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We propose a new method to calculate electric dipole moments induced by the strong QCD 6 term. The
method is based on the gradient flow for gauge fields and is free from renormalization ambiguities. We test

our method by computing the nucleon electric dipole moments in pure Yang-Mills theory at several lattice

spacings, enabling a first-of-its-kind continuum extrapolation. The method is rather general and can be

applied for any quantity computed in a € vacuum. This first application of the gradient flow has been

successful and demonstrates proof-of-principle, thereby providing a novel method to obtain precise results
for nucleon and light nuclear electric dipole moments.
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I. INTRODUCTION

The electric dipole moments (EDMs) of the neutron and
proton are very sensitive probes of CP-violating sources
beyond those contained in the Standard Model (SM). In
fact, the current bound on the neutron EDM strongly
constrains many models of beyond-the-SM (BSM) physics.
At current experimental accuracies, a nonzero nucleon
EDM cannot be accounted for by the phase in the
quark-mass matrix. This implies that such a signal is either
caused by a nonzero QCD @ term or by genuine BSM
physics which, at low energies, can be parametrized in
terms of higher-dimensional CP-violating quark-gluon
operators. Irrespective of the origin, the signal for the
nucleon EDM will be small and largely masked by strong-
interaction physics, which presents a formidable challenge
to the interpretation of such a signal. To disentangle the
origin of a nonzero EDM measurement (e.g. 6 term or
BSM), a quantitative understanding of the underlying
hadronic physics is required.

The current experimental limit on the neutron EDM is
|dy| <2.9-107!3 ¢ fm [1] and experiments are underway
to improve this bound by 1 to 2 orders of magnitude. The
bound on the proton EDM is induced from the ' Hg EDM
limit [2] and is |dp| < 7.9 - 1072 ¢ fm. Plans exist to probe
the EDM of the proton directly (and other light nuclei) in
storage rings [3] with a proposed sensitivity of 10716 ¢ - fm,
thus improving the current bounds by several orders of
magnitudes and covering a wide range where BSM physics
can show its footprint.

Nucleon EDMs arising from the QCD 6 term or BSM
physics have been calculated both in models [4] and in
chiral perturbation theory [5,6]. In the latter approach, the
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nucleon EDMs are calculated in terms of effective CP-odd
hadronic interactions that have the same symmetry proper-
ties as the underlying CP-odd sources at the quark level
(for a review, see [7]). The calculated EDMs depend on
several low-energy constants (LECs) whose sizes are in
most cases unknown and need to be estimated or calculated
with lattice QCD.

Lattice QCD can thus be used to perform an ab initio
calculation of the nucleon EDM. For the 0 term, this has
already been shown in the pioneering works in Refs. [8,9]
and later in Ref. [10] (for BSM sources only the nucleon
EDMs arising from the quark EDMs have been calculated
with lattice QCD [11]). The chiral and infinite volume
extrapolations of unpublished lattice data from Shintani
et al. have been performed in Refs. [12,13]. The calculation
of the EDM within a lattice (discretized) formulation of
QCD is very nontrivial, and present large difficulties for
two main reasons. The renormalization of the CP-odd
operators and the degradation of the signal-to-noise ratio
towards the chiral limit. Additionally, the 6 term itself
introduces an imaginary term in the real Euclidean action,
which produces a sign problem and precludes the use of
standard stochastic methods employed by lattice QCD.
Reference [14] performed a lattice QCD calculation of the
neutron EDM induced by a 6 term that was analytically
continued into the complex plane. This allows the usage of
standard stochastic methods.

In this paper we propose, without relying on any
complex rotation of the € term, a method based on the
gradient flow for the gauge fields [15] that has no
renormalization ambiguities and, to our knowledge, is
the only method that allows a theoretical sound continuum
limit. A first account of this method can be found
in Ref. [16].

The remainder of the paper is organized as follows:
The next section gives a cursory discussion of the

© 2015 American Physical Society
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phenomenology of the nucleon EDM. In Sec. III we
introduce definitions and our method. Section IV discusses
the gradient flow for gauge fields and its relevance to the
calculations presented in this paper. We provide details of
our lattice calculations and their results in Secs. V and VI,
followed by a discussion in the ensuing section.

II. PHENOMENOLOGY OF THE
QCD THETA TERM

The discrete space-time symmetries parity P, time-
reversal 7, and the combination of charge conjugation
and parity CP, are broken in QCD by the QCD 6 term. In
the case of three quark flavors the QCD action is given by

Sy = / d*x[Locn — i0(1). (1)

where Locp is the standard Euclidean QCD Lagrangian

1 _
EQCD = 4_92FZUFG.MU + ll/(yﬂD/l + M)l// (2)

and

1
Q(x) = We;w/mFZu(x)Fgﬁ(x)’ (3)

is the topological charge density. The fermion field con-
taining up, down and strange quarks is denoted by y =
(u,d,s)" and F, is the gluon field strength tensor. €,,,4
(€g123 = +1) is the completely antisymmetric tensor, D,
the gauge-covariant derivative, M the real 3 x 3 quark-mass
matrix, and 6 the coupling of the CP-odd interaction. In
Eq. (2) the complex phase of the quark-mass matrix has
been absorbed in the physical parameter 6, i.e. we choose a
fermionic basis where the CP-odd interaction comes solely
from the topological charge density.

The most important consequence of the QCD 0 term is
that it induces EDMs of hadrons and nuclei. The first
dedicated EDM experiment was the neutron EDM experi-
ment in 1957 [17]. Since then, the accuracy of the
measurement has been improved by 6 orders of magnitude
without finding a signal. The current bound dy < 2.9 -
10~B3¢ - fm [1] sets strong limits on the size of # and
sources of CP violation from physics beyond the SM.

In order to set a bound on the 6 term, it is necessary to
calculate the dependence of the neutron EDM on 6. One
way to do this is by using yPT. This calculation has been
done up to next-to-leading order (NLO) in both SU(2)
[6,18,19] and SU(3) [5,20,21] yPT. Focusing here on the
two-flavored theory, the neutron (dy) and proton EDM (dp)

are given by:
M
-5 ) 4)
2My

-0 M2
dy = 9% (1 F

C167°F2 " A ppm
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egAgg <1 Mizt _ 27TM7I> (5)

dp = —
T =) 2 N S V7

in terms of g4 = 1.27 the strong pion-nucleon coupling
constant, F, = 92.2 MeV the pion decay constant, M, and
My the pion and nucleon mass respectively, e > 0 the
proton charge, and, in principle, three low-energy constants
(LECs) of CP-o0dd chiral interactions: g and dy p. The first
one, gg, is not free as discussed below [see Eq. (9)]. The
latter two are absorbed in renormalization-scale, y, inde-
pendent constants

872 F2dy(u
Ay Epm = M €Xp {—7_12()}, (6)
€ga9o
SHZF,Z,C_Z
Apgpm = H exp{_z(ﬂ)}. (7)
€da9o

The first term in brackets in Egs. (4) and (5) arises from the
leading-order one-loop diagram involving the CP-odd
vertex

=0
g

N7 N, (8)
ya
in terms of the nucleon doublet N and the pion triplet z. The
LO loop is divergent and the divergence and associated
scale dependence have been absorbed into the counter
terms dy p which signify contributions to the nucleon
EDMs from short-range dynamics and appear at the same
order as the LO loop diagrams. The second term in brackets
in Egs. (4) and (5) is a next-to-leading-order correction.
The 6 term breaks chiral symmetry as a complex quark
mass. As such, chiral symmetry relates g to known CP-
even LECs [21,22]. In particular, it is possible to write [23]

G _ My = Mp)rem, ,
2F, 2F, me
= (15.5£2.5) x 107, ©)

where (My — Mp)*™"¢ is the quark-mass induced part of
the proton-neutron mass splitting, m = (m, + my)/2,
m, = mumd/(mu + md)’ and e= (mu _md)/(mu +md)
To get a rough estimate of the sizes of the nucleon
EDMs, we can insert Eq. (9) in Egs. (5) and (4). If we
assume that Agpy = My, we obtain

dy =-2.1 x 10730 e fm, (10)
dp = +2.5x 10730 e fm, (11)
as a rough estimate of the nucleon EDMs. A comparison

with the experimental bound then gives the strong con-
straint @ < 10710, Clearly, a more reliable constraint on 6
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requires a first-principle calculation of the nucleon EDMs.
In the isospin limit, g§ scales as /7 ~ M2 such that the loop
contributions to the EDMs vanish in the chiral limit as
MZlog M2 (see Egs. (4) and (5).

In the isoscalar combination dy + dp the loop contri-
bution cancels out to a large extent. For observables
sensitive to this combination, such as the deuteron EDM
[24,25], a first-principle calculation of the total nucleon
EDM is important to differentiate the 8 term from possible
BSM sources of CP violation [26,27]. In the specific case
of the isoscalar combination a precise evaluation of
disconnected diagrams is needed in any lattice QCD
calculation.

III. THE ELECTRIC DIPOLE MOMENT

The theory is defined in Euclidean space with the action
given in Eq. (1). The EDM of a nucleon is related to the
spatial charge density distribution. If we define the quark
charges as Q,=2/3e¢ and Q,=Q,=-1/3e¢, the
nucleon EDMs are obtained from the matrix element of
the electromagnetic current

Jﬂ(x) - Quﬁ(x)yﬂu(x) + Qda('x)yﬂd(x)
+0,5(x)r,s(x), (12)

between nucleon states in the 8 vacuum,
(N, s") |, IN?(p,5)) = iy (B, " )T, (@7 (p. ). (13)

I',(Q?) has the most general four-vector structure consis-
tent with the symmetries of the action (1) such as gauge, O
(4), C and CPT invariance. Note that the photon momen-
tum ¢ = p’ — p in Euclidean space is

0, = (04.Q) = (i¢".q),
0*=—-(¢" +lq* = —¢*. (14)

Following Ref. [8] the Q? dependence of the matrix
element is parametrized by a linear combination of CP-
even and CP-odd form factors. Using Euclidean O(4)
rotational invariance, gauge symmetry and the spurionic
symmetry P x 8 — —6, the most general decomposition
reads

[,(0%) = g(0*)T3(Q?) + i0h(0*)T3(Q%).  (15)

where g, h are even functions of . The CP-even con-
tribution is given by

0,

GyuwFZ(QZ) (16)

Ien(Q%) =7, F1(Q%) +

where the Dirac and Pauli form factors F| and F, are
related to the electric and the magnetic form factors
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2
Gp(0%) = F(0%) —WFz(Q2)7

Gu(0Q?) = Fi(Q%) + F»(0%). (17)

The CP-odd term reads

[(QY) = ours st Q7). (18)

In the literature I'4%(Q?) usually contains an additional
parity violating form factor, the anapole form factor. The
anapole form factor breaks parity symmetry but does not
break time reversal, i.e. is CP-even while breaking both C
and P. It, therefore, does not contribute to the amplitude in
Eq. (13) of the electromagnetic current evaluated in a 6
vacuum. In other words, the @ term alone cannot induce a
nucleon anapole form factor. The EDM is directly related to
the CP-odd F(Q?) form factor at zero momentum transfer,

FY(0)
2My

FY(0)
oMy,

dy = 0g(6°) ~0 +0@3). (19

In lattice calculations, matrix elements can be extracted
from the large-distance behavior of appropriate correlation
functions in Euclidean space-time. In the case at hand, one
considers three-point correlations such as

Gﬁ//ﬂz\/ = <NJ;4N>9’ (20)

where N is an interpolating operator with the same
quantum number of the nucleon. The three-point functions
are to be evaluated with the Euclidean action Sy. Although
the action with 8 #0 cannot be directly studied by
numerical Monte Carlo methods, in the small 8 limit
one can obtain the desired result for EDM by expanding
around € = 0 and taking only the linear term in €. That is,
for a generic expectation value of product of operators, O,
in a @ vacuum, we can write

(O)g = (O)gq + iB(O / dxg(x)p +OE). (21)

where ¢(x) is the topological charge density (3). The
experimental bound on 6 is currently 8 < O(107'9) (see
Sec. II), thus a power expansion in 6 is well justified.'

In general this proposal could be hampered by the
impossibility of giving a sound or practical definition on
the lattice of the topological charge density and its
continuum limit. In this work we propose to directly
compute the matrix element

'Alternatively, the nucleon EDM at finite 6 can be also
determined using reweighting techniques with the complex
weight factor /€.
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(© / & 4(x)) oo, (22)

using the gradient flow (see Sec. IV) to define the
topological charge density [15]. By doing so, we have a
theoretically sound definition of the correlation function
with no renormalization ambiguities and a well-defined
continuum limit.

IV. GRADIENT FLOW AND THE
TOPOLOGICAL SUSCEPTIBILITY

The gradient flow [15] of Yang-Mills gauge fields is
defined as follows

8tB = Dl/,tGuw (23)

u

where the flow time ¢ has a time-squared dimension,

G/w = aﬂBl/ - aI/BM + [B”,BD],
D,,= 0,4+ [B, "], (24)

and the initial condition on the flow-time-dependent field
B,(1,x) at t = 0 is given by the fundamental gauge field.
The gradient flow for gauge fields and for fermions [28] has
several applications and here we mention the definition of a
relative scale [15,29], the determination of the strong
coupling constant [15,30] and of the chiral condensate
[28,31], the calculation of the energy-momentum tensor
[32,33] and of the topological susceptibility [34,35]. We
have recently proposed to use the gradient flow for the
determination of the strange content of the nucleon [16].

One way to understand the flow equations is to consider
them as steepest descent equations in the space of gauge
fields. As such the evolution along the flow drives the
gauge configurations towards local minima of the action.
The topological charge is defined at nonvanishing flow
time as

Qt) = /d4xq(x, 1), (25)
with

1
q(x. 1) = — 5 €upe Gl (x. 1)Gpo(x1). (26)

- 64r’
In Fig. 1 we show the flow-time evolution of Q(r)
evaluated on two representatives of our gauge ensembles.
Rather rapidly Q(r) reaches a plateau where it assumes an
almost integer value saturating the corresponding instan-
ton bound.

Another way to understand the effect of the gradient flow
on the gauge fields is apparent already at tree-level. The
smoothing at short distances over a range /8¢ corresponds
in momentum space to a Gaussian damping of the large
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FIG. 1 (color online). Flow-time dependence of the topological
charge for two different gauge fields.

momenta. This results in a very interesting property of the
flowed gauge fields B, (x, 1): they are free from ultraviolet
divergences [15,36] for all # > 0 and do not require any
renormalization. This powerful result can be used to
simplify the renormalization pattern of operators involving
gauge fields. In general, one would need to relate the local
operators evaluated at nonvanishing flow times with the
ones at zero flow times. The case of the topological charge
and all the correlation functions containing the topological
charge is special, because in this case we can define the
topological charge, and for example the topological sus-
ceptibility, directly at nonvanishing flow time [15]. The
Euclidean theory is prepared on a lattice of spacing a and
volume L3 x T. The calculations in this and the following
sections have been performed with the standard Wilson
gauge action, with # = 6/¢?, at 4 different lattice spacings
a =0.093, 0.079, 0.068, 0.048 fm corresponding to
p=6.0, 6.1, 6.2, 6.45. In this work we use the Sommer
scale [37,38], ry = 0.5 fm, to fix the lattice spacing in
physical units. The size of the box is respectively
L/a =16, 24, 24, 32 with T/L =2. To generate the
gauge links, we have used a heat bath algorithm with a
ratio of number of over-relaxation steps, Nogr, over a
number of Cabibbo-Marinari updates, Nyg, per sweep of
Nor/Nuyg = 4/1. For thermalization we have performed
2000 updates. For the finest lattice spacing, we have

TABLE I. Summary of our runs: Ny, is the number of thermal-
ization updates, N, is the total number of updates, N, is the
number of gauges saved and N, is the number of gauges
analyzed.

ﬂ N th N up N g N, meas
6.0 2000 200000 1000 1000
6.1 2000 65000 325 325
6.2 2000 60000 300 300
6.45 2000 122400 612 153
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FIG. 2 (color online).

continuum limit of the topological susceptibility. The yellow band is a linear extrapolation in a

analyzed all correlation functions skipping 800 gauges
while for the remaining correlation functions we have
skipped 200 gauges. A summary of parameter runs is given
in Table I.

With these choices we have observed no significant
autocorrelation for all our lattice spacings. We obtain the
same outcome also for the correlation functions used for the
determination of the EDMs. A more detailed discussion of
autocorrelations for the fermionic correlation functions is
given in Sec. V.

The gradient flow equation at finite lattice spacing is
solved following Appendix C of Ref. [15] with step size for
the flow time ¢ = 0.01. The topological charge density is
defined as in Eq. (26) where Gy, (x,1) is the lattice
implementation of the field tensor defined in Ref. [39].
Any other definition of the topological charge density in a
pure Yang-Mills theory requires a finite multiplicative
renormalization [40] that has to be determined as a function
of the bare coupling, in order to perform the continuum
limit. With the definition based on the gradient flow, this
renormalization factor is 1, independently of the lattice
action used. Using the definition of the topological charge
density at nonvanishing flow time given above, we can also
define the topological susceptibility,

1) =y [ dxdyaoaen). @)

The topological susceptibility defined as in Eq. (27), but at
vanishing flow time ¢ = 0, not only needs a multiplicative
renormalization, but, more importantly, has a 1/a* power
divergence.2 However, with the definition at nonvanishing
flow time, the topological susceptibility needs no renorm-
alization and it has a well defined continuum limit. We have
computed y, for several lattice spacings as a function of the

A notable exception is the definition of the topological
susceptibility proposed in Ref. [41] based on spectral projectors.

PHYSICAL REVIEW D 92, 094518 (2015)
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Left plot: flow-time dependence of the topological susceptibility at several lattice spacings. Right plot:

2 compared with a constant fit.

flow time. In the left plot of Fig. 2 we show the topological
susceptibility in physical units as a function of v/8¢/r,. The
divergence-free property of the gauge fields at nonvanish-
ing flow time allows us to perform the continuum limit at
fixed value of v/8¢/r. In the continuum limit we expect the
topological susceptibility to be flow-time independent for
every positive flow time, v/8¢/ry > 0 [15].

For small flow-time values we observe two different
effects. First, for v/87 < 0.1 fm we observe a rapid increase
of y, that is just a reflection of the short distance
singularities discussed above. Second, for 0.1 fm < V8: <
0.2 fm we observe some discretization effects. For
V81> 0.2 fm we find complete agreement between all
lattice spacings and, as expected, y, is flow-time indepen-
dent. We perform the continuum limit at v/8¢/r, = 0.8 and
this is shown in the right plot of Fig. 2 where we compare a
linear extrapolation in a®> with a constant one. We decide to
quote as final result

[r'/* = 195.9(4.9) MeV, (28)
that is a constant fit including all lattice spacings. The
values at all lattice spacings and different extrapolations to
the continuum limit are listed in Table II. This result is in

TABLE II. Numerical results for the topological susceptibility
and the CP-odd mixing angle aNl for several lattice spacings.
The continuum extrapolated values are obtained with a constant
fit using the 3 finest lattice spacings (fit 1) and a linear
extrapolation in a® using all the lattice spacings (fit 2).

1" MeV]

a* x 103[fm?] ay

8.675135 198.1(2.3) 0.289(19)
6.250475 199.7(4.8) 0.314(38)
4615747 195.1(4.3) 0.324(33)
2.285814 191.7(5.9) 0.301(35)
0 [fit 1] 195.9(4.9) 0.314(35)
0 [fit 2] 191.4(6.0) 0.326(40)
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perfect agreement with the result [42] obtained using the
index theorem with a chiral lattice Dirac operator and the
result [43] obtained using the spectral projector method.
Very recently a paper has been submitted with a precise
determination of the topological susceptibility [44] using
the gradient flow. The results are consistent within stat-
istical uncertainties.

V. CP-BROKEN VACUUM
AND NUCLEON MIXING

The form factor F3, directly related to the nucleon EDM,
defined in Eq. (18) can be computed nonperturbatively with
suitable ratios of the following two- and three-point
functions in a # vacuum

Ghw(p.x0) = a®y e (N (x,x0)N(0)y.  (29)

G%J#N<p1s P2 %0, Yo) = a6ze[p2(x_y)eip'y

x </\; (X, %0)7,u(¥: 70)N (0)) -
(30)
Here, the baryon interpolating fields are
N (x) = eapcun(x)up(x)Crsdc(x)], (31)
N (x) = eapcl (x)Crsdp (x)]ic(x), (32)

and C is the charge conjugation matrix. We now describe in
some detail the spectral decomposition for the two-point
functions and defer to Appendix for the slightly more
cumbersome spectral decomposition of the three-point
functions. Most of the discussion on the spectral decom-
position follows Shintani et al. [8], but we rederive some of
their results for clarity and to be consistent with our
normalizations. The key ingredient of the spectral decom-
positions is the matrix element of the interpolating operator
of the nucleon between the # vacuum and a single nucleon
state

(OININ?(p. 5)) = Zx(0)ufi (p. 5)- (33)

In a theory that does not preserve parity, for instance due to
the presence of a 0 term, the nucleon state does not have a
definite parity and the nucleon spinor can be written as

ufy(p.s) = e rsuy(p. 5), (34)
where uy(p, s) is the nucleon spinor in the § = 0 vacuum.

In other words, the nucleon spinor satisfies the modified
Dirac equation

(i, + My (0)e= 2 Ors)uf (p,s) = 0. (35)

PHYSICAL REVIEW D 92, 094518 (2015)

The theory still preserves the spurionic symmetry
Py: Px60 — —0, where P is the standard parity trans-
formation. This implies that both the energies and the
amplitudes M(0), Z(60) are even functions of 9, M(0) =
M+ O0(6%) and Zy(0) = Zy + O(6?).

The phase ay(0) plays a very important role in the
determination of the EDM. From the spurionic symmetry
P,y we deduce that ay () = —ay(—60) and for small values

of 6, ay(0) = ag})e + O(6%). It is important to determine
precisely the mixing parameter ay before extracting the
CP-odd form factors from the three-point functions. The
reason is that the mixing between different parity states can
induce a spurious CP-odd contribution to the correlation
function proportional to the CP-even form factors. These
spurious contributions can be subtracted only with a precise
determination of the mixing angle ay(0). The details of
these spurious contributions and relative subtractions are
detailed in the Appendix.

For on-shell nucleons with energy —ip, = Ey(p) where

Ex(p) = v/|p|* + M%, the infinite volume normalization
reads

(N°(q,5)IN°(k,s"))
= (2”)3\/2EN(9§(1)\/2EN(9;1<)5(3) (k—q)d,y. (36)

Taking into account the parity mixing, the completeness
relation of the nucleon spinors with spatial momentum p
reads

> " (p.s)i (p. s)

= Ex(0:p)70 — ivipy + My (0)e?ex@rs. (37)

For small values of 6, we have

> ul(p.5)i(p. )

= Ex(p)ro — iripi + My(1 + 2i6ay6ys) + O(6%).
(38)

We can now perform the spectral decomposition of the
nucleon two-point functions in a @ vacuum. Retaining only
the one-state leading contribution we obtain

G}QVN (. x0)
e_EN (9;[)))60

= 2Ey(0:p) |ZN(9;p)|22:u§,(p, s)id,(p.s), (39)

and using the completeness relation we get
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Glé‘VN(p7x0)aﬂ
e—EN(g;P)Xn Z 9 5
*m| w( ,P)|

X [En(0;0)70 — iyipr + My (Q)CZIGN(H)yS]aﬂv (40)

where a and f are the Dirac indices. Expanding the lhs of
Eq. (40) in powers of 6, we obtain

Gin(p.x0) = Gyn(P. xo) + ier%N(P,xo) +0(6%) (41)

where
Gun(p.xo) = @D e (N (x,x0)N(0)),  (42)

and

Gan (P, x0) = @’y e (N (x.x)N(0)Q).  (43)

The term linear in € can be computed inserting the
topological charge in the nucleon two-point function.
The topological charge Q, defined in Eq. (25), is computed
as detailed in Sec. IV using the gradient flow. In this way
the topological charge is free from any renormalization
ambiguity and the continuum limit can be safely performed
keeping fixed the flow time in physical units. To minimize
discretization effects we choose, v/8¢/ry = 0.8. We omit
the flow-time dependence of Q(¢) because in this range of
flow times any correlator involving the topological charge
is flow time independent (see Sec. IV).

By expanding the spectral decomposition, i.e. the rths of
Eq. (40), in powers of 8, we obtain the standard nucleon
spectral decomposition

GNN(P, xo)

e_EN (p)xﬂ

= 2En(p) |Zy(P)P[En(P)ro — ivipk + M), (44)

and the term linear in 6

—Ey(p)xo

e
G}%N(P, Xo) = |ZN(P)|22MN0‘§\}>75- (45)

2Ey(p)

For simplicity we have not written down the opposite parity
states propagating from 7. If we project to p = 0 and to
positive parity we obtain

C(xp) = tr[P Gy (0. x0)] = 2|Zy[Pe™™¥0 ... (46)

and

PHYSICAL REVIEW D 92, 094518 (2015)
C9xy) = tr[PerSG]%N(Ov Xo)]
= 2|Zy[2al)eMrvo 4 ... (47)

We observe that the two correlators have the same leading
exponential behavior. If the sampling of all topological
sectors is correctly performed, the effective masses of the
two correlators should agree asymptotically for large
Euclidean times.

In Fig. 3 we plot the distribution of the topological

charge for 4 different lattice spacings at /8¢ = 0.8r,.
Details on the definition can be found in Sec. IV. The
distribution looks reasonably Gaussian with all average
values statistically consistent with zero. We observe for
a =0.079 fm, that the distribution has slightly larger
width, but this is related to the slightly larger physical
volume of that lattice. As we have seen in the previous
section, the topological susceptibility does not show any
sign of discretization errors.

For the computation of the two-point functions, we have
studied 3 different levels s;, i =1, 2, 3 of Gaussian
smearing [45]. The relevant parameters of the Gaussian
smearing that we have considered, usually labeled as
{a,Ng}, are s; = {2,30}, s, = {4,25}, s3 = {5.5,70}.
We have found that the s; smearing has a better projection
on the fundamental state, but it is also the smearing that
adds more noise to the correlator. Compromising between
an earlier plateau and a less noisier correlator, we have
decided to choose the smearing s, for the 2 coarsest lattice
spacings and the smearing s for the 2 finest spacings.

The fermion lattice action is the nonperturbatively
improved Wilson action [46-48]. The propagators are
computed with sources located stochastically in the three
spatial directions. We choose 20 stochastic spatial points
for the finest lattice spacing and 10 stochastic points for the
others. The rationale behind this choice is to have O(L/a)
different stochastic points to improve the overlap between
the topological charge and the fermionic part of the
correlation functions. We stress that this is very important
to improve the signal-to-noise ratio not only of the two-
point functions, but especially for the three-point functions
which we discuss in the next section.

We have performed the calculation at 4 lattice spacings
(see Sec. IV) and at the following set of momenta

2

{P} =" {(0.0.0).(£1.0.0). (£1.£1.0).

(£1,+1,+1), (£2.,0,0)}. (48)

The values of the quark mass for all the lattice spacings
corresponds to a value of the pseudoscalar mass, Mpg =
800 MeV, fixed in physical units [49]. From coarser to
finer spacings they correspond to the following values of
the hopping parameter, x = {0.13353,0.13423,0.13460,
0.13485}. For these values of k we have computed the
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FIG. 3. Distribution of the topological charge computed for v/8¢/r, = 0.8 for 4 different lattice spacings.

nucleon mass, that shows very small discretization errors
and it corresponds to a value My = 1.65 GeV. We have
also checked the dispersion relation for all lattice spacings
and find that the discretization errors are below our
statistical accuracy. In Fig. 4 we show our results for
our coarsest lattice spacing of the nucleon energy squared
for all the |p|? of the set (48) with the continuum form of
the dispersion relation.

In the left plot of Fig. 5 we show the effective masses of
the two correlators in Eqs. (46), (47) for the finest lattice
spacing. It is clear that for large Euclidean times we have
perfect agreement between the two effective masses and

1.5¢

22,2
a“Ey (p9)

051

6 0.‘5 1 1.‘5 2 2.‘5 3
p* [GeV?]
FIG. 4 (color online). Results for the nucleon energy squared at

different values of |p|> compared with the continuum dispersion
relation E3 = M% + |p|*.

very similar results are obtained for all the other lattice
spacings we have. This is also confirmed on the right plot of
Fig. 5 where we show, again for our finest spacing, the
nucleon mass obtained from the 2 correlators in Egs. (46),
(47) for different fit ranges. The calculation of the mixing

angle ag\}) is now straightforward

tr[P,ysGyy (0. x0)]
tr[P Gy (0, xo)]

=a\) 4, (49)

and we expect a plateau for large Euclidean times with
higher-order corrections that are exponentially suppressed.
In the left plot of Fig. 6 we show the Euclidean time

dependence of al(\}) obtained from the ratio in Eq. (49) at
a = 0.048 fm. A plateau is easily identified as is the case
for all the other lattice spacings. This is just a reflection of
the previous result, namely that asymptotically both corre-
lators in Egs. (46), (47) are dominated by the same
exponential behavior with the same mass.

We have performed several checks on the calculation of

the mixing angle because a solid determination of ag\p is

crucial for a correct and precise extraction of the nucleon
EDM as detailed in the next section and in the Appendix.
We can determine the mixing angle from ratios as in
Eq. (49) but with correlators projected at nonvanishing
spatial momenta. If we choose the same interpolating
operators for the two correlators, from the spectral decom-
position in Egs. (42), (43) we obtain

094518-8



NUCLEON ELECTRIC DIPOLE MOMENT WITH THE ...

PHYSICAL REVIEW D 92, 094518 (2015)

0.8 T T T T 0.45— T L L L
Meff 0.44+ —
07F 1 -
1 0.43- fit B
0.6L . 1 o4 \1 -
| . 0411 I ] II | I ] I
0.5 I I I . 1 04}
[1q II::III I 1 o3l 4
041+ 0 [ III I IIFIIIPFIF][LIIE I MQ )
M I I I I 038 it trmn
eff Xo/a | . * fit T
03 . ! . ! o370 o0
0 10 20 15 16 17 18 19 20 21 22 23 24 25

FIG. 5 (color online).

Left plot: comparison of the effective masses in lattice units obtained from the nucleon correlators at a =

0.048 fm with and without the insertion of the topological charge, i.e. from Eq. (46) (M) and from Eq. (47) (M, lef). Right plot:
comparison of the nucleon masses in lattice units obtained with the nucleon correlators (46), My, and (47), M%, at a = 0.048 fm for

different fit ranges (tl‘r‘l‘ti“, s = 28).

0.4 — —
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FIG. 6 (color online). Left plot: Euclidean time dependence of ag\}) determined from the ratio in Eq. (49) at a = 0.048 fm. The red

(1)

band indicates our choice for the plateau and the corresponding uncertainty. Right plot: momentum dependence of a),’, as determined

from the ratio in Eq. (50), at a = 0.048 fm.

Ey(p) + My tr[PerSG]%N(pv xo)]

<l>
= .

(50)

Up to discretization effects, ag\p should not depend on the

momentum chosen in the nucleon two-point functions. In
the right plot of Fig. 6 we show the |p|? dependence of 0‘1(\})
for our finest lattice spacing. We expect an increased
uncertainty as we increase the nucleon momentum and
we see perfect agreement between all the values of the
mixing angle. We obtain similar results for all the other
lattice spacings.

Another check of our calculation concerns the autocor-
relation time of the correlators containing the topological
charge. Critical slowing down has been observed for
topological charge and susceptibility both in QCD and
Yang-Mills theory [50] using an Hybrid Montecarlo
(HMC) algorithm. In particular, it is expected that the
problem can become relevant for lattice spacings below
0.05 fm. Even though the situation here is different because

the correlators contain explicitly fermionic propagators and
we do not use an HMC algorithm, at our finest lattice
spacing a = 0.048 fm we have computed the autocorrela-
tion function for all the Euclidean times x, of the correlator

Gy (0, x) and aj(\}). We have followed Refs. [51,52] for
the determination of the autocorrelation function and
integrated autocorrelation times.

In the left plot of Fig. 7 we show for ag\}) at xg/a =10
the normalized autocorrelation function and the estimate of
the integrated autocorrelation time 7;,, with an automatic
windowing procedure [51]. On the right plot we show the
estimate of z;, of ag}) for all Euclidean times. It is clear
there is almost no autocorrelation, 7;,, = 0.5, for all
Euclidean times. As a further check, we compared the
error estimate of ag\}) using the autocorrelation function
method to a standard bootstrap method. This is shown in
Fig. 8 from which it becomes clear that we can safely use a
boostrap analysis to determine our statistical uncertainty for

all correlators at all our lattice spacings. We can now
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normalized autocorrelation of oc(xO/a:1 0)
1 T T

PHYSICAL REVIEW D 92, 094518 (2015)
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int

Tt with statistical
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FIG. 7 (color online).
(1)

automatic windowing procedure [51] of )’ at x/a = 10. Right plot: estimate of z;;, of a,\}

indicate the absence of autocorrelation, z;,; = 0.5.

perform the continuum limit of as\}) for fixed value of the

pion mass. In Fig. 9 we show the continuum limit and in
Table I we list all the values at all lattice spacings and
different extrapolations to the continuum limit. We com-
pare a linear extrapolation in a” (yellow band) with a
constant extrapolation including the three finest lattice
spacings. We observe a perfect agreement for all the
extrapolations and tiny discretization errors. The theory
is nonperturbatively improved so we expect an O(a?)
scaling behavior.

Since we see no signs of discretization errors, as a final
result we quote the value obtained using a constant fit
excluding the coarsest lattice spacing,

al)) = 0.314(35). (51)

We stress that this is the first time that a continuum limit is
performed for this CP-mixing angle. The normalization

0.4 : :

1 Bootstra;
| (XI(\I)(XO/a) \pA |

Ml

0.3

T
—_
—_—
_
—_—
——
—_—
T
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_
[ —
—
—_—
_
—_—
=,
—_—
—
_
|

0.1 HHH A

EHH

X /a

0 \ \ \
0 10 20 30 40

FIG. 8 (color online). Comparison of error estimates using the
autocorrelation function method, labeled by 7;,, and a standard
bootstrap method.

Left plot: normalized autocorrelation function and estimate of the integrated autocorrelation time 7;,, with the

() for all Euclidean times. The dashed red line

chosen for ag}) and the convention for the Dirac y matrices

is consistent with the one of Ref. [9]. Our result in the
continuum limit differs by 2¢ from the result of Ref. [9] that
is obtained with a different fermionic and gauge action, at a
single lattice spacing of a = 0.15 fm and at a similar quark
mass value.

VI. NUCLEON ELECTRIC DIPOLE MOMENT

The spectral decomposition of the three-point functions

G%JMN(pI’pZ’xO’ yO)
- a6zeipz(x—y)eimY<,/\/(x,xO)J,,(y, .VO)N<O)>9v (52)
Xy

relevant for the determination of the nucleon EDM is
detailed in the Appendix and the final result for the leading
exponentials is given in Eq. (A4). By taking suitable ratios

0.45
047
0.35[ 1
zz
3
0.31 |
025 |
02 0 2 4 6 8 10
2 2 _
a® [fm?] x107°

FIG. 9 (color online). Continuum limit of ag}). The yellow band

is a linear extrapolation in a” and it is compared with a constant
extrapolation including all the lattice spacings and excluding the
coarsest one.
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FIG. 10 (color online). Euclidean time dependence of the
proton electric form factor determined from the ratio (A21) for
two different values of Q2.

of two- and three-point functions we can extract CP-even
and CP-odd form factors defined in Egs. (16) and (18).

The three-point functions have been computed for the set
of momenta {P} defined in Eq. (48) and, when possible,
we have averaged over all equivalent momenta configura-
tions. We have tested several sink locations x; and,
after some numerical experiments, we have chosen the
following set,

{x0} = (16a,20a,20a,28a), (53)

from the coarsest to the finest lattice spacing. We work in
the SU(3) flavor-symmetric limit such that the disconnected
contributions vanish.

For all the form factors calculations we use a local vector
current. The normalization constant Zy(g3) is taken from
Ref. [53]. To compute the EDM we use the ratio of
Eq. (A27). In order to determine F;(Q?), we need to

]
0.8
> 06
g
Q.(DLLI
0.4 "
LIR
0.2 .
0
0 1 2 3
Q% [GeV?|

FIG. 11 (color online).

PHYSICAL REVIEW D 92, 094518 (2015)

subtract contributions proportional to the mixing angle ag\})

and the CP-even form factors G(Q?) and G, (Q?). To
determine Gp(Q?) and G,(Q%) we use the ratios in
Egs. (A21) and (A26). In Fig. 10 we show two typical
plateaus for the electric form factor of the proton for 2
different momenta. A plateau is easily identified as for all
the other momenta and lattice spacings. We collect in a
single plot, Fig. 11, the electric form factor G(Q?) of the
proton and the neutron including all the lattice spacings.
Discretization errors are well under control. The red curve
for the proton electric form factor is a fit to the lowest four
momenta using the standard dipole form,

i (0?) = ( ! (54)

2\2°
8

The neutron electric form factor vanishes at Q% = 0 and is
rather small for larger values of Q2, but we are still able to
identify a clear signal over a wide range of Q2. This will be
important for the determination of the neutron EDM. In
Fig. 12 we show the same result for the magnetic form
factors and the same type of dipole fit

GEP(0?) = ( - (55)

7 oe\2
8

where the anomalous magnetic moments kp y are fixed to
their phenomenological values. The fit parameters M2, are
not expected to reproduce the phenomenological values
(see for example Ref. [54]). We perform these fits as a
check that our lattice data can be fitted by a dipole form,
however we do not use these fits in the determination of the
EDMs below.

With the precise determination of the CP-even form
factors and the mixing angle a,(\}), we can now determine
the nucleon EDM. By evaluating the ratio on the lhs of

0.04
0.02
Zw 0
®
~0.02
~0.04
-0.084 1 2 3

Q% [GeV?

Momentum dependence of the electric form factor for the proton (left plot) and the neutron (right plot). The red

curve for the proton form factor is a phenomenological fit restricted to the four lowest momenta. The fit result is M3 =

1.5182(71) GeV? (see text).
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FIG. 12 (color online).
and M?, = 0.5224(15) GeV? for the neutron.

Eq. (A27) and subtracting the spurious contributions from
the r.h.s, we can determine the CP-odd form factor F5(Q?).
In Fig. 13 we show the plateau for the normalized CP-odd
form factor F5(Q?)/2M y for all the momenta at our finest
lattice spacing. For the lowest two momenta it is possible to
extract a signal while for the largest two, the signal is too
small and consistent with zero. In Fig. 14 we show the Q?
dependence of F5(Q?)/2My on a single plot including all
our lattice spacings. The different lattice spacings results
agree rather well, indicating small discretization errors
within our statistical accuracy. For this reason, we deter-
mine the EDM by extrapolating using the three finest lattice
spacings result to Q% = 0 with the same fit function. An
extrapolation using all four lattice spacings give completely
consistent results as shown in Fig. 14. For the extrapolation

LUU, AND JORDY DE VRIES
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Same as Fig. 11 but for the magnetic form factors. The fit results are M%, = 0.5621(20) GeV? for the proton

to Q> =0, we use the SU(2) yPT result of [6] as a
guideline. There the form factor is expanded as

FiN(0?)

W (56)

=dp/n + Sp/nQ* + Hp/y(0?).

The values at Q> = 0 are the nucleons EDMs and the slope
in Q% at small Q?, Spy, are the so called Schiff moments
[55]. The functions H p/N(QZ), defined in [6], scale as Q*
for small Q% and they can be neglected for small enough
values of Q2. The numerical data for small Q? indeed
suggest a linear Q* dependence. A linear extrapolation in
Q?, using the three finest lattice spacings, gives us the
values of the proton and neutron EDMs

FIG. 13 (color online).

Proton Electric dipole moment Neutron
0.04 - T —~ i : .
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- L \ | ‘ X/a
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Euclidean time dependence of F5(Q?)/2M, in e - fm extracted from the ratio in Eq. (A27) for the four
nonvanishing lattice momenta at our finest lattice spacing.
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FIG. 14 (color online). Momentum dependence of the CP-odd
form factor F53(Q?)/2My of the proton and the neutron. The
yellow band is a linear extrapolation in Q? as suggested from yPT
at NLO using all four lattice spacings. Different colors represent
different lattice spacings: f = 6.0 (cyan), f = 6.1 (red), f = 6.2
(magenta), f = 6.45 (green). As a comparison we plot, slightly
displaced, the Q = 0 extrapolation using the three finest lattice
spacings.

dp = 0.0340(62)0 ¢ - fm, (57)
dy = —0.0318(54)0 ¢ - fm. (58)

If we make the reasonable assumption that at this relatively
large value of the pseudoscalar mass, quenched and
unquenched calculations give comparable results, we can
try to estimate the values of the EDM at the physical point.
To do so, we use as constraint the fact that the EDM in the
continuum has to vanish in the chiral limit. In principle, we
would like to use the yPT expressions in Eqgs. (4) and (5),
but considering the large pseudoscalar mass used in our
calculations, the yPT expressions are not reliable and we
instead perform a simple linear fit in M2. We then obtain
the following estimates,

A = 0.96(18) x 1030 e - fm, (59)
A = —0.90(15) x 10730 ¢ - fm, (60)

where we have only included the errors from Eqs. (57) and
(58). These estimates are statistically consistent with the
results of [12,13]. We stress that many systematic uncer-
tainties are not taken into account in our calculation and
that the main goal of this work is to describe the new
methodology and perform a first continuum extrapolation.
With all the caveats intrinsic in our calculation, we can
extract an upper bound for 6. The experimental upper
bound of the neutron EDM, |dy| < 2.9 x 10713 ¢- fm,
gives 6 <3.2x 10710,

PHYSICAL REVIEW D 92, 094518 (2015)

Our lattice data also allow us to extract the nucleon
Schiff moments for which we obtain

Sp=—1.16(33) x 10730 ¢ - fm?, (61)
Sy = 1.07(28) x 10730 ¢ - fm>. (62)

In both SU(2) [6,18] and SU(3) [5,23] yPT, the nucleon
Schiff moments are of isovector nature, in agreement with
our lattice results. In fact, at leading order in the SU(2)
chiral expansion, the Schiff moments are predicted,

Sp = _SN

_ egadh
487* F2M>
= —(1.840.2) x 10*0e - fm®, (63)

where we used the value of g given in Eq. (9).

We see that our lattice results are roughly 5 times larger
than the leading-order yPT predictions which are in
principle pion-mass independent (note that gj~ M3).
However, already at the physical pion mass, the nucleon
Schiff moments obtain O(60%) next-to-leading-order cor-
rections that scale as ~M, [5,6]. Considering the large
pseudoscalar mass used in our calculation, the discrepancy
is not very worrisome.

To conclude, we have shown that it is possible to obtain a
nonperturbative determination of the Schiff moments from
the Q* dependence of the CP-odd form factor, F5. With
more precise lattice data at smaller pion masses, the
extraction of the nucleon Schiff moments can be used for
a direct determination of the LEC g,. In this way, from the
pion mass dependence of the EDMs [see Egs. (5), (4)], it is
then possible to extract the other LECs, Ap y (or equivalently
d ~.p), from lattice QCD alone without relying on Eq. (9).

VII. FINAL REMARKS

We have presented a first-of-its-kind continuum limit for
the CP-mixing angle ay and the nucleon EDMs. At the
same time, we have performed a first ab initio calculation
of the nucleon Schiff moments in the continuum limit
which can be used to extract the value of the CP-odd pion-
nucleon coupling constant g,. The key ingredient is the use
of the gradient flow for the definition of the topological
charge which, in this way, is free of renormalization
ambiguities and allows a straightforward continuum
extrapolation. The method we have proposed is general
and can be used for any quantity computed in a # vacuum
such as EDMs of light nuclei. To test this new method we
have performed the calculation in the Yang-Mills theory at
a relatively large value of the quark mass. We are currently
extending this calculation to QCD with dynamical con-
figurations and smaller quark masses.
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Previous calculations of nucleon EDMs [8,9] also
applied a perturbative expansion in 6, but instead used a
cooling procedure to define the topological charge. We do
believe that such calculations give the right qualitative
answer, but we stress that defining the EDM in this way
does not allow for a controlled continuum limit. Another
method that has been proposed is to consider an imaginary
0 term in the action [14]. With an imaginary € the action
becomes real and amenable to numerical Monte Carlo
methods, but it requires the generation of a new gauge
ensemble for each value of 6. The range of € used for the
generation of these ensembles is 0 =0.5-2.5. If the
calculation is performed with a Wilson-type action, the 6
coefficient needs to be renormalized in order to restore the
proper anomalous Ward identity. Additionally, the analytic
continuation back to a real value of 8 has to be done with
care in regions outside the perturbative regime in 8. These
complications are avoided completely with our proposal,
because we directly compute the linear coefficient of € in
the standard QCD background.

As a last remark we recall that with a Wilson-type fermion
action, EDMs are not guaranteed to vanish in the chiral limit,
which only happens after the continuum limit has been
performed. The same phenomenon takes place for the topo-
logical susceptibility [35]. It is only after performing the
continuum limit that it is possible to constrain the #-induced
EDM to vanish in the chiral limit. This stresses the importance
of performing the continuum limit prior to any chiral limit and
we believe that our method is optimal in this respect.

We consider this work as a first step in the determination
of @ and beyond-the-Standard-Model matrix elements with
the gradient flow. Other contributions to EDMs, for instance
from fermionic operators such as quark chromoelectric
dipole moments, can be determined using the gradient flow
for fermions [28], and work in this direction is in progress.
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APPENDIX: SPECTRAL DECOMPOSITION OF
THE THREE-POINT FUNCTIONS

In this appendix we discuss in some detail the spectral
decomposition of the three-point functions used to deter-
mine the nucleon form factors in a 6 vacuum. For
completeness we remind that in our calculations the initial

PHYSICAL REVIEW D 92, 094518 (2015)

momentum is p; = ((py)y, P;) and the final momentum is
P2=((p2)y-P2)- The momentum transferis ¢ = p, — p; =

(E(p2) — E(P1). P2 — P1)-
If we retain only the leading exponential contribution,

the spectral decomposition of the three-point functions,

G%J#N(plvp%xo’yo)
= aﬁzeiplyeipz(x—y) <J\/’(x,xo)1ﬂ()’» yO)N(O»g’ (Al)
X.y

is given by

e~ En(P1)yo e=En(p2)(x0=0)
2Ey(p1)  2En(p2)
x Y (OININ(ps.5"))

x (N%(p2.8")|,IN°(py. 5))
x (N?(py. 5)|N]6).

G%J;,N(pl,pﬁx(),}’o) =

(A2)

Following the parametrization in Eq. (15) and using the
completeness relation, we obtain for small values of 6

G?@N(pl » P25 X0, yO)aﬂ

e—En(P1)yo @=En(p2)(xo=¥0)
~ 2Ex(p1)  2En(p2)

X {[En(P2)70 = ivi(p2) + My (1 + 2i90‘1(\}>975)]ru(Q2)

x [Ex(P1)7o = ivi(p1)i + My(1 + 21"9‘1;\})‘975)}}043’
(A3)

Zy(p1)2n(p2)

where af} are the Dirac indices. If we expand in powers of 6
the rhs of Eq. (Al), we obtain

G%J;,N(Pl,l)z,x(),)’o) = Gy~ (P1. P2, X0, Yo)

—|—i9GAQU”N(p1,P27x0’yO)7 (A4)

where

— 6§ j ips(x—
GNJ”N(plvPZaanyO) =a eP1Ye p2(x-y)
Xy

X (N (x,x0)7,(y. )N (0))  (AS5)

is the three-point function in the standard QCD back-
ground, and

G]%J#N(pl’ P2. X0, Yo)
= a®y eV (N (X, x0)J, (. yo)N'(0)Q) (A6)
X,y

contains the insertion of the topological charge evaluated at
nonvanishing flow time /8¢ = 0.8r.
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Depending on the form factor we are interested in, we can select the appropriate Dirac indices with appropriate projectors

that we indicate generically as I, obtaining

Gﬁ(Pl,Pz;x(),)’o;H) = Tr[HGf‘:/JMN<P1’P2§x0’YO)]7

1.e.

e—Ev(P1)yo g=En(P2)(x0—0)

GO(py, Pa; X0, yo; 1) =
M(l 25405 )0 ) ZEN(pl)

(A7)
2Ex(py) Zy(P1)2n(p2)
x T{II[Ey(p2)70 — ivk(p2)i + My(1 + 2i9a1(\})75)]r‘;4(Q2)
x [Ex(P1)ro = iri(p1)e + My (1 + 210 y)]}. (A8)

The spectral decomposition of the correlation functions in Egs. (A5) and (A6) traced with a generic projector II are easily

obtained,

e~ Ev(P1)yo e=En(p2)(x0—0)
2EN(p1)  2EN(P2)

Gu(l)l,[b;xo,)’o;n) =

e~ En(P1)yo e=En(P2)(x0=Y0)
 2Ey(p1)  2En(p2)

G2(p1.P2: X0 o3 1)

Zy(P1) 2N (P2) Tr{T[Ey(P2)70 — ivk(P2)i + My]

x e (0?) [En(P1)ro — ivi(p1)i + My}

(A9)

Z3(p1) Zn (P {THTI2M yay 75 )T (02 (En(P1 )70 — ive(p1)i + My)]

+ Tr[II(En(P2)7v0 — ivi(P2)s +MN)FZVBH(Q2)(2MN6'1(\})75)]

+ Tr[I(Ex (p2)v0 — ivi(p2)i + Mp)T Q%) (En(P1)vo — ivi(p1)i + My)]}

where I'¢*" and I'9% are defined in Eqs. (16) and (18).
From this expression we already see that the three-point
function with the insertion of the topological charge is not
directly proportional to the CP-odd form factor F; but it
contains additional contributions proportional to aNl and
the CP-even form factors.

To extract the form factors traditionally, one defines the
following chain of ratios,

Rﬁ(Ph P2; Xo. Yo: IT)
_ Gi(p1,P2; X0, yo3 TT)
C(pZa XO)

where C(p,x), the nucleon two-point function, is
defined as

C(p,xo) = tr[P Gy (P, x0)]
e~ En(p)xo
Eyn(p)

'K(Phpz;xo,yo)» (All)

(En(p) +My)+--- (Al2)

=Zy(p)|

and

C(P2.%0)C(P2.y0)C(P1. X0 — o) | 1/

C(p1.x0)C(P1.Y0)C(P2: X0 — o)
(A13)

K(plvp2;x07y0) =

(A10)
|
For small 8 we have
RZ(P13P2§XO»)’0§H)
= Ry(Pl,Pz;Xo,ymH) + iHRyQ(Pl,szo,yo;H),
(A14)
where
Rﬂ(p17p2;x07y0;n)
Gﬂ(pl,pz;xo,yo;ﬂ)
- ° K 5 s ) ) AIS
C(pa. x0) (P1. P23 X0, Yo) ( )
and
RE(pl,pz;xo,yo;H)
GQ(Phpzéxo,YOQH)
=+ -K(p1,P2: X0, Y0). (A16)

C<p2’ xO)

Performing the spectral decomposition and retaining
only the fundamental state, we obtain
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RY(py, Pa: X0, o3 TI) = N (p1, po) TH{T[Ex(p2)yo — iyic(pa)e + My (1 + 2i6aly 6y5)T,(0?)

x [En(p1)ro = ire(pr)i + My(1 + 2i6ayy 0r5)]} (A17)
where the normalization is given by ¢ =My -Ey)?-q* = ¢

1 = (My - Ey)’ = (Ey - M}) = ¢

N(p1.p2) :m =2My(My —Ey) < 0. (A23)
Ey(P1)En(P,) 12 This implies that
(En(p1) +M)(En(p2) + M)

(A18) ¢ 0
Ey—My=——""—=——. A24
v My == = o (A24)

The ratio (Al1) is defined to remove the leading expo-
nential contributions and have a plateau for 0 < yy < x
proportional to the form factors.

We can now specialize the projector II, the external
kinematics, and the current component in order to compute
the form factors we want. For the 2 CP-even form factors
we choose

O M=P,,u=0,p;=p,p,=0.

In this case we indicate E(p) = E and E(p,) = M

Ry(p.0:x0,y0; P)
=N(p.0)-4My(Ex(p) + My)

QZ
<) -2 r(e)]. (a9
where
JNCCTESUED S
P amy REV)En(p) + My)]
(A20)
Putting everything together, we obtain
. . _ [Ex(p) +My]'/?
Ro(p. 0; x0, yo; Py) = [T(p)]
2 0 2
< [P0~ 2 P27,
(A21)

To obtain Eq. (A21) and some of the equations below,
we have used the following kinematic relations,

lqf* = Ip® = E} — M. (A22)

and

Any of the relations in Eq. (A23) define the Q? =
—q* to be used when analyzing the form factors:
(i) M= iP+7/57j’ u=1ip =p,p>=0.

After some algebra we obtain
R;(p. 0; 0. yo3 iP1ysy;)
=N(p.0) ‘4M61k€ijk[F1(Q2) + F»(0%)],
(A25)

and using the expression for the normalization
(A20), we obtain

R;(p.0; X9, yo3 iPLysy;)
1 1/2

~ 2Ey(p)(Ex(p) + My)
X qrei[F1(Q%) + F2(0%)].

(A26)

For the CP-odd form factor there are several choices for
the Dirac projector. The analysis presented in this paper
uses

@ = iP+757i9 H= 0, P1 =P, P2 = 0.

If we compute the coefficient of if, we obtain
after some algebra

RE(p, 0; X0, Y03 P 757:)

=N(p.0)
| e by | (@) + B )
N
- 2By + My)giFA(Q) . (A27)

Here the importance of a precise determination of a,(\p

becomes clear. The mixing of parity states induces spurious
contributions to the correlation functions proportional to
the CP-even form factors. These contributions need to be
subtracted in order to determine the nucleon EDM.
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