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Massive photons: an infrared regularization scheme for lattice QCD+QED
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The commonly adopted approach for including electromagnetic interactions in lattice QCD simu-
lations relies on using finite volume as the infrared regularization for QED. The long-range nature of
the electromagnetic interaction, however, implies that physical quantities are susceptible to power-
law finite volume corrections, which must be removed by performing costly simulations at multiple
lattice volumes, followed by an extrapolation to the infinite volume limit. In this work, we in-
troduce a photon mass as an alternative means for gaining control over infrared effects associated
with electromagnetic interactions. We present findings for hadron mass shifts due to electromag-
netic interactions (i.e., for the proton, neutron, charged and neutral kaon) and corresponding mass
splittings, and compare the results with those obtained from conventional QCD+QED calculations.
Results are reported for numerical studies of three flavor electroquenched QCD using ensembles
corresponding to 800 MeV pions, ensuring that the only appreciable volume corrections arise from
QED effects. The calculations are performed with three lattice volumes with spatial extents ranging
from 3.4 - 6.7 fm. We find that for equal computing time (not including the generation of the lattice
configurations), the electromagnetic mass shifts can be reliably extracted from computations on the

smallest lattice volume with comparable or better precision than the conventional approach.

PACS numbers: 11.15.Ha, 12.38.-t, 12.38.Gc¢

INTRODUCTION

Approximately 95% of the visible mass of the uni-
verse arises from the confinement of quarks in nucle-
ons by the strong interactions of Quantum Chromody-
namics (QCD). The relative mass difference between the
proton and neutron is approximately 0.07%, and is at-
tributed to two sources of isospin symmetry breaking in
the Standard Model, namely, differences in the down and
up quark masses and their electromagnetic charges. Al-
though these breaking effects are minute, they play an
essential role in our understanding of the universe. For
example, the primordial abundance of light nuclear ele-
ments in the early universe is exquisitely sensitive to the
excess mass of the neutron compared to the proton [ 2].

Lattice QCD (LQCD) provides a first principles
approach for determining isospin breaking effects in
hadronic and nuclear processes. There are a handful of
LQCD calculations of the strong contribution to the nu-
cleon mass splitting [2H8] and a comparable number that
determine the electromagnetic corrections [4, 6HI6]. One
impressive calculation includes both sources of isospin
breaking simultaneously and yields, among other quanti-
ties, a postdiction for the nucleon isospin splitting with
~ 5o statistical significance [§]. There exists an alternate
means for determining the electromagnetic self-energy
of the nucleon from the Cottingham Formula [I7H20],
which makes use of experimental cross sections as in-

put to dispersion integrals. However, the uncertainty at-
tained with this method [2IH23] is not yet competitive
with the LQCD calculations.

Although inclusion of electromagnetism in LQCD is
theoretically straight-forward [24] [25], it presents practi-
cal challenges due to the long-range nature of the electro-
magnetic (QED) interactions. Specifically, such interac-
tions give rise to power-law finite volume corrections, and
their removal via extrapolation requires computationally
demanding simulations performed at multiple volumes.
An analytic understanding of the power-law finite vol-
ume effects within such setups [26], 27] have enabled re-
liable finite volume extrapolations of the single hadron
spectrum.

Despite the successful application of present tech-
niques, there are a number of reasons for considering
new methods. Control over finite-volume modifications
to light nuclear binding energies seem to require partic-
ularly large volumes [26]. There are quantities in ad-
dition to the spectrum for which precise knowledge of
the QED modifications are needed, for example, correc-
tions to hadronic matrix elements [28] and charged par-
ticle scattering [29], both of which suffer from infrared
(IR) challenges. LQCD calculations are performed with
a number of different ultraviolet (UV) regulators, provid-
ing valuable cross-checks on the continuum extrapolation
of many important quantities [30]. Multiple IR regula-
tors can do the same for calculations that include QED,



TABLE I. gg meson mass shifts.

My /Mg am. AMyy /M Amgq /M (¢ =d,s)
0 0 0.000560(40)(74) _0.00018210(33)(15)
1/14  0.0424471 0.001089(21)(14) 0.00029882(54)(36)
1/7  0.084894  0.001059(21)(15) 0.00029127(53)(36)
1/4  0.148565  0.000971(20)(17) 0.00026946(52)(43)
1/3  0.198087  0.000865(20)(19) 0.00024310(51)(46)
5/12  0.247608  0.000726(19)(20) 0.00020818(50)(48)
1/2 029713 0.000551(19)(21) 0.00016464(48)(51)
7/12  0.346652  0.000342(19)(21) 0.00011250(47)(53)
1 059426  -0.001184(16)(25) -0.00026832(41)(60)

however, at present there are only a few other methods
under development [31][32]. Finally, computationally less
demanding means of accounting for IR effects are always
welcome.

Motivated by these considerations, we demonstrate
the viability of an alternative IR regulator for lattice
QCD+QED simulations: namely, the introduction of a
photon mass m.. Although a photon mass term man-
ifestly violates gauge-invariance, its effects on hadronic
quantities can be reliably quantified and accounted for
within an effective theory framework. The introduction
of a new scale, m,, implies an additional extrapolation
within our approach. With the aid of analytic formulas,
however, we demonstrate that for the spectrum, a sin-
gle extrapolation in m., at fixed volume is sufficient to
achieve results consistent with conventional approaches.
In the remaining sections, we present the salient features
of our calculation.

ANALYTIC CONSIDERATIONS

In continuum Euclidean spacetime, the R, gauge fixed
action for the massive photon is given by

1 1
4ij : (6,LA )%+ 5miAi (1)
where F,, = 0,A, — 0,A,; throughout this study, we
work in Landau gauge, corresponding to the limit & — 0.
An Abelian theory, such as QED, with a massive vector
gauge field is still perturbatively renormalizable. This
well known result follows from the fact that it is possi-
ble to find a BRST transformation that leaves the La-
grangian invariant up to a total divergence [33]. Keeping
in mind that the BRST symmetry is not a property of the
continuum theory but rather of a gauge invariant ultravi-
olet cutoff [34], one can show that the renormalizability
follows from the power-counting theorems for a lattice
regularization [35].

We consider three forms of corrections to correlators
and hadron mass differences at leading order in the fine-
structure constant o = e?/(4n). These corrections arise
from either the zero mode contribution to the partition

Ly=

function, the presence of a finite photon mass, or finite
volume effects. The analytic forms of these corrections
are determined from an effective theory for hadrons of
mass M (M = m,,, m,, mg+, and mgo) and charge @,
with a cutoff given by Ay ~ M; the point-like treatment
of hadrons is expected to break down at Ayy ~ 2m..
The effective field theory is a generalization of nonrela-
tivistic QED (NRQED) [36] for hadrons that includes
a photon mass term, and additional operators uncon-
strained by gauge invariance.

(1) Zero mode: As demonstrated below, for sufficiently
small m., the zero mode of the temporal photon field
appearing in Eq.[l]must be treated exactly. In that limit,
the charged particle two-point function has the form

C(r) = Ze Mr—a7’ (2)

where Z is an overlap factor, and the zero-mode contri-
bution appears in = = (4raQ?)/(2m2 L*T).

(2) Photon mass: The hadron’s electromagnetic mass
shift can be determined as a function of photon mass,
order-by-order in an expansion in the hadron’s Comp-
ton wavelength. With the electromagnetic mass written
as M(a,m,), we define the mass shift AM (o, m,) =

M(a,my) — M(e,0), which is ultraviolet finite. These
infrared shifts are given by
@
AMLO — —§Q2m7,
2
NLO _ 2 @ 2) my
AMNEO = (Ce @) 57 (3)

The leading-order (LO) expression is non-analytic in the
squared photon mass, whereas the next-to-leading order
(NLO) expression is analytic but arises from both loops
and local contributions. The latter are accompanied by
an unfixed parameter C. The NNLO correction is of
order AMNNEO — O(m3 /M?).

(3) Finite volume: The effects of finite volume can sim-
ilarly be calculated using an NRQED approach. This
is a finite photon mass generalization of that pur-
sued by [26] 27]. The finite volume corrections to the
electromagnetic mass are written as 0, M (o, m.,L) =
M (o, my, L) — M(c,m, 00), and given up to NLO by

S MEO = 27raQ2mﬂ, [Il(va) — (m,ylL)S} ,
¥ [2Z0/0(mo L) + T3 2(m )] ,(4)

m
5LMNLO 7TOLQ2 i

where

1 Ks_, (zlv])
Ln(z) = i3 . 3 b
(=) 2"tagaT(n) :; (zlp))2 " (5)

and v € Z3. The subtraction at LO is necessitated by
the exact treatment of the zero mode of the temporal
photon. In the limit m,L — 0, and after all zero-
mode contributions are subtracted, these expressions re-
duce to the known results: 6y ML° = aQ?c;/(2L) and
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FIG. 1. Zero-mode adjusted (filled) and unadjusted (open) ef-
fective mass difference for the kaon splitting (m~/m, = 1/14
and L/a = 24). Diagonal grid lines have slope 2z; red/blue
points correspond to different sources. Gray bands correspond
to statistical and systematic uncertainties on the extracted
value for AM.g.

S MNLO = aQ?c; /(ML?), where ¢; = —2.83729---;
higher order corrections behave as §; MVNLO = O(L~3),
and 6, MVNNLO — O(L=%). Note that the leading non-

vanishing correction for neutral baryons (mesons) ap-
pears at NNLO (NNNLO).

LATTICE PARAMETERS AND ENSEMBLES

Electroquenched numerical calculations of the hadron
spectrum were performed using a modified version of the
Chroma software suite [37]. Studies were performed us-
ing dynamical SU(3) flavor symmetric isotropic QCD
gauge field configurations generated using a tadpole-
improved Liischer-Weisz gauge action and clover fermion
action. The configurations correspond to a single lat-
tice spacing a = 0.1453(16) fm and three spatial extents:
L ~ 3.48 fm, 4.64 fm and 6.96 fm. The pion (kaon)
and nucleon masses in physical units are m, = mg =
807.0(0.2)(8.9) MeV and m,, = 1.634(0)(18) MeV, with
uncertainties from a combined statistical and fitting sys-
tematic and lattice spacing, respectively. The choice of
masses ensures that the only appreciable finite-volume
corrections to hadron masses are those arising from QED
effects. The QCD ensembles used in this work comprise
956 (L/a = 24), 515 (L/a = 32) and 342 (L/a = 48)
configurations and are a subset of those described in [?
]; further details regarding the ensembles, lattice action
and parameters can be found there.

Uncorrelated photon field configurations A, were gen-
erated using two different lattice actions: a conventional
massless Coulomb gauge-fixed action with the zero-mode
removed [IT], and a naive lattice discretized form of Eq.
where derivatives are replaced by finite differences. Note
that in Euclidean space, Landau gauge is a complete

gauge-fixing condition, and therefore in the latter case,
the path integration over nonzero-modes is well defined
in the m., — 0 limit. The photon mass values considered
in this work lie on the interval m,/m, € [1/14,1], and
are provided in Table[] In both cases, we obtain lattice
QCD+QED gauge configurations by post-multiplying
the QCD configurations by e**@i4 where Q, = 2/3,
Qa4 = Qs = —1/3. Correlation functions were then esti-
mated on the background QCD+QED gauge fields. For
studies of isospin splittings, the electroquenched approx-
imation results in errors that appear at a higher order in
isospin breaking.

In the electroquenched theory, the fine structure cou-
pling does not renormalize and therefore we take it to
be equal to its experimental value, a~! = 137.036.. .,
measured in the Thomson limit. The presence of elec-
tromagnetic interactions demands renormalization of the
valence bare quark masses my, however. Since our lat-
tice regulator breaks chiral symmetry, this leads to an
additive shift in the quark mass. We tune the valence
quark masses so that, in the presence of electromagnetic
interactions, the neutral gg meson mass mg, obtained
from the connected part of the gg correlation function is
sufficiently close to the pion (kaon) mass m,. For our
electroquenched calculation, this choice of renormaliza-
tion is robust but the quark mass renormalization in the
full QCD+QED does not allow for a unique separation of
the QED and QCD effects [39]. All measurements were

performed using valence quark masses am, = —0.25501
and amg = ams = —0.24750 (the QCD bare quark mass
is amg = —0.2450); a summary of the measured values

of Amgq /My for various m.,/m, < 1 are provided in Ta-
ble[l|for L/a = 48 ensembles. In all cases, the tuning was
achieved with sub-percent precision.

Guided by chiral perturbation theory, we can estimate
the induced strong isospin-breaking effects of any mis-
tuning on the spectrum. For the kaon, one finds

AmK+,Ko

~

1 Amyy — Amgg

~ = 6
mg 2 mg ( )
which yields Ampg+_go/mi < 0.0004. In the case of
the nucleon, the correction depends upon an unknown
low-energy constant

A??:Ln_p ~ ad_UQ(Adet Amuu) m%ﬁ . (7)
My azs 47Tf7rmn

We can estimate the parameter oy, from the LQCD
determination of the mg — m,, contribution to the nu-
cleon mass splitting [2H8] and find Am,_,, /M, < 0.0002.
In both cases, mistuning is a potentially sizable correc-
tion to our results, which affects both the m, # 0 and
m~ = 0 determinations. More precise quark mass tuning
is required for practical applications, but is not needed

in the present proof-of-principle study.



ANALYSIS AND RESULTS

Shell-shell and shell-point correlation functions were
estimated using a single measurement per configura-
tion, with a randomly chosen spacetime source loca-
tion. Following [9], we average observables over +e and
—e on a configuration-by-configuration basis in order to
exactly cancel off the O(e) contributions to statistical
noise. Mass differences due to electromagnetic effects
can be determined from the late-time dependence of sin-
gle hadron correlation functions C4(7) and CP(7), by
studying the plateau region of an effective mass differ-
ence AMAB (1) = M2 (1) — ME(). By exploiting the
correlations between A and B, we are able extract a clear
signal for the mass difference. For the nucleons, we con-
sider a generalized effective mass formula of the form:

1 C(t+a
Meff,exp (T) - _a lOg (CV(T))

which neglects the backward propagation of states on a
lattice of finite temporal extent 7. For mesons, we ac-
count for the backward propagating state by considering
a generalized effective mass formula of the form:

1
Mot cosn(T) = o cosh™!

+2z7 4+ 20, (8)

eh(‘r,a) + eh(ﬂfa)
2

—zT (9)

where

h(r,a) = za(a — T + 27) + log Clr+a) . (10)

C(r)

Both formulas remove the leading zero-mode contribu-
tion to the correlator appearing in Eq. [2] which if left un-
accounted for would manifest as linear growth of AM.g
as a function of 7 with slope 2x. Although this con-
tribution is negligible compared to the hadron masses,
for the lattice parameters considered it can be compara-
ble in magnitude to the mass differences we wish to ex-
tract. Fig. [l] provides an explicit example of the behavior
of AMg(7) for the kaon mass splitting, computed both
with and without the zero-mode contribution accounted
for. Note that for neutral hadrons = 0 and the expres-
sions above for the generalized effective mass reduce to
their conventional forms.

Mass differences were determined for all volumes and
photon masses via a correlated constant least-squares fit
to AM.,g in the plateau region, as demonstrated in Fig.
An analogous determination from exponential fits to a
ratio of correlation functions (formed under a bootstrap)
yielded consistent results. Systematic uncertainties were
estimated by varying the region over which fits were per-
formed, and all uncertainties were added in quadrature.
Extracted mass shifts were subsequently extrapolated to
vanishing photon mass and/or the infinite volume limit
using the fit formula:

K
AM(a,Lymy) = AM(a) + > AMYN L0 (a,m.)
k=0
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FIG. 2. Mass differences, extrapolated to infinite volume,
obtained from Coulomb gauge-fixed ensembles.

K
+ 36, MV O, m,, L) (11)
k=0

where K and K, indicate the order of each extrapola-
tion. In the case of mass splittings, an appropriate linear
combination of mass shift formulas were used. Note that
for the infinite volume extrapolations of m, = 0 mass

differences, AMNkLO(oz,m,y) = 0 for all £.

We carry out two independent analyses to test the via-
bility of our proposal: 1) an infinite volume extrapolation
of the m, = 0 mass differences, as is conventionally per-
formed, and 2) a combined m., — 0 and L — oo extrap-
olation of mass differences using data at a fized finite vol-
ume. Both types of extrapolation were performed using
Eq. noting that many of the lowest-order contribu-
tions are fixed by theory. In the case of the m, extrapo-
lations, for sufficiently large m., L, the contributions from
the second summand become highly suppressed, thus en-
abling a reliable infinite volume extrapolation for fixed
L. The numerical and theoretical volume corrections are
in excellent agreement down to at least m,L ~ 1.

Results for the first analysis are provided in Table [[T]
and representative fits are shown in Figure [2] (taking
Kj = 1). Results for the combined extrapolation on
243 and 323 ensembles (taking K = 1) are provided in
Table[[IT|and representative fits are displayed in Figure[3]
Corresponding 483 extrapolations for the kaon and nu-
cleon mass difference are consistent with these to within
1o and 20, respectively. A global weighted average of all
our fits yields the extrapolated electromagnetic splittings

A _ [ 3.08(06)(33) MeV ., #0
MK, Ko 307(06)(33) MeV My = 0’
_ [ 1.18(11)(33) MeV  m,, #0
Amy_p, { 1.23(10)(33) MeV m., =0 (12)

where the first uncertainty is our combined statistical
and systematic fitting uncertainties and the second is our
conservative estimate of the mistuning uncertainty.
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L/a = 24. Fits were performed using data at all m+ # 0 (right) and only the middle four (of eight) values of m., (left).

TABLE II. Volume extrapolated mass splittings (m~ = 0).

splitting K x2/dof AM/M x 10°
p—n 1 0.04/2 0.76(05)
2 0.04/1 0.70(13)
KT —K° 1 0.88/2 3.81(06)
2 0.17/1 3.68(20)

TABLE III. Representative m. extrapolated mass splittings.

splitting L/a m~/m, range K

x?/dof AM/M x 10?

p—n 24 1/14 -1 2 0.09/5 0.79(06)
24 1/4-1/2 1 0.06/2 0.81(08)

24 1/14-1/7 0 0.00/1 0.81(07)

32 1/14 -1 2 0.16/5 0.68(08)

32 1/4-1/2 1 0.04/2 0.73(12)

32 1/14-1/7 0 0.05/1 0.69(08)

KT —K° 24 1/14 -1 2 0.42/5 3.77(06)
24 1/4-1/2 1 0.12/2 3.79(06)

24 1/14-1/7 0 0.32/1 3.79(06)

32 1/14 -1 2 0.09/5 3.84(06)

32 1/4-1/2 1 0.03/2 3.85(08)

32 1/14-1/7 0 0.03/1 3.86(09)

CONCLUSION

This work demonstrates that reliable infinite volume
estimates of hadron mass differences induced by electro-
magnetic effects are possible with only a single lattice vol-
ume of (3.4 fm)3. On pre-existing lattice configurations,
and for equal computational cost, we obtain an equally
precise uncertainty in extrapolated differences as com-
pared to the traditional method. This cost comparison
does not account for the significant overhead of generat-
ing the configurations in the first place. The results of
our analysis pave the way for a more complete treatment
of QED corrections using this approach. When consider-
ing more involved LQCD calculations, such as charged-
particle scattering [29], our method provides a mass gap

to produce a photon, thus increasing the range of energy
for which the standard Liischer method [40, 4] for ob-
taining the scattering phase shift can be employed. It
will be interesting to explore these types of calculations,
and also to use our method with chiral fermions, which
do not suffer from additive quark mass renormalization.
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