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Abstract

Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign

oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such

studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons,

and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the

“symmetry-sign extrapolation” method, which allows us to use the approximate Wigner SU(4) sym-

metry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations

to nuclear systems where the sign problem is severe. We benchmark this method by calculating

the ground-state energies of the 12C, 6He and 6Be nuclei, and discuss its potential for studies of

neutron-rich halo nuclei and asymmetric nuclear matter.

PACS numbers: 21.10.Dr, 21.30.-x, 21.60.De
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I. INTRODUCTION

Lattice Chiral Effective Field Theory (EFT) is an ab initio framework [1–5] which has

recently been applied to studies of the structure of light and medium-mass nuclei [6–9],

as well as to the physics of dilute neutron matter [10, 11]. In particular, the structure of

12C and 16O has recently been elucidated using lattice Chiral EFT [12–14]. The role of

the Hoyle state in 12C has also been investigated, along with its anthropic implications for

the viability of carbon-based life as we know it [15, 16]. These successes notwithstanding,

lattice Chiral EFT has so far mainly been applied to “alpha nuclei”, i.e. to nuclei with A

a multiple of 4 and with an equal number of protons and neutrons. This limitation is due

to the appearance of sign oscillations (the so-called sign problem) in the Projection Monte

Carlo (PMC) calculation at large Euclidean time. The sign problem also necessitates the use

of relatively large lattice spacings of a ≃ 2 fm, in order to moderate the repulsive short-range

contributions in the leading-order (LO) lattice Chiral EFT Hamiltonian. Even then, the low-

lying spectra of most alpha nuclei can only be extracted after considerable extrapolation in

Euclidean time. For instance, this has so far precluded studies of neutron-rich halo nuclei

where sign oscillations are more severe.

In spite of the sign problem prevalent in lattice Chiral EFT, useful results have been made

possible by the observation that nuclei can be approximately described by a Hamiltonian

which respects the Wigner SU(4) symmetry where spin and isospin degrees of freedom are

interchangeable [17]. Since Euclidean time projection with an SU(4) symmetric Hamiltonian

is possible for most nuclei without a sign problem, one can obtain a trial wave function which

is much closer to the ground state of the full Hamiltonian. The shorter Euclidean projection

time possible with the full Hamiltonian then becomes sufficient, and moreover the coupling

constant of the SU(4) symmetric Hamiltonian can be varied in order to generate a large

set of independent trial states. Such self-consistent extrapolation in Euclidean time, also

referred to as “triangulation”, allows for a much more precise determination of the properties

of the nuclei under investigation than would otherwise be possible. The usefulness of the

Wigner SU(4) symmetry was also noted earlier in a different but related context. It was

shown in Ref. [18], that the nuclear interactions are SU(4) symmetric in the limit of infinite

colors, NC → ∞. Further insight was obtained in Ref. [19], where it was found that in the

limit of large S-wave scattering lengths, the two-nucleon interactions exhibit Wigner SU(4)
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symmetry.

We shall now take the idea of the SU(4) symmetric auxiliary Hamiltonian one step further

by considering a weighted sum of the full and SU(4) symmetric Hamiltonians. In particular,

the weight of each component in the Hamiltonian is controlled by a parameter dh such

that for dh = 1 we have the full Hamiltonian only, and for dh = 0 we have the SU(4)

symmetric Hamiltonian only. For values 0 ≤ dh ≤ 1, we have a linear combination of the

two Hamiltonians. The properties of the physical system are then found by extrapolation

to dh → 1, combined with an extrapolation in Euclidean time. As will be shown here, this

allows us to circumvent the sign problem to a large extent, and opens up the possibility

to study neutron-rich nuclei and systems where N 6= Z. It also allows us to access much

larger Euclidean projection times with the physical Hamiltonian, thereby greatly increasing

the level of confidence in the Euclidean time extrapolation. We shall demonstrate this

“symmetry-sign extrapolation” (SSE) method by refining our earlier results for the ground

state of 12C, and by computing the ground state energies of 6He and 6Be.

We begin in Section II by introducing the SSE method and discussing the origin of the

sign problem in lattice Chiral EFT, and in Section III we present our method of analyzing

the PMC data, along with our updated results for 12C. In Section IV, we apply symmetry-

sign extrapolation to the 6He nucleus and its mirror isobar 6Be. Finally, in Section V we

discuss the prospects for extending our method to more neutron-rich nuclei and to nuclei

where N 6= Z.

II. THE SYMMETRY-SIGN EXTRAPOLATION METHOD

In order to introduce the SSE method, we first briefly recall the ingredients of lattice

Chiral EFT at LO in the EFT expansion in Q/Λ. The LO contribution is treated non-

perturbatively, while NLO and higher order terms are included as a perturbative correction.

We use the same notation as in Ref. [4], and further details of the lattice action can be found

there. At LO, the lattice Chiral EFT partition function is given by

ZLO =

∫

Dπ′
I exp [−Sππ(π

′
I)] Tr

{

MLO(π
′
I , Nt − 1) · · · MLO(π

′
I , 0)

}

, (1)

where π′
I is the pion field and Sππ is the free pion lattice action. As in Ref. [4], we are using

an improved LO operator where the contact interactions depend on the momentum transfer
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through a smooth smearing function f(~q). The normal-ordered LO transfer matrix operator

at Euclidean time step nt = 0, . . . , Nt is

M
(nt)
LO (π′

I) = : exp [−HLO(π
′
I , nt)αt] :, (2)

with

H
(nt)
LO (π′

I) = Hfree +
1

2
C

∑

~q

f(~q) : ρ(~q)ρ(−~q) : + 1

2
CS2

∑

~q,S

f(~q) : ρS(~q)ρS(−~q) :

+
1

2
CI2

∑

~q,I

f(~q) : ρI(~q)ρI(−~q) : +
1

2
CS2,I2

∑

~q,S,I

f(~q) : ρS,I(~q)ρS,I(−~q) :

+
gA

2fπ
√
qπ

∑

~n,S,I

∆Sπ
′
I(~n, t) ρS,I(~n), (3)

where the spin vector S and the isospin vector I indices range from 1 to 3, the parameter

αt ≡ at/a is the ratio of temporal and spatial lattice spacings, ∆S is the lattice gradient

along direction S, and qπ ≡ αt(m
2
π+6). The operator ρ is the total nucleon density N †N , ρS

is the spin density N †σSN , ρI is the isospin density N †τIN , and ρS,I is the isospin density

N †σSτIN . The couplings C, C
S2, CI2

and C
S2,I2

satisfy

C = −3CS2,I2 = −3

2
(CS2 + CI2), (4)

such that the smeared contact interactions only contribute to even-parity channels, where

we have antisymmetry in spin and symmetry in isospin (or vice versa).

The PMC calculations are performed with auxiliary fields coupled to each of the densities

ρ, ρS, ρI , and ρS,I . The LO auxiliary-field transfer matrix at Euclidean time step nt is

M
(nt)
LO,aux(s, sS, sI , sS,I , π

′
I) = : exp







−Hfreeαt −
gAαt

2fπ
√
qπ

∑

~n,S,I

∆Sπ
′
I(~n, nt)ρS,I(~n)

+
√

−Cαt

∑

~n

s(~n, nt)ρ(~n) + i
√

C
S2αt

∑

~n,S

sS(~n, nt)ρS(~n)

+ i
√

C
I2
αt

∑

~n,I

sI(~n, nt)ρI(~n) + i
√

C
S2,I2

αt

∑

~n,S,I

sS,I(~n, nt)ρS,I(~n)







: , (5)

where the physical values of the LO operator coefficients are such that all factors inside the

square root symbols in Eq. (5) are positive. We now also define an SU(4) symmetric transfer

matrix,

M
(nt)
4 = : exp [−H4αt] :, (6)
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with

H4 = Hfree +
1

2
C4

∑

~q

f(~q) : ρ(~q)ρ(−~q) : , (7)

where C4 < 0 is the associated coupling constant. Again, we can rewrite the interaction

using auxiliary fields, giving

M
(nt)
4,aux(s) = : exp

{

−Hfreeαt +
√

−C4αt

∑

~n

s(~n, nt)ρ(~n)

}

: . (8)

Let us now consider the projection amplitude we obtain for an A-body Slater determinant

initial state

|Ψ〉 = |ψ1〉 ∧ |ψ2〉 ∧ · · · ∧ |ψA〉 , (9)

with an auxiliary-field transfer matrix M
(nt)
aux . The projection amplitude is given by det(M),

where M is the A×A matrix we obtain from the single nucleon amplitudes

Mi,j = 〈ψi|M (Nt)
aux · · ·M (0)

aux |ψj〉 . (10)

Let us define U∗[M ] as the set of unitary matrices such that U †MU =M∗. It can be shown

that det(M) is positive semi-definite if there exists some antisymmetric matrix U ∈ U∗[M ].

The proof follows from the fact that the spectra of M and M∗ must coincide, and the

real spectrum of M must be doubly degenerate as a result of the antisymmetry of U [20].

A straightforward generalization of this result is that the projection amplitude det(M) is

positive semi-definite if there exists a unitary operator U ∈ U∗[M
(nt)
aux ] for all nt = 0, · · · , Nt

and if the action of U on the single-particle states |ψ1〉, · · · , |ψA〉 can be represented as an

antisymmetric A× A matrix.

We note that U∗[M
(nt)
4,aux] contains the spin and isospin matrices σ2 and τ2. PMC calcu-

lations with the SU(4)-symmetric theory are then free from sign oscillations whenever the

initial single nucleon states are paired into spin singlets or isospin singlets [21, 22]. We may

then define the “interpolating Hamiltonian” H as

H ≡ dhHLO + (1− dh)H4, (11)

which depends on dh as well as the (unphysical) coupling constant C4. This can also be
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viewed as giving the interaction parameters a linear dependence on dh,

C(dh) ≡ dhC + (1− dh)C4,

CS2(dh) ≡ dhCS2, CI2(dh) ≡ dhCI2,

CS2,I2(dh) ≡ dhCS2,I2, gA(dh) ≡ dhgA. (12)

By taking dh < 1, we can always decrease the sign problem to a tolerable level, while simul-

taneously tuning C4 to a value favorable for an extrapolation dh → 1. Most significantly,

we can make use of the constraint that the physical result at dh = 1 should be independent

of C4. The dependence of calculated matrix elements on dh is smooth in the vicinity of

dh = 1. In what follows, we shall explore the properties of H for various nuclei of physical

interest, and determine to what extent it can be used to circumvent the sign problem, which

at dh = 1 becomes exponentially severe in the limit of large Euclidean time.

We note that an extrapolation technique similar to SSE has been used in Shell Model

Monte Carlo calculations for over two decades [23, 24]. In that case, the extrapolation is

performed by decomposing the Hamiltonian into “good sign” and “bad sign” parts, HG and

HB, respectively. The calculations are then performed by multiplying the coefficients of HB

by a parameter g and extrapolating from g < 0, where the simulations are free from sign

oscillations, to the physical point g = 1. For SSE, the analysis in terms of “good” and “bad”

signs is not the entire story. Most of the interactions can be divided into two groups which

are “sign free” by themselves, such that a large portion of the sign oscillations is due to

interference between the different underlying symmetries of the two groups of interactions.

Since this effect is quadratic in the interfering interaction coefficients, the growth of the sign

problem is more gradual. We therefore expect to be able to extrapolate from values not so

far away from the physical point dh = 1.

The LO auxiliary-field transfer matrixM
(nt)
LO,aux contains pion interactions with the matrix

structure σSτI acting on single nucleon states, and smeared contact interactions with matrix

structures 11, iσS, iτI and iσSτI . Since

σ2 ∈ U∗[σSτ2], U∗[iσS ], U∗[iτ2], U∗[iσSτ1], U∗[iσSτ3], (13)

σ2τ3 ∈ U∗[σSτ1], U∗[iσS ], U∗[iτ1], U∗[iσSτ2], (14)

we note that if we have an initial state with an even number of neutrons paired into spin-

singlets and an even (but in general different) number of protons paired into spin-singlets,
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then there will exist an antisymmetric representation for both σ2 and σ2τ3 on the single

nucleon states. The only interaction matrix structures in M
(nt)
LO,aux not included in both

Eqs. (13) and (14) are iτ3 and σSτ3. Hence, the sign oscillations in det(M) will be produced

by iτ3 and σSτ3, and the interference between the two sets of interactions in Eqs. (13)

and (14). For initial states where the neutrons and protons cannot be paired into spin-

singlets, there will be additional sign oscillations due to these unpaired nucleons. However,

the number of such unpaired nucleons can often be kept to a minimum.

III. RESULTS FOR CARBON-12

We shall first discuss our results for the 12C nucleus, as this provides us with a convenient

test case for the SSE method. We extend the PMC calculation to larger values of the

Euclidean projection time than would otherwise be possible, and verify how well these

new results agree with earlier calculations. Thus, we shall work at finite Euclidean time,

extrapolate such data to dh → 1, after which the extrapolation Lt → ∞ is performed. For

the case of the 6He nucleus, we shall consider the opposite order of limits and discuss in

which cases either method is preferable.

Our strategy for data analysis is to perform a global fit to all PMC data obtained for

different values of dh and the coupling constant C4 of the SU(4) symmetric Hamiltonian.

The ansatz is

X(dh, C4, n) ≡ X0 +X
SU(4)
0 (1− dh) +

n
∑

j=1

X
SU(4)
j sin(jπdh), (15)

where the parameters X0 and X
SU(4)
i are determined by a weighted least-squares fit. The

superscript “SU(4)” implies that such parameters depend on C4. On the other hand, X0

represents the extrapolated value of the observable at dh = 1, is therefore by definition

independent of C4, and provides an important constraint for the least-squares fit. The de-

termination of X0 for different observables provides the physical information of the analysis,

and is obtained by a simultaneous fit to multiple instances of the (unphysical) coupling

constant C4. In general, the results for dh 6= 1 depend on the choice of C4.

The “order parameter” n in Eq. (15) is adjusted to produce a χ2 per degree of freedom

≃ 1. For most observables, we find that n = 1 is sufficient, with some notable exceptions

that we shall describe later. For n ≥ 4, the χ2 per degree of freedom quickly saturates
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below 1 and our fits become over-constrained. When different values of n produce similar χ2

per degree of freedom, we choose the lowest order for which we perform the extrapolation

dh → 1. Our fitting function (15) is suggested by the expectation that the dependence of

observables on dh should, according to perturbation theory, be linear around dh ≃ 0 and

dh ≃ 1. The linearity around dh = 1 is incorporated by the sine function in Eq. (15).

In Figs. 1-4, we show PMC data and extrapolations in dh for the leading order (LO) con-

tribution, the next-to-leading order two-nucleon force (NLO), the electromagnetic and strong

isospin breaking (EMIB) and the next-to-next-to-leading order three-nucleon force (3NF),

FIG. 1. PMC data at Nt = 12.5 for 12C, with the upper figures showing the LO energy and

the lower figures the shift due to two-nucleon forces at NLO. The left column shows the entire

range in dh, while the right column shows a close-up around the physical point dh = 1. The

red lines are a simultaneous fit to all the PMC data using Eq. (15), and each line corresponds

to the Hamiltonian (11) with a different choice of the coupling constant C4. The result of the

extrapolation dh → 1 is given by the red points in the right column of plots, along with the

statistical uncertainty of the extrapolation. The error bars of the individual data points at dh < 1

represent the Monte Carlo uncertainties. The cyan error bands correspond to the 67% confidence

levels of the extrapolations.
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FIG. 2. PMC data at Nt = 12.5 for 12C, with the upper figures showing the total contribution

from electromagnetic and strong isospin breaking (EMIB) operators, and the lower figures showing

that of the three-nucleon force (3NF) operators at NNLO. Notation and conventions are identical

to Fig. 1.

for the 12C ground state energy at Nt = 12.5 and Nt = 14.5. The PMC data points in these

figures are comprised of runs with different choices of C4 in the underlying SU(4) symmetric

Hamiltonian. These are C4 = −3.2 × 10−5, −3.4 × 10−5, −3.8 × 10−5, −4.2 × 10−5 and

−4.8 × 10−5 (in units of MeV−2), which can be distinguished as separate bands in the fig-

ures. The uppermost band corresponds to C4 = −3.2 × 10−5 MeV−2, and the lowest band

to C4 = −4.8 × 10−5 MeV−2. With the exception of the NLO contribution, all fits were

performed with n = 1. For the NLO contribution, a higher order fit of n = 3 was used, in

order to avoid introducing a bias around dh ≃ 1 due to the increasingly accurate data at

small values of dh. The higher order fit function has sufficient freedom to fully account for

the data at small dh.

From our PMC results, we find that even for large Euclidean projection times Nt, the

uncertainties of our calculations are well under control for dh < 0.8, which shows that the sign

problem is under control for such values of dh. However, as dh → 1 the uncertainties clearly
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FIG. 3. PMC data (LO and NLO contributions) at Nt = 14.5 for 12C. For a full description of the

data and analysis, see the caption of Fig. 1.

grow aggressively, such that the sign problem reaches full strength at dh = 1. As previous

work has demonstrated, PMC calculations for 12C at dh = 1 become very impractical for

Nt > 10. How far in Nt the SSE analysis can be carried out depends on how robust the

extrapolation in dh can be made. We shall find that our extrapolated results remain robust

as long as PMC calculations can be carried out for dh > 0.75, and that this range could

possible be extended to smaller dh by choosing C4 such that the extent of the linear region

around dh = 1 is maximized.

For 12C, we have performed PMC calculations using SSE for Euclidean projection times

between Nt = 9.0 and 14.5 for one of the trial states used in Ref. [8]. It should be noted that

the results of Ref. [8] correspond to dh = 1, and could thus only be extended to Nt ≃ 10

before the sign problem became prohibitive. In Fig. 5, we extend the dataset of Ref. [8]

with the new SSE data, and in Fig. 6 we combine all of our new results for 12C with those

originally shown in Ref. [8]. We have also repeated the extrapolation in Euclidean time

with this updated data, with a comparison and consistency check given in Table I. We find

that our updated extrapolation is in agreement with the previous results of Ref. [8], and in
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FIG. 4. PMC data (EMIB and 3NF contributions) at Nt = 14.5 for 12C. For a full description of

the data and analysis, see the caption of Fig. 2.

most cases with a slightly reduced uncertainty. While the reduction in uncertainty is small,

this is due to the fact that our new dataset is quite limited in comparison to that used in

Ref. [8]. Moreover, the main objective of our study of 12C is to establish that the SSE data

are consistent with those obtained at dh = 1, when such calculations are not prohibited by

the sign problem.

It is worthwhile to investigate the stability of our extrapolated results as successive data

points near dh = 1 are removed. In Fig. 7, we show the results of such a study for the

ground state energy of 12C at LO. Each data point in Fig. 7 corresponds to an extrapolation

dh → 1, such that the placement of the data point on the horizontal axis indicates the “break

point” at which data is excluded from the analysis. For example, for an extrapolated value

placed on the horizontal axis at dh = 0.8, all PMC data with dh > 0.8 have been excluded.

For guidance, we also show a constant fit of the extrapolated points with 90% confidence

bands. The left panel of Fig. 7 shows data at Nt = 12.5, while the right panel corresponds

to Nt = 14.5. In both cases, the extrapolated points located on the horizontal axis at dh = 1

are the ones shown in Fig 6.
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FIG. 5. Comparison of the new PMC data for 12C from the SSE analysis (red filled squares) and

previous calculations [8] for dh = 1 (blue open squares). The notation for the various contributions

to the ground state energy E12 coincides with that of Table I. The results correspond to a trial

state with an SU(4) coupling of −7.0× 10−5 MeV−2, not to be confused with the SU(4) coupling

C4 for the SSE analysis. It should be noted that the exponential deterioration of the Monte Carlo

error has been circumvented. Also, these data should not be interpreted in terms of a “plateau” as

a function of Nt. An analysis of the dependence on Nt is given in Fig. 6, and a concise description

of the Euclidean time extrapolation method can be found in Ref. [25].

TABLE I. Contributions to the ground state energy of 12C after extrapolation to infinite Eu-

clidean projection time. The contributions from the improved leading order amplitude (LO), the

two-nucleon force at next-to-leading order (NLO), the electromagnetic and strong isospin break-

ing (EMIB) and the three-nucleon force at next-to-next-to-leading order (3NF) are shown sepa-

rately. The left column shows the results using the PMC data for dh = 1 from Ref. [8], while the

right column shows the results when the SSE data from this work are included.

Ref. [8] + SSE

LO −96.92(16) −96.85(14)

NLO 10.48(3) 10.47(3)

EMIB 7.76(1) 7.76(1)

3NF −14.80(6) −14.56(4)
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FIG. 6. Updated extrapolation in Euclidean projection time for the 12C ground state. The new

results from this work (red filled squares) have been combined with data compiled at dh = 1 from

Ref. [8]. The different data sets correspond to trial states with different SU(4) couplings (in units

of MeV−2), not to be confused with the SU(4) coupling C4 for the SSE analysis. The results of the

old and new analyses are given in Table I, and the extrapolation in Euclidean time is discussed in

detail in Ref. [25].

A determination of the smallest value of dh from which a reliable extrapolation dh → 1

can be expected is highly significant, as systems with more nucleons and unequal numbers

of protons and neutrons will suffer from an increasingly severe sign problem. In order to

compensate, this forces PMC calculations to be performed at successively smaller dh (we note

that for 12C, the sign problem is already apparent in the larger uncertainties at dh = 0.95).

As more complex nuclear systems are studied, the extent in which the extrapolated results
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FIG. 7. Stability of the 12C ground state energy at LO at Nt = 12.5 (left panel) and Nt = 14.5

(right panel) under extrapolation dh → 1. A data point placed at a given value of dh denotes that

only data with equal and smaller values of dh are included in the extrapolation. Thus, a data point

at dh = 0.95 only includes data with dh ≤ 0.95. The horizontal bands with 90% confidence levels

and are provided for visual guidance only.

can be ascertained from lower values of dh will become more of an issue. Studying this

behavior with our 12C data provides an initial rough idea on the robustness of the SSE

method. As can be seen from Fig. 7, our extrapolated result is in good agreement for values

of dh as low as ≃ 0.8. Extrapolations using data below this value only become increasingly

unreliable. This suggests the range in applicability of the dial parameter is limited. We find

a similar conclusion within the PMC calculations of 6He, which we shall turn to next.

IV. RESULTS FOR HELIUM-6 AND BERYLLIUM-6

The sign problem in the A = 6 system with 2 protons and 4 neutrons (or vice versa)

is somewhat more severe than for 12C. Hence, if calculations are performed entirely at

dh = 1, the extrapolation to infinite Euclidean time (while still feasible) has to be performed

using data with a rather limited range in Nt. However, for dh < 1 this situation improves

rapidly. For 6He and 6Be, we shall therefore approach the problem differently than for

12C. We perform the extrapolation in Euclidean time for each pair of C4 and dh, with the

extrapolation dh → 1 as the final step of the analysis, in terms of Eq. (15). For each value

of C4 and dh, a constrained Euclidean time extrapolation is performed using a minimum of

three trial states. This “triangulation” strategy is described in detail in Ref. [25]. Once the

data have been extrapolated to infinite Euclidean time, the resulting data are then subjected
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to the constrained global fitting procedure, as described for 12C. In Figs. 8 and 9, we show the

fit results for the LO, NLO, EMIB, and 3NF contributions to the 6He energy. The explicit

results are summarized in Table II. We find that the PMC results and the extrapolations

for A = 6 are quantitatively similar to those of the 12C system. The extrapolations of our

results to dh = 1 are in good agreement with direct calculations at dh = 1 (where the sign

problem is maximal) and we also find no indication of a breakdown or inconsistencies in the

Euclidean time extrapolations as dh → 1.

TABLE II. Contributions to the ground state energy of the A = 6 system after extrapolation

dh → 1. The contributions from the improved leading order amplitude (LO), the two-nucleon

force at next-to-leading order (NLO), the electromagnetic and strong isospin breaking (EMIB) and

the three-nucleon force at next-to-next-to-leading order (3NF) are shown separately. The leftmost

column shows the result of a direct calculation at dh = 1 without extrapolation in dh, and the other

columns give the extrapolated results when progressively more data is excluded in the vicinity of

dh = 1.

dh = 1 dh ≤ 0.95 dh ≤ 0.90 dh ≤ 0.85 dh ≤ 0.75

LO −27.49(7) −27.54(4) −27.56(6) −27.56(10) −27.34(46)

NLO 2.61(4) 2.58(2) 2.61(3) 2.66(4) 3.05(11)

EMIB (6He) 1.021(6) 1.014(3) 1.014(5) 1.012(9) 1.04(4)

EMIB (6Be) 2.65(1) 2.66(1) 2.67(2) 2.68(3) 2.68(14)

3NF −3.77(3) −3.76(1) -3.77(2) -3.73(2) -3.69(10)

For the A = 6 system, we have performed PMC calculations for five values of C4, namely

−3.6 × 10−5, −4.2 × 10−5, −4.4× 10−5,−4.8 × 10−5, and −5.4× 10−5 (in units of MeV−2).

We have employed a much larger range in dh, and moreover each PMC data point has an

order of magnitude better statistics compared with the data for 12C. In all figures related

to A = 6, the uppermost band of data corresponds to C4 = −3.6 × 10−5 MeV−2 and the

lowest one to C4 = −5.4× 10−5 MeV−2. As the data at low dh exhibit increased curvature,

the order n of our fit function has been taken to be n = 3 in contrast to the 12C data,

for which n = 1 was sufficient in most cases. For 6Be, the LO, NLO, and 3NF results are

identical to those shown in Figs. 8 and 9. However, the electromagnetic part of the EMIB

contribution changes due to the different numbers of protons and neutrons. In Fig. 10, we
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FIG. 8. PMC results for the ground state energy of 6He at LO (upper panels) and the contribution

from two-nucleon interactions at NLO (lower panels). The left panels show the full range between

dh = 0 and dh = 1, while the right panels show a close-up near dh = 1. Each data point has

been individually extrapolated to infinite Euclidean projection time before the SSE extrapolation

dh → 1. The results of the SSE extrapolation are shown by red data points in the right panels.

show our results for the EMIB contribution to the energy of the 6Be ground state.

As for 12C, we have also studied the stability of the extrapolated results for A = 6 as

successive data points in the vicinity of dh = 1 are omitted. These results are summarized

in Table II, and the behavior of the extrapolated LO energy is illustrated in Fig. 11. Our

findings suggest that a satisfactory extrapolation dh → 1 can be obtained as long as PMC

calculations can be performed for values no smaller than dh ≃ 0.80, at least for the present

range of coupling constants C4 employed in the analysis. We note that a larger range in

C4 may allow smaller values of dh to serve as a useful starting point for the extrapolation,

especially if the linear region around dh = 1 is thereby expanded. These findings appear

consistent with our conclusions for 12C.

In contrast to performing extrapolations from SSE data below a given value of dh, we can
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FIG. 9. PMC results for the electromagnetic and strong isospin-breaking (EMIB, upper panels)

and NNLO three-nucleon force (3NF, lower panels) contributions to the ground state energy of

6He. The left panels show the full range between dh = 0 and dh = 1, while the right panels show

a close-up near dh = 1. Each data point has been individually extrapolated to infinite Euclidean

projection time. Notation and conventions are as for Fig. 8.

FIG. 10. PMC results for the electromagnetic and strong isospin-breaking (EMIB) component of

6Be. The left panel shows the full range between dh = 0 and dh = 1, while the right panel shows

a close-up near dh = 1. Each data point has been individually extrapolated to infinite Euclidean

projection time. Notation and conventions are as for Fig. 8.
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FIG. 11. Upper panel: Stability of the 6He ground state energy at LO under extrapolation dh → 1.

The data point at dh = 1 represents a combined analysis including all the SSE data for dh < 1 as

well as the direct calculation at dh = 1 without SSE. The data point at dh = 0.95 only includes

SSE data with dh ≤ 0.95 etc. Lower panels: Ground state energy of 6He at LO for dh → 1, using

SSE data with dh ≥ 0.8 (left panel) and dh ≥ 0.7 (right panel). These data are the result of a

linear extrapolation dh → 1, such that each entry corresponds to one of ten possible datasets, as

discussed in the main text. The horizontal band with 90% confidence level is provided for visual

guidance only.

instead perform linear fits to SSE data above a given dh. Such an analysis can demonstrate

in what range of dh a linear description remains valid in the vicinity of dh = 1. For this

purpose, we perform linear fits for all possible combinations of three C4 subsets (of the five

total). This provides ten different possible datasets. We then choose a value of dh below

which all data is discarded, and perform a linear extrapolation to the remaining data points.

In fig. 11, we show the extrapolated LO results for dh ≥ 0.7 and dh ≥ 0.8. We also show the

average of the fits and corresponding 90% confidence bands. For the analysis with dh ≥ 0.8,

our average is consistent with the complete LO extrapolation shown in Table II, while for
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FIG. 12. The mean value of the exponential of the complex phase 〈eiθ〉 of det(M) as a function of

Euclidean time step Nt and SSE parameter dh for C4 = −4.8× 10−5 MeV−2 in the A = 6 system.

The interpolating lines are intended as a guide to the eye.

the analysis with dh ≥ 0.7, a clear systematical error is found. This shows (at least for 6He)

that a linear description is valid for dh ≥ 0.8.

As an explicit demonstration of the amelioration of the sign problem using the SSE

method, we show in Fig. 12 for A = 6 the dependence of the mean value of the exponential

of the complex phase 〈eiθ〉 of the PMC calculation on the number of Euclidean time steps

Nt and the SSE parameter dh for C4 = −4.8 × 10−5 MeV−2. For the case of dh = 1, the

mean value quickly approaches zero as Nt is increased, indicating that the sign problem is

becoming severe at rather modest Euclidean projection times. For decreasing values of dh,

the effect of the sign problem is successively diminished, allowing the PMC method to be

extended to significantly larger values of Nt.

V. DISCUSSION

The SSE method introduced here is inspired by the existence of an SU(4) symmetric

Hamiltonian which provides a reasonably accurate description of the physics of the full Chiral

EFT Hamiltonian. This has already proven useful in earlier work, as it greatly facilitates
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finding an accurate initial wave function which minimizes the extent of Euclidean time

projection necessary with the full Hamiltonian. We have here illustrated how this concept

can be taken one step further, by studying a weighted sum of physical and SU(4) symmetric

Hamiltonians. In this way, the sign problem could be arbitrarily ameliorated, at the price

of introducing an extrapolation in a control parameter dh → 1. In practice, this means that

the SSE method is only useful as long as the extrapolation errors can be kept under control.

Naturally, performing simulations at a range of values of dh has the potential to multiply the

required CPU time by a large factor. However, we have found that we are able to avoid an

exponential increase in computation time as a function of Euclidean projection time, as long

as we are able to perform simulations for dh > 0.75, as the accuracy of extrapolation then

remains comparable with the statistical errors of typical simulations at dh = 1. We have also

explored the freedom in the choice of the SU(4) symmetric Hamiltonian, which clearly plays

no role at dh = 1, but which in general gives different results for dh 6= 1. We have therefore

made use of a “triangulation” method to improve the accuracy of the extrapolation dh → 1.

An important consideration is whether a continuous shift from an SU(4) symmetric

Hamiltonian to the full Chiral EFT Hamiltonian can be effected without inducing non-

trivial changes in the spectrum. For instance, the appearance of a level crossing at a critical

value of dh would clearly limit the applicability of SSE. We note that such level crossings

as a function of dh would be quite rare for low-lying nuclear bound states, and furthermore

we have the freedom to choose C4 to avoid such level crossings. But if a level crossing were

to occur, there would be some subtleties in obtaining accurate and converged results. For

such cases, it would be preferable to take the dh → 1 limit first, followed by extrapolation

in Euclidean time. An even better solution would entail solving a coupled-channel problem

using multiple initial states. This makes it possible to disentangle one or more nearly de-

generate states with the same quantum numbers. So far, we have concentrated on systems

where such degeneracies are not expected, and where PMC is still possible (though difficult)

without the SSE method. We have also not yet explored different ”extrapolation Hamilto-

nians”, where the sign oscillations are minimized while retaining as much as possible of the

full Chiral EFT structure.

In this first report on the SSE method, we have presented extensive results for 6He and

12C, for a wide range of dh and SU(4) symmetric Hamiltonians. For the case of 6He, we have

first extrapolated all results to infinite Euclidean time, followed by an extrapolation dh → 1.
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For the case of 12C, we have performed the extrapolation dh → 1 directly for data at finite

Euclidean projection time. In both cases, we find similar behavior as a function of dh and

excellent linearity in the vicinity of dh = 1. Which ordering of the limits is preferable depends

on how severe the sign problem is for a given system at dh = 1. In cases where the sign

problem is severe, the method of first taking the limit dh → 1 followed by an extrapolation

in Euclidean time is preferable. This is because the Euclidean time extrapolation may be

ambiguous if only very short Euclidean times are accessible with PMC. Our results provide

the first determination of the ground state energy of 6He using lattice Chiral EFT, and for

12C we find that our new results at larger Euclidean projection time agree very well with

previous infinite-time extrapolations.

We have presented here the first studies of the binding energy of 6He within lattice Chiral

EFT. While the results are very encouraging for the feasibility of calculations for neutron-

rich systems, we also find that 6He appears underbound by ≃ 1 MeV at NNLO. Nevertheless,

since the present calculations are performed in an L = 6 box, the possibility remains that

finite volume effects could significantly improve on the current situation. In particular, since

P -wave states are underbound in a finite volume [26, 27] while S-wave states are overbound,

calculations in larger boxes (or extrapolations to L = ∞) would shed more light on this

situation.
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[21] J. W. Chen, D. Lee and T. Schäfer, “Inequalities for light nuclei in the Wigner symmetry

limit,” Phys. Rev. Lett. 93, 242302 (2004) [nucl-th/0408043].

[22] D. Lee, “Spectral convexity for attractive SU(2N) fermions,” Phys. Rev. Lett. 98, 182501

(2007) [nucl-th/0701041].

[23] Y. Alhassid, D. J. Dean, S. E. Koonin, G. Lang and W. E. Ormand, “Practical solution to the

Monte Carlo sign problem: Realistic calculations of Fe-54,” Phys. Rev. Lett. 72, 613 (1994)

[nucl-th/9310026].

[24] S. E. Koonin, D. J. Dean and K. Langanke, “Shell model Monte Carlo methods,” Phys. Rept.

278, 1 (1997) [nucl-th/9602006].

[25] T. A. Lähde, E. Epelbaum, H. Krebs, D. Lee, Ulf-G. Meißner and G. Rupak, “Uncertainties

of Euclidean Time Extrapolation in Lattice Effective Field Theory,” J. Phys. G: Nucl. Part.

Phys. 42 (2015) 034012 [arXiv:1409.7538 [nucl-th]].

[26] S. König, D. Lee and H.-W. Hammer, “Volume Dependence of Bound States with Angular

Momentum,” Phys. Rev. Lett. 107 (2011) 112001 [arXiv:1103.4468 [hep-lat]].

24

http://arxiv.org/abs/1312.7703
http://arxiv.org/abs/1403.5451
http://arxiv.org/abs/1212.4181
http://arxiv.org/abs/1303.4856
http://arxiv.org/abs/hep-ph/9509371
http://arxiv.org/abs/hep-ph/9902370
http://arxiv.org/abs/nucl-th/0407088
http://arxiv.org/abs/nucl-th/0408043
http://arxiv.org/abs/nucl-th/0701041
http://arxiv.org/abs/nucl-th/9310026
http://arxiv.org/abs/nucl-th/9602006
http://arxiv.org/abs/1409.7538
http://arxiv.org/abs/1103.4468


[27] S. König, D. Lee and H.-W. Hammer, “Non-relativistic bound states in a finite volume,”

Annals Phys. 327 (2012) 1450 [arXiv:1109.4577 [hep-lat]].

25

http://arxiv.org/abs/1109.4577

	Nuclear Lattice Simulations using Symmetry-Sign Extrapolation
	Abstract
	I Introduction
	II The symmetry-sign extrapolation method
	III Results for Carbon-12
	IV Results for Helium-6 and Beryllium-6 
	V Discussion 
	 References


