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Energy spectra of two interacting fermions with spin-orbit coupling in a harmonic trap
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D-52425 Jülich, Germany

(Received 15 January 2015; published 7 April 2015)

We explore the two-body spectra of spin-1/2 fermions in isotropic harmonic traps with external spin-orbit
potentials and short-range two-body interactions. Using a truncated basis of total angular momentum eigenstates,
nonperturbative results are presented for experimentally realistic forms of the spin-orbit coupling: a pure Rashba
coupling, Rashba and Dresselhaus couplings in equal parts, and a Weyl-type coupling. The technique is easily
adapted to bosonic systems and other forms of spin-orbit coupling.
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I. INTRODUCTION

Cold atomic gases with spin-orbit coupling (SOC) have
recently been an area of intense interest because of the
potential to simulate interesting physical systems with pre-
cisely tunable interactions [1]. In condensed matter physics,
spin-orbit couplings are essential for many exotic systems
such as topological insulators [2,3], the quantum spin Hall
effect [4], and spintronics [5]. The experimental setup which
induces spin-orbit coupling is intimately related to simulation
of synthetic gauge fields [6–9]. Because these couplings are
parity violating, they potentially play similar roles within
nuclear systems that undergo parity-violating transitions due
to the nuclear weak force. Atomic gases provide an excellent
testing ground both to explore universal behavior of these
real-life systems and to create new types of spin-orbit coupling
which are not yet known to exist (or have no solid-state analog)
in other materials but are interesting in their own right. Further,
these experiments can be performed in an environment with
few or no defects and impurities.

Spin-orbit coupling was first realized in a Bose condensate
of 87Rb [10] and extended shortly after to Fermi gases of 40K
[11] and 6Li [12]. These spin-orbit interactions are “synthetic”
in the sense that a subset of the hyperfine states stand in as
virtual spin states. A particularly interesting consequence of
this is the possibility of studying systems with synthetic spin-
1/2 spin-orbit interactions but bosonic statistics [10,13]. From
another point of view, the couplings are equivalent to applying
external electromagnetic forces via synthetic gauge couplings
on the physically uncharged particles in the gas [14,15]. It
has also been conjectured that these systems could be used to
physically simulate lattice gauge theories [16,17]. Spin-orbit
couplings in solid-state systems arise in two-dimensional (2D)
systems (Rashba and Dresselhaus types, described in Sec. II),
but recently an experimental setup has been proposed that can
simulate the Weyl-type SOC which is fundamentally three
dimensional [18].
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Spin-orbit couplings are also of interest from the perspec-
tive of few-body physics where they arise in a variety of fields,
e.g., the weak nuclear interactions governing proton-proton
scattering [19,20]. Because the spin-orbit coupling is long
range, it can significantly modify both the threshold scattering
behavior and the spectrum of two-body systems [21]. For low-
energy scattering, Duan et al. [22] showed analytically that
parity-violating SOC leads to the the spontaneous emergence
of handedness in outgoing states, a finding later confirmed in
[23]. Even in the presence of a repulsive two-body interaction,
an arbitrarily weak SOC has been shown to bind dimers
[24]. For three-particle systems, a new type of universality is
conjectured to occur for bound trimers with negative scattering
length [25].

Few-atom systems undergoing SOC within trapping poten-
tials have also been explored. For example, the spectrum of
particles within a trap with an external SOC of the Weyl type
(but no relative interaction) has been theoretically determined
[26]. The Rashba SOC with two-particle systems interacting
via short-ranged interactions was investigated perturbatively
in [27], where it was shown that the leading-order corrections
due to the SOC and short-range interaction are independent
when the scattering length is equal for all channels. In one
dimension, the spectrum for this type of system has been
calculated when the SOC consists of equal parts Rashba
and Dresselhaus interactions [28]. Information learned from
trapped systems augments that from scattering experiments
while also being relevant to interesting phenomena in trapped
many-body systems with SOC such as solitons [29,30] or novel
phase diagrams [31].

In all these calculations, the emergent spectrum is rich and
complex, offering new insights into few-body behavior. Our
objective is to provide some additional insight into two-body
physics of Fermi gases with spin-orbit interactions in the
presence of both three-dimensional trapping potentials and
short-ranged two-body interactions, which are necessarily
present in dilute cold-atom experiments. Our approach is
to numerically diagonalize the Hamiltonian within a suit-
ably truncated basis, and is thus nonperturbative in nature.
Eigenstates of the interacting Hamiltonian without SOC are
used for the basis. Section II introduces the specific forms
of spin-orbit coupling and two-body interactions which we
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consider. The general method is detailed in Sec. III for the
simplest SOC. In the remaining Secs. IV–V we study the
spectra of additional spin-orbit couplings in order of increasing
computational complexity.

II. HAMILTONIAN FOR SPIN-ORBIT COUPLINGS
WITH CONTACT INTERACTIONS

In this paper we simply refer to our systems by their “spin”
degrees of freedom and use the standard notation for spin
quantum numbers. We consider three different types of spin-
orbit coupling. The form of spin-orbit coupling realized in
experiments is a linear combination of the Rashba [32] and
linear Dresselhaus [33] types,

VR ≡ αR(σxky − σykx), (1)

VD ≡ αD(σxky + σykx), (2)

which were originally recognized in two-dimensional solid-
state systems. In a 2D system, these form a complete basis
for spin-orbit couplings linear in momentum. Note that some
references use the alternate definitions VR ∝ (σxkx + σyky)
and VD ∝ (σxkx − σyky) which are equivalent up to a pseu-
dospin rotation. For solids, these parity-violating interactions
are allowed only in the absence of inversion symmetries.
Rashba-type SOC typically arises in the presence of applied
electric fields or in 2D subspaces such as the surfaces of ma-
terials where the boundary breaks the symmetry. Dresselhaus
couplings were first studied in the context of bulk inversion
asymmetry, when the internal structure leads to gradients in
the microscopic electric field.

To date, experiments have produced only SOC potentials
in which the Rashba and Dresselhaus terms appear with equal
strength (also known as the “persistent spin-helix symmetry
point” [34]),

VR=D ≡ αR=Dσxky. (3)

After a pseudospin rotation, this potential can be seen as
a unidirectional coupling of the pseudospin and momentum
along a single axis. A proposal for tuning the ratio αR/αD

has been given in [35]. An experimental setup which gives the
simple three-dimensional Weyl coupling,

VW ≡ αW
�k · �σ , (4)

has also been proposed in [18] and [36].
In the following sections we calculate the spectra of two

particles with a short-range two-body interaction, an isotropic
harmonic trapping potential, and spin-orbit coupling. The
single-particle Hamiltonian is

H1 = �
2k2

2m
+ 1

2
mω2r2 + VSO. (5)

For the spin-orbit term VSO, we consider equal Rashba
and Dresselhaus (3), pure Rashba (1), and Weyl (4) spin-
orbit couplings because these are generally considered to be
experimentally feasible.

We assume that the range of interaction between particles is
small compared to the size of the oscillator well. The relative
interaction between the particles can then be approximated as

a regulated s-wave contact interaction, which in momentum
space (as a function of relative momentum) is given by

4π�
2

m
a(�). (6)

Here the argument � refers to some cutoff scale and a(�)
is some function of the cutoff and physical scattering length
aphys. The exact form of this function depends on the type
of regulator used and is not relevant for this work; the only
constraint is that a(�) reproduce the physical scattering length
given by the scattering T matrix at threshold, T (E = 0) =
4π�

2aphys/m [37]. In the limit � → ∞ the spectrum of two
particles in an oscillator well (without external spin-orbit
interaction) was solved by Busch et al. [38] using the method
of pseudopotentials. In Ref. [39] the solution for general � was
given using a Gaussian regulator, which in the limit � → ∞
recovered the Busch et al. solution. For our work below we
use the eigenstates and eigenvalues of this two-particle system
given in Ref. [38].

III. WEYL COUPLING

We tackle the Weyl form first because of its mathematical
and numerical simplicity. In the absence of the two-body
interaction, this problem was treated in Ref. [26]. Our approach
is to determine the matrix elements of the SOC in an
appropriate basis. The eigenvalue is then solved numerically
at the desired precision by choosing an appropriately large
truncated basis of harmonic oscillator (HO) eigenstates.

As usual, the two-body problem is best approached in the
dimensionless Jacobi coordinates

R = r1 + r2√
2b

, r = r1 − r2√
2b

(7)

and the corresponding conjugate momenta q,Q representing
the relative and total momenta. For an isotropic harmonic
oscillator, distances can be expressed in terms of the ground-
state length scale b = √

�/mω and energies will be similarly
measured in units of E0 = �ω. We also define the spin
operators

�σ ≡ �σ1 − �σ2, �� ≡ �σ1 + �σ2. (8)

With these definitions, the two-body Hamiltonian can be
nondimensionalized and separated into relative and center-of-
mass (c.m.) parts,

1

�ω
H =

(
h0,rel + α̃W√

2
�q · �σ +

√
2πã(�)δ(3)(r)

)

+
(

h0,c.m. + α̃W√
2

�Q · ��
)

, (9)

where h0,rel = r2/2 and h0,c.m. = R2/2. Notably, the spin-orbit
coupling appears in both terms. The tilde over the coupling
constants indicates that they are dimensionless, related to
the original coupling constants by dividing out the oscillator
length (e.g., α̃ = α/b). Throughout the remainder of this paper
we will refer to dimensionless eigenvalues of H/�ω as the
energies of the system.

Eigenstates of two particles with a short-range interaction
in a harmonic oscillator trapping potential form a convenient
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FIG. 1. (Color online) Spectrum of the two-body contact interac-
tion Hamiltonian as a function of ã. The horizontal lines indicate the
dimensionless energy eigenvalues in the unitary limit |ã| → ∞.

basis for these calculations. These basis functions were first
derived in [38] for the isotropic case considered here, and the
more general case of an anisotropic trap has been explored by
[40]. The dependence of the energy spectrum on the scattering
length a is shown in Fig. 1 for reference. Qualitatively, the
effect of the short-range interaction is to shift the harmonic
oscillator energies by ±�ω as the scattering length goes to
±∞. For positive scattering length, there is also an additional
negative-energy dimer state.

We choose the particular coupling scheme of angular
momentum eigenstates,

|n(ls)j ; NL; (jL)J 〉, (10)

which simplify the matrix elements for the relative-coordinate
operators. Here n and l refer to the principal and orbital angular
momentum quantum numbers of the two-particle system in the
relative coordinates. N and L refer to the analogous numbers
in the center-of-mass frame. The total spin of the two spin-1/2
particles is denoted by s = s1 + s2 and may be either 0 or 1.
First s and l are coupled to make angular momentum j , which
is then recoupled with the c.m. angular momentum L to make
the state’s total angular momentum J . Because all terms in
the Hamiltonian (9) are scalars, the interaction is independent
of Jz and so we omit this quantum number for clarity. Due to
Pauli exclusion, l + s must be even to enforce antisymmetry
under exchange of the particles.

For l 	= 0 the states (10) are identical to the well known
harmonic oscillator, with n and l (N and L) indicating the
relative (center-of-mass) HO quantum numbers. We use the
convention that n,N = 0,1,2, . . . , and therefore E = 2n +
l + 2N + L + 3. The short-range interaction (5) modifies
the l = 0 states and their spectrum. The principal relative
quantum number n for these states is obtained by solving the
transcendental equation

√
2

	(−n)

	(−n − 1/2)
= 1

a
(11)

and is no longer integer valued. For the relative-coordinate part
of the l = 0 wave function,

φ(r) = 1

2π3/2
A(n)	(−n)U (−n,3/2,r2)e−r2/2, (12)

A(n) =
(

	(−n)[ψ0(−n) − ψ0(−n − 1/2)]

8π2	(−n − 1/2)

)−1/2

, (13)

where U (a,b,x) is Kummer’s confluent hypergeometric func-
tion and ψ0(x) = 	′(x)/	(x) is the digamma function. A
derivation of the normalization factor A(n) is given in the
Appendix.

Standard angular momentum algebra can be used to
determine the matrix elements of the two spin-orbit-coupling
terms; we follow the conventions of [41]. For Weyl SOC of
two spin-1/2 fermions, the matrix elements of the coupling in
the relative momentum are

〈n′(l′s ′)j ′; N ′L′; (j ′L′)J ′|�q · �σ |n(ls)j ; NL; (jL)J 〉

= δN,N ′δL,L′δj,j ′δJ,J ′ (−1)l+s ′+j 3√
2

{
j s ′ l′

1 l s

}

× (s ′ − s)〈n′l′||q||nl〉. (14)

To preserve antisymmetry of the two-particle system, the
relative momentum term in the Weyl SOC must couple states
with relative angular momentum l to l ± 1, leaving l + s even
but changing the parity.

For basis states with both l,l′ 	= 0, reduced matrix elements
of the momentum operator are calculated between pure
harmonic oscillator states,

〈n′l′||q||nl〉 = (−1)l
′
(−1)(l+l′+1)/2

√
2(2l + 1)(2l′ + 1)

(l + l′ + 1)
〈n′l′0|(−i∇0)|nl0〉 (15)

= i(−1)l
√

l + l′ + 1

2

√
n!n′!	(n + l + 3/2)	(n′ + l′ + 3/2)

×
n,n′∑

m,m′=0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)m+m′ [2m	(m+m′+1+(l+l′)/2)−	(m+m′+1+(l+l′)/2)]
m!m′!(n−m)!(n′−m′)!	(m+l+3/2)	(m′+l′+3/2) if l′ = l − 1,

(−1)m+m′+1[(2m+2l+1)	(m+m′+1+(l+l′)/2)−	(m+m′+1+(l+l′)/2)]
m!m′!(n−m)!(n′−m′)!	(m+l+3/2)	(m′+l′+3/2) if l′ = l + 1,

0 otherwise.

(16)
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FIG. 2. (Color online) Absolute value of the matrix elements |〈n′(11)0; 00; (00)0|�σ · �q|n(00)0; 00; (00)0〉| between the ground state and
l = 1 excited states. The horizontal axis is the principal quantum number of the ground state obtained by solving (11). From left to right, the
vertical lines on the negative axis indicate the values obtained for ã = 1/4, ã = 1, ã = ±∞, and ã = −1, respectively.

If l = 1 and l′ = 0 or vice versa, reduced matrix elements between one modified wave function of the form (12) and one pure
harmonic oscillator state are needed. These are given by

〈nl = 0||q||n′l′ = 1〉 = −iA(n)

√
	(n′ + 5/2)

2π3n′!
2n − 2n′ − 1

2(n′ − n)(1 + n′ − n)
(17)

and its Hermitian conjugate.
Our choice of basis makes the relative matrix elements (14) simple at the cost of complicating the center-of-mass term. We

take the approach of expanding the states (10) in the alternate coupling scheme,

|n(ls)j ; NL; (jL)J 〉 = (−1)l+s+L+J
√

2j + 1
∑
J

√
2J + 1

{
l s j

L J J

}
|nl; N (Ls)J ; (lJ )J 〉. (18)

Using this notation, the matrix elements can be written

〈n′(l′s ′)j ′; N ′L′; (j ′L′)J ′| �Q · ��|n(ls)j ; NL; (jL)J 〉

= δn,n′δl,l′δJ,J ′δs,1δs1,16(−1)L〈N ′L′|| �Q||NL〉
∑
J

(−1)J (2J + 1)

{
l 1 j ′
L′ J J

}{
l 1 j

L J J

}{
J 1 L′
1 L 1

}
. (19)

Again, the reduced matrix element of the center-of-mass
momentum changes the parity by connecting states with
�L = ±1. Matrix elements are nonzero only for �s = 0
because the antisymmetry of the spatial wave function depends
only on l, which does not change. We also note that the c.m.
term does not affect states with singlet spin wave functions
(s = 0).

Using these matrix elements, we calculated the spectrum
of the two interacting particles with Weyl spin-orbit coupling.
Our calculations are performed by numerically diagonalizing
in a truncated basis of the harmonic oscillator states (10), where
a cutoff 2N + L + 2n + l + 3 � Emax is set high enough that
the eigenvalues of the matrix have converged to the desired
accuracy.

This approach converges well only when the ground-state
energy is not too low. In particular, for a positive but very small
the principal quantum number of the ground state is increasing
from negative infinity as seen in Fig. 1. From Fig. 2, we can

see that as n becomes more negative, the principal quantum
number of the dominant matrix element is also increasing.
Because convergence of any energy level requires a cutoff
much larger than the energy of the most strongly coupled states,
a sufficiently high Emax to ensure an accurate ground-state
energy becomes infeasible for small positive a. For excited
states, n is always positive and matrix elements with similar n

always dominate. The strength of the matrix elements follows
a similar qualitative behavior for the spin-orbit couplings
treated in the following sections where the same issues
recur.

As a result, convergence of the ground state is actually
slower than that for nearby excited states. Furthermore, our
approach gives the fastest convergence when a is not small and
positive. We compare the rate of convergence of the ã = −1
and ã = 1 spectra in Fig. 3 to demonstrate the dependence
of convergence on the matrix truncation. The actual energy
spectrum is shown in Fig. 4.
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FIG. 3. (Color online) A convergence plot giving the change in energy eigenvalue, �E, for the lowest eight energy levels when a shell is
added as a function of Emax. The left figure shows convergence for ã = −1 and α̃W = 0.5. In the right panel we show ã = 1 and α̃W = 0.5,
demonstrating that convergence of the states with large negative n is poor.

One consequence of parity violation in this system is that
the eigenstates are mixtures of the even- and odd-parity basis
states described by Eq. (10). In Fig. 5 we visualize how these
subspaces are mixed in the ground state as the SOC strength
increases. For the noninteracting system, ã = 0, more than
half of the ground state projects onto negative-parity states
even at fairly small values of α̃W . However, we see that the
short-range interaction reduces this effect. With negative ã,
the mixing of the negative-parity states is suppressed as the
strength of the two-body interaction increases. When ã is
positive the effect is more striking. Mixing with negative-parity
states is most strongly suppressed for small positive values of
ã, while the projection onto these states increases for larger
positive values. The admixture is qualitatively the same when
considering other forms of SOC as described in the following
sections.

IV. THE PURE RASHBA COUPLING

In order to find the matrix elements of the pure Rashba
coupling given in (1), we first note that it can be written as a
spherical tensor

VR = i
√

2 αR [k ⊗ σ ]10 . (20)

We therefore have the two-body Hamiltonian

1

�ω
H = {h0,rel + iα̃R[�q ⊗ �σ ]10 +

√
2πã(�)δ(3)(r)}

+ (h0,c.m. + iα̃R[ �Q ⊗ ��]10). (21)

Because the spin-orbit coupling is now a k = 1 tensor
rather than a scalar operator, the total angular momentum

FIG. 4. (Color online) Spectrum of states with total angular momentum J = 0 for the dimensionless Hamiltonian (9). The bottom left
figure shows the ground-state energy for ã = −1 as a function of α̃W ; above are the first few excitation energies. The right figure shows the
results in the unitary limit of the two-body interaction, |ã| → ∞. The spectrum is symmetric about α̃W = 0.
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FIG. 5. (Color online) For different values of the two-body coupling strength ã, we show the magnitude of the ground state projected onto
even-parity basis states as a function of the SOC strength. This is given by |P+|ψGS〉|2 = |(1 − P−)|ψGS〉|2, where P+ (P−) is the projection
operator onto the positive- (negative-) parity basis states. The left figure shows negative ã, while the right shows positive ã. Note that the limits
ã → ±∞ are physically identical.

J is no longer conserved. Additionally, the matrix elements
now depend on the quantum number Jz (which is conserved).

For the relative-coordinate part of the SOC, some algebra
gives

〈n′(l′s ′)j ′; N ′L′; (j ′L′)J ′J ′
z|[�q ⊗ �σ ]10|n(ls)j ; NL; (jL)JJz〉

= 6i(−1)J+J ′−J ′
z+j ′+L+1δN,N ′δL,L′δJz,J ′

z

√
(2J + 1)(2J ′ + 1)(2j + 1)(2j ′ + 1)

×
(

J ′ 1 J

−Jz 0 Jz

){
j ′ J ′ L

J j 1

}⎧⎪⎨
⎪⎩

l′ l 1

s ′ s 1

j ′ j 1

⎫⎪⎬
⎪⎭(s ′ − s)〈n′l′||q||nl〉. (22)

For the center-of-mass part of the Hamiltonian we again expand the basis states in the alternate coupling scheme (18) to obtain
the matrix elements

〈n′(l′s ′)j ′; N ′L′; (j ′L′)J ′J ′
z|[ �Q ⊗ ��]10|n(ls)j ; NL; (jL)JJz〉

= δn,n′δl,l′δJz,J ′
z
δs,1δs ′,16i

√
2(−1)J+J ′−J ′

z+l
√

(2J + 1)(2J ′ + 1)(2j + 1)(2j ′ + 1)

(
J ′ 1 J

−Jz 0 Jz

)
〈N ′L′||Q||NL〉

×
∑
J ,J ′

(−1)J (2J + 1)(2J ′ + 1)

{
l 1 j ′

L′ J ′ J ′

}{
l 1 j

L J J

}{J ′ J ′ l

J J 1

}⎧⎪⎨
⎪⎩

L′ L 1

1 1 1

J ′ J 1

⎫⎪⎬
⎪⎭. (23)

Our results for the Rashba SOC are shown in Fig. 6. Because
the Rashba spin-orbit coupling is a vector operator, states of all
possible J must be included in any calculation and the size of
the basis scales much more quickly with Emax. These spectra
were computed with an Emax of 24�ω, for which there are
approximately 36 000 basis states. All displayed eigenvalues
of the Hamiltonian shift by less than 10−2

�ω if an additional
shell of states is included.

This interaction was also studied perturbatively for small
αR in [27], including the possibility of a spin-dependent two-
body interaction, under the assumption that center-of-mass
excitations are unimportant. For the specific case of identical
fermions with spin-independent scattering length considered
here, they found that the first correction to the energies occurs

at order α2
R and is independent of the scattering length a.

We compare their perturbative predictions, which are derived
from the nondegenerate theory, with our numerical results
in Fig. 7.

By setting all matrix elements with N,L > 0 in the bra or
ket to zero, we also explored the approximation of ignoring
center-of-mass excitations. Figure 8 shows that this is very
accurate for the ground state, but less accurate for excited
states. Suppression of the c.m. coordinate has a similar effect
for the SOCs considered in Secs. III and V. We also note
that in the case of small positive a, the landscape of low-
lying excited states is dominated by center-of-mass excitations.
When a → 0+ in the absence of spin-orbit coupling, there
are an infinite number of states with nonzero c.m. quantum
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FIG. 6. (Color online) Spectrum of states with total angular momentum quantum number Jz = 0 for the Hamiltonian (21). The left figure
shows the energies with negative scattering length ã = −1. The right figure shows the results in the unitary limit |ã| → ∞. The spectrum is
symmetric about α̃R = 0.

numbers whose energies lie between the ground state and the
first relative-coordinate excitation.

V. EQUAL-WEIGHT RASHBA-DRESSELHAUS
SPIN-ORBIT COUPLING

Experiments have thus far realized only the effective
Hamiltonian with equal-strength Rashba and Dresselhaus
couplings in the form (3). Energy levels of the two-body system
in the one-dimensional equivalent of this Hamiltonian with the
additional magnetic field couplings present in experimental
realizations have been calculated in [28]. Here we treat the
problem in three dimensions.

This is also the most computationally difficult of the three
cases. When decomposed into spherical tensors, the interaction

FIG. 7. (Color online) Comparison of selected spectral lines
(dashed black) with the perturbative predictions from [27] (solid red)
when ã = ∞.

(2) becomes

VD = i αD([k ⊗ σ ]2,−2 − [k ⊗ σ ]2,2), (24)

and the two-particle Hamiltonian in the presence of equal-
strength Rashba and Dresselhaus SOC is given by (21) with
αR → αR=D plus the additional spin-orbit terms

�H = iα̃R=D√
2

([�q ⊗ �σ ]2,−2 − [�q ⊗ �σ ]2,2

+ [ �Q ⊗ ��]2,−2 − [ �Q ⊗ ��]2,2). (25)

Yet again the number of basis states with nonzero ma-
trix elements has increased; no angular momentum quan-
tum numbers are conserved. The only remaining selection

FIG. 8. (Color online) A comparison of the energy levels with
(dashed black) and without (solid red) the inclusion of excitations in
the c.m. coordinate for ã = −1. The approximation of ignoring c.m.
excitations provides very accurate results for the ground state, but not
for excited states.

043606-7



CORY D. SCHILLACI AND THOMAS C. LUU PHYSICAL REVIEW A 91, 043606 (2015)

FIG. 9. (Color online) Spectrum of states with even total angular momentum magnetic quantum number Jz = 0,2, . . . for the equal-weight
Rashba-Dresselhaus SOC (3). The left figure shows the energies with negative scattering length ã = −1. The right figure shows the results in
the unitary limit |ã| → ∞. The spectrum is symmetric about α̃R=D = 0.

rule will be that the interaction does not change the to-
tal magnetic quantum number Jz between even and odd.

Using the same approach as in the previous sections, the
matrix elements of the relative Dresselhaus term are

〈n′(l′s ′)j ′; N ′L′; (j ′L′)J ′J ′
z|

iα̃R=D√
2

([�q ⊗ �σ ]2,−2 − [�q ⊗ �σ ]2,2)|n(ls)j ; NL; (jL)JJz〉

= i
√

30(−1)J+J ′−J ′
z+j ′+LδN,N ′δL,L′

√
(2J + 1)(2J ′ + 1)(2j + 1)(2j ′ + 1)〈n′l′||q||nl〉

× (s ′ − s)

[(
J ′ 2 J

−J ′
z −2 Jz

)
−

(
J ′ 2 J

−J ′
z 2 Jz

)] {
j ′ J ′ L

J j 2

}⎧⎨
⎩

l′ l 1
s ′ s 1
j ′ j 2

⎫⎬
⎭, (26)

while the center-of-mass part is

〈n′(l′s ′)j ′; N ′L′; (j ′L′)J ′J ′
z|

iα̃R=D√
2

([ �Q ⊗ ��]2,−2 − [ �Q ⊗ ��]2,2)|n(ls)j ; NL; (jL)JJz〉

= 2i
√

15(−1)J+J ′−J ′
z+l+1δn,n′δl,l′δs,1δs ′,1

×
√

(2J + 1)(2J ′ + 1)(2j + 1)(2j ′ + 1)

[(
J ′ 2 J

−J ′
z −2 Jz

)
−

(
J ′ 2 J

−J ′
z 2 Jz

)]
〈N ′L′||Q||NL〉

×
∑
J ,J ′

(−1)J (2J + 1)(2J ′ + 1)

{
l 1 j ′
L′ J ′ J ′

}{
l 1 j

L J J

}{
J ′ J ′ l

J J 2

}⎧⎨
⎩

L′ L 1
1 1 1
J ′ J 2

⎫⎬
⎭. (27)

The richly structured excitation spectrum of low-lying
states is shown in Fig. 9 for a cutoff of Emax = 17. All
displayed energies shift by less than .02�ω when the final
shell is added, giving a slightly faster convergence than in the
pure Rashba case.

VI. CONCLUSIONS

In this paper we have nonperturbatively calculated the
spectrum of interacting two-particle systems with realistic
spin-orbit couplings when the trapping potential cannot be

ignored. Matrix elements of a short-range pseudopotential and
three types of spin-orbit coupling were determined analytically
in a basis of the total angular momentum eigenstates of the
interacting two-body problem without SOC. With the analytic
matrix elements, exact diagonalization of the Hamiltonian
within a finite basis was possible.

Our energy calculations were performed in a basis truncated
in a consistent way by including all states below an energy
cutoff. The resulting spectra show good convergence except
in the case where the two-body interaction generates a small
positive scattering length. In this regime coupling of the ground

043606-8



ENERGY SPECTRA OF TWO INTERACTING FERMIONS . . . PHYSICAL REVIEW A 91, 043606 (2015)

state to higher relative-coordinate excited states dominates,
and convergence in the cutoff parameter Emax was numerically
intractable. We are currently investigating alternative methods
to deal with this issue. In the limit of weak SOC we have
compared our results to the perturbative calculations of [27]
and found good agreement. We also observed that although
the ground state does not couple strongly to center-of-mass
excitations, their inclusion is crucial for the excited-state
spectrum. The relatively weak c.m. coupling of the ground
state, however, suggests that cold atoms with SOC can be
used as a surrogate system to probe properties of two-body
spin-orbit couplings, e.g., the parity-violating weak interaction
in nuclear systems.

We provided plots of a variety of spectra calculated
with Weyl, Rashba, and equal-weight Rashba-Dresselhaus
couplings. Although in this paper we show spectra only within
certain subspaces of conserved angular momentum quantum
numbers, the approach presented is fully capable of generating
results for all possible states. Larger SO-coupling constants are
also accessible with larger basis sizes. The general method can
easily be adapted to calculate energies for bosonic systems, or
to new forms of SOC such as the recently proposed spin-orbital
angular momentum coupling [42].

Using the eigenvectors of the truncated basis Hamiltonian,
we also explored the effect of parity violation on the system.
In particular we show how the SOC induces mixing of the
positive- and negative-parity subspaces for the ground state.
Without a two-body interaction, the ground state preferentially
projects onto negative-parity basis states even for modest SOC
strength. The short-range interaction was seen to suppress this
mixing, especially when the scattering length is positive.

A natural extension of this work is to consider three
particles within a trap. Because of the complex spectrum
that is associated with three-body physics at the unitary limit
(e.g., Efimov states, limit cycles, etc.), the spectrum under the
influence of an external SOC is expected to be quite rich.
Couplings between the center-of-mass and relative motion
due to the SOC present a potential challenge to traditional
few-body techniques, such as the Faddeev equations, which
work only within the relative coordinates. However, in our
two-body calculations we found that the coupling of the ground
state to the c.m. motion is weak. If this is also true in the

three-body case, then to a good approximation we can ignore
the c.m. motion and utilize existing few-body techniques with
little or no modification.
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APPENDIX: DERIVATION OF THE NORMALIZATION
FACTOR FOR BUSCH WAVE FUNCTIONS

In the original paper by Busch et al. [38], the normalization
factor of the wave functions is not given. The closed-form
expression for this normalization does not seem to be widely
known. It was originally presented in [43] without derivation,
which we provide here. To find the norm of the wave function
(12), one must integrate (using a change of variables to z = r2)

A−2 = 	(−n)2

8π3

∫ ∞

0

1

z
[U (−n,3/2,z)e−z/2z3/4]2dz. (A1)

The term in brackets is equal to a Whittaker function [44] and
so this can be rewritten,

A−2 = 	(−n)2

8π3

∫ ∞

0

1

z
[Wn+3/4,1/4(z)]2dz. (A2)

This integral can be found in [45]∫ ∞

0

1

z
[Wκ,μ(z)]2dz

= π

sin(2πμ)

ψ0
(

1
2 + μ − κ

) − ψ0
(

1
2 + μ − κ

)
	

(
1
2 + μ − κ

)
	

(
1
2 − μ − κ

) . (A3)

Applying this to (A1) with κ = n + 3/4 and μ = 1/4 gives
the desired result,

A−2 = 1

8π3

	(−n)

	(−n − 1/2)
[ψ0(−n) − ψ0(−n − 1/2)] .

(A4)
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