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and DOL memoryless resetting protocols. Here, we obtain the general solution for the distribution of processes
in which waiting times between reset events are drawn from an arbitrary distribution. This allows for
the investigation of a broader class of much more realistic processes. As an example, our results are

applied to the analysis of the efficiency of constrained random search processes.

1. Introduction

Suppose that you are working on a difficult problem. While trying to find a solution, you may get the impression
that you are stuck or got on the wrong track. A natural strategy in such a situation is to reset from time to time
and start over. This behavior can be modeled by a stochastic exploration process, which is interrupted by a
random resetting to the initial condition. Over the last years a special case of such processes, a diffusion process
interrupted at constant rate by reset events, has attracted considerable attention, because it represents a
particularly simple and analytically approachable example of a non-equilibrium steady state (NESS) [1-5].

The investigation of processes with random resetting is also one of natural interest to the study of first
passage times, e.g. in the catalysis time of chemical reactions [6], in kinetic proofreading [7], and in areas where
search optimality is crucial [8]. Furthermore, processes with reset are studied in population dynamics, where
resets are interpreted as catastrophic events corresponding to the extinction of the population, followed by a
resurgence [9].

All of the previous works, including the extensions to Lévy Flights [ 10] and fluctuating interfaces with
stochastic resetting [ 11], assume the special case that resets occur at a constant rate 7, i.e. the case in which the
waiting times between the resets are exponentially distributed. In this case the resetting procedure is
memoryless, which has a straight—forward but interesting implication: the NESS of the process is equivalent to
the distribution of end-points of an ensemble of trajectories of the same process without resetting that are
trapped at a constant rate y. Consequently, if the propagator of the process without resetting is known, the NESS
can be directly obtained by averaging the propagator over the exponential distribution of inter-reset times [1].
However, the limitation to constant rate resetting severely restricts the applicability to memoryless processes.
Even the simple example of a process in which multiple identical steps have to be completed for a reset, which
gives rise to Gamma-distributed waiting times, cannot be described within the current framework. Such
processes occur e.g. in chemical resetting due to multistep dissociation reactions [12]. Neither can the important
case of a rate that depends on the time 7 elapsed since the last reset event be captured anymore. Processes of this
form can be described using time-dependent rates (7) = (a-y)(77y)®~ !, which leads to Weibull distributed
waiting times. Here the probability for a event decreases (increases) with 7for a < 1 (o > 1), thus giving rise to

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


https://core.ac.uk/display/350675001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/1367-2630/18/3/033006
mailto:eule@nld.ds.mpg.de
http://dx.doi.org/10.1088/1367-2630/18/3/033006
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/3/033006&domain=pdf&date_stamp=2016-03-02
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/3/033006&domain=pdf&date_stamp=2016-03-02
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 18 (2016) 033006 SEule and J ] Metzger

37a

0,

_3W

31 b | | | | |
< o
8 -3

41 ¢

2,

0 :

0 1 2 3 4 5

t

Figure 1. Examples of different processes x(¢) with random resetting (marked with red crosses). All cases share the same mean duration
between resets, () = 1, but their distributions differ. (a) Diffusion with intermittent (bursty) resetting. A resetting event is more
likely to occur when another one has happened recently. Distribution of resetting times is heavy tailed. (b) Diffusion with resetting
times that are comparatively regular (distribution of resetting times peaked around mean). (c) Stochastic resetting with deterministic,
linear motion between resetting events.

more intermittent (regular) reset sequences, as compared to the constant rate case (o« = 1). The Weibull
distribution is widely applied when the conditions for strict history-independence are violated [13].

In this article, we present the theory of stochastic resetting with arbitrary waiting time distributions ) (1),
(see figure 1), which includes the aforementioned examples as special cases. While for stochastic processes that
reset at a constant rate, the master equation can be immediately formulated, here we first have to derive the
governing equation for arbitrary resetting time distributions. The corresponding master equation equation (6) is
non-local in time and is one of our main results. Despite the fact that our theory has to include integrals over the
complete history of the process, we can explicitly calculate stationary distributions for different waiting time
distributions, 1 (7), and quantify the temporal relaxation of the moments towards this NESS. We find that the
history-dependent processes with a general resetting time distribution have a rich structure and exhibit many
new properties that are not present in the case of resetting with a constant rate. Furthermore, we demonstrate
that the success of a search depends on the full waiting time distribution and not only on the characteristic
resetting time scale as one could expect from the memoryless process. A possible application of our theory is the
efficiency of random searchers that are confined by their need to regularly return to a home location. We find
that, under this constraint, the search success can be optimized by adapting the distribution of waiting times
between the returns.

2. Derivation and solution of the generalized master equation

Consider the motion of a particle that, between reset events, is described by the stochastic differential equation
x(1) = F(x) + £(0), ey

where £ (t) is Gaussian white noise with correlation (£ (£)€ (¢')) = 2D6 (¢t — t'). Furthermore, let the waiting
time distribution between the resets be 1/ (7), after which the particle is reset to the location x,. The probability
t

Yt — o (F)dt,
stating that the probability to have the nth event at time ¢ is given by the probability tha’g then — 1thevent
occurred at time ¢ and that the next event occurs after time ¢ — ¢’ [14]. We assume that the process starts with a
reset event. Then, the probability that an event occurs attime tis v (t) = 6 (¢) + >, 14, (t), where the
6-distribution accounts for the initial condition.

The probability p (x, t) to find the particle at location x at time t is

v, (t) that the nth reset event happens at time ¢ satisfies the renewal equation v, (t) = f

P )= [ wit— pGo s £ — ()t ®)
0

where p(x, x;; t — t')is the transition amplitude of the process defined by equation (1). The distribution
w(t — t') gives the probability that no resetting event occurs between ' and tand is related to the waiting time

distribution v (1) accordingto w (1) = 1 — f 1 (t)dt. To derive an evolution equation for p (x, t), we
0

o0
switch to the Laplace domain p (x, s) = f dt e~*'p(x, t). Using the operator representation
0

px, x5t —t') = L@ (e — x)[15]and applying the convolution and shifting theorem, the Laplace
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transform of equation (2) reads

P, s) = w(s — L(x))O(x — x) P (s). (3)
Noting that the Laplace transform of v (¢) is
D) =1+ %)/ = D)), (4)

we can use equations (3) and (4) to obtain

sp(x, s) — py(x) = L(x)p(x, s) + @6@ —x) — ¢(s — LX)P(x, 9), (5)

where the time evolution kernel dA>(s) is given by & (s) = sfb (5)/(1 — 12} (s))[16]and py(x) = 6 (x — x,)isthe
initial condition. Finally, Laplace inversion of equation (5) leads to the generalized master equation

%p(x, 0= Lepex 0+ [ "o — 6 — x) — LD, ], ©)

The first term on the rhs accounts for the dynamics between the resetting events, the second term is the source
term and describes the resets to x,. The third term is a sink term; it describes the density of particles that have
propagated to x at time ¢ during the time t — ' under the influence of the dynamics equation (1) and are then
subject to resetting. Tltle integral of the time-evolution kernel corresponds to the time-dependent density of reset

events,ie. v(t) = f ¢ (T)d7. The special case of resetting at a constant rate 7y is recovered by choosing an

exponential waiting time distribution ¢ (1) = y e 7" thatleads to ¢ (1) = 6 (7). Inserting this kernel into
equation (6) leads to the Markovian master equation studied in [1]. The solution of equation (6) in Laplace space
is

) N 0@ —x)
s— L&)+ ¢ — L&) s[s — L&)+ dls — L(x))]

Here the first term on the rhs describes the decay of the initial condition and the second term accounts for the
resets. While the Laplace inversion of equation (7) can in general only be carried out by numerical means, we will
show that the time-dependent moments of the distribution can be calculated analytically. Remarkably, even the
full stationary solution p, (x) = lim;_,op (x, t) can be given by employing the Tauberian theorems [17], which
allow to consider instead the limit lim,_,op (x, s) in Laplace space.

plx,s) = (7)

3. Results

3.1. Constant advection with intermittent resetting

Before we come to the diffusion processes with resetting, let us first exemplify equation (6) using the example of
constant advection with velocity v between the reset events (figure 1(c)). The discussion of this simplest of all
cases helps to illustrate the intricacies that come with the inclusion of non-memoryless resetting. In particular,
weset F(x) = vand D = 0inequation (1) and consider the Liouvillian £(x) = —vd,. Without loss of
generality let us from now on assume the reset position to be x, = 0. Using equation (6), we obtain for the time
evolution of the first moment in Laplace space

v

d ~
R(s)) = ——— |1+ — ) 8
(X(s)) 5(S+¢(s))( + d5¢(5)) ®)

Clearly, the mean of the process depends on the precise form of the waiting time distribution through & (s) even
in the stationary limit. For concreteness, let us consider the waiting times to be Gamma-distributed with rate
and shape parameter o, i.e. ¥ (75 @, ) = 797 e7777?/T'(«). The mean of this distribution is (7) = /7y and
for a = litincludes the exponential distribution. The shape parameter « regulates how intermittently the
resetting events occur. For & < 1these events occur more intermittently the smaller v gets, whereas for &« — 00
the resetting events occur regularly with period (7). In figure 2(a) we compare (x (¢) ) for Gamma-distributed
waiting times with the same mean waiting time but with different rate and shape parameters, calculated using
equation (8). Interestingly, the asymptotic value of (x () ) depends on the shape of the distribution, even when
the mean time between resets, (7), is kept constant. We can also calculate the asymptotic, steady-state value of
the mean by expanding equation (?);n s, keeping only the lowest order, and then performing the Laplace
ViT)1+a

>
«

inversion. Thisleads to (x)y = which only for exponentially distributed waiting times is equal to the

typical distance x; = v () that a particle moves between resets (figure 2(b)). The stationary distribution can be
calculated using the same approach. Inserting the Liouvillian £(x) = —v0, in Fourier space, £ (k) = ivk, in
equation (7), and substituting the appropriate b (s), the resulting expression can be considered in the limit

s — 0. For example, in the case of Gamma-distributed resetting times, the resulting expression in Fourier space

3
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Figure 2. Analytical (lines) and numerical (crosses) results for the case of advection, with resetting times drawn from a Gamma
distribution with different intermittency parameters c. (a) Time evolution of the mean position in the case of advection (legend see
panel (c)). More intermittent resetting (smaller «v) leads to an increased stationary mean (x)y, although the mean time between resets
iskept constantat (1) = 1. (b) Stationary value (x) for a range of intermittency parameters « and different mean resetting times (7).
() Full stationary distribution for different cvand (1) = 1. For very large « the distribution tends to a step function.

is p, (k) = iy(1 — (1 — ik/7) *)/(ck), which can easily be Fourier inverted. Several examples are given in
figure 2(c). The stationary distribution exhibits a transition from a broad-tailed distribution for v < 1, where
rare large excursions dominate the process, to a uniform distribution in the limit & — 00, where the process is
reset deterministically after time (7).

3.2. Diffusion with intermittent resetting

Let us now focus on the case of free diffusion between the resets, i.e. F(x) = 0,with £(x) = D> In this case,
the process is symmetric around the reset point and the mean is simply x; (set to zero for simplicity).
Interestingly, calculating the second moment of the process, (x2(¢) ) from equation (6), leads to exactly the same
equation as the mean of the advection process, but with v replaced by 2D. Thus, considering the time evolution
of the variance and its final state leads to exactly the same curves as shown for the mean of the advection in
figures 2(a) and (b), as we have also confirmed numerically. The stationary distribution p, (x) can again be
calculated by considering equation (7) in the limit of small s. For the Gamma-distribution, one obtains after
Laplace inversion

1 1,1 1 Lox? |x]|
P (x) = Trd IFZ(_E’ ;% M) — %

14200 (~2q — 1 o
[x] (d,y)((1+1:a ) \E, (a; a+1,a+ %; ﬁv) sin(ma), 9

where ,F denotes the generalized hypergeometric function. The general solution equation (9) reduces to
particularly simple expressions for integer values of o, e.g. exp (—|x| / \/d77 (x| + 3\/d7'y ) / (8dvy)fora = 2.In
figures 3(a) and (b) we compare the analytical solution equation(9) to numerical simulations of the process and
find a perfect agreement. More intermittent processes, i.e. smaller o lead to broader (but still exponentially
decaying) stationary distributions, since longer diffusive excursions become more likely. The stationary standard

deviation, oy = /D (7)(1 + a)/a only corresponds to the typical distance diffused by the particle

Xiyp = /2D (7) for a = 1. Asalready mentioned a further important example is the case of drawing the
resetting times from a Weibull distribution with density 1 (75 , 7) = ya (yt)*~le ™", see figures 3(c) and (d).
We can again calculate the stationary distribution analytically and observe the same qualitative behavior as for
the Gamma distribution. The interesting case of regular resetting at (7) can be obtained in the limit of @ — oo
of either the Gamma or the Weibull waiting time distribution (while keeping (7) fixed), or indeed as a limit of
any waiting time distribution that approaches ¢ (7) = § (7 — (7)) as an appropriate limit. In this important
case, where resets are precisely timed, we can express the stationary distribution concisely as
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Figure 3. Stationary distributions for diffusion between reset events for the ((a), (b)) Gamma and ((c), (d)) Weibull distributions
(lower panels: log-scale). The mean resetting time is fixed to (7) = 1. Numerical simulations (crosses) perfectly match the analytic
solutions (solid lines). Smaller shape parameter o corresponds to more intermittent resetting and leads to broader tailed stationary
distributions. Both cases lead to the same limiting distribution for large o« (dashed line) corresponding to regular resetting at (7), see
equation (10).

(det) r=y 1 L P _ o
PO = [ e — A~ erf(ED) ], (10)
where erf denotes the error functionand x = 2 £,/D (7).

Finally, observe that if the resetting is governed by a scale-free waiting time distribution with asymptotic
behavior ¢ (1) ~ 77179 with 0 < § < 1, the intensity of events decays as v/ () ~ t°~!. Therefore, for long
times the process is dominated by one large diffusive excursion and does not exhibit a NESS.

4. Search efficiency

Evidently, the resetting protocol also has a strong influence on the search efficiency to find a target located at
distance x, from the origin. For the case of constant rate resetting, an x,-dependent optimal rate has been
obtained in [1]. However, in many situations the search strategy is constrained by the need to return on average
after a characteristic time (7). For example, many foraging animals have to return home regularly to rest because
of exhaustion of energy or to feed their offspring. Our previous results indicate that the efficiency can also be
optimized by adapting the functional form of the distribution. In figure 4(a) we show for Gamma-distributed
resetting times with a fixed mean resetting time (7) that the mean first passage time indeed exhibits a
xo-dependent minimum corresponding to an optimal o (o). The existence of such a minimum can be
intuitively understood by inspecting the limits of the resetting protocol. For & — 00, resets occur
deterministically after time (7) and targets at xo >> Xy, are almost surely never encountered. On the other hand
for & — 0 thereset protocol is extremely intermittent and the process is typically dominated by a single large
excursion. In this case the process resembles diffusion without resetting, with a diverging mean first passage
time. To determine v, () we make the reasonable assumption that for xy > xy, the standard deviation of the
steady state for aigp () should be proportional to xo, i.e. oy [arop (x9)]1/x9 = C. We then obtain

Qopt (x0) = (Cxg/(D (1)) — 17}, (11)

where the Chas to be determined numerically once and for Gamma-distributed resetting times is C & 0.83.1In
figure 4 we compare our analytical prediction equation (11) with the numerically determined values of crp¢ (x0)
and find a very good agreement. For small x, < xy, equation (11)is nolonger valid and it is very hard to
identify ap because the stationary distribution becomes increasingly insensitive to variation of o for o > 1, see
figure 4(a). These results indicate that an intermittent return strategy should be adopted when targets remote
from the home may exist. While, we have focused here on optimal search in one dimension, extending our work
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Figure 4. (a) Numerically determined mean first passage time T (x,) to a distance x, for constant mean resetting time (7) and varying
intermittency « for the case of Gamma-distributed reset times. A clear minimum of the mean first passage time can be observed ata
specific optimal crgp. (b) Optimal values of « for different target distances x, and different parameters of the resetting distribution and
the diffusion constant. The curves collapse to the predicted expression, equation (11).

to two and higher dimensions poses no new conceptual difficulties, and it would be interesting to compare such
an extension to recent results on intermittent search strategies [18].

5. Conclusions

In conclusion, our study reveals that the NESS as well as the search efficiency depend on the precise form of the
resetting distribution. Interestingly, for continuous time random walks—a related class of models, where the times
between successive jumps are drawn from a waiting time distribution—such a dependence of the long time behavior
on the precise form of the waiting time distribution is not observed. Here the knowledge of the characteristic waiting
time is sufficient to characterize the steady state distribution of the process in a confining potential [ 19]. Finally, we
note that, for general resetting times, the steady state of the process cannot be simply obtained by averaging the
propagator over the waiting time distribution. Instead, one has to average over the distribution of times that have
elapsed since the last reset event, the so-called backward occurrence time distribution. This distribution is only
identical to the waiting time distribution for memoryless processes, i.e. exponentially distributed waiting times. For
other waiting time distributions the corresponding backward occurrence time distribution can in general not be
obtained in a closed form. Our work opens several further interesting directions for future research. Our theory can be
used to consider deterministic dynamics with resetting at random locations, and thus has direct relevance for spiking
dynamics in neurons that emit spikes upon reaching a random threshold. Furthermore, it would be interesting to
investigate the search efficiency of diffusion processes with generalized resetting in the presence of a binding potential.
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