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In the most recent measurements of the reaction eþe− → pp̄ by the BABAR collaboration, new
structures have been found with unknown origin. We examine a possible relation of the most distinct peak
to the recently observed ϕð2170Þ. Alternatively, we analyze possible explanations due to the nucleon Δ̄ and
ΔΔ̄ thresholds. The latter could explain a periodicity found in the data.
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I. INTRODUCTION

The creation of nucleon-antinucleon ðNN̄Þ pairs from the
electromagnetic (em) current is one of the most funda-
mental baryonic processes and therefore an ideal ground to
examine their interactions. This process exhibits the tran-
sition between the perturbative and nonperturbative regime
of QCD. Close to the production threshold, it is dominated
by meson exchange that gives rise to a strong enhancement
[1]. Increasing the center-of-mass energy, one finds an
intermediate region, where this first threshold enhancement
has decreased, though a description in terms of perturbative
QCD is not yet possible. We will focus in particular on the
region below the occurrence of the J=Ψ. This region is very
poorly understood so far, so that a mainly conceptual
analysis as performed here is appropriate.
The nucleon form factors (NFFs) are the functions that

parametrize the γNN̄ vertex generated by the strong
interaction. In the intermediate region of interest here, an
effective proton FF shows several structures. We discuss for
the first time the possible main sources of these structures.
On the one hand, we examine whether the vector meson
ϕð2170Þ, newly listed by the Particle Data Group (PDG)
[2], might be relevant here. On the other hand, we
investigate if such an effect could be due to the final state
interaction (FSI) at the thresholds of the first resonance
excitations, the NΔ̄þ c:c. and ΔΔ̄ thresholds, respectively.
A possible NΔ̄-cusp effect has been suggested by Rosner
[3], in analogy to the case of pion photoproduction off the
nucleon [4], but never examined further.
For the treatment of the ϕð2170Þ, we consider a

simultaneous description of the processes eþe− → NN̄

and eN → eN, including observables for the proton and
the neutron. Enhancements at the NΔ̄þ c:c. and ΔΔ̄
thresholds are treated in a simplified model calculation.
The two mechanisms in principle can take place simulta-
neously, but are difficult to disentangle given the current
data in the timelike region. Therefore, they are analyzed
separately in this work for a start.
The unphysical region of the NFFs is equally of interest,

since a NN̄ bound state, often denoted as baryonium,
would be manifest below the physical threshold.
Indications for such a state around an invariant mass of
1835 GeV have been found in the invariant mass-spectra
of the decays J=Ψ → xpp̄, Ψ0ð3686Þ → xpp̄ with ðx ¼
γ;ω; ρ; π; ηÞ and Bþ → Kþpp̄, see e.g. Refs. [5–8]. The
binding of a baryonium state could be generated by the
final state interaction, giving rise to a pole below threshold,
that could be accommodated in a recent FSI analysis [9].
The analytic continuation of the NFFs that we obtain from
fits to data into the unphysical region is also examined with
the help of logarithmic dispersion relations, including
the region of a possible baryonium pole. Such an analytic
continuation, however, requires the separation of the
electric and magnetic NFFs over all the included kinemati-
cal range. This separation depends on the ratio between
electric and magnetic FF. A higher precision for this ratio
than from previous measurements is expected from the
planned pp̄-annihilation experiment PANDA at FAIR
[10,11]. For a recent review on the NFFs, see Ref. [12].
For completeness, it may be worthwhile mentioning the

findings of a partial wave analysis (PWA) of pp elastic
scattering in Ref. [13], where a peak in the 1D2 partial wave
has been explained as due to an S-matrix pole at 2.144 GeV
and related to an unstable NΔ bound state. Also a recent
PWA by the SAID collaboration [14] includes such pp data
and finds a clear signal in the 1D2 amplitude around this
energy. Similarly, just below the ΔΔ threshold, a recent
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PWA including new neutron-proton scattering data [15]
confirmed a pole related to the d�ð2380Þ, found at COSY
[16], suggested to be a dibaryon. This raises the question
whether similar mechanisms are at play in the pp̄ system.
The paper is structured as follows. In the rest of this

introductory section, we give some basic definitions,
discuss the contributions to the NFFs and experimental
input. In Sec. II, we examine a possible manifestation of the
ϕð2170Þ in different nucleon observables. The inclusion of
threshold cusps is examined in Sec. III. In Sec. IV, we
consider the analytical continuation of the NFFs to the
unphysical region. We conclude with a discussion in Sec. V.

A. Definitions and prerequisites

For the description of the em process eþðp1Þe−ðp2Þ →
pðp3Þp̄ðp4Þ we choose the center-of-mass (CM) frame,
i.e. p1;2 ¼ ðE;�keÞ and p3;4 ¼ ðE;�kpÞ. The photon
momentum q then determines the center-of-mass energy
by q2 ¼ ðp1 þ p2Þ2 ¼ E2

CM ¼ ð2EÞ2. In our metric time-
like q implies positive q2. The three-momenta ke; kp
appear in the phase-space factor β ¼ kp=ke, which
in the limit of neglecting the electron mass yields

β ≈ kp=E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

p=q2
q

, the velocity of the proton,

and mp is the proton mass. We denote the emission angle
of the proton by θ. The differential cross section in the
one-photon-exchange approximation in this notation is

dσ
dΩ

¼ α2β

4q2
Cðq2Þ

×

�
ð1þ cos2θÞjGMðq2Þj2 þ

4m2
p

q2
sin2θjGEðq2Þj2

�
;

ð1Þ

where GE and GM denote the electric and magnetic Sachs
form factors, respectively, and α ¼ e2=ð4πÞ ¼ 1=137.06
the fine-structure constant. Cðq2Þ is the Sommerfeld-
Gamow factor that accounts for the Coulomb interaction
between the final-state particles

Cðq2Þ ¼ y
1 − e−y

; y ¼ παmp

kp
: ð2Þ

Integrating over the full angular distribution gives the total
cross section

σeþe−→pp̄ðq2Þ ¼
4πα2β

3q2
Cðq2Þ

�
jGMðq2Þj2 þ

2m2
p

q2
jGEðq2Þj2

�

≡ 4πα2β

3q2
Cðq2Þ

�
1þ 2m2

p

q2

�
jGp

effðq2Þj2: ð3Þ

Thus, eliminating the kinematical factors from σ defines the
effective form factor Geff

jGeff j≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGEj2 þ q2

2m2
p
jGMj2

1þ q2

2m2
p

vuuut : ð4Þ

For neutrons, the formulas are equivalent except for the
Sommerfeld-Gamow factor which is not present in that
case. Beyond the Coulomb FSI, higher order QED cor-
rections will be neglected in this work. The weak neutral
current contribution to the measured cross section is also
neglected. For the time-reversed process, the phase space
factor is inverted, yielding σeþe−→pp̄ ¼ β2σpp̄→eþe− .
Taking into account the angular dependence of pp̄

production, one can express the differential cross section
via the angular asymmetry A, see Ref. [17],

dσ
dΩ

¼ dσ
dΩ

����
θ¼90°

½1þAcos2θ�; ð5Þ

with

A ¼
q2

ð4m2
pÞ − R2

q2

ð4m2
pÞ þ R2

; ð6Þ

and determine from this explicitly the FF ratio
R ¼ jGE=GMj.
For many aspects, it is instructive to consider the vertex

γpp̄ in the helicity basis, i.e. the helicity-conserving Dirac
and helicity-changing Pauli form factors F1 and F2, in
order:

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m2
p
F2ðq2Þ;

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð7Þ

On the one hand, this basis allows us to see directly that the
threshold relation is by definition

GEð4m2
pÞ ¼ GMð4m2

pÞ: ð8Þ

In addition, the asymptotic q2-dependence can also be
conveniently given. For large −q2 ¼ Q2 ≥ 0, the Dirac and
Pauli form factors can be predicted from perturbative QCD
[18,19] to behave like

lim
Q2→∞

FiðQ2Þ ¼ ðQ2Þ−ðiþ1Þ
�
ln

�
Q2

Λ2
QCD

��−γ
; i ¼ 1; 2;

ð9Þ

with

γ ¼ 2þ 4

3β
and β ¼ 11 −

2

3
Nf: ð10Þ
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Here, β is the first coefficient of the QCD β-function for
the number of flavors Nf. The anomalous dimension γ
depends weakly on the latter, γ ¼ 2.148; 2.160; 2.173 for
Nf ¼ 3; 4; 5, respectively. The analytic continuation of the
logarithm to timelike momenta yields an additional term
lnðQ2=Λ2Þ ¼ lnðq2=Λ2Þ − iπ, for q2 > Λ2.
For the asymptotic behavior of the form factors, we

consider the Phragmén-Lindeloef theorem [20]: “Let fðzÞ
be an analytic function of z, regular and bounded in Im
z > 0. If fðzÞ tends to the limits L1 and L2 along the rays
z ¼ xþ i0 as x → �∞, then we must have L1 ¼ L2.” In
particular, from this it follows that the imaginary part has to
vanish in the asymptotic limit.
Based on the reasonings of perturbative QCD including

the analytic continuation into the timelike region [21,22], a
recent analysis [23] of the proton effective FF includes a fit
of the form

jGp
effðq2Þj ¼

A
ðq2Þ2ðln2ðq2=Λ2Þ þ π2Þ ; ð11Þ

with the parameters from a fit to data prior to a recent
measurement by the BABAR collaboration [24], given as
A ¼ 72 GeV−4 and Λ ¼ 0.52 GeV.

B. Possible contributions

In the energy-regime below the J=Ψ, we will focus on
possible hadronic contributions to the NFFs. The size of the
different possible contributions is unknown. Therefore we
consider here the individual diagrams in a pioneering study,
neglecting interference effects between them.
Three Feynman graphs representing the different types

of diagrams contributing to the NFFs are shown in Fig. 1.
The first two refer to a mainly baryonic, the last to a
mesonic contribution. Diagram (a) represents the final-state
interaction (FSI) in form of meson exchange. The pion

exchange shown can be replaced by any number of suitable
mesons. Diagram (b) shows one possible excitation of a
resonance, e.g. a Δ, in the FSI diagram. Possible re-
excitations are assumed. Diagrams of type (c) are usually
ignored above the pp̄ threshold. However, in general they
can contribute, e.g. from the ϕð2170Þ.

C. Data

Experimental information on the proton FFs for timelike
momenta is available from a number of measurements
dating back to 1976, for a detailed discussion, see Ref. [25].
However, the only ones that include sufficient precision on
the angular distribution to disentangle GE and GM, are
those from LEAR [26], BABAR [24], see Fig. 2, and BESIII
[27]. In fact, the first dispersion analyses of timelike
nucleon form factor data [28] were hampered by a missing
separation of GE and GM. The recent BESIII measurement
yields good agreement with BABAR, in particular confirm-
ing an enhancement at 2.4 GeV. However, the emphasis of
BESIII lies above the region of our main interest here. Due
to the much higher precision of the BABAR data compared
to the ones from LEAR, in this work we focus on the
former, for the corresponding cross sections see Fig. 3. The
ridge and bump structure occurring here are also inherited
by the effective proton FF that is shown in Fig. 4. The
insufficiency of a pQCD description is shown by the fit

FIG. 1. The different types of diagrams contributing to the NFFs above the pp̄ threshold, as discussed in Sec. I B. The wiggly line
denotes the photon, the thin solid line the (anti)nucleon, the thick solid line an (anti)nucleon resonance and the dashed line denotes all
possible mesons, e.g. pions in (a)+(b) and the vector meson ϕð2170Þ in (c).

FIG. 2. The processes mainly considered for NFF determina-
tions. Left: Annihilation measured at LEAR, planned at FAIR
[10,11,29]. Right: Production with ISR, measured e.g. at BABAR.

FIG. 3 (color online). The total cross section σðeþe− → pp̄Þ
measured at BABAR, depending on the invariant mass Mpp̄. The
initial state radiation is factorized out and the J=Ψ and Ψð2sÞ
peaks have been removed [24].
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Eq. (11) from Ref. [23], where it is argued that the
oscillations around the pQCD fit are due to FSI.
In this work, the angular information is included in the

form of the FF ratio jGE=GMj as provided by BABAR [24].
The neutron FFs for timelike momenta have been

measured in the process eþe− → nn̄ by the FENICE
collaboration [30] and recently at the VEPP-2000 collider
with the “spherical neutral detector” (SND) [31]. As for the
proton case, the precision of the latest neutron measure-
ment exceeds by far that of the preceding experiments.
However, the accuracy does not suffice to determine the
neutron form factor ratio.
In the spacelike region, we include explicitly the most

precise differential ep scattering cross sections [32] and in
addition the polarization world data (see Ref. [33] for a list).
For the neutron, we want to emphasize that the phenom-
enological extraction of neutron FFs yields larger uncertain-
ties than for the proton case, since there is no free target. The
measurements require light nuclei targets like 2H or 3He for
quasielastic scattering, for details see e.g. Ref. [33]. Here, we
use the data onGn

M andGn
E for a better visibility compared to

the equivalent use of Gn
M and the ratio.

II. THE PROCESS eþe− → NN̄ AND THE ϕð2170Þ
In this section we consider the possible contribution to

the NFFs from the ϕð2170Þ, corresponding to diagram

(c) in Fig. 1. This refers to a structure that has been found in
different processes and that is at the moment classified by
the PDG as the only light unflavored vector meson above
the NN̄-threshold. In the following, we use the PDG
notation even though some of these structures have also
been denoted as X=Yð2175Þ or simply as ϕ00. As shown in
Table I, measurements at BES, BABAR and BELLE have
found signals in this mass region, albeit over some interval.
Even the central values spread in the range 2.08–2.19 GeV
for the mass and 58–192 MeV for the width. This might
correspond to the uncertainty of the separation from
nonresonant background and/or the possible existence of
multiple interfering resonances in this range. Also the
isospin is given as definite, yielding altogether IGðJPCÞ ¼
0−1−−. However, the assignment of quantum numbers
should be taken with a grain of salt, mainly due to the
limited statistics, for a discussion see for example
Ref. [34]. Different suggestions about the origin of the
ϕð2170Þ have been put forward. It has been interpreted, for
example, as a tetraquark state [35], a hybrid ss̄g resonance
[36] or to a large extent as a ϕð1020ÞKK̄ state [37]. It
can also be generated in a chiral Lagrangian approach
for ϕð1020Þ=f0ð980Þ S-wave scattering by their self-
interactions [38]. However, to our knowledge it has not
been considered in relation to the NFFs. We will do so, first
by focusing on the effective proton FF and second in a
simultaneous treatment of different proton and neutron
measurements for space- and timelike momenta. The
individual form factors that correspond to a Breit-Wigner
resonance structure with massMϕ and width Γϕ behave like
Fðq2Þ ∝ 1=ðM2

ϕ − q2 − iΓϕMϕÞ, so that the effective FF
can be fitted to the absolute value of the latter.

A. Individual Gp
eff fits

A description of the proton effective form factor has been
attempted by several groups over the years with the main
emphasis on either the perturbative QCD part or the impact
of vector mesons below the pp̄ threshold. Neither these nor
conventional fits of dipoles, monopoles or products of these
can fully accommodate the structures in the currently most
precise relevant cross sections or in Gp

eff , see Figs. 3, 4. In
the overall concave function Gp

eff , the first structure occurs
as a mainly convex part for invariant masses of around
2–2.25 GeV. A satisfactory fit to the data requires us to take

FIG. 4 (color online). The effective form factor Gp
eff of the

proton measured in the process σðeþe− → pp̄γÞ at BABAR [24],
shown with different fits from Ref. [23], given by a conventional
dipole · monopole form or the pQCD parametrization Eq. (11).

TABLE I. Observations of the ϕð2170Þ from the review of particle properties [2].

Process Mass (MeV) Width (MeV)

J=Ψ → ηϕf0ð980Þ [BES] 2186� 10� 6 65� 23� 17
eþe− → ϕηγ [BABAR] 2125� 22� 10 61� 50� 13
eþe− → KþK−ππγ [BABAR] 2175� 10� 15 58� 16� 20

eþe− → KþK−πþπ−γ [BELLE] 2079� 13þ79
−28 192� 23þ25

−61
eþe− → KþK−πþπ−γ [BABAR] 2192� 14 71� 21

eþe− → KþK−π0π0γ [BABAR] 2169� 20 102� 27
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this structure into account in some way in the parametriza-
tion. However, this is a prime example of the ambiguities
that can appear in separating a possible resonance structure
from the background. For comparison with PDG-values,
see Table I, we perform test fits to Gp

eff with terms that
correspond to Breit-Wigner (BW) shapes in the cross
section and 5 effective pole terms below threshold for
the background description. We find that a large range of
values of masses and widths in this region strongly
improves the data description, M ≈ ð2–2.18Þ GeV and
Γ ≈ ð0.05–0.5Þ GeV. In Fig. 5, we show exemplary fits
with a narrow resonance on the left and a broader one on
the right. Remarkable is also a structure peaked around
q2 ≈ 5.9 GeV2. Allowing a second resonance in this region
yields one atM¼2.43GeV with a width of Γ ¼ 0.23 GeV.
This cannot be regarded as a rigorous analysis, since these
resonance structures largely overlap and are not separable
from the background either. However, it is undebatable that
an additional structure peaked around M ≈ 2.43 GeV
improves the data description.

B. Simultaneous fits

In this section, we combine the Gp
eff fits from the last

section with more available data on the NFFs, see Sec. I C
for references. These data comprise 7 different sets, 4 for
the proton and 3 for the neutron. For the proton, we
consider the differential cross sections and the ratioGE=GM

from polarization observables on the scattering side in
addition to the effective FF and jGE=GMj on the production
side. For the neutron, we include GE and GM from
scattering data and again the effective FF on the production
side. In order to weight the different data sets equally, their
impact on the χ2-function to be minimized is determined by
their number of data points. Still, to avoid a dominance by
the other sets, we fix the mass of the resonance structure at
M ¼ 2.125 GeV. The width obtained in the simultaneous
fit is Γ ¼ 0.088 GeV. The larger number of data points
compared to the previous section requires more effective
pole terms in the unphysical region, in particular for a
separation of the isospin channels due to the inclusion of

FIG. 5 (color online). Illustrative pre-fits for comparison to PDG-given ϕð2170Þ, using only Geff -data. Including a resonance at
M1 ¼ 2.125 GeV with a width of Γ1 ¼ 0.09 GeV (left) and Γ1 ¼ 0.33 GeV (right). The fit on the right also includes a resonance at
M2 ¼ 2.43 GeV and Γ2 ¼ 0.23 GeV.

FIG. 6 (color online). The effective FF of the proton (left) and the neutron (right). Gp
eff is complemented here by the subsequently

published higher-energy data [40]. The recent SND measurement [31] is in good agreement with the only previously publishedGn
eff data

from FENICE [30].
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the neutron. As the basic framework, we proceed in a
similar way to our analysis of spacelike NFFs [39]. To be
specific, we include parametrizations of the 2π,KK̄ and ρπ-
continuum, the ω- and ϕ-contribution and effective pole
terms. Here, the latter are restricted to the region 1 GeV2 <
q2 < 3.52 GeV2 and limited to a number of three in the
isoscalar and five in the isovector channel.
We show the fit results in Figs. 6, 7, 8, 9. Note that the

first three subgraphs refer to the timelike and the remaining
four to the spacelike region. For the proton effective FF, we
included a second set of BABAR data at higher energies,
that are still well described by our fit. For the neutron we
included the recent measurement from the VEPP-2000
eþe− collider [31]. In the range from threshold up to
q2 ¼ 4 GeV2, their q2-dependence is very similar to the
proton case. Only above this, two further data points given
by the FENICE collaboration indicate a less steep fall-off.
Unfortunately, the neutron data is too sparse in this region
to constrain a possible manifestation of the ϕð2170Þ around
q2 ¼ ð2.125 GeVÞ2 ≈ 4.5 GeV2. Also, the current level of
statistics of the angular distribution of nn̄ events is too low
to determine the jGn

E=G
n
Mj ratio [31].

So we are left with the jGp
E=G

p
Mj ratio to search for direct

indications of a resonance at q2 ≈ 4.5 GeV2. Indeed, a
slight dip occurs here, see Fig. 7, as soon as we include the
resonance term. The same quantity in the spacelike region
is also well reproduced. For the neutron FFs in the space-
like region, see Fig. 8, we want to emphasize the sizeable
uncertainties in their extraction from electron scattering
off light nuclear targets like 2H or 3He, for details see
e.g. Ref. [33]. Finally, the electron-proton scattering cross
sections shown in Fig. 9 are by far the largest data set with
1422 out of the total 1627 points. Therefore weighting each
set equally disfavors the larger sets in a sense, still giving
reasonable agreement in this case. One could also here refit
the normalization individually for different parts and treat
the uncertainties as discussed in detail in Ref. [39].
However, for a more conceptual work like the one at hand
we refrain from such a procedure.

III. THRESHOLD ENHANCEMENTS

In this part, we outline an alternative origin of the
structures found in the Gp

eff data by carrying out fits to

FIG. 7 (color online). The form factor ratio of the proton for space- (left) and timelike (right) momenta from the combined fit to space-
and timelike data.

FIG. 8 (color online). The neutron electric (left) and magnetic (right) form factor from the combined fit to space- and timelike data.
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Gp
eff only. Remarkable in the last section is the position of

the peaks, or rather kinks, that are necessary to improve the
fits. The positions can be chosen as the threshold energies
of the pΔ̄þ c:c. and the ΔΔ̄ states, or pp̄2π and pp̄4π,
respectively. The occurring Δ resonance would emit a pion
ð>99%Þ, or a photon ð<1%Þ. Since the backgrounds to the
pp̄ final states are subtracted, as discussed in detail by the
BABAR collaboration [24], the pion or photon has to be
absorbed by the other (anti)baryon. In general, the inter-
action between the final states can of course comprise
further exchange of on- or off-shell mesons which should
be treated systematically in an effective field theory (EFT)
framework. Close to the pp̄ threshold, the final-state
interaction (FSI) can be computed via a Lippmann-
Schwinger equation. Such a procedure has recently been
updated in Ref. [1], employing a static interaction potential
derived in chiral EFT [41] that has been fitted to a partial
wave analysis of pp̄ scattering data [42]. Moreover, this is
based on the assumption of a real and constant bare vertex
function. In the region of validity of such an approach
ðMpp̄ − 2mpÞ ≤ 0.1 GeV, the decrease in Gp

eff can be well
reproduced. Beyond this range, a calculation in this
framework breaks down. However, one naively expects
the interaction to further decrease due to the increasing
relative velocity of the two final states. In such a naive
reasoning, the excitation of a resonance would lead to the

same threshold kinematics, just shifted in energy, and thus
could give rise to an enhanced FSI. After the decay of theΔ
resonance, which dominates here, one would be left with
mainly the pp̄ FSI. For the possible necessity to resum the
loops corresponding to re-excitations, future work could
proceed along the lines of Ref. [43]. This might allow us to
distinguish the possible origins of the structures found in
Gp

eff . For the moment, however, we merely illustrate some
possible contributions from the triangle diagram shown in
Fig. 10. Also these are only roughly approximated due to
the lack of information on the vertices, in particular their
momentum dependence.

A. Inclusion of the NΔ̄þ c:c. and ΔΔ̄ thresholds

We consider the triangle graphs with virtual NΔ̄π, see
Fig. 10, and ΔΔ̄π in order to approximate possible cusp
effects. However, the vertices are not well known for these
kinematics. While, e.g., for theΔNπ transition the coupling
constant at Q2 ¼ −M2

π are known, the form factors and
their general dependence on the different momenta is all but
well known. This would be relevant if we were to evaluate
the triangle diagram in full glory, which we do not attempt
here. What can be obtained most easily though, is the scalar
part of the integral. This is proportional to the analytically
well-known Passarino-Veltman integral C0ðκÞ. As defined
in Ref. [44], (slightly different conventions), and imple-
mented in LoopTools [45], this depends on the configu-
ration ðκÞ of virtual particle masses and external particle
four-momenta:

C0ðκ ¼ pk; pl; m1; m2; m3Þ

¼ 1

iπ2

Z
d4k

½k2 −m2
1�½ðk − pkÞ2 −m2

2�½ðkþ plÞ2 −m2
3�
ð12Þ

with κ1 ¼ p3; p4;Mπ; mN;mΔ and κ2 ¼ p3; p4;Mπ;
mΔ; mΔ for the two cases considered here, omitting the
iϵ. The inclusion of the Δ width also changes the analytic
structure. In the following, we denote the configurations
corresponding to κ1; κ2 with Δ widths by ω1;ω2. We show
the absolute value and imaginary part of the configurations
κ1 and κ2 in Fig. 11. Also shown is how the inclusion of the
Δ width partly smears out the cusp effect. Taking the loop
momenta in the numerator into account, one can reduce the

FIG. 9 (color online). The electron-proton scattering cross
sections fromMAMI [32]. On the left, the energy of the incoming
electron is given, which together with the scattering angle
determines Q2.

FIG. 10. Triangle graph with virtualNΔ̄π state. Notations are as
in Fig. 1.
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graph to a sum of n-point functions with n ≤ 3. The
momenta only partly cancel against those in the poorly
known form factors, so that an additional smearing of the
result is expected.

B. Cusp fits

In this section, we show how the scalar parts of the
relevant triangle diagram compares to the convex structures
in Gp

eff . Even after inclusion of the width, the remaining
enhancements have the right position and shapes to
improve a pure pole fit. As in Sec. II A, we fit only
Gp

eff , include 5 effective pole terms (below threshold) and
now replace the explicit resonance terms by the loop
structures from the last section. In order to account for
the form factors at the vertices and a smearing as discussed
in the last section, we include one form factor for each loop

Fðq2Þ ¼ 1

1þ q2=Λ2
NΔ=ΔΔ

; ð13Þ

with ΛNΔ=ΔΔ the respective fitted cutoff parameter.
Additionally, the overall size of the loop contributions is
allowed to vary by a fitted strength parameter fNΔ=ΔΔ ∼
Oð1Þ multiplying each loop structure. The fit result with
fNΔ ¼ 0.02, fΔΔ ¼ 0.3 and ΛNΔ ¼ 10 GeV, ΛΔΔ ¼
1.7 GeV is shown in Fig. 12. The fit parameter fΔΔ is
of natural size, as expected. The value for fNΔ is somewhat
small. However, this is compensated by the very soft form
factor for the NΔ contribution, as typical hadronic cutoff
masses are in the range of 1–3 GeV.
A more quantitative future calculation should make use

of specific information on the NNπ, ΔNπ and γNΔ̄þ c:c.
vertices. To our knowledge, however, in particular the last
one is poorly known in the relevant kinematical region
since an analytic continuation from spacelike photon
momentum would be required where some information
is available, see for example Ref. [39] and references
therein.

IV. THE UNPHYSICAL REGION

In this section, we discuss the NFFs in the region of
t0 ¼ 4M2

π < t < tph ¼ 4m2
p which is not accessible by

direct measurements, but by analytic continuation in
t ¼ q2 ¼ −Q2. An additional particle emission from the
initial state proton can lower the energy of the (virtual
proton) to reach below the threshold, as discussed in
Ref. [46] for the process pp̄ → eþe−π0. Without model
assumptions though, one can relate the information in this
region to the physical ones by means of dispersion relations
(DRs). In many applications of these, the higher energy
parts of the spectral function are not particularly relevant or
are suppressed by subtractions. However, it can also be of
interest to use (experimental) information from the physical
timelike region which only determines the absolute value of
the NFFs. To this aim, it is instructive to use a DR for the
logarithm, see e.g. Refs. [47–51]. In principle, this also
allows for a separation of the FF phase δðtÞ and modulus in

FIG. 11 (color online). The q2-dependence from the scalar Passarino-Veltman triangle diagrams with virtual NΔ̄π and ΔΔ̄π states
compared to Gp

eff from Ref. [24].

FIG. 12 (color online). Fit including effective pole terms and
the scalar parts of the triangle diagrams with virtual NΔ̄π and
ΔΔ̄π states to Gp

eff from Ref. [24].
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the representation GðtÞ ¼ jGðtÞjeiδðtÞ. The relative phase of
GE and GM in turn, can be obtained in polarization
measurements, as planned for PANDA at FAIR. This phase
might help to understand the origin of the structures inGp

eff .
Moreover, with ideally accurate data in the space- and
timelike physical region one could obtain information on
both the modulus and phase of the FFs in the unphysical
region, including the latter above production threshold.
One can start from a subtracted DR for the function

ln½GðtÞ=Gð0Þ�=ðt ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p Þ. For t < 0, we evaluate the DR

lnGðtÞ ¼ lnGð0Þ þ t
ffiffiffiffiffiffiffiffiffiffiffi
t0 − t

p
π

Z
∞

t0

ln jGðt0Þ=Gð0Þj
t0ðt0 − tÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
t0 − t0

p dt0

≡
Z

∞

t0

Iðt; t0; t0Þdt0; ð14Þ

where the first term vanishes due to the normalization
GEð0Þ ¼ GMð0Þ=μp ¼ 1. Experimental information on this
integral equation (14) is available in the spacelike region
t < 0 on GðtÞ and in the timelike region for t > tph on the
modulus jGðtÞj. One can thus split the integral into the
known part above t > tph and the remaining part with
unknown integrand, as suggested in Ref. [49]. The resulting
integral equation is commonly denoted as an inhomo-
geneous Fredholm equation of the first kind [52]. In
general, the solution for the unknown part of ln jGðtÞj
can be searched for by discretizing the integral. Our
first choice would be a number of discretization points
equal to the number of input points from the physical
region, giving a set of n linear equations with n variables.
However, the problem is strongly ill-conditioned, with
small changes in the input leading to large changes in
the solution. Therefore, additional information is required
to solve the original integral equation. We proceed similar
to Refs. [49,50] and consider the integral contributions to

the logarithm ln jGðtÞj in the spacelike region, using
definite values for the known part above tph

lnGðtÞ −
Z

∞

tph

Iðt; t0; t0Þdt0 ¼
Z

tph

t0

Iðt; t0; t0Þdt0; t < 0:

ð15Þ

In contrast to Refs. [49,50], we use as input for the
left-hand side of Eq. (15) our discretized result of a
simultaneous fit to data in all accessible regions, see
Sec. II, and obtain as an example fit the result shown
in Fig. 13. We minimize the difference between the left-
and right-hand side of Eq. (15), while also limiting the
total curvature of the FFs in the unphysical region,
r ¼ R tph

t0 ððd2jGðtÞj=dt2ÞÞ2dt. For the result, we find a large
dependence on the strength of the curvature limitation and
on the range that we use for input from t < 0. Thus reliable
errors cannot be quantified here.
However, we want to point out that large enhancements

in the FF modulus just below production threshold are
possible. In the example shown in Fig. 13, one can see such
an enhancement just below tph, as expected in the case of a
baryonium pole. For the planned precision of the forth-
coming measurements at PANDA, these possibilities
should be further evaluated. Encouraging in this regard
are also previous results for the pion FF [49], where the
predictive power of this method can be impressively
illustrated. A major source of complication in the nucleon
case is the necessity of two FFs and their separation. The
emphasis on measuring the angular distribution at PANDA
will have particular impact on this separation.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have examined the em pp̄ creation
and the mechanisms that dominate it in the domain of

FIG. 13 (color online). An exemplary result for the modulus of electric and magnetic form factor obtained from the logarithmic
integral Eq. (14). The NFFs for t < 0 are considered via the differential cross sections, therefore the data cannot be shown directly in this
form. For t > tph, jGMj is closer to jGeff j than jGEj, as expected. We note that large enhancements in the FF modulus just below
production threshold are possible and should be evaluated via this method with future PANDA data.
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nonperturbative QCD. Specifically, we have discussed
possible contributions to the NFFs corresponding to a
vector meson recently listed in the PDG as ϕð2170Þ or from
FSI at the NΔ̄þ c:c. and ΔΔ̄ thresholds.
We have included the ϕð2170Þ in simultaneous fits to

proton and neutron FFs for space- and timelike momenta
and found good agreement with the existing data. In
particular, we included recent measurements on the neutron
effective FF. In contrast to the previous FENICE experi-
ment and analyses of this, the recent SND data show a very
similar behavior to the proton effective FF over a large
range, which we can describe well in our approach.
However, the range around the ϕð2170Þ calls for further
neutron measurements to allow for a determination of the
isospin channel of the structures in Gp

eff .
It may be worthwhile mentioning here, that similar fits to

data only in the spacelike region, as performed in Ref. [53],
found exactly two (“effective”) poles in the physical
timelike region, one at 2.14 GeV and one at 2.4 GeV, each
10–20MeV below theNΔ̄ andΔΔ̄ thresholds, respectively.
Accordingly, we have also examined possible contributions
from the final state interactions at these thresholds. Taking
approximations for the FSI into account allows for a
similarly good description of the Gp

eff data as the inclusion

of the ϕð2170Þ. The occurrence of peaks in Gp
eff around

both Δ thresholds might favor this explanation. However,
future calculations should include the singularity structures
of any possibly contributing diagram and all interferences.
In particular for the case that some structures indeed exist
below the thresholds, a resummation of the FSI diagrams is
clearly necessary to calculate the pole of such a bound state.
In this context it may be of interest, that the small deviation
at ∼2.25 GeV lies close to the ΛΛ̄ threshold.
In order to distinguish between the possible effects we are

awaiting polarization measurements at FAIR fromwhich one
can extract the relative phase of GE and GM. This will also
improve the precision of the analytic continuation to the
region of a possible baryonium pole. Using logarithmic
dispersion relations, we have found that such a pole with
large contributions to the NFFs could exist.
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