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1 Introduction

The hadronic interaction between charmed D mesons and the Goldstone bosons φ of the

spontaneous breaking of chiral symmetry of the strong interaction (D-φ interaction for short

hereafter) is important for the understanding of the chiral dynamics of quantum chromody-

namics (QCD) and the interpretation of the hadron spectrum in the heavy hadron sector.

Many investigations have been devoted to study it in the last decade, partly triggered by
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the observation of the charm-strange meson D∗s0(2317) with JP = 0+ in 2003 [1, 2]. The

D∗s0(2317) couples to the DK channel, and being below the DK threshold it decays into

the isospin breaking channel Dsπ. In order to unravel its nature, theorists study the D-φ

interaction and intend to extract the information encoded in it. For instance, the D∗s0(2317)

is interpreted as a DK molecule [3] by using a chiral unitary approach to the S-wave D-φ

interaction [4–6]. In these works, the leading order (LO) amplitudes from the heavy meson

chiral perturbation theory (ChPT) [7–9] are used as the kernels of resummed amplitudes.

Extensions to the next-to-leading order (NLO) can be found in refs. [10–14].

Recently, renewed interest was stimulated due to the occurrence of lattice QCD cal-

culations of the scattering lengths given in refs. [15, 16]. In these works, only channels

free of disconnected Wick contractions are calculated, which are Dπ with isospin I = 3/2,

DK̄ with I = 0 and 1, DsK and Dsπ. There have been lattice results on channels with

disconnected Wick contractions, such as Dπ with I = 1/2 [17] and DK with I = 0 [18].

With these lattice calculations, more insights were gained into the nature of the D∗s0(2317).

The DK isoscalar scattering length was calculated indirectly in ref. [16], which is consis-

tent with the result from the direct lattice calculation in refs. [18, 19]. A reanalysis of the

lattice energy levels for the D(∗)K lattice data [19] was performed in ref. [20] in terms of

an auxiliary potential and an extended Lüscher formula. These results suggests that the

D∗s0(2317) is dominantly a DK hadronic molecule.1

The lattice data can be used to determine the low-energy constants (LECs) in the

chiral Lagrangian of higher orders. Especially, the lattice data in refs. [15, 16] were used

in refs. [12, 16, 23–27]. In the majority of those investigations, unitarized extensions of

ChPT, see e.g. refs. [28, 29], are adopted so that one can consider larger meson masses

and channel couplings. The unitarized chiral perturbation theory (UChPT) is especially

necessary for the chiral extrapolation of scattering lengths in question since for larger

quark (or meson) masses the interaction normally becomes stronger and could even be

nonperturbative. However, in all the calculations in the framework of unitarized ChPT,

the kernel of the resummed amplitude was only calculated up to NLO at most and is purely

tree-level. Here, we will extend the calculation to the leading one-loop order, which is the

next-to-next-to-leading order (NNLO).

It is well-known that ChPT [30–32] has become an useful and standard tool in studying

the hadron interaction at low energies. Based on Weinberg’s power counting rules [30], great

achievements have been obtained both in the pure mesonic sector and the one including

matter fields such as baryons, the latter known as baryon ChPT. There is a notable power

counting breaking (PCB) issue in baryon ChPT [33]: using the dimensional regularization

with the modified minimal subtraction (MS) scheme in calculating loop integrals, the naive

power counting does not work and all loop diagrams start contributing at O
(
p2
)
, with

p being a small momentum. There have been several solutions to this problem: heavy

baryon (HB) approach [34, 35], infrared regularizaion (IR) [36] and extended-on-mass-shell

(EOMS) scheme [37] (for a review and a detailed comparison of these approaches, see

ref. [38]).

1A method of extracting the probability of a physical state to be a hadronic molecule in lattice us-

ing twisted boundary conditions is discussed in ref. [21] where the D∗s0(2317) is used as an example for

illustration. The D∗s0(2317) was also studied in a finite volume in ref. [22].
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Likewise, ChPT including the heavy D mesons encounters the same PCB problem.

To remedy it, in ref. [23], the D-φ scattering lengths were calculated in the framework of

nonrelativistic heavy meson ChPT [7–9] to the leading one-loop order in the heavy quark

limit. Nevertheless, as mentioned by the authors and confirmed by ref. [24], this nonrelav-

istic formulation neglects sizable recoil corrections.2 The calculations in various unitarized

versions of ChPT in refs. [12, 16, 25, 26] are performed in a covariant formalism, but only

up to NLO as mentioned above. The first NNLO calculation of the scattering lengths

was given by ref. [24] using the EOMS scheme. However, the calculation in that work

is perturbative while the interactions in certain channels are definitely nonperturbative.

For instance, in the channel with (S, I) = (1, 0), where S and I represent strangeness and

isospin, respectively, the existence of the D∗s0(2317) below the DK threshold calls for a

nonperturbative treatment of the DK interaction or inclusion of an explicit field for the

D∗s0(2317). In addition, all the NNLO counterterm contributions are neglected in ref. [24]

due to the poorly known LECs. In this paper, we intend to present a detailed covariant de-

scription of the D-φ interaction up to NNLO in the framework of UChPT, and the EOMS

approach which preserves the proper analytic structure of the amplitudes will be used in

renormalization procedure.

First, we will calculate the D-φ scattering amplitude in covariant ChPT up to the

NNLO. To our knowledge, the D-φ scattering amplitudes (without vector charmed mesons)

shown in the present work are the first analytical and complete results up to NNLO.3 The

vector charmed meson contributions, surviving in the heavy quark limit, are also taken into

account numerically to estimate their influences, although it was shown in ref. [13] that their

contribution to the S-wave scattering is small. Renormalization will be performed using

the EOMS scheme and it will be shown explicitly that the UV divergences are cancelled

properly and PCB terms are absorbed exactly by the counterterms, which ensures that

the EOMS-renormalized D-φ scattering amplitudes possess the proper analytic, power

counting, and scale-independent properties.

We will fix the values of the LECs by fitting to the available lattice data of the S-wave

D-φ scattering lengths. Since the lattice calculations are performed at large unphysical

quark masses, the perturbative expansion to a certain order may fail to converge. One

way to solve this issue is to employ unitarized amplitudes instead of the perturbative ones.

Many unitarization methods have been proposed in the past. In ref. [29], a unitarization

approach is developed and used to study the K̄N interaction. The unitarized amplitude

can be matched to the perturbative amplitude order by order. Throughout this paper,

we will call this approach UChPT for convenience. In refs. [40–44], the inverse amplitude

method (IAM) was proposed and adopted to study the ππ and Kπ scattering. For the

purpose of comparison, both the two approaches will be employed.

2It is, however, known since a long time that in the heavy baryon approach such recoil corrections can

easily be incorporated by using as the propagator i/(v · l − l2/2m) instead of simply i/v · l [39].
3The analytical expressions for the amplitudes involving vector charmed mesons, which survive in the

heavy quark limit, are too lengthy to be shown explicitly in the paper and can be made available upon

request from the authors.
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This paper is organized as follows. In section 2, the power counting and and its breaking

by heavy meson masses will be explained briefly and the chiral effective Lagrangian will be

given up to NNLO. In section 3, details on the computation of the D-φ scattering amplitude

using the EOMS scheme are exhibited. Together with the loop results shown in appendix B,

the minimal but complete set of scattering amplitudes are given explicitly. Section 4

discusses how to obtain the partial wave amplitudes with definite strangeness S and isospin

I from the physical process amplitudes, and the two unitarization approaches mentioned

above will be introduced. In section 5, the S-wave scattering lengths are calculated and

fitted to the available lattice data at a few values of the pion masses, and the contributions

of the vector charmed mesons will also be discussed. Finally, section 6 comprises a summary

and outlook. Some technicalities are relegated to the appendices.

2 Theoretical framework

2.1 Power counting and power counting breaking terms

We denote the D-φ interaction as D1(p1)φ1(p2) → D2(p3)φ2(p4). The scattering process

is on-shell, hence, p2
1 = M2

D1
, p2

2 = M2
φ1

, p2
3 = M2

D2
and p2

4 = M2
φ2

, with MD1 (Mφ1) and

MD2 (Mφ2) being the masses of the incoming and outgoing D mesons (Goldstone bosons),

respectively. In addition, the Mandelstam variables are defined as

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (2.1)

which satisfy the relation s+ t+ u = M2
D1

+M2
φ1

+M2
D2

+M2
φ2

. At low energies, one has

s−M2
D1

Λ2
χ

∼
s−M2

D2

Λ2
χ

∼
u−M2

D1

Λ2
χ

∼
u−M2

D2

Λ2
χ

∼
Mφ1

Λχ
∼
Mφ2

Λχ
� 1 ,

t

Λ2
χ

� 1, (2.2)

where Λχ ∼ {4πFπ,MD1 ,MD2} denotes the high energy scale, with Fπ the pion decay

constant Fπ ' 92.2 MeV. The above small quantities can be simultaneously adopted as

expansion parameters. In a more conventional notation, one denotes the small parameters

by a unique symbol, say p, so that the power counting rules for the basic quantities read

MD1 ∼ O(p0), MD2 ∼ O(p0), Mφ1 ∼ O(p1), Mφ2 ∼ O(p1), t ∼ O(p2),

s−M2
D1
∼ O(p1), s−M2

D2
∼ O(p1), u−M2

D1
∼ O(p1), u−M2

D2
∼ O(p1). (2.3)

It is worth noting that the the chiral limit masses of the charmed mesons are of the same

order as the corresponding physical masses. Every physical observable therefore has its

own chiral dimension by using the above given power counting rules.

Furthermore, in ChPT a power counting rule is assigned for each Feynman graph. In

the present case, the chiral dimension n for a given graph can be evaluated from

n = 4L+
∑
k

Vk − 2Iφ − ID , (2.4)

where L, Vk, Iφ and ID are the numbers of loops, kth order vertices, Goldstone boson

propagators and charmed meson propagators, respectively.
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For a specific physical observable, if there exist terms with chiral dimensions obtained

using eq. (2.3) lower than that given by eq. (2.4), those terms are called PCB terms.

The PCB terms show up only when there are heavy particles with nonvanishing chiral

limit masses in loops as internal propagators. In our present calculation, since the heavy

charmed mesons are involved in some of one-loop graphs, there will be PCB terms if we

use dimensional regularization with the MS scheme. These terms can be treated in the

so-called EOMS scheme, which has a power counting consistent with eq. (2.4), as will be

detailed in section 3.

2.2 Chiral effective Lagrangian

The pseudoscalar charmed mesons can be collected in a SU(3) triplet, D = (D0, D+, D+
s ),

and the light Goldstone bosons are in an octet,

φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 . (2.5)

The chiral effective Lagrangian for D-φ scattering can be decomposed into D meson-

Goldstone boson interacting parts and pure Goldstone bosonic parts, which has the follow-

ing form:

Leff = L(1)
Dφ + L(2)

Dφ + L(3)
Dφ + L(2)

φφ + L(4)
φφ + . . . . (2.6)

Here, the numbers in the superscripts stand for the chiral dimensions, and the ellipsis

denotes the higher-order chiral operators which will not be used here. Besides, the operators

with external fields are also dropped (except for the scalar external field which is used for

the light quark mass insertions).

The familiar lowest order chiral Lagrangian for the Goldstone boson sector reads

L(2)
φφ =

F 2
0

4

〈
∂µU(∂µU)†

〉
+
F 2

0

4

〈
χU † + Uχ†

〉
, (2.7)

with U = exp
(
i
√

2φ/F0

)
and χ = 2B0 diag(mu,md,ms). Here 〈. . .〉 denotes the trace

in the light-flavor space, F0 is the pion decay constant in the chiral limit, and B0 is a

constant related to the quark condensate. We will work in the isospin limit with mu = md

and neglect the electromagnetic contributions.

The O(p4) pure Goldstone boson Lagrangian L(4)
φφ is needed for renormalization. Its

LECs enter the D-φ amplitudes merely through the wave renormalization constants and the

decay constants of the Goldstone bosons, which can be found elsewhere, see e.g. ref. [32].

The relevant terms read

L(4)
φφ = L4

〈
∂µU(∂µU)†

〉〈
χU † + Uχ†

〉
+ L5

〈
∂µU(∂µU)†

(
χU † + Uχ†

)〉
+ . . . . (2.8)

For the interaction in the D meson-Goldstone boson sector, the LO effective Lagrangian

takes the form

L(1)
Dφ = DµDDµD† −M2

0DD
† , (2.9)

– 5 –
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where M0 is the mass of the D mesons in the chiral limit, and the covariant derivative

acting on the D mesons is defined by

DµD = D(
←
∂µ + Γ†µ) , DµD† = (∂µ + Γµ)D† , (2.10)

with the so-called chiral connection Γµ =
(
u†∂µu+ u∂µu

†) /2. The NLO Lagrangian

reads [11]4

L(2)
Dφ = D (−h0〈χ+〉 − h1χ+ + h2〈uµuµ〉 − h3uµu

µ)D†

+DµD (h4〈uµuν〉 − h5{uµ, uν})DνD† , (2.11)

where the building blocks of the chiral effective Lagrangian are given by

uµ = i
(
u†∂µu− u ∂µu†

)
, u = exp

(
iφ√
2F0

)
, χ± = u†χu† ± uχu . (2.12)

Here, the definition for χ− is also given as it is needed for the NNLO Lagrangian which,

following the procedure detailed in ref. [45], can be constructed as

L(3)
Dφ = D

[
i g1[χ−, uν ] + g2 ([uµ, [Dν , uµ]] + [uµ, [Dµ, uν ]])

]
DνD†

+g3D [uµ, [Dν , uρ]]DµνρD† , (2.13)

where the totally symmetrized product of three covariant derivatives is defined as Dµνρ =

{Dµ, {Dν ,Dρ}}.

3 D-φ scattering amplitudes up to NNLO

In this section, we exhibit the complete set of independent D-φ scattering amplitudes on

the basis of the physical states. They correspond to 10 physical processes as listed in the

second column in table 1. All the other amplitudes can be obtained by using either crossing

symmetry or time-reversal invariance. In what follows, we will first calculate the tree-level

amplitude which can be reduced into a common structure but with different coefficients

because of SU(3) flavor symmetry. Then the loop amplitudes will be given explicitly. In

the end, the renormalization procedure within the EOMS scheme will be discussed.

3.1 Tree-level contribution

The Feynman diagrams of the tree-level contribution to the scattering amplitudes are dis-

played in the first line of figure 1. Since we do not consider the exchange of resonances,

4As in ref. [16], the h6 term in ref. [11] is dropped, and the χ̃+ = χ+ − 〈χ+〉/3 is replaced by χ+ which

amounts to a redefinition of h0 and h1. The h6 term is redundant, since

−h6DµD[uµ, uν ]DνD† =
h6

2

{
D[uµ, uν ](DµDνD†) + (DνDµD)[uµ, uν ]D†

}
+ higher order terms,

where the first term is zero due to the symmetry property of the Lorentz indices µ , ν, and the higher order

terms are contained in the higher order Lagrangians.

– 6 –
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Figure 1. The 1-point irreducible (1PI) Feynman diagrams for D-φ scattering up to leading one-

loop order. The solid (dashed) lines represent the D (Goldstone) mesons. The square stands for

the contact vertex coming from Lagrangian L(2)
Dφ, while the filled circle denotes an insertion from

L(3)
Dφ. All other vertices are generated either by L(1)

Dφ or L(2)
φφ .

such contributions are encoded in the contact terms for the D-φ scattering. When calcu-

lating the Feynman diagrams, all the bare parameters, such as the decay constant F0 and

the masses, are maintained. They will be replaced by the corresponding physical quan-

tities when the renormalization is performed. The LO, i.e. O(p), tree amplitude is the

Weinberg-Tomozawa term,5 and has the following form,

A(1)(s, t, u) = CLO
s− u
4F 2

0

, (3.1)

where the coefficients CLO for different physical processes are listed in table 1. The

Weinberg-Tomozawa term depends only on the pion decay constant due to the fact that it

originates from the kinetic term in L(1)
Dφ, which is a result of the spontaneous breaking of

chiral symmetry in QCD.

The O(p2) Lagrangian L(2)
Dφ generates the tree-level contribution at NLO as

A(2)(s, t, u) =
1

F 2
0

[
−4h0C(2)

0 + 2h1C(2)
1 − 2C(2)

24 H24(s, t, u) + 2C(2)
35 H35(s, t, u)

]
, (3.2)

where the coefficients are shown in table 1, and the functions H24(s, t, u) and H35(s, t, u)

are defined by

H24(s, t, u) = 2h2 p2 · p4 + h4 (p1 · p2p3 · p4 + p1 · p4p2 · p3) , (3.3)

H35(s, t, u) = h3 p2 · p4 + h5 (p1 · p2p3 · p4 + p1 · p4p2 · p3) . (3.4)

Finally, the tree-level amplitude at O(p3) reads

A(3)(s, t, u) =
1

F 2
0

{
4g1

[
C(3)

1a (p1 + p3) · (p2 + p4) + C(3)
1b (p1 + p3) · p2

]
+ 4C(3)

23 G23(s, t, u)
}
,

(3.5)

5As the vector charmed mesons are not taken into account, there is no Born term due to the exchange

of these mesons.

– 7 –
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Physical processes CLO C(2)
0 C(2)

1 C(2)
24 C(2)

35

1 D0K− → D0K− 1 M2
K −M2

K 1 1

2 D+K+ → D+K+ 0 M2
K 0 1 0

3 D+π+ → D+π+ 1 M2
π −M2

π 1 1

4 D+η → D+η 0 M2
η −1

3M
2
π 1 1

3

5 D+
s K

+ → D+
s K

+ 1 M2
K −M2

K 1 1

6 D+
s η → D+

s η 0 M2
η

4
3

(
M2
π − 2M2

K

)
1 4

3

7 D+
s π

0 → D+
s π

0 0 M2
π 0 1 0

8 D0η → D0π0 0 0 − 1√
3
M2
π 0 1√

3

9 D+
s K

− → D0π0 − 1√
2

0 − 1
2
√

2

(
M2
K +M2

π

)
0 1√

2

10 D+
s K

− → D0η −
√

3
2 0 1

2
√

6

(
5M2

K − 3M2
π

)
0 − 1√

6

Table 1. The coefficients in the LO and NLO tree-level amplitudes of the 10 relevant physical pro-

cesses. The Gell-Mann-Okubo mass relation, 3M2
η = 4M2

K−M2
π , is used to simplify the coefficients

when necessary.

with

G23(s, t, u) = −g2 p2 · p4(p1 + p3) · (p2 + p4)

+2g3 [(p1 · p2)(p1 · p4)p1 · (p2 + p4) + (p1 → p3)] . (3.6)

The corresponding coefficients can be found in table 2. The C(3)
1b term survives only for

inelastic scattering processes.

3.2 One-loop contribution

The one-loop connected graphs for D-φ scattering are shown in the second line of figure 1.

All the vertices in the loop graphs originate from the Lagrangians L(1)
Dφ and L(2)

φφ which

are free of unknown LECs. Similar to the tree-level amplitudes, it suffices to calculate

the loop amplitudes for the 10 physical processes. All these loop amplitudes are listed in

appendix B, which are expressed in terms of a set of one-loop integrals given in appendix A.

3.3 Renormalization

In the previous sections, the 1PI Feynman graphs are all calculated, which are related to

the so-called amputated amplitudes. To derive the S-matrix elements, one should perform

wave function renormalization. Moreover, in the end, all the bare parameters should be

replaced by the corresponding physical ones.

– 8 –
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physical process C(3)
1a C(3)

1b C(3)
23

1 D0K− → D0K− M2
K 0 1

2 D+K+ → D+K+ 0 0 0

3 D+π+ → D+π+ M2
π 0 1

4 D+η → D+η 0 0 0

5 D+
s K

+ → D+
s K

+ M2
K 0 1

6 D+
s η → D+

s η 0 0 0

7 D+
s π

0 → D+
s π

0 0 0 0

8 D0η → D0π0 0 0 0

9 D+
s K

− → D0π0 − 1√
2
M2
K

1√
2

(
M2
K −M2

π

)
− 1√

2

10 D+
s K

− → D0η −
√

3
2M

2
K

1√
6

(
M2
π −M2

K

)
−
√

3
2

Table 2. The coefficients in the NNLO tree-level amplitudes of the 10 relevant physical processes.

Figure 2. Feynman diagrams for the wave function renormalization at O
(
p3
)
.

3.3.1 Wave function renormalization

To perform the wave function renormalization, one multiplies the external lines with the

square roots of the wave function renormalization constants of the corresponding fields and

takes them on the mass shell. In perturbation theory, if the calculation is done up to a

certain order (up to O(p3) in our case), the wave function renormalization is equivalent to

taking the graphs in figure 2 into account. All the higher order contributions beyond the

required accuracy are ignored.

Hence, when taking wave function renormalization into consideration, the scattering

amplitude becomes

A(s, t) = A(1)
tree(s, t) +A(2)

tree(s, t) +A(3)
tree(s, t) +A(3)

loop(s, t) +A(3)
wf (s, t) . (3.7)

The first three terms are tree contribution given in section 3.1, while the fourth term

is the loop contribution discussed in section 3.2 and appendix B. The last term Awf(s, t)

corresponds to the contribution from the wave function renormalization. It can be obtained
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from the LO amplitude in combination with the wave function renormalization constants.

For instance, considering the scattering process D1φ1 → D2φ2, it is given by

A(3)
wf (s, t) =

1

2
(δZD1 + δZφ1 + δZD2 + δZφ2)A(1)

tree(s, t) , (3.8)

with δZ = Z − 1 and Z being the wave function renormalization constant up to the order

considered. To be explicit, the wave function renormalization constants for D and Ds are

ZD = ZDs = 1 and for the Goldstone bosons are

Zπ = 1− 1

F 2
0

[
8L4(2M2

K +M2
π) + 8L5M

2
π +

1

3
IK +

2

3
Iπ
]
,

ZK = 1− 1

F 2
0

[
8L4(2M2

K +M2
π) + 8L5M

2
K +

1

2
IK +

1

4
Iπ +

1

4
Iη
]
,

Zη = 1− 1

F 2
0

[
8L4(2M2

K +M2
π) +

4

3
L5(4M2

K −M2
π) + IK

]
, (3.9)

where the tadpole loop integral Ii(i = π,K, η) can be found in appendix A. Note that in the

above expressions, the ultraviolet (UV) divergence of the loop functions is not subtracted

on purpose. This is due to the fact that the Z’s are not physical observables such that

they might be divergent, namely the LECs L4 and L5 are not sufficient to absorb the UV

divergence in those expressions. The UV divergence cancellation as well as the PCB terms

absorption will be discussed in the following section at the level of the S-matrix elements.

As one will see, the S-matrix elements are free of any divergence.

3.3.2 Extended-on-mass-shell subtraction scheme

The loop integrals in the amplitude shown in eq. (3.7) is UV divergent, and we need

renormalization to absorb the divergences by counterterms. Moreover, PCB terms show

up in the chiral expansion if we use dimensional regularization with the MS scheme. It

is necessary to get rid of them to have a good power counting. We will use the EOMS

subtraction scheme which has the proper analyticity and correct power counting for the

amplitudes. The essence of the EOMS scheme is to perform two subsequent subtractions:

the MS subtraction and the EOMS finite subtraction.

In the MS subtraction, the UV divergent parts are extracted and then cancelled by

the divergences in the bare LECs, which are separated into finite and divergent parts as

follows:

hi = hri (µ) +
αi

16π2F 2
0

R , gj = grj (µ) +
βj

16π2F 2
0

R , Lk = Lrk(µ) +
Γk

32π2
R , (3.10)

where R = 2
d−4 +γE−1− ln(4π) with γE being the Euler constant, and d is the space-time

dimension. The coefficients αi (i = 0, · · · , 5), βj (j = 1, 2, 3) and Γk (k = 4, 5) are given by

α0 = 0, α1 = 0, α2 =
M2

0

48
, α3 = −M

2
0

16
, α4 =

7

24
, α5 = − 7

16
,

β1 = 0, β2 = − 9

128
, β3 = 0, Γ4 =

1

8
, Γ5 =

3

8
.
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Although the UV divergences have been removed so far, it is still not sufficient to get

an amplitude that respects the power counting rule given by eq. (2.4). The charmed mesons

show up in the Feynman diagrams, say Loop(1) and Loop(2) in figure 1, and generate the

so-called PCB terms that often spoil the convergence of the chiral expansion [33]. The

EOMS finite subtraction is used to get rid of those PCB terms. For each physical process

given above, the PCB terms are easily obtained by replacing the loop function F (cd)
ab (s, t),

see eq. (B.1), by F (cd)
ab (s, t)PCB, namely eq. (C.3), in the amplitudes and then performing

the chiral expansion with respect to the small quantities. Note that the infrared regular

parts for the required scalar loop integrals are also listed in appendix C for easy reference.

Eventually, the PCB terms are absorbed by decomposing the MS-renormalized LECs in

the O(p2) Lagrangian via

hri (µ) = h̃i +
δi

16π2F 2
0

M2
0 , (3.11)

with the coefficient δi (i = 0, · · · , 5) defined by

δ0 = δ1 = 0 , δ2 = − 1

72
+

1

48
log

M2
0

µ2
, δ3 =

1

24
− 1

16
log

M2
0

µ2
,

δ4 = − 35

72M2
0

+
7

24M2
0

log
M2

0

µ2
, δ5 =

35

48M2
0

− 7

16M2
0

log
M2

0

µ2
. (3.12)

The other LECs such as grj (µ) and Lrk(µ) are untouched when performing the finite EOMS

subtraction.

After the two steps described above, we have obtained the full renormalized amplitudes.

For the sake of easy practical usage, the chiral-limit D meson mass M0 and the chiral-

limit decay constant F0 should be further related to the corresponding physical quantities

according to the following expressions:

M2
D = M0

2 + 2 (h0 + h1)M2
π + 4h0M

2
K , (3.13)

M2
Ds = M0

2 + 2 (h0 − h1)M2
π + 4 (h0 + h1)M2

K , (3.14)

Fπ = F0 +
1

2F0
(2Irπ + IrK) +

4M2
π

F0
(Lr4 + Lr5) +

8M2
K

F0
Lr4 . (3.15)

Here, we rewrite F0 in terms of Fπ rather than FK and Fη. This is the convention to be used

throughout. Alternatively, one can also rewrites it in terms of FK or Fη, and the difference

is of higher order. The loop functions and LECs with a superscript r stand for their finite

parts, namely, the contributions proportional to the UV divergence R are removed.

4 Partial wave amplitudes and unitarization

In this section, we will illustrate how to obtain partial wave amplitudes with definite

strangeness S and isospin I from the 10 physical process amplitudes exhibited in the pre-

vious section in detail. Then we will discuss the unitarization of the scattering amplitudes

using two different approaches. Based on the content of this section, it is straightforward

to derive the S-wave scattering lengths, which will be discussed and compared with lattice

data in the next section.
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4.1 Amplitudes for given strangeness and isospin

The scattering amplitudes in the isospin basis can be classified by two quantum numbers,

which are the strangeness S and isospin I of the scattering system. Hereafter, the scattering

amplitudes with definite strangeness and isospin are called strangeness-isospin amplitudes

for short. All the strangeness-isospin amplitudes can be related to the 10 amplitudes of

the physical processes using crossing symmetry and isospin symmetry.

We begin with the single-channel interactions. There are 4 single channels in total.

The corresponding quantum numbers of (S, I) are (−1, 0), (−1, 1), (0, 3/2) and (2, 1/2).

Their strangeness-isospin amplitudes are related to the physical-process amplitudes by

A(−1,0)

DK̄→DK̄(s, t, u) = 2AD+K+→D+K+(u, t, s)−AD0K−→D0K−(s, t, u) , (4.1)

A(−1,1)

DK̄→DK̄(s, t, u) = AD0K−→D0K−(s, t, u) , (4.2)

A(0,3/2)
Dπ→Dπ(s, t, u) = AD+π+→D+π+(s, t, u) , (4.3)

A(2,1/2)
DsK→DsK(s, t, u) = AD+

s K+→D+
s K+(s, t, u) . (4.4)

For the coupled channels with (S, I) = (1, 0), the strangeness-isospin amplitudes read

A(1,0)
DK→DK(s, t, u) = 2AD0K−→D0K−(u, t, s)−AD+K+→D+K+(s, t, u) , (4.5)

A(1,0)
Dsη→Dsη(s, t, u) = AD+

s η→D+
s η

(s, t, u) , (4.6)

A(1,0)
Dsη→DK(s, t, u) = −

√
2AD+

s K−→D0η(u, t, s) . (4.7)

For the coupled channels with (S, I) = (1, 1), one has

A(1,1)
Dsπ→Dsπ(s, t, u) = AD+

s π0→D+
s π0(s, t, u) , (4.8)

A(1,1)
DK→DK(s, t, u) = AD+K+→D+K+(s, t, u) , (4.9)

A(1,1)
DK→Dsπ(s, t, u) =

√
2AD+

s K−→D0π0(u, t, s) . (4.10)

For (S, I) = (0, 1/2), there are three channels: Dπ,Dη and DsK̄. The isospin relations are

given by

A(0,1/2)
Dπ→Dπ(s, t, u) =

3

2
AD+π+→D+π+(u, t, s)− 1

2
AD+π+→D+π+(s, t, u) , (4.11)

A(0,1/2)
Dη→Dη(s, t, u) = AD+η→D+η(s, t, u) , (4.12)

A(0,1/2)

DsK̄→DsK̄
(s, t, u) = AD+

s K+→D+
s K+(u, t, s) , (4.13)

A(0,1/2)
Dη→Dπ(s, t, u) =

√
3AD0η→D0π0(s, t, u) , (4.14)

A(0,1/2)

DsK̄→Dπ
(s, t, u) =

√
3AD+

s K−→D0π0(s, t, u) , (4.15)

A(0,1/2)

DsK̄→Dη
(s, t, u) = AD+

s K−→D0η(s, t, u) . (4.16)

4.2 Partial wave projection

Each of the strangeness-isospin amplitudes can be denoted by A(S,I)
D1φ1→D2φ2

(s, t). Its partial

wave projection with definite angular momentum ` is given by

A(S,I)
` (s)D1φ1→D2φ2 =

1

2

∫ 1

−1
d cos θ P`(cos θ)A(S,I)

D1φ1→D2φ2
(s, t(s, cos θ)) . (4.17)
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Here, the Mandelstam variable t is expressed in terms of s and the scattering angle θ,

t(s, cos θ) = M2
D1

+M2
D2
− 1

2s

(
s+M2

D1
−M2

φ1

) (
s+M2

D2
−M2

φ2

)
−cos θ

2s

√
λ(s,M2

D1
,M2

φ1
)λ(s,M2

D2
,M2

φ2
) . (4.18)

with λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ac the Källén function. From eq. (4.18), one

sees that at each of the thresholds of D1φ1 and D2φ2, i.e. when s takes one of the following

two values

s1 = (MD1 +Mφ1)2 , s2 = (MD2 +Mφ2)2 , (4.19)

t is independent of cos θ. Taking s = s1 for instance, the S-wave amplitude becomes

A(S,I)
`=0 (s1)D1φ1→D2φ2 = A(S,I)

D1φ1→D2φ2
(s1, t(s1)) . (4.20)

This means that the S-wave amplitude at threshold can be obtained directly from the full

amplitude by setting the energy squared at its threshold value. However, note that this

simple recipe can only be used for the single channel case. For coupled channels, it is

necessary to perform the partial wave projection using eq. (4.17).

Before ending this section, we remark that it is helpful to use matrix notation to

denote the partial wave amplitudes with definite strangeness S and isospin I. In the matrix

notation, the subscript D1φ1 → D2φ2 is redundant. For single channels, this is apparent

since the process is specified uniquely by (S, I). For coupled channels, taking (S, I) = (1, 1)

for example, there are four processes: Dsπ → Dsπ, DK → DK, DK → Dsπ and its time

reversal process. Using time reversal invariance, one can write

A(1,1)
` (s) =

A(1,1)
` (s)Dsπ→Dsπ A(1,1)

` (s)DK→Dsπ

A(1,1)
` (s)DK→Dsπ A(1,1)

` (s)DK→DK

 . (4.21)

Later on, we will refer to the amplitudes for a given process in the isospin basis by

A(S,I)
` (s)ij , with i and j being channel indices. Unitarization of the scattering amplitudes

will be discussed in the matrix notation in the following.

4.3 Unitarization

Unitarization is often adopted to extend ChPT to higher energies. The unitarized ampli-

tudes sum up a series of s-channel loops,6 which correspond to the right-hand cut, and

thus one would naively expect that they can be used for higher momenta as well as larger

pion masses. Phenomenologically, it is now well-known that the unitarized amplitudes can

well describe the scattering data for the pion and kaon systems up to 1.2 GeV, see, e.g.,

refs. [28, 47]. We thus expect that these amplitudes allows for a description of the lattice

data at pion masses higher than the conventional ChPT. Yet, there is no rigorous proof a

6Since the unitarization procedure is normally equivalent to a resummation of the scattering amplitudes

in the s-channel, it breaks the crossing symmetry. Crossing symmetry can be restored using Roy-type

equations, for an early attempt, see ref. [46].
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priori. For varying the quark masses (or equivalently the masses of the Goldstone bosons),

it provides a way to performing the chiral extrapolation of lattice simulation results or

studying the quark mass dependence of physical quantities. In the present work, we will

consider two different versions of unitarization for the sake of comparison and for quanti-

fying the inherent model-dependence of such approaches. For the sake of simplicity and

generality, all the quantum number indices of the amplitudes such as S, I and ` will be

suppressed in this section. That is to say T , A, T and T̃ , which will appear later on, are

T
(S,I)
` , A(S,I)

` , T (S,I)
` and T̃

(S,I)
` , respectively, for our case.

The first approach we will use is the one proposed in ref. [29], which is denoted by

UChPT throughout this paper. In matrix form, the unitarized amplitude is given by

T (s) = {1− T (s) · g(s)}−1 · T (s) , (4.22)

where g(s) is a diagonal matrix g(s) = diag{g(s)i}, with i the channel index. The funda-

mental loop integral g(s)i reads

g(s)i = i

∫
d4q

(2π)4

1

(q2 −M2
Di

+ iε)((P − q)2 −M2
φi

+ iε)
, s ≡ P 2 . (4.23)

Note that g(s)i is counted as O(p) and its explicit expression is

g(s)i =
1

16π2

{
a(µ) + ln

M2
Di

µ2
+
s−M2

Di
+M2

φi

2s
ln
M2
φi

M2
Di

+
σi
2s

[
ln(s−M2

φi
+M2

Di + σi)− ln(−s+M2
φi
−M2

Di + σi)

+ ln(s+M2
φi
−M2

Di + σi)− ln(−s−M2
φi

+M2
Di + σi)

]}
, (4.24)

with σi = {[s− (Mφi +MDi)
2][s− (Mφi −MDi)

2]}1/2 and µ the renormalization scale. One

can define a µ-independent parameter ã ≡ a(µ) + ln(M2
Di
/µ2), since a change of µ in the

logarithm can be compensated by a(µ). Notice that the parameter ã in g(s) of eq. (4.22)

cannot be absorbed by redefining the LECs. It is introduced through the dispersion integral

along the right-hand cut, and is a free parameter in principle. The only constraint here

is from the requirement of a proper power counting: while all other terms in eq. (4.24)

are of order O (p), ã should be much smaller than 1 so that its presence will not cause a

breaking of the power counting if we expand the resummed amplitude to a certain order,

i.e. ã = O (p). The kernel matrix T (s) can be obtained perturbatively by matching to the

ChPT amplitudes order by order. Up to NNLO, it can be expressed as

T (s) = A(1)(s) +A(2)(s) +A(3)(s)−A(1)(s) · g(s) · A(1)(s), (4.25)

where A(n)(s) (n = 1, 2, 3) stand for the partial wave amplitudes from the perturbative cal-

culation with the superscript n denoting the chiral dimension. Notice that the right hand

cut from the NNLO amplitude is subtracted in the last term in order to avoid double count-

ing in the unitarization. In the function g(s) in the above equation, the subtraction constant

ã may be removed as it can be absorbed into the redefinition of the LECs in A(2)(s).
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The other approach is the so-called inverse amplitude method (IAM) [40–44, 47]. In

our case, the IAM unitized amplitudes has the matrix form

T (s) = T̃ (1)(s) ·
[
T̃ (1)(s)− T̃ (2)(s)

]−1
· T̃ (1)(s) , (4.26)

where

T̃ (1)(s) ≡ A(1)(s) , T̃ (2)(s) ≡ A(2)(s) +A(3)(s) . (4.27)

The above assignments guarantee that the unitarized amplitudes exactly obey unitarity

when the perturbatively unitary equations are employed, i.e.,

ImA(1)(s) = 0 , ImA(2)(s) = 0 , ImA(3)(s) = A(1)(s) ρ̃(s)A(1)(s)† , (4.28)

with ρ̃(s) = diag{ρ̃(s)i}, ρ̃(s)i = −qi/(8π
√
s) and qi is the magnitude of the center-of-mass

(CM) three-momentum in the ith channel.

5 Calculation of the scattering lengths

5.1 Definition and pion mass dependence

Given definite strangeness S and isospin I, the S-wave scattering lengths of the ith channel

are related to the diagonal elements of the T -matrix,7

a
(S,I)
i = − 1

8π(MDi +Mφi)
T

(S,I)
`=0 (sth)ii , sth = (MDi +Mφi)

2 . (5.1)

Here, MDi and Mφi denote the masses of the charmed meson and Goldstone boson φ in

the channel i, respectively, and T
(S,I)
`=0 (sth) stands for the S-wave unitarized amplitude at

threshold using either UChPT given by eq. (4.22) or IAM given by eq. (4.26).

Due to the short lifetime of the charmed meson, there are no experimental data for

D-φ scattering lengths. Nevertheless, lattice QCD calculations in the last a few years

provide very valuable information on the interaction between the charmed mesons and

light pseudoscalar mesons [15–18]. Since the lattice calculations were performed at several

unphysical pion masses, in order to describe these lattice data, one should know the pion

mass dependence of the scattering lengths. This is achieved by replacing all the quantities in

the expressions by the pion mass dependent ones. For the involved meson masses, we have

MK =

√
M̊2
K +M2

π/2 , MD = M̊D + (h1 + 2h0)
M2
π

M̊D

, MDs = M̊Ds + 2h0
M2
π

M̊Ds

. (5.2)

Note that all the formulae shown above are of NLO for the pion mass dependence.8 Here

the LEC h1 can be fixed by the mass difference between D and Ds. Using these two

7We are using the sign convention such that the scattering length for a repulsive interaction is negative.
8In eq. (5.2), although the formula we used for the kaon mass is a LO expression in SU(3) ChPT, it

contains two parts: the part ∼ M̊2
K proportional to B0ms remains in the SU(2) chiral limit and is regarded

as a LO contribution of the pion mass dependence, while the part related to B0mu/d ∼ M2
π/2 vanishes

in the SU(2) chiral limit and is thus a NLO contribution. In this sense, we spelled out the pion mass

dependence for all of the masses and decay constants consistently up to the order M2
π .
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equations, one has [12]

h1 =
M2
Ds
−M2

D

4(M2
K −M2

π)
= 0.4266 , (5.3)

where the physical values for the meson masses are used, i.e., Mπ = 138 MeV,

MK = 496 MeV, MD = 1867 MeV and MDs = 1968 MeV.9 The pion decay constant should

also be substituted by [32]

Fπ = F0

{
1− 2µπ − µK +

4M2
π

F 2
0

[Lr4(µ) + Lr5(µ)] +
8M2

K

F 2
0

Lr4(µ)

}
, (5.4)

where MK is understood as the one in eq. (5.2), and µφ is a scale dependent function for

the Goldstone boson φ

µφ =
M2
φ

32π2F 2
0

ln
M2
φ

µ2
. (5.5)

So far, except for h1, the LECs Lr4, Lr5 and h0 and the chiral limit quantities M̊K , M̊D,

M̊Ds and F0 are all unknown. Since we will fit to the lattice results on the scattering

lengths calculated in ref. [16], we choose to fix the above mentioned quantities from fitting

to the lattice data calculated using the same gauge configurations. In addition, the kaon

decay constant FK data are also included to have a bigger data set for fixing F0 and Lr4,5.

The pion mass dependence of FK is given by [32]

FK = F0

{
1− 3

4
(µπ + 2µK + µη) +

4M2
π

F 2
0

Lr4(µ) +
4M2

K

F 2
0

[2Lr4(µ) + Lr5(µ)]

}
, (5.6)

with M2
η = (4M2

K −M2
π)/3 and MK given by eq. (5.2).

The lattice data for MK , MD and MDs are taken from ref. [16]. There are four data sets

for each quantity, corresponding to the four ensembles (labelled by M007, M010, M020 and

M030) with pion mass approximately 301.1 MeV, 363.8 MeV, 511.0 MeV and 617.0 MeV, in

order. Since the same ensembles are employed in ref. [48], we take the data for fπ and fK
from ref. [48], where fπ =

√
2Fπ and fK =

√
2FK . Those lattice data are well described

as shown in figure 310 when the parameters take the values given in table 3. Our fitting

values for Lr4,5 are consistent with the determinations given in refs. [49, 50]. Therein, the

values are obtained at µ = Mη, and the corresponding values transformed to µ = Mρ can

be found in ref. [51].

5.2 Fits to lattice data on the scattering lengths

5.2.1 Introduction to the fitting procedure

Since all the necessary preparations are completed, we proceed to the description of the

lattice QCD data of the S-wave scattering lengths. There are two points to be discussed

before carrying out the fits.

9The mass of the η is always expressed in terms of Mπ and MK through the Gell-Mann-Okubo mass

relation, 3M2
η = 4M2

K −M2
π .

10We have neglected the subtleties due to the use of mixed action gauge configurations in the lattice

calculations, which in principle requires to use the partially quenched ChPT instead of the standard one

for the chiral extrapolation, and the effect of finite lattice spacing, see ref. [48].
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Figure 3. Chiral extrapolation of masses and decay constants. All the lattice data are obtained

from the same ensembles, namely M007-M030. Data for MK , MD and MDs
is taken from ref. [16]

and the one for Fπ and FK from ref. [48]. Except for MDs , the data errors are so tiny that we do not

show them explicitly in the plots. The vertical dashed line corresponds to the physical pion mass.

M̊K M̊D M̊Ds h0 h1 F0 103 · Lr4 103 · Lr5

560.41 1940.4 2061.2 0.0172 0.4266∗ 73.31 0.0095 1.3264

Table 3. Parameters for chiral extrapolation. Lr4 and Lr5 are obtained at µ = Mρ (= 775.5 MeV).

The masses and decay constant in the chiral limit are in units of MeV. h0 and h1 and dimensionless.

The asterisk marks an input value.

The first one is related to the lattice data. From ref. [16], 20 data for 5 channels

are available. Amongst the five channels, the Dsπ with (S, I) = (1, 1) can actually be

coupled to the isovector DK channel while the other four are single channels. Although

in ref. [16] only the Dsπ interpolating operator was constructed and used, the propagation

of all the quarks should know about the presence of the coupled DK channel with

(S, I) = (1, 1) because the channel-coupling in this case does not require disconnected

Wick contractions which were not included in ref. [16]. Thus, we will describe the Dsπ

data using a coupled-channel unitarized amplitude.

In addition, lattice QCD results were published in the last two years for two more

channels: Dπ with (S, I) = (0, 1/2) [17] and DK with (S, I) = (1, 0) [18]. These channels

are more difficult since both of them involve disconnected Wick contractions,11 but they

are also more interesting as they can provide valuable information for the lightest scalar

charmed mesons in the corresponding channels. The calculation for the Dπ scattering was

11It is shown in ref. [52] that as long as the singly disconnected Wick contractions contribute, which is

the case for the isoscalar DK channel, they are of LO in both the 1/Nc and chiral expansion. Therefore,

they cannot be neglected.
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performed using Nf = 2 gauge configurations, and the DK calculation has results from

both Nf = 2 and Nf = 2 + 1 gauge configurations. Because the amplitudes derived here

are based on SU(3) ChPT, we will only include in the fits the new result with Nf = 2 + 1,

i.e. a
(1,0)
DK→DK = −1.33(20) fm obtained at Mπ = 156 MeV, and the unitarized amplitude

used in the fits is obtained including the Dsη coupled channel. Notice that these new

lattice calculations use gauge configurations and actions different from those in ref. [16],

the chiral-limit masses for the kaon and charmed mesons should take different values from

those given in table 3. Because the physical masses of the involved ground state mesons such

as the kaon and charmed mesons were reproduced rather well with the lattice setup used in

ref. [18] (for details, see ref. [19]), the chiral-limit values of the involved meson masses and

F0 are determined by requiring them to coincide with the corresponding phyiscal values at

the physical pion mass, namely, M̊K = 486.3 MeV, M̊D = 1862.3 MeV, M̊Ds = 1967.7 MeV

and F0 = 76.23 MeV. The values for the LECs in the extrapolating expressions of these

quantities are the same as those listed in table 3.

The other point concerns the LECs to be determined. There are 7 unknown LECs in

total: h2, h3, h4, h5, g1, g2 and g3. As mentioned in the previous work [16], h2 (h3) and

h4 (h5) are largely correlated. Therefore, redefinitions of the LECs are employed to reduce

these correlations, which are

h24 = h2 + h′4 , h35 = h3 + 2h′5 , h′4 = h4M̄
2
D , h′5 = h5M̄

2
D . (5.7)

The new parameters h24, h35, h′4 and h′5 will be determined in our fits. The average of the

physical masses of the charmed D and Ds mesons, M̄D = (Mphy
D +Mphy

Ds
)/2, is introduced

to make the four new parameters dimensionless. Similarly, for the LECs from the NNLO

contact terms, g2 and g3 are largely correlated with each other, and it is better to redefine

these LECs as

g23 = g′2 − 2g′3 , g′1 = g1M̄D , g′2 = g2M̄D , g′3 = g3M̄
3
D . (5.8)

The parameters g′1, g23 and g′3 have a dimension of inverse mass and will be fixed from

fitting to the lattice data. One can fix g′1 and g23 separately only when the coupled-channel

unitarized amplitudes are used, i.e. from fitting to the lattice results of the Dsπ and the

isoscalar DK scattering lengths. The single-channel unitarized amplitudes is only sensitive

to the combination g123 = g23 − g′1, instead of g′1 and g23 separately, and g′3.

5.2.2 Results

We will try different fit procedures. In the fit UChPT-6(a), all of the 20 data points for

5 channels, with pion masses from 301 MeV up to 617 MeV, in ref. [16] as well as the

Nf = 2 + 1 datum for the isoscalar DK channel, with an almost physical pion mass of

156 MeV, in ref. [18] are taken into consideration. We notice that there are two possibilities

for a scattering length to be negative in our sign convention: a repulsive interaction, and

an attractive interaction with a bound state pole below the threshold. In the (S, I) = (1, 0)

channel, there is the well-known state D∗s0(2317) below the DK threshold which was not

included as an explicit degree of freedom in our theory. Because the number of data is
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UChPT-6(a) UChPT-6(b) UChPT-6(a′) UChPT-6(b′)

no prior no prior with prior with prior

h24 0.79+0.10
−0.09 0.76+0.10

−0.09 0.83+0.11
−0.10 0.80+0.10

−0.10

h35 0.73+0.50
−0.38 0.81+0.95

−0.62 0.43+0.23
−0.23 0.40+0.33

−0.29

h′4 −1.49+0.55
−0.57 −1.56+0.61

−0.65 −1.33+0.60
−0.60 −1.72+0.64

−0.63

h′5 −11.47+2.24
−2.79 −15.38+4.81

−7.20 −4.25+0.65
−0.66 −2.60+0.84

−0.87

g′1 −1.66+0.31
−1.59 −2.44+0.57

−0.64 −1.10+0.18
−0.23 −1.90+0.58

−0.35

g23 −1.24+0.28
−1.51 −2.00+0.52

−0.51 −0.70+0.19
−0.24 −1.48+0.61

−0.37

g′3 2.12+0.55
−0.45 2.85+1.41

−0.96 0.98+0.15
−0.14 0.58+0.20

−0.19

χ2/d.o.f. 31.52
21−7 = 2.25 13.43

16−7 = 1.49 77.72−23.34
21−7 = 3.88 51.71−16.60

16−7 = 3.90

Table 4. Values of the LECs from the 6-channel fits using the method of UChPT. The hi’s are

dimensionless, and the g′1, g23 and g′3 are in GeV−1.

small but the number of parameters is large, a direct fit to these lattice data might result

in solutions which are not physically acceptable. For instance, within the range of the

parameters of a direct fit, the (S, I) = (1, 0) DK channel could even be repulsive which

is reflected by the fact that the kernel of the unitarized amplitude takes a positive value

at the threshold. Given that the LO interaction in the corresponding DK channel is the

most attractive one among all the charmed meson-Goldstone boson scattering processes,

see table II in ref. [16] for instance, we regard such a situation as unacceptable. Therefore,

we put a constraint by hand requiring that when all the particles take their physical

values there is a bound state pole in the (S, I) = (1, 0) channel at 2317 MeV. Following

ref. [16], this is done by adjusting the subtraction constant ã in the loop function g(s) in the

unitarized amplitude, eq. (4.22), to produce the pole at the right position. The resulting

values of the LECs from the fit are shown in table 4.

However, a pion mass larger than 600 MeV is definitely too large for the chiral extrapo-

lation using the standard ChPT. The unitarized approach arguably has a larger convergence

range than the standard ChPT. But the range is not known a priori. Therefore, for the sake

of comparison, we perform another fit, denoted as UChPT-6(b), using the same method but

excluding the lattice data at Mπ = 617 MeV. The fit results are shown in the third column

of table 4. One can see that the values of all the LECs from these two fits are similar, but

those from UChPT-6(b) have larger uncertainties as a result of being less constrained. The

fit results from both fits are plotted in figure 4. The bands represent the variation of the

scattering lengths with respect to the LECs within 1-σ standard deviation. As we can see,

both fits describe the lattice data reasonably well with the exception that the isoscalar DK
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Figure 4. Comparison of the results of the 6-channel fits (without a prior χ2) to the lattice data

of the scattering lengths. UχPT-6(a): solid blue line with red band, UχPT-6(b): dashed blue line

with green band. The filled circles are lattice results in ref. [16], and the filled square (not included

in the fits) and diamond are taken from ref. [18].

scattering length around Mπ = 156 MeV is too large in comparison with the lattice result.

However, both fits are consistent with the Nf = 2 lattice result for DK at a pion mass

around 266 MeV which was not included in the fits. We notice that the lattice ensemble

for the Mπ = 156 MeV datum has a rather small volume with MπL ≈ 2.3. It is a bit too

small for Lüscher’s finite volume formalism to be strictly applicable, and thus this datum

might bear a large systematic uncertainty. The isospin-3/2 Dπ → Dπ scattering length

vanishes at the chiral limit as required by chiral symmetry. Lattice discretization often

breaks chiral symmetry. However, due to the use of the domain-wall action for the valence

quarks in the lattice calculation of the pionic channels, the chiral behavior is protected in

our case. For related discussions in mixed-action ChPT, we refer to refs. [53–56].
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Figure 5. Comparison of the results of the 6-channel fits (with a prior χ2) to the lattice data of

the scattering lengths. UχPT-6(a): solid blue line with red band, UχPT-6(b): dashed blue line

with green band. The filled circles are lattice results in ref. [16], and the filled square (not included

in the fits) and diamond are taken from ref. [18].

In both fits, the values of all the LECs except for h′5 turn out to be of a natural

size. However, the absolute value of the dimensionless LEC h′5 is too large to be natural.

This means that the absolute value of h′5 is so large that this single term would give a

contribution larger than the LO amplitude. It would spoil the convergence, and thus the

perturbative expansion, at least for some quantities (although for some other quantities,

due to fine-tuned cancellation the sum of the NLO contribution could still be much smaller

than the LO one). Therefore, we try to constrain all the LECs to natural values following

ref. [57] which discusses the use of the Bayesian method in effective field theories. Following
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UChPT-4 IAM-4

h24 0.50+0.09
−0.10 0.53+0.07

−0.07

h35 −0.89+0.93
−0.91 −0.59+1.04

−1.11

h′4 1.23+1.03
−1.08 0.64+0.66

−0.66

h′5 −3.09+4.69
−4.72 −6.08+6.05

−5.99

g123 0.18+0.18
−0.18 0.23+0.21

−0.22

g′3 1.01+0.87
−0.86 1.42+1.08

−1.10

χ2/d.o.f. 13.59
16−6 = 1.36 13.97

16−6 = 1.40

Table 5. Values of the LECs from the 4-channel fits using both the methods of UChPT and IAM.

The hi’s are dimensionless, and the g123 = g23 − g′ and g′3 are in GeV−1.

that paper, the so-called augmented chi-squared can be defined by12

χ2
aug = χ2 + χ2

prior , (5.9)

where χ2 is the usual chi-squared used in the standard least chi-squared fit and χ2
prior is

a prior chi-squared encoding the naturalness requirement of the fit parameters. In our

specific case, the χ2
prior is set to be the sum of squares of the fit LECs. This means that we

require the dimensionless LECs h
(′)
i ’s to be O(1) and g′i’s to be O(1 GeV−1). The results by

minimizing the augmented chi-squared are listed in the last two columns in table 4, denoted

as UChPT-6(a′) and UChPT-6(b′), where the values for χ2 are given with χ2
prior subtracted.

One sees that the value of h′5 gets more natural at the price of a larger χ2. A comparison

of the scattering lengths with the lattice data in various channels is given in figure 5, and

one can see that the lattice data in all six channels can still be described reasonably well.

It turns out that in all of these fits |h′5| > |h′4|, which is consistent with the Nc counting

|h′4| = O (|h′5|/Nc) [16]. The values of the hi’s are different from those obtained in ref. [16].

The reason may be attributed to the use of the EOMS scheme in this work, and all of h2,3,4,5

absorb a power counting breaking contribution, see eq. (3.11). For the case of the Dsπ,

the scattering length does not vanish at the limit of a vanishing pion mass. This is due to

the presence of the DK-loop in the coupled-channel amplitude which has a nonvanishing

contribution in the SU(2) chiral limit. We have checked that the elastic contribution tends

to zero as Mπ approaches zero as required by chiral symmetry.

For comparison, we also perform fits with just the four single-channel data, i.e. the

Dsπ and isoscalar DK data are excluded. For this case, we use two different unitarization

12The method in ref. [57] was only derived for the case that the dependence on the parameters to be fitted

is linear. Although our case is non-linear and thus the augmented χ2 lacks a strict statistical meaning, we

still try this method as the χ2 defined in this way comprises a “naturalness prior” so as to favor natural

values for the LECs.
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Figure 6. Comparison of the results of the 4-channel fits to the lattice data of the scattering

lengths. UχPT-4: solid red line with blue band, IAM-4: dashed red line with green band. The

lattice data are taken from ref. [16].

methods: UChPT, to be denoted as UChPT-4, and IAM, to be denoted as IAM-4. We

did not use the IAM approach in the 6-channel fits because this approach is not suitable

to unitarize a perturbative amplitude with a zero LO contribution. As can be seen from

eq. (4.26), if the LO amplitude vanishes the unitarized one will vanish as well. This

happens to the case of the Dsπ. The UChPT approach is free of this problem. The results

of these two fits are compiled in table 5. Notice that in this case g′1 and g23 cannot be

determined separately, and the effective combined parameter is g123 = g23 − g′1. One sees

that the values of LECs from the fits using different unitarization methods are consistent

with each other,13 but are only marginally consistent with those in the 6-channel fits.

In addition, the uncertainties are quite large. More lattice simulations are apparently

necessary to pin down the LEC values. A comparison of the results of the 4-channel fits

to the lattice data in these channels are plotted in figure 6.

For reference, the values for the scattering lengths extrapolated to the physical pion

mass are presented in table 6. The chiral limit values in table 3 are adopted for all the 16

channels when performing the chiral extrapolation . Here we only show the results using

the 6-channel fits to the data with the pion mass up to 511 MeV, i.e. UChPT-6(b) and

13However, not all of the LECs in these different unitarization methods ought to take the same values.

One can see this by expanding the IAM resummed amplitude up to O
(
p3
)
. Considering the single channel

case for simplicity, one has TIAM(s) = A(1)(s)+A(2)(s)+A(3)(s)+[A(2)(s)]2/A(1)(s)+O
(
p4
)
. It is different

from that of UChPT, TUChPT(s) = A(1)(s) + A(2)(s) + A(3)(s) + O
(
p4
)
. Thus, the LECs in the O

(
p3
)

Lagrangian could take different values.
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a
(S,I)
ii UChPT-6(b) UChPT-6(b′)

a
(−1,0)

DK̄→DK̄ 1.76+0.39
−0.31 0.93+0.15

−0.15

a
(−1,1)

DK̄→DK̄ −0.40+0.01
−0.01 −0.45+0.01

−0.02

a
(0, 1

2
)

Dπ→Dπ 0.65+0.11
−0.09 0.42+0.04

−0.05

a
(0, 1

2
)

Dη→Dη −0.18+0.04
−0.04 + i 0.00+0.01

−0.00 −0.21+0.05
−0.04 + i 0.01+0.01

−0.01

a
(0, 1

2
)

DsK̄→DsK̄
−1.37+0.21

−0.04 + i 0.61+0.45
−0.02 −0.47+0.06

−0.07 + i 0.50+0.18
−0.16

a
(0, 3

2
)

Dπ→Dπ −0.14+0.01
−0.01 −0.15+0.01

−0.01

a
(1,0)
DK→DK −1.04+0.06

−0.03 −1.50+0.13
−0.26

a
(1,0)
Dsη→Dsη −0.62+0.02

−0.03 + i 0.01+0.01
−0.00 −0.76+0.05

−0.05 + i 0.05+0.00
−0.01

a
(1,1)
Dsπ→Dsπ −0.01+0.01

−0.01 −0.01+0.01
−0.01

a
(1,1)
DK→DK −1.11+0.23

−0.09 + i 0.77+0.27
−0.04 −0.82+0.59

−0.38 + i 1.64+0.01
−0.11

a
(2, 1

2
)

DsK→DsK −0.25+0.01
−0.02 −0.32+0.01

−0.01

Table 6. Predictions of the scattering lengths at physical pion mass using the LECs determined

in the 6-channel fits UChPT-6(b) and UChPT-6(b′) in units of fm.

UChPT-6(b′). We notice that the numerical results of the scattering lengths extrapolated

to the physical pion masses in some channels differ from those obtained in ref. [16]. This

could indicate that the uncertainties are underestimated as the SU(3) formalism for UChPT

was applied to pion masses higher than 500 MeV. We expect that the situation will improve

when lattice results at lower pion masses are availble.

5.2.3 Contribution of vector charmed mesons

In this section, contributions from vector charmed mesons will be included explicitly in

order to quantify their influences on the S-wave scattering lengths. The diagrams that

survive in the heavy quark limit, see also ref. [24], are taken into account and shown in

figure 7. Those diagrams vanishing in the heavy quark limit are suppressed by 1/mc and

therefore are neglected. We denote the vector charmed mesons by D∗ = (D∗0, D∗+, D∗+s ),

and the vertices involved in figure 7 are described by the following Lagrangian,

LD∗DΦ = −DµD∗νDµD∗†ν +M∗0D
∗νD∗†ν + i g̃

(
D∗µu

µD† −DuµD∗†µ

)
, (5.10)

where the covariant derivatives acting on D∗ are analogous to those defined in eq. (2.10).

Further, M∗0 is the mass of D∗ in the chiral limit. The relation between the axial cou-

pling constant g̃ defined here and the coupling g which is employed usually in the heavy

meson ChPT [7–9, 58] is g̃ =
√
MDMD∗ g. Following ref. [59], we take g = 0.570 ± 0.006,
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UChPT-6(a) UChPT-6(b) UChPT-6(a′) UChPT-6(b′)

no prior no prior with prior with prior

h24 0.80+0.08
−0.08 0.80+0.10

−0.09 0.85+0.10
−0.10 0.85+0.10

−0.10

h35 0.82+0.60
−0.48 0.98+0.97

−0.64 0.50+0.23
−0.23 0.59+0.30

−0.29

h′4 −1.27+0.52
−0.51 −1.40+0.59

−0.62 −1.22+0.58
−0.57 −1.59+0.62

−0.61

h′5 −11.61+2.53
−3.07 −15.06+4.86

−7.31 −3.87+0.67
−0.69 −2.48+0.84

−0.83

g′1 −2.94+0.99
−0.36 −2.69+0.51

−0.61 −1.45+0.20
−0.30 −1.90+0.39

−0.43

g23 −2.56+0.99
−0.31 −2.28+0.46

−0.48 −1.10+0.21
−0.31 −1.51+0.40

−0.45

g′3 2.15+0.60
−0.49 2.80+1.42

−0.96 0.91+0.15
−0.15 0.56+0.19

−0.19

χ2/d.o.f. 29.36
21−7 = 2.10 13.75

16−7 = 1.53 74.22−21.56
21−7 = 3.76 50.06−15.96

16−7 = 3.79

Table 7. Values of the LECs from the 6-channel fits (including explicit D∗) using the method of

UChPT. The hi’s are dimensionless, and the g′1, g23 and g′3 are in GeV−1.

determined by calculating the decay width of the process D∗+ → D0π+, and then one

gets g̃ ' (1103.3 ± 11.6) MeV. The calculations of the Feynman diagrams in figure 7 are

straightforward but the analytical results are too lengthy to be shown here. Similar to

eq. (5.2), the pion-mass dependence of the D∗ and D∗s masses reads

MD∗ = M̊D∗ + (h̃1 + 2h̃0)
M2
π

M̊D∗
, MDs∗ = M̊Ds∗ + 2h̃0

M2
π

M̊Ds∗
, (5.11)

where h̃0 and h̃1 are the analogues of h0 and h1, respectively. In the heavy quark limit, one

has h̃1 = h1 and h̃0 = h0. As discussed in ref. [26], the breaking of heavy quark spin symme-

try is only about 3%. Therefore, to a good approximation, we impose these two heavy-quark

limit relations. The masses of the vector charmed mesons in the limit of Mπ → 0, i.e. M̊D∗

and M̊D∗s , are related to the corresponding ones of the pseudoscalar charmed mesons via

MD∗
Phy. −MD

Phy. ' M̊D∗ − M̊D , MD∗s
Phy. −MDs

Phy. ' M̊D∗s − M̊Ds , (5.12)

with MPhy.
D∗ = 2008.6 MeV and MPhy.

D∗s
= 2112.3 MeV, which are physical masses for D∗ and

D∗s , respectively. In parallel to the four kinds of 6-channel fits in the previous section, we

refit the S-wave scattering lengths and the results are shown in table 7. In each case, the

LECs as well as the chi-squared are almost same as before. This implies that the influence

of D∗ to the S-wave scattering lengths is marginal and it is a good approximation to

exclude them in the calculation.

– 25 –



J
H
E
P
1
1
(
2
0
1
5
)
0
5
8

Figure 7. Feynman diagrams (including the vector charmed mesons) that survive in the heavy

quark limit.

6 Summary and outlook

We have computed the D-φ scattering amplitude that is valid up to the NNLO in the

chiral expansion within the framework of ChPT. The complete analytical expressions for

the amplitudes are given using a renormalization procedure with the EOMS subtraction

scheme. We show explicitly that the UV divergences and the PCB terms, both of which

stem from the loops, can be absorbed into the LECs. We then obtained the EOMS-

renormalized D-φ scattering amplitudes which are independent of the renormalization scale

and possess good properties such as correct power counting and proper analyticity.

In order to describe the lattice data on the S-wave scattering lengths at relatively high

pion masses and to account for the nonperturbative nature in the channels like the (S, I) =

(1, 0) DK, the aforementioned perturbative amplitudes are inserted into a unitarization

procedure to perform the chiral extrapolation from large unphysical light quark masses

down to the SU(2) chiral limit. We tried different fitting procedures with and without a

naturalness constraint. It turns out that the absolute value of h′5 could be quite large if the

naturalness constraint is not put by hand. We want to stress that more lattice simulations

in different channels are necessary for a better determination of the involved LECs and a

better understanding of the scalar and axial-vector charmed mesons. When the LECs are

well constrained, we can make reliable predictions in the channels which have not been

calculated on the lattice and in the bottom sector utilizing heavy quark spin symmetry.
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A Definition of one-loop integrals

In this appendix, all the relevant one-loop integrals are defined. For the current case, only

one- and two-point loop functions are involved. As is well known, each tensor one-loop

integral can be expressed as a linear sum of scalar one-loop integrals by using the method

of Passarino-Veltmann (PV) decomposition [60]. Hence, if the explicit expressions of the

scalar one-loop integrals are known, the loop amplitudes can be obtained analytically.

Throughout this work, the ultraviolet divergence is contained in the quantity R which

is defined by

R =
2

d− 4
+ γE − 1− ln(4π) , (A.1)

with γE the Euler constant and d the space-time dimension. In addition, we will denote

the renormalization scale by µ. In terms of these notations, various loop integrals involved

in the calculations are given as follows:

• One-point loop function:

Ia =
µ4−d

i

∫
ddk

(2π)d
1

k2 −M2
a + i0+

= − M2
a

16π2

(
R+ ln

M2
a

µ2

)
. (A.2)

• Two-point loop function for unequal masses: (Ma > Mb)

{Hab(p2), pµH1
ab(p

2), gµνH00
ab(p

2) + pµpνH11
ab(p

2)}

=
µ4−d

i

∫
ddk

(2π)d
{1, kµ, kµkν}

(k2 −M2
a + i0+)

[
(k + p)2 −M2

b + i0+
] , (A.3)

where the PV coefficients are given by

H1
ab(p

2) =
1

2p2

[
Ia − Ib − (p2 + ∆ab)Hab(p2)

]
,

H00
ab(p

2) =
1

12p2

{
(p2 + ∆ab)Ia + (p2 −∆ab)Ib +

[
4p2M2

a − (p2 + ∆ab)
2
]
Hab(p2)

}
− 1

16π2

1

18
(p2 − 3Σab) ,

H11
ab(p

2) =
1

3p4

{
−(p2 + ∆ab)Ia + (2p2 + ∆ab)Ib −

[
p2M2

a − (p2 + ∆ab)
2
]
Hab(p2)

}
+

1

16π2

1

18p2
(p2 − 3Σab) ,

where we have defined ∆ab ≡ M2
a −M2

b and Σab ≡ M2
a + M2

b . The scalar two-point

one-loop function Hab(p2) has the following analytical form,

Hab(p2) =
1

16π2

[
−R+ 1− ln

M2
b

µ2
+

∆ab + p2

2 p2
ln
M2
b

M2
a

+
p2 − (Ma −Mb)

2

p2
ρab(p

2) ln
ρab(p

2)− 1

ρab(p2) + 1

]
, (A.4)
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with

ρab(p
2) ≡

√
p2 − (Ma +Mb)2

p2 − (Ma −Mb)2
. (A.5)

To get the imaginary part above the threshold properly, one should take the branch

cut for the logarithm along the negative real axis.

• Two-point loop function for equal masses:

{Ja(p2), pµJ 1
a (p2), gµνJ 00

a (p2) + pµpνJ 11
a (p2)}

=
µ4−d

i

∫
ddk

(2π)d
{1, kµ, kµkν}

(k2 −M2
a + i0+) [(k − p)2 −M2

a + i0+]
,

where the Passarino-Veltmann coefficients are given by

J 1
a (p2) = −1

2
Ja(p2) ,

J 00
a (p2) =

1

12
(4M2

a − p2)Ja(p2) +
1

6
Ia +

1

16π2

1

18
(6M2

a − p2) ,

J 11
a (p2) =

1

3p2

[
(p2 −M2

a )Ja(p2) + Ia
]

+
1

16π2

1

18p2
(p2 − 6M2

a ) .

In this case, the scalar two-point one-loop function Ja(p2) has a much simpler ana-

lytical form,

Ja(p2)=
1

16π2

[
−R+1−ln

M2
a

µ2
+σa(p

2) ln
σa(p

2)−1

σa(p2)+1

]
, σa(p

2)≡

√
1− 4M2

a

p2
. (A.6)

B Loop amplitudes without explicit charmed vector mensons

In order to express the loop amplitude in a short form, the following abbreviation is

adopted,

F (cd)
ab (s, t) =

[
3(s−M2

a ) + (s−M2
c )
]
Id − (s− Σbc)

2Hcd(s) + 2
(
t− 2M2

b

)
H00
cd(s)

+2 (s−∆ab) (s− Σbc)H1
cd(s)− (s−∆ab)

2H11
cd(s) . (B.1)

We first list the loop amplitudes concerning the elastic scattering processes.

• D0K− → D0K−

Aloop
D0K−→D0K−

(s, t)=
1

16F 4

{
F (DK)
DK (s, t)+2F (DK)

DK (u, t)+
3

2
F (Dsη)
DK (u, t)+

1

2
F (Dsπ)
DK (u, t)

+(s−u) (Iη+2IK+Iπ)−4(s−u)
[
J 00
π (t)+2J 00

K (t)
]}

. (B.2)

• D+K+ → D+K+

Aloop
D+K+→D+K+(s, t)=

1

16F 4

{
F (Dsπ)
DK (s, t)+F (DK)

DK (u, t)−4(s−u)
[
J 00
π (t)−J 00

K (t)
]}
.

(B.3)
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• D+π+ → D+π+

Aloop
D+π+→D+π+(s, t) =

1

16F 4

{
F (Dπ)
Dπ (s, t) + 3F (Dπ)

Dπ (u, t) + F (DsK)
Dπ (u, t)

+
4

3
(s−u) (2Iπ+IK)−4(s−u)

[
2J 00

π (t)+J 00
K (t)

]}
. (B.4)

• D+η → D+η

Aloop
D+η→D+η

(s, t) =
1

16F 4

[
3

2
F (DsK)
Dη (s, t) +

3

2
F (DsK)
Dη (u, t)

]
. (B.5)

• D+
s K

+ → D+
s K

+

Aloop

D+
s K+→D+

s K+
(s, t)=

1

16F 4

[
F (DsK)
DsK

(s, t)+F (DsK)
DsK

(u, t)+
3

2
F (Dη)
DsK

(u, t)+
3

2
F (Dπ)
DsK

(u, t)

+(s− u) (Iη + 2IK + Iπ)− 12(s− u)J 00
K (t)

]
. (B.6)

• D+
s η → D+

s η

Aloop

D+
s η→D+

s η
(s, t) =

1

16F 4

[
3F (DK)

Dsη
(s, t) + 3F (DK)

Dsη
(u, t)

]
. (B.7)

• D+
s π

0 → D+
s π

0

Aloop

D+
s π0→D+

s π0
(s, t) =

1

16F 4

[
F (DK)
Dsπ

(s, t) + F (DK)
Dsπ

(u, t)
]
. (B.8)

As for the inelastic processes, the amplitudes become a little more complicated. To

reduce them, we further need

G(ef)
ab,cd(s, t) =

1

2
∆2
bdHef (s) +

1

2
(∆ac −∆bd)

2H11
ef (s)−∆bd (∆ac −∆bd)H1

ef (s) . (B.9)

In the above equation, the letters a and b (c and d) label the incoming (outgoing) par-

ticles, while e and f mark the particles in the loop. This convention also holds for the

abbreviations 1K(ef)
ab,cd(s, t) and 2K(ef)

ab,cd(s, t), whose explicit expressions are given by

1K(ef)
ab,cd(s, t) = ∆ac

{
1

2
If +

1

2
t
[
Hef (t) +H1

ef (t)
]
−H00

ef (t)− tH11
ef (t)

}
,

2K(ef)
ab,cd(s, t) = −3(s− u)H00

ef (t)−∆ac

[
1

6
(6Σde + 6∆df − 13∆bd)H1

ef (t)

+
1

6
(3Σde + 3∆df − 2∆bd)Hef (t)− 3∆bdH11

ef (t)

]
. (B.10)

In combination with the abovementioned notations, the inelastic one-loop scattering am-

plitudes are given as follows:
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• D0η → D0π0

Aloop
D0η→D0π0(s, t) =

√
3

64F 4

[
F (DsK)
Dη (s, t) + F (DsK)

Dπ (s, t) + 2G(DsK)
Dη,Dπ(s, t) + (s↔ u)

]
.

(B.11)

• D+
s K

− → D0π0

Aloop

D+
s K−→D0π0

(s, t) =

√
2

16F 4

{
1

2

[
F (Dπ)
DsK

(s, t) + F (Dπ)
Dπ (s, t) + 2G(Dπ)

DsK,Dπ
(s, t)

]
+

1

4

[
F (DsK)
DsK

(s, t) + F (DsK)
Dπ (s, t) + 2G(DsK)

DsK,Dπ
(s, t)

]
−s− u

12
(3Iη + 11Iπ + 10IK) +

∆DsD

24
(3Iη − 5Iπ + 2IK)

−
(

1K(ηK)
DsK,Dπ

(s, t) + 2K(ηK)
DsK,Dπ

(s, t)
)

−
(

5

3
1K(Kπ)

DsK,Dπ
(s, t) + 2K(Kπ)

DsK,Dπ
(s, t)

)}
. (B.12)

• D+
s K

− → D0η

Aloop

D+
s K−→D0η

(s, t) =

√
6

16F 4

{
1

4

(
F (DsK)
DsK

(s, t) + F (DsK)
Dη (s, t) + 2G(DsK)

DsK,Dη
(s, t)

)
−1

2

(
F (DK)
DsK

(u, t)+F (DK)
Dη (u, t)+G(DK)

DsK,Dη
(u, t)+G(DK)

Dsη,DK
(u, t)

)
+
(

1K(Kπ)
DsK,Dη

(s, t)− 2K(Kπ)
DsK,Dη

(s, t)
)

−
(

1K(ηK)
DsK,Dη

(s, t) + 2K(ηK)
DsK,Dη

(s, t)
)

+
∆DsD

6
(5M2

η + 8M2
K −M2

π)
(
2H1

Kπ(t) +HKπ(t)
)

−∆DsD

3
(M2

η − 4M2
K +M2

π)
(
2H1

ηK(t) +HηK(t)
)

+
∆DsD

8
(Iη + Iπ − 2IK)− s− u

4
(Iη + Iπ + 6IK)

}
. (B.13)

C Infrared regular parts of the loop integrals

The following expressions for the infrared regular parts are taken from ref. [61] with the

nucleon mass (pion) mass) replaced by the D meson (Goldstone boson) mass:

• one-point: a ∈ {D, Ds}

Ireg.
a = − M2

a

16π2
ln
M2
a

µ2
. (C.1)

• two-point: a ∈ {D, Ds} and b ∈ {π, K, η}

Hreg.
ab (s) =

1

16π2

(
1− log

M2
a

µ2

)
− s−M2

a

2M2
a

1

16π2

(
1− log

M2
a

µ2

)
+

1

32π2

[
M2
b

M2
a

(
3 + log

M2
a

µ2

)
−
(
s−M2

a

M2
a

)2

log
M2
a

µ2

]
+O(p3) . (C.2)

– 30 –



J
H
E
P
1
1
(
2
0
1
5
)
0
5
8

The power counting breaking term of F (cd)
ab (s, t) is of O(p2) and its explicit form reads

F (cd)
ab (s, t)PCB =

1

16π2

{
2(s−M2

a )(s−M2
c )

[
1

2
log

M2
c

µ2
−1

]
−(s−M2

a )2

[
8

9
− 1

3
log

M2
c

µ2

]
−(s−Mc)

2

[
1− log

M2
c

µ2

]
+ 2(t− 2M2

b )M2
c

[
1

9
− 1

6
log

M2
c

µ2

]}
. (C.3)

Since the difference between M2
a and M2

c is at least O(p2), the above expression can be

reduced to a simpler form

F (cd)
ab (s, t)PCB =

1

144π2

{[
2
(
t− 2M2

b

)
M2
c − 35

(
s−M2

c

)2]
+3
[
7
(
s−M2

c

)2 − (t− 2M2
b

)
M2
c

]
log

M2
c

µ2

}
. (C.4)
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