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Abstract: Reliable analyte identification is critical in metabolomics experiments to ensure proper
interpretation of data. Due to chemical similarity of metabolites (as isobars and isomers) identification
by mass spectrometry or chromatography alone can be difficult. Here we show that isomeric
compounds are quite common in the metabolic space as given in common metabolite databases.
Further, we show that retention information can shift dramatically between different experiments
decreasing the value of external or even in-house compound databases. As a consequence the
retention information in compound databases should be updated regularly, to allow a reliable
identification. To do so we present a feasible and budget conscious method to guarantee updates
of retention information on a regular basis using well designed compound mixtures. For this we
combine compounds in “Ident-Mixes”, showing a way to distinctly identify chemically similar
compounds through combinatorics and principle of exclusion. We illustrate the feasibility of this
approach by comparing Gas chromatography (GC)–columns with identical properties from three
different vendors and by creating a compound database from measuring these mixtures by Liquid
chromatography–mass spectrometry (LC–MS). The results show the high influence of used materials
on retention behavior and the ability of our approach to generate high quality identifications in a
short time.

Keywords: metabolomics; LC–MS; GC–MS; chromatography; retention index; identification;
standardization

1. Introduction

Mass-spectrometry (MS) coupled to chromatography is a widely used approach for
metabolomics analyses. Typical setups include gas chromatography mass-spectrometry (GC–MS),
liquid chromatography mass-spectrometry (LC–MS) and capillary electrophoresis mass-spectrometry
(CE–MS). In these setups both chromatography and mass-spectrometry cooperate to the identification
of metabolites, fulfilling the request for two orthogonal measures needed for a reliable
identification [1,2]. Coeluting metabolites can often be separated by specific masses, while metabolites
with similar MS-properties may be separated by chromatography. There are some basic differences
between GC–MS and LC–MS (Table 1). GC–MS typically offers higher chromatographic resolution,
peak widths are smaller, and a retention index (RI) system is often used [3]. This renders
chromatographic identification more robust than relying solely on retention time. On the other hand,
coupled mass-spectrometers are often low-resolution (time of flight or triple-quadrupol detectors),
although high-resolution GC–MS does exist. LC–MS typically includes high resolution mass
spectrometry (e.g., Orbitrap detectors), but in LC peaks are often wider, and coelution occurs more
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frequently. Additionally, despite some efforts [4–9] retention index or relative retention times are not
routinely used, so the identification is dependent on the retention time, which often shows much
higher fluctuations as the retention index.

Table 1. Identification parameters for common setups in metabolomics research.

Processing Step GC-EI–ToF-MS LC–Orbitrap-MS

Derivatisation essential to mask
polar groups

not essential but can
be used selectively to
target specific
compound classes

Chromatographic
resolution

narrower peaks
(ca. 4–5 s)

wider peaks
(ca. 20–30 s)

MS-resolution typically
unit-resolution

high resolution

Chromatographic
identification

typically by retention
index system

typically reliant on
retention time

Compound
identification

based on
fragmentation

based on (exact) mass

Potential misident-
ifications

metabolites with
chemical similarity

metabolites with
identical sum formula

Nevertheless, in both setups reliable separation of isomeric metabolites is difficult. This includes
some prominent examples for metabolites in the central carbon metabolism as citric acid and isocitric
acid, leucine and isoleucine (as well as norleucine, aminocaproic acid and β-leucine) and hexoses
as glucose, fructose and galactose (but also mannose, inositol, sorbose and others). The analytical
challenge is to separate and identify very similar (as isomeric and isobaric) metabolites, often fulfilling
different biological functions. Moreover, the analyst should know the abilities but also ambiguities of
systems to identify and quantify the difficult separation cases.

To address this problem, we first investigated the occurrence of isomeric metabolites in widely
used metabolite databases (HMDB and KEGG). We show examples how compound derivatisation can
help to separate some cases of isomerism and that sole reliance on retention database information can
be difficult. As a consequence, validating and updating the retention behaviour using the exact same
setup is required to warrant identification [1,2]. To improve identification of isobaric and isomeric
metabolites we have introduced a strategy to verify the retention behaviour for a high number of
metabolites simultaneously. This leads to higher identification confidence, simplifies and accelerates
the data processing.

2. Results

2.1. The Majority of Metabolites Are Isobars

The chemical space observed in metabolomics is complex due to the combination and permutation
of common side groups along carbon backbones with different lengths and shapes. In order to define
how dense the biologically relevant chemical space is, we explored sum formulae and compound
masses stored in the human metabolome database (HMDB) [10] and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [11].

From the KEGG database we extracted 7133 metabolites with a defined sum formula and an
associated enzymatic reaction (KEGG-all). Overall these metabolites have 3877 unique masses.
Focussing on human metabolism we excluded plant secondary metabolites and bacteria specific
metabolites, and consequently identified 2504 metabolites in pathways being present in humans
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(“KEGG-human”), with 1589 unique masses (Table S1), so each mass represents 1.6 metabolites
on average.

As shown in Figure 1a (and Table S2) even for the exact masses (circles) only a minority of
metabolites (37 % for KEGG-all, 45 % for KEGG-human) have unique sum-formulae and molar masses.
The majority of metabolites share their mass with at least one additional compound. One fifth of the
metabolites have at least three (KEGG-human) or five (KEGG-all) isobaric metabolites in the database.
As expected, this effect is more pronounced for unit-resolution mass values (triangles). Less than
10 % of the metabolites have unique nominal masses and 50 % of the metabolites in the KEGG-human
dataset have more than five isobars. KEGG-all contains at least 15 isobars for 50 % of the metabolites
(Figure 1a).
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Figure 1. Compound similarities in common metabolite databases. (a) Cumulative percentage of
isobaric metabolites extracted from the KEGG-database. “All” denotes organic metabolites with
associated enzymatic reaction, “human” a subset with associated pathways in humans, “exact masses”
indicate the exact mass as contained in the database, while “unit resolution” counts the frequencies
with rounded masses. (b) Cumulative proportion of isobaric metabolites extracted from the human
metabolome database (HMDB). “All” denotes non-lipid metabolites in the HMDB, while “human”
denotes metabolites listed as “detected” or “quantified”. (c) Distribution of shared masses over the
mass-range. Isomers were counted on the respective human dataset for exact mass. Each line represents
a 5 Da mass window, with the maximum of the counts within the window indicated by colour.

Similar results are found in the HMDB. We extracted the information of 109,573 metabolites.
The HMDB (in contrast to the KEGG) contains more lipids (79,224 of these 109,573 metabolites).
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Lipids are known to have a high isobaric count, due to the combinatorial space of different fatty
acids with the head-group. This likely influences the interpretation, so we decided to focus on the
non-lipid species, removing the lipids from the analysis. From the remaining 30,339 metabolites
(HMDB-all) we created a “HMDB-human” subset based on their state as “detected” or “quantified”
(2976 metabolites, Table S1). This number of substances is comparable to the KEGG-human subset,
showing the congruence of both approaches.

In line with this, the cumulative distributions are very similar, although the isomer-count
is much higher in the HMDB (Figure 1b and Table S3) Here only 19.6 % (in HMDB-all) or 35.8 %
(in HMDB-human) of the exact masses are exclusive to a single compound. This decreases for unit
resolution to 0.5 % (HMDB-all) and 4.33 % (HMDB-human).

The number of isobars distributes over the whole mass range in both human datasets (Figure 1c).
Even though the pure chemical complexity is expected to increase with higher masses, the biological
relevant complexity is highest for relatively small compounds with a mass of 100–400 Da. This supports
the “building block” concept in biology as very large compounds are typically made of combining a
limited set of smaller units.

The metabolites with the highest isomer count in KEGG-all are hexose-phosphates (C6H13O9P
with 22 isomers), hexoses (C6H12O6 with 17 isomers), a hexose-lactone (C6H10O6 with 13 isomers) and
a leukotriene B4 (C20H32O4 with 13 isomers) (Table S4). Even after removing lipids, the HMDB dataset
still contains apolar metabolites among the metabolites with the highest isomer-count (Table S5).
This is exemplified by hydroxyoct-enoylglycine (C10H17NO4, 215.25 Da with 48 isomers), β-selinene
(or α-bergamotene, C15H24, 204.35 Da with 22 isomers), octadienoylglycine (C10H15NO3, 197.23 Da
with 21 isomers), D-limonene (C10H16, 136.23 Da with 19 isomers), caprylic acid (C8H16O2, 144.21 Da
with 15 isomers) and an epoxy-eicosatrienoic acid (C20H32O3, 320.47 Da with 15 isomers). The hexoses
follow with 14 isomers, leukotriene B4 is listed with 12 isomers, the hexose-phosphates with seven
isomers and hexose-lactones with just two isomers, illustrating some of the differences between the
two databases.

Many of the similarities include small molecular weight metabolites as found in the central carbon
metabolism and not only complex secondary metabolites. Metabolites with identical sum-formula
and mass often fulfil different roles in metabolism, depending on the type of the functional groups
(lactate vs. glyceraldehyde) the position of functional groups (citrate vs. isocitrate, leucine vs.
isoleucine), the presence of primary, secondary or tertiary amines (alanine vs. sarcosine), the cis-
or trans-orientation of double bonds (fumarate vs. maleate) and even the orientation of functional
groups along the backbone (fructose vs. glucose). This illustrates that analytical separation and
unambiguous identification (and ultimately quantification) of metabolites that differ only in the
localisation and orientation of functional groups is an important analytical challenge.

2.2. Derivatisation and Fragmentation Add Discriminatory Elements to Separate Isomeric Metabolites

Derivatisation, a prerequisite for GC–MS based metabolomics, masks hydrophilic functional
groups to increase volatility of the metabolites enabling a separation in the gas-phase [12]. Additionally,
this can help identifying metabolites as different functional groups may be differentially accessible to
the derivatisation reactions. For example, in a widely used protocol, first aldehyde and ketone groups
undergo methoximation, followed by silylation of alcohols and amines through MSTFA-treatment [12].
As this requires polar N-H, O-H or S-H bonds, tertiary amines or ether-bonds are not modified at
all (Figure 2a). As a consequence, structural isomers can generate different derivatisation products,
differing in their retention behaviour, molecular masses and fragments.

To illustrate this, we tested the similarities of some structural isomers after derivatisation and
GC–MS detection at the levels of retention time and mass-spectra similarity. For this we used the
information available in the Golm Metabolome Database (GMD) [13] and compared the mass-spectra
similarities using MSSearch 2.0 (AMDIS). This gives the reverse match factor (RMF) [14], where 0
indicates no similarity and 1000 a perfect match.
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First we tested metabolites similar to alanine (Figure 2b), with a sum formula of C3H7NO2

and a mass of 89.0477 g/mol. The HMDB lists five metabolites with this formula: β-alanine,
D-alanine, L-alanine, ethyl carbamate and sarcosine. The KEGG additionally lists 2-nitropropane
and N-hydroxymethyl-N-methylformamide. Of these metabolites the GMD includes DL-alanine,
β-alanine and sarcosine. The stereo-isomers of alanine can only be separated with stereospecific
columns [15]. Alanine and β-alanine or β-alanine and sarcosine can easily be separated from each other
by both retention index and spectra similarity The comparison between sarcosine and alanine delivers
a similarity score of 890 (Figure 2b), this could lead to a false identification. Fortunately, the retention
indices differ sufficiently to prevent this (ΔRI = 38).
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Figure 2. Discrimination of different functional groups by derivatisation. (a) Scheme illustrating the
accessibility of different functional groups towards silylation (MSTFA) and methoxymation (MeOX).
(b,c) Pairwise comparison of retention indices (RI) and reverse match factor (RMF) for metabolites
with sum formula C3H7NO2 (detected as 2-TMS product) (b) and metabolites with sum formula
C4H9NO2 (c). ΔRI: difference in retention index, stored in the GMD for metabolites with comparable
derivatisation states (similar RI window), RMF: similarity of mass spectra obtained in pairwise
comparison (0: no similarity—1000: equality).

As an example for a another versatile sum formula, we then compared metabolites with the
sum formula C4H9NO2 (Figure 2c). In total, 12 and 14 different molecules are reported in the
KEGG or HMDB databases, respectively; the GMD lists six of these metabolites. The majority
of these metabolites differ by amino group position (α-, β-, or γ-position) or the structure of the
carbon-backbone (butanoic acid versus isobutanoic acid). While most of these metabolites are reported
to be present in human tissues or body fluids, only few of them are known to fulfil biological
functions, e.g., γ-aminobutanoate (GABA) as neurotransmitter, β-aminoisobutanoate as catabolic
product of pyrimidines and valine or with dimethylglycine as intermediary step in choline to glycine
conversion. Chemically dimethylglycine is the most distinct metabolite, as this can only bind one
TMS group, consequently it differs strongly from the other metabolites with respect to RI and RMF.
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α-aminobutanoate and α-aminoisobutanoate have similar mass-spectra whereas β-aminobutanoate
and β-aminoisobutanoate have a very similar retention (but different spectra). There is also a
spectra-similarity higher than 700 between β-aminoisobutanoate and γ-aminobutanoate. In summary,
all of the metabolites can be differentiated either by retention or spectral differences.

2.3. Enantiomers Can Be Separated by Chromatographic Means

Next, we examined how well enantiomers can be separated by GC–MS. For this, we analysed
the mass-spectra similarities (RMF) and retention time differences (ΔRI) of compound information
stored in the Golm Metabolome Database (GMD) [13]. We focussed on sugars and sugar-phosphates,
as these metabolites have a high number of isomers and are well represented in the GMD. Due to
the high structural similarity they also show high RMF (Figure 3a). Even ribose (a pentose) has a
fragmentation pattern similar to fructose (a hexose). This is reflected in RMF in between the three
ketohexoses (fructose, tagatose and sorbose) and in between the three aldohexoses (glucose, mannose
and galactose) with RMF > 900 (Figure 3b). Nevertheless, the group of aldohexoses and the group of
ketohexoses remain distinguishable with similarity scores of 600–700.
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Figure 3. Mass spectra- and retention time similarities between sugars in measured by GC–MS.
(a) Electron impact mass spectra of ribose (an aldopentose), fructose (a ketohexose), glucose and
galactose (aldohexoses), note their similarity. (b) RMF-values between GMD spectra; ketohexoses
(top) and aldohexoses (bottom). Arrows indicate direction of comparison (c) Retention indices as
stored in the GMD (top) and measured on our system (bottom). Colours indicate groups of sugars,
thus inherently similar compounds. Compounds detected in both setups are connected by lines to
show the shifts between the systems. Note, that the shifts are not always identical and span over
several other compounds in the GMD with similar mass spectra.
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Additionally, we compared the retention indices (RIs) between sugars or sugar-phosphates stored
in the GMD (Figure 3c, top) with RIs measured on our system (Figure 3c, bottom). Compounds included
in both setups show retention index shifts (ΔRI), that are not necessarily parallel. The average ΔRI
between the two setups is 7.6 RI units. Within shift range, there are multiple entries listed in the GMD,
especially for compound classes with multiple similar metabolites, as hexoses. It is worth to note that
we use a very similar setup (column-type, temperature gradient, retention index system) as the one
used to create the GMD (see Section 4.5.2 methods and Table S10). As the retention index is more
robust, than the retention time, we did not expect big ΔRI-values (Table S6). This illustrates how an
identification using only library data can be ambiguous, as RMF-values are high. As a conclusion
authentic standards should be tested using exactly the same setup to validate the retention information.

2.4. The Retention of Multiple Metabolites Can Be Simultaneously Validated with Appropriately
Designed Mixtures

To reliably identify metabolites, it is therefore essential to measure authentic standards with
the exact same setup as used for the samples. However, as this is time- and labour intensive this
is often done only once, storing the retention information in a custom database. Unfortunately,
chromatographic columns will age over time and even identical machines can perform differently.
This renders identification of metabolites less reliable over time. We observed the necessity to adjust
retention times in LC–MS by 20–30 s between experiments run on different dates (not shown), which is
also in the range of retention time differences between similar metabolites. Furthermore, in GC–MS
we observed considerable RI-shifts between column vendors even with the same coating materials.
More confidence can be reached when the retention of authentic standards is checked more frequently
e.g., monthly or weekly as part of the quality-control routine.

In order to save measurement time as many metabolites as possible should be validated at once.
However, if dozens or hundreds of metabolites are tested simultaneously the same challenge of
potentially unclear identifications arises again. We solved this issue by distributing the metabolites
over four different mixtures (A, B, C, D) in a way that the same compound appears in two of these
mixtures, with similar metabolites present in a different combination of these mixtures (Table 2
and Figure 4a,b). We term these mixtures “Ident-Mixes” as they are used to facilitate compound
identification. This approach decreases the complexity in each mixture by 50 % and at the same time
adds some redundancy. Due to the different possible combinations, this allows to differentiate up to
six similar metabolites (present in Ident-Mix A&B, A&C, A&D, B&C, B&D, C&D). Additionally, pairs
of potentially coeluting compounds can be distributed fully separated (Mixes B&C vs. Mixes A&D,
see Fructose/Mannose in Table 2) or in a way that allows to monitor if they can still be separated when
simultaneously present (Mixes A&D vs. Mixes A&C, see Mannose/Galactose). More flexibility and
capacity can be reached by using five mixes (10 possibilities) or six mixes (15 possibilities). With this
approach we routinely validate the retention behaviour of 105 metabolites measured by GC–MS with
just four additional measurements in each sample batch. These mixtures cover the a wide range of the
metabolic pathways in humans (Supplementary Figure S1), their composition is reported in Table S7.

To use this information we typically match the measurements of the Ident-Mix against the
Ident-Mix spectra databases. We identify the compounds based on their mass spectra similarity,
retention behaviour and their combinatorial pattern. We update the retention information of
these compounds and consequently identify the measured samples in the same batch against this
updated database.
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Table 2. Composition of the Ident-Mix (excerpt from Table S7). Shown are three different metabolite
classes with potential identification problems based on compound and RI similarity. Most metabolites
generate two peaks due to multiple derivatisation products, often with the second peak lower abundant.
However, for fructose both peaks have nearly the same intensity (Figure 4a,b), so we list the RI for both
peaks here. Colors are given to illustrate appropriately the same colour scheme as used in Figure 4.

Class Compound Expected RI Ident Mix Occurrence

Pentoses

Xylose 1651 A C

Ribose 1672 B D

Arabitol 1711 C D

Ribitol 1716 A B

Hexoses

Fructose 1862 and 1872 B C

Mannose 1876 A D

Galactose 1880 A C

Glucose 1886 B D

Sugar Derivatives

Sorbitol 1926 A D

Glucuronic acid 1927 A C

Glucosamine 1932 A B

Galacturonic acid 1935 B D

Gluconic acid 1996 B C

Ident C (Fru+Gal) Ident D (Man+Glc)
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Figure 4. Application of the Ident-Mix for compound identification. (a,b) Illustration of retention
validation using Ident-Mixes. four hexoses (fructose, glucose, galactose, mannose) with similar
retention present in four different mixtures (Ident A to Ident D) and compared to a sample containing
galactose. (a) shown with separate window for each compound as seen e.g., with Thermo Fisher
Tracefinder software (b) Shown in overlay mode as seen e.g., with LECO ChromaTOF software.

2.5. With the Help of These Mixtures It Possible to Transfer Compound Identifications between Different Setups

We further compared the retention behaviour of three different GC–MS columns with the same
polarity and nominal coating material but from different vendors. Figure 5a shows substantial retention
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index shifts between the different vendors. More surprisingly the amount of the RI shift differs not
even between metabolites of different classes but even within the same compound class (Figure 5c,
and Table S8). This leads to changes in the elution order of some compounds, rendering identification
based solely on database information more complicated. Using the Ident-Mixes it was possible to
identify the compounds reliably, demonstrating the benefits of this approach.
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Figure 5. Application of the Ident-Mix for retention validation and compound identification by
GC–MS and LC–MS. (a,c) Testing retention of metabolites by GC–MS with three GC columns (same
polarity, different vendors) and identical machine and temperature program. (b,d) Testing retention
of metabolites by LC–MS with two different LC columns (same make and model) and identical
machine solvent gradient. (a) Histogram showing the RI differences for the GC-experiment, overall
the columns from Agilent and Thermo are the most similar. (b) Histogram showing the rt-differences
for the LC-experiment, here experiment 1 matches the database entries more closely than the second
experiment. (c) Retention indices of compounds in the GC-experiment for the three setups. Coloured
lines connect the same metabolite, black lines denote RI-markers. If a point is missing, no peak
was detectable. (d) Retention times of compounds in the LC experiment for the database and two
measurements. Coloured lines connect the same metabolite, if a point is missing no peak was detectable
or the metabolite was not present in the in-house database. Overall RT values from experiment 1 are
closer to the library entries than experiment 2.

We additionally measured the Ident-Mixes by high-resolution LC–MS to further test whether these
mixtures can be used to transfer compound identifications between different systems. The obtained
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masses lead to predicted sum formulae and suggested compound identifications. These putative
identifications were compared against the given Ident-Mix pattern. The most intense peak matching the
expected pattern was used as identification. From these identifications, we created a compound library
based on m/z and retention time. The names in the library contained the name of the metabolite,
its Ident-Mix pattern and the measured retention time for an easy comparison (see discussion).
This library was created within one working day and was then matched against two different
measurements, performed 11 months apart. This matching was finished within a few hours.

The majority of the compounds contained in the mixes, which were initially optimized for GC–MS
measurements, could also be detected and separated by the used LC–MS method, demonstrating
the separation power of the SeQuant ZIC-pHILIC column. Some of the compounds could not be
separated completely; here a manual processing with smaller allowed retention time windows could
help, albeit this also increases the risk of false negative results (compounds present but shifted outside
the allowed windows).

To validate the results, we compared the obtained retention times against the information stored
in a in-house database generated by measuring individual compounds with this setup. As shown in
Figure 5b in at least the first experiment the measured retention time matches quite closely to the RT
stored in the database, with the mean of the retention time difference of just 5.4 s. This indicates that
the identifications are likely to be correct. 11 compounds could be identified that were not yet included
in the database and for one compound we found the stored retention time to be wrong. Nevertheless,
there are a few compounds with retention time variations of up to 50 s. More surprisingly, there is a
higher variation between the two different measurements compared to the database entries. In the
second experiment the majority of metabolites have a RT difference (between the two experiments and
the experiment and the database) ranging from −20 and +20 s. Additionally there is a high fraction of
metabolites with a RT difference around 40 to 50 s. As shown in Figure 5d (and Table S9) the retention
time shifts also differ between the metabolites and their classes. While the sugars and early amino
acids elute quite consistently, most of the acids, phosphates and nucleobases are shifted to earlier time
points, and the late eluting amino acids are shifted to later time points between the two experiments.

3. Discussion

As illustrated in Figure 1 the majority of human metabolites share their molecular mass and sum
formula with at least one additional metabolite, so they cannot be identified unambiguously by their
mass alone, not even with high-resolution mass-spectrometry. As a consequence, an orthogonal
approach is essential to truly identify metabolites in MS-based experiments, using at least one
additional orthogonal readout, e.g., the retention behaviour. Additionally, ion mobility can be
employed to better separate isomeric compounds; however, this technique is less common [16].
When a definite mass-spectrometric identification isn’t possible, chromatographic separation becomes
the limiting factor. This is even more important for mass-spectrometers with low or unit resolution.
Every compound that is included in routine identification should be inspected if possible isobars can
lead to misidentifications. Further potential ambiguities may occur due to in-source fragmentation
(e.g., from malate to fumarate) [17] or derivatisation products that can be generated from different
educts (e.g., pyroglutamate from both glutamate and glutamine) [18]. Consequently, experience is
needed to reliably identify metabolites.

To address this issue, we present a strategy that enables the validation of retention information for
multiple compounds simultaneously. The measurement of the Ident-Mixes extends the measurement
time and machine occupancy only slightly, but increases confidence in the results. The researcher
immediately knows which metabolites can or cannot be separated with the used system. In the latter
case bottlenecks are identified that might need method improvement. Every compound being detected
in the Ident-Mixes and not found in the samples can be seen as “detectable but not found”. This can
be due to true negative readings (metabolites that are absent or present with a concentration below
detection limit), or it can be a result of signal suppression or overlapping peaks from the sample matrix.
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This procedure simplifies the analysis and renders it less dependent on expert knowledge. We observed
that starters in the field were able to deliver high-quality identifications in similar time-frame as experts
working in the field for several years. Further it is advantageous compared to updating retention
information using biological samples, especially for conditions in which metabolites are not always
detected e.g., due to varying sample matrices. As a consequence, the obtained identifications are
of high quality. This is particularly helpful when data is shared with other labs or stored in digital
repositories [19]. By reporting the composition of the used Ident-Mixes and the measured retention
times other users can reproduce the validity of the identification and its limits even without checking
the raw-data.

We developed this strategy for GC–MS based analysis of mammalian cell extracts, starting with the
metabolites of the central carbon metabolism we regularly detected in our samples. This strategy is by
no means limited to this kind of analysis and can be adapted to other platforms, other sample matrices
and other metabolites of interest, e.g., plant secondary metabolites, lipids, drugs or steroid-hormones
as long as standards are available. For this the compositions of the mixes should be adjusted to
compounds of interest and capability of the analytical platform. In fact, we simply used the mixes
optimized for GC–MS and measured these on a LC–MS metabolomics system. As in comparing
the nominally similar columns from three different vendors we saw also in LC–MS non-linear shifts
between experimental conditions.

These experiments clearly illustrate two features: First, with the help of these mixtures it is
possible to transfer identifications between different setups or systems. Without prior knowledge
regarding their retention behavior, a high number of compounds can be identified and a database can
be created. Measuring and adding each compound individually would require dramatically more time.

Second, for both the GC–MS and LC–MS data, the retention differences between measurements
of the same compound in different setups is similar or higher than the difference between compounds
of the same class. Further non-linear shifts complicate the interpretation and the reliable identification
of metabolites.

Preparation of these mixtures costs time and money: The metabolites have to be bought and
stored, the composition has to be defined and improved, the mixtures need to be prepared and
measured. Once the composition is defined, in 1–2 working days approximately 50 complete sets can
be prepared that will last around 1 year when measured once a week. The cost for the compounds in
the reported mixtures is approximately EUR 0.32 per set. The advantages in terms of data-reliability
and reduced analysis time is worth these costs and efforts, even with more and also potentially
more expensive compounds. We further recommend measuring the identification mixtures on
each machine weekly as part of the quality control-routine or with each new project. In order to
prevent human errors while working with different tables simultaneously, we highly recommend to
code the identifications in the compound descriptions stored in the custom database, in human
and machine-readable format as: Compound_Derivatisation-state_Retention_Ident-occurrence,
e.g., “Alanine_(3TMS)_MP_RI:1367_IDENT:B+C”, with “MP” indicating the main product of the
derivatisation in this case. This can include additional identifiers used for data storage or
meta-analysis. For generating figures, the compound identification can be obtained by splitting
the name after the second underscore, to ensure proper handling of different derivatisation products.
The spectra-database with our 105 standards can be downloaded in NIST and .msp format from:
https://github.com/KempaLab/Ident_Database.

4. Materials and Methods

4.1. Extracting Information from the KEGG Database

Compound information were extracted using the KEGG-API [11] and KEGGREST [20]. First the
list of all KEGG-IDs was downloaded (on 25 March 2020), followed by the extraction of compound
information (as name, sum-formula, weight, pathway). All inorganic metabolites, or metabolites

https://github.com/KempaLab/Ident_Database
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without a formula and reaction as well as metabolites with a molecular weight above 1500 Dalton
were removed. The human subset was created by downloading the list of human pathways and
removing all metabolites that are not present in any of these pathways. Isomeric metabolites were
counted based on molecular weight. For the low resolution dataset the weight was rounded to integers
before counting.

4.2. Extracting Information from the HMDB Database

The “All Metabolites” dataset contained in the HMDB version 4.0, released on 16 January 2019,
was used. We extracted the HMDB-ID, name, formula, average molecular weight, status, the KEGG
ID, secondary accessions and names. Then we removed inorganic metabolites and metabolites with a
weight above 1500 Da, resulting in 109,573 metabolites. Lipids were identified by text filter when the
name contained two numbers separated by a colon, present in the majority of lipids indicating the
length of the fatty acid and the number of double-bonds. For the “human” subset we only considered
metabolites with status “detected” or “quantified”, resulting in 2976 metabolites. Isomeric metabolites
were counted based on molecular weight, for the low resolution dataset the weight was rounded to
integers before counting. Data was further aggregated using R [21].

4.3. Comparisons of Spectra and Retention Time Similarities in the GMD

The GMD was downloaded as msp-file from their webpage. Selected metabolites were compared
pairwise using the compare feature in NISTMS-Search (AMDIS).

4.4. Preparation of the Ident-Mix

We started by compiling a list of metabolites regularly detected with our setup in biological
samples. We consequently identified 105 metabolites whose retention indices should be validated
routinely. We prepared stocks of each individual compound with a concentration of 1–10 mg/mL in
20 % methanol or water, depending on solubility. We mixed these stocks according to Table S7 with
amounts between 1 and 8 µL per sample. The amount was chosen based on MS-response, to give a clear
peak with a reasonable intense signal. Consequently for 50 preparations 50 to 400 µL were aliquoted.
To achieve similar compound amounts (0.5–20 µg per final aliquot) 82–100 µL were aliquoted 50 times
for each of the four final Ident-Mix-compositions (A–D). The aliquots were dried in a rotational vacuum
concentrator (Martin Christ, Osterode am Harz, Germany) without heating and dried stocks were
stored at −20 °C until usage. Suppliers mark the compounds used as stable under these conditions
and we did not observe a dramatic decrease in intensity during storage.

4.5. GC–MS Measurements

4.5.1. Derivatisation for GC–MS

For derivatization, extracts were thawed in a rotational vacuum concentrator (Martin Christ,
Osterode am Harz, Germany) without heating for 20 min. 20 µL of methoxyamine hydrochloride
(40 mg/mL in pyridine) were added and samples were incubated for 90 min at 30 °C. Next 80 µL of
MSTFA containing 200 µg/mL n-alkanes (C10, C12, C15, C17, C19, C22, C28, C32, C36) as retention index
markers were added and samples were incubated for 90 min at 37 °C.

4.5.2. Setup for GC–MS

Gas chromatography-mass spectrometry was carried out using a previously published
method [22]. Gas chromatographic separation of metabolites was performed on an Agilent 6890 N
(Agilent, Santa Clara, CA, USA) equipped with an Agilent VF-5ms column and coupled to a Pegasus
III-TOF-MS-system (LECO Corp., St. Joseph, MI, USA). The initial temperature was held at 67.5 °C
for 2 min, followed by a temperature gradient of 5 °C/min until 120 °C, then 7 °C/min until 200 °C,
followed by 12 °C/min until 320 °C with a hold time of 6 min. The transfer line was kept at 250 °C
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throughout. A cold injection system was used with a matching baffled deactivated liner (CIS4, Gerstel,
Mülheim an der Ruhr, Germany), operating in split mode (split 1:5, injection volume 1 µL), with the
following temperature gradient applied: hold of the initial temperature of 80 °C for 0.25 min, followed
by a temperature increase of 12 °C/s to 120 °C, followed by a temperature increase of 7 °C/s to 300 °C
with a hold time of 2 min. Spectra were recorded in a mass range of 60–600 u with 20 spectra/s,
ionization energy (EI) was set to −70 eV, the ion source temperature was set to 250 °C.

The setup is nearly identical to the setup used to generate the GMD, with some small exceptions:
The helium flow was increased from 0.6 mL/min to 1.2 mL/min, the start temperature was decreased
from 70 °C to 67.5 °C, with a longer hold, and the main ramp was expanded from a single 9 °C/min
gradient to three gradients with 5, 7 and 12 °C/min. The final temperature was decreased to 320 °C.
(see also Table S10) Furthermore, C18 retention index marker was replaced with a C17 retention index
marker, as the retention index area of 1800 contained more important coeluting compounds.

4.5.3. Peak Picking and Compound Annotation

Data was smoothed, deconvoluted and baseline corrected using ChromaTOF (LECO Corp.,
St. Joseph, MI, USA). Peaks were picked using ChromaTOF with a signal to noise threshold of 20.
Compounds were initially identified using GMD spectra and later against a custom spectra database,
build up gradually with spectra from the Ident-Mixes or compounds measured individually.

Initial annotation was performed by single measurements, or combinations of separately eluting
compounds showing distinct mass spectra. To compare ther retention behaviour on three different
columns (see below), we used the Ident-Mix as described in this manuscript.

4.5.4. Column Type Comparison in GC–MS

To test the effect of different GC-columns we measured the Ident-Mixes on the same machine,
equipped with three different columns from different vendors. All columns had identical properties
with 5 % diphenyl, 95 % dimethyl polysiloxane coating material, a length of 30 m, inner diameter of
0.25 mm and film thickness of 0.25 µm. Tested columns were: TG-5SilMS (Thermo Fisher Scientific,
Waltham, MA, USA), Rxi-5ms (Restek, Bad Homburg, Germany) and VF-5ms ((Agilent, Santa Clara,
CA, USA)). On the three columns tested, we measured the Ident-Mixes and used Maui-VIA [23] to
identify the substances. Even with considerable retention index shifts, with the help of the Ident-Mix
it was still possible to identify the compounds in ca. 1 h per column. In a second run, using newly
established RIs, the identifications/verifications took ca. 10–15 min.

4.6. LC–MS Measurements and Analysis

LC–MS measurements were performed at the metabolomics facility of the Beatson Institute for
Cancer Research, Glasgow, UK. For this freeze dried samples were resuspended in 200 µL extraction
solvent (methanol:acetonitrile: water, 5:3:2) shaken on ice and centrifuged (10 min at maximum speed
and 4 °C). The supernatant was transferred to LC–MS vials and stored at −80 °C until analysis.
LC–MS measurements were performed as described elsewhere [24], utilizing high-resolution liquid
chromatography (Thermo Fisher Scientific, Waltham, MA, USA) with a ZIC-pHILIC column (VWR)
at pH 9.4 coupled via electrospray ionization (ESI) to an Orbitrap Q Exactive mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The same preparation was measured twice by LC–MS
11 months apart on the same machine with LC-column replaced in between. Raw data was processed
using Compound Discoverer version 3.2 (Thermo Fisher Scientific, Waltham, MA, USA), following
an unknown compound identification strategy. For this, retention times were aligned across data
files (maximum shift 2 min, mass tolerance 5 ppm). Compound detection (minimum peak intensity
1,000,000) and grouping of compound adducts was carried out across all samples (mass tolerance
5 ppm, RT tolerance 0.2 min). Missing values were filled using the “Fill Gap” feature (mass tolerance
5 ppm, S/N threshold 10). In the first round ChemSpider node was used to suggest possible peak
identifications (search by mass or predicted formula, mass tolerance of 5 ppm, databases: HMDB,
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KEGG and BioCyc). Suggested identifications were checked with the pattern in the Ident-Mix
occurrence. Typically the most intense peak that matched to the pattern was used. Identifications of
chemically similar compounds (e.g., mannose/glucose) were swapped towards the compound with
the matching pattern. For all identified compounds a library was created as Masslist, containing the
name, the pattern and the measured retention time. In the second round, identification was performed
with the created Masslist, for the two different measurements (mass tolerance: 5 ppm, RT tolerance:
1 min). Except for one metabolite all metabolites contained in the Masslist were detected in both
experiments. The results were finally compared with the retention times stored in an early version of
the Beatson in-house database, derived from measuring a different set of authentic standards (personal
communication).

5. Conclusions and Outlook

In this paper we present a method to measure a set of standards distributed over four different
samples in parallel to the samples in a mass-spectrometry workflow. With the help of these mixtures
it is possible to identify the compounds contained in the mixes with high confidence. The retention
information can be updated for each experiment allowing smaller tolerance for the retention time
shifts. As a consequence compounds with small differences in the database (as isomeric compounds)
can still reliably identified. Strictly speaking the high level of confidence can only be guaranteed for
compounds contained in the mixture. However, as this is a well defined set of many compounds
over different compound classes it could be used to deduce the expected retention under changed
conditions for other compounds, too. Further work is needed to test and evaluate the usability and
limits of this strategy.

These mixtures represent a well-defined compound matrix that (in the best case) resembles the
composition of the samples to be analysed, qualitatively and quantitatively. Therefore it is perfectly
suited to set-up, test and improve the analytical methods. It can be used to test different analytical
platforms (LC–MS or GC–MS), column types, temperature- or solvent-gradients and then compare
results by identifying the number of metabolites with improved or worse separation between different
strategies. Regarding data processing the peak detection parameters can be adjusted with this smaller
subset to separate all important metabolites before applying these parameters to the full dataset
containing the samples.

The Ident-Mix further generates a clear binary information about the presence of a compound.
As the positive signal is always strong enough, the threshold for not-founds can be set quite
high, so false-positive readings can be excluded. In the future this “binary” strategy could enable
computer-algorithms to automatically identify all included metabolites, by combining the retention
information and the identification based on m/z or mass-spectra with the occurrence matrix.

Supplementary Materials: The following are available at http://www.mdpi.com/2218-1989/10/11/457/s1,
Figure S1: Mapping of the Compounds Included in the Ident-Mix on KEGG-Map, #01100 Black dots represent a
compound included in the Ident-Mix as reported in this publication, Table S1: Comparison of compound and
isomer counts in KEGG and HMDB, Table S2: Isomeric distribution in KEGG, Table S3: Isomeric distribution in
HMDB, Table S4: Isomeric compounds in KEGG, Table S5: Isomeric compounds in HMDB, Table S6: RI differences
sugars and sugar, Table S7: Ident-Mix composition, Table S8: RI shifts between column vendors, Table S9: RT
shifts between repeated measurements with different columns, same make and model, 11 months apart, Table S10:
Temperature gradient comparison.
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The following abbreviations are used in this manuscript:

CE–MS Capillary electrophoresis mass-spectrometry
Da Dalton
GC–MS Gas chromatography coupled to mass-spectrometry
GMD Golm Metabolome Database
HMDB Human Metabolome Database
KEGG Kyoto Encyclopedia of Genes and Genomes
LC–MS Liquid chromatography coupled to mass spectrometry
MeOX Methoxyamine
MSTFA N-Methyl-N-(trimethylsilyl) trifluoroacetamide
m/z Mass to charge ratio
RI Retention index
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