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Abstract. A chiral unitary approach for antikaon-nucleon scattering in on-shell factorization is studied. We
find multiple sets of parameters for which the model describes all existing hadronic data similarly well. We
confirm the two-pole structure of the Λ(1405). The narrow Λ(1405) pole appears at comparable positions
in the complex energy plane, whereas the location of the broad pole suffers from a large uncertainty. In
the second step, we use a simple model for photoproduction of K+πΣ off the proton and confront it with
the experimental data from the CLAS collaboration. It is found that only a few of the hadronic solutions
allow for a consistent description of the CLAS data within the assumed reaction mechanism.

PACS. 12.39.Fe – 14.20.Gk

1 Introduction

The strangeness S = −1 resonance Λ(1405) is believed
to be dynamically generated through coupled-channel ef-
fects in the antikaon-nucleon interaction. A further intri-
cate feature is its two-pole structure. Within chiral uni-
tary approaches, which are considered to be the best tool
to address the chiral SU(3) dynamics in such type of sys-
tem, the investigation of the two-pole structure was ini-
tiated in Ref. [1] and thoroughly analyzed in Ref. [2],
for a review see [3]. However, the K−p → MB (with
MB = K−p, π+Σ−, π0Λ, . . .) data alone do not allow to
pin down the poles with good precision, as it is known
since long, see e.g. [4]. Fortunately, there are other sources
of information on the antikaon-nucleon dynamics in the
strangeness S = −1 sector. These are:

1. In the last years, one of the most important experi-
mental inputs to be considered comes from the mea-
surement of the characteristics of kaonic hydrogen, per-
formed in the SIDDHARTA experiment at DAΦNE [5].
It allows for an extraction of the K−p threshold ampli-
tude which is a combination of the isospin 0 and 1 com-
ponents. An upgrade of the above experiment is planed
to measure theKd threshold amplitude which can then
be related to the K̄N amplitude directly within a non-
relativistic EFT, derived in Ref. [6].

2. The invariant mass distributionM(Σ+π−π+) from the
reaction K−p → Σ+π−π+π− was measured in the
bubble chamber experiment at CERN, see Ref. [7].
In a multistep production, i.e. after a production of

the Σ+(1660) resonance, this process also involves the
Λ(1405) as an intermediate step. However, due to the
low energy resolution and phase space suppression at
higher invariant masses the obtained invariant mass
distribution for the πΣ final state is only useful on a
qualitative level.

3. Very precise data from proton-proton collisions at en-
ergies of a few GeV have become available from COSY
[8] and the HADES collaboration [9] in the last few
years. Here, the energy resolution is of much better
quality, while the complicated reaction mechanism, pp→
Σ± + π∓ + K+ + p, makes it very difficult to keep
the model dependence of the theoretical analysis un-
der control.

4. Recently, very sophisticated measurements of the re-
action γp→ K+Σπ were performed by the CLAS col-
laboration at JLAB, see Ref. [10]. There, the invariant
mass distribution of all three πΣ channels was deter-
mined in a broad energy range and with high resolu-
tion. Finally, from these data the spin-parity analysis
of the Λ(1405) was performed in Ref. [11]. There, for
the first time, the quantum numbers JP = 1/2− were
deduced from an experimental measurement directly.

While the kaonic hydrogen data have become a bench-
mark in analyzing K̄N scattering, the additional infor-
mation from kaonic deuterium is still out of reach. Also,
the information from the second and third process can at
present only amount to qualitative restrictions on the K̄N
the scattering amplitude. On the other hand, the recent
results reported by the CLAS collaboration on photopro-
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duction of the K+Σπ off the proton are about to become
a new benchmark of our understanding of the antikaon-
nucleon interaction. First theoretical analyses have already
been performed on the basis of a chiral unitary approach
in Refs. [12,13,14]. In Refs [12,13], the authors construct
a simple model for the photoproduction amplitude, where
the mechanism for the reaction γp → K+πΣ was de-
composed into two parts. First, the photoproduction part,
γp→ K+MB, for the meson-baryon systemMB of strangeness
S = −1 was assumed to be described by an energy-dependent
coupling constant. Then, the final-state interactionMB →
πΣ was adopted from a chiral unitary approach including
just the leading order effective potential on the mass shell.
Albeit the simplicity of this approach, it was shown by
the authors that, fitting the new coupling constants and
modifying the strength of the chiral potential in a certain
range, this model yields a decent description of the CLAS
data. Another very interesting theoretical investigation
was made in Ref. [14], where the reaction γp → K+πΣ
was also decomposed into two parts: the final-state in-
teraction MB → πΣ and photoproduction part γp →
K+MB. The first part is described by the chiral unitary
approach with the kernel of first chiral order, similar to
the treatment of Ref. [12,13]. Further, the photoproduc-
tion part was constructed in a gauge-invariant manner,
i.e. coupling the photon to the Weinberg-Tomozawa, the
Born as well as the vector meson exchange diagrams. The
line shapes of all thee states of πΣ were successfully re-
produced for the four lowest energies above the K+K̄N
threshold. Moreover, some first comparison to the K+ an-
gular distribution was made there.

In this paper, we take up the challenge to combine
our next-to-leading order (NLO) approach of antikaon-
nucleon scattering [15] in an on-shell approximation as
will be explained in the next section with the CLAS data.
First, we construct a family of solutions that lead to a good
description of the scattering and the SIDDHARTA data.
This reconfirms the two-pole structure of the Λ(1405). As
before, we find that the location of the second pole in the
complex energy plane is not well determined from these
data alone. Then, we address the issue how this ambi-
guity can be constrained from the CLAS data. Similar
to Refs. [12,13], we use a simple semi-phenomenological
model for the photoproduction process that combines the
precise NLO description of the hadronic scattering with
a simple polynomial and energy-dependent ansatz for the
process γp → K+MiBj , see Eq. (5) below. The corre-
sponding energy- and channel-dependent constants are fit
to the CLAS data. Such an ansatz is perfectly fine for
extracting resonance information on such data, see the
similar analysis of pion photoproduction data in Ref. [16].
However, with such an ansatz it is not possible to get a
microscopic understanding of the photoproduction mech-
anism. For achieving that, one would have to work along
the lines outlined e.g. in Refs. [17,18]. This, however, goes
beyond the scope of the present paper.

Our manuscript is organized as follows. In Sec. 2, we
revisit our NLO approach to antikaon-nucleon scattering
and construct a set of solutions that lead to a good de-

scription of the scattering data and also the SIDDHARTA
kaonic hydrogen results. In Sec. 3 we perform a fit to the
CLAS data and show how much these help to resolve the
ambiguity in the two-pole structure of the Λ(1405). We
end with a summary and some outlook for future work.
Some technicalities are relegated to the appendices.

2 Antikaon-nucleon scattering

2.1 Model

In the first step of the present analysis we wish to specify
the meson-baryon scattering amplitude in the strangeness
S = −1 sector. As already mentioned, the goal of the
present study is to see whether the data on γp→ πΣK+,
measured by the CLAS collaboration, allow us to put new
constraints on the antikaon-nucleon interaction. We will
assume a simplified version of the amplitude constructed
and described in detail in Refs. [18,24], to which we refer
the reader for conceptual details, whereas here we only
present the main features of this model and concentrate
more on new aspects.

We start from the chiral Lagrangian at leading (LO)
and next-to-leading (NLO) order, where the latter was
first constructed in Ref. [25] and reduced to its minimal
form in Ref. [26]. The corresponding chiral potential reads

V (/q2
, /q1

; p) =AWT ( /q1 + /q2) +A14(q1 · q2) +A57[ /q1, /q2]

+AM +A811

(
/q2(q1 · p) + /q1(q2 · p)

)
, (1)

were the incoming and outgoing meson four-momenta are
denoted by q1 and q2, whereas the overall four-momentum
of the meson-baryon system is denoted by p. The AWT ,
A14, A57, AM and A811 are 10-dimensional matrices which
encode the coupling strengths between all 10 channels of
the meson-baryon system for strangeness S = −1, i.e.
{K−p, K̄0n, π0Λ, π0Σ0, π+Σ−, π−Σ+, ηΛ, ηΣ0, K+Ξ−,
K0Ξ0}. These matrices depend on the meson decay con-
stants, the baryon mass in the chiral limit, the quark
masses as well as 14 low-energy constants (LECs) of SU(3)
ChPT at NLO. These 14 LECs serve as free parameters of
the present model as they are not known precisely at the
moment1. The explicit form of the matrices AWT , A14, ...
as well as the values of the remaining physical constants
are given in App. A and App. B, respectively.

At any finite order, the strict chiral expansion of the
scattering amplitude in the baryon sector is restricted to a
certain range around the point p2 = m2

0 and small momen-
tum transfer to the baryon. Moreover, at any final order
such a series fails in the vicinity of resonances such as the
Λ(1405), located just below the K̄N threshold. There are

1 In principle, the values of these constants could be deter-
mined from Lattice QCD. However, the LECs entering the
above potential are affected by several non-trivial effects, e.g.
the appearance of resonances, inelastic thresholds and so on.
At the moment, it is not clear, how one can include these effects
systematically.
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Fig. 1. Fit results compared to the experimental data from Refs. [28,29,30,31]. Different colors correspond to the eight best
solutions, while the bands represent the 1σ uncertainty due to errors of the fit parameters. The color coding is specified in
Fig. 3.

different ways to tackle this system. One of these, which
became very popular over the last two decades, is the
unitarization of the chiral potential via a coupled chan-
nel Bethe-Salpeter equation (BSE), for NLO approaches
see e.g. Ref. [15,19,20,21,22,23,4]. For the meson-baryon
scattering amplitude T (/q2

, /q1
; p) and the chiral potential

V (/q2
, /q1

; p) the integral equation to be solved reads

T (/q2
, /q1

; p) = V (/q2
, /q1

; p) (2)

+ i

∫
ddl

(2π)d
V (/q2

, /l ; p)S(/p− /l)∆(l)T (/l , /q1
; p) ,

where S and ∆ represent the baryon (of mass m) and the
meson (of mass M) propagator, respectively, and are given
by iS(/p) = i/(/p−m+ iε) and i∆(k) = i/(k2 −M2 + iε).
Moreover, T , V , S and ∆ in the last expression are ma-
trices in the channel space. The loop diagrams appearing
above are treated using dimensional regularization and ap-
plying the usual MS subtraction scheme in the spirit of our
previous work [24], see App. B. Note that the modified
loop integrals are still scale-dependent. This scale µ re-
flects the influence of the higher-order terms not included
in our potential. It is used as a fit parameter of our ap-
proach. To be precise, we have 6 such parameters in the
isospin basis.

The above equation can be solved analytically if the
kernel contains contact terms only, see Ref. [18] for the
corresponding solution. On the other hand, it is impor-
tant to mention that two additional diagrams contribute
already at leading chiral order, i.e. the s- and u-channel

Fig. 2. Fit results for the threshold values as well as energy
shift and width of kaonic hydrogen measured in [32,33] and
[5], respectively. Different colors correspond to the eight best
solutions, while the bands represent the 1σ uncertainty due to
errors of the fit parameters. The color coding is specified in
Fig. 3 and the numerical values can be found in App. C

one-baryon exchange diagrams, also referred to as Born
graphs. Usually, these diagrams are put on the mass shell
and projected to a certain partial wave before includ-
ing them into the BSE. Such a procedure seems to be
quite successful from the phenomenological point of view,
see Refs. [21,22,23] for very conclusive studies. The main
drawback here is the loss of direct correspondence of the
solution of Eq. (2) to a set of Feynman diagrams. This as-
pect is of great importance for the construction of e.g. pho-
toproduction amplitudes in accordance with fundamental
principles (gauge invariance) of Quantum Field Theory.
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Fit # 1 2 3 4 5 6 7 8

χ2
d.o.f. (hadronic data) 1.35 1.14 0.99 0.96 1.06 1.02 1.15 0.90

χ2
p.p. (CLAS data) 3.18 1.94 2.56 1.77 1.90 6.11 2.93 3.14

Table 1. Quality of the various fits in the description of the hadronic and the photoproduction data from CLAS. For the

definition of χ2
p.p., see the text.

Such an amplitude is constructed and evaluated for dif-
ferent channels in Refs. [18,17]. Therefore, we neglect the
abovementioned one-baryon exchange graphs.

Up to now the only difference to our previous analysis
from Ref. [15] is the number of the meson-baryon chan-
nels included in the amplitude. In that work, we have also
shown that once the full off-shell amplitude is constructed,
one can easily reduce it to the on-shell solution, i.e. setting
all tadpole integrals to zero. It appears that the double
pole structure of the Λ(1405) is preserved by this reduc-
tion and that the position of the two poles are changing
only by about 20 MeV in imaginary part2. On the other
hand, the on-shell reduced solution of the Eq. (2) is much
less intricate computationally, as it contains only two of
the 20 invariant Dirac structures induced by the form of
the kernel, see Eq. (1). The computational time therefore
reduces roughly by a factor of 30. Therefore, since we wish
to explore the parameter space in more detail, it seems to
be safe and also quite meaningful to start from the solution
of the BSE (2) with the chiral potential (1) on the mass-
shell. Once the parameter space is explored well enough
we can slowly turn on the tadpole integrals obtaining the
full off-shell solution. Such a solution will become a part
of a more sophisticated two-meson photoproduction am-
plitude in a future publication.

2.2 Fit procedure

The free parameters of the present model, the low-energy
constants as well as the regularization scales µ are ad-
justed to reproduce all known experimental data in the
meson-baryon sector. The main bulk of this data con-
sists of the cross sections for the processes K−p → K−p,
K−p → K̄0n, K−p → π0Λ, K−p → π+Σ−, K−p →
π0Σ0, K−p→ π−Σ+, see Refs. [28,29,30,31]. Here, only
data points for the K− laboratory momentum Plab < 300
MeV are considered. Electromagnetic effects are not in-
cluded in the analysis and assumed to be negligible at the
measured values of Plab. At the antikaon-nucleon thresh-
old, we consider the following decay ratios from Refs. [32,

2 Note that this observation was made for amplitudes con-

taining contact interactions only. No statement has been made

there about the size of the contributions stemming from the

inclusion of the Born graphs.

33],

γ =
ΓK−p→π+Σ−

ΓK−p→π−Σ+

= 2.38± 0.04 ,

Rn =
ΓK−p→π0Λ

ΓK−p→neutral
= 0.189± 0.015 ,

Rc =
ΓK−p→π±Σ±

ΓK−p→inelastic
= 0.664± 0.011 , (3)

as well as the energy shift and width of kaonic hydrogen in
the 1s state, i.e. ∆E− iΓ/2 = (283± 42)− i(271± 55) eV
from the SIDDHARTA experiment at DAΦNE [5]. The
latter two values are related to the K−p scattering length
via the modified Deser-type formula [34]

∆E − iΓ/2 = −2α3µ2
caK−p

[
1− 2aK−pαµc(lnα− 1)

]
,

(4)

where α ' 1/137 is the fine-structure constant, µc is the
reduced mass and aK−p the scattering length of the K−p
system.

The fit procedure was performed in two steps: First,
for randomly chosen starting values of the free parameters
(in a natural range) the fit was performed to all thresh-
old values and cross section at a few momenta Plab < 300
MeV. Repeating this procedure several thousand times, we
ended with several dozen of parameter sets that describe
the data equally well. For each of these sets the amplitudes
were analytically continued to the positive and negative
complex plane. Thereafter, every unphysical solution, e.g.
poles on the first Riemann sheet for Im(W ) < 200 MeV

(W :=
√
p2), was sorted out. The remaining sets were

used in the second step as starting point of the fit proce-
dure, including all threshold and cross section data points,∑
i ni = 155. In both steps the minimizer of the MINUIT2

[35] library was applied on the

χ2
d.o.f. :=

∑
i ni

(N
∑
i ni − p)

∑
i

χ2
i

ni
,

where ni, p and N denote the number of data points for
the observable i, the number of parameters and the over-
all number of observables, respectively. Eight best solu-
tions were obtained by this two-step procedure, see Tab. 1,
whereas the next best χ2

d.o.f. are at least one order of mag-
nitude larger. Although the fit results look very promising,
we would like to point out that there are quite a few free
parameters in the model. The latter are assumed to be of
natural size, but not restricted otherwise. Thus, we can
not exclude that there might be more solutions which de-
scribe the assumed experimental data equally well.
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Fig. 3. Double pole structure of the Λ(1405) in the complex energy plane for the eight solutions that describe the scattering

and the SIDDHARTA data. The colors correspond to the the ones shown in Figs. 1 and 2. For easier reading, we have labeled

the second pole of these solutions by the corresponding fit #, where 5 and 5′ denote the second pole on the second Riemann

sheet, connected to the real axis between the πΣ − K̄N and K̄N − ηΛ thresholds, respectively. For comparison, various results

from the literature are also shown, see Refs. [4,23,22,15,12].

2.3 Results

The results of the fits are presented together with the ex-
perimental data in Figs. 1 and 2, where every solution is
represented by a distinct color. The data are described
equally well by all eight solutions, showing, however, dif-
ferent functional behaviour of the cross sections as a func-
tion of Plab. These differences are even more pronounced
for the scattering amplitude f0+, which is fixed model in-
dependently only in the K−p channel at the threshold by
the scattering length aK−p.

When continued analytically to the complex W plane,
all eight solutions confirm the double pole structure of
the Λ(1405), see Fig. 3. There, the narrow pole lies on
the Riemann sheet, connected to the real axis between
the πΣ − K̄N thresholds for every solution. The second
poles lie on the Riemann sheets, connected to the real axis
between the following thresholds: πΣ − K̄N for solution
1, 2, 4, 5 and 8; πΛ − πΣ for solution 3; K̄N − ηΛ for
solutions 6 and 7. Please note that the second pole of the
solution 5 has a shadow pole (5’ in Fig 3) on the Riemann
sheet, connected to the real axis between K̄N−ηΛ thresh-
olds. The scattering amplitude is restricted around the
K̄N threshold by the SIDDHARTA measurement quite
strongly. Therefore, in the complex W plane we observe
a very stable behaviour of the amplitude at this energy,
i.e. the position of the narrow pole agrees among all so-
lutions within the 1σ parameter errors, see Fig. 3. This is
in line with the findings of other groups [22,4,23], i.e. one
observes stability of the position of the narrow pole. Quan-

titatively, the first pole found in these models is located
at somewhat lower energies and is slightly broader than
those of our model. In view of the stability of the pole po-
sition, we trace this shift to the different treatment of the
Born term contributions to the chiral potential utilized in
Refs. [22,4,23].

The position of the second pole is, on the other hand,
less restricted. To be more precise, for the real part we
find three clusters of these poles: around the πΣ threshold,
around the K̄N threshold as well as around 1470 MeV. For
several solutions there is some agreement in the positions
of the second pole between the present analysis and the
one of Ref. [23] and of our previous work [15]. However,
as the experimental data is described similarly well by
all fit solutions, one can not reject any of them. Thus, the
distribution of poles represents the systematic uncertainty
of the present approach. It appears to be quite large, but is
still significantly smaller than the older analysis of Ref. [4].
Recall that no restrictions were put on the parameters of
the model, except for naturalness.

3 Photoproduction amplitude

In the last section we have demonstrated that the present
model for the meson-baryon interaction possess at least
eight different solutions, which all describe the hadronic
data similarly well. It is therefore of great importance
to see how these solutions describe the photoproduction
data, if they are considered as final-state interaction of the
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Fig. 4. Result of the fits to the CLAS data in all three channels π+Σ− (green), π−Σ+ (red) and π0Σ0 (blue). Correspondingly,

green (dashed), red (full) and blue (dotted) lines represent the outcome of the model for the solution #4 in the π+Σ−, π−Σ+

π0Σ0 channels, respectively.

Fig. 5. πΣ mass distribution for the best solution #4 in com-

parison to the Hemingway data [7]. Green bars represent the

error bars due to propagation of 1σ error bars of the hadronic

solution only.

reaction γp → K+Σπ. To construct such amplitudes one
has to extend the framework for one-meson photoproduc-
tion, described in Ref. [17], to the production amplitude
including two mesons in the final state. As already men-
tioned in the beginning of the last section such amplitudes
would require the full meson-baryon amplitude with the
full off-shell dependence. For the chiral potential including

contact interactions only, such reactions were studied in
Refs. [15,18,24], but can also be obtained from the present
solution as argued in the last section. Then coupling the
photon to every possible place, one obtains a gauge invari-
ant photoproduction amplitude. While such a procedure
is straightforward in principle, there are still many tech-
nical problems to overcome for the construction of such
amplitudes. The goal of the present approach, however, is
not the construction of such gauge invariant amplitudes,
but to answer the question, whether the new CLAS data
allow one to rule out some of the present hadronic solu-
tions. Thus, similar to Refs. [12,13], we assume the sim-
plest ansatz for the photoproduction amplitude

Mj(W̃ ,Minv) =

10∑
i=1

Ci(W̃ )Gi(Minv) f i,j0+(Minv) , (5)

where W̃ and Minv denote the total energy of the sys-
tem and the invariant mass of the πΣ subsystem, respec-
tively. For a specific meson-baryon channel i, the energy-
dependent (and in general complex valued) constants Ci(W̃ )
describe the reaction mechanism of γp→ K+MiBi, where-
as the final-state interaction is captured by the standard
Höhler partial waves f0+. For a specific meson-baryon
channel i, the Greens function is denoted by Gi(Minv)
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Fig. 6. Comparison of all solutions describing the πΣ mass distribution at W̃ = 2.5 GeV in all three channels π+Σ− (green,

dashed), π−Σ+ (full, red) and π0Σ0 (blue, dotted).

and is given by the one-loop meson baryon function in di-
mensional regularization, i.e. IMB(Minv,mi,Mi) as given
in App. B.

The regularization scales appearing in the Eq. (5) via
the Gi(Minv) have already been fixed in the fit to the
hadronic cross sections and the SIDDHARTA data. Thus,
the only new parameters of the photoproduction ampli-
tude are the constants Ci(W̃ ) which, however, are quite

numerous (10 for each W̃ ). These parameters are adjusted
to reproduce the invariant mass distribution dσ/dMinv(Minv)
for the final π+Σ−, π0Σ0 and π−Σ+ states and for all 9
measured total energy values W̃ = 2.0, 2.1, .., 2.8 GeV.
The achieved quality of the photoproduction fits is listed
in the third row of Tab. 1, whereas the χ2

d.o.f. of the
hadronic part are stated in the second row. Note that
for the comparison of the photoproduction fits the quan-
tity χ2

d.o.f. is not meaningful due to the large number of

generic parameters Ci(W̃ ). Therefore, we compare the to-
tal χ2 divided by the total number of data points for all
three πΣ final states, denoted by χ2

p.p.. For the same rea-
son it is not meaningful to perform a global fit, minimiz-
ing the total χ2

d.o.f.. It turns out that even within such a
simple and flexible photoproduction amplitude, only the
solutions #2, #4 and #5 of the eight hadronic solutions
allows for a decent description of the CLAS data. While
the total χ2 per data point of these solutions is very close
to each other, the next best solution has a 40% larger total
χ2

p.p. than the best one. The failure of the solutions #1,
#3, #6, #7 and #8 becomes quite evident in a one-to-one
comparison of all eight solutions fitted to the CLAS data
as presented in Fig. 6 for one particular cms energy chosen
as a typical example. Moreover, the hadronic amplitudes
are determined up to 1σ error bands. Therefore, it is a
priori not clear, whether some of the hadronic solutions
lying within these error bands may lead to a better fit

of the CLAS data. We have checked this explicitely, con-
sidering a large number of hadronic solutions distributed
randomly around the central ones. For every such solution
a fit to the CLAS data was performed independently and
no significanly better fit was found to those of the cen-
tral solution. Therefore, we consider the above exclusion
principle of the hadronic solutions as statistically stable.

solution pole 1 pole 2

#2 1434+2
−2 − i 10+2

−1 1330+4
−5 − i 56+17

−11

#4 1429+8
−7 − i 12+2

−3 1325+15
−15 − i 90+12

−18

Table 2. Location of the two for poles of the Λ(1405) in the

complex energy plane (in MeV) for the two solutions that de-

scribe the scattering and the photoproduction data.

The best solution is indeed #4, which we display in
Fig. 4. Incidentally, it also has the lowest χ2

d.o.f. for the
hadronic part. This solution also gives an excellent de-
scription of the Σππ mass distribution from Ref. [7], cal-
culated using the method developed in Ref. [1], c.f. Fig. 5.
With respect to these data, solution #2 is also satisfac-
tory but #5 is not. Therefore, the photoproduction data
combined with the scattering and the SIDDHARTA data
lead to a sizable reduction in the ambiguity of the second
pole of the Λ(1405). In fact, the second pole of the surviv-
ing solutions is close to the value found in Ref. [12] (which
has, however, no error bars), see Fig. 3, and also close to
the central value of the analysis based on scattering data
only [4]. To be precise, we give the location of the two
poles in these surviving solutions in Tab. 2.

Given the simple phenomenological photoproduction
model used here, we do not attempt a full-fledged error
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Fig. 7. Same as Fig. 4, but with error bands as described in the text. The color bands represent the error bars due to propagation

of 1σ error bars of the hadronic solution which are not the 1σ error bands of the CLAS data.

analysis of the fits to the CLAS data. However, to get an
idea about the uncertainties, we show in Fig. 7 the bands
generated from taking the solution within the 1σ errors
of the hadronic amplitude for solution #4. To be precise,
these are not 1σ bands for the corresponding curves but
some upper limit on the uncertainties of the fits generated
from variations in the hadronic amplitude. For a true error
analysis of the photoproduction data, one has to work
with a truly microscopic model of the photoproduction
amplitude, as developed in Refs. [17,18].

4 Discussion and summary

In the present work we have utilized a chiral unitary ap-
proach to construct the amplitude for antikaon-nucleon
scattering at NLO in the expansion of the interaction po-
tential. Several sets of fit parameters were found to de-
scribe the data similarly well. The two-pole structure of
the Λ(1405) could be confirmed in each of these solutions.
However, while the narrow pole appeared to be quite sta-
ble among these solutions, the broad one was found to be
distributed in quite large region of the complex W-plane.
In the second part of this work we have utilized a simple

model, similar to the one of Ref. [12], to demonstrate that

one can rule out several hadronic solutions by demanding
a good description of the CLAS photoproduction data.

We conclude that the inclusion of the CLAS data as ex-
perimental input can serve as a new important constraint
on the antikaon-nucleon scattering amplitude. However,
for future studies a theoretically more robust model for
the two-meson photoproduction amplitude is required. We
propose that a generalization of the one-meson photopro-
duction model, presented in Ref. [17,18], may be the next
logical step for this endevaour.
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A Coupling matrices

For the channel indices {b, j; i, a} corresponding to the process φiBa → φjBb, the relevant coupling matrices from the
leading and next-to leading order chiral Lagrangian read

Ab,j;i,aWT =− 1

4FjFi
〈λb†[[λj†, λi], λa]〉 ,

Ab,j;i,a14 =− 2

FjFi

(
b1

(
〈λb†[λj†, [λi, λa]]〉+ 〈λb†[λi, [λj†, λa]]〉

)
+ b2

(
〈λb†{λj†, [λi, λa]}〉+ 〈λb†{λi, [λj†, λa]}〉

)
+ b3

(
〈λb†{λj†, {λi, λa}}〉+ 〈λb†{λi, {λj†, λa}}〉

)
+ 2b4〈λb†λa〉〈λj†λi〉

)
,

Ab,j;i,a57 =− 2

FjFi

(
b5〈λb†[[λj†, λi], λa]〉+ b6〈λb†{[λj†, λi], λa}〉+ b7

(
〈λb†λj†〉〈λiλa〉 − 〈λb†λi〉〈λaλj†〉

))
,

Ab,j;i,a811 =− 1

FjFi

(
b8

(
〈λb†[λj†, [λi, λa]]〉+ 〈λb†[λi, [λj†, λa]]〉

)
+ b9

(
〈λb†[λj†, {λi, λa}]〉+ 〈λb†[λi, {λj†, λa}]〉

)
+ b10

(
〈λb†{λj†, {λi, λa}}〉+ 〈λb†{λi, {λj†, λa}}〉

)
+ 2b11〈λb†λa〉〈λj†λi〉

)
,

Ab,j;i,aM =− 1

2FjFi

(
2b0

(
〈λb†λa〉〈[λj†λi]M̄〉

)
+ bD

(
〈λb†{{λj†, {M̄, λi}}λa}〉+ 〈λb†{{λi, {M̄, λj†}}, λa}〉

)
+ bF

(
〈λb†[{λj†, {M̄, λi}}, λa]〉+ 〈λb†[{λi, {M̄, λj†}}, λa]〉

))
,

where {λi|i = 1, ..., 8} is a set of the 3 × 3 channel matrices (e.g. φ = φiλi for the physical meson fields) and
the Fi are the meson decay constants in the respective channel. Moreover, M̄ is obtained from the quark mass
matrix M via the Gell-Mann-Oakes-Renner relations, and given in terms of the meson masses as follows, M̄ =
1
2diag(M2

K+ −M2
K0 +M2

π0 ,M2
K0 −M2

K+ +M2
π0 ,M2

K+ +M2
K0 −M2

π0) .

B Loop integrals and physical constants

Throughout the present work we use the following numerical values for the masses and the meson decay constants (in
GeV):

mp = 0.93827 , mn = 0.93956 , mΛ = 1.11568 , mΣ0 = 1.19264 , mΣ− = 1.18937 ,

mΣ+ = 1.19745 , mΞ− = 1.32171 , mΞ0 = 1.31486 ,

Mπ0 = 0.13498 , Mπ± = 0.13957 , MK± = 0.49368 , MK̄0/K0 = 0.49761 , Mη = 0.54786 ,

Fπ = 0.0924 , FK = 0.113 , Fη = 1.3Fπ .

Due to the on-shell projection of the intermediate mesons and baryons only scalar one-meson-one-baryon loop
integrals appear in the context of this work. In dimensional regularization and applying applying the MS subtraction
scheme they take the following form

IMB(s,m,M) :=

∫
MS

ddl

(2π)d
1

l2 −M2 + iε

i

(l − p)2 −m2 + iε

d=4
=

1

16π2

(
−1 + 2 log

(
m

µ

)
+
M2 −m2 + s

s
log

(
M

m

)
− 2

√
λ(s,m2,M2)

s
arctanh

(√
λ(s,m2,M2)

(m+M)2 − s

))
,

where µ is the regularization scale and M (m) denotes the meson (baryon) mass. Additionally, the commonly used
Källén-function λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc is utilized in the above expression.

C Numerical results of the threshold values

Solution ∆E − iΓ/2 [eV] γ Rn Rc

#1 288+22
−26 − 234+21

−36 2.34+0.13
−0.07 0.203+0.016

−0.035 0.658+0.006
−0.003

#2 286+40
−35 − 269+24

−18 2.38+0.11
−0.07 0.190+0.026

−0.032 0.660+0.010
−0.007

#3 277+15
−34 − 285+23

−17 2.39+0.09
−0.11 0.196+0.017

−0.013 0.671+0.006
−0.010

#4 288+34
−32 − 286+39

−38 2.38+0.09
−0.10 0.191+0.013

−0.017 0.667+0.006
−0.005

#5 271+39
−38 − 267+27

−27 2.38+0.09
−0.08 0.193+0.017

−0.015 0.675+0.002
−0.003

#6 288+32
−37 − 269+15

−14 2.38+0.07
−0.10 0.195+0.023

−0.024 0.659+0.003
−0.003

#7 311+27
−26 − 266+27

−23 2.38+0.05
−0.07 0.196+0.023

−0.025 0.671+0.007
−0.003

#8 285+14
−10 − 277+7

−11 2.38+0.09
−0.08 0.189+0.029

−0.026 0.664+0.013
−0.017
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