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Superconducting qubit designs vary in complexity from single- and few-junction systems, such as the transmon
and flux qubits, to the many-junction fluxonium. Here, we consider the question of whether the many degrees of
freedom in the fluxonium circuit can limit the qubit coherence time. Such a limitation is in principle possible,
due to the interactions between the low-energy, highly anharmonic qubit mode and the higher-energy, weakly
anharmonic collective modes. We show that so long as the coupling of the collective modes with the external
electromagnetic environment is sufficiently weaker than the qubit-environment coupling, the qubit dephasing
induced by the collective modes does not significantly contribute to decoherence. Therefore, the increased
complexity of the fluxonium qubit does not constitute by itself a major obstacle for its use in quantum computation
architectures.
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I. INTRODUCTION

Starting from the pioneering experiments with Cooper pair
boxes [1], superconducting qubits have been vastly improved
[2], thanks in part to better control of the qubit environment.
For example, three-dimensional (3D) transmons [3] benefit
from being placed in a cavity that suppresses radiative losses
as well as from their relatively large size that decreases the
role of surface dielectric losses. Planar transmon variants such
as the Xmon [4] have shorter coherence times, but have made
possible demonstrations of the building blocks of quantum
error correction codes [5–8]. In contrast to the transmon archi-
tecture, in which a Josephson junction is shunted capacitively,
in a fluxonium qubit the shunt is via an inductance [9,10].
To realize in practice a sufficiently large inductance, arrays
with many Josephson junctions are used. Even in this more
complicated circuit, long relaxation times have been achieved,
so long, in fact, to make possible the accurate measurement of
the phase dependence of the quasiparticle dissipation through
a Josephson junction [11]. Experimentally, the fluxonium
coherence time is much shorter than the limit imposed by
relaxation; in this paper, we theoretically investigate whether
the complexity of the circuit, arising from the use of junction
arrays, contributes to this shortness. Along the way, we derive
approximate Hamiltonians for a few variants of the fluxonium
circuit, demonstrating the validity of the approximations for
current experimental setups.

The physics of arrays made of identical Josephson junctions
has long attracted the interest of theorists and experimentalists
alike, especially in the context of the superconductor-insulator
transition controlled by the ratio of charging and Josephson
energies [12,13]. More recently, renewed attention has been
given to the physics of collective modes, whose frequency
can be significantly lowered below the constituent Josephson
junctions plasma frequency due to ground capacitances; in par-
ticular, the interplay between collective modes and quantum
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phase slips in rings has been studied [14–16], as well as the
localizing effect of disorder in the junction parameters [17].
Long junction arrays can have a large inductance, proportional
to the number of elements, and for quantum computation
applications such superinductors [18] have been proposed as
elements of topologically protected qubits [19], for example,
the 0-π qubit [20,21]. An alternative design for a superinductor
has also been realized [22] and recently implemented in a qubit
circuit [23]. In the fluxonium, even in the ideal case of no
capacitances to ground, the full symmetry of a ring is broken
by the presence of a smaller junction. Nonetheless, in the ideal
case a permutation symmetry is still present; the effect of this
symmetry and its breaking on the fluxonium spectrum has
been studied in Ref. [24]. Aspects of the quasiparticle-induced
decoherence in the fluxonium have been studied theoretically
in Refs. [25–27].

In this paper, we focus on the possible limitation of
the coherence of the qubit mode due to its interactions
with the collective modes of the array; we will show that
both ground capacitances and array-junction nonlinearities
introduce potential decoherence channels. While they are not
currently limiting the fluxonium coherence, we nonetheless
point out that isolation of the collective modes from the electro-
magnetic environment is necessary for long coherence times.
Interestingly, simple variations in the design of the circuit (such
as the placement of capacitors used to couple to the qubit) can
significantly affect the decoherence rate. In the next section,
we discuss the mechanism by which the collective modes can
lead to dephasing of the qubit and which quantities determine
the dephasing rate. Throughout the paper, we set � = 1.

II. COLLECTIVE MODES AND QUBIT DEPHASING

To understand how the qubit-collective modes interactions
can affect coherence, let us briefly review the so-called photon
shot noise (or measurement-induced) dephasing, originating
from the interaction between a qubit and the electromagnetic
modes of the cavity in which it is placed [28,29]. As a
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consequence of this coupling, the qubit frequency ω10 depends
on the occupation of the cavity modes

ω10({nμ}) = ω10 + 2
∑

μ

χ̄μnμ, (1)

where nμ is the occupation number of mode μ and χ̄μ denotes
the dispersive shift of that mode.

The fluctuations of the occupations of the modes cause
fluctuations in the qubit frequency and hence dephasing. The
photon shot-noise dephasing has been investigated in detail in
the 3D transmon architecture [30,31]. In particular, in Ref. [30]
good agreement between theory and experiment was found
over a range of average occupation number in the cavity n̄ from
small to relatively large (n̄ ∼ 3), and a residual occupation of
order 1% was estimated. As we will show in the following
sections, in the fluxonium the collective modes of the junction
array are coupled to the qubit in a way that leads to dispersive
shifts of the qubit frequency. The collective modes are also
(weakly) coupled to the cavity (see Sec. IV C) and therefore
their residual occupation is small. Hence, we restrict ourselves
to the relevant case of small occupation number n̄μ � 1 for
any mode. In this case, each collective mode contributes a rate
[31]

�μ = 4κμχ̄2
μ

κ2
μ + 4χ̄2

μ

n̄μ, (2)

with κμ the decay rate of mode μ [32], to the total qubit
dephasing rate

�φ =
∑

μ

�μ. (3)

Equation (2) was derived assuming that the effect of each
mode can be treated independently [31]. If the dispersive
shifts are known, this expression enables us to put an upper
limit on the dephasing rate since independently of κμ, the
rate satisfies �μ � |χ̄μ|n̄μ. The inequality is saturated for
κμ = 2|χ̄μ|, while in the limiting cases of κμ much bigger
or smaller than |χ̄μ| we have the approximate relations

�μ �
{

4χ̄2
μ

κμ
n̄μ, κμ � |χ̄μ|

κμn̄μ, κμ � |χ̄μ|.
(4)

We see that to calculate the dephasing rate �φ we need to know
both χ̄μ and κμ. Our goal is to estimate these quantities for the
collective modes of the fluxonium.

In the remainder of the paper we study a realistic model
of the qubit (see Sec. III); it includes ground and coupling
capacitors in addition to the charging and Josephson energies
of each junction. The interactions between collective and
qubit modes due to ground capacitances is the subject of
Sec. IV, where we also discuss the collective modes decay
rates. In Sec. V, we consider the effects of the array-junction
nonlinearity. Some consequences of breaking the circuit parity
symmetry and placing the coupling capacitors in the array are
briefly discussed in Secs. VI and VII, respectively. Finally, in
Sec. VIII using the results of the previous sections we estimate
the fluxonium dephasing rate due to the interactions with the
collective modes. We summarize our main results in Sec. IX.
Numerous technical details are presented in Appendixes A
through H.

FIG. 1. (Color online) Circuit model for the fluxonium: a small
junction (top, Josephson energy Eb

J , charging energy Eb
C) shunts

an array (bottom) of many identical junctions. A capacitance (Ca
g

or Cb
g ) is present between each superconducting island and ground.

Additional capacitors Cc, biased at voltages ±V , are used to control
and read out the qubit, whose spectrum depends on the applied
flux �e.

III. FLUXONIUM MODEL

The circuit model for the fluxonium qubit is shown in
Fig. 1: the two ends of an array of N � 1 identical Josephson
junctions (Josephson energy Ea

J and charging energy Ea
C =

e2/2Ca
J ) are connected by a so-called phase-slip junction

(Josephson energy Eb
J and charging energy Eb

C). The loop
thus formed is pierced by a magnetic flux �e. To suppress
phase fluctuations in the array, we require Ea

J /Ea
C � 1; phase

slips preferentially take place at the phase-slip junction so long
as Eb

J /Eb
C < Ea

J /Ea
C . The superconducting islands inside the

array have ground capacitances Ca
g and those at the ends Cb

g .
Identical coupling capacitors of capacitance Cc, used to control
the system by applying ac voltages +V and −V to them, are
connected to the islands at the end of the array. The Lagrangian
description of this circuit without the coupling capacitors is
discussed in detail in Ref. [24]. In Appendix A, we briefly sum-
marize (for the paper to be self-contained) and generalize (to
include the coupling capacitors) the relevant parts of that work.

While there are N + 1 junctions in the circuit, due to
charge conservation and flux quantization there are only
N -independent degrees of freedom [24]: the qubit mode φ

and the collective modes ξμ, μ = 1, . . . ,N − 1. In terms of
these modes, the Lagrangian LS in the absence of ground and
coupling capacitors takes the form

LS = TS − US, (5)

TS = 1

16E
φ

C

φ̇2 + 1

16Ea
C

∑
μ

ξ̇ 2
μ, (6)

US = −Eb
J cos (φ + ϕe)

−Ea
J

∑
m

cos

[
φ

N
+
∑

μ

Wμmξμ

]
, (7)

where the phase bias ϕe = 2π�e/�0 is due to the externally
applied magnetic flux �e, with �0 the flux quantum, and the
qubit mode charging energy E

φ

C is

1

E
φ

C

= 1

Eb
C

+ 1

NEa
C

; (8)
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note that due to the last term in the above equation, E
φ

C

is smaller than the phase-slip junction charging energy Eb
C .

Hereinafter, sums over index m run from 1 to N and those
over Greek indices such as μ from 1 to N − 1. To write the
Lagrangian in the given form, the matrix Wμm must satisfy∑

m WμmWνm = δμν and
∑

m Wμm = 0; for concrete calcula-
tions, we will use for Wμm the form suggested in Ref. [24]:

Wμm =
√

2

N
cos

πμ(m − 1/2)

N
. (9)

It can be shown [24] that LS is symmetric under the action of
the symmetric group SN .

Due to the large ratio Ea
J /Ea

C , fluctuations of ξμ are small;
for fluctuations in φ small compared to πN , we can then
expand the last term in US to quadratic order to find (up to a
constant term)

US � U = −Eb
J cos (φ + ϕe) + 1

2
ELφ2 + 1

2
Ea

J

∑
μ

ξ 2
μ

(10)

with EL = Ea
J /N . At this lowest order, the qubit mode φ and

collective modes ξμ do not interact (so long as we neglect
ground and coupling capacitors), and the Lagrangian

LU = TS − U (11)

is symmetric under the unitary group U(N − 1). We note
that the symmetry under permutations ensures [24] that the
anharmonic terms that we neglect cannot couple any state
given by the direct product between a qubit eigenstate and
a collective modes singly excited state to a state which is
the direct product between any qubit state and the collective
modes ground state. One of the main objectives of this work
is to understand the interactions induced by the presence of
ground and coupling capacitors; we will show, for example,
that the coupling between the states just discussed is in general
present, albeit weak.

Ground and coupling capacitors modify the kinetic energy
part of the Lagrangian by the addition of the term TG given by

TG = 1

16

[
G00φ̇

2 + 2
∑

μ

G0μφ̇ξ̇μ +
∑
μν

Gμνξ̇μξ̇ν

]
, (12)

where the symmetric matrix G has entries

G00 = 1

4Et

[
1 − 2

3

N + 1

N
λ

]
, (13)

G0μ = − 1

2Ea
g

cμoμ+1√
2Ns2

μ

, (14)

Gμν = 1

4Ea
g

1

s2
μ

[
δμν − λ

2

N (N − 1)

oμoνcμcν

s2
ν

]
. (15)

Here, the energy scales are Ea
g = e2/2Ca

g and Et = e2/2Ct ,
where the total capacitance Ct is

Ct = 2
(
Cb

g + Cc

)+ (N − 1)Ca
g . (16)

The dimensionless parameter 0 � λ � 1 is defined as

λ = (N − 1)Ca
g

Ct

(17)

TABLE I. Fluxonium parameters used for numerical calculations
throughout the paper (see also Appendix B). Energies are given in
GHz, while the number of junctions N , λ [Eq. (17)] and the screening
length Ns [Eq. (27)] are dimensionless.

N Ea
J Ea

C Eb
J Eb

C Ea
g Eb

g Ec
C λ Ns

Set 1 43 26.0 1.24 8.93 3.60 194 6 24.2 0.34 39
Set 2 95 48.3 1.01 10.2 4.78 484 807 12.1 0.54 69

and we introduced the shorthand notations

sμ = sin
πμ

2N
, (18)

cμ = cos
πμ

2N
, (19)

oμ = 1 − (−1)μ

2
. (20)

The coupling capacitors enable control of the circuit via
external ac voltages; the coupling Lagrangian LV takes the
form

LV = − 1

4Ec
C

φ̇ eV, (21)

where we assumed that the voltages applied to the capacitors
are equal in magnitude V and opposite in sign and Ec

C =
e2/2Cc.

From the above definitions, it is evident that the collective
modes with even index μ interact only with the qubit mode,
whereas the odd modes interact only among themselves.
Therefore, the total approximate [33] Lagrangian L separates
into a sum of even and odd sectors:

L = LU + TG + LV = Le + Lo. (22)

This separation is valid as long as parity P and time-reversal
T symmetries are preserved [24]: indeed, the qubit mode and
the collective modes with even index μ are even under PT

symmetry, while modes with odd index are odd. We restrict
our attention to the PT -symmetric case for most of the paper,
but we discuss the consequences of breaking this symmetry
in Sec. VI. In the next section, we focus on the even sector.
The analysis of the odd-sector modes, which are decoupled
from the qubit, is in Appendix C. Throughout the paper, we
will present examples calculated with the two-parameter set
given in Table I; as explained in Appendix B, the parameters
are chosen as to reflect realistic experimental values [9,11].

IV. EVEN SECTOR AND QUBIT MODE

The qubit mode φ belongs to the even sector, and in the
presence of capacitance to ground in the array it interacts with
all the even modes:

Le =Lφ + Te − 1

2
Ea

J

Ne∑
ρ=1

η2
ρ + LV

− 1

16
√

2N

1

Ea
g

φ̇

Ne∑
ρ=1

c2ρ

s2
2ρ

η̇ρ. (23)
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Here, we define ηρ = ξ2ρ and the number of even modes is
Ne = �(N − 1)/2� (with �x� the integer part of x). The kinetic
energy of the even modes has a simple diagonal form

Te = 1

16

Ne∑
ρ=1

[
1

Ea
C

+ 1

4Ea
g

1

s2
2ρ

]
η̇2

ρ ≡ 1

16

Ne∑
ρ=1

1

Ee
C,ρ

η̇2
ρ (24)

and the qubit Lagrangian is

Lφ = 1

16Ẽ
φ

C

φ̇2 + Eb
J cos(φ + ϕe) − 1

2
ELφ2, (25)

where the effective qubit charging energy is given by

1

Ẽ
φ

C

= 1

E
φ

C

+ 1

4Et

(
1 − 2

3

N + 1

N
λ

)
. (26)

The Lagrangian Le has a simple structure, describing a
set of independent harmonic oscillators interacting with the
qubit mode. To this Lagrangian, however, corresponds an
Hamiltonian He in which all degrees of freedom interact
among themselves (see Appendix D) due the nondiagonal
form of the kinetic energy [cf. the last term in Eq. (23)]. If
the number of junctions is not too large,

N � Ns ≡ π

(
Ea

g

Ea
C

)1/2

, (27)

the effect of the ground capacitances can be treated perturba-
tively for all modes; indeed, if the array is short compared to the
“screening length” Ns , the ground capacitances hardly affect
the energy spectrum of the modes [14]. However, the condition
(27) is not satisfied in current experiments (see Table I). As
detailed in Appendix D, we find that the generally weaker
condition

N � 8π2
Ea

g

Ẽ
φ

C

(28)

enables us to make substantial simplifications. This condition
is satisfied in current experiments, with the right-hand side
being about 6400 (10 600) for parameter set 1 (2). The
approximate Hamiltonian then takes the form

He = Hφ +
Ne∑

ρ=1

Hρ + Hint + HV , (29)

Hφ = 4Ẽ
φ

Cp2
φ − Eb

J cos(φ + ϕe) + 1

2
ELφ2, (30)

Hρ = 4Ee
C,ρp

2
ρ + 1

2
Ea

J η2
ρ, (31)

Hint =
Ne∑

ρ=1

gρpρpφ, gρ = 4√
2N

Ẽ
φ

CEe
C,ρ

Ea
g

c2ρ

s2
2ρ

, (32)

HV = −2
Ẽ

φ

C

Ec
C

pφ eV −
Ne∑

ρ=1

1

4Ec
C

gρpρ eV . (33)

Here, pρ is the momentum conjugate to ηρ . The above
expression for the Hamiltonian is one of the main results of
this paper: it contains the leading interaction terms between
the qubit mode and the collective modes of the junctions
forming the superinductance due to capacitance to ground

FIG. 2. (Color online) Qubit-collective modes coupling con-
stants gρ [Eq. (32)], calculated using parameter sets 1 in Table I
(filled circles) and 2 (empty circles). Different horizontal scales are
used for the two sets, as indicated by the arrows, and hence gρ for set
2 is larger than the corresponding coupling constant for set 1. Note
that in absolute value the coupling strength between qubit and the few
lowest even modes is as strong as or even stronger than the typical
qubit-cavity coupling [9,10].

in the array. (Interactions arising from the array junction
nonlinearity are discussed in Sec. V.) The coupling constant
gρ is proportional to the array capacitance to ground and
monotonically decreases with ρ (see Fig. 2); therefore, the
higher collective modes couple more weakly to the qubit.
Similarly, since gρ determines also the coupling of the
collective modes to the ac voltage V , the higher modes are
more weakly coupled to V than the lower ones; moreover, the
low-energy ones are more weakly coupled to V than the qubit
mode. As we will see in the following, this implies a lower
decay rate for the collective modes compared to the qubit.

We note that the capacitances to ground Cb
g of the islands

next to the phase-slip junction (see Fig. 1) do not enter into the
interaction Hamiltonian Hint, while they affect the effective
qubit charging energy Ẽ

φ

C [Eq. (26)] via the parameter λ of
Eq. (17). Therefore, interaction strength and qubit frequency
can in principle be tuned independently by changing the ratio
Cb

g/Ca
g .

A. Dispersive shifts

To further study the effect on the qubit of the interaction
with the collective modes, we perform a Schrieffer-Wolff
transformation and project the Hamiltonian He [Eq. (29)]
onto the qubit subspace to find the effective Hamiltonian [34]

Heff = ω10(f )

2
σ z +

Ne∑
ρ=1

[ωρ + χρ(f )σ z]a†
ρaρ, (34)

where σ z is a Pauli matrix in the qubit subspace,

ωe
ρ =

√
8Ee

C,ρE
a
J (35)

is the harmonic oscillator frequency of the even collective
mode ρ, and a†

ρ , aρ the creation and annihilation operators.
As indicated by the presence of the parameter f = ϕe/2π , the
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FIG. 3. (Color online) Main panel: matrix elements squared
|〈0|pφ |l〉|2 (filled circles) and |〈1|pφ |l〉|2 (empty circles) at f = 0.35
for l � 20 calculated using parameter set 1 (see Table I). Inset: same
as main panel but for parameter set 2. We stress that the overall
decrease of the matrix elements with l is valid for any flux f , not just
for the particular value used here as an example.

qubit frequency ω10 and the ac Stark shifts χρ depend on flux
through the loop, and we neglect for the moment the coupling
to external bias given by HV . Here, with the frequency ω10

we indicate the energy difference between the two lowest
eigenstates of the Hamiltonian Hφ [Eq. (30)]; following,
we will discuss a small renormalization δω10 of the qubit
frequency due to the interaction with the collective modes.

The dispersive shifts χρ depend on matrix elements of
charge operator pφ that involve all the eigenstates |l〉 with
energy εl (l = 0,1,2, . . .) of Hamiltonian Hφ [34]:

χρ = 1

2

√
Ea

J

8Ee
C,ρ

g2
ρ

[
|〈0|pφ|1〉|2 2ω10

ω2
10 − ω2

ρ

+
∑
l�2

|〈0|pφ|l〉|2 ωl0

ω2
l0 − ω2

ρ

−
∑
l�2

|〈1|pφ|l〉|2 ωl1

ω2
l1 − ω2

ρ

]
(36)

with ωlj = εl − εj . While in the case of the transmon [35]
selection rules and low anharmonicity enable the analytical
calculation of the dispersive shift, for the fluxonium this
is not possible, so we resort to numerical estimates. Fast
convergence of the sums in the above equation is ensured by
the rapid decrease of the matrix elements 〈0|pφ|l〉 and 〈1|pφ|l〉
as l increases (see Fig. 3); further aiding the convergence
is the approximately linear increase of the energy of the
states with slope ∼(8Ẽ

φ

CEL)1/2. The reason for the decay
of the matrix elements is the following: the low-lying states
are localized near φe, while the high-energy states are to a
good approximation the eigenstates of the harmonic oscillator
obtained by neglecting the Josephson term in Hφ (this also
explains the linear increase in their energy). Since these
high-energy states display oscillations of small magnitude at
the center of the potential, the overlap of their derivative with
the low-lying states is small, and the increase of the number of
oscillations with l causes the decrease of the matrix elements.

FIG. 4. (Color online) Dispersive shift χ1 [Eq. (36)] as function
of external flux for parameter sets 1 (thin line) and 2 (thick line). Note
that the vertical scale covers a range (in absolute value) approximately
a factor of 3 smaller than the coupling constant g1 (cf. Fig. 2). Since
higher-order corrections neglected here are suppressed by a factor
of order (χ1/g1)2 [34], near the limits of this range quantitative
corrections to the calculated values are possible, in particular near
the resonances.

The dispersive shifts calculated via Eq. (36) diverge as the
energy differences ωl0 or ωl1 approach one of the collective
modes frequencies ωρ . This divergence, however, only signals
the breakdown of the perturbative calculation near such
resonant conditions: the actual dispersive shift is limited in
magnitude by the coupling constant gρ , so validity of the
perturbative approach is given by the condition |χρ | � gρ

[36]. Despite this limitation, Eq. (36) correctly estimates the
dispersive shifts at most flux values. We show in Figs. 4
and 5 the flux dependence of dispersive shifts χ1 and χ2,
respectively. We see that away from resonances the shifts for
set 2 are usually larger, as expected due to the larger coupling
strengths (cf. Fig. 2). Moreover, due to the higher energy of

FIG. 5. (Color online) Dispersive shift χ2 [Eq. (36)] as function
of external flux for parameter sets 1 (thin line) and 2 (thick line). The
vertical scale covers a range (in absolute value) approximately one
order of magnitude smaller than the coupling constant g2 (cf. Fig. 2).
This range is well within the validity of the dispersive regime: since
higher-order corrections neglected here are suppressed by a factor of
order (χ2/g2)2 [34], appreciable deviations from the calculated values
are possible only close to the resonances.
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FIG. 6. (Color online) Contributions δω10,1 (thick line) and
δω10,2 (thin, dashed line) [Eq. (38)] to the qubit frequency renor-
malization δω10 for parameter sets 1 (inset) and 2 (main panel).
For comparison, we note that the unrenormalized frequency ω10

approximately varies between 9 GHz (8.2 GHz) at zero flux and
0.33 GHz (0.64 GHz) at half-flux quantum for parameter set 1
(set 2).

the collective mode involved, the shifts χ2 displays a richer
resonance structure. We will comment on the effect of these
shifts on qubit coherence in Sec. VIII. Next, we consider the
effect of the qubit-mode coupling on the qubit frequency in
the absence of excitations of the modes.

B. Qubit frequency renormalization

In the preceding section, we studied the change in the qubit
frequency when a collective mode is excited, but the interaction
term Hint of Eq. (32) modifies the qubit frequency even in
the absence of collective mode excitations ω10 → ω10 + δω10.
This frequency correction δω10, arising from Lamb-type
energy level shifts, is given by

δω10 =
∑

ρ

δω10,ρ (37)

with

δω10,ρ = 1

2

√
Ea

J

8Ee
C,ρ

g2
ρ

[
|〈0|pφ|1〉|2 2ω10

ω2
10 − ω2

ρ

+
∑
l�2

|〈0|pφ|l〉|2 1

ωl0 + ωρ

−
∑
l�2

|〈1|pφ|l〉|2 1

ωl1 + ωρ

⎤
⎦. (38)

While this formula resembles Eq. (36), there is one important
difference: so long as ωρ > ω10, there are no divergences in
Eq. (38). In Fig. 6, we plot the first two largest contributions to
δω10, namely, δω10,1 and δω10,2. The former is generally much
larger (in absolute value) than the latter, due to the stronger
coupling (cf. Fig. 2). Note that even at half-flux quantum,
where ω10 has a minimum [10,11], the correction is at most a
few percent of ω10.

C. Purcell rate

So far, we have considered the system to be capacitively
coupled to external voltage sources. In practical realizations
of circuit QED experiments, this coupling is to a mode of a
cavity; this can be accounted for by replacing [35]

V → Ṽ (c† + c) (39)

in the coupling Hamiltonian HV [Eq. (33)]. Here, parameter
Ṽ accounts for the strength of the electric field at the qubit
position as well as for the geometry of the cavity-qubit system,
while c† (c) are creation (annihilation) operators for photons
in the cavity. As it is customary, to include the cavity and its
coupling to an external bath of harmonic oscillators, we add
to He in Eq. (29) the following Hamiltonian Hcb:

Hcb = ωcc
†c +

∑
k

ωkb
†
kbk +

∑
k

λk(b†kc + c†bk), (40)

where ωc is the cavity frequency, b
†
k (bk) are creation

(annihilation) operators for bath excitations with energy ωk ,
and λk the coupling strengths between cavity and bath modes.

Within this model, one can calculate using Fermi’s golden
rule the so-called Purcell rate κq for the qubit; that is, the decay
rate of the qubit excited state by emission of a photon into the
bath (mediated by the cavity):

κq(f ) = κ
g2

q(f )

[ω10(f ) − ωc]2 , (41)

where κ is the inverse lifetime of a photon in the cavity, as
determined by the cavity-bath couplings λk [35], and

gq = 2eṼ
Ẽ

φ

C

Ec
C

〈0|pφ|1〉. (42)

This coupling constant depends on flux via the qubit states.
The above expression for κq is valid in the dispersive regime
gq � |ω10 − ωc|. The similar calculation for the collective
modes gives their decay rate as

κρ = κ
1

(ωρ − ωc)2

[
eṼ

4Ec
C

gρ

1√
2�ρ

]2

, (43)

where �ρ = (8Ee
C,ρ/E

a
J )1/4 and again we have assumed that the

factor multiplying κ is small compared to unity. Note that the
term in square brackets is a decreasing function of ρ; therefore,
so long as all the modes have frequency above the cavity one
(ω1 > ωc), the decay rate of the collective modes decreases
with ρ. If the qubit lifetime is limited by Purcell relaxation,
we can then estimate the modes’ lifetimes by eliminating the
unknown quantity Ṽ from Eqs. (41) and (43). In fact, the
ratio κρ/κq(f ) is also independent of κ , and it is determined
by the circuit properties and the cavity frequency; we plot
κρ/κq(0) in Fig. 7 for the parameters given in Table I, with
ωc/2π = 8.18 GHz for set 1 and ωc/2π = 8.89 GHz for set
2 (see Refs. [9,11], respectively).

V. NONLINEARITY OF THE ARRAY JUNCTIONS

By expanding the last term in Eq. (7) to quadratic order
to obtain the approximate potential energy term in Eq. (10),
we have treated the Josephson junctions in the array as
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FIG. 7. Ratio κρ/κq (0) between collective mode and qubit Purcell
decay rates [Eqs. (43) and (41), respectively] for the 10 lowest even
modes. Filled circles: parameter set 1 in Table I; empty circles: set 2.

linear elements. However, the cosine in Eq. (7) includes
their nonlinear properties, and in this section we account
perturbatively for these nonlinearities. To begin with, we split
the Josephson energy of each junction into two contributions
using the identity

cos

[
φ

N
+
∑

μ

Wμmξμ

]
= cos

φ

N
cos

[∑
μ

Wμmξμ

]

− sin
φ

N
sin

[∑
μ

Wμmξμ

]
. (44)

The sine product term, as we discuss in the following, generates
two qubit-collective mode interaction terms that we will denote
with U

(1)
φξ and U

(3)
φξ . The product of the two cosines can be

rewritten as

cos
φ

N
cos

[∑
μ

Wμmξμ

]

= cos
φ

N
C̄0m + cos

[∑
μ

Wμmξμ

]
− C̄0m

+
(

cos
φ

N
− 1

)(
cos

[∑
μ

Wμmξμ

]
− C̄0m

)
, (45)

where

C̄0m =
〈

cos

[∑
μ

Wμmξμ

]〉
0

(46)

is the expectation value of the operator inside the angular
brackets in the ground state of the collective modes. As detailed
in the next section, the first term in the right-hand side of
Eq. (45) gives rise to the qubit mode effective potential Uφ ,
while the last term is a qubit-collective modes interaction
contribution, denoted with U

(2)
φξ . The third term is a constant

that can be neglected. The second term gives, to lowest order,

the harmonic potential energy of the collective modes,

∑
m

cos

[∑
μ

Wμmξμ

]
≈ N − 1

2

∑
μ

ξ 2
μ + · · · . (47)

The higher-order terms in the expansion neglected here lead
to interactions among the collective modes that do not affect
the qubit directly. We do not consider such interactions from
now on, and write the potential energy US in the approximate
form

US � 1

2
Ea

J

∑
μ

ξ 2
μ + Uφ +

3∑
j=1

U
(j )
φξ (48)

with the potentials Uφ and U
(j )
φξ specified in what follows.

A. Qubit effective potential Uφ

Keeping only the first term in the right-hand side of Eq. (45),
from Eq. (7) we find

Uφ = −Eb
J cos(φ + ϕe) − EL

[
N2 cos

φ

N

]
C̄0 (49)

with C̄0 =∑m C̄0m/N . Upon expansion of the term in square
brackets (valid for |φ| � πN ) and assuming C̄0 ≈ 1, we re-
cover the quadratic inductive energy term ELφ2/2 of Eq. (10).
The full qubit potential, however, contains small additional
nonlinearities originating from the higher-order terms of the
expansion. Here, we do not consider these terms further, as they
are suppressed by factors of the form 1/N2j (j = 1, 2, 3, . . .),
but we show that in general C̄0 < 1; therefore, the actual
inductive energy

ẼL = ELC̄0 (50)

is smaller than what the simple expression EL = Ea
J /N

suggests.
The expectation value entering C̄0m [Eq. (46)] can be readily

obtained from the known matrix elements for the harmonic
oscillator (see, for example, Appendix D of [25]). Here, we
have to remember that in the odd sector a rotation from the
original modes ζρ to independent modes ζ̃ρ is necessary (see
Appendix C); this is accomplished via the orthogonal matrix
�μν defined in Eq. (C12). We thus arrive at

C̄0 = 1

N

∑
m

exp

[
−1

4

∑
μ,ν,τ

WμmWνm�τμ�τν�
2
τ

]
, (51)

where

�τ = (8EC,τ /E
a
J

)1/4
(52)

is the oscillator length for mode τ , with EC,τ given in
Eqs. (C10) and (24) for odd and even modes, respectively.
Clearly, C̄0 < 1 so long as at least one oscillator length is
finite. We can also find a lower bound (and rough estimate)
for C̄0 by noting that �τ � �0, where �0 = (8Ea

C/Ea
J )1/4 is the

oscillator length in the absence of capacitance to ground in the
array; note that we typically have �0 � 1 (cf. Table I). Then,
using the identities

∑
τ �2

τν = 1 and
∑

μ W 2
μm = (N − 1)/N ,
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we find

C̄0 � exp

[
−�2

0
N − 1

4N

]
. (53)

The expansion to lowest order in �2
0 of this formula agrees with

the expression for the reduction of EL reported in Ref. [24].
Our result shows that that expression generally overestimates
the suppression of the inductive energy.

B. Quadratic interaction U (2)
φξ

We now consider the leading-order contribution to the
potential energy originating from the last term in Eq. (45).
By expanding the term dependent on the collective mode
coordinates and introducing the creation/annhilation operators
via ξμ = �μ(aμ + a†

μ)/
√

2 we arrive at

U
(2)
φξ = Ea

J

2

(
1 − cos

φ

N

)∑
μ

�2
μ

2
(2a†

μaμ + a†
μa†

μ + aμaμ).

(54)

Note that in the absence of the array ground capacitances (so
that �μ ≡ �0) this interaction term is invariant under orthogonal
transformations belonging to the group O(N − 1); the U(N −
1) symmetry of approximate Lagrangian LU in Eq. (11) is
only partially broken [the first term in the sum actually fully
preserves U(N − 1) symmetry].

In Eq. (54), we can distinguish two contributions. First,
there are terms which are proportional to each collective modes
number operator nμ = a†

μaμ; to lowest order in 1/N these
terms are

UδEL
= 1

2
φ2

[
EL

2N

∑
μ

�2
μa†

μaμ

]
, (55)

and they give a dependence of the inductive energy EL on the
occupation of the collective modes. Since changes in EL lead
to variations of the qubit frequency, this dependence can be
interpreted as a dispersive shift χδEL

μ :

χδEL

μ = 1

2

(
∂ω10

∂EL

)
EL

2N
�2

μ. (56)

Over a broad range of fluxes, except near half-integer multiples
of the flux quantum, the qubit frequency is approximately
proportional to the inductive energy [25]

ω10 ≈ (2π )2EL

∣∣f − 1
2

∣∣, (57)

so that EL(∂ω10/∂EL) ≈ ω10. This approximate relation trans-
lates at all fluxes in an upper bound for the dispersive shifts:

χδEL

μ � ω10

4N
�2

μ. (58)

This bound shows that the dispersive shifts lead to relative
changes of order 1/N , in the qubit frequency. Interestingly,
the derivative ∂ω10/∂EL and hence the dispersive shifts
have minima at half-integer multiples of the flux quantum
(see Fig. 8). Therefore, the dephasing induced by UδEL

is
suppressed at these “sweet spots,” similar to the suppression
of dephasing by flux noise; this is not surprising since at

FIG. 8. Normalized derivative ∂ω10/∂EL calculated for the pa-
rameters in Table I. Solid line: set 1; dashed line: set 2. Note the
minima at f = 0 and 1

2 .

leading order the flux and inductive energy affect the qubit
frequency in the same way [see Eq. (57)]. However, for typical
experimental parameters, the suppression is less than one order
of magnitude.

The second type of contribution in U
(2)
φξ comes from terms

of the form aμaμ + a†
μa†

μ. As in Sec. IV, the effect of
such terms can be studied by performing a Schrieffer-Wolff
transformation, as detailed in Appendix E. Here, we simply
note that, since they involve the virtual exchange of two
collective mode excitations rather than one, the resulting
dispersive shifts are generally smaller than χδEL

μ of Eq. (56)
and can therefore be neglected.

C. Linear interaction U (1)
φξ

In this section and the next one, we focus on the perturbative
treatment of the last term in Eq. (44), obtained by expanding
the sine with argument the collective modes coordinates. The
contribution to the potential energy from the linear term in
this expansion vanishes by construction, due to the property∑

m Wμm = 0. As we show in Appendix G, the third-order
term gives rise to two types of interactions, one of them being
a linear interaction term of the form

U
(1)
φξ =

Ne∑
ρ=1

g̃ρ

(
N sin

φ

N

)
ηρ,

g̃ρ = 1

2(2N )3/2
Ea

J

[
�2

N−ρ − �2
ρ

] (59)

with ηρ and Ne defined in the text after Eq. (23). Since
it couples the qubit mode with even collective modes only,
this interaction preserves PT symmetry. Moreover, in the SN

symmetric case (i.e., neglecting ground capacitances, so that
�μ ≡ �0 for all μ) this term is absent, in agreement with the
group-theoretical analysis of [24]. The coupling constant g̃ρ

decreases with the collective mode index ρ, albeit more slowly
than gρ in Eq. (32) for low ρ, while for large index ρ � Ne we
find

g̃ρ

gρ

≈ ωa
p

32NẼ
φ

C

, (60)
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FIG. 9. (Color online) Main panel: matrix elements squared
|〈0|φ|l〉|2 (filled circles) and |〈1|φ|l〉|2 (empty circles) at f = 0.35
for l � 20 calculated using parameter set 1 (see Table I). Inset: same
as main panel but for parameter set 2.

where ωa
p = √8Ea

J Ea
C is the array junction plasma frequency.

A (loose) upper bound for g̃1 is given by

g̃1 <
Ea

J

2

�2
0

(2N )3/2
= 1

2

ωa
p

(2N )3/2
. (61)

As done for the interaction term Hint in Eq. (32), the effect
of U

(1)
φξ on the qubit can be more easily studied by performing

a Schrieffer-Wolff transformation leading to the additional
dispersive shift χ (1)

ρ (f ):

χ (1)
ρ = 1

2

√
8Ee

C,ρ

Ea
J

g̃2
ρ

[∣∣∣∣〈0|
(

N sin
φ

N

)
|1〉
∣∣∣∣
2 2ω10

ω2
10 − ω2

ρ

+
∑
l�2

∣∣∣∣〈0|
(

N sin
φ

N

)
|l〉
∣∣∣∣
2

ωl0

ω2
l0 − ω2

ρ

−
∑
l�2

∣∣∣∣〈1|
(

N sin
φ

N

)
|l〉
∣∣∣∣
2

ωl1

ω2
l1 − ω2

ρ

⎤
⎦. (62)

A few comments are in order: first, since the low-lying states
are localized (so that relevant values of φ are at most of order
2π ) and N is large, a good approximation for the matrix
elements is obtained with the substitution N sin φ/N → φ.
Second, within this approximation, numerical calculation of
χ (1)

ρ does not require much additional computation compared
to that of χρ [Eq. (36)], thanks to the identity [37]

ω2
ml|〈m|φ|l〉|2 = (8Ẽ

φ

C

)2|〈m|pφ|l〉|2. (63)

Third, the pole structure in Eq. (62) is the same as that of χρ

and the matrix elements again become smaller as l increases
[see Fig. 9 and Eq. (63)]. Finally, for typical experimental
parameters, the coupling constants g̃ρ are at least two orders
of magnitude smaller than gρ [cf. Fig. 10], so we expect the
dispersive shifts χ (1)

ρ to have negligible effect. More precisely,
for almost all values of flux [38] we have |χ (1)

ρ /χρ | ∼ (g̃ρ/gρ)2

and the latter quantity is �10−5 for experimentally relevant
parameters; therefore, we neglect χ (1)

ρ from now on.

FIG. 10. (Color online) Coupling constants ratio g̃ρ/gρ for pa-
rameter set 1 (inset, filled circles) and 2 (main panel, empty circles)
for all the even modes. Horizontal dashed lines are given by the
right-hand side of Eq. (60).

D. Multimode interaction U (3)
φξ

All the interactions discussed so far involve the qubit mode
and a single collective mode. This is not the case for the
interaction term U

(3)
φξ , which involves up to three collective

modes:

U
(3)
φξ = − Ea

J

24
√

N
sin

φ

N

⎡
⎣3

μ+ν<N∑
μ,ν=1

�μ�ν�μ+ν

× (a†
μ+νa

†
νa

†
μ + 2a

†
μ+νa

†
νaμ + a†

νa
†
μaμ+ν + H.c.)

−
N−1∑

μ+ν>N

�μ�ν�2N−μ−ν(a†
2N−μ−νa

†
νa

†
μ

+ 3a
†
2N−μ−νa

†
νaμ + H.c.)

⎤
⎦, (64)

where H.c. denotes the Hermitian conjugate. The first term,
for example, contains creation operators of two modes if μ =
ν and three modes if μ �= ν. Note that the index structure
ensures that at least one index is even and the remaining two
indices have the same parity; this shows that PT symmetry is
preserved.

As a consequence of the presence of three creation-
annihilation operators in Eq. (64), a description in terms of
an effective Hamiltonian would involve terms with products
of up to three number operators (see also the discussion of
the U

(2)
φξ interaction in Appendix E). Rather than attempting

such a complicated description here, we consider the case in
which the occupation probability of each mode is sufficiently
small that we can neglect the possibility of having two or more
excitations in a mode or two or more modes being excited at the
same time; this requires the occupation probability to be small
compared to 1/N (see Appendix F). In other words, we only
consider the possibility that no more than one collective mode
is excited at any given time. We can then calculate the change
�ω10,μ in qubit frequency from when the collective modes are
in their ground state |0〉 (aμ|0〉 = 0 for any μ) to when one of
the collective modes is excited, i.e., in state |1μ〉 = a†

μ|0〉. Such
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a frequency change resembles the dispersive shifts discussed
so far, although those are valid for multiple excitations in each
mode. The perturbative calculation of the frequency change is
detailed in Appendix G; there we also show that the frequency
change is smaller than the dispersive shift χδEL

μ in Eq. (56)
and can therefore be neglected. We explore the effects of the
collective modes dispersive shifts on the qubit in Sec. VIII,
while in the next section we turn our attention to the case of a
circuit asymmetrically coupled to the cavity.

VI. BROKEN PT SYMMETRY: AN EXAMPLE

In all the previous sections we have assumed the system
to be PT symmetric, which ensures the decoupling of qubit
and odd collective modes in the (approximate) quadratic
Lagrangian. In practice, it is difficult to fabricate a perfectly
symmetric circuit, so it is interesting to investigate what are the
main qualitative consequences of breaking parity symmetry.
To this end, we consider a simple case in which the symmetry is
broken by taking the two coupling capacitors to have different
values:

C0
c = Cc + Ctδc/2, CN

c = Cc − Ctδc/2 (65)

with Ct defined in Eq. (16). Therefore, in this section Cc

represent the average of the two coupling capacitors, and we
have introduced the dimensionless asymmetry parameter

δc = C0
c − CN

c

Ct

(66)

with |δc| � 1. Inclusion of the asymmetric capacitive coupling
in the circuit Lagrangian amounts to the substitutions [39]

G00 → G00 − 1

4Et

(δc)2, (67)

G0μ → G0μ + δc

2Ea
g

cμoμ√
2Ns2

μ

(68)

in Eqs. (13) and (14), and

LV → LV + (δc)2

8Et

φ̇eV − δc

4Ea
g

∑
μ

cμoμ√
2Ns2

μ

ξ̇μeV (69)

in Eq. (21). Note that matrix Gμν is not affected and, as
discussed in Appendix C, a rotation is needed to diagonalize
it in the odd sector. This rotation in principle modifies the
new term introduced in Eq. (68); we neglect this modification
as it does not introduce any new qualitative feature; this is
also a quantitatively good approximation if the parameter λ

[Eq. (17)] is sufficiently small.
Within the same approximations used previously [in partic-

ular, we assume again Eq. (28) to hold], the total Hamiltonian
H takes the same form as in Eq. (29):

H = H̄φ +
N−1∑
μ=1

Hμ + Hint + HV , (70)

H̄φ = 4Ē
φ

Cp2
φ − Eb

J cos (φ + ϕe) + 1

2
ELφ2, (71)

Hμ = 4EC,μp2
μ + 1

2
Ea

J ξ 2
μ, (72)

Hint =
N−1∑
μ=1

gμpμpφ, (73)

HV = −
N−1∑
μ=1

gμpμ eV

[
1

4Ec
C

− (δc)2

8Et

− oμ

2Ē
φ

C

]

− Ē
φ

Cpφ eV

[
2

Ec
C

− (δc)2

Et

+ (δc)2

2N

∑
μ

oμ

EC,μ(
Ea

g

)2 c2
μ

s4
μ

]
.

(74)

Despite the formal similarity, there are important differences
between Eqs. (29) and (70): first, all collective modes appear
in H , not just the even ones; we remind here that EC,μ is
given by either Eqs. (24) or (C10) depending on the even/odd
mode parity. Second, due to the asymmetry the qubit charging
energy Ē

φ

C is renormalized from the definition in Eq. (26):

1

Ē
φ

C

= 1

Ẽ
φ

C

− (δc)2

4Et

. (75)

Third, the coupling constants gμ are different for even and odd
modes:

gμ = 4√
2N

Ē
φ

CEC,μ

Ea
g

cμ

s2
μ

(oμ+1 − oμδc). (76)

The structure of Hamiltonian H in Eq. (70) shows that
the main consequence of breaking the parity symmetry is
the introduction of coupling between qubit and odd modes
with coupling strength linear in the asymmetry parameter
δc. Therefore, for strong asymmetry |δc| ∼ 1, the odd modes
influence the qubit in the same way as the even ones. Even for
moderate asymmetry |δc| ∼ 0.1, the effect of the lower-energy
odd modes may be non-negligible (at least near zero flux,
where the qubit frequency is closer to those of the collective
modes): while δc suppresses the coupling of the odd modes
to the qubit, the odd modes with index 2ρ − 1 are closer in
frequency to the qubit than the even modes with index 2ρ,
and the smaller frequency difference generally increases the
dispersive shift [see Eq. (36)]; also, the term proportional to
1/Ē

φ

C in Eq. (74) roughly compensates for the δc suppression
of coupling between odd modes and cavity, thus giving similar
lifetimes for odd (2ρ − 1) and even (2ρ) modes. On the other
hand, small asymmetry at the percent level, as usually present
in nominally symmetric devices, implies that the odd modes
can be safely neglected.

Asymmetrically coupled systems similar to that described
above have been recently probed experimentally, which enable
us to test in part our theory. For example, in Ref. [18] an array of
80 junctions was placed in parallel to a (resonator) capacitor
and the 9 lowest resonant frequencies were measured. The
system is described by the Hamiltonian H in Eq. (70) if we
set Eb

J = 0. Then, H describes a harmonic oscillator linearly
coupled to N − 1 oscillators. The resonant frequencies of
the corresponding N -independent oscillators can be easily
calculated numerically; to compare with experiments, we note
that the lowest mode in the experiment corresponds to what
we call the qubit mode φ, and therefore the higher even indices
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FIG. 11. (Color online) Comparison between collective modes
frequencies measured in Ref. [18] (red circles) with those calculated
using the present theory (black crosses). The inset shows the ratio
between theoretical and experimental frequencies.

correspond to our odd modes and vice versa, odd mode indices
in the experiments correspond to our even modes.

In calculating the resonant frequencies, we use as input
parameters the array junction capacitance Ca

J = 40.1 fF
(Ea

C � 483 MHz) and its Josephson inductance LJ = 1.94 nH
(Ea

J � 84.3 GHz), the capacitance to ground Ca
g = 114 aF

(Ea
g � 170 GHz), the two coupling capacitors C0

c = 12.2
fF and CN

c = 5.1 fF (Ec
C � 2.24 GHz, δc � 0.27), and the

resonator capacitor Cb
J = 3.19 fF (Eb

C � 6.07 GHz). The
frequencies calculated with these parameters differ by less
than 1% from the measured frequencies (see Fig. 11). We
note that while the array junction parameters Ca

J and LJ agree
with those reported in Ref. [18], the ground capacitance Ca

g we
estimate here is about three times bigger. Since the calculations
throughout the paper are based on the original estimate of [18],
they could underestimate, e.g., the dispersive shifts and the
decay rates by almost one order of magnitude; we will return
to this point when estimating the dephasing rate in Sec. VIII.

A very recent experiment [40] reports the measurement
of 14 resonant frequencies in an array of 200 junctions
without shunting capacitor (Cb

J = 0). We can again compare
our calculated frequencies with the measured ones: setting
Ca

g = 98 aF and optimizing the other parameters, we find again
differences of less than 1% except for the third mode, whose
measured frequency is about 7% higher than the calculated
one; this larger difference is likely due to the presence near the
frequency of that mode of a spurious resonance [40].

VII. COUPLING INTO THE SUPERINDUCTANCE

So far, both for the PT -symmetric and the broken-
symmetry cases, we have taken the coupling capacitors to
be connected to the two islands separated by the phase-slip
junction. The coupling capacitors can be attached to any
island in the circuit, and in fact such a setup has been used
in more recent experiments [11,41]. In general, arbitrary
placement will immediately break parity symmetry even if
the capacitances are the same for both capacitors. Here, we
consider briefly the simplest case of equal capacitors placed

FIG. 12. (Color online) Circuit model for the fluxonium with
coupling capacitors attached to islands 1 and N − 1.

symmetrically with respect to the phase-slip junction, so
that parity symmetry is preserved and no qubit-odd mode
interaction is allowed. Concretely, we take the first capacitor to
be connected to island δ � 0, where islands 0 and N are the two
islands surrounding the phase-slip junction; then, the second
capacitor is connected to island N − δ, and the maximum
possible δ is δM = �(N − 1)/2�. As an example, the circuit
with δ = 1 is depicted in Fig. 12.

With the coupling capacitors in this symmetric configura-
tion, the coupling Lagrangian LV [cf. Eq. (21)] becomes

LV = − 1

4Ec
C

(
1 − 2δ

N

)
φ̇ eV + 1

4Ec
C

√
2

N

Ne∑
ρ=1

s4δρ

s2ρ

η̇ρ eV .

(77)

This formula correctly reduces to Eq. (21) for δ = 0, while
for δ > 0 a new coupling between cavity and even modes is
present.

Changing the position of the coupling capacitors also affects
the kinetic energy part TG of the Lagrangian [cf. Eq. (12)], and
a general treatment of this modified term is quite cumbersome.
Here, we consider the simple limit in which we neglect the
ground capacitances Ca

g ,Cb
g → 0. In this case, as we show in

Appendix H, the Hamiltonian is

H = Ĥφ + H2 + Hint + HV +
∑
μ �=2

Hμ, (78)

Ĥφ = 4
Ê

φ

C

1 − g2
p2

φ − Eb
J cos(φ + ϕe) + 1

2
ELφ2, (79)

H2 = 4
EC2

1 − g2
p2

2 + 1

2
Ea

J ξ 2
2 , (80)

Hint =
g
√

Ê
φ

CEC2

1 − g2
p2pφ ≡ g2p2pφ, (81)

Hμ = 4Ea
Cp2

μ + 1

2
Ea

J ξ 2
μ, (82)

HV = −2pφeV

1 − g2

Ê
φ

C

Ec
C

(
1 − 2δ

N

)[
1 − δ

(
1 − 2δ

N

)
EC2

Ec
C

]

+ 4p2eV

1 − g2

EC2

Ec
C

√
δ

(
1 − 2δ

N

)[
1 −

(
1 − 2δ

N

)2
Ê

φ

C

2Ec
C

]

≡ −gφ,cpφeV + g2,cp2eV . (83)
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FIG. 13. (Color online) In all four panels, filled circles are used
to denote parameter set 1 and empty ones for set 2. The horizontal
bottom (top) scales are used for set 1 (2). (a) Normalized effective
qubit charging energy E

φ

eff (δ)/Eφ

eff (0) vs coupling capacitor position δ.
(b) Normalized collective mode charging energy E2,eff (δ)/E2,eff (0) vs
δ. (c) Dimensionless parameter g [Eq. (86)] vs δ. (d) Qubit-collective
mode coupling g2 [Eq. (82)] vs δ.

The parameters g2, gφ,c, and g2,c defined above, as well as the
quantities

1

Ê
φ

C

= 1

E
φ

C

+ 1

2Ec
C

(
1 − 2δ

N

)2

, (84)

1

EC2
= 1

Ea
C

+ 1

Ec
C

δ

(
1 − 2δ

N

)
, (85)

g2 = Ê
φ

CEC2

2
(
Ec

C

)2 δ

(
1 − 2δ

N

)3

, (86)

depend on the position δ of the coupling capacitors.
The main qualitative feature of the Hamiltonian in Eq. (78)

is that the qubit and the cavity both couple to only one
collective mode whose charging energy is renormalized below
Ea

C , while all the other N − 2 modes remain degenerate and
uncoupled. (Of course, in the presence of ground capacitances
the degeneracy is lifted and all the even modes couple to both
qubit and cavity.) While for typical experimental parameters
the effective qubit charging energy E

φ

eff = Ê
φ

C/(1 − g2) mod-
erately increases as δ increases towards N/2, the collective
mode effective charging energy E2,eff = EC2/(1 − g2) can be
more strongly suppressed when δ ∼ N/4 [see Figs. 13(a) and
13(b)]. The dimensionless parameter g varies nonmonotoni-
cally as function of δ and is generally small [see Fig. 13(c)].
The qubit-collective mode coupling strength g2 also depends
significantly on δ [see Fig. 13(d)]; note that the largest values
of g2 at δ ∼ N/8 are a significant fraction of (or comparable
to) the coupling strengths between qubit and lowest collective
modes calculated for δ = 0 but in the presence of ground
capacitances (see Fig. 2). These observations imply that by
appropriately placing additional capacitors in the array, both
the collective modes spectrum and the coupling strength with
the qubit can be controlled to some degree. In particular, to
minimize the effects of the collective modes on the qubit
the coupling capacitors should either be placed next to the
phase-slip junction (δ = 0), or opposite to it (δ = δM ), while

FIG. 14. (Color online) Normalized qubit-cavity coupling gφ,c

[Eq. (83)] vs coupling capacitors position δ. Horizontal bottom (top)
scale is used for set 1, filled circles (2, empty circles).

intermediate positions (especially in the range δ ∼ N/8–N/4)
maximize those effects.

In Eq. (83), we give expressions for the qubit-cavity and
collective mode-cavity dimensionless couplings gφ,c and g2,c.
For δ = 0, gφ,c reduces to the value in Eq. (33); as δ increases,
gφ,c gradually decreases down to a value approximately 1/N

times the initial one when δ = δM , see Fig. 14. In contrast,
g2,c takes its smallest values for δ = 1 and δ = δM , where
it is approximately given by gmin

2,c ≈ 4Ea
C/

√
2Ec

C ; the largest
values at δ ∼ N/4 are bigger by a factor of less than 3. It turns
out (cf. Fig. 15) that for typical experimental parameters even
the minimum value gmin

2,c is larger than the strongest collective
mode-cavity coupling g1/4Ec

C in Eq. (33) [42]. The contrasting
dependence on δ of the two couplings implies that the position
of the coupling capacitors can significantly affect the qubit
coherence, as we discuss at the end of the next section.

FIG. 15. (Color online) Collective mode-cavity coupling g2,c

[Eq. (83)] vs coupling capacitors position δ. Horizontal bottom (top)
scale is used for set 1, filled circles (2, empty circles). The squares at
δ = 0 are given by g1/4Ec

C [cf. Eq. (33)], with g1 from Eq. (32), and
are plotted here for comparison.
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FIG. 16. (Color online) Absolute values of the total dispersive
shifts |χ̄μ| for parameter sets 1 (inset) and 2 (main panel). Filled
circles are evaluated at zero external flux, empty circles at half-flux
quantum. The higher collective modes have very similar values of
|χ̄μ|, dominated by χδEL

μ of Eq. (56). The large fluctuations of |χ̄μ|
for the low even modes are due to χρ of Eq. (36). In all cases, the
lowest even mode (μ = 2) has the largest shift.

VIII. ESTIMATES OF QUBIT DEPHASING RATE

The analysis of the previous sections enables us to estimate
the fluxonium dephasing rate due to interactions with the
collective modes. We first consider the case of coupling
capacitors next to the phase slip-junction, as in Fig. 1; then,
we comment on the modifications of our estimates in the case
of coupling capacitors farther from the phase-slip junction as
in Sec. VII. As explained in Sec. II, for each mode we need
to know the corresponding total dispersive shift χ̄μ; for the
circuit of Fig. 1 it is given by

χ̄μ =
{
χδEL

μ , μ odd
χ

δEL

2ρ + χρ, μ = 2ρ even.
(87)

The contribution due to array junction nonlinearity χδEL
μ

[Eq. (56)] is present for all modes, while that due to ground
capacitances χρ [Eq. (36)] only for the even modes. To gauge
the relative importance of the two contributions, we note
that while χρ quickly decreases in magnitude with increasing
index ρ, χ

δEL

2ρ slowly increases with ρ. Therefore, we can
expect that while it may be necessary to keep χρ for the
low-index modes, χδEL

2ρ could be the only relevant contribution
for higher-index modes. To identify which modes have low
index in this sense, we remind that in the dispersive regime
we have |χρ | � gρ , so we can certainly neglect χρ if we find
gρ < |χδEL

2ρ |. Unfortunately, this latter condition is satisfied
at any flux only for high-index modes, so in general we
must keep both χρ and χ

δEL

2ρ for quantitative estimates (see
also Fig. 16). In the remainder of this section we restrict
our attention to the flux being zero or half a flux quantum
since it is experimentally established [10] that away from these
“sweet spots” the fluxonium dephasing rate is determined by
flux noise. However, we note that near resonances where the
dispersive shifts are enhanced (see Figs. 4 and 5), they could
give rise to reproducible suppressions of coherence time T2 at
specific flux values.

TABLE II. Estimates (in MHz) for the dephasing rates �w
φ

[Eq. (88)] and �κ
φ [Eq. (89)]. In contrast to the rate �κ

φ , the
“worst-case” estimates �w

φ are not experimentally relevant (see text
for details).

�w
φ (0) �w

φ (0.5) �κ
φ

Set 1 13.1 0.56 1 × 10−6

Set 2 7.99 1.17 1.5 × 10−6

To determine if the collective modes can at least in
principle be a significant source of dephasing, let us consider a
worst-case scenario in which all collective modes are equally
populated, n̄μ ≡ n̄, and each rate �μ [Eq. (2)] attains its
maximum value. Then, we have [cf. Eq. (3)]

�w
φ (f ) = n̄

∑
μ

|χ̄μ(f )|. (88)

We have calculated |χ̄μ| at zero and half-flux quantum for both
parameter sets in Table I (see Fig. 16). Summing over all modes
and assuming n̄ = 0.01, we arrive at the results summarized
in Table II. We find that in the worst case, the collective modes
could limit the dephasing time to about 0.1 μs at zero flux
and 1 μs at half-flux quantum. Measured coherence times
are longer than these estimates [10,11], indicating that the
worst case is not realized in practice. In fact, in Ref. [11] the
Purcell-limited lifetime of the qubit at zero flux was measured
to be at least 10 μs, corresponding to a decay rate κq(0) ∼
105 Hz; then, based on the results of Sec. IV C [see in particular
Fig. 7, showing κ1/κq(0) ∼ 10−3 and much smaller ratios for
the higher modes] we estimate that the decay rate of the lowest
even mode is of order 100 Hz, much smaller than the dispersive
shift, and all other modes have even smaller decay rates [43].
Therefore, we conclude that the condition κμ = 2|χμ| leading
to the highest possible dephasing is not met, and that the
experimentally relevant regime is that of slow decay of the
modes in comparison with the dispersive shift.

In the realistic regime κμ � |χ̄μ|, from Eqs. (3) and (4) we
find

�κ
φ = n̄

∑
μ

κμ. (89)

Using this formula and Eqs. (41)–(43), we get the estimates in
the last column of Table II, corresponding to a dephasing time
of order 1 s (dominated by the relaxation rate of the lowest
even collective mode). This time scale is much longer than
the coherence times measured in experiments, indicating that
most likely the collective modes are not causing any significant
dephasing. We caution the reader that the estimates in the last
column of Table II rest mainly on the assumption (valid within
our model in Fig. 1 for typical parameter values as in Table I)
that the collective modes are more weakly coupled to the cavity
than the qubit is, as in Fig. 7; if the assumption is not correct,
this could result in a dephasing time shorter by several orders
of magnitudes, as we discuss next.

We now briefly consider the case in which the coupling
capacitors are not placed next to the phase-slip junction (see
Fig. 12 in Sec. VII for an example). As the distance δ between
coupling capacitors and phase-slip junction increases, the
coupling capacitances must also increase to attain the desired
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qubit-cavity coupling strength (cf. Fig. 14); both moving
the capacitors and increasing their capacitance, however,
raise the collective mode-cavity coupling, which in turn
increases the collective modes decay rates κμ (cf. Sec. IV C)
and hence the qubit dephasing rate (89). We therefore conclude
that placing the coupling capacitors beside the phase-slip
junction δ = 0 is the optimal choice: for a given qubit-cavity
coupling strength, this choice minimizes the collective modes
decay rates and hence the qubit dephasing.

As a nonoptimal example, let us consider the case in which
the coupling capacitors are placed opposite to the phase-slip
junction (δ ∼ N/2). Then, the coupling capacitance should be
increased by a factor of order N to compensate for the decrease
in qubit-cavity coupling strength. Together with the stronger
mode-cavity coupling, gmin

2,c as compared to g1/4Ec
C (Fig. 15),

this increase would raise the collective modes decay rate by at
least ∼10N2 (i.e., ∼104). Then, the decay rate of the lowest
even mode would be faster than that of the qubit, the dephasing
rate �κ

φ of Eq. (89) would also increase by about four orders of
magnitudes, and the corresponding dephasing time would be
about 0.1 ms. This time is one order of magnitude longer
than the coherence time measured in Ref. [11], indicating
again that the collective modes are not limiting coherence
in current experiments. On the other hand, our estimate is
much shorter than the measured ∼10 ms relaxation time at
half-flux quantum, so the effect of the collective modes could
in principle be observable, if other dephasing mechanisms can
be identified and suppressed.

Comparison between the nonoptimal (δ ∼ N/2) and op-
timal (δ = 0) cases indicates that if necessary the simplest
recipe to decrease the collective mode-induced dephasing rate
is to place the coupling capacitors sufficiently close to the
phase-slip junction. Alternatively, better filtering could lead to
a decrease in the average occupation of the collective modes; in
this way the cavity residual occupation was lowered by about
one order of magnitude [30], but this gain is much smaller than
the four-orders-of-magnitude difference attainable by moving
the capacitors.

Finally, let us comment on the reliability of our estimates.
As noted towards the end of Sec. VI, a more accurate
determination of the array capacitance to ground may show
that its value is bigger by a factor of about 3; if the value
of the ground capacitance was indeed underestimated, the
entries in Table II should then be increased by one order of
magnitude. This does not affect the qualitative conclusions
above for the circuit in Fig. 1 (the worst-case scenario is not
realized, and the estimated dephasing rate is many orders of
magnitude smaller than the measured one). As for the case of
nonoptimal placement of the coupling capacitors, the above
considerations are not affected by the value of the ground
capacitances since the mode-cavity coupling is dominated by
the direct interaction via the coupling capacitors rather than
by the interaction mediated by the ground capacitors (in fact,
the calculations of Sec. VII are performed in the limit of zero
ground capacitances).

IX. SUMMARY

In this paper, we study the collective modes in the array
of Josephson junction forming the superinductance of the

fluxonium qubit. We derive an approximate Hamiltonian (29)
that includes the interactions between the qubit mode and the
collective modes in the presence of ground capacitances. The
approximations place some restriction on the number of array
junction to which the model applies [see Eq. (28)], but this
condition is in practice much weaker than that given by the
array “screening length” [Eq. (27)] and it is satisfied in current
experiments. A generalization of this Hamiltonian enables us
to favorably compare the calculated spectrum of the collective
modes to two recent experiments (see Sec. VI and Fig. 11).

In Sec. V, we consider the leading-order nonlinearity
of the array junctions, which introduces additional qubit-
collective mode interactions. Among these interactions, the
term which leads to the strongest dispersive shifts effectively
induces fluctuations in the qubit-inductive energy when the
collective modes are excited (see Sec. V B). As we discuss
in Sec. VIII, the total dispersive shifts (i.e., including also
the effect of ground capacitances) are much bigger than the
collective mode decay rates, so the latter determine the qubit
dephasing rate. We find that the collective modes do not
significantly contribute to dephasing, so long as they are more
weakly coupled to the cavity than the qubit is; the weak
coupling is generically achieved if the qubit-cavity coupling
capacitors are placed next to the phase-slip junction. However,
we estimate that the collective-mode induced dephasing
could become observable if the coupling capacitors are placed
opposite to the phase-slip junction. Our findings that the
complexity of a circuit does not necessarily affect adversely
the qubit coherence is encouraging also for alternative designs
of a superinductor [22,23], although a careful analysis of each
design is needed to identify its strengths and weaknesses.
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APPENDIX A: LAGRANGIAN

This Appendix provides a derivation of the Lagrangian L
for the collective and qubit modes [Eq. (22)] starting from
a more familiar “textbook” formulation in terms of phases
and voltages. To this end, we split L as a sum of kinetic and
potential energy parts as usual, L = T − US , and write the
potential energy as

US = −Ea
J

N∑
m=1

cos θm − Eb
J cos

(
N∑

m=1

θm + ϕe

)
. (A1)

Here, θm is the (gauge-invariant) phase difference across
junction m in the array, and the first term on the right-hand
side is the Josephson energy of the array junctions. The last
term in the above equation is the phase-slip junction energy,
and in writing this term we have taken into account the fluxoid
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quantization condition

N∑
m=0

θm + ϕe = 2πn (A2)

with n integer.
The kinetic energy part T is more easily expressed in terms

of the voltages ϕ̇m/2e of each island:

T = TS + TG + TV , (A3)

TS =
N∑

m=1

(ϕ̇m − ϕ̇m−1)2

16Ea
C

+ (ϕ̇N − ϕ̇0)2

16Eb
C

, (A4)

TG =
N∑

m=0

ϕ̇2
m

16Em
g

, (A5)

TV =
N∑

m=0

(ϕ̇m − 2eVm)2

16Em
c

. (A6)

Here, TS is the charging energy due to the junctions ca-
pacitances, TG due to capacitances between each island
and ground, and TV due to capacitive coupling to external
voltage sources Vm. In the above equations Em

g = e2/2Cm
g and

Em
c = e2/2Cm

c are charging energies of ground and coupling
capacitors for the mth island and they can in general be
different for each island. We stress that all equations in this
appendix are valid for this generic case, not just for the specific
circuit depicted in Fig. 1.

To rewrite T in terms of the phase differences θm, we use
the relationship

ϕm = ϕ0 +
m∑

l=1

θl, (A7)

valid for m = 1, . . . ,N , where we have taken ϕ0 as a reference
phase. Then, it is straightforward to write TS in terms of θm

variables

TS =
N∑

m=1

θ̇2
m

16Ea
C

+
(∑N

m=1 θ̇m

)2

16Eb
C

. (A8)

The other two terms in T take the form

TG = ϕ̇2
0

16E0
g

+
N∑

m=1

1

16Em
g

(
ϕ̇0 +

m∑
l=1

θ̇l

)2

, (A9)

TV = (ϕ̇0 − 2eV0)2

16E0
c

+
N∑

m=1

1

16Em
c

(
ϕ̇0 +

m∑
l=1

θ̇l − 2eVm

)2

.

(A10)

We next note that L is independent of ϕ0, so that ∂L/∂ϕ̇0

is a conserved quantity, the total charge of the circuit [24].
Using this conservation law we can express ϕ̇0 in terms of the
variables θm and thus eliminate it from the Lagrangian. In this
way, standard algebraic manipulations lead to

TG = 1

16

N∑
m,n=1

Gmnθ̇mθ̇n, (A11)

Gnm = Et

min{m,n}−1∑
i=0

N∑
j=max{m,n}

(
1

Ei
g

+ 1

Ei
c

)(
1

E
j
g

+ 1

E
j
c

)
,

TV = 2e

8

N∑
m=1

θ̇m

N∑
i=m

[(
1

Ei
g

+ 1

Ei
c

)
V̄ − Vi

Ei
c

]
, (A12)

V̄ = Et

N∑
i=0

Vi

Ei
c

,

where

1

Et

=
N∑

i=0

(
1

Ei
g

+ 1

Ei
c

)
. (A13)

These equations correctly reduce to those of [24] in the absence
of coupling capacitors.

As a final step, we introduce a new set of variables via the
relations

φ =
N∑

m=1

θm, (A14)

ξμ =
N∑

m=1

Wμmθm (A15)

with index μ = 1, . . . ,N − 1 and inverse θm = φ/N +∑
μ Wμmξμ. The matrix Wμm must satisfy the conditions∑
m Wμm = 0 and

∑
m WμmWνm = δμν . In terms of these new

variables we find TS as in Eq. (6) and US as in Eq. (7).
Formulas for TG and TV and arbitrary Wμm are not instructive,
so we do not report them here. For the specific circuit
configuration and choice of Wμm described in Sec. III, the
corresponding formulas are given there and follow directly
from the equations above. Modifications of those formulas for
a different circuit configuration breaking parity symmetry are
discussed in Sec. VI. A third circuit with coupling capacitors
connected into the array is briefly considered in Sec. VII. Here,
we mention a useful identity valid for the choice of Wμm in
Eq. (9): ∑

m

mWμm = − 1√
2N

cμ

s2
μ

oμ (A16)

[for the notation used, see the definitions in Eqs. (18)–(20)].

APPENDIX B: CHOICE OF PARAMETERS

An often measured property of a flux-tunable qubit such as
the fluxonium is its spectrum as a function of flux, ω10(f ). The
spectrum can be obtained by numerical diagonalization of the
qubit Hamiltonian Hφ [Eq. (30)], where the inductive energy
EL should be replaced by ẼL [Eq. (50)]. For the experiments
reported in Refs. [9,11], with N = 43 and 95 array junctions,
respectively, this procedure leads to the parameters reported
in Table III. We also give there our rough estimate of the ratio
Cb

g/Ca
g which is based on the geometry of the devices in the

two experiments.
The phase-slip junction Josephson energy Eb

J in Table I is
taken directly from the experimental estimates in Table III.
For the coupling capacitor energy Ec

C , we use for set 1 the
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TABLE III. Additional fluxonium parameters estimated as ex-
plained in Appendix B. Energies are given in GHz.

N Eb
J Ẽ

φ

C ẼL Cb
g/Ca

g

Set 1 43 8.93 2.39 0.52 32
Set 2 95 10.2 3.60 0.46 0.6

value of coupling capacitance given in Ref. [9], while for set
2 we take as an example the value reported in Ref. [18]. The
latter experiment was performed with junctions fabricated with
the same procedure used to fabricate the fluxonium junctions
of [11]; for this reason, we also use the value of ground
capacitance in Ref. [18] to estimate Ea

g for set 2. The value
of Ea

g for set 1 is smaller than that of set 2 by a factor of
0.4 because, according to the supplement to Ref. [18], the
different fabrication processes lead to such a difference in
capacitances to ground. Values for Eb

g then follow from the
geometrically estimated ratio Cb

g/Ca
g . To further constrain the

parameters, since the only difference between phase-slip and
array junctions is in their area, we assume that their plasma
frequency is the same, so that Ea

J Ea
C = Eb

J Eb
C . We then choose

the parameters Ea
J , Ea

C , and Eb
C as to obtain, using Eqs. (26)

and (50), the values of Ẽ
φ

C and ẼL reported in Table III.

APPENDIX C: COLLECTIVE MODES: ODD SECTOR

The collective modes odd under PT symmetry are gov-
erned by the Lagrangian

Lo = To − 1

2
Ea

J

No∑
ρ=1

ζ 2
ρ , (C1)

where to simplify the notation we introduce ζρ = ξ2ρ−1 and
the number of odd modes No = �N/2� equal to the integer
part of N/2. In the kinetic energy term, we separate a purely
diagonal term Td independent of λ [Eq. (17)], and a term Tλ

proportional to λ:

To = Td + λTλ, (C2)

Td = 1

16

No∑
ρ=1

[
1

Ea
C

+ 1

4Ea
g

1

s2
2ρ−1

]
ζ̇ 2
ρ , (C3)

Tλ = − 1

32Ea
g

No∑
σ,ρ=1

1

N (N − 1)

c2σ−1c2ρ−1

s2
2σ−1s

2
2ρ−1

ζ̇σ ζ̇ρ . (C4)

If the condition N � Ns in Eq. (27) is satisfied, the effect
of the ground capacitances can be treated perturbatively for all
modes and all values of λ. While the condition is not satisfied
in current experiments (cf. Table I), as the order number σ

of the modes increases, the effect rapidly diminishes [44];
moreover, the off-diagonal part is proportional to λ, which is
typically somewhat smaller than unity. This points to the more
general viability of a perturbative approach than suggested by
the condition in Eq. (27). Indeed, diagonalization of the kinetic
energy matrix To can be obtained by a rotation that eliminates
the off-diagonal terms [note that since the potential energy
term in Eq. (C1) is quadratic and proportional to the identity

matrix, any rotation leaves it unchanged]. Such a rotation can
be constructed perturbatively order by order in the parameter
λ, with a procedure analogous to that used to perform a
Schrieffer-Wolff transformation to an effective Hamiltonian:
we want to obtain an antisymmetric matrix S =∑n=1 Snλ

n

such that the product e−SToe
S is diagonal. Expanding this

product up to second order we have

e−SToe
S = Td + λ(Tλ − [S1,Td ])

+ λ2
(

1
2 [S1,[S1,Td ]] − [S2,Td ] − [S1,Tλ]

)+ · · · .

(C5)

To eliminate the off-diagonal terms at order λ, we take S1 to
have elements S1,ρρ = 0 and for ρ �= σ :

S1,ρσ = Tλ,ρσ

Td,σσ − Td,ρρ

, (C6)

where for example the elements Tλ,ρσ of matrix Tλ are defined
via Tλ =∑ρ,σ Tλ,ρσ ζ̇ρ ζ̇σ . We can similarly choose S2 to
eliminate the off-diagonal terms at order λ2. The remaining
diagonal elements are then, up to order λ2,

Td,ρρ + λTλ,ρρ − λ2

2
[S1,Tλ]ρρ. (C7)

The last term is more explicitly written as

[S1,Tλ]ρρ = 2
∑
σ �=ρ

Tλ,ρσ Tλ,σρ

Td,σσ − Td,ρρ

. (C8)

By substituting the matrix elements into Eq. (C7), we arrive
at

To � 1

16

No∑
ρ=1

1

Eo
C,ρ

˙̃ζ 2
ρ , (C9)

where up to second order in λ the effective charging energy
for the new, rotated modes ζ̃ρ is

1

Eo
C,ρ

� 1

Ea
C

+ 1

4Ea
g

⎡
⎣ 1

s2
2ρ−1

− λ
2

N (N − 1)

c2
2ρ−1

s4
2ρ−1

+
(

λ
2

N (N − 1)

)2∑
σ �=ρ

c2
2ρ−1c

2
2σ−1

s2
2ρ−1s

4
2σ−1 − s4

2ρ−1s
2
2σ−1

⎤
⎦.

(C10)

Comparison with numerical diagonalization for a range of
experimentally relevant parameters shows that this formula
is accurate to a few percent even for the lower-energy
modes (and much better accuracy for the high-energy modes),
and that the term proportional to λ2 does not contribute
significantly to the effective charging energy, thus validating
our perturbative approach. With the Lagrangian in diagonal
form, it is straightforward to obtain the energy spectrum of the
modes:

ωo
ρ =

√
8Eo

C,ρE
a
J . (C11)

Note that the rotated modes ζ̃ρ are related to the original
modes ζσ via ζ̃ρ = (eS)ρσ ζσ . For use in Sec. V A, we define
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the matrix �μν that performs the rotation in the odd sector
while leaving the even sector unchanged:

�μν =
⎧⎨
⎩

(eS)2μ−1,2ν−1, μ,ν odd
δμν, μ,ν even
0, otherwise.

(C12)

APPENDIX D: EVEN-SECTOR HAMILTONIAN

The Lagrangian Le in Eq. (23) has a quadratic kinetic
energy part, so that transforming to the Hamiltonian amounts
to inverting the (Ne + 1) × (Ne + 1) matrix K = Kd + Ki

whose diagonal part Kd has entries

Kd,00 = 1

8Ẽ
φ

C

, (D1)

Kd,ρρ = 1

8Ee
C,ρ

, ρ = 1, . . . ,Ne (D2)

and the interaction matrix Ki has elements

Ki,0ρ = Ki,ρ0 = − 1

32
√

2N

1

Ea
g

c2ρ

s2
2ρ

(D3)

and all other elements are zero. Indeed, after performing a
standard Legendre transformation the kinetic part HK of the
Hamiltonian has the form

HK = 1
2nK−1n − nK−1v, (D4)

where

n = (nφ,n1, . . . ,nNe
), (D5)

v = (−eV/4Ec
C,0, . . . ,0

)
(D6)

are two Ne + 1-dimensional vectors. We can formally write
the inverse matrix as

K−1 =K−1
d

1

1 − KiK
−1
d KiK

−1
d

− K−1
d KiK

−1
d

1

1 − KiK
−1
d KiK

−1
d

(D7)

and approximate it as

K−1 ≈ K−1
d − K−1

d KiK
−1
d (D8)

provided that entries of matrix KiK
−1
d KiK

−1
d are small

compared to unity. Given the structure of matrix Ki , this
condition translates into

Ki,0σ Ki,0ρK
−1
d,ρρK

−1
d,00 = Ee

C,ρẼ
φ

C

32N
(
Ea

g

)2 c2ρ

s2
2ρ

c2σ

s2
2σ

� 1. (D9)

If the perturbative condition (27) is satisfied, we can ap-
proximate Ee

C,ρ ≈ Ea
C [see Eq. (24)]; using that in order

of magnitude Ẽ
φ

C ∼ Ea
C , it then follows that the condition

(D9) is also satisfied. More interesting is the opposite regime
in which Eq. (27) is violated; then, we can take Ee

C,ρ ≈
4Ea

gs2
2ρ . Substituting this approximation into Eq. (D9) and

expanding the trigonometric functions for small ρ and σ

(which maximizes the left-hand side), we arrive at Eq. (28).
Using Eqs. (D4) and (D8) we arrive at Eqs. (29)–(33).

APPENDIX E: SCHRIEFFER-WOLFF TRANSFORMATION
FOR U (2)

φξ

In Sec. V B, we have argued that the part proportional to
a†

μaμ of the potential term U
(2)
φξ gives rise to fluctuations in the

inductive energy and hence to corresponding dispersive shifts;
here, we consider the remaining part of U

(2)
φξ proportional to

a†
μa†

μ + aμaμ:

U2 =
∑

μ

∑
l,j

gμlj |l〉〈j |(a†
μa†

μ + aμaμ), (E1)

where

gμlj = Ea
J l2

μ

4
〈l|
(

1 − cos
φ

N

)
|j 〉 � ELl2

μ

8N
〈l|φ2|j 〉. (E2)

An effective qubit-collective modes Hamiltonian Heff that
includes the effect of this interaction term can be obtained by
keeping the next-to-leading order, diagonal part of e−SHeS ,
where

H = Hφ +
∑

μ

Hμ + U2 (E3)

with Hφ of Eq. (30) and Hμ of Eq. (72), and

S =
∑

μ

∑
l,j

gμlj |l〉〈j |
[

a†
μa†

μ

εj − εl − 2ωμ

+ aμaμ

εj − εl + 2ωμ

]
.

(E4)

In this way, we find

Heff = Hφ +
∑

μ

[Hμ + Hφμ] (E5)

with

Hφμ = −
∑
l,j

|l〉〈l|g2
μlj

[
2(εj − εl)

(εj − εl)2 − (2ωμ)2
nμ(nμ − 1)

+ 4

εj − εl + 2ωμ

(
nμ + 1

2

)]
. (E6)

When projected onto the qubit subspace, the last line above
gives a small contribution to qubit frequency shift as well
as to the dispersive shifts; note that due to our assumption
ω10 < ωμ, the terms in the last line are always finite. To see
their smallness, consider the inequalities

∑
j

∣∣∣∣∣ g2
μ0j

εj − ε0 + 2ωμ

± g2
μ1j

εj − ε1 + 2ωμ

∣∣∣∣∣ <
∑

j

g2
μ0j + g2

μ1j

ωμ

�
(

EL�2
μ

8N

)2
1

ωμ

[|〈1|φ4|1〉| + |〈0|φ4|0〉|] � π4

2

EL�2
μ

N3
.

(E7)

In the last step we used that since state |0〉 (|1〉) is mostly
localized at potential wells with minima between 0 and ∼ ± π

(∼ ± 2π and ∼ ± π ) we have

|〈l|φn|l〉| � [(l + 1)π ]n, l = 0,1. (E8)

224511-17



GIOVANNI VIOLA AND GIANLUIGI CATELANI PHYSICAL REVIEW B 92, 224511 (2015)

The last expression in Eq. (E7) shows that the dispersive shift
from the last line of Eq. (E6) is much smaller than χδEL

μ [see
Eqs. (56) and (58)].

The term on the first line in Eq. (E6) can diverge if the reso-
nance condition εj − εl − 2ωμ = 0 is met, but this divergence
simply signals the breakdown of the perturbative approach
when εj − εl − 2ωμ ≈ gμlj . Therefore, the coefficient of the
largest possible contribution from the first line of Eq. (E6) is
much smaller in magnitude than π2EL�2

μ/2N (the smallness
is due to the matrix element being evaluated between one of
the low-energy qubit states |0〉 or |1〉 and a state with much
higher energy). Hence, we find that even near resonance this
term is smaller than χδEL

μ ; moreover, one should keep in mind
that the latter shifts the qubit frequency if any collective mode
has at least one excitation, while the former changes the qubit
frequency only if a specific mode (the one near resonance with
a qubit transition) is excited at least twice, and the probability
for the latter situation to happen is smaller by a factor ∼n̄/N

if n̄ is the average occupation probability (see also the next
Appendix).

APPENDIX F: OCCUPATION PROBABILITIES

In this Appendix, we comment briefly on the assumed
smallness of the occupation probabilities for the collective
modes. We assume for simplicity an equilibrium probability
for each mode, so that the probability Pnρ

of having nρ

excitations in mode ρ is

Pnρ
= 1

1 + n̄ρ

(
n̄ρ

1 + n̄ρ

)nρ

, (F1)

where n̄ρ is the mode average occupation. For an order-of-
magnitude estimate, we take the latter to be the same for all
modes n̄ρ ≡ n̄ and small n̄ � 1. Then, the probability P0 that
none of the N − 1 collective modes is occupied is simply

P0 = 1

(1 + n̄)N−1 � 1 − (N − 1)n̄, (F2)

while the probabilities P1 that one mode has a single excitation,
P2 that one mode has two excitations, and P1,1 that two modes
have one excitation are

P1 = (N − 1)
n̄

(1 + n̄)N
� (N − 1)n̄, (F3)

P2 = (N − 1)
n̄2

(1 + n̄)N+1 � (N − 1)n̄2, (F4)

P1,1 = (N − 1)(N − 2)

2

n̄2

(1 + n̄)N+1 � (N − 1)2

2
n̄2. (F5)

In approximating the above formulas, we assumed n̄ �
1/N � 1, and it is evident that under these assumptions we
have P2 � P1,1 � P1 � P0.

APPENDIX G: DERIVATION OF POTENTIALS U (1)
φξ AND

U (3)
φξ AND CALCULATION OF FREQUENCY

CHANGE �ω10,μ

The starting point to derive the formulas for U
(1)
φξ and

U
(3)
φξ [Eqs. (59) and (64), respectively] is the following

approximation:

∑
m

sin

[∑
μ

Wμmξμ

]
≈ −1

6

∑
m,μ,ν,σ

WμmWνmWσmξμξνξσ ,

(G1)

where we used the property
∑

m Wμm = 0 to eliminate the
lowest-order contribution. Next, we express the collective
mode coordinates in terms of creation/annihilation operators,
and after normal ordering we find∑
μ,ν,σ

WμmWνmWσmξμξνξσ

=
∑
μ,ν,σ

WμmWνmWσm�μ�ν�σ

× 1

2
√

2
[(a†

μa†
νa

†
σ + 3a†

μa†
νaσ + H.c.) + 3(a†

μ + aμ)δνσ ],

(G2)

where H.c. denotes the Hermitian conjugate. The last term in
square brackets gives the linear interaction term U

(1)
φξ :

U
(1)
φξ = −1

2
Ea

J sin
φ

N

∑
m

∑
μ,ν

WμmW 2
νm

�2
ν

2
ξμ. (G3)

To proceed further, we note that∑
m

WμmWνmWσm = 1/
√

2N (G4)

if one of three conditions is satisfied:

μ + ν − σ = 0, (G5)

μ − ν + σ = 0, (G6)

μ − ν − σ = 0, (G7)

while ∑
m

WμmWνmWσm = −1/
√

2N (G8)

if

μ + ν + σ = 2N. (G9)

The sum over m vanishes otherwise. For the sum in Eq. (G3)
this only leaves two possibilities, μ = 2ν and 2(N − ν), which
imply that μ must be even. Setting μ = 2ρ and using the
definitions of ηρ and Ne given after Eq. (23), we can finally
write Eq. (G3) in the form given in Eq. (59).

Using again the identities in Eqs. (G4)–(G9), it is straight-
forward to cast the terms with products of three operators
in Eq. (G2) in the form of Eq. (64). Here, we focus on the
calculation of �ω10,μ, the change in frequency due to the
interactions in U

(3)
φξ

[Eq. (64)], when a single collective mode
is excited. To this end, let us define the corrections δεl,0

and δεl,μ̄ to the qubit energy εl depending on whether the
collective modes are in their ground state or in state |1μ̄〉,
respectively. These corrections can be calculated at second
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order in perturbation theory in U
(3)
φξ , for example:

δεl,0 =
∑
j,f

∣∣〈j,f |U (3)
φξ |l,0〉∣∣2

εl − εj − Ef

. (G10)

Here, |j,f 〉 denotes a generic state |j 〉 for the qubit, with
energy εj , and some Fock state |f 〉 with energy Ef for the
collective modes. The similar expression for εl,μ̄ is

δεl,μ̄ =
∑
j,f

∣∣〈j,f |U (3)
φξ |l,1μ̄〉∣∣2

εl + ωμ̄ − εj − Ef

. (G11)

In terms of these corrections, the qubit frequency change is

�ω10,μ̄ = (δε1,μ̄ − δε0,μ̄) − (δε1,0 − δε0,0). (G12)

A great simplification in calculating �ω10,μ̄ is achieved by
noticing that in the difference δεl,μ̄ − δεl,0 all contributions
originating from terms in U

(3)
φξ [Eq. (64)], for which none of

the indices of the operators in that equation coincide with μ̄

cancel out. In other words, only terms for which at least one
index is μ̄ can contribute to the frequency change. Moreover,
since the Hermitian conjugate terms in Eq. (64) contain two
or more annihilation operators, they also do not contribute to
�ω10,μ̄. To concretely calculate the matrix elements entering

Eq. (G11), we need to consider the action of the terms in
square brackets in Eq. (64) onto the singly excited state |1μ̄〉;
for example, the first one gives∑

μ,ν

a
†
μ+νa

†
μa†

ν |1μ̄〉

=
∑
μ,ν

′ |1μ̄1μ1ν1μ+ν〉 + 2
∑

ν

′√
2|2μ̄1μ̄+ν1ν〉

+
∑

ν

′√
2|2μ̄1μ̄−ν1ν〉 +

√
6|3μ̄12μ̄〉 + (

√
2)2|2μ̄2μ̄/2〉,

(G13)

where the prime at the summation symbols implies that all the
collective mode indices in the states being summed must be
different. The first term on the right-hand side is the one in
which no index coincides with μ̄ and, as discussed above, this
term does not contribute to the difference δεl,μ̄ − δεl,0. The
last two terms arise from particular combination of the indices
(μ = ν = μ̄ and μ = ν = μ̄/2, respectively); the last one is
present only if μ̄ is even. Similar terms in which two indices are
equal also arise from the other operators in square brackets in
Eq. (64) [45]. However, we discard these terms in comparison
with the terms with sum over index ν [see the second line
in Eq. (G13)]: because of the sums, the discarded terms are
smaller by a factor of order 1/N . Taking these considerations
into account, standard calculation of the matrix elements for
the collective modes gives

δεl,μ̄ − δεl,0 ≈
(
Ea

J

)2
16N

∑
j

∣∣∣∣〈j | sin
φ

N
|l〉
∣∣∣∣
2

�2
μ̄

⎡
⎣ N−μ̄−1∑

ν=1

�2
ν�

2
μ̄+ν

(
1

εl − εj − ωμ̄ − ων − ωμ̄+ν

+ 1

εl − εj + ωμ̄ − ων − ωμ̄+ν

)

+ 1

4

μ̄−1∑
ν=1

�2
ν�

2
μ̄−ν

(
1

εl − εj − ωμ̄ − ων − ωμ̄−ν

+ 1

εl − εj + ωμ̄ − ων − ωμ̄−ν

)

+ 1

4

N−1∑
ν=N−μ̄+1

�2
ν�

2
2N−μ̄−ν

(
1

εl − εj − ωμ̄ − ων − ω2N−μ̄−ν

+ 1

εl − εj + ωμ̄ − ων − ω2N−μ̄−ν

)⎤⎦, (G14)

where the approximate equality indicates that we are neglecting 1/N corrections originating from terms like the last two in
Eq. (G13).

To estimate a bound on the frequency change �ω10,μ̄, we note that for l = 0, 1 so long as ω10 < 2ω1 − ωN−1 there are no
divergent contributions in Eq. (G14) and the second terms in round brackets are larger than the first ones. For an order-of-magnitude
estimate, we further neglect the dependence of the oscillator lengths �μ and collective mode frequencies ωμ on the array ground
capacitance and substitute in Eq. (G14) the values �0 and ωa

p = √8Ea
CEa

J , respectively. In this way, we find (for l = 0, 1)

|δεl,μ̄ − δεl,0| � EL

16

Ea
J

N2
�6

0

∑
j

∣∣∣∣〈j |N sin
φ

N
|l〉
∣∣∣∣
2
⎡
⎣
⎛
⎝N−μ̄−1∑

ν=1

+ 1

4

μ̄−1∑
ν=1

+ 1

4

N−1∑
ν=N−μ̄+1

⎞
⎠ 2

ωa
p + (εj − εl)

⎤
⎦. (G15)

With the performed approximations, there is no dependence on collective mode indices, so that the sums in round brackets can
be bounded by N . An upper bound for the term in square brackets is then 2N/ωa

p [46]. Finally, we approximate the qubit matrix
element as follows:

∑
j

∣∣∣∣〈j |N sin
φ

N
|l〉
∣∣∣∣
2

≈ |〈l|φ2|l〉|. (G16)
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Rough upper bounds for the latter matrix elements are (2π )2

for l = 1 and π2 for l = 0 [see Eq. (E8)]. We thus find that the
bound is tighter for the l = 0 correction compared to the l = 1
one, and hence

|�ω10,μ̄| � 2|δεl,μ̄ − δεl,0| � π2

2

EL

N

Ea
J

ωa
p

�6
0. (G17)

We now compare the frequency change �ω10,μ̄ with that due
to the dispersive shift χδEL

μ originating from the quadratic

interaction U
(2)
φξ [see Eq. (56)]; the latter frequency change is

given, in order of magnitude, by the upper bound in Eq. (58),
so that an approximate bound on the ratio between the two
quantities is

|�ω10,μ̄|
2χ

δEL
μ

� (π�0)2 EL

ω10
, (G18)

where we used Ea
J /ωa

p = �−2
0 . For typical experimental param-

eters, the right-hand side is at most of order unity for any value
of flux. Given that our approximations place a loose bound on
�ω10,μ̄, we conclude that the latter can generally be neglected
in comparison with χδEL

μ .

APPENDIX H: DERIVATION OF EQ. (78)

For the circuit considered in Sec. VII (symmetrically placed
coupling capacitors and no ground capacitances), the matrix
G entering Eq. (12) takes the form

G00 = 1

2Ec
C

(
1 − 2δ

N

)2

, (H1)

G0μ = − 1

Ec
C

(
1 − 2δ

N

)
1√
2N

s2μδ

sμ

oμ+1, (H2)

Gμν = 1

Ec
C

1

N

s2μδ

sμ

s2νδ

sν

oμ+1oν+1. (H3)

Note that both matrix G and LV in Eq. (77) vanish for
δ = N/2; this choice (possible only for even N ) connects both
capacitors to the same island, and the vanishing is due to the
arbitrariness in choosing a reference for the electric potential.
For generic 0 < δ < N/2 we see that, beside a renormalization
of the qubit charging energy [Eq. (H1)], the coupling capacitors
couple the qubit and even modes [Eq. (H2)], similarly to
the effect of ground capacitances Ca

g in the array, while
at variance with the effect of the ground capacitances, the

coupling capacitors lead to mode-mode interaction in the even
sector [Eq. (H3)], rather than in the odd one. (Of course, parity
symmetry still guarantees the qubit-odd mode decoupling.)
The situation, however, is only apparently complicated since a
change of variables shows that the problem reduces to a single
collective mode coupled to the qubit and the cavity, while all
other modes remain degenerate and decoupled. Indeed, let us
introduce the new even-sector variables:

η̃1 =
Ne∑

ρ=1

vρ

|v|ηρ, (H4)

η̃ρ = |v|ρ−1

|v|ρ ηρ −
ρ−1∑
σ=1

vρvσ

|v|ρ |v|ρ−1
ησ . (H5)

This transformation is a rotation for any vector v with the
definition

|v|2ρ =
ρ∑

σ=1

v2
σ (H6)

for the norms, and |v| ≡ |v|Ne
. In the present case, we take the

components vρ to be

vρ = 1√
N

s4ρδ

s2ρ

(H7)

and find that the kinetic energy term TG simplifies to

TG = 1

16

[
G00φ̇

2 + |v|2
Ec

C

˙̃η2
1 − 2

1 − 2δ/N√
2Ec

C

|v| ˙̃η1φ̇

]
. (H8)

Similarly, LV of Eq. (77) becomes

LV = − 1

4Ec
C

(
1 − 2δ

N

)
φ̇eV + 1

2
√

2Ec
C

|v| ˙̃η1eV . (H9)

The norm of vector v can be calculated explicitly [47]:

|v|2 = δ

(
1 − 2δ

N

)
. (H10)

Neglecting the array nonlinearities, the total Lagrangian is
the sum of LU in Eq. (11) with TG and LV of Eqs. (H8) and
(H9). Then, performing the Legendre transform and defining

ξμ =
{
η̃μ/2, μ even
ζ(μ+1)/2, μ odd (H11)

for μ = 1, . . . ,N − 1, we arrive at the Hamiltonian in Eq. (78).
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