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This note summarizes some mathematical relations between the
probability distributions for the states of a network of binary units
and a subnetwork thereof, under an assumption of symmetry. These
relations are standard results of probability theory, but seem to be
rarely used in neuroscience. Some of their consequences for infer-
ences between network and subnetwork, especially in connection
with the maximum-entropy principle, are briefly discussed. The
meanings and applicability of the assumption of symmetry are also
discussed.
Keywords: neuronal networks, statistical models, maximum-entropy
PACS: 87.19.L-,87.19.lo,05.90.+m MSC: 03B48,97K50

Remark: In this Note, whenever we use the term “probability”, we are not speaking
about a frequency, or about some sort of (unmeasurable) physical property, but about a
degree of reasonable belief, or plausibility, whose manipulation follows a well-defined
and well-established logical calculus, “Bayesian theory” [1–27].

probable, a. and n.
3. a. Having an appearance of truth; that may in view of present
evidence be reasonably expected to happen, or to prove true; likely.

Oxford English Dictionary [28]

The correct probability is always that relative to the knowledge of
the person who makes the probability-judgment.

C. D. Broad [29, ch. II, p. 150]

When people say that the proposition “it is probable that p will
occur” says something about the event p, they forget that the
probability remains even when the event p does not occur.

L. Wittgenstein [4, p. 227]
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1. Uncertainties about networks and subnetworks

If we are uncertain about the state of a network of neurons, what is our
uncertainty about the state of a subnetwork? And vice versa, if we are
uncertain about the state of a subnetwork, what is our uncertainty about
the state of the whole network?

If our uncertainties are expressed by two probability distributions
for the states of network and subnetwork, and these distributions satisfy
a particular symmetry property, then they are related by precise and
relatively simple mathematical formulae. These formulae are of essential
importance when we want to make inferences about the whole network
given data about the subnetwork and vice versa.

While well-known in survey sampling and in the pedagogic problem
of “drawing from an urn without replacement”, such formulae are
somewhat hard to find explicitly written in the neuroscientific literat-
ure. We have therefore decided to summarize them in this Note, as
a reference, for the case of neurons modelled as “units” with binary
{0, 1} ≡ {inactive, active} states. The formulae also apply to any network
or population of any kind of units modelled in the same way: e.g., the
values of the physical connectivities of a neuronal network.

The formulae and the assumptions underlying them are given in the
next two sections, followed by examples of their use in both inferential
directions: network to subnetwork and reverse. We also discuss the
meanings of the symmetry property, and conclude with a brief summary.
Proofs of the formulae are sketched in an appendix.

Our notation follows ISO [30], ANSI/IEEE [31], and NIST [32] stand-
ards but for the use of the comma “,” to denote logical conjunction
(“and”, “∧”), for the sake of typographic poise. Probability-calculus
notation follows Jaynes’s book [22].

2. Formulae connecting network and subnetwork
probabilities

2.1. Setup

Consider a network of N binary neurons with states (X1 , . . . ,XN ) having
fixed but unknown binary values (R1 , . . . , RN ), with Ri in {0, 1}, vectori-
ally written X � R. For example, X can represent the state of a network at
a particular time. We call the neurons “units” to lend some generality to
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our discussion. We shall make statements about the whole network of N
units and about a subnetwork of n units; the word “network” will always
refer to the whole network. The subnetwork states and their values are
denoted by lowercase letters: (x1 , . . . , xn) ≡ x and (r1 , . . . , rn) ≡ r ; but
note that xi ≡ X ji and ri ≡ R ji for some distinct j1 , . . . , jn . We shall also
make statements about the network-averaged state, or network average:

X :� (X1 + · · · + XN )/N, (1)

and the subnetwork-averaged state, or subnetwork average:

x̂ :� (x1 + . . . + xn)/n. (2)

The quantities NX and n x̂ represent the total number of active units in
the network and the subnetwork. Quantities like R and r̂ are defined
analogously. The averaging operators ·̂ and · are also extended to
averages of

� n
m

�
or

�N
m

�
products of m states; e.g.,

XX :�
�N

2
�−1(X1X2 + X1X3 + · · · + XN−1XN ), (3)

x̂xx :�
�n

3
�−1(x1x2x3 + x1x2x4 + · · · + xn−2xn−1xn), (4)

and so on.

2.2. Assumptions

Our uncertainty about the network state is represented by the joint
probability distribution of the individual states, from which we can
derive all other probabilities of interest. We denote it by

P(X1 � R1 ,X2 � R2 , . . . ,XN � RN |H ) or P(X � R|H ). (5)

Such probability is conditional on our state of knowledge, i.e. the evidence
and assumptions backing our probability assignments, denoted by the
proposition H .

In the present discussion, H is a state of knowledge that leads to two
specific properties in our probability assignments:

H1. Permutation symmetry, expressed as the invariance of the joint
distribution (5) under arbitrary permutations of the units’s labels:

P(X1 � R1 ,X2 � R2 , . . . ,XN � RN |H ) �
P(X1 � Rπ(1) ,X2 � Rπ(2) , . . . ,XN � Rπ(N) |H )

for any permutation π . (6)
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This property can reflect two very different states of knowledge: physical
homogeneity of the network, or symmetry in our ignorance about the
network. This property is called finite exchangeability in the Bayesian
literature and its basis, consequences, and alternatives to it are discussed
in § 4.

H2. The network average X has a particular distribution Q:

P(X � A|H ) � Q(A), A ∈
�
0, 1

N ,
2
N , . . . , 1

	
. (7)

For the moment we are not concerned about the specific form of Q and
about how it was assigned: it could, e.g., arise from maximum-entropy
arguments [e.g.: 33–42] used with data on the network.

2.3. Formulae

The state of knowledge H has the following six (not independent) main
consequences for our probability assignments:

I. Probability for the network state:

P(X � R| H) �
(

N
NR

)−1

Q(R). (8)

II. Probability for the state x of any subnetwork of n units:

P(x � r |H ) �
N∑

NA�0

(
N − n

NA − n r̂

) (
N

NA

)−1

Q(A). (9)

Note that the only summands contributing to this sum are those for
which n r̂ 6 NA 6 N ; the others are zero because by definition

�M
y

�
� 0

if y < 0. This remark applies to all the sums of this kind in the rest of
this Note.

III. Probability for the subnetwork state conditional on a network
state:

P(x � r | X � R,H ) �
(

N − n
NR − n r̂

)
. (10)
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IV. Probability for the subnetwork average x̂:

P(̂x � a |H ) �
(

n
na

) N∑
NA�0

(
N − n

NA − na

) (
N

NA

)−1

Q(A),

a ∈
�
0, 1

n ,
2
n , . . . , 1

	
. (11)

V. Probability for the subnetwork average conditional on the network
average:

P(̂x � a | X � A,H ) �
(

n
na

) (
N − n

NA − na

) (
N

NA

)−1

. (12)

VI. The product of the states of any m distinct units from a given
subnetwork,

xi1 xi2 · · · xim , 1 6 i1 < i2 < · · · < im 6 n

has an expectation equal to that of the subnetwork average of such
products, is independent of the subnetwork size n:

E(xi1 · · · xim |H ) � E( Fx · · · x︸︷︷︸
m factors

|H ) � E(X · · ·X︸  ︷︷  ︸
m factors

|H ), (13a)

and has an explicit expression in terms of Q:

E(xi1 · · · xim |H ) �
(
N
m

)−1 N∑
NA�0

(
NA
m

)
Q(A)

≡

N∑
NA�0

(
N − m

NA − m

) (
N

NA

)−1

Q(A).
(13b)

A useful relation connects the expectation of a product (13) and the
mth factorial moment [43] of the probability distributions for the averages.
The mth factorial moment of the subnetwork average x̂ is defined by

E[n x̂ (n x̂ − 1) · · · �n x̂ − (m − 1)�︸                                ︷︷                                ︸
m factors

|H ] ≡ E
[ (n x̂)!
(n x̂ − m)! |H

]
, (14)

an analogous definition holding for X . We have that

E(xi1 · · · xim |H ) � (n−m)!
n! E

[ (n x̂)!
(n x̂ − m)! |H

]
�

(N−m)!
N! E

[ (NX)!
(NX − m)! |H

]
.

(15)
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As a consequence of the above relation, the first three moments of the
probability distributions P(̂x � a |H ) and P(X � A|H ), are related by

E(̂x |H ) � E(X |H ), (16a)

E(̂x2 |H ) � E(X |H ) N − n
(N − 1)n +

E(X2 |H )N (n − 1)
(N − 1)n ,

(16b)

E(̂x3 |H ) � E(X |H ) (N − n)(N − 2n)
(N − 1)(N − 2)n2 +

E(X2 |H )3N (N − n)(n − 1)
(N − 1)(N − 2)n2 +

E(X3 |H )N2 (n − 1)(n − 2)
(N − 1)(N − 2)n2 .

(16c)

Relations for higher moments can be obtained recursively from eq. (15).
In general, this means that the two sets of first m moments are related by
a homogeneous linear transformation,

E(̂xm |H ) �
m∑

l�1
Mml(n ,N)E(X l |H ), (17)

with a universal, lower-triangular transformation matrix Mml(n ,N) that
depends only on n, N , and the condition of symmetry (6).

As intuition suggests, we have

E(̂xm |H ) n→N
−−−−→ E(X m |H ), E(̂xm |H ) n→1

−−−→ E(X |H ), (18)

the latter because xi
m � xi , since states are {0, 1}-valued.

The core of the six mathematical relations above are eqs (9) and (11).
The latter expresses the probability for the subnetwork average as a
mixture of hypergeometric distributions [22, ch. 3; 44, § 4.8.3; 45, § II.6],
with parameters N,NX , n, weighted by the probabilities P(X � A|H ) [cf.
46, § 4, esp. eq. (22)]. The connection between this mixture representation
and the condition of symmetry (6) is well-known in the Bayesian literature
[46–51].

Proofs of the above formulae are sketched in appendix A.

6



PORTA MANA, TORRE, ROSTAMI Network-subnetwork inferences under symmetry

2.4. Asymptotic approximations and generalizations

Recall the definition of the Shannon and Burg [52; 53] entropies for a
binary probability distribution (p , 1 − p) with p in [0, 1]

H(p) :� −p ln p − (1 − p) ln(1 − p), HB(p) :� ln p + ln(1 − p). (19)

The binomial coefficient has an asymptotic form that involves the two
entropies above [54–60]:

ln
(

M
Mp

)
� M H(p)− 1

2 ln(2πM)− 1
2 HB(p)+O

(
1
√

M

)
, M large, (20)

and this expression can be used to obtain asymptotic forms of the math-
ematical formulae (8)–(15) for large N , depending on the magnitudes of
n and n/N. For example, if N and n are large and their ratio k :� n/N
finite, the probability distributions for the averages can be approximated
(provided some regularity conditions) by continuum densities,

n P(̂x � a |H ) ≈ f (a), N P(X � A|H ) � N Q(A) ≈ F(A),
f , F : [0, 1]→ [0,+∞[, (21)

and sums by integrals, and eq. (9) takes on the approximate form

f (a) �
1∫

0

exp
{

N
[
k H(a) −H(A) + (1 − k)H

(A − ka
1 − k

)]}
F(A)dA, (22)

which shows an interplay of three entropies that depends on the ratio
n/N. In some cases this allows us to approximate the integral by the
value at a mode determined by a generalized entropy principle. (In
fact, the standard maximum-entropy procedure can be derived from the
probability calculus via a similar approximation [61].)

The relations above can also be generalized to K-valued states Xi in
{0, . . . , K − 1}, leading to the appearance of the generalized hypergeo-
metric distribution [22, ch. 3; 44, § 4.8.3; 45, § II.6], or to real-valued states
Xi in R.

We do not pursue any of these approximations or generalizations in
this Note.
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3. Examples of inferential use of the formulae

3.1. From network to subnetwork

Let us illustrate with an example how the probability distribution for
the subnetwork average x̂, determined by eq. (11), changes with the
subnetwork size n. Choose a network-average distribution P(X � A|H )
belonging to the exponential family [62, § 4.5.3; see also 63]:

P(X � A|H ) � Q(A) ∝
(

N
NA

)
exp[λ2 NA (NA − 1)/2 + λ1 NA]. (23)

This is the form obtained from the principle of maximum relative entropy
[e.g.: 33–42] with first and second moments as constraints and the
reference distribution Q0 defined by Q0(A) � 2−N � N

NA

�
, corresponding

to a uniform probability distribution for the network state X .
The probability distribution of eq. (23) is plotted in fig. 1, together with

the resulting subnetwork-average distributions P(̂x � a |H ), for the case
in which N � 1000 units, λ1 � −2.55, λ2 � 0.005, and n � 10, 50, 100, 250.
The distributions become broader as n decreases, and the minimum of
the original distribution disappears; at the same time the finite-difference

P(̂x � a + 1/n |H ) − P(̂x � a |H )
1/n

presents a sharp jump at this minimum when n ≈ 100.
To the eye familiar with maximum-entropy distributions, the

subnetwork-average distributions of fig. 1 do not look like maximum-
entropy ones with second-moment constraints. In fact, they are not and
cannot be:

P(̂x � a |H ) , κ

(
n

na

)
exp[κ2 na (na − 1)/2 + κ1 na] (24)

for any κ , κ1 , κ2, unless n � 2. This impossibility holds more generally
for any number of constraints m and subnetwork size n such that
m < n. The reason is simple: suppose we have assigned a maximum-
entropy distribution with m moment constraints as the distribution
for the network average. If we want the same kind of distribution for
a subnetwork of size n, we are free to play with m + 1 parameters
(normalization included), but we must also satisfy the n + 1 equations
corresponding to the marginalization (11). This is generally impossible

8
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Figure 1 Probability distributions P(̂x � a |H ) for different subnetwork sizes n, ob-
tained from a network probability distribution P(X � A|H ) having the maximum-etropy
form (23).
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)

Figure 2 Moments of the probability distributions P(̂x � a |H ) as functions of the
subnetwork size n.
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unless m > n. (Impossibilities of a similar kind appear in statistical
mechanics, see e.g. ref. [64].)

This fact can be significant for recent works [e.g., 65–73] in which
a maximum-entropy probability distribution with second- or third-
moment constraints is assigned to relatively small subnetworks (n < 200)
of neurons. If we assume that such subnetwork is part of a larger network,
and assume the condition of symmetry (6), then the larger network cannot
be assigned a maximum-entropy distribution with the same number of
constraints. Vice versa, if we assign such a maximum-entropy distribution
to the larger network, then none of its subnetwork of enough large size
n can be assigned a similar maximum-entropy distribution. See ref. [74]
for a broader discussion of this fact and of its consequences.

The dependence of the first four moments E(̂xm |H ) as a function
of size n is shown in fig. 2. The moments become practically constant
when n ≈ 100 or larger. The expectations of m-tuple products of states
E(xi1 · · · xim |H ), proportional to the factorial moments, are not shown as
they do not depend on n.

3.2. From subnetwork to network

We have seen that, given the condition of symmetry (6), the probability
P(X � A|H ) for the network average determines that of each subnetwork
average, P(̂x |H ), by the marginalization eq. (11). The reverse is trivially
not true, since eq. (11), as a linear mapping from RN+1 to Rn+1, with N
larger than n, is onto but not into. Assigning a probability distribution
P(̂x � a |H ) to a subnetwork average x̂ does not determine a network
distribution P(X � A|H ): it only restricts the set of possible ones; this
set can in principle be determined via linear-programming methods [23;
25; 75–77].
Analogous situations appear in the truth-valued logical calculus: if the composite propos-
ition A ⇒ B is assigned the truth-value “true”, then assigning A the value “true” also
determines the value of B , whereas assigning B the value “true” leaves the value of A
undetermined.
The same linear-programming methods show that any inference from
subnetwork properties to network ones must necessarily start from some
assumptions I that assign a probability distribution P(X � R| I ) for the
network states. The approaches to this task and reformulations of it have
become uncountable: they include exchangeable models, parametric
and non-parametric models, hierarchical models, general linear models,

10
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models via sufficiency, maximum-entropy models, and whatnot [e.g.:
5; 22; 62; 78–86]. We now show two examples, based on a maximum-
entropy approach, that to our knowledge have not yet been explored in
the neuroscientific literature. For a concrete application see [87].

First example: moment constraints for the network. Consider a state
of knowledge H ′ leading to the following properties:

H ′1. the expectations of the single and pair averages x̂ and x̂x of a
particular subnetwork have given values

E(̂x |H ′) � c1 , E(x̂i x j |H ′) � c2; (25)

H ′2. the network probability distribution P(X � R|H ′) has maximum
relative entropy with respect to the uniform one, given the con-
straints above.

Then the probability distribution for the network conditional on H ′

is completely determined: it satisfies the symmetry property (6) and is
defined by

p(X � R|H ′) � K exp[Λ2NR (NR − 1)/2 +Λ1NR]
with K ,Λm , such that the distribution is normalized and

K
N∑

NA�0

(
N − m

NA − m

)
exp[Λ2NA (NA − 1)/2 +Λ1NA] � cm , m � 1, 2.

(26)

We omit the full proof of this statement: it is a standard application of
the maximum-entropy procedure [e.g.: 33–36; 38–42], combined with
the equality (13) of subnetwork and network expectations, e.g.

c2 � E(x̂x |H ′) �
(
N
2

)−1 N∑
NA�0

(
NA
2

)
P(X � A|H ′), (27)

and with relations (8), (10). This example is easily generalized to any
number m of constraints such that m 6 n.

Note again that, as remarked in § 3.1, the subnetwork from which
the averages in the expectations (25) are calculated has a probability
distribution P(̂x � a |H )determined by the marginalization (11) and does
not have a maximum-entropy form with the same number of constraints.

11
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Second example: subnetwork-distribution constraint. Consider an-
other state of knowledge H ′′ leading to the following properties:

H ′′1. the average x̂ of a particular subnetwork has a probability
distribution q:

P(̂x � a |H ′′) � q(a); (28)

H ′′2. the probability distribution for the network, P(X � R|H ′′), has
maximum relative entropy with respect to the uniform one, given the
constraint above.

Then the probability distribution for the network given H ′′ is com-
pletely determined and satisfies the symmetry property (6):

P(X � R|H ′′) � exp
[ n∑

na�0
Λa

(
n

na

) (
N − n

NR − na

)]

with Λa such that
N∑

NA�0

(
n

na

) (
N − n

NA − na

)
exp

[ n∑
na�0

Λa

(
n

na

) (
N − n

NA − na

)]
� q(a) (29)

(the normalization constraint being unnecessary since q is normalized).
This result is just another application of the maximum-entropy procedure
with n + 1 (linear) constraints given by eq. (9), where the left-hand side
is now given and equal to q(a).

This example is equivalent to the generalization of the previous
one with n moment constraints, since knowledge of P(̂x � a |H ′′) is
equivalent to knowledge its first n moments.

The above examples do not mention how the values of the expectation
constraints or of the subnetwork-average probability distribution can have
been assigned. They cannot be assigned by a measurement, of course,
since probabilities and expectations are not physical quantities and
cannot be physically measured – they represent guesses of an observer
and depend on the observer’s state of knowledge and assumptions.
Rather, such values usually come from measurements made on “copies”
– in a very general sense – of the states of the network; e.g., when
we have a time sequence of them and measure the frequencies of
their occurrence. Such situations can again be fully analysed with the
probability calculus, and one can show [61] that the maximum-entropy
formulae in the examples above are just limit forms of such an analysis,

12
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employing measured physical data∆ like, e.g., frequencies, and repeated
applications of Bayes’s theorem,

P(X � R|∆ , I ) ∝ P(∆ | X � R, I )P(X � R| I ), (30)

which updates the initial probability assignments on such data. But the
discussion of this is again outside the scope of this Note.

4. On the symmetry property

The symmetry property (6) is called finite exchangeability in the Bayesian
literature and, as was mentioned in § 2.3, its relation to the hypergeometric
distribution in expression (11) for the subnetwork average is well-known
[46–51].

This property can reflect two very different states of knowledge: either
(a) knowledge that the network is somehow physically homogeneous, or
(b) complete ignorance about the network’s homogeneity or inhomogeneity.
In the second case we are saying that the indices or labels “i” of the units
are uninformative – because, for example, we have no idea of how the
units were labelled, hence we cannot presuppose any relation among the
units, nor can we presuppose any structural or topological properties
of the network they constitute. In the first case we are saying that
the labels are irrelevant, even though they might be informative. The
reason could be that, even if there is a connection between labels and,
say, spatial locations of the units, each unit is nevertheless physically,
homogeneously, identically connected to all the others; so we assume
that spatial location does not play a relevant role.

An important consequence of the symmetry property is that no
amount of new evidence about an asymmetry in the labelling of some
units can lead to asymmetric predictions about the remaining ones. For
example, if we have new data ∆ saying that the first n units are in state 1
and the last n in state 0,

∆ :� (X1 � X2 � · · · � Xn � 1, XN−(n−1) � · · · � XN−1 � XN � 0),
(31)

with n large, our updated probabily distribution will still assign (as can
be shown using eqs (6) and (8)) the same probability for their respective

13
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neighbouring units with labels n + 1 and N − n to be in state 1 or 0:

P(Xn+1 � 1|∆ ,H ) � P(XN−n � 1|∆ ,H ),
P(Xn+1 � 0|∆ ,H ) � P(XN−n � 0|∆ ,H ). (32)

This may seem unreasonable – we would now say that the unit n + 1 is
more likely to be in state 1, as the first n are, than in 0; and that the unit
N − n is more likely in state 0, as the last n are, than in 1; i.e.

P(Xn+1 � 1|∆ ,H ) > P(Xn+1 � 0|∆ ,H ),
P(XN−n � 1|∆ ,H ) < P(XN−n � 0|∆ ,H ), (33)

which is equivalent to P(Xn+1 � 1|∆ ,H ) > 1
2 , P(XN−n � 1|∆ ,H ) < 1

2 ;
but the equalities (32) make this impossible.

The two very different motivations behind the symmetry property
– lack of information and lack of relevance – can of course be handled
differently by the probability calculus, in such a way that the appearance
of asymmetry in new data leads to asymmetry in updated predictions.
But this requires a more complex set of assumptions than those embodied
in H ; it requires, in particular, some sort of probability distribution
for the degree of physical symmetry or homogeneity of the network,
appropriately quantified.

The moral is that we should use the symmetric assumption H only if
we can safely exclude the presence of inhomogeneity or are uninterested
in detecting its presence. Otherwise, we must resort to more appropri-
ate (and complex) assumptions. If we repeatedly observe new values
that happen to have a very low probability according to the updated
distribution P(X � R|∆1 ,∆2 , . . . ,H ), this could be an indication that
the symmetry property is unreasonable. Any strong departure of higher
powers of measured averages from their expected behaviour given in
eq. (16) and illustrated in fig. 2 can also be an indication that the sym-
metry property may have to be abandoned; hence the usefulness of
eq. (16).

5. Summary and remarks

The main point of this Note was to explicitly collect and illustrate the
mathematical formulae I–VI, § 2.3, between the probabilities assigned to
the state of a network of neurons (or similar entities), and those assigned
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to the state of a subnetwork thereof. The formulae hold in the simple case
of binary states and under an assumption of symmetry. Such relations
can be found in several classical texts on probability and statistics; but
we deemed it useful to restate them in a neuroscientific context, given
their fundamental importance in relating a whole to its parts.

We have indeed seen that these formulae lead to straightforward but
in some cases unexpected consequences: e.g., if a network is assigned a
maximum-entropy probability distribution, then its subnetworks cannot
be assigned a maximum-entropy distribution of the same form, and vice
versa. The formulae also readily suggest new ways of making inferences
or of formulating starting assumptions. Discussion of these points is left
to forthcoming works [74; 87].

We also hope to have given the readers a feeling of the agility and
simplicity with which the probability calculus (“Bayesian theory”) leads
us from assumptions to consequences (albeit sometimes with non-simple
mathematics), and from consequences to the assessment of how suitable
our initial assumptions are, as shown with the assumption of symmetry.

A. Sketched proofs

Variants of the following derivations and combinatorial considerations
can be found e.g. in [88, chs I–IV; 45, ch. II; 22, ch. 3]; see also [89].

To derive the joint probability distribution (8) from that for the
network average (7), consider that if the network total is NX , then NX
out of N units are active, and there are

� N
NX

�
possible states for which

this can be true; therefore

P(X � R| H) �
(

N
NR

)−1

Q(R). (8)r

An analogous reasoning for n and x̂ leads to an analogous equality,

P(x � r | H) �
(

n
n r̂

)−1

P(̂x � r̂ |H ), (34)

for the subnetwork.

Let us next consider the probability P(̂x � a | X � A,H ) for the
subnetwork average x̂ conditional on the network average X . There are
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� N
NX

�
possible network states if the network average is X , i.e. if NX units

are in state 1; the conditional probability of each is therefore 1/
� N

NX

�
,

owing to the symmetry assumption (6). Now consider the subnetwork of
the first n units. The conditional probability of having n x̂ specific ones
in state 1 is the sum of the probabilities of all states for which NX − n x̂
of the remaining N − n units are in state 1; there are

� N−n
NX−n x̂

�
such states,

all equally probable. Finally, there are
� n

n x̂

�
possible ways, all equally

probable, in which n x̂ of the first n units can be in state 1. In formulae,

P(̂x � a | X � A,H ) �
r̂�a∑

r

R�A∑
R

P(x � r | X � R,H )P(X � R| X � A,H ),

�

r̂�a∑
r

R�A∑
R

P(x � r | X � R,H )
(

N
NA

)−1

,

�

r̂�a∑
r

(
N − n

NA − na

) (
N

NA

)−1

,

�

(
n

na

) (
N − n

NA − na

) (
N

NA

)−1

,

(35)

which is the conditional probability (12). Note that this is just a derivation
of the hypergeometric distribution [22, ch. 3; 44, § 4.8.3; 45, § II.6], which
describes the probability of, say, drawing a proportion of x̂ blue balls in
n drawings without replacement from an urn with N balls, a fraction X
of which are blue.

The probability of a subnetwork average x̂ is then, by marginalization,

P(̂x � a |H ) �
N∑

NA�0
P(̂x � a | X � A,H )P(X � A|H ),

�

N∑
NA�0

(
n

na

) (
N − n

NA − na

) (
N

NA

)−1

Q(A).
(36)

which proves the subnetwork-average formula (11). This formula, com-
bined with eqs (34) and (8), leads to the conditional probability (10).
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The independence of the expectation of products of states from the
subnetwork size is trivial by marginalization:∑

x
x1 · · · xmP(x � r |H ) � ∑

r ,R
r1 · · · rmP(x � r | X � R,H )P(X � R|H ),

�
∑
r ,R

r1 · · · rm δ(R1 − r1) · · · δ(Rm − Rm)P(X � R|H ),

�
∑

R
R1 · · ·RmP(X � R|H ). (37)

All such m-fold products have the same expectation by symmetry,
therefore their subnetwork average will do, too, being an average of
equal terms.

Now consider the sum of all distinct products of states of two units
in the subnetwork:

x1x2 + x1x3 + · · · + xn−1xn .

The terms in this sum are either 0 or 1. The non-vanishing ones are those
with index pairs chosen from the n x̂ units of the subnetwork which are
in state 1, and there are

�n x̂
2

�
such choices, so the sum above is equal to�n x̂

2
�
. The sum has

�n
2
�

terms, so their average is
�n x̂

2
�
/

�n
2
�
. Generalizing the

argument to products of m units, we have that

Gxi1 · · · xim �

(
n x̂
m

) (
n
m

)−1

. (38)

Then, using eq. (11),

E
�

Gxi1 · · · xim |H
�

�
(n−m)!

n! E
(
m!

�n x̂
m

�|H )
≡

(n − m)!
n!

n∑
na�0

m!
(
na
m

)
P(̂x � a |H ),

�
(n − m)!

n!

N∑
NA�0

Q(A)
[ n∑

na�0
m!

(
na
m

) (
n

na

) (
N − n

NA − na

) (
N

NA

)−1]
. (39)

The expression in brackets is the mth factorial moment of the hypergeo-
metric function, and is given by [43]

n∑
na�0

m!
(
na
m

) (
n

na

) (
N − n

NX − na

) (
N

NX

)−1

� m!
(

n
m

) (
na
m

) (
N
m

)
, (40)
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which combined with the previous equation yields the second line of
eq. (13); its last equality comes from the identity(

N
M

) (
M
m

)
�

(
N
m

) (
N − m
M − m

)
, (41)

easily derived by writing the binomial coefficients in terms of factorials.
Finally, eqs (16), relating the moments of the distributions for subnetwork
and network averages, is obtained from the definition of moments,

E
�
x̂m |H �

:�
n∑

na�0
amP(̂x � a | H), E(X m |H ) :�

N∑
NA�0

AmP(X � A| H),
(42)

replaced in the equalities for the factorial moments (15), by recursively
solving in terms of the moments of the network distribution.
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