are presented in
Fig. 2.1. Thanks to these valuable data, the phase-shift analyses of isospin I = 1

have yielded reliable amplitudes up to about 2 GeV.

(a) Unpolarized differential cross section dσ
dΩ

. (b) Analyzing power Ay.

Figure 2.1: Abundance plots of the unpolarized differential cross section dσ
dΩ

(left) and the analyzing power Ay (right) of the proton-proton elastic scattering
in the kinetimatic regin of the scattering angle θ and the nucleon energy Tlab in
the laboratory reference fram. Note the data located in the domain of 500 <
TLab < 2500 and 30◦ < θ < 90◦ are contributed by EDDA at COSY.

Due to the difficulties with producing the neutron beams or targets of high
quality and the neutron detection, the data of the neutron-proton (np) scattering
are much less. For comparison, the abundance plots of the differential cross section
and the analyzing powers are showed for the np scattering as well (Fig. 2.2).
As can be seen, the data of np scattering are far more spare above 800 MeV.
Base on these data, the phase-shift analyses of I = 0 can only be applied to
1.3 GeV，with large ambiguities above 800 MeV. It was proposed by Wilkin and
Bugg that the information on the spin dependence of the neutron-proton elastic
scattering at large angle can be learned by studying the deuteron charge-exchange
on hydrogen. Using this method, the ANKE-Collaboration has been embarked on
a comprehensive np scattering program for years.

We shall introduce the prescription of investigating the neutron-proton charge-
exchange amplitudes from dp → {pp}n reaction in section 2.1. The results ob-
tained in the first phase of the ANKE np program are summarized in section 2.2.
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(a) Unpolarized differential cross section dσ
dΩ

. (b) Analyzing power Ay.

Figure 2.2: Abundance plots of the unpolarized differential cross section dσ
dΩ

(left) and the analyzing power Ay (right) of the proton-proton elastic scattering
in the kinetimatic regin of the scattering angle θ and the nucleon energy Tlab in
the laboratory reference fram.

2.1 Impulse Approximation for Deuteron Charge
Exchange on Proton

From the discussion in section 1.3.2 we know the neutron-proton scattering
process can be described completely by a M matrix. Since the matrix elements
of the M matrix are essentially the amplitudes corresponding to individual initial
and final spin states, the M matrix is also called scattering amplitude. Here we
designate it as Mnp→pn. In order to make the present discussion self-contained, we
repeat the expansion of the np amplitude here:

Mnp→pn =α(q⃗) + iγ(q⃗)(σ⃗1 + σ⃗2) · n̂+ β(q⃗)(σ⃗1 · n̂)(σ⃗2 · n̂)

+ δ(q⃗)(σ⃗1 · m̂)(σ⃗2 · m̂) + ε(q⃗)(σ⃗1 · l̂)(σ⃗2 · l̂),
(2.1)

where the three orthogonal unit vectors are defined by the initial (k⃗i) and final
(k⃗f ) momenta as

l̂ =
k⃗i + k⃗f

|⃗ki + k⃗f |
, m̂ =

k⃗f − k⃗i

|⃗kf − k⃗i|
, n̂ =

k⃗i × k⃗f

|⃗ki × k⃗f |
, (2.2)

and σ⃗1 and σ⃗2 are the Pauli matrices between the neutron and proton spinors.
It is seen form Eq. 2.1 that the np amplitude Mnp→pn consists of five scalar am-
plitudes, which are the functions of the three-momentum transfer q⃗. α is the
spin-independent amplitude, γ is the spin-orbit amplitude, and β, δ, and ε are the
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Figure 2.3: The amplitudes of the np scattering at 363 MeV. The real values
are plotted in panel (a) and the imaginary ones are in panel (b). β, δ, ε and γ
are indicated by black, blue, red and magenta colors respectively.

spin-spin amplitudes. As example, Fig. 2.3. shows both the real and imaginary
parts of each amplitude at 363 MeV, predicted by the SAID[44] PSA solution.
The general structure of the amplitudes is fairly similar at different energies. The
amplitudes are normalized such that the unpolarized differential cross section of
the elementary np scattering is

dσ

dt
= |α(q⃗)|2 + |β(q⃗)|2 + 2|γ(q⃗)|2 + |δ(q⃗)|2 + |ε(q⃗)|2. (2.3)

The deuteron charge-exchange reaction on proton dp → {pp}n can be described
in terms of the elementary np amplitudes, it is therefore exploited as an effective
tool to study the np scattering. Detailed theoretical studies of the deuteron charge
exchange on proton in impulse approximation can be found in Ref. [52, 53]. Here
we just give the essential content which are necessary for the understanding of the
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approach for the np study at ANKE.
The deuteron charge exchange on proton is depicted in terms of a impulse

approximation diagram in Fig. 2.4, which can be viewed as an neutron-proton
elastic scattering followed by the final state interaction (FSI) between the outgo-
ing protons. This process is most conveniently calculated in the center-of-mass
reference frame of the np scattering, the so-called Breit frame is such a frame.
Provided the momentum transfer is q⃗, the initial deuteron and the final proton
pair have three-momentum −1

2
q⃗ and 1

2
q⃗ respectively in the Breit frame. The mo-

mentum of the spectator proton is assumed to be zero. According to the impulse
approximation, the amplitude of the deuteron charge exchange is defined by the
np charge-exchange Mnp→pn together with the initial and final wave functions，
which is written as

Mdp→{pp}n(k⃗i, q⃗, k⃗, S,mS,mn, λ,mp) =
⟨
Ψk⃗,S,mS

{pp} ,Ψmn
n

∣∣∣Mnp→pn(q⃗)e
iq⃗·r⃗/2

∣∣∣Ψλ
d ,Ψ

mp
p , k⃗i

⟩
.

(2.4)
The initial state is defined by the wave functions of the deuteron (Ψλ

d) and the
proton (Ψmp

p ), together with the initial momentum. Similarly the final state is de-
scribed by the wave functions of the diproton {pp} (Ψk⃗,S,mS

{pp} ) and neutron (Ψmn
n ).

In the 1S0 limit the final state interaction (FSI) is taken into account through the
diproton wave function Ψk⃗,S,mS

{pp} which is obtained by solving the Schrödinger equa-
tion where both the strong and Coulomb potentials are included. Non-relativistic

Figure 2.4: Impulse approximation diagram for the deuteron charge exchange
on proton.
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wave functions are adequate at low momentum transfer q⃗, whereas corrections
have to be applied at higher q⃗. Here r⃗ is the relative coordinate between the
neutron and proton in the deuteron, and k⃗ is the momentum of the final protons
in their own center-of-mass frame, S and mS are the total spin of the diproton
{pp} and its projection, λ is the spin projection of the deuteron, mp and mp are
the magnetic quantum numbers of the initial proton and the final neutron. The
integration of the np amplitude over the Fermi momentum can be simplified as
the Mnp→pn at certain energy, multiplied by a form factor which represents the
overlap between the wave functions of the initial deuteron and the final diproton,
provided that Mnp→pn varies slowly with energy on the Fermi momentum scale.

If the final diproton emerges in the 1S0 state, designated as {pp}s, its exci-
tation energy Epp = k2/mp is very small. In this case, the process dp → {pp}sn
must involves a spin flip from the deuteron state 3S1 or 3D1 to the state 1S0 of
{pp}s because of the Pauli blocking, therefore only the spin-dependent amplitudes
contribute the cross section. The impulse approximation gives the solution for the
differential cross section and the spin Cartesian observables involving the initial
spins in the terms of the spin-dependent amplitudes below:

d4σ

dtd3k
=

1

3
I{S−(k,

1

2q
)}2,

IAd
y = 0,

IAp
y = −2Im(β⋆γ),

IAxx = |β|2 + |γ|2 + |ε|2 − 2|δ|2R2(k,
1

2
q),

IAyy = |δ|2R2(k,
1

2
q) + |ε|2 − 2|β|2 − 2|γ|2,

ICy,y = −2Re(ε⋆δ)R(k,
1

2
q),

ICx,x = −2Re(ε⋆β),

Cyy,y = −2Ap
y

(2.5)

where
R(k,

1

2
q) = S+(k,

1

2
q)/S−(k,

1

2
q) (2.6)

is the ratio of the longitudinal form factor

S+(k,
1

2
q) = FS(k,

1

2
q) +

√
2FD(k,

1

2
q) (2.7)
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to the transverse form factor

S+(k,
1

2
q) = FS(k,

1

2
q)− 2FD(k,

1

2
q)/

√
2 (2.8)

where
FS(k,

1

2
q) =

⟨
Ψk⃗,0,0

{pp}

∣∣∣ j0(1
2
qr)
∣∣ΨS

d

⟩
(2.9)

and
FD(k,

1

2
q) =

⟨
Ψk⃗,0,0

{pp}

∣∣∣ j2(1
2
qr)
∣∣ΨD

d

⟩
(2.10)

are matrix elements which are defined in terms of the deuteron wave functions∣∣ΨS
d

⟩
and

∣∣ΨD
d

⟩
and {pp}s wave function

∣∣∣Ψk⃗,0,0
{pp}

⟩
. In the forward direction R = 1.

I = |β|2 + |γ|2 + |ε|2 + |δ|2R2(k,
1

2
q). (2.11)

is the spin-flip intensity. Note the formulae in Eq. 2.5 are given in the Breit frame,
one should apply a Winger rotation before the comparison with the experimental
results.

By scrutinizing the relationships between the np amplitudes and the observ-
ables of the deuteron charge-exchange reaction on hydrogen, one would find that
the terms |δ|2, |ε|2 and |γ|2 + |β|2 can be extract from the unpolarized differential
cross section d4σ

dtd3k
and the two deuteron tensor analyzing powers (Axx and Ayy),

provided that the momentum transfer q⃗ is small and the diproton emerged in the
1S0 state. If not all the diprotons are in the 1S0 state, contamination from the
higher waves will show up. For example the signals of the observables in Eq. 2.5
will be reduced by the P-wave components, because these observables are of oppo-
site sings for the spin-singlet and spin-triplet pp states. It is reasonable to expect
that a tight cut on the excitation energy of the diproton may block the higher-wave
components since the Epp is small for the 1S0 state. However, the pilot research at
ANKE suggested that[54] components of higher waves (mainly the P wave) still
remains even Epp is lower than 1 MeV. Another way of minimizing the dilution
from the P wave is to place a cut on the angle θqk between the momentum transfer
q⃗ and the momentum k⃗ of the final protons in the center-of-mass reference frame
of the diproton, since the odd partial waves can not be excited if are orthogonal
to each other. In order to have sufficient statistics, data from the whole range of
θqk are used and a cut of Epp < 3 MeV is used in the subsequent measurements
at ANKE. The price to be paid is that the effects of the higher waves have to be
carefully taken into account in the impulse approximation.
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2.2 Neutron-Proton Invetigation at ANKE in the
First Phase

Figure 2.5: Unpolarized differential cross
section of the deuteron charge-exchange re-
action d+p → {pp}s+n at Td = 1.2, 1.6, 1.8
and 2.27 GeV with Epp < 3 MeV. The red
curves represent the impulse approximation
calculations [52] using the SAID solution for
the np amplitudes [44].

A systematic investigation pro-
gram of the neutron-proton scatter-
ing was planed as an important top-
ic of the spin physics at COSY many
years ago[23]. Since then, great effort-
s have been devoted to make this re-
search a success. Using a polarized
deuteron beam of the kinetic energy
Td = 1170 MeV and an unpolarized hy-
drogen cluster target[55], an initial ex-
periment was conducted as the proof-
of-principle (POP) research. Through
this research reliable polarimetry for
the polarized deuteron beam was estab-
lished at 1170 MeV, and the measured
spin observables were well reprodeced
by the impulse approximation using the
well-known np amplitudes, which ex-
pressly validated the principle of the
investigation. The POP experiment is
described in Ref. [54, 56, 57]. Start-
ing from 2005, production experiments
were performed at 1.2, 1.6, 1.8, and
2.27 GeV, where the unpolarized differ-
ential cross section dσ

dq
and the one-spin

observables Axx, Ayy, Ap
y were measured. After the implementation of a polarized

hydrogen target at ANKE, double polarized experiment were carried at 1.2 and
2.27 GeV in 2009, and the spin correlation coefficients Cx,x and Cy,y were obtained.
In all these measurements[58], the energy 1.2 GeV was used mainly for the purpose
of polarimetry. All the results mentioned above are presented together with the
corresponding impulse approximation calculations in the following plots (refer Fig.
2.5, 2.6(a), 2.6(b) and 2.7).

From these plots, one can see that, except several values of Ayy and Cy,y
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Figure 2.6: The tensor analyzing powers Axx and Ayy (left) and the spin-
correlation coefficients Cx,x and Cy,y (right) of the deuteron charge-exchange
reaction d⃗+ p⃗ → {pp}s + n at Td = 1.6, 1.8 and 2.27 GeV with Epp < 3 MeV.
The red curves represent the impulse approximation calculations [52] using the
SAID solution [44] for the np amplitudes. The dashed curves at 2.27 GeV
corresponds an uniform reduction of the longitudinal spin-spin amplitude ε(q)
by about 25%.

at high momentum transfer q, the measured results coincide with the impulse
approximation calculations (indicated by red lines) based on the np amplitudes
taken from the SAID database well at the three lower energies Td = 1.2, 1.6 and
1.8 GeV, whereas the discrepancies at the highest energy 2.27 GeV is obvious.
This is not surprising, because the np amplitudes from the SAID database have
far more ambiguities at energies higher than about 1 GeV. However, by reducing
the longitudinal spin-spin amplitude ε(q) uniformly by about 25%, the agreement
between the impulse approximations and the measurements becomes fairly satis-
factory, which suggests the amplitude ε(q) is overestimated in the SAID database
at energies higher than 1 GeV.

The investigation in the first phase of the neutron-proton scattering program
at ANKE implies that the measurements of the deuteron charge exchange on
proton at high energies will impact the np database significantly. However, TN =
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Figure 2.7: Proton analyzing power Ap
y of the deuteron charge-exchange reac-

tion d+ p⃗ → {pp}s + n at Td = 1.2 and 2.27 GeV with Epp < 3 MeV. The red
curves represent the impulse approximation calculations [52] using the SAID
solutio [44]n for the np amplitudes.

1.135 GeV1 is the maximum nucleon energy accessible with the deuteron beam at
COSY, to continue the investigations to the highest nucleon energy available at
COSY (TN = 2.8 GeV), the reverse kinematics should be adopted, where polarized
deuterium targets have to be employed in conjunction with the proton beams
provide by COSY.

1which corresponds to the highest deuteron energy available at COSY Td = 2.27 GeV.



Chapter 3

Experimental Equipment

The experiment was performed at the ANKE magnetic spectrometer, which
is located at one of the internal target stations of COSY. In this chapter, the ex-
perimental instruments that were exploited during the experiments are described.

3.1 Accelerator: COSY
The COSY (COoler SYnchrotron) accelerator facility [59], depicted in Fig. 3.1,

was designed for medium energy physics, it can deliver unpolarized as well as po-
larized beams of either proton or deuteron, with momenta between 0.295 GeV/c
to 3.65 Gev/c. The complex mainly consists of two unpolarized ion sources and
one polarized ion source [60, 61], an injector cyclotron (JULIC), an 100-meter
long injection beam line, a racetrack-shaped cooler synchrotron of 184 meters in
circumference, and three extraction beam lines to three external target stations.

All the three ion sources are able to produce both H− and D− beams. The
beam from ion source is first pre-accelerated to 295 MeV/c in the isochronous
cyclotron (JULIC), and then guided by the magnets along the injection line toward
the carbon stripping foil, which is placed behind a dipole magnet in the extraction
arc of the storage ring. By penetrating the stripping target, the negatively charged
ions lose their electrons outside of the nuclei, hence resulting a proton or deuteron
beam circulating in the synchrotron. Under the effects of quadruple magnetic
field, the beam does betatron oscillations both vertically and horizontally while it
is circulating in the storage ring thanks to the bending force of the dipole magnets,
which are located in the arc sections. The radio frequency (rf) cavity is mainly
used for the purpose of beam acceleration or deceleration, its radio frequencies are
adjusted according to the beam revolution frequencies such that the beam gets

37
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Figure 3.1: The floorplan of the COSY complex. Stripping injection is adapted
at COSY in order to overcome the limitation on the beam intensity in the stor-
age ring imposed by Liouville’s theorem [60], therefore all the ion sources pro-
duce negatively charged particles(H− or D−). Fore internal target experiments
are install at the ring. ANKE and WASA are general purpose spectrometers
for hadronic and nuclear physics; PAX is dedicated instrument for polarized
antiproton beam study; EDDA is currently operated as a beam polarimeter,
used in the precursor investigations for the measurements of the electric dipole
moment (EDM) of charged particles [63]. Among the three external target in-
struments, TOF is used for hadronic physics and the other two are employed in
the development of the two future detectors at FAIR: PANDA and CBM.
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accelerated or decelerated when it passes through the rf cavity, it is also used to
reduce (or increase) beam’s longitudinal phase space. In order to improve the beam
quality, i.e. to compress the beam phase space, COSY has equipped and operated
with an 100-keV electron cooler and a stochastic cooler [64–67] for many years.
The 100-keV electron cooler is applied only at low energies, mainly at the injection
energy, either to prepare low-emittance beams for the acceleration and extraction
afterwards or to accumulate the intensity of the polarized beams by a cooling-
stacking [67] process. The stochastic cooling, which covers the higher momentum
range, is used to compensate the mean energy loss and emittance growth due to
the interaction between circulating beam and target during the internal-target
experiments. However the stochastic cooling will not be sufficient to counteract
the even stronger heating forces that present in the experiments which require
higher luminosity (> 1032 cm−2s−1)(e.g. the WASA experiment [68] utilizing a
pallet target.). The study of beam dynamics showed that electron cooling up to
the maximum momentum of COSY is the only technically feasible solution. For
this purpose a 2-MeV electron cooler [69] has been developed in Novosibirsk and
installed at COSY in 2013. Furthermore, the 2-MeV electron cooler is intended
to do some preparatory investigations for the high energy cooler of the HESR at
FAIR [70, 71].

3.2 ANKE Spectrometer
ANKE (Apparatus for Studies of Nucleon and Kaon Ejectiles) [72] is a mag-

netic spectrometer located at one of the internal target stations of COSY, designed
for the investigations of hadron medium physics. As shown by the top view of
ANKE in Fig. 3.2, the whole detector comprises of three dipole magnets, namely
D1, D2 and D3, and four sub-detection systems, whose magnetic and geometric
settings can be optimized so that particles in the kinematic regions of interest
can be detected, these detectors are the forward detector (Fd), the positive side
detector (Pd), the negative side detector (Nd) and the silicon tracking telescope
(STT). The idea of the three-dipole-magnet design is following: the COSY beam is
deflected off its original straight path by an angle α by D1 magnet into the target
chamber, where it collides with the target. The ejectiles from the the collisions in
the forward directions are bent by the analyzing magnet D2 and registered in the
detection systems Fd, Pd or Nd. The particles emitted at large scattering angles
are detected by the silicon tracking telescope (STT) placed closely to the target.
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The beam particles which have not interacted with the target particles are bent
to the direction of the inner ring by an angle of −2α, and subsequently deflected
back to the nominal orbit by D3, which bends the beam by an angle of α.

Figure 3.2: Schematic diagram of the ANKE magnetic spectrometer.

The deflection angle of the D2 magnet 2α is defined by the beam momentum
and the D2 field strength, which is in turn selected for specific experiment such
that the desired kinematic regions of the interested processes can be covered by
the sub-detection systems. To be specific, the D2 deflection angle is calculated as

2α = BD2leff/Bρ, (3.1)

where BD2 is the field strength at the center of D2, leff is the effective field
length along the COSY beam in D2, and Bρ is the magnetic rigidity of the COSY
beam. In order that different deflection angles can be realized geometrically, the
spectrometer magnet D2 is installed on a pair of rail tracks, which allows D2 to
move horizontally perpendicular to the COSY beam line with certain freedom.
Restricted by the range within which D2 can move, α can vary from 5.5◦ to 10.1◦.
To be able to move together with the D2 magnet, the beam pipe and target
chamber are connected to the D2 vacuum chamber by flexible bellows.
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A vacuum chamber is installed between the gap of the D2 magnet, with
three exit windows on its left, right and front sides, which allow the scattered
particles to enter the sub-detection systems Nd, Pd, and Fd respectively. In order
to reduce the the Coulomb scattering of the ejectile particles in the material of
the exit windows, which may worsen the momentum reconstruction, the windows
are made of Aluminum foils with a thickness of 0.5 mm. A ultra-vacuum target
chamber is installed in front of the D2 chamber, it was designed in such a manner
that different internal target can be installed for specific experiment conveniently.
Up to now, a solid strip targets [72], an unpolarized cluster gas target [74–76] and
a polarized internal gas target [77, 78] have been exploited in different experiments
at ANKE. In Table 3.1, the features the targets mentioned above are presented.

Table 3.1: Targets available at ANKE.

Targets Material(s) Size Thickness
Solid strip target C, Cu, Ag, Au wedge shape，length=40 mm, width=2 mm at base 40 µg/cm2 − 1.5 mg/cm2

Cluster-jet target p, d diameter 8̃.5 mm 1014 − 1015 cm−2

Polarized cell target p⃗, d⃗ transverse dimension 15× 20 mm2 1013 cm−2

The sub-detection systems forward detector(Fd), positive side detector(Pd)
and silicon tracking telescopes (STTs), which were employed in this experiment,
are described in details in sections 3.2.1, 3.2.2 and 3.2.3.

3.2.1 Forward detector

The forward detector, placed between the dipole magnets D2 and D3, is de-
signed to detect the high-momentum, positively charged particles produced at
small scattering angles. Its major components include three multi-wire propor-
tional chambers (MWPC) used for track reconstruction [79], a two-planed forward
scintillator hodoscope (FSH) and a Cherenkov detector array [80]. Since the gap
between D2 and D3 is only 1.6 meters wide, the distances between the neighbor-
ing MWPCs are subsequently very short. Given this circumstance, the spatial
resolution of these MWPCs has to be sufficiently good so that precise track re-
construction could be achieved. Each MWPC is consist of two modules, used for
the measurement of X and Y coordinates of the hits respectively. We shall call
them X(Y) module here for brevity. The X(Y) module comprising of a wire plane
with wires arranged in the direction of (Y)X axis at distances of 1 mm, and a strip
plane which is inclined by −(+)180◦ with respect to the wires.

The forward scintillation hodoscope (FSH) behind the multi-wire proportional
chambers (MWPC) is mainly used to record the time and energy signals for particle
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Figure 3.3: Top view of the Fd counters

identification and track reconstruction. As depicted in its top view in Fig. 3.3,
it comprises of two planes with 8 and 9 vertically arranged plastic scintillation
counters of length of 360 mm, respectively. In each plane, the six counters which
are far from the beam pipe have a cross section of 80 × 20 mm2, whereas the
others have a thickness of 15 mm and their widths decrease (see Fig. 3.3). For
the purpose of the time calibration between different counters (refer 4.2.2.1), the
plane A is half-width shifted towards the beam pipe with respect to plane B. All
the counter are read out at both ends via lucite light guides and photo multipliers.
Fig. 3.4 illustrates the frond end electronics of each counter. Signal from each
photo multiplier is converted into one analog signal (ADC) and two logical signals
(TDC) by the linear fan-out and the constant fraction discriminator (CFD)1. The
upper and lower TDCs are exploited to obtain the hit position as well as to form
the mean time and the trigger. The ADC signals, on the other hand, are mainly
used to extract the particle energy deposit.

Figure 3.4: Front end electron-
ics. Figure 3.5: Cherenkov counter.

1The CFD is used for eliminating the time walk caused by the difference between the signal
amplitudes.
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The 16 Cherenkov counters behind the forward scintillator telescope (FSH)
are used to discriminate fast particles with the same momentum, taking advantage
of the fact that the emission angle of the Cherenkov light is dependent on the
velocity of the incident particles [81]. As illustrated in Fig. 3.5, via inclining the
Cherenkov detectors by an appropriate angle β, the light originated from the slower
particle, say deuteron, will have a small opening angle thus is absorbed due to
refraction and long light path; on the other hand, the light from the faster particle,
say proton, will have a large enough opening angle which allows it propagate to
the photomultipliers and produce a signal. From the above discussion, we see that
the inclining angle β is a critical parameter, one needs to optimize it according to
specific requirements of the experiments so that the best particle discrimination
can be achieved.

Besides the three MWPCs and the FSH described in the preceding para-
graphs, there is a set of detectors (Side Wall) comprising of two vertically placed
planes of 5 and 6 scintillators with dimensions of height × width × thickness =

1000× 100× 10 mm3 respectively, and an array of Cherenkov counters. The side
wall, unlike the FSH which is implemented in the common frame with the MW-
PCs, is independent on the other detectors, is independent of the other detectors.
Thus it can be placed either at the lower-momentum end of FSH to increase the
acceptance, or behind the FSH as a veto detector.

3.2.2 Positive side detector

The positive side detection system is used to register the positively-charged
particles ejected in the forward directions with lower momenta. It is implemented
on the right-hand side of the D2 magnet. The main components of this detector
include the particle tracking system comprising of two multi-wire proportional
chambers (MWPCs), and the system for particle identification, which consists of
23 TOF-start counters mounted close to the right exit window of the D2 vacuum
chamber and 15 segmented range telescopes placed in the focal plane of D2.

The MWPC installed next to the start counters has a sensitive area of 350×
1300 mm2, while that of the other MWPC is 600 × 1960 mm2, both adapted to
the geometrical acceptance which they are supposed to cover. Each MWPC has
three layers of tangsten wires at a distance of 2.54 mm with different orientations
(vertical, +30◦, −30◦). The diameter of the wire is 20 µm and 25 µm for the
smaller and the larger MWPC respectively. Mylar foils with a thickness of 20 µm,
coated with C or Al arer served as the cathodes. The distance between the anode
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wire and the cathode plane is 5 mm. During the experiments, these MWPCs are
operated with mixture of 70% of Argon and 30% of CO2.

The particle identification is based of time of flight (TOF), energy loss (∆E)
and information from the range telescope. The time of flight is measured between
the TOF-start counters and the TOF-stop counters. In order to have long time
of flight, the start counters are installed extremely close to the D2 exit window,
actually the frame of the start counters is fixed on D2 magnet. On one hand
the thinner a scintillator is, the less photons it produced when charged particles
passing through it; but on the other hand the multiple scattering in the scintillator
worsens the track reconstruction, therefore the thickness of the scintillator counters
in the TOF-start plane is the result of a compromise between the requirements
of sufficient light output and small angular spread. As a result of the preceding
consideration, counter 1 and 2 at the low momentum end have a thickness of 0.5
mm, while it is 1.0 mm for counters 3 to 5, and 2.0 mm for the rest. The width
and the height for all the scintillators in the start plane are the same (50 mm and
270 mm respectively, slightly larger than the dimension of D2 exit window).

The range telescopes are designed for particle identification, especially used to
discriminate the K+ mesons from massive background of protons and pions [82].
One of the range telescopes is depicted in the exaggerated way in Fig. 3.2. A
range telescope is composed of a TOF-stop counter, a Cherenkov scintillator, two
degraders , a ∆E detector and a veto detector. The principle of the particle
identification with the telescope is illustrated in Fig. 3.2: the kaons are stopped
either in the ∆E detector or in the second degrader, whereas the proton lose
their kinetic energy before passing through the first degrader, and the pions can
penetrate the second degrader thus be detected by the veto detector. Of course
the decay products such as pions and muons could also produce signals in the veto
detector, but these particles can be distinguished from the primary pions utilizing
the characteristic decay time (12 ns). In additional, the Cherenkov scintillators
installed in the telescopes placed on the high-momentum side can register the
photons caused by the fast pions. The reason that the first degrader is wedge-
shaped leis in the fact that particles fall into one telescope have a certain of
momentum spread. This momentum spread for the experiment with point-like
target is about 10%, which is acceptable, whereas in experiment with a long target
the momentum spread is so large that the method for PID described above is no
longer valid. Therefore only the stop counter are used for this experiment.
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3.2.3 Silicon Tracking Telescopes

In the second phase of the ANKE np investigation [23], where the polarized
deuteron target is used to provide the quasi-free neutron, one needs to detect the
slow spectator protons which are emitted isotropically around the target. Besides
the use of a long storage-cell target (refer sec. 3.3.2) makes the vertex measure-
ment necessary. Therefore a detection system which can identify and track the
low-energy particles at large angles are indispensable. The silicon tracking tele-
scope (STT) [73] was developed for this purpose. As shown in Fig. 3.6, one STT
is consist of three double-sided microstructed silicon strip detectors and the aux-
iliary components such as the read-out electronics and the cooling system. The
combination of the three silicon strip detectors forms a telescope system, which
permits both particle identification (PID) and tracking (refer sec. 4.2.1.1). The
PID is based on the ∆E/E method, this means (the four-momentum of) a particle
can be measured by STT only if this particle penetrates the most inner layer and
is stopped by STT. Therefore the energy range covered by a STT is determined
by the thickness of the inner layer and the total thickness. Thus one STT with
the thinnest possible inner layer and the thickest possible outer layer is desired.

Figure 3.6: Silicon
tracking telescope.

Figure 3.7: Top and side views of STT.

Based on above consideration, together with other constrains such as the
space limits set by the target chamber and the available technology for making
the silicon detectors, the STT has been designed with the configuration indicated
in Fig. 3.7. To have a large geometrical acceptance, a short distance between
telescope and target is desired, the telescopes are installed close to the target with
a distance of only 27.970 mm, corresponding to an azimuthal angle coverage of
±20◦ or so. The modularity of the STT enables one to cover the interested angle
ranges for specific experiment by optimizing the position of the telescope along
the beam direction. In addition, a configuration of 4 STTs with 2 STTs placed
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on each side of the target permits to have a large acceptance. The effective pitch
width of the inner and middle silicon detectors is about 400 µm while it is about
600 µm for the detector outside. Accordingly the angular resolution of the track is
1◦−6◦ (FWHM), depending on particle type, energy loss and the track inclination.
Such angular resolution permits a vertex reconstruction with a resolution of about
1 mm. Defined by the thickness of the detectors depicted in Fig. 3.7, the energy
ranges of 2.5-32 MeV for proton and 4-43 MeV for deuteron are achieved with a
resolution of 150-250 MeV. The STT is able to recognize a particle passage within
100 ns, which can be used to trigger the read out. This self-triggering feature
makes it possible to configure high-level triggers in combination with the other
ANKE triggers.

3.3 Polarized Internal Target
The polarized internal target [83, 84] is one of the targets adopted at the

ANKE spectrometer, which allows to conduct not only single polarized experi-
ments but also double polarized experiments at ANKE in conjunction with COSY
beam. This installation is able to provide both polarized hydrogen target and po-
larized deuterium target, each with different polarization modes. Fig. 3.8 is a photo
of the ANKE polarized internal target, as illustrated on this photo, the main com-
ponents of the polarized internal target include an atomic beam source(ABS) [85],
a storage cell [86] and a lamb-shift polarimetry [87, 88]. The atomic beam source
provide jet of atoms of hydrogen or deuterium with nuclear spin polarization.
However the areal density of ABS jet is generally too small to meet any practical
needs, in order to overcome this problem a device named ”storage cell” has been
developed and used widely in the spin physics community since long time ago.
Inside the ANKE target chamber a storage cell is installed in order to increase
the target thickness when the polarized internal target is adapted for research.
The Lamb-shift polarimetry, shown in the bottom of Fig. 3.8 can measure the
polarization of ABS jet very fast (within several seconds) with a precision of 1%,
it is used to adjust the configuration of the atomic beam source at the beginning
of experiments. Section 3.3.1 is devoted to general working principle and major
functional parts of the atomic beam source. Different aspects of of the storage
cell is discussed in section 3.3.2. Finally the lamb-shift polarimetry is described in
section 3.3.3.
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Figure 3.8: The Polarized internal target at ANE.

3.3.1 Atomic Beam Source

It is necessary to understand how physically the ABS produces nuclear-
polarized beams out of the unpolarized ensembles before one goes into the technical
details, therefore the basic physics behind the principle of ABS is discussed first
in Section 3.3.1.1. However, only knowing the basic principle is not enough if one
wishes to realize or use this sophisticated instrument, so a detailed description of
the main functional components is provided in the following section.
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3.3.1.1 Working principle of ABS

The Stern-Gerlach experiment [89], which lead to the discovery of spin, showed
for the first time that a beam of atoms could be spatially separated in an inhomoge-
neous magnetic field. This experiment is showed in Fig. 3.9, in the inhomogeneous
magnetic field B⃗(z), the potential energy of the Ag atom with magnetic moment µ⃗
is U = B⃗(z) · µ⃗, which is not uniform, thus the magnetic field exerts a force on the
atom: F = −∇U = −∇(B⃗(z) · µ⃗) = −∂B

∂Z
gsµBSz. In this manner, the Ag atoms

with their electron spins oriented upwards (Sz =
1
2
~) and downwards (Sz = −1

2
~)

are separated while they are passing through the magnetic field, as a result both
the separated beams are polarized with respect the electron spin.

Figure 3.9: Stern-Gerlach principle

The general idea of the polarized atomic beam source (ABS) is basically from
the Stern-Gerlach experiment. Note that the beam profile of the separated beams
in the Stern-Gerlach experiment is not cylindrically symmetric, which is essential
for better beam qualities (such as beam intensity and polarization etc), thus the
dipole field is substituted with a cylindrically symmetric multiple filed (either
sextuple or quadruple) in ABS. One should also note that the beam from the spin
separator (i.e. the inhomogeneous magnetic field) is only electronicly polarized,
due to the smallness of the proton/deuteron magnetic moment associated with
the nuclear spin, it is practically impossible to polarize the nuclear spin according
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to the energy difference between their spin sub-states in the magnetic field, as
in the Stern-Gerlach experiment. An additional device, i.e. the fast adiabatic
passage [94] is employed as a spin flipper to manipulate the nuclear spin, making
use of the fact that the nuclear spin is associated with the electron spin.

The object we deal with is hydrogen/deuterium atoms in the magnetic field,
where the nuclear spin and the electron spin interact with each other and the
Zeeman effect [91] plays an important role as well. As the atoms are separated
according to the energy of the sub-states with different spin configurations, it
is necessary and sufficient to study the relation between their spin states and
energy eigne states. The atoms in the atomic beam source are mostly in their
ground states, where the angular momentum of the valence electron is J⃗ = S⃗.
Henceforward we denote the nuclear spin by I⃗ and F⃗ = S⃗ + I⃗ as its sum with
the electron angular momentum S⃗, and the letters with subscript m represent
the projections along the magnetic field B of the corresponding vectors. The
Hamiltonian operator relevant to the energy differences reads

Ĥ = −γeŜmB − γnÎmB + ahfi(
ˆ⃗
S · ˆ⃗I) (3.2)

where the first and second terms describe the interaction between the spins and the
external magnetic field B⃗ while the third term describes the hyperfine interaction
between the electron spin and the nuclear spin. Here γe = −geµB/~ = −ge e

2me

and γn = gnµN/~ = gn
e

2mp
are the gyromagnetic ratios of electron and nucleus

respectively, and ahfi is the hyperfine constant.
Now we shall digress a bit to discuss the hyperfine coupling in the absence

of external field first , because as it will be seen soon that it is convenient to use
the hyperfine split as the basic unit in the discussion of the hyperfine interaction
in the magnetic field. Without external field the Hamiltonian operator defined in
Eq. 3.2 reduces to Ĥhfi = ahfi(

ˆ⃗
S · ˆ⃗I), it is straightforward that the solution of its

Hamiltonian equation Ĥhfi |F ⟩ = EF |F ⟩, i.e. the hyperfine interaction energy is
EF = ahfi(

ˆ⃗
S · ˆ⃗I). Using the relation I⃗ · S⃗ = 1

2
[F (F + 1)− I(I + 1)− S(S + 1)], it

can be calculated that

EF =
a~2

2
[F (F + 1)− I(I + 1)− 3

4
] (3.3)

and the hyperfine split is

∆E = EF=I+ 1
2
− EF=I− 1

2
= a~2(I +

1

2
) (3.4)
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Another frequently used unit is the magnetic field which corresponds the hyperfine
split: Bcrit = ∆E/(ge−gn)~, with this unit any magnetic field B can be expressed
as a dimensionless quantity x = B/Bcrit.

Let us come back to study the atoms in external magnetic field. Because
our purpose is to study the behaviour and properties of variant spin sub-states
in the magnetic field, it is nature to study it in the representative space of the
spin: |S,mS⟩ ⊗ |I,mI⟩ ≡ |mS,mI⟩, where |S,mS⟩ is the eigenvector of S2 and Sz

and |I,mI⟩ is the eigenvector of I2 and Iz. Further simplification |mS,mI⟩ ≡
|mS,mF −mS⟩ can be made taking the angular moment conservation mF =

mS + mI into account. In the Hilbert space spanned by the base vectors |↑⟩ =∣∣1
2
,mF − 1

2

⟩
and |↓⟩ =

∣∣−1
2
,mF + 1

2

⟩
, the Hamiltonian Ĥ defined in Eq. 3.2 is

expressed as

Ĥ =

(
H↑↑ H↑↓

H↓↑ H↓↓

)
(3.5)

Rewriting the inner product in the third term of Eq. 3.2 in the form of the ladder
operators Ŝ± = Ŝx ± Ŝy and Î± = Îx ± Îy as

ˆ⃗
S · ˆ⃗I = Ŝz Îz +

1

2
(Ŝ+Î− + Ŝ−Î+) (3.6)

The properties of the ladder operators, the orthogonality of the the base vector
and the angular momentum conservation ∆mS

+ ∆mI
= 0 lead to the following

relations:⟨
m′

S,m
′
I

∣∣∣ Ŝ+Î−

∣∣∣mS,mI

⟩
=
√
(S +ms + 1)(S −mS)(I −mI + 1)(I +mI)δm′

S−(ms+1)δm′
I−(mI−1)δ∆mS

+∆mI

(3.7a)

and⟨
m′

S,m
′
I

∣∣∣ Ŝ−Î+

∣∣∣mS,mI

⟩
=
√
(S −ms + 1)(S +mS)(I +mI + 1)(I −mI)δm′

S−(mS−1)δm′
I−(mI+1)δ∆mS

+∆mI

(3.7b)
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Utilizing the relations above the matrix elements in Eq. 3.5 are computed as
following:

H↑↑ =

⟨
1

2
,mF − 1

2

∣∣∣∣ Ĥ ∣∣∣∣ 12 ,mF − 1

2

⟩
= −B~[

1

2
γe + γn(mF − 1

2
)] +

1

2
(mF − 1

2
)a~2 (3.8a)

H↓↓ =

⟨
−1

2
,mF +

1

2

∣∣∣∣ Ĥ ∣∣∣∣−1

2
,mF +

1

2

⟩
= −B~[−1

2
γe + γn(mF +

1

2
)]− 1

2
(mF +

1

2
)a~2 (3.8b)

H↑↓ = H↓↑ =

⟨
−1

2
,mF +

1

2

∣∣∣∣ Ĥ ∣∣∣∣ 12 ,mF − 1

2

⟩
=

1

2
a~2
√

(I +
1

2
)2 −m2

F (3.8c)

Put those matrix elements back into the Hamiltonian 3.5 and solve the Schrodinger’s
equation Ĥ |i⟩ = Ei |i⟩, the eigenvalues of the energy are obtained as the Breit-
Rabi formula [92]:

Ei(F = I ± 1

2
,mF , x) = −∆E

2

[
1

2I + 1
− γnBmF

∆E/2
±
√
1 +

4mF

2I + 1
x+ x2

]

≈ −∆E

2

[
1

2I + 1
±
√

1 +
4mF

2I + 1
x+ x2

] (3.9)

The term −γnBmF

∆E/2
is neglected here because the nuclear gyromagnetic ratio γn is so

small that in practice it hardly contributes. For a given total spin F , its projection
along the external field mF can take −F,−F +1, ..., F , thus there are four energy
eigen states for Hydrogen atom and six energy eigen states for Deuterium atom.
These eigen states (i.p. there eigen values and wave functions) are functions of
the external magnetic field x.

We shall now search for the wave function |Ei⟩ for each energy eigen state Ei.
In the spin space |mS,mF −mS⟩中 |Ei⟩, |Ei⟩ is expressed as a linear combination
of the base vectors |↑⟩ =

∣∣1
2
,mF − 1

2

⟩
and |↓⟩ =

∣∣−1
2
,mF + 1

2

⟩
, i.e.

|Ei⟩ = c↑i

∣∣∣∣12 ,mF − 1

2

⟩
+ c↓i

∣∣∣∣−1

2
,mF +

1

2

⟩
(3.10)



Chapter 3. Experimental Equipment 52

Figure 3.10: Breit-rabit diagram for Hydrogen and Deuterium atom

The coefficients c↑i and c↓i can be worked out analytically by solving the Hamilto-
nian function (

H↑↑ H↑↓

H↓↑ H↓↓

)(
c↑i

c↓i

)
= Ei

(
c↑i

c↓i

)
(3.11)

together with the equation
c↑i

2
+ c↓i

2
= 1 (3.12)

which ensures the normalization condition. At this point the procedure of how to
work out the Zeeman sates of the Hydrogen/Deuterium atoms in the spin space is
clear. As a summary and for the convenience in the discussion of the polarizations,
the eigen energies as well as the corresponding wave functions of both the hydrogen
and deuterium atoms in external magnetic field are given below.

For hydrogen the eigen energies are

E1 =
∆E

2

[
− 1

2
+ (1 + x)

]
(3.13a)

E2 =
∆E

2

[
− 1

2
+
√
1 + x2

]
(3.13b)
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E3 =
∆E

2

[
− 1

2
+ (1− x)

]
(3.13c)

E4 =
∆E

2

[
− 1

2
−

√
1 + x2

]
(3.13d)

with the hyperfine split ∆E = 1420 MHz for Hydrogen atom at the ground state
1S 1

2
. These eigen energies are plotted in the left panel of Fig. 3.10 as functions of

external field x. The corresponding wave functions are

|E1⟩ =
∣∣∣∣12 , 12

⟩
(3.14a)

|E2⟩ =
1√
2

(
√
1 + k

∣∣∣∣12 ,−1

2

⟩
+
√
1− k

∣∣∣∣−1

2
,
1

2

⟩)
(3.14b)

|E3⟩ =
∣∣∣∣−1

2
,−1

2

⟩
(3.14c)

|E4⟩ =
1√
2

(
√
1− k

∣∣∣∣12 ,−1

2

⟩
+
√
1 + k

∣∣∣∣−1

2
,
1

2

⟩)
(3.14d)

where k = x√
1+x2 . The Zeeman states |E1⟩ and |E3⟩ are pure states in the spin

space whose wave functions are irrelevant to the external magnetic field. On
the other hand, the other two states |E2⟩ and |E4⟩ are superpositions of spin
eigenstates, and the superposition coefficients depend on the external magnetic
field, as a results the polarizations (both electronic and nuclear) are functions of
magnetic field x. Fig. 3.11 shows how the nuclear polarization Pz(x) =

N↑−N↓
N↑+N↓

2

vary with the magnetic field for all the hydrogen Zeeman states, as can be seen
from this plot the polarizations of the pure states are always the maximum value
(+1 and −1 respectively). In the case of superposition states, the nuclear spin is
unpolarized without the presence of external magnetic field, and the polarizations
increase with magnetic field x until the maximum polarizations are achieved in
strong field (x > 10). The polarizations are calculated as the weighted average

2N↑ and N↓ are the occupation fraction (multiplied by a common constant if the wave func-
tions are not normalized.) of atoms with nuclear spin parallel and atiparalle to the quantization
axis, which are calculated as the squares of the superposition coefficients c↓i and c↑i .
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of the occupied components if the target ensemble is composed of several Zeeman
states.

Figure 3.11: Vector polarizations of Hydrogen Zeeman components as func-
tions of x.

Similarly, there are six Zeeman states for deuterium, their eigen energies are

E1 =
∆E

2

[
− 1

3
+ (1 + x)

]
(3.15a)

E2 =
∆E

2

[
− 1

3
+

√
1 +

2

3
x+ x2

]
(3.15b)

E3 =
∆E

2

[
− 1

3
+

√
1− 2

3
x+ x2

]
(3.15c)

E4 =
∆E

2

[
− 1

3
+ (1− x)

]
(3.15d)

E5 =
∆E

2

[
− 1

3
−
√
1− 2

3
x+ x2

]
(3.15e)

E6 =
∆E

2

[
− 1

3
−
√
1 +

2

3
x+ x2

]
(3.15f)
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with the hyperfine split ∆E = 327 MHz for deuterium atom at the ground state
1S 1

2
. These eigen energies are plotted in the right panel of Fig. 3.10 as functions

of magnetic field x. The corresponding wave functions are

|E1⟩ =
∣∣∣∣12 , 1

⟩
(3.16a)

|E2⟩ =
1√
2

(
√
1 +m

∣∣∣∣12 , 0
⟩
+
√
1−m

∣∣∣∣−1

2
, 1

⟩)
(3.16b)

|E3⟩ =
1√
2
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√
1 + n

∣∣∣∣12 ,−1

⟩
+
√
1− n

∣∣∣∣−1

2
, 0

⟩)
(3.16c)

|E4⟩ =
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2
,−1

⟩
(3.16d)

|E5⟩ =
1√
2
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√
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∣∣∣∣12 ,−1

⟩
−
√
1 + n

∣∣∣∣−1

2
, 0

⟩)
(3.16e)

|E6⟩ =
1√
2

(
√
1 +m

∣∣∣∣−1

2
, 1

⟩
−

√
1−m

∣∣∣∣12 , 0
⟩)

(3.16f)

wherem =
x+ 1

3√
1+ 2

3
x+x2

and n =
x− 1

3√
1− 2

3
x+x2

. Like the case of Hydrogen, the two states
with the maximum and minimum projections of total spin along the magnetic field,
i.e. state |E1⟩(mF = 3

2
) and state |E3⟩(mF = −3

2
) are pure states, while the others

are superposition states. In Fig. 3.12, the left plot shows the dependence of the
vector polarization Pz =

N↑−N↓
N↑+N↓

on the external magnetic field for each deuterium
Zeeman state, and the right plot is for the tensor polarization Pzz =

N↑+N↓−2N0

N↑+N↓+N0
.

As usual N↑ , N↓ and N0 denote the occupation number of deuterium atoms with
mI = 1

2
, mI = −1

2
and mI = 0 respectively. The corresponding superposition

coefficients are squared to get these occupation numbers. Refer to the Breit-Rabi
diagram Fig. 3.10, one would find that the Stern-Gerlach type separator (multiple
magnets) can only separate an unpolarized ensemble into two groups: the Zeeman
components with mS = 1

2
in strong magnetic field and others with mS = −1

2
.
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(a) Vector polarization Pz of Deuterium. (b) Tensor polarization Pzz of Deuterium.

Figure 3.12: Vector polarization(Pz) and tensor polarization(Pzz)of the deu-
terium atoms in the external magnetic field.

It is hardly possible to further separate the components within the same group
using the same trick due to the small energy splits between them. Take the
deuterium as example, the states |E1⟩, |E2⟩ and |E3⟩ can be easily separated from
the other states |E4⟩, |E5⟩ and |E6⟩ utilizing an inhomogeneous magnetic filed,
however the states with the same mS in strong magnetic field, for example |E1⟩,
|E2⟩ and |E3⟩, are hard to be separated further. Thus, for an atom ensemble
from an ideal Stern-Gerach separator, the nuclear polarization (either Pz or Pzz)
in strong magnetic field is zero for both Hydrogen and Deuterium. Due to the
hyperfine interaction between the electron and the nucleus (proton or deuteron in
our case), the polarizations will be increased in the medium and weak filed3, but
the maximum polarizations are far beyond reach. In order to obtain higher nuclear
polarizations, the occupation numbers of the hyperfine Zeeman components have
to be changed. The adiabatic passage method was proposed more than half century
ago [90] to transit the atoms between different hyperfine Zeeman states. It has
been proven to be very effective in increasing the nuclear polarization and has
been employed widely in the spin physics community. In what follows, we shall
present the basic idea of the adiabatic passage method in a semi-classical way.
Strict analytic solutions with time-dependent Schrödinger equations can be found
in Refs. [93–95].

A particle with magnetic moment in a magnetic field will precess about the di-
rection of the magnetic field due to the torture exerted by the magnetic field. This
motion is usually referred as Larmor precession, it can be visualized in Fig. 3.13,
which illustrates a proton precessing around a magnetic field B⃗. In this plot the

3For example, without external field the vector polarization for is proton Pz = ± 1
2 , and the

deuteron tensor polarization is Pzz = ±1
3 .
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Figure 3.13: Larmor precession of proton in a magnet-
ic field. The black and red arrows indicate the angular
momentum and the magnetic moment respectively. Note
only the case where the gyromagnetic ratio γ > 0 is il-
lustrated in this plot, the red arrow should point to the
opposite direction of the angular moment if γ < 0.

proton spin is denoted as I⃗, and the associated magnetic moment is

µ⃗ = γI⃗ = g
e

2mp

I⃗� (3.17)

the proton experiences a torque

τ⃗ = µ⃗× B⃗ (3.18)

which causes the angular moment to precess. Denote the change of the angular
moment in a infinitesimal time ∆t as ∆I, it can be expressed as

∆I⃗ = ∆ϕ⃗I sin θ (3.19)

where ∆ϕ⃗ is the change of the azimuthal angle and θ is the angular between
magnetic field B⃗ and angular moment I⃗. By definition the torque is the change
rate of the angular momentum:

τ⃗ =
dI⃗

dt
(3.20)

Combine Eq. 3.17, 3.18, 3.20 and the directive form of Eq. 3.19, the angular
velocity of the Larmor precession, which is often referred as Larmor frequency, is
calculated steadily as

ω⃗L =
dϕ⃗

dt
= γB⃗ (3.21)

Above discussion is only confined to the case of static magnetic field, it can be
seen that the angular moment is aligned with the external magnetic field. Image
the magnetic field is reversed to its opposite direction, the magnetic moment will
follow if the process goes slowly enough, in the manner the angular moment will get
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flipped as well. In the case of the Hydrogen or Deuterium atom, the nuclear spin
will flip along with the electron spin. This is the basic principle of how to change
the hyperfine Zeeman states. The remaining issue is how to reverse the external
magnetic field. The adiabatic passage method, which is employed in the polarized
atomic beam source (ABS) to realize the magnetic filed reversal, will be presented
in the following. Essentially, the so-called adiabatic passage is a combination of one
gradient static magnetic field and one homogeneous radio-frequency (rf) magnetic
field, which are perpendicular to each other. In the laboratory reference frame,
we define the beam direction as z axis and the direction of the magnetic field as
y axis, x axis is chosen in such a manner that the usual right-handed coordinate
is formed. The rf magnetic field oscillates along x axis with certain frequency ω0

as indicated by the dashed double-sided arrow in the left panel of Fig.3.14, it is
expressed as

B⃗x = 2B1 cosω0e⃗x (3.22)

in the laboratory system. This oscillating magnetic field can be viewed equivalently
as two magnetic fields rotating about the y axis clockwise and counterclockwise
with frequency ωo in the xz plane, i.e.

B⃗+ = B1[cos (ω0t)e⃗x − sin (ω0t)e⃗z] (3.23a)

Figure 3.14: The homogeneous magnetic field is realized by an rf field Brf

(dashed double arrow in the left panel), it can be regarded as two field B− and
B+, rotating clockwise and counterclockwise with frequencies ±ωL respectively.
In the co-rotating frame, which co-rotate with B+ (see the middle panel), the rf
field is decomposed into a static field B′

+, and a rotating field whit a frequency
2ωL, as illustrated by the right panel.
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and

B⃗− = B1[cos (ω0t)e⃗x + sin (ω0t)e⃗z] (3.23b)

The spin reversal process is best described in a Cartesian coordinate which co-
rotates with B⃗+. As illustrated in the middle panel of Fig. 3.14, this co-rotating
coordinate is linked to the lab-fixed coordinate by the following relations:

e⃗x′ = cos (ω0t)e⃗x − sin (ω0t)e⃗z (3.24a)

e⃗y′ = e⃗y (3.24b)

e⃗z′ = sin (ω0t)e⃗x + cos (ω0t)e⃗z (3.24c)

In the co-rotating system the rf-magnetic field is decomposed into one static ho-
mogeneous magnetic field

B⃗′
+ = B0e⃗′x (3.25a)

and one magnetic field rotating with frequency 2ω0

B⃗′
− = B0[cos (2ω0t)e⃗′x + sin (2ω0t)e⃗′z] (3.25b)

The counterclockwise rotating field B⃗′
− does not play a role since it is off resonance.

As depicted by the solid arrows in Fig. 3.15, the static inhomogeneous mag-
netic field changes slowly from an initial value By = B0 + ∆B0 to a final value
By = B0 −∆B0 along the beam direction in the laboratory system. Note that B0

stands for a magnetic field in which the magnetic moment precesses synchronous-
ly with the clockwise rotating field B⃗+ with a Larmor frequency ωL = ω0, this
statement is equivalent to the following expression:

ω0 = γB0 (3.26)

The dotted arrows indicate the field variation from ∆B0 to −∆B0 in the co-
rotating system. If observed in the co-rotating system, the magnetic moment
does not precess around the y′ axis as it dose in the laboratory system. Instead,
it precesses around the effective magnetic field B⃗eff which is superposed by the
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Figure 3.15: The static magnetic field varying with respect to the beam di-
rection. The sold and dashed arrows represent the field in the laboratory and
co-rotating frames respectively. A negative gradient is indicated, while in the
real case the gradient can be also plus.

homogeneous field B⃗x = B1e⃗′x and the gradient field B⃗y. It is straightforward
that, if the initial and final values of the gradient field are much larger than the
homogeneous field in the co-rotating system, i.e.

∆B0 ≫ B1 (3.27)

the effective filed will point approximately upward in the beginning, and change
its direction as ∆B0 decreases, finally it will point downwards, in another words,
the effective magnetic field gets flipped. This process is illustrated intuitively in
Fig. 3.16, the effective field is indicated by green arrows. As mentioned before, the
magnetic moment, which precesses around the effective magnetic field gets flipped
as well, as long as the effective field changes adiabatically.

To satisfy the adiabatic condition, the Larmor frequency should be much
larger than the frequency which the effective field varies with at all points. Denote
the angle between y axis and effective field by θ, from the basic geometry relation

tan θ = B1

B′
y

(3.28)

the angular velocity of the effective field B⃗eff can be derived as

ωeff =
dθ

dt
= − B1

B2
1 +B′2

y

dB′
y

dz
vatom (3.29)
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where vatom is the z component of the atom velocity. Assume the gradient field
By(z) varies linearly along z axis, then the effective field rotates most quickly
and the Larmor frequency is minimum at the point where B⃗′

y = 0, therefore the
adiabatic condition is

vatom
B1

dBy

dz
≪ γB1 (3.30)

In Summary, both the polarization condition 3.27 and the adiabatic condition 3.30
should be satisfied in order to achieve a complete spin reversal. It should be noted
that, in the above discussion the oscillating rf field is chosen to be perpendicular
to the beam direction, actually it can be oriented in any direction, as long as
it is orthogonal to the gradient field. For instance in the weak-field (WFT) and
medium-field (MFT) transition units of the ANKE ABS [96] and of the HERMES
ABS [96], the rf field is parallel to the beam direction, whereas in the strong-field
transition unit (SFT) it is oriented as to form an angle with the beam.

According the strength of the magnetic field B0 the rf transitions can be
classified into three types:

� WFT (Weak-field transition, B0 ≪ Bcrit): in weak magnetic field the elec-
tron spin and the nuclear spin are coupled thus F is a good quantum num-
ber, mutual transformations take place between Zeeman states with opposite
mF s. Zeeman states of the same atomic spin number F are nearly equidis-
tant on the Breit Rabi diagram (refer Fig. 3.10). Since quantum transitions
between non-neighboring states are forbidden, the rf frequency is adjusted to

Figure 3.16: Visualization of the spin reversal. The effective magnetic field
Beff , which is indicated in green, is the superposition of the gradient Bgrad

(blue) and homogeneous Bhom (red) fields. The spin, which is coupled to Beff ,
gets reversed along with Beff . Note Bhom can lie in any direction in the xz
plane.
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match the energy difference between the neighboring Zeeman states. Trans-
formation between non-neighboring states is realized by a series of successive
transitions between neighboring states. Via WFT, interchange between Zee-
man states |E1⟩ and |E3⟩: 1 ↔ 3 occurs for hydrogen, and for deuterium the
interchanges

1 ↔ 4, 2 ↔ 3, 5 ↔ 6

take place simultaneously.

� MFT (Medium-field transition, B0 < Bcrit): in this case the difference of
energy splits between different pairs of Zeeman components are larger enough
to allow single transitions between states of same F . Typical transitions are

1 ↔ 2, 2 ↔ 3

for hydrogen and

1 ↔ 2, 2 ↔ 3, 3 ↔ 4, 5 ↔ 6

for deuterium.

� SFT (Strong-field transition, B0 ≥ Bcrit): unlike WFT and MFT, which
can only induce transitions within one multiplet, the strong-field transition
can be also employed to realize transitions between the states belonging to
different multiplet. The most commonly used strong-field transitions are

1 ↔ 4

for hydrogen and

2 ↔ 6, 3 ↔ 5

for deuterium. Furthermore, the gradient field and the rf frequency can be
configured in such a way that certain consecutive transitions, e.g. 3 → 4,
2 → 3, 1 → 2, which is equivalent to 1 → 4, can be achieved.

In correspondence to the rf transitions discussed above there are three types of
rf transition units which, together with the multiple magnet, are the basic tools
employed in the polarized atomic beam source (ABS) for the spin manipulation.
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Various polarization modes can be prepared using these tools in different config-
urations. Depending on the change of the quantum number mF the rf transition
can be classified as π transition (∆mF = 0) or σ transition (∆mF = ±1). Ac-
cording to the rotation symmetry the π transition can only be induced by the rf
magnetic filed perpendicular to the static magnetic field and the π transition can
only be induced by the rf magnetic filed parallel to the static magnetic field [111].
In practice the WFT and MFT only induce π transitions (∆F = 0,∆mF = ±1),
whereas the SFT can induce both π and σ transitions (∆F = ±1,∆mF = 0,±1).

3.3.1.2 Components of ABS

In section 3.3.1.1, we discussed the hyperfine Zeeman effect of Hydrogen and
Deuterium, the Stern-Gerlach type spin separation, and the rf transitions of Zee-
man states, which are all essential to understand the working principle of the
polarized atomic beam source (ABS). Now we shall turn to the units which en-
able the spin separation and Zeeman-state transitions, as well as other important
components. Fig. 3.17 is a front sectional drawing of the polarized atomic beam
source (ABS) at the ANKE spectrometer, the storage cell (SC) is indicated as
well. Different colors are used for the representations of different functional com-
ponents. Molecules (H2 or D2) are first dissociated into atoms in the dissociator
and then injected through a skimmer and a collimator into the chambers which
house the devices used for spin manipulations. These spin-manipulation devices
include two groups of sextupole magnets for spin separation and three rf transi-
tion units (WFT, MFT and SFT) for spin reversal. The medium-field transition
unit is placed between the two sextupole-magnet groups, while the weak-field and
strong-field transition units are placed after the second sextupole-magnet group
and before the exit of the ABS.
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Figure 3.17: Profile of the polarized atomic beam source (ABS) at the ANKE
spectrometer. Components of different functionalities are distinguished by col-
or. The dissociator tube and the nozzle which is installed at its lower end are
drawn in mulberry, the nozzle cooling system is indicated by cyan. The skim-
mer, together with the conical baffles, are represented by green color. The two
groups of spin separate devices, each comprising of three sextupole magnets,
are drawn in blue. The components drawn in red are the rf transition units, the
medium field transition units (MFT) is placed in the middle chamber whereas
the weak (WFT) and strong (SFT) field transitions units are installed in the
last chamber. The storage cell as well as the COSY beam are schematically
draw at the bottom. Auxiliary parts such as pumps and control system are not
drawn.
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(a) 3D view of the dissociator
tube.

(b)

Figure 3.18: Dissociator.

Unpolarized atomic beam source In order to
perform spin manipulations one has to first disso-
ciate the hydrogen/deuterium molecules into neu-
tral atoms. This function is realized by the un-
polarized atomic beam source, which, as shown in
Fig. 3.18, is made up of a dissociator, a beam form-
ing system consisting of nozzle, skimmer and colli-
mator, as well as a nozzle cooler. The stereogram
in Fig. 3.18(a) illustrates the dissociator, which is
based on an rf plasma discharge. The discharge is
essentially composed of a pair of rf capacitor (7, 9)
and coil (8) which are fed by a 13.56 MHz generator
through the rf input (5). The molecules enter the
discharge tube through the gas inlet (1). Under the
effect of the rf electric field produced by the capac-
itor the molecules will be ionized as plasma, which
in turn will transform into neutral atoms outside
the discharge region. The magnetic field gener-
ated by the coil increases the distances that the
electrons travel in the electric field thus increases
the ionization rate. The sliding ground connection
(2) and rf connection (6) enable the distance from
the rf capacitor and coil, which are fixed rigidly
to each other, to the exit of the discharge tube，
to be adjustable within certain freedom. To main-
tain the discharge process in a stable condition the
released heat has to be transferred out of the dis-
charge tube timely, for this purpose two extra glass
tubes are installed coaxially with respect to the dis-
charge tube (see label (1) in the cross-section plot
3.18(b)). The space between the discharge tube
and the middle tube allows the coolant to cool the
discharge tube by heat convection, at the lower
end the coolant is reversed by the reversal piece
and flows upwards to the coolant outlet through
the slit between the middle and outer tubes. The
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coolant is a mixture of water and ethanol with approximately the same amounts,
circulating in a closed loop, its temperature at the inlet is stabilized using a ther-
mostat. As shown in Fig. 3.18(b), the beam forming system includes the nozzle
(9), skimmer (11) and collimator (12), the nozzle is installed at he lower end of the
dissociator while the skimmer and the collimator are fixed at the upper and lower
baffles respectively. The nozzle is made of 99.5% Al and is cooled via connecting
to the coolhead by a Cu heat-bridge. Note the lower baffle is not attached to
the vessel and can be move axially, the same is true for the dissociator, as results
the positions of the collimator and of the nozzle can be adjusted in the beam
direction. Therefore the maximum beam intensity can be achieved by tune the
distances between plasma, nozzle, skimmer and collimator.

Spin-separator: sextupole magnets As already mentioned in section 3.3.1.1,
cylindrically symmetric multiple magnet rather than tapered dipole magnet ought
to be adopted as spin separator so that beam of high quality can be produced.
For a 2m-pole magnet its scalar potential is expressed in a general form as

Φ = crm cosmϕ (3.31)

in the polar coordinate, the coefficient c above is a constant which does not concern
the present discussion. Using the relation B⃗ = −∇Φ the field magnitudes of the
most popular multiple magnets, i.e. the quadrupole and sextupole magnets, are
obtained:

B =
Btip

rtip
· r (quadrupole) and B =

Btip

r2tip
· r2 (sextupole), (3.32)

here Btip is the field strength at the pole tips and rtip is distance from the pole
tips to the center. In a magnetic field the force exerted on an atom is

F⃗ = −∇W = −∂W
∂B

· ∂B
∂r

= µeff∇rB. (3.33)

The notation µeff stands for the effective magnetic moment, which is constant
for a pure hyperfine Zeeman state but varies with the magnetic strength for a
superimposed state. The field gradients ∇rB is calculated by differentiating the
magnetic filed with respect to the radius, which yields

∇rB =
Btip

rtip
(quadrupole) and ∇rB =

2Btip

r2tip
· r (sextupole), (3.34)
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Figure 3.19: The arrangement of the sextupoles in the ABS at ANKE, the
lines are the simulated trajecroies of the atoms with positive µeff . From left to
right the tip-field stengths of these magnets are 1.630, 1.689, 1.628, 1.583, 1.607
and 1.611 T.

One would immediately notice that the focusing/deocusing force acting on an atom
is independent of the radius r in the quadrupole filed, whereas is proportional to
r in the sextupole. This distinctive feature of the sextupole leads to a advan-
tage that the chromatic aberration caused by the beam momentum spread can
be compensated, therefore sextupole is widely used as the spin separator in the
polarized atomic beam source. Fig. 3.19(a) schematically shows the cross section
of a sextupole (with its field lines indicated), note the inner radius is exagger-
ated compared with the poles. The attributes of the spin separator system that
affect the spin separation efficient and the beam transmission rate are the field
strengths and the geometries, which were optimized by performing track simula-
tion. Fig. 3.19(b) shows the magnet arrangement of the ABS at ANKE, the field
strengths of these magnets are given in the caption.

RF transition units From the discussion on the principle of the rf transition
it is clear that an rf transition unit is nothing but a combination of an rf magnetic
field Brf and a static magnetic field Bstat, which is gradient with respect to the
beam axis. In what follows, we shall introduce the techniques and components
that realize these magnetic fields as well as the auxiliary parts. In the pioneering
researches [8] the gradient static magnetic field Bstat was provided by a permanent
dipole magnet which is tapered along the beam direction. Electromagnets with
adjustable pole faces were reported latter [98, 99]. Presently a type of novel gra-
dient magnet has been developed and successfully used in the modern polarized
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(a) Three-quarter-section view of MFT unit. (b) Circulate producing the static gradient magnetic
field.

Figure 3.20: Layouts of the rf transition unit.

atomic beam sources [85, 96]. Fig. 3.20(a) shows a three-quarter-view of the medi-
um field transition unit (MFT) installed on the polarized atomic beam source at
ANKE, where the gradient static magnetic filed Bstat is essentially a superposition
of a homogeneous magnetic field Bhom and a gradient magnetic field Bgrad. The
homogeneous magnetic field Bhom is produced by a pair of Helmholtz coil (6). On
the other hand the gradient component Bgrad is maintained by a separate circular
(see Fig. 3.20(b)) which is installed on a grooved aluminium plate (see label 7 in
Fig. 3.20(a)). On the left-hand side of Fig. 3.20(b) Bgrad is plotted as a function of
the positions on the beam axis (z). Note only the region where the field gradient
dB
dz

is constant is used for transition. For the weak-field (WFT) and mediate-field
(MFT) transition units, the radio frequency field Brf is produced by an rf solenoid
coil. As shown in Fig. 3.20(a) the solenoid is installed inside a grooved aluminium
tube (3) which is placed along the beam axis. To induce the transitions between
different Zeeman multiplets the strong field transition unit (SFT) is operated at
frequencies higher than the hyperfine splitting frequencies4. In addition the SFT
ought to accomplish not only the π transitions (∆F = 1, ∆mF = ±1) but also the
σ transitions (∆F = 1, ∆mF = 0), which means the rf magnetic field should has
both orthogonal and parallel components with respect to the static magnetic field.
Such magnetic field can not be excited by the rf solenoid, instead it is produced
by the two-line resonator, which will be introduced in the following.

A two-line resonator is consist of two copper λ
4

resonant rods inside a copper
cavity. The two rods are fed by rf powers with a relative phase shift of π, as a

41421.4 MHz for hydrogen and 372.4 MHz for deuterium respectively.
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(a) Three-quarter-section view of
MFT unit.

(b) Circulate producing the static gradient magnetic field.

Figure 3.21: Layouts of the rf transition unit.

result the oscillating fields excited by the rods will superimpose to an rf magnetic
field in between the two rods, oscillating perpendicularly to the plane where the
rods locate in. In principle a resonant rod should have a length of a λ

4
with one

open and one grounded end, however a capacity at the open end can shorten the
rods. Moreover a variable capacity allows to tune the resonance frequency. In
order that both π and σ transitions can be enabled, the resonator rods are placed
in a plane which has a certain angle relative to the static magnetic field, so that
both parallel and orthogonal fields are realized. In the ANKE ABS the SFT and
WFT share a common Helmholtz coil.

3.3.1.3 Polarization modes

Combining the spin-separate magnets and the rf transitions units, a variety
of polarized atomic beams can be prepared by the atomic beam source (ABS).
Table. 3.2 and 3.3 present the polarization modes of the hydrogen and deuterium
targets respectively. The rf transitions employed, as well as the Zeeman states
in the polarized beams, are also listed along with the polarization modes. The
deuterium modes marked by color were used in the present research.
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Table 3.2: Polarized hydrogen target states.

Pol. mode Transitions Zeeman states Ideal polarization
MFT WFT SFT |E1⟩ |E2⟩ |E3⟩ |E4⟩ Pz

1 • • 0.00
2 2 → 3 • 1.00
3 2 → 3 1 → 3 • -1.00

Table 3.3: Polarized deuterium target states.

Pol. mode Transitions Zeeman states Ideal polarizations
MFT WFT SFT |E1⟩ |E2⟩ |E3⟩ |E4⟩ |E5⟩ |E6⟩ Pz Pzz

1 • • • 0.00 0.00
2 3 → 4 • • 0.50 -0.50
3 1 → 4, 2 → 3 • • • -0.67 0.00
4 3 → 4 1 → 4, 2 → 3 • • -1.00 1.00
5 2 → 6 • • • 0.33 1.00
6 3 → 4 2 → 6 • • 1.00 1.00
7 3 → 5 • • • 0.33 -1.00
8 3 → 4 3 → 5 • • • 0.00 0.00
9 1 → 4 • • -0.50 -0.50
10 1 → 4 2 → 6 • • 0.00 1.00
11 1 → 4 3 → 5 • • 0.00 -2.00

3.3.2 Storage Cell

The maximum beam intensity of the hydrogen/deuterium jet produced by the
polarized atomic beam source is 1017 s−1, which corresponds to a target thickness of
2×1011 cm−2 [35] for a free ABS jet. On the contrary, the unpolarized cluster [55]
target can generate cluster gas target with target thickness of 5×1014−1015 cm−2.
In order to accumulate high statistics thus obtain results of high precision, a stor-
age cell[100, 101] has to be utilized to increase the luminosity when the polarized
internal target is used for an experiment. As indicated in Fig. 3.17 a storage cell
is installed at the bottom the atomic beam source. A storage cell is composed
of a feeding tube and a beam tube, the atomic jet produced by the ABS enters
the storage cell through the feeding tube and diffuses in the beam tube, where it
interacts with the COSY beam. When a storage cell is used, the target thickness
of the polarized internal target can be increased by two orders of magnitude[101].
Fig. 3.22(a) shows the variation of the atom density along the beam tube, which
has the maximum value at the integration point with the feeding tube, and lin-
early decreases with the distance from the feeding tube. The atom density at the
feeding tube is given by

ρ0 =
IABS

C
(3.35)



Chapter 3. Experimental Equipment 71

where IABS (s−1) is the flux of the free ABS jet, and

C = 3.81× 103
√
T

M

3∑
i=1

D3
i

Li + 1.33Di

(3.36)

is the conductance [102]. In Eq. 3.36 T represents the temperature of the cell wall
measured in Kelvin, M is the molar mass, Di and Li denote respectively the inner
diameters and the lengths of the front (i = 1) and back (i = 2) parts of the beam
tube as well as the feeding tube (i = 3). The target thickness in the beam tube
is calculated as the integration of the atom density along the beam line, since the
atom density decreases linearly, the target thickness is given by

d =
1

2
Lbρ0 ∝

1

D3
b

(3.37)

where Lb = L1 + L2 and Db = D1 = D2 denote the total length and the inner
diameter of the beam tube respectively. From Eq. 3.37 one concludes that the
diameter of the beam tube ought to be made as small as possible in order to
have a large target thickness. However, the minimum cross section of the beam
tube is limited by the COSY beam size at the ANKE interaction point as well
as by the betatron oscillations during the beam acceleration. Through studying
the phase space of the COSY beam at different energies, the ANKE collaboration
had determined the optimum cross section of the beam tube as a rectangle of
20 × 15 mm2, which has four quadrants with diameters of 2 mm as its corners.
The feeding tube is a 130-mm long cylinder with a inner diameter of 15 mm.
Restricted by the geometry of the ANKE target chamber, the feeding tube is
connected asymmetrically to the beam tube. Detailed structure and parameters
of the storage cell are depicted in Fig. 3.22(b). In order to minimize the background
events which are produced by the interaction between the beam halo and the cell
walls, the storage cell is manufactured with Aluminum foil with a small thickness

(a) Distribution of the atom density along the
beam tube in the storage cell.

(b) Cross section of the beam tube and side view of the
storage cell.

Figure 3.22: Storage cell.
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of 25 µm. In addition, the inner walls are coated with a layer of Teflon to reduce
to depolarization effects.

Figure 3.23: Openable storage cell.

For double polarized experiments, due to the low flux of the ions generated by
the polarized sources [103], the beam intensity in the COSY ring can only reach
500 nA after a single injection, which can not meet the requirements of the experi-
ments demanding high luminosities. A multiple-injection technique which involves
the cooling-stacking procedure can significantly enhance the beam intensity in the
storage ring by five times [104]. However, the beam transverse phase space during
the cooling-stacking process is so big that a storage cell as described above will
destroy the beam. To overcome this problem an openable storage cell has been
developed. Fig. 3.23 shows the openable storage cell, the beam tube will keep
open during the cooling-stacking process, it will be closed to increase the target
density as soon as the cooling-stacking is finished. The openable storage cell is
open, so its size is not limited by the betatron oscillations, consequently the cross
section of the beam tube can be smaller than 20 × 15 mm2, thus a higher target
thickness can be achieved using the openable storage cell.

3.3.3 Lamb-shift Polarimeter

A reliable polarimeter is indispensable to a polarized target for measuring
the polarizations as well as tuning the machine settings. For the polarized hydro-
gen/deuterium targets, the Breit-Rabi type and Lamb-shift type polarimeters are
most commonly adopted. As one of the major components of the ANKE polar-
ized internal target, a Lamb-shift polarimeter(LSP) [87, 88] has been developed
and successfully used in many polarized experiments at ANKE. The Lamb-shift
polarimeter utilizes the three-level interaction among the states 22S 1

2
, 22P 1

2
and

12S 1
2

[107] to select the atoms with particular nuclear spin orientations(mI) and



Chapter 3. Experimental Equipment 73

measures the X rays released by Lyman transitions, whose intensities are propor-
tional to the occupation numbers of the corresponding nuclear spin states. The
Lamb-shift spin filter[109, 110] is the central part of the Lamb-shift polarime-
ter, therefore subsection 3.3.3.1 is devoted to its working principle. In subsec-
tion 3.3.3.2 the working process of Lamb-shift polarimeter will be introduced.

3.3.3.1 Three-level Interaction and Lamb-shift Spin Filter

According to Dirac theory, atomic states with the same principle quantum
numbers n and total angular momentum quantum number j but different orbital
angular momentum quantum number l should be degenerate. On the contrary,
in 1947 Lamb and Retherford discovered that the energy of the hydrogen state
22S 1

2
was slightly higher than that of 22P 1

2
by 4.4 × 10−6 eV[106]. Customarily,

the energy difference between the 22S 1
2

and 22P 1
2

states is referred as Lamb-shift.
In the absence of external fields, the lifetime of state 22P 1

2
is 1.6 × 10−9 s, it

decays to the ground state 12S 1
2

by dipole transition. On the other hand, 22S 1
2

is
a metastable state with a lifetime of about 0.1 s, its main decay mode is a two-
photon radiation(lifetime τ ≈ 1

7
s), the electric dipole and quadrupole transitions

to the ground state are forbidden, the magnetic dipole transition is allowed but
has a very long lifetime (about 2 days), the spontaneous transition to state 22P 1

2

is negligible(τ ≈ 20 years) because of the small energy difference. When a electric
field E⃗ is applied, the Stark mixing [111] between the 22S 1

2
and 22P 1

2
states will

reduce the lifetime of the 22S 1
2

state τS and increase the lifetime of the 12P 1
2

state
τP , the relation between τS and τP can be expressed as

τS = τP
~2(ω2 + γ2

4
)

V 2
E

(3.38)

provided that τS is much longer than τP and much shorter than the life time of the
unperturbed 22S 1

2
state. In Eq. 3.38 ∆E = ~ω is the energy difference between

the states 22S 1
2

and 22P 1
2
, γ = 1

τP
and the matrix element VE = ⟨ψS| eEr |ψP ⟩

represents the mixing strength.
In a magnetic field the Stark mixing will be affected due to the energy separa-

tions between different Zeeman states. Fig. 3.24(a) shows the Breit-Rabi diagrams
of the hydrogen excited states 22S 1

2
and 22P 1

2
, for convenience, the Zeeman com-

ponents are labeled by the notations

α± 22S 1
2
, mJ = 1

2
, mI = ±1

2

β± 22S 1
2
, mJ = −1

2
, mI = ±1

2
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(a) Three-level interaction (b) Lamb-shift spin filter

Figure 3.24: Fig. (a) is the Breit-Rabi diagrams of the hydrogen atom excited
states 22S 1

2
and 22P 1

2
, the double arrows indicated the three-level interaction.

Fig. (b) shows schematically the Lamb-shift spin filter.

e± 22P 1
2
, mJ = 1

2
, mI = ±1

2

f± 22P 1
2
, mJ = −1

2
, mI = ±1

2

which were proposed by Lamb and Retherford[106]. The three-level interaction
takes place in a magnetic field which is close to the level-crossings of the β and
e states, where the nuclear spin I⃗ decouples with the electron angular moment
J⃗ , therefore the three-level interaction occurs only among the states with the
same nuclear quantum number mI . According to the selection rules related to the
rotational symmetry, an electric field which is parallel to the magnetic field can
only induce the mixing between the states with ∆mJ = 0, while a perpendicular
electric field only mixes states with ∆mJ = ±1 [111]. In a Lamb-shift spin filter,
the magnetic field is parallel to the beam direction, a transverse static electric
field is applied to connect the states β and e, and a longitudinal rf electric field is
applied to connect the states α and e. In normal cases5, both α and β quench to
the ground state rapidly by the Stark mixings with the state e. An equilibrium
between the state α and β of a particular mI will be established if the frequency
of the rf electric field equals to the separation between these states, therefore
the atoms with this nuclear spin quantum number mI will be persevered, while
other atoms will be quenched to the ground states. Selection of of the meatstable
atoms with different nuclear spin states can be accomplished by adjusting the rf
frequencies at a fixed magnetic field value, or by setting different magnetic values

5where the states α and β are not coupled
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at a fix rf frequency. Fig 3.25 schematically shows a Lamb-shift spin filter, which
is essentially a cylindrical resonant cavity composed of four quadrants, the static
electric field is realized by applying dc voltages on two opposite quadrants, the
magnetic field is generated by a longitudinal solenoid and the rf electric field is
excited by operating the cavity in the TM010 mode.

3.3.3.2 Working Process of LSP

Figure 3.25: Schematic plot of the Lamb-shift polarimeter of the polarized
internal target at ANKE spectrometer.

Fig. 3.25 shows a schematic plot of the Lamb-shift polarimeter at ANKE,
which illustrates the main functional units as well as the working process of the L-
SP. The ground-state hydrogen/deuterium atoms from the polarized atomic beam
sources (ABS) are first ionized in a vertically placed Glavish-type electron-collision
ionizer, in order to preserve the nuclear spin a strong magnetic field is present in
the ionizer to decouple the electron and nuclear spins. The produced proton-
s/deuterons are then directed to move along the horizontal beam line by a electro-
static deflector. The Wien filter installed next to the deflector mainly serves as a
spin rotator, it rotates the nuclear spins by 90◦ thus provides a longitudinal polar-
ization axis, besides, it also filters out the unwanted ions. From the discussion on
the Lamb-shift spin filter (subsection 3.3.3.1) it is clear that the hydrogen/deuteri-
um atoms have to be in the metastable state 22S 1

2
in order to be filtered through
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the three-level interaction. The Cesium cell installed in between the Wien filter
and the Lamb-shift spin filter is used to convert the protons/deuterons into the
metastable atoms by the charge-exchange reaction

H+ + Cs→ H(2S) + Cs+.

The Cesium cell is filled with Cesium vapor which is maintained by a sample of
liquid Cesium of 160 ◦C. A magnetic field which is sufficiently strong with re-
spect to the critic field of the metastable atom6 has to be applied longitudinally
so that the nuclear polarization is preserved in the charge-exchange process. The
Lamb-shift spin filter at ANKE is operating at a fixed frequency of 1609.8 MHz.
By setting the magnetic field at the value where the hyperfine split between the α
and β states with the desired nuclear spin number equals to the rf frequency, only
the α state with this particular nuclear spin number can be transmitted, while
other states will be quenched to the ground state. The magnetic field in the spin
filter is required to be very homogeneous along the beam line, otherwise the α
state to be preserved will be quenched. The transmitted metastable atoms will
transit to the ground state in the quenching lens, the released Lymman-α X rays
are detected by a selective photon multiply tube (PMT) which is only sensitive to
the photons with wave lengths between 110−120 nm. The atoms and ions leaving
the quench region are finally dumped in the Faraday cup. Fig. 3.26 illustrate two

(a) A typical Lyman-α spectrum of hydrogen beam mea-
sured with the LSP, the events at the magnetic strengths
53.5 mT and 60.5 mT are of mI = +1 and mI = −1
respectively. The polarization corresponds to this spec-
trum is about Pz ≈ 0.78.

(b) A typical Lyman-α spectrum of deuteri-
um beam measured with the LSP, the events
at the magnetic strengths 56.5 mT, 57.5 mT
and 58.5 mT are of mI = +1, mI = 0 and
mI = −1 respectively. The polarizations corre-
spond to this spectrum are about Pz ≈ −0.06
and Pzz ≈ −1.09.

Figure 3.26: Examples of the Lyman-α spectra measured with the Lamb-shift
polarimeter, the left and right panels correspond to hydrogen and deuterium
respectively.

6The critic field is calculated as Bc = ∆W/(gJ − gI)µB ≈ ∆W/2µB, where ∆W is the
hyperfine split of the metastable atom. The critical field is 6.34 mT for H2S and 1.46 mT for
D2S [8].
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typical distributions of the X rays registered by the PMT in the quenching region
as functions of the magnetic field value in the spin filter, the photon intensities at
one particular magnetic strengths are in principle proportional to the occupation
numbers of the atoms with the corresponding nuclear spin state (mI). However,
it has to be noted that the photon intensities measured by the PMT are actual-
ly not exactly proportional to the occupation numbers of the initial nuclear spin
states. Some processes, for instance the collisions between the atoms with the
residual gas in the quench region, can produce background. In addition, differ-
ent hyperfine states are affected differently when the atoms/ions undergo variant
processes (such as ionization, charger exchange etc.) in the LSP, consequently
the coefficient which connect the initial occupation number and the final photon
intensity is different for different state. Therefore the background has to be sub-
tracted carefully and necessary corrections has to be made in order to perform
a precise measurement [87]. It has been demonstrated that the ANKE LSP can
measure the polarizations of a slow hydrogen/deuterium beam with energy up to
2 keV/4 keV with high a high precision, which depends on both beam intensity
and measurement time.



Chapter 4

Study of the Proton–Deuteron
Charge–Exchange Reaction

It has been stressed in chapter 2 that, in order to extend the np study at
ANKE to the energy region of TN > r 1.135 GeV, one has to adopt the inverse
kinematics, i.e. bombarding the deuterium target with the pron beam. Basically
the research methodology remain the same, namely to measure the observables
of the deuteron–proton charge-exchange reaction pd → n{pp}s, and to extract
the elementary neutron–proton scattering amplitudes from these observables by
the phase-shift analyses (PSA). However, the method of inverse kinematics has
consequences in three aspects:

� A polarized deuterium target is needed, which had never been used in the
previous experiments at ANKE. At ANKE, the polarized deuterium target
is produced by the polarized internal target installation (PIT) [77, 78], which
had been successfully used to supply polarized hydrogen target in the first
phase of the ANKE np study. In addition, the laboratory measurements
with the Lamb-shift polarimeter (LSP) [87, 88] had proved that the PIT
was able to stably provided high-polarized deuterium target with sufficient
target thickness. In spite of the above facts, one has to verify the target
performances at the real experimental conditions, since the factors, such as
the D2 stray field, the wall of the storage cell etc., will effect the target
performances. Besides, a reliable target polarimetry has to be established
prior to the production experiment in future.

� When using a deuteron beam, the protons ejected from the process dp →
{pp}sn are energetic enough to enter the forward (Fd) or the positive side

78
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Figure 4.1: Simulation of the STT acceptance for the deuteron-proton charge
exchange reaction pd → n{pp}s. The red and blue areas correspond the STT
configurations with an without the third layer of silicon micro-strip detector.
This simulation shows: 1. the third layer of silicon micro-strip detector is indis-
pensable; 2. The STT can not cover the kinematics region where both Epp and
q are small, which was routinely accessible in the first phase of the ANKE np
study.

(Pd) detection system. On the contrast, in the case of the inverse-kinematics
process pd → n{pp}s the final protons have small energies and emitted
isotropically , thus are best detected by the silicon tracking telescopes (STT)
that placed nearby the target. Therefore it is essential to investigate the
influences of the STTs on the np study.

� As has been discussed in chapter 2 that the P wave will come into play when
the excitation energy of the final proton pair Epp is large (> 3 MeV), and
that the multiple scattering and the relativistic effect should be taken into
account if the three-momentum transfer q is large. Before the experiment,
the Monte-Carlo study using the event generator PLUTO [112] and the
detector simulation toolkit Geant4 [113] had shown the STT system was
not able to cover the kinematics region where both Epp and q are small (see
Fig. 4.1. It is therefore clear that one has to study how the higher-wave
component, the multiple scattering and the relativistic effect influence the
impulse approximation and the phase-shift analyses (PSA) at energies where
the neutron–proton amplitudes have been measured reliably, and improve the
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experimental schemes as well as perform some possible modifications on the
impulse approximation.

Through above discussion it can be seen that the second phase of the np
study at ANKE using the inverse-kinematics method is not the simple repeat of
the research in the first phase at higher energies, one needs to verify and im-
prove the whole investigation approach prior to the production experiments by a
preparatory study. Throughout this chapter we shall describe the commissioning
experiment. An overview of the experiment situation is given in section 4.1. Sec-
tion 4.2 is dedicated to the deuterium target polarimetry, where different methods
are discussed in details. Finally the measurement of the proton–deuteron charge
exchange reaction pd⃗→ n{pp}1S0

is discussed in section 4.3

4.1 Overview of the Experiment
In the first phase of the ANKE neutron–proton scattering investigation, the

data at the beam kinematic energy Td = 1200 MeV were mainly used for polarime-
try. The reason was that there were several reactions in the vicinity of this energy
whose analyzing powers were measured very well previously. Besides, the np scat-
tering amplitudes at this energy were known to be reliable, thus the comparison
with the impulse approximation based on those amplitudes is meaningful. Due
to above reasons this proof-of-principle (POP) experiment was performed with
an unpolarized proton beam kinematic energy Tp = 600 MeV, which correspond-
s to a revolution frequency of f = 1294.55 kHz at COSY. In each cycle, about
N ≈ 8× 109 protons were accumulated through an injection-stacking process [59],
then the data-taking lasted for 900 s, until the beam intensity was too low. After
that a new cycle started. The beam intensity Nf was monitored by a beam cur-
rent transformer (BCT), which picked up a voltage signal U = NfeR1, induced
by the circulating beam. The resolution of the BCT signal was about 1%.

The ANKE subsystems forward detector (Fd) and positive side detector (Pd)
were employed to detect the fast positively charged particles ejected in the forward
directions. Two silicon tracking telescopes (STTs) were placed close to the target
to detect the slow particles emitted at large angles. In order to access the kinematic
regions of interest, both the ANKE settings and the STT positions were optimized
by monte carlo simulations using the Geant package [113] prior to the experiment.
The D2 magnetic field was set to be 0.48488 Tesla, and accordingly the deflection

1e stands for the proton charge, and R is the BCT impedance.
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angle was α = 8.2◦ (see Eq. 3.1). The acceptance of the detection systems Fd, Pd
and STT are plotted in Fig. 4.2 in terms of the rigidity and the projection of the
scattering angle in the xz-plane. Kinematical loci of the charged particles from
the processes of interest are plotted as well.

Figure 4.2: Acceptances of the ANKE sub-detection systems Fd, Pd and STT,
indicated in different colors. The scatter data are from the experiment. The
loci of the particles are simulated with the PLUTO [112].

Mainly three triggers were used in present experiment. The first one (Tr1) was
triggered by particles passing through two adjacent counters in the first and second
layers of the forward hodoscope. The second trigger (Tr2) was set two select heavy
particles (such as 3He) according the the energy deposit in the forward counters.
The third trigger (Tr3) was generated by particles transversing either of the left
and right silicon tracking telescopes (STTs). Any of the three triggers mentioned
above would trigger the ANKE DAQ process, through which the signals from all
the sub detection systems of ANKE would be digitalized and stored. Each data
readout process took about 100 µs, during which any other triggered events could
not be written. in order to analyze DAQ efficiency in the offline data analyses,
all the trigger signals were recorded in a scaler. A periodical trigger (Tr4) was
triggered every 100 ms to readout the scaler.

The target used in the experiment are listed in Table 4.1. Four modes of
the polarized deuterium target2 were employed in the experiment. The state 1

2Modes 4, 5 and 10, 11 in Table 3.3, in this chapter they are referred as state 1, 2 and 3, 4
respectively.
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Figure 4.3: Schematic
view of the ANKE tar-
get area showing the po-
sitions of the polarized
deuterium cell target
and its feeding tube and
the two Silicon Tracking
Telescopes (STT). The
COSY beam direction
is indicated by the long
horizontal arrow.

and 2 were grouped as one pair, target were switched between them every 10 sec.
The rf transitions which are exploited to produce state 1 are MFT (3 → 4) and
WFT (1 → 4, 2 → 3), and those used for state 2 are MFT (3 → 4) and SFT
(2 → 6). Thus the switch between is realized by alternating the transitions WFT
(1 → 4, 2 → 3) and SFT (2 → 6). Parameters of other components of the ABS,
such as the dissociator (3.3.1.2) and the sextupoles (3.3.1.2) remain unchanged.
The transitions units only transit the spin state and does not affect the intensity
of the atomic beam, therefore the target thicknesses of states 1 and 2 are identical.
The same is true for states 3 and 4. The target thickness of the free atomic jet
from the ABS is roughly nABS = 2× 1011 cm−2 (see 3.3.2), which would provide a
luminosity of LABS = fN ·nABS = 1294.55×103 s−1 ·8×109 ·2×1011 cm−2 ≈ 2×
1029 cm−2s−1 under the conditions of present experiment. Such a small luminosity
is unacceptable. In this experiment the target thickness was increased by 2 orders
of magnitudes by using a storage cell (Fig. 4.3). Thus the luminosity was about
2 × 1031 cm−2s−1 with polarized targets. Data were also taken with unpolarized
deuterium gas filled in the storage cell, so that comparison could be performed
between the polarized and unpolarized data. The unpolarized deuterium was
provided a unpolarized gas supply system, its density was was set to be 2 time
of the ABS density. The major background in this experiment was caused by the
interaction between the beam halo and storage cell. The shape of this background
can be imitated by the beam interaction with nitrogen [114]. Therefore nitrogen
target was also used in the experiment. During the cryopump regeneration [85] of
the ABS, data was collected with empty cell.
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Deuterium Targets

Qy Qyy

Polarized State 1 +1 +1
Polarized State 2 -1 +1
Polarized State 3 0 -2
Polarized State 4 0 +1
Unpolarized State 0 0

Nitrogen

Empty Cell

Table 4.1: The targets used in the com-
missioning experiments. Two pairs of the
polarized deuterium targets ((1, 2) and
(3, 4)) were used. In order to minimize
the systematic error the polarization s-
tates in the same pair alternated between
each other every 10 sec during the exper-
iment. Unpolarized deuterium data are
used to be compared with the polarized
data. The nitrogen and empty target were
used for the purpose of background sub-
traction.

4.2 Target Polarimetry
In section 3.3.3 the polarimetry with the Lamb-shift polarimeter has been

discussed in details. With the Lamb-shift polarimeter, a quick measurement of the
target polarization with an absolute precision better than 1% can be achieved [87].
However, the polarization of the ABS jet does not equal to the polarization of the
gas in the storage cell which actually collides with the COSY beam because of
following reasons:

• The holding field in the storage cell provided by the D2 magnet decreases as
the distance to the D2 magnet increases [115] thus the target palatalization
varies along the storage cell.

• The collisions between the deuterium atoms and the wall of the storage cell
and the atom recombination to molecules reduce the target polarization [19].

Therefore the Lamb-shift polarimeter is usually not adopted to measure the target
polarization during experiment, instead, it is used to optimize the settings of ABS
before experiment and to monitor the stability of the ABS. So a polarimetry which
is able to measure the polarizations of the target in storage cell is indispensable.
In what follows, the general principle of the polarimetry with nuclear reactions
which meets the preceding requirement is given.

General principle of polarimetry with nuclear reaction

From the view of experiment, the most characteristic feature that distin-
guishes the experiments using polarized reactants from those using unpolarized
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reactants is the azimuthal asymmetry of the distributions of the particles emit-
ted from the nuclear reaction3, which is a function of both the analyzing powers
that connect with the dynamics and the polarizations of the beam or/and target.
Therefore, one can in principle extract the polarizations from the azimuthal asym-
metry (if it is measurable) provided that the analyzing powers of this reaction are
known. The analyzing powers of the nuclear reactions used for polarimetry are
required to be large enough, otherwise the azimuthal asymmetry will be distorted
by the systematic errors. In addition, sufficiently large cross sections are also ex-
pected so that enough events can be accumulated for polarization measurement.
Practically it is however not always the case that one could find some nuclear reac-
tions which simultaneously fulfill all the above requirements at the exact energies
where the experiments is to be performed. In order to overcome this difficulty, a
method called export technique has been invented and successfully applied in pre-
vious experiments at ANKE [58]. The central idea of this technique is to conduct
the production measurements at the energies of interest in between two polarime-
try measurements which are performed at the energy where reliable polarimetry
exists. If the polarizations were measured to be identical before and after the pro-
duction measurements, conclusion can be made that the polarizations during the
production measurements are the same with those measured at the polarimetry
energy. It is worthwhile to note here, that in the case where polarized beam is
used [58] special care has to be taken to avoid any possible depolarization [116]
during the beam energy ramps between polarimetry energy and production ener-
gies. Although the polarization export technique was necessary in this experiment,
it has to be exploit in the future production experiment [117].

To summarize, the polarizations of beam/target are measured by using the
nuclear reactions with large and well known analyzing powers, which can be reg-
istered by the detectors with sufficient statistics. Polarimetry at the polarimetry
energy is extended to other energy by the export technique.

4.2.1 Polarimetry with pd⃗→ pd

From the plot of acceptance (see Fig. 4.2) it can be seen that the deuterons
emitted at small polar angles from the deuteron-proton elastic reaction pd → pd

mainly fall into the silicon tracking telescopes (STTs). In addition the vector
(Ay) and tensor (Axx, Ayy) analyzing powers of pd⃗ → pd have been measured by
Argonne[118], Sature[119, 120] and ANKE[57] in the vicinity of 600 MeV, which

3Hereafter we shall call it azimuthal asymmetry for brevity
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agree with each other quit well. Besides, the elastic process pd → pd has consid-
erably large cross section in comparison to other processes, which may contribute
to the background, therefore the background hardly affect the measurement. Due
to above reasons the deuteron-proton elastic scattering pd → pd is very suitable
to be used as the reference reaction for the dueteron target polarimetry. During
the data analysis different methods were tried to measure the target polarization.
In the following we shall first introduce the general analysis procedure of the STT
data in section 4.2.1.1, and then discuss the analyzing powers of pd⃗→ pd and the
STT acceptance in section 4.2.1.1, finally in sections 4.2.1.2 and 4.2.1.3 present the
procedures for extracting the target polarizations for pd → pd with and without
the upolarized data respectively.

4.2.1.1 General Procedure of STT Data Analysis

The four-momentum reconstruction is a crucial step of the experimental data
analysis. For the STT detection system the four-momentum reconstruction gener-
ally consists of two parts, i.e. the track reconstruction and the energy measuremen-
t, which will be discussed in the following. The STT is composed of double-layer
silicon-strip detectors, therefore every event contains some three-dimensional co-
ordinates with certain errors, i.e. (x±δx, y±δy, z±δz). Some of these coordinates
are the position where the emitted particles interacted with the detector, while
others are produced by the cosmic rays or by the intrinsic noise of the detector
itself. To reconstruct real tracks out of a bunch of special coordinates, the first
step is to list all the possible straight lines that defined by the combinations of
the coordinates in the first and second layers. Then these lines are checked one by
one to see if they pass through the storage cell (CS). If one line passes through the
storage cell it is regarded as a real track, and all the other lines that contain the
associated coordinates are excluded from the list. This procedure continues until
there are no more straight lines on the list. The search of the hits in the third
layer are performed via scanning the region within a certain solid angle around
the selected the straight lines. For those events with two (or more) tracks their
vertices can be reconstructed using the method described below. First, based on
all the points that located at the selected tracks a plane is built through linear
iteration. For the elastic process the plane is further required to be parallel to the
beam axis. This plane is regarded as the one which the true tracks locate in. Pro-
jecting all the points on the reconstructed tracks into this plane, new tracks will
be formed, the cross of the new tracks is the reconstructed vertex. Furthermore
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the sum of the squared distances of all the selected points to the plane can be used
to evaluate the quality of the track and vertex reconstructions quantitatively. The
kinetic energy of the particles are measured as the sum of the energy deposit in
each layers, which in turn are obtained by multiplying the QDC signals with the
pre-determined energy-calibration factors. In STT the energy deposit in quanti-
tatively silicon micro strip detectors can be used for particle identification (PID).
For a charged particle of low energy (β ≪ 1), its energy loss per unit thickness in
material is given by the simplified Bethe-Bloch formula

− dE

dx
=

4πnz2

mev2
·
(

e2

4πε0

)2

· ln
(
2mev

2

I

)
, (4.1)

where me is the electron mass, ε0 is the vacuum permittivity, n and I are the
electron density and mean ionization energy of the material, z 和 v are the charge
and the velocity of the particle. Consider a case with a charge particle and two
silicon micro-strip detectors. If the energy of the particle is too small it will be
stopped in the first detector. Now image that its energy increases gradually. At
some point it will be sufficiently energetic to pass the first detector and reach the
second one. With the energy increase, the energy deposit in the first detector will
decrease according to the Bethe-Bloch formula 4.1, while in the second detector
the energy loss increases due the increase thickness. This process goes on until
the particle pass through the second detector. Then the energy loss in the second
detector decrease as well due to the same reason as in the first detector. From
above discussion it can be seen that for the particles that pass through the first
detector their energy losses in the first detector decrease as the increase of their
kinetic energies, whereas in the second detector their energy losses increase first
and then decrease. Therefore on the scattering plot of the energy losses in the first
and second detectors particles are distributed in two connected bands, correspond-
ing respectively to those deposited in and passing through the second detector.
As an example Fig. 4.4(a) shows a scattering plot of the energy losses of the first
and second layers of the STT, the upper and lower bands with downward trends
represent respectively the deuterons and protons deposited in the second layer.

Consider two particles of different masses with the same electric charge. Sup-
pose they lost the same energy in the first detector, then it means their (effective)
velocities before entering the first detector are identical and thus the heavier one
has higher energy. After losing the same amount of energy in the first detector
the heavier particle still has higher energy, therefore the heavier one will deposit
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more energy in the second detector if both particles are stopped in the second
detector. On the other hand, in the case where the particles pass through the
second detector the energy losses depend on their velocities. Since the heavier
particles loss smaller velocity in the first detector, it has higher velocity in the
second detector, thus it losses less energy. This is exactly the principle how the
particles are identified using the energy deposit. Form Fig. 4.4(a) it can be seen
that the particles stopped in the second layer can be well distinguished, however
the particles passing through the second layer are hard to separate since they are
overlapped with each other. Fortunately these particles pass through the detector
and their energy can not be measured, therefore we don’t need to identify them.
However there are some particles that passed through the second detector mixing
with some stopped particles. It is better to selected these stopped particles. By

Figure 4.4: The particles in the STTs are identified by the ∆E/E method.
Here ∆E1 and ∆E2 denote the energy deposit in the first and second layers of
the silicon micro-strip detectors in the STTs. In the left panel, the two regions
indicated with black and red lines represent deuterons and protons respectively.
It is hard to select the protons around the knee point since they are mixed with
the passing-through deuterons. The artificial network technique [121] is found
to be effective to identify these protons at the knee point (see the right panel).

the method of artificial network it is possible to judge if a particle in the overlap
region stopped in the second layer or not [121]. Fig. 4.4 shows the events after the
filtering of the artificial network, it can be seen that the passing-through particles
in the overlap region are filtered effectively.

Acceptance of STT and Analyzing Powers of pd⃗→ pd

In last subsection we discussed the method of particle identification (PID)
in STT, it shows that particles of different species can be well distinguished by
comparing their energy deposit in different layers of silicon micro-strip detector. It
can be seen from the acceptance plot (Fig. 4.2) that only the scattered deuteron-
s from the proton-deuteron elastic scattering reaction can be detected by STT,
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the protons are beyond the coverage of STT. One therefore only needs to select
deuterons in the single-track events. Fig. 4.4 is a scattering plot of the energy
deposit in the second the upper bands correspond to the deuterons stopped in the
third layer. By the same method the deuterons stopped in the second layer can
be also selected. Using the four-momenta of the proton beam and of the selected
deuterons, the missing-mass spectrum of process pd→ dX was built (see Fig. 4.5).
As shown, most events are located within ±5σ of the proton invariant mass. Since
the cross section of the elastic reaction are extremely large compare to other pro-
cesses, the background signal generated by the collision between the beam halo
and and the wall of the storage cell are negligibly weak (see the shadow area)
thus has little influence on the measurement. Nevertheless those background are
subtracted during the data analysis. The bump close to 1.2 GeV corresponds to
the pion production. The deuteron-proton elastic reaction pd→ pd is a two-body

Figure 4.5: The pd → dX missing mass spectrum of the STT data. The red
histogram represents the data of the deuteron target; the background drawn
in grey is the nitrogen data scaled by a factor, which is determined by the
fitting beyond the peak region; the blue histogram is the distribution after the
background subtraction. The peak at the neutron mass represents the d-p elastic
scattering events, the peak around 1.05 MeV corresponds to the π production.

process, there exists one-to-one relation between the energies and the scattering
angles of the ejected particles. It is therefore possible to derive the scattering angle
based on the measured energy, which can be measured with very small uncertain-
ty in the STT. It was found out that the angular resolution obtained by energy
derivation is much higher than that from direct measurement, therefore the former
is used in the subsequent analysis. The plot in Fig. 4.6 shows the distribution of
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Figure 4.6: The distribution
of pd → pd as a function of
the deuteron polar angle in CM
system.

Figure 4.7: Measured analyz-
ing powers (Ay, Ayy and Axx)
of pd⃗ → pd as a function of
the deuteron polar angle in CM
system.

the pd → pd events as a function of the scattering angle of the recoiled deuteron
in the center-of-mass (CM) reference. On can see that the deuterons scattered at
large angles (θdcm > 15◦) had higher energies thus were stopped in the third layer,
whereas those scattered at small angles were less energetic and were stopped in
the second layer. The data plotted in Fig. 4.7 are the vector (Ay) and tensor (Ayy,
Axx) analyzing powers of the reaction pd⃗→ pd measured in the vicinity of the pro-
ton injection energy Tp = 600 MeV. These data were measured at Td = 1194 MeV
by Argonne[118], at Td = 1198 MeV by SATURNE[119, 120], at Td = 1170 MeV
by ANKE [57]. All these measurements were conducted by bombarding polarized
deuteron beam at hydrogen target, so the data from Argonne, SATURNE and
ANKE correspond respectively to the proton injection energies of Tp = 597 MeV，
Tp = 599 MeV and Tp = 585 MeV. From Fig. 4.7 one sees that the data from
different experiments agree with each other within the errors, which means the
analyzing powers do not vary too much with respect to energy and these data are
reliable. Therefore these data can be used for the deuteron target polarimetry
at Tp = 600 MeV. For convenience all the three analyzing powers are fitted by
polynomials. The polynomials are chosen in such a manner that they can describe
the data but will not include the systematic errors of those data. The adopted
polynomials are

Ay(θ) = a1θ + a2θ
2, (4.2a)

Ayy(θ) = −0.04 + b2θ
2 + b3θ

3, (4.2b)
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Axx(θ) = −0.04 + c2θ
2 + c3θ

3. (4.2c)

The constant term of Ay(θ) is fixed to be zero according to its definition, while
the Ayy(0) and Axx(0) are set as -0.04, which is taken from measurement [118]. As
a result only two parameters are free in each of the fitting procedures. In Fig. 4.7
the fit functions of the analyzing powers Ay, Ayy and Axx are indicated by black,
purple and caeruleus respectively.

4.2.1.2 Method 1: Measurement with Unpolarized Data

Generally speaking, the polarizations of target/beam are in principle extract-
ed from the azimuthal asymmetries, which, in practice can be either the difference
between the distributions of the polarized and unpolarized data at the same az-
imuthal angle(s), or the difference between the distributions of the polarized data
at different azimuthal angle(s), e.g. the left-right asymmetry which corresponds
two different azimuthal angles: 0◦ and 180◦. The method utilizing asymmetry
between different azimuthal angles requires that the azimuthal angles at different
regions (at least two regions) have to be covered experimentally. On the contrary,
the method which makes use of the asymmetry between the different target/beam
states is more flexible and can even apply to an single-armed detector. At this
point, one would think that the method which compares polarized and unpolar-
ized data is better because it does not require a double-armed detector, which is
more expensive. However, if we look at the other side of the coin, the previous
conclusion would become not that reliable: one has to first determine the ratio of
the integrated luminosity of the polarized state to that of the unpolarzied state4 in
order to use the first method. On the other hand the problem of luminosity ratio
does not arise at all if one uses the second method, but the systematic error which
comes from the efficiency difference of the detectors at different azimuthal angles
has to be considered instead. Now we see both of the methodologies mentioned
above have advantages and disadvantages of their own，one needs to find out the
best solution according to the experiment situation.

For the particular case which we are considering right now, i.e., to measure
both the vector and tensor analyzing powers by using the elastic reaction pd⃗ →
pd, the left and right STTs are used as a two-armed polarimeter, meanwhile the
unpolarized target is also employed for the investigation, which suggests that we
could combine those two methods discussed in last paragraph to exploit both

4In what follows, we call it luminosity ratio.
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of their advantages and overcome their difficulties. For this purpose, a quantity
named cross ratio is defined. In what follows, the detailed procedure of how to
configure the cross ratio is discussed.

The cross section of a two-body single-polarized reaction with a spin-1 particle
polarized in the initial channel is given in subsection 1.3.2.2 by Eq. 1.55. In the
case of present experiment, where the polarization quantization axis is aligned
perpendicular to the COSY plane, the polar angle β of the quantization axis in
the projectile helicity system is π

2
(refer Fig. 1.2), thus the cross section reduces

to5

dσ

dΩ

P

(θ, ϕ) =
dσ

dΩ

0

(θ){1 + 3

2
QyAy(θ) cosϕ

+
1

4
Qyy[Ayy(θ)(1 + cos 2ϕ) + Axx(θ)(1− cos 2ϕ)]} (4.3)

where dσ
dΩ

0
(θ) is the unpolarized differential cross section, Ay(θ)，Ayy(θ) and

Axxare the analyzing powers. Through observation, one would find that in E-
q. 4.3 the second term 3

2
QyAy(θ) cosϕ is actually the asymmetry associated with

the vector polarization Qy, and similarly the third term 1
4
Qyy[Ayy(θ)(1+ cos 2ϕ)+

Axx(θ)(1− cos 2ϕ)] is the asymmetry associated with the tensor polarization Qyy.
Hereafter we shall note them by AV and AT respectively to simplify the procedure
of derivation, namely

AV (θ, ϕ) =
3

2
QyAy(θ) cosϕ (4.4a)

AT (θ, ϕ) =
1

4
Qyy[Ayy(θ)(1 + cos 2ϕ) + Axx(θ)(1− cos 2ϕ)] (4.4b)

Furthermore we shall also give the notations for event number and integrat-
ed luminosity, as well as for detector efficiency here in advance, which will be
frequently used afterwards,

1. NP/0
L/R(θ): Number of the events registered in the left/right STT with polar-

ized/unpolarized target.

2. LP/0: Integrated luminosity with polarized/unpolarized target.
5Actually the cross section Eq. 4.3 is derived in the polarization system. In the present case

the laboratory system and the c.m. system are aligned in the same sense with respect to the
polarization system, therefore it also applies to the laboratory and c.m. systems



Chapter 4. Study of the Proton–Deuteron Charge–Exchange Reaction 92

3. εP/0
L/R(θ): Detection efficiency of the left/right STT with polarized/unpolar-

ized target.

The number of events registered in a particular STT with a specific target state
can be expressed in terms of cross section, integrated luminosity and detection
efficiency. Take the number of events registered in the left STT with a polarized
target P (Qy Qyy) as an example, it can be expressed in term of the notations
declared previously as

NP
L (θ, ϕ) =

dσ

dΩ

0

(θ)[1 + AV (θ, ϕ) + AT (θ, ϕ)]L
P εPL(θ, ϕ) (4.5)

For a given polarized state P (Qy Qyy), the cross ratio CR(θ), which is a function
of both the scattering angle θ and azimuthal angle ϕ, is defined as6

CR =
NP

LN
0
R −NP

RN
0
L

NP
LN

0
R +NP

RN
0
L

(4.6)

To examine all the sources that contribute the cross ratio, we expend the cross
ratio in terms of cross section, integrated luminosity and detector efficiency by
substituting the terms representing the numbers of events in Eq. 4.6 with their
specific expressions that similar to Eq. 4.5, i.e.

CR =
LP εPL(1− AV + AT )L

0ε0R − LP εPR(1 + AV + AT )L
0ε0L

LP εPL(1− AV + AT )L0ε0R + LP εPR(1 + AV + AT )L0ε0L
(4.7a)

=
(
εPL
εPR
/
ε0L
ε0R
)(1− AV + AT )− (1 + AV + AT )

(
εPL
εPR
/
ε0L
ε0R
)(1− AV + AT ) + (1 + AV + AT )

. (4.7b)

It can be further simplified as

CR =
(1− AV + AT )− (1 + AV + AT )

(1− AV + AT ) + (1 + AV + AT )
=

−AV

1 + AT

(4.7c)

if εPL
εPR
/
ε0L
ε0R

= 1, which is equivalent to say that the ratio of the detection efficiencies
between the left and right STT εL

εR
kept unchanged for the measurements with

polarized and unpolarized targets. Since the detection efficiency is entangled with
the polarization effects, there is no way to directly check if the efficiency ratio εL

εR

6To shorten the formulae, either θ or ϕ are not written specifically, the reader should recognize
by context.
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was identical or not for the polarized and unpolarized data-taking. On the other
side, one can check if εL

εR
changed between the unpolarized data-taking and the

nitrogen data-taking. Fig. 4.8 shows the ratio of left-right counting ratio between
between the unpolarized deuterium data and the nitrogen data N0

L

N0
R
/
N

N2
L

N
N2
R

, which

is equivalent to ε0L
ε0R
/
ε
N2
L

εN2
R

. It was found out that the over value of ε0L
ε0R
/
ε
N2
L

εN2
R

is rather
close to 1. In the experiment the data-taking with unpolarized deuterium target
and with nitrogen target were performed during different time, so it is convincing
that the detection efficiency ratio also did not change when data were taken with
the polarized target.

Figure 4.8: Ratio of left-right detection efficiency ratio between unpolarized
deuterium and nitrogen data.

Take the expressions 4.4a and 4.4b back into 4.7c, we obtain

CR =
−3

2
QyAy(θ) cosϕ

1 + 1
4
Qyy[Ayy(θ)(1 + cos 2ϕ) + Axx(θ)(1− cos 2ϕ)]

(4.7d)

Taking into account that the STTs were installed at the left and right sides with
respect to the target, corresponding to the azimuthal angles close to 0◦ and 180◦

respectively, we immediately notice that the contribution Axx(θ)(1− cos 2ϕ) from
the analyzing power Axx is relatively small compared with the contributions from
Ay and Ayy because of the smallness of (1 − cos 2ϕ) at those regions. If the
azimuthal angle is confined to such immediate vicinities of the azimuthal angles
ϕ = 0◦ and ϕ = 180◦ where cosϕ → 1 and cos 2ϕ → 1, the cross ratio (CR)



Chapter 4. Study of the Proton–Deuteron Charge–Exchange Reaction 94

becomes a quite simple expression

CR ≈
−3

2
QyAy(θ)

1 + 1
2
QyyAyy(θ)

ϕ→ 0◦, 180◦ (4.8)

which depends on both the vector polarization (Qy) and tensor polarization (Qyy).
Therefore it is possible to extract both vector polarization (Qy) and tensor polar-
ization (Qyy) of the deuterium target simultaneously through fitting the measured
quantity cross ratio (CR) (Eq. 4.6) with Formula 4.8.

(a) State 1 (b) State 2

(c) State 3 (d) State 4

Figure 4.9: Cross ratio (CR) as a function of deuteron scattering angle for
all the four states. To extract vector (Qy) and tensor (Qyy) polarizations, data
points are fitted by Formula 4.8

The measured cross ratio is depicted in Fig. 4.9 as a function of deuteron
scattering angle in the c.m. reference system for all the polarized target modes
used in the commissioning experiment. For each mode the cross ratio is fitted by
Eq. 4.8. The polarizations (Qy andQyy) of the state 1 (+1, +1) and state 2 (-1, +1)
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were measured to be Q1
y=0.689±0.006, Q1

yy=0.917±0.073 and Q2
y=-0.730±0.006,

Q2
yy=0.673±0.063 respectively.

Fig. 4.9(c) and 4.9(d) demonstrate that the cross ratios of the mode 3 (0,
-2) and 4 (0, +1) almost vanish, which means the vector polarizations of these
modes are rather close to their ideal value (Qy = 0). Due to the smallness of the
cross-ratio signal, the polarization Qyy of these modes can not be measured by
fitting the cross ratio since the cross ratio is not sensitive to it in those cases. On
the other hand, one would expect that the contribution of the vector polarization
to the azimuthal asymmetry is small enough to be neglected, thus in this case it
is possible to measure the tensor polarization (Qyy) from the event ratio between
of the polarized and unpolarized targets

NP (θ, ϕ)

N0(θ)
≈ RLum.[1 +

1

4
QyyAyy(θ)(1+ < cos 2ϕ >)] ϕ→ 0◦, 180◦. (4.9)

if the detection efficiencies in the polarized and unpolarized measurements are
identical. Note that besides the tensor polarization which we are aiming to mea-
sure, the luminosity ratio (RLum = LumP

Lum0 ) can also be determined simultaneously
as a by-product. Above procedure can be applied either to the left-STT data or
to the right-STT data. In principle one should get the same results in both cases
if the detection efficiency does not change (too much) between the measurements
with unpolarized and polarized targets. However the fitting results from left and
right STT data were found to be inconsistent with each other, this means the de-
tection efficiency did not keep invariant during the experiment. In next subsection
a method which eliminates the influence of the instability will be presented.

4.2.1.3 Method 2: Polarization Measurement without Unpolarized Da-
ta

When data were taken with polarized target in this experiment the polariza-
tion modes in the same pair (refer Table 4.1) were switched between each other
every 10 seconds. In such a short time scale, both the beam intensity and the de-
tector efficiencies were stable. Moreover, the atomic beam source (ABS) provided
identical gas densities for the polarization modes in the same pair. As a result
both the luminosity and the detection efficiency were the same for the polarization
modes in one pair. This was experimentally verified using background events that
were free from polarisation effects. Such events were collected from the vicinity of
the missing-mass peak corresponding to the elastic pd scattering. By evaluating
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the ratio of the counts for two members of a polarisation pair, which is directly
the product of relative efficiency times the relative luminosity between the two
modes, it was shown that the relative efficiency is unity within 1.5%.

Thanks to the above facts, the effects caused by the instabilities of the beam
and target as well as of the detectors will cancel out between the modes in the same
pair. It is therefor advantageous to use only the polarized data in the same pair
for the polarization measurement. For the convenience of the following discussion,
we denote the the polarizarion modes in the same pair which switch between each
other by a and b. The most important task is to construct a quantity which is
sensitive to the polarizations. It was found out that the ratio between the sum
and the difference of the event number of the modes a and b, namely

R =
Na −Nb

Na +Nb

(4.10)

was the most suitable configuration. Inserting the expression of the event number

Na/b(θ, ϕ) =
dσ

dΩ

P

(θ, ϕ) · La/b · εa/b(θ, ϕ) (4.11)

into Eq. 4.10 and making use of the formula of the polarized cross section Eq. 4.3,
one obtain the expression for the quantity R, i.e.

r(θ, ϕ) =
3
2
Ay(θ) cosϕ(Qa

y −Qb
y) +

1
4
[Axx(θ)(1− cos 2ϕ) + Ayy(θ)(1 + cos 2ϕ)](Qa

yy −Qb
yy)

2 + 3
2
Ay(θ) cosϕ(Qa

y +Qb
y) +

1
4
[Axx(θ)(1− cos 2ϕ) + Ayy(θ)(1 + cos 2ϕ)](Qa

yy +Qb
yy)

(4.12)
In principle the target polarizations Qy and Qyy can be determined by fitting the

observable R . Note both the luminosity and the detection efficiency are absent
in the above formula. Thus neither of them produces systemic error in the mea-
surement. Practice showed that data only from one single STT could not impose
sufficient constraints to obtain the polarizations. In order to increase the sensitivi-
ty to the polarizations, the whole data set were exploit. Build the two-dimensional
map R(θ, ϕ) for the ratio Eq. 4.10, and fit it by the formula 4.12 simultaneously in
both variables θ and ϕ, one can get the target polarizations Qy and Qyy. Fig. 4.10
and Fig. 4.11 illustrate the two-dimensional fit for the polarization pair (1, 2)
and (3, 4) respectively. The blue points represent the measured ratio and the
red meshes are the functions obtained by fitting. To show the the fitting quality
intuitively, the measured data together with the fit function are also presented in
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Figure 4.10: 2D fitting of R for
states 1 and 2.

Figure 4.11: 2D fitting of R for
states 3 and 4.

terms of one-dimensional plots. Fig. 4.12-4.13 and Fig. 4.14-4.15 are the R distri-
butions in θ for pairs (1, 2) and (3, 4). The data of the left and the right STTs are
plotted separately. The distribution in ϕ are presented in Fig. 4.16 and Fig. 4.17
for pairs (1, 2) and (3, 4) respectively.

The polarization values obtained through above procedure are (Q1
y = 0.69±

0.01, Q1
yy = 0.96± 0.01), (Q2

y = −0.76± 0.01, Q2
yy = 0.80± 0.02), (Q3

y = −0.06±
0.02, Q3

yy = −0.97± 0.02) and (Q4
y = 0.01± 0.03, Q4

yy = 0.69± 0.25). The errors
given are statistical errors.

4.2.1.4 Systematic Error Estimation

In the approach introduced in subsection 4.2.1.3, the issue of instability is
completely resolved by the comparison between the data of the polarization modes
in the same combination, therefore the systematic error may only stem from the
analyzing powers (Ay, Ayy and Axx) of the reference reaction pd⃗ → pd. In other
words the systematic errors in the polarization measurement can be estimated from
the uncertainties of the analyzing powers which are inserting in the fit function
Eq. 4.12. As discussed in subsection 4.2.1.1 the measured analyzing powers of
the pd-elastic reaction used for the polarimetry are described by the polynomials
Eq. 4.2. Therefore the uncertainties ofAy, Ayy andAxx can be evaluated by varying
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Figure 4.12: θ distribution of R for states 1 and 2, red curves are fit function.

Figure 4.13: θ distribution of R for states 1 and 2, red curves are fit function.
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Figure 4.14: θ distribution of R for states 3 and 4, red curves are fit function.

Figure 4.15: θ distribution of R for states 3 and 4, red curves are fit function.
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Figure 4.16: ϕ distribution of R for states 1 and 2, red curves are fit function.

Figure 4.17: ϕ distribution of R for states 1 and 2, red curves are fit function.
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the free parameters of those polynomials within their errors. The systematic errors
of the measured polarizations can be in turn estimated by repeating the fitting of
the ration R (Eq.4.10) with those new polynomials as input. This procedure is

Figure 4.18: Variation of pd-elastic analyzing powers.

illustrated in Fig. 4.18 and 4.20. The data plotted in left column of Fig. 4.18 are
the free parameters of the fit functions (Eq. 4.2) for the analyzing powers within
the error ellipses. The new fit functions corresponding these varied parameters
are plotted in the right side. Fig. 4.19 shows the distributions of the target po-
larizations obtained with varied fit functions. In Fig. 4.20 the distributions of the
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Figure 4.19: The distributions of the deuteron target polarizations measured
using only the polarized data, with the analyzing powers of the d-p elastic
scattering reaction varying within the error.

polarizations measured with new parameters are plotted, the upper and lower rows
correspond to the polarization combination (1, 2) and (3, 4) respectively. The full
widths at the half maximum (FWHM) of these distributions are the systematic
errors of the corresponding polarizations, originated from the uncertainties of the
analyzing powers Ay, Ayy and Axx. The polarizations of all the four polariza-
tion modes measured using only the polarized data, together with the static and
systematic errors are summarized in Table 4.2.

Table 4.2: The ideal and the measured polarizarions, as well as the statistic
and systematic uncertainties.

Pol. Qy Qyy

Ideal Measured Sys. err. Ideal Measured Sys. err.
Mode 1 +1 0.69± 0.01 0.02 +1 0.96± 0.01 0.11
Mode 2 −1 −0.76± 0.01 0.02 +1 0.80± 0.02 0.11
Mode 3 0 −0.06± 0.02 0.01 −2 −0.97± 0.02 0.15
Mode 4 0 0.01± 0.03 0.01 +1 0.69± 0.06 0.25

Using the same approach the systematic errors caused by the analyzing-power
uncertainties in the polarization measurement that introduced in subsection 4.2.1.2
were evaluated as well. Table 4.3 presents the polarizations of the polarization
modes 1 and 2, measured using both polarized and unpolarized data, together
with the statistic errors and the systematic errors originated from Ay, Ayy ans Axx

of pd⃗ → pd. The results in Table 4.2 measured using the polarized data only,
and those in Table 4.3 measured using both polarized and unpolarized agree with
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Figure 4.20: The distributions of the deuteron target polarizations measured
using both the polarized and unpolarized data, with the analyzing powers of
the d-p elastic scattering reaction varying within the error.

Table 4.3: The ideal and the measured polarizarions measured with both
polarized and unpolarized data, as well as the statistic and systematic uncer-
tainties.

Pol. Qy Qyy

Ideal Measured Sys. err. Ideal Measured Sys. err.
Mode 1 +1 0.69± 0.01 0.02 +1 0.92± 0.07 0.10
Mode 2 −1 −0.73± 0.01 0.02 +1 0.67± 0.06 0.10

each other within the experimental error. This indicates that both approaches
introduced in subsections 4.2.1.2 and 4.2.1.3 are valid. However, the measurement
without the unpolarized data can evaluate systematic errors completely where-
as the measurement with the unpolarized data is not able to steer clear of the
instability problem, thus not all the error sources can be included. In addition
the approach using the unpolarized data can not be applied to the mode 3 (0,
-2) and 4 (0, +1). Due to these reasons the polarizations extract with the sec-
ond approach are used to measured the analyzing powers of the deuteron–proton
charge-exchange breakup reaction pd⃗→ n{pp}.

Since the difference and the mean value of the target polarizations are directly
used when measuring the analyzing powers of the charge-exchange reaction (refer
Sec. 4.3), it is preferable to have these values as well. Instead of working out the
differences and the mean values from the polarizations, we measured them directly.
By replacing the polarizations in Eq. 4.12 with the differences and averages ∆Qy =

Qa
y − Qb

y, ∆Qyy = Qa
yy − Qb

yy and ⟨Qy⟩ = 1
2
(Qa

y + Qb
y), ⟨Qyy⟩ = 1

2
(Qa

yy + Qb
yy) one

gets

r(θ, ϕ) =
3
2
Ay(θ) cosϕ∆Qy +

1
4
[Axx(θ)(1− cos 2ϕ) + Ayy(θ)(1 + cos 2ϕ)]∆Qyy

2 + 3Ay(θ) cosϕ ⟨Qy⟩+ 1
2
[Axx(θ)(1− cos 2ϕ) + Ayy(θ)(1 + cos 2ϕ)] ⟨Qyy⟩

(4.13)
The average and the difference can be extracted by fitting the observable R (4.10)
with above formula. Table 4.4 presents the polarizations in terms of the difference
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and average, together with the statistic and systematic errors.

Table 4.4: The ideal and the measured polarizarions in the form of difference
and average, as well as the statistic and systematic uncertainties.

Pol. Modes 1,2 Modes 3,4
Ideal Measured Sys. err. Ideal Measured Sys. err.

∆Qy +2 1.46± 0.01 0.03 0 −0.07± 0.01 0.01
⟨Qy⟩ 0 −0.03± 0.01 0.01 0 −0.02± 0.02 0.01
∆Qyy 0 0.17± 0.02 0.01 −3 −1.68± 0.02 0.14
⟨Qyy⟩ +1 0.88± 0.03 0.11 −0.5 −0.13± 0.06 0.03

4.2.2 Polarimetry with pd⃗→ dπ+nsp

Simulation (Fig. 4.2) shows that at the beam incident energy of Tp = 600 MeV
the quasi-free reaction pd⃗ → dπ+nsp is covered by the forward and positive side
sub-detectors of ANKE, and its vector analyzing power (Ay) within the ANKE
acceptance is well measured. Therefore the deuteron vector polarization can be
measured via the quasi-free reaction pd⃗ → dπ+nsp as well, which can be used
to verify the validity of the polarimetry that utilizes the proton-deuteron elastic
reaction pd⃗ → pd. The track reconstruction becomes much more complicated
in the presence of a long storage cell target because the event vertices are not
known as precisely as in the case of a point-like target (e.g. a cluster jet target),
therefore one has to determine the event vertices so that the momentum can be
measured with a sufficient precision. First of all, the general procedure of Fd and
Pd data analysis, and the technique of vertex fit and momentum reconstruction
are discussed, which is followed by the event selection for the quasi-free reaction
pd⃗ → dπ+nsp and the procedure to extract the deuteron vector polarization via
this reaction. Finally the vector polarizations (Qy) measured via the quasi-free
reaction pd⃗ → dπ+nsp are compared with the results extracted from the proton-
deuteron elastic reaction pd⃗→ pd.

4.2.2.1 General Procedure of Fd and Pd Data Analysis

In this subsection the general procedure of processing the data from the for-
ward (Fd) and positive side (Pd) detection systems are introduced. In this exper-
iment the information obtained from the the forward and positive side detection
systems mainly include hit positions in the multiwire proportional chambers (MW-
PCs) and the time and energy signals measured by the plastic scintillators. In ad-
dition, the scintillators can also provide spatial information. The y-coordinate of a
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hit in a scintillator is measured as the weighted average of the time signals which
are provided by the upper and lower PMTs, with an precision of about 1.5-2.2
cm. The x and z coordinates are given by the positions of the scintillators, with
resolutions defined by the width7 and thickness of the scintillator respectively.

For the experiments which utilize the gas cluster target [74–76] or the solid
strip target [72] the momentum reconstruction is relatively simple since in theses
cases the event vertices are fixed. For a charged particle detected by the forward
(Fd) or the positive side (Pd) detection system its trajectory can be separated into
two parts. The first part begins from the vertex and ends at the exit window of
the D2 magnet, it must be a curve because of the bend force of D2. On the con-
trary, the second part, which connects the start and stop scintillation counters and
transverses the gas detectors, is basically a straight line since the magnetic field
out of the D2 magnet is rather weak. Accordingly the momentum reconstruction
is also consist of two stages. First one has to find the straight part based on the
hit positions provided by the multiwire proportional chambers (MWPCs) and the
scintillation counters. For an event one usually get many straight lines from these
hit positions, it is therefore necessary to further filter these lines using some crite-
ria. For instance the straight line is expected to pass through the D2 exit window,
to include as many as hits, to have high confidence level[79]. The straight part of a
trajectory is described by two parameters, namely the two-dimensional coordinate
of the cross with the D2 exit window and its angle with respect to the D2 window.
These two parameters are then used to determine the curved section of the trajec-
tory in conjunction with the vertex coordinate and the magnetic field map inside
D2. From the curved trajectory the rigidity of the track is deduced, based on
which the momentum can be obtained as soon as the particle is identified. There
many approaches to identify particles, for instance the ∆E/E method, the time-
of-flight method etc. In the following we shall introduce a method via which both
particle identification (PID) and event selection can be achieved simultaneously.
Later this method will also be used in the vertex reconstruction.

The ∆TOF method Consider an event with two charged tracks detected. First
we assume this event is of the process we are interested in and assign particle type
for each track. Then we are able to calculate the difference of the time-of-flight
(TOF) of these two particles based on the trajectories measured previously. The
calculated difference of the time-of-flight (∆cal

TOF ) and the measured difference of
7Since the two planes of the forward hodoscope are shifted by a half width with respect to

each other(see Fig. 3.3), the resolution of x are roughly one half of the counter width.
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the time-of-flight (∆mea
TOF ) ought to agree within the experimental error provided

our assumption is correct. Therefore by comparison of calculated and measured
time-of-flight (TOF) differences one can identify particles as well as select events.
Let’s take the reaction pd → dπ+nsp as example. We denote the final particles of
a two-tracked event as P1 and P2, assign one of them, say P1 , as π+, the other
one (P2) as deuteron. Since the lengths of the trajectories (L1 and L2) and the
rigidities (Bρ1 and Bρ2) of P1 and P2 have already been obtained through the
track reconstruction, their time of flight can be steadily calculated provided the
particle types are assigned. For particle P1 its time of flight from the vertex to the
stop scintillation counter is

TOF1 =
L1

v1
=

L1

P√
P 2+M2

π

=
L1

√
(Bρ1Qπ)2 +M2

π

Bρ1Qπ

, (4.14)

likewise TOF of P2 is

TOF2 =
L2

v2
=

L2

P√
P 2+M2

d

=
L2

√
(Bρ2Qd)2 +M2

d

Bρ2Qd

, (4.15)

thus the difference of the time-of-flight between P1 and P2 is calculated as

∆cal
TOF = TOF1 − TOF2. (4.16)

In the formula 4.14, 4.15 and 4.16 Qπ and Qd represent respectively the electric
charge of π+ and deuteron. In this experiment the start time is unknown therefore
the time of flight (TOF) itself is not measurable. However, since the the start time
is identical for all the particles in the same event, the difference of the time of flight
can be calculated as the difference of the stop time (t1 and t2), which were given
by the stop scintillation counters, i.e.

∆mea
TOF = t1 − t2. (4.17)

Note the charged particles in the final state of the reaction are of different types,
so one needs to exchange the particle-type assignments, i.e. assume that P1 is
dueteron and P2 is π+, or one can judge which particle is heavier and assign this
particle as deuteron. As an example, Fig. 4.21 illustrates how the difference of
time of flight is used for particle identification and event selection. In this plot
the horizontal and vertical axes represent respectively the measured (∆mea

TOF ) and



Chapter 4. Study of the Proton–Deuteron Charge–Exchange Reaction 107

calculated (∆cal
TOF ) time of flight with the assumption that both the final particles

are protons. The events located on the diagonal are those with both final particles
being protons. Events with proton and π+ or deuteron and π+ are also shown.

Figure 4.21: Time-of-flight difference.

In the above discussion the stop time is measured by the scintillation counters,
which in the raw data is essentially the real time added by a time delay. Specifically
speaking, the time signal given by a scintillation counter c is

tc = trealc + δtc (4.18)

where trealc denotes the real time when particle hit the detector, and δtc is the
delay between the real time and the signal. Usually the time delays are different
for different scintillation counters, therefore one has to adjust the time delays for
all the counters in order to get correct time-of-flight difference. In the following
we shall introduce the time delay corrections among the scintillation counters in
the forward (Fd) and positive side (Pd) detection systems as well as the time
calibration between these two detection system.

Time calibration for counters in Fd Since the data analyses in this thesis do
not need the the time information provided by the TOF-stop scintillation counters
in Fd, we only discuss the time delay correction for the TOF-start scintillation
counters. Fig. 4.22 illustrates the time delay correction for the counters in the
forward TOF-start array. The whole process can be divided into three stages.
As the first step the correction are performed within plane A. As shown in the
plot, there is a half-width shift between plane A and B. Such an alignment is
especially designed for time calibration. Due to the smallness of the distances
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Figure 4.22: Time calibration for the forward hodoscopes.

between plane A and B, the time for a particle transversing two adjacent counters
can be regarded as being identical within the time resolution. Therefore, for two
neighbouring counters, say c3 and c4 in plane A and the counter facing the interval
between them, i.e. c12, the following relations

tc12 − tc3 = δtc12 − δtc3 (4.19)

and
tc12 − tc4 = δtc12 − δtc4 (4.20)

hold, from which the relative time delay between the counters c5 and c6 are derived,
namely

δtc3 − δtc4 = [tc12 − tc4 ]− [tc12 − tc3 ]. (4.21)

Using the same trick, relative time delays between all the neighbouring counters
in plane A can be obtained. The time calibration for the counters in plane B is
basically the same with what is employed for plane A, for example the relative
time delay between counters c15 and c16 is

δtc15 − δtc16 = [tc15 − tc7 ]− [tc16 − tc7 ]. (4.22)

As the second step one needs to adjust the relative delay between plan A and
B. The relative time delay between two adjacent counters in plane A and B, for
instance c1 and c9, is the difference between the time signal for a particle passing
through them, i.e.

δtc1 − δtc9 = tc1 − tc9 (4.23)

Finally, all the counters in plane A and B are calibrated uniformly using relative
delays obtained the previous steps. Fig. 4.23 shows the spectra of the time delays
between the adjacent Fd start counters in plane A and plane B.
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Time calibration for counters in Pd In the positive side detection system
the TOF-start counters are installed next to the exit window of D2, while the
TOF-stop counters are placed in the focal plane. The large distance between
storage cell and the focal plane makes it preferable to employ the stop counters
for time measurement. Therefore only the stop counters need to be calibrated.
The technique used here is similar to what is used for the start counters in the
forward detection system. It was found that there were many tracks transverse the
adjacent stop counters on the focal plane, which were regarded as transversing the
adjacent counters at the same time. Therefore the relative time delay between two
neighbouring counters, denoted ci as and ci1 , are δtci−δtci+1

= tci−tci+1
. Fig. 4.24

shows the time delay between the neighboring time counters in the TOF-stop array
of Pd, through which the common time calibration was performed among all these
counters.

Time calibration between Fd and Pd For some events of pd→ dπ+nsp, the
final charged particles deuteron and π+ are detected respectively by the forward
(Fd) and positive side (Pd) detection systems. Due to the time delay between these
two systems the measured value (∆mea

TOF ) of the time-of-flight difference between
deuteron and π+ will differ from the real value by δtFd − δtPd. On the other
hand the real value can be approximated as the calculated time-of-flight difference
(∆cal

TOF ). Therefore the relative time delay between the forward (Fd) and positive
side (Pd) detection systems can be obtained by the comparison of the measured
(∆mea

TOF ) and the calculated (∆cal
TOF ) difference of the time of flight between deuteron

and π+, i.e.
δtFd − δtPd = ∆mea

TOF −∆cal
TOF (4.24)

Fig. 4.25 shows the distribution of ∆mea
TOF−∆cal

TOF , the deviation of the peak position
from the coordinate origin is the time delay between Fd and Pd.

Vertex reconstruction and geometry correction In order to achieve suffi-
cient luminosity a storage cell (SC) was employed in this experiment. The large
extent of the storage cell (370 mm along the beam direction) makes the event
vertices awfully uncertain. As a consequence, it is in principle impossible to deter-
mine the curved part of the particle trajectory. In other words, the momentum is
immeasurable. Therefore one has to figure out an approach to determine the event
vertecies, or strictly speaking, to reduce their uncertainties. As the preliminary
step the event vertices are assumed to locate at the feeding tube exit. Based one
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Figure 4.25: Time calibration between the forward detector (Fd) and positive
side detector (Pd). The difference between zero and the position of the d− π+

peak is the relative time delay between the two sub-detection systems.

this assumption one then determine the rigidity as well as the exit directions of
the final charged particles. Evidently the tracks obtained with this procedure are
rather rough, nevertheless it is sufficient to use these tracks for the purpose of
time delay adjustment. In addition, the detector geometric parameters needed in
the track reconstruction process, such as the positions and angles of the multiwire
proportional chambers (MWPCs), are measured before experiment. However, due
to the errors in the measurements there may exist non-negligible deviations from
the real parameters, which in turn will cause errors in the track reconstruction.
For the forward detection system (Fd), since the distances among the chambers
are short and the tracks are less bent by the D2 magnet, the track reconstruc-
tion is more sensitive to the geometric parameters. It is clear from the above
discussion that one has to reconstruct the event vertices as well as correct the geo-
metric parameters in order to measure the momentum precisely. Fot this purpose
the ANKE-Collaboration has developed an effective method[79, 122], which will
be introduced in the following. The deviations of the momenta and trajectories
caused by the errors of the event vertices and geometric parameters affect mostly
the time of flight, the four-momentum conservation and the trajectory fitting qual-
ities, therefore the event-vertex reconstruction and the correction of the geometric
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parameters can can be achieved simultaneously by minimizing the quantity

χ2 =
∑ (∆w)2i

(σ2w)i
+HW ·

∑
(∆P )2i +

∑ (∆TOF )2i
(σ2TOF )i

(4.25)

In the above formula
∑ (∆w)2i

(σ2w)i
is calculated using the deviations between the fitted

track and the clusters that measured by the chambers; ∆TOF is the deviation
between the measured (∆mea

TOF ) and calculated (∆cal
TOF ) difference of the time of

flight; HW ·
∑

(∆P )2i characterizes the kinematical restriction, the coefficient HW
is used to enhance the sensitivity of χ2 to the kinematical restriction. If all the
final particles of one process are detected the the kinematical restriction manifest
itself by the three-momentum conservation, whereas in the case where only one
particle is not detected the invariant mass of the missing particle is used instead.
In the present data analysis the ∆cal

TOF between the final particles deuteron and
π+, the invariant mass of the undetected neutron of pd → dπ+nsp, as well as the
three-momentum conservation of pd→ pd were used for the vertex reconstruction
and geometry correction. Note the deuteron momentum of pd → pd is measured
by the STT. Besides those discussed above an additional effective restriction was
introduced later. The idea rest on the fact that all the beam particles which do
not interact with the beam particles must travel along a common line8 which is
defined by the D2 magnet together with the beam momenta, which means that all
the event vertices necessarily locate on this line. The vertex line can be obtained
by simulation. Fig. 4.26 shows the vertex line for the settings in this experiment.

Figure 4.26: The beam line in
the storage cell, projected in the
xz plane.

Figure 4.27: The reconstruct-
ed event vertices. The left and
right spots correspond respective-
ly to the cell target and the exit
window of the target chamber.

8refereed as vertex line hereafter.
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Event Selection and Kinematics of pd→ dπ+nsp

The reaction pd → dπ+nsp was selected with the ∆TOF method which is
introduced in paragraph 4.2.2.1. Refer to the plot of ANKE acceptance (Fig. 4.2),
it is seen that all the deuterons produced in the reaction pd→ dπ+nsp are detected
by the forward detector (Fd), while the pions are detected by either the forward
detector (Fd) or the positive side detector (Pd). Since the performances of the
forward detector and the positive side detector are different, it is reasonable to
perform the event selection for the events with pions in the forward (Fd) and
positive side (Pd) detectors separately.9 The events of pd → dπ+nsp are selected
form the double-track events. Before assigning particle type a judgment is made
on which particle is heavier by comparing the measured difference of the time
of flight ∆mea

TOF = tp1 − tp2
10 and the calculated valued with the assumption that

both particles are protons, i.e. ∆cal
ppTOF . p1 is heavier if ∆cal

ppTOF > ∆mea
TOF . Then the

heavy particle and light particle are assumed to be deuteron and pion respectively.
The time-of-flight difference calculated with the d − π+ assumption is compared
with the measured time difference to select the reaction pd→ dπ+nsp. Fig. 4.28(a)
and 4.28(b) are the distributions of ∆cal

TOF −∆mea
TOF , events with in 3σ of the peaks

at zero are selected as pd → dπ+nsp. The corresponding missing-mass spectra of
these events are plotted in Fig. 4.28(c) and 4.28(d), which show prominent peaks
at the neutron invariant mass. The background are subtracted using the nitrogen
data.

To analysis the quasi-free process pp⃗ → dπ+ properly one has to take into
account the consequences due to the Fermi motion of the proton in the deuteron.
First of all, the total energy of the reaction pp⃗→ dπ+ is not merely defined by the
beam energy, the Fermi momentum also contribute to it. As a result the effective
beam kinetic energy are distributed over a wide range instead of being a single
value. The effective beam kinetic energy are given by [123]

Teff = [s− (mb +mt)
2]/2mt (4.26)

where mb and mt are used to denote the masses of the beam particle and the target
particle, both of which in the present case are proton mass. s is the square of the
static mass of the quasi-free system, which is calculated based on the measured

9For brevity we note these two kinds of events by ’FdFd event’ and ’FdPd event’ respectively.
10p1 and p2 are used to denote the two charged particles.
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(a) (b)

(c) (d)

Figure 4.28: Event selection for the reaction pd → dπ+nsp based on the
TOF difference method. Fig. (a) and Fig. (b) show the difference between the
measured time-of-flight and the time-of-flight calculated with the assumption
that the final particles are deuteron and π+. The events within in ±3σ of the
peaks at ∆cal

TOF −∆mea
TOF = 0 are selected for the subsequent analyses. Fig. (c)

and Fig. (d) are the missing mass spectra of pd → dπ+X for the selected events,
the background caused by the collisions between the beam halo and the cell wall
are subtracted using the nitrogen target data. The figures in the left and right
colunms correspond to the FdFd and FdPd events respectively.

four-momenta of the final particles deuteron and pion as

s = (p̆d + p̆π+)2 (4.27)

In Fig. 4.29(a) the effective beam kinetic energy Teff of the process pp⃗ → dπ+ in
this experiment is plotted. The events distributed between 570 MeV and 620 MeV
are used for the polarimetry. The proton analyzing power of p⃗p → dπ+ between
570 MeV and 620 MeV, taken from the SAID database, is plotted in Fig. 4.29 as
a function of the pion scattering angle in the c.m. system. Secondly, the reference
frame of the quasi-free system is rotated with respect to the laboratory reference.
Therefore the scattering angle θcmpi+ is defined as the angle between π+ and the
beam particle proton in the quasi-free system. The azimuthal angle ϕ, which
enters in the polarized cross section (Eq. 4.29), is defined as the angle between the
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(a) Teff of pd → dπ+nsp at Tp = 600 MeV. (b) Ay of p⃗p → dπ+ between 570 MeV (blue) and
620 MeV (red) from SAID

Figure 4.29: The left panel shows the distribution of the effective nucleon
energy Teff of the reaction pd → dπ+nsp at Tp = 600 MeV, Fd and Pd distribu-
tiions are marked with red and blue respectively. Events within the interval
[570, 620] MeV are used. The proton analyzing power Ay of p⃗p → dπ+ from
the SAID database between 570 MeV (blue) and 620 MeV (red) are plotted as
a function of the pion scattering angle on the right panel.

Figure 4.30: θ and ϕ distributions of pp⃗ → dπ+ in the projectile helicity frame

normal of the scattering plane11 and the spin quantization axis12. The measured
angles θcmπ+ and ϕ are plotted in Fig. 4.30(a) and 4.30(b) separately. Note the
proton analyzing power Ay(θ) from the SAID database (Fig. 4.29(b)) is given for
the process p⃗p→ dπ+, thus the transformation

θ → π − θ (4.28a)

ϕ→ ϕ− π, if ϕ > 0,

ϕ→ ϕ+ π, if ϕ < 0.
(4.28b)

11i.e. the y′ axis of the projectile helichty system (refer Fig. 1.2)
12in present case the Y axis of the laboratory reference.
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Figure 4.31: In order to have larger s-
tatistics, the events of pp⃗ → dπ+ with
ϕ < 0 are flipped to their opposite sides,
where ϕ > 0. Accordingly the sign of the
polarization are changed, i.e. the events on
the left part of Fig. 4.30(b) are flipped to
the right side. By this trick the statics are
approximately doubled.

has to be performed so that the analyzing power can be used in the present case
where the target is polarized.

4.2.2.2 Extraction of deuteron vector polarization from pd⃗→ dπ+nsp

In the projectile helicity system which is defined by the final particles deuteron
and π+, the differential cross section of the quasi-free reaction pp⃗ → dπ+ is given
by

dσ

dΩ

P

(θ, ϕ) =
dσ

dΩ

0

(θ)[1 +QyAy(θ) cosϕ] (4.29)

where dσ
dΩ

0
(θ) is the cross section of the unpolarized reaction pp → dπ+, Qy and

Ay(θ) are the polarization and the analyzing power. The number of events with
π+ in the solid angle Ω(θ, ϕ) is

N1(θ, ϕ) =
dσ

dΩ

0

(θ)[1 +Q1
yAy(θ) cosϕ] · L1 · ε1 (4.30a)

for the state 1, and

N2(θ, ϕ) =
dσ

dΩ

0

(θ)[1 +Q2
yAy(θ) cosϕ] · L2 · ε2 (4.30b)

for the state 2. The polarization states 1 and 2 were switched between each other
every 10 seconds, thus the luminosity and the detection efficiency are identical for
them, namely L1 = L1, ε1 = ε2. The ideal vector polarizations of states 1 and 2
satisfy Q1

y = −Q2
y, the values measured by pd⃗→ pd are very close (see Table 4.3).

So it is reasonable to assume Q1
y = −Q2

y = Qy. Combine these conditions and
Eq. 4.30 one can get

N1 −N2

N1 +N2
= Ay(θ) · cosϕ ·Qy. (4.31)

The polarization Qy can be extract by fitting the observable N1−N2

N1+N2 (θ) with Ay(θ) ·
⟨cosϕ⟩ · Qy. In order to fully make use of the available statistics the data of
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cosϕ < 0 are flip to the region where cosϕ > 0, accordingly the sign of the
polarization are changed as well. ⟨cosϕ⟩ are taken as the weighted average of
cosϕ. Fig. 4.32 shows the fitting of N1−N2

N1+N2 (θ) by Ay(θ) · ⟨cosϕ⟩ · Qy, the extract
value polarization is 0.75± 0.07, which is in consistency with which is measure by
STT data.

Figure 4.32: Vector polatization measured with pp → dπ+.

4.2.3 Summary of the Polarization Measurement

Two reference reactions (pd⃗ → pd and pp⃗ → dπ+) and three methods were
used used for the target polarization measurement. The proton–deuteron elastic
scattering were measured by the STTs, and the quasi-free reaction pp⃗ → dπ+

were registered in the forward (Fd) and positive side detection systems. When
measuring the polarizations with pd⃗ → pd, comparisons were performed between
the polarized and the unpolarized data, as well as between the polarized data
of different modes. The data of the quasi-free reaction pp⃗ → dπ+ were mainly
used to check the results form the STT data. Results from the three methods are
consistent with each other with in the error, this means all the three methods are
reliable. Note only in the method of comparing the pd–elastic data of different
polarization modes can the systematic errors be estimated completely, therefore
only the results form this method were used to measure the pd charge–exchange
reaction pd⃗→ n{pp}s (see next section).
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4.3 Measurement of the Proton-Deuteron Charge-
Exchange Reaction

The deuteron charge-exchange reaction pd → n{pp}s is selected from the
events with two tracks in the silicon tracking telescopes (see Fig. 4.2). As illus-
trated in Fig. 4.33(a), protons in STTs are identified utilizing the energy deposit
(Refer Sec. 4.2.1.1). Fig. 4.33(b) is the missing mass distribution of those double-
track events, which shows a prominent peak at the neutron invariant mass. The
background from the storage cell is subtracted using the nitrogen data scaled by
a scaling factor, which is determined by the fitting beyond the peak. Note only
the events within ±3σ of the neutron peak are used in the subsequent analyses.
In the kinematical region in terms of the three-momentum transfer q versus the

Figure 4.33: The left panel illustrates the particle identification for the double-
track events in the STTs by the ∆E/E method. The right panel is the missing
mass spectrum of pd → {pp}sX for the diproton events. The nitrogen data is
used for background subtraction. The events within ±3σ of the neutron-mass
peak are employed for the polarization measurement.

pp excitation energy Epp, the events of pd→ n{pp} are scattered in two separated
areas (Fig. 4.34), which correspond to the cases where the two final protons en-
ter the same (blue) or different (red) STT. In order to penetrate the most inner
silicon microscope strip detector of one STT, a proton has to possess kinetic ener-
gy large than 2.5 MeV, which corresponds to momentum about 70 MeV/c. This
necessarily means that, if the two final protons were detected by the same STT,
the momentum transfer q to the proton pair must be larger than 140 MeV/c, and
the excitation energy Epp can be small. One the contrary, if the two protons are
detected by two different STTs, Epp must be large (& 6 MeV) and q can be small
because two protons are in opposite directions. As a result, the kinematic region
where both q and Epp are small, which is accessible in the first phase of the np
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Figure 4.34: The three-momentum
transfer q versus the pp excitation en-
ergy Epp for the pd → n{pp} events
at Tp = 600 MeV that fall within
±3σ of the neutron peak. The data
are shown separately for cases where
the two protons enter the same (blue)
or different (red) STT. The current
construction of the STT means that
there can be no events where q and
Epp are simultaneously small.

investigation at ANKE, can not be covered by the STT detection system. The
dueteron charge-exchange reaction is selected by requiring the excitation Epp <

3 MeV, which insures that the final proton pair mainly be in 1S0 state.
For the charge-exchange process pd⃗ → n{pp}s where the internal freedom of

the diproton is not considered, the polarized differential cross section is the same
as that of a two-body reaction induced by a polarized spin-1 particle, i.e its cross
section is identical to Eq. 4.3, which is repeated here

dσ

dΩ

P

(θ, ϕ) =
dσ

dΩ

0

(θ){1 + 3

2
QyAy(θ) cosϕ

+
1

4
Qyy[Ayy(θ)(1 + cos 2ϕ) + Axx(θ)(1− cos 2ϕ)]} (4.32)

Therefore other formulae used for the proton-deuteron elastic reaction in sec-
tion 4.2.1 , such as Eq. 4.13, are valid in this section.

Theoretical calculation predicted that the deuteron vector analyzing power
Ad

y of pd⃗ → n{pp}s should be zero if the final diproton is at 1S0 state [52]. This
was confirmed experimentally in the small three-momentum-transfer region in the
previous investigations[56, 58]. In present work the measurement in the region
where 140 MeV/c < q < 400 MeV/c also support this prediction. The polarization
pair (1, 2) was used to measure to the deuteron vector polarization Ad

y since for
this pair the ideal values of the averaged vector polarization ⟨Qy⟩ and the tensor
polarization difference ∆Qyy both vanish. In this case the formula for the ratio
between the difference and sum of modes 1 and 2 (R = N1−N2

N1+N2
) , i.e. Eq. 4.13,

reduces to

r(θ, ϕ) =
3
2
Ay(θ) cosϕ∆Qy

2 + 1
2
[Axx(θ)(1− cos 2ϕ) + Ayy(θ)(1 + cos 2ϕ)] ⟨Qyy⟩

, (4.33)

However, the measured values of ⟨Qy⟩ and ∆Qyy actually differ from zero (see



Chapter 4. Study of the Proton–Deuteron Charge–Exchange Reaction 121

 q [MeV/c] 
150 200 250 300 350 400

d y
A

-0.1

0

0.1

Figure 4.35:
Deuteron vector
analyzing power Ad

y

of the pd⃗ → n{pp}s
reaction with an
Epp < 3 MeV cut.
Impulse approximation
predictions based upon
the SP07 solution for
the neutron-proton
elastic scattering am-
plitudes were used
to correct for tensor
analyzing power effects.

Table 4.4). In order to eliminate the contribution form ⟨Qy⟩ and ∆Qyy to the
largest extent, the ratio difference D = RL −RR between the data close to ϕ = 0

and ϕ = π, corresponding to the centers of left and right STTs respectively, is
evaluated to measure Ad

y. By fitting the measured quantity RL −RR with

d =
3Ay(θ)∆Qy

2 + Ayy(θ) ⟨Qyy⟩
(4.34)

the vector analyzing power Ad
y can be obtained. Moreover the Impulse approx-

imation predictions based upon the SP07 solution for the neutron-proton elastic
scattering amplitudes were used to correct the tensor analyzing power effects. The
average of the vector polarization over all momentum transfers were found to be
Ad

y = 0.005± 0.008, agree with the theoretical prediction Ad
y = 0.

For the data in the centers of the STTs (cos 2ϕ = 1), taking into account that
Ad

y = 0, the formula Eq. 4.13 is simplified as

r(θ) =
1
2
Ayy(θ)∆Qyy

2 + Ayy(θ) ⟨Qyy⟩
(4.35)

Via fitting the ratio R = Na−Nb

Na+Nb
with above function, the dueteron tensor polar-

ization Ad
yy can be measured. Due to the large values of ⟨Qyy⟩ and ∆Qyy, the

polarization modes 3 and 4 are more suitable for determining Ad
yy. As in the

case of Ad
y measurement, the impulse approximation was used to correct the small

residual effects from the analyzing power Ad
yy. As shown in Fig. ??, Ad

yy were
measured using both the left and right STT data, results obtained from the two
data sets agree with each other within the error. Fig. ?? shows the result using
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Figure 4.36: The dueteron
tensor analyzing power Ad

yy of
deuteron charge-exchange reac-
tion pd⃗ → n{pp}s at Tp =
600 MeV. In the left panel
values measured with left and
right STTs are indicated by red
dot and blue square respective-
ly. The averaged results us-
ing the combined data are plot-
ted in the right panel. The
curve represents the calculation
using the impulse approximation
based on the SP07 solution for
the neutron-proton elastic scat-
tering amplitudes from the SAID
database [44].

the combined data, together with the impulse approximation.

4.3.1 Discussion on the Results

The calculation based on impulse approximation [53] shows that the deuteron
vector analyzing power Ad

y = 0 if the final proton pair is in the state 1S0. The
measured deuteron vector polarization presented in Fig. 4.35 agrees well with the
calculation, thus confirms the reliability of the impulse approximation. In Fig. 4.37
the data below 160 MeV/c are from the measurement of the reaction d⃗p→ {pp}sn
with a polarized deuteron beam of Td = 1200 MeV in the first phase of the n-
p scattering investigation at ANKE. The data above 160 MeV/c are measured
with the inverse kinematics method in this experiment. The red curves represent
the impulse approximation calculations using the SP07 solution from the SAID
database as the np scattering amplitudes. The deuteron tensor analyzing power
Ad

yy measured in this experiment connect smoothly to the previously measured
data, and agree with the impulse approximation. The silicon tracking telescopes
(STTs) placed on the left and right sides of the target are not able to cover the
regions close to the azimuthal angles ± π

2
, therefore the experimental signals are
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Figure 4.37: The deuteron tensor analyzing powers Axx and Ayy of the s-
ingle–polarized deuteron charge-exchange reaction pd⃗ → {pp}sn. Only events
with the excitation energy of the proton pair Epp < 3 MeV were chosen in
the data analyses, therefore the final proton pair are mainly at 1S0 state. The
impulse approximation [52] based on the np amplitudes provided by the SP07
solution of the SAID database [44] are plotted as well. Due to the one-pion
exchange, the np spin–spin amplitude δ gets its minimum at the momentum
transfer q ≈ 140 MeV/c (see Fig. 2.3), accordingly the tensor analyzing powers
Axx (Ayy) also reach their maximum (minimum) value (see Eq. 2.5).

not sensitive to the analyzing power Ad
xx, thus Ad

xx was not measured in this exper-
iment. As mentioned in the second chapter, the multiple scattering and relativity
effects need to be taken into account when the three-momentum transfer is high.
At present only the effects of double scattering for the 1S0 final state have been
incorporated into the theoretical calculations[52]. Such effects are not important
in the kinematic region where the three-momentum transfer q <140 MeV/c where
the Ad

yy is minimum. However the double scattering effects push the momentum
transfer where Ad

yy = 0 down by about 20 MeV/c. On the other hand the double
scattering is far less important in the P and higher waves of pp system, and what’s
more, the cut Epp < 3 MeV ensures that final pp pairs are mainly in 1S0 state,
therefore the calculation is consistent with the experiment data. Nevertheless
more detailed theoretical work which includes multiple scattering in higher waves
and relativity effects is in progress.



Chapter 5

Conclusion and Outlook

5.1 Summary
The work presented in this thesis is the commissioning experiment for the

second phase of the neutron-proton scattering programme at ANKE[23]. The
charge-exchange reaction pd⃗ → n{pp}s was studied using an unpolarized proton
beam of 600 MeV provided by COSY [59], impinging on the polarized deuterium
atoms which are generated by the polarized atomic beam source (ABS) [85] at
the ANKE spectrometer [72]. The polarized deuterium atoms were injected into
a storage cell (SC) [100, 101] to enhance the effective target thickness. In order
to detect the low-momentum particles around the target and to reconstruct the
event vertices, two silicon tracking telescope (STT) [73] were placed on the left and
right sides of the storage cell. Particles ejected in the forward direction with high
momenta were detected by the forward (Fd) and positive (Pd) detection systems of
the ANKE spectrometer. During the experiment two pairs of polarization modes
(refer Table. 4.1) were utilized, with an alternation between the modes in each pair
every 10 seconds, such a scheme allowed to minimize the systematic error which
may be caused by various instabilities. Besides the polarized deuterium atoms,
data were also taken with unpolarized and nitrogen gas filled in the storage cell.
Unpolarized deuterium data were used to compare with the polarized data, and the
nitrogen data allowed to simulate the background from the interaction between the
wall of the storage cell and the beam halo. The target polarimetry were established
mainly using the proton-deuteron elastic scattering pd⃗→ pd, which was validated
by the quasi-free reaction pp⃗ → dπ+. The criteria Epp <3 MeV serves as a filter
to exclude the P and higher waves. Both vector(Ay) and tensor (Ayy) analyzing

124
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powers of the charge-exchange reaction pd⃗ → n{pp}s were measured at the high-
momentum transfers (160 MeV/c . q . 380 MeV/c). The following conclusion
can be made base on this commissioning experiment.

� This experiment is the first time that the polarized internal target installa-
tion (PIT) ever provided a polarized deuterium target at ANKE. The results
manifest that the PIT is able to provide a high-quality deuterium target in
the future production experiment.

� The silicon tracking telescopes (STTs) can detect both the proton–deuteron
charge-exchange reaction pd⃗ → n{pp}s and the polarization reference reac-
tion pd⃗→ pd. This investigation shows that the STT system can meets the
requirements in the aspects of both hardware [73] and software [121].

� The forward (Fd) and positive side (Pd) subdetection system of ANKE can
register the quasi-free reaction pp⃗ → dπ+, and measure the momenta with
sufficient precision through the event vertex reconstruction. The polarization
measured pp⃗→ dπ+ confirmed the results obtained from the STT data.

� The preparatory investigation found that the polarizations of the deuterium
target as well as the analyzing powers of the proton–deuteron charge–exchange
reaction can be measured only with the polarized data, therefore it is pos-
sible to carry out the production experiments without take the unpolarized
data thus more beam time can be used to collect the polarized data, in this
way results with smaller statistic errors can be expected.

� The analyzing powers Ay and Ayy of the proton–deuteron charge–exchange
reaction were measured at the high-momentum transfer region, the results
are consistent with the impulse approximation based on the np amplitudes
provided by the SAID database. This proved that the np study can be
performed at high energies with the inverse-kinematics method.

5.2 Outlook: Production Experiment at High
Energies

Through the commissioning experiment it is demonstrated that the polar-
ized internal target (PIT) [83, 84] is able to produce polarized deuterium target
of high quality, whose polarizations can be reliably calibrated using the reference
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reaction pd⃗ → pd. The background due to the wall of the storage cell can be ef-
ficiently subtracted using the nitrogen target. Both the charge-exchange reaction
pd⃗ → n{pp}s and the major polarimetry reaction pd⃗ → pd are detected by the
silicon tracking telescope (STT) [73], which is proved to be satisfactory in both
hardware and software aspects. The commissioning study shows that using the
deuteron-proton charge-exchange reaction the neutron-proton scattering investi-
gation at ANKE can be extended to 2.83 GeV, the highest energy available at
COSY. In the future production experiments [117] the ANKE-collaboration is go-
ing to use proton beams and polarized deuterium target to measure the deuteron
tensor analyzing power Ad

yy, the proton vector analyzing power Ap
y and the trans-

verse spin-correlation coefficients Cx,x and Cy,y. The target polarization will be
measured at 600 MeV. In order to do so, the COSY beam will be prepared in the
super cycle mode, where beams of different energy will be provided successively.
To measure the proton analyzing power and the spin-correlation coefficients polar-
ized proton beams have to be employed. The beam polarization will be measured
by the EDDA detector [124, 125], which is located at another target internal sta-
tion of COSY. In the production experiment measurements will be performed at

Figure 5.1: CAD drawing of the new storage cell. The thick block on the left
side will exhaust the beam halo, thus in the region where the STT is placed there
will be little beam-cell interaction, which was the main background source in
the previous and present experiments. The STT is also drawn at its installation
position.
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energies from Tp = 1.135 GeV up to 2.83 GeV, the results are expected to provide
valuable data of np scattering, which will improve human’s knowledge about the
nuclear force.

A new target storage cell (see Fig. 3.23), which will be open during cooling-
stacking process and be closed when the beam phase space gets small, will be
employed. The titanium, which cause less depolarization, will be coated on the
inner wall or the storage cell. In addition, the short part of the beam tube will be
very thick (1̃0 mm), this thick block will eliminate the beam halo (see Fig. 5.1).
As a result there will be little background caused by the cell wall.
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