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Abstract
Stochastic processes that are randomly reset to an initial condition serve as a showcase to investigate
non-equilibrium steady states. However, all existing results have been restricted to the special case of
memoryless resetting protocols. Here, we obtain the general solution for the distribution of processes
inwhichwaiting times between reset events are drawn from an arbitrary distribution. This allows for
the investigation of a broader class ofmuchmore realistic processes. As an example, our results are
applied to the analysis of the efficiency of constrained random search processes.

1. Introduction

Suppose that you areworking on a difficult problem.While trying tofind a solution, youmay get the impression
that you are stuck or got on thewrong track. A natural strategy in such a situation is to reset from time to time
and start over. This behavior can bemodeled by a stochastic exploration process, which is interrupted by a
random resetting to the initial condition.Over the last years a special case of such processes, a diffusion process
interrupted at constant rate by reset events, has attracted considerable attention, because it represents a
particularly simple and analytically approachable example of a non-equilibrium steady state (NESS) [1–5].

The investigation of processes with random resetting is also one of natural interest to the study offirst
passage times, e.g.in the catalysis time of chemical reactions [6], in kinetic proofreading [7], and in areas where
search optimality is crucial [8]. Furthermore, processes with reset are studied in population dynamics, where
resets are interpreted as catastrophic events corresponding to the extinction of the population, followed by a
resurgence [9].

All of the previous works, including the extensions to Lévy Flights [10] andfluctuating interfaces with
stochastic resetting [11], assume the special case that resets occur at a constant rate γ, i.e.the case inwhich the
waiting times between the resets are exponentially distributed. In this case the resetting procedure is
memoryless, which has a straight–forward but interesting implication: theNESS of the process is equivalent to
the distribution of end-points of an ensemble of trajectories of the same process without resetting that are
trapped at a constant rate γ. Consequently, if the propagator of the process without resetting is known, theNESS
can be directly obtained by averaging the propagator over the exponential distribution of inter-reset times [1].
However, the limitation to constant rate resetting severely restricts the applicability tomemoryless processes.
Even the simple example of a process inwhichmultiple identical steps have to be completed for a reset, which
gives rise toGamma-distributedwaiting times, cannot be describedwithin the current framework. Such
processes occur e.g.in chemical resetting due tomultistep dissociation reactions [12]. Neither can the important
case of a rate that depends on the time τ elapsed since the last reset event be captured anymore. Processes of this
form can be described using time-dependent rates 1˜ ( ) ( )( )g t ag tg= a- , which leads toWeibull distributed
waiting times. Here the probability for a event decreases (increases)with τ for 1a < ( 1a > ), thus giving rise to
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more intermittent (regular) reset sequences, as compared to the constant rate case ( 1a = ). TheWeibull
distribution is widely appliedwhen the conditions for strict history-independence are violated [13].

In this article, we present the theory of stochastic resettingwith arbitrarywaiting time distributions ( )y t ,
(see figure 1), which includes the aforementioned examples as special cases.While for stochastic processes that
reset at a constant rate, themaster equation can be immediately formulated, herewe first have to derive the
governing equation for arbitrary resetting time distributions. The correspondingmaster equation equation (6) is
non-local in time and is one of ourmain results. Despite the fact that our theory has to include integrals over the
complete history of the process, we can explicitly calculate stationary distributions for different waiting time
distributions, ( )y t , and quantify the temporal relaxation of themoments towards thisNESS.Wefind that the
history-dependent processes with a general resetting time distribution have a rich structure and exhibitmany
newproperties that are not present in the case of resettingwith a constant rate. Furthermore, we demonstrate
that the success of a search depends on the full waiting time distribution and not only on the characteristic
resetting time scale as one could expect from thememoryless process. A possible application of our theory is the
efficiency of random searchers that are confined by their need to regularly return to a home location.Wefind
that, under this constraint, the search success can be optimized by adapting the distribution of waiting times
between the returns.

2.Derivation and solution of the generalizedmaster equation

Consider themotion of a particle that, between reset events, is described by the stochastic differential equation

x t F x t , 1˙ ( ) ( ) ( ) ( )x= +

where t( )x is Gaussianwhite noise with correlation t t D t t2( ) ( ) ( )x x dá ¢ ñ = - ¢ . Furthermore, let thewaiting
time distribution between the resets be ( )y t , after which the particle is reset to the location xr. The probability

tn ( )n that the nth reset event happens at time t satisfies the renewal equation t t t t td ,n

t

n
0

1( ) ( ) ( )òn y n= - ¢ ¢ ¢-

stating that the probability to have the nth event at time t is given by the probability that the n 1- th event
occurred at time t ¢ and that the next event occurs after time t t- ¢ [14].We assume that the process starts with a
reset event. Then, the probability that an event occurs at time t is t t tn n1( ) ( ) ( )n d n= + å =

¥ , where the
δ-distribution accounts for the initial condition.

The probability p x t,( ) tofind the particle at location x at time t is

p x t w t t p x x t t t t, , ; d , 2
t

0
r( ) ( ) ( ) ( ) ( )ò n= - ¢ - ¢ ¢ ¢

where p x x t t, ;r( )- ¢ is the transition amplitude of the process defined by equation (1). The distribution
w t t( )- ¢ gives the probability that no resetting event occurs between t ¢ and t and is related to thewaiting time

distribution ( )y t according to w t t1 d
0

( ) ( )òt y= -
t

. To derive an evolution equation for p x t,( ), we

switch to the Laplace domain p x s t p x t, d e ,st

0
ˆ ( ) ( )ò=

¥
- . Using the operator representation

p x x t t x x, ; e t t x
r r( ) ( )( ) ( ) d- ¢ = -- ¢ [15] and applying the convolution and shifting theorem, the Laplace

Figure 1.Examples of different processes x(t)with random resetting (markedwith red crosses). All cases share the samemean duration
between resets, 1tá ñ = , but their distributions differ. (a)Diffusionwith intermittent (bursty) resetting. A resetting event ismore
likely to occur when another one has happened recently. Distribution of resetting times is heavy tailed. (b)Diffusionwith resetting
times that are comparatively regular (distribution of resetting times peaked aroundmean). (c) Stochastic resettingwith deterministic,
linearmotion between resetting events.
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transformof equation (2) reads

p x s w s x x x s, . 3rˆ ( ) ˆ ( ( )) ( ) ˆ ( ) ( ) d n= - -

Noting that the Laplace transformof t( )n is

s s s1 1 , 4ˆ ( ) ˆ ( ) ( ˆ ( )) ( )n y y= + -

we can use equations (3) and (4) to obtain

s p x s p x x p x s
s

s
x x s x p x s, , , , 50 rˆ ( ) ( ) ( ) ˆ ( )

ˆ ( ) ( ) ˆ ( ( )) ˆ ( ) ( ) 
f

d f- = + - - -

where the time evolution kernel sˆ ( )f is given by s s s s1ˆ ( ) ˆ ( ) ( ˆ ( ))f y y= - [16] and p x x x0 r( ) ( )d= - is the
initial condition. Finally, Laplace inversion of equation (5) leads to the generalizedmaster equation

t
p x t x p x t t t x x p x t t, , e , d . 6

t
t t x

0
r( ) ( ) ( ) ( )[ ( ) ( )] ( )( ) ( ) ò f d

¶
¶

= + - ¢ - - ¢ ¢- ¢

Thefirst termon the rhs accounts for the dynamics between the resetting events, the second term is the source
term and describes the resets to xr. The third term is a sink term; it describes the density of particles that have
propagated to x at time t during the time t t- ¢ under the influence of the dynamics equation (1) and are then
subject to resetting. The integral of the time-evolution kernel corresponds to the time-dependent density of reset

events, i.e. t d
t

0
( ) ( )òn f t t= . The special case of resetting at a constant rate γ is recovered by choosing an

exponential waiting time distribution e( )y t g= gt- that leads to ( ) ( )f t gd t= . Inserting this kernel into
equation (6) leads to theMarkovianmaster equation studied in [1]. The solution of equation (6) in Laplace space
is

p x s
p x

s x s x

s x x

s s x s x
, . 70 rˆ ( )

( )
( ) ˆ ( ( ))

ˆ ( ) ( )
[ ( ) ˆ ( ( ))]

( )
   f

f d
f

=
- + -

+
-

- + -

Here thefirst term on the rhs describes the decay of the initial condition and the second term accounts for the
resets.While the Laplace inversion of equation (7) can in general only be carried out by numericalmeans, wewill
show that the time-dependentmoments of the distribution can be calculated analytically. Remarkably, even the
full stationary solution p x p x tlim ,tst ( ) ( )= ¥ can be given by employing the Tauberian theorems [17], which
allow to consider instead the limit p x slim ,s 0 ˆ ( ) in Laplace space.

3. Results

3.1. Constant advectionwith intermittent resetting
Beforewe come to the diffusion processes with resetting, let us first exemplify equation (6) using the example of
constant advectionwith velocity v between the reset events (figure 1(c)). The discussion of this simplest of all
cases helps to illustrate the intricacies that comewith the inclusion of non-memoryless resetting. In particular,
we set F x v( ) = andD=0 in equation (1) and consider the Liouvillian x v x( ) = - ¶ .Without loss of
generality let us fromnowon assume the reset position to be xr=0.Using equation (6), we obtain for the time
evolution of thefirstmoment in Laplace space

x s
v

s s s s
s1

d

d
. 8ˆ ( )

( ˆ ( ))
ˆ ( ) ( )

f
fá ñ =

+
+⎜ ⎟⎛

⎝
⎞
⎠

Clearly, themean of the process depends on the precise formof thewaiting time distribution through sˆ ( )f even
in the stationary limit. For concreteness, let us consider thewaiting times to beGamma-distributed with rate γ
and shape parameterα, i.e. ; , e1( ) ( )y t a g t g a= Ga gt a- - . Themean of this distribution is t a gá ñ = and
for 1a = it includes the exponential distribution. The shape parameterα regulates how intermittently the
resetting events occur. For 1a < these events occurmore intermittently the smallerα gets, whereas for a  ¥
the resetting events occur regularly with period tá ñ. Infigure 2(a)we compare x t( )á ñ forGamma-distributed
waiting timeswith the samemeanwaiting time but with different rate and shape parameters, calculated using
equation (8). Interestingly, the asymptotic value of x t( )á ñdepends on the shape of the distribution, evenwhen
themean time between resets, tá ñ, is kept constant.We can also calculate the asymptotic, steady-state value of
themean by expanding equation (8) in s, keeping only the lowest order, and then performing the Laplace

inversion. This leads to x
v

2
st

1t
á ñ =

á ñ a
a
+ , which only for exponentially distributedwaiting times is equal to the

typical distance x vs t= á ñ that a particlemoves between resets (figure 2(b)). The stationary distribution can be
calculated using the same approach. Inserting the Liouvillian x v x( ) = - ¶ in Fourier space, k vki( ) = , in
equation (7), and substituting the appropriate sˆ ( )f , the resulting expression can be considered in the limit
s 0 . For example, in the case of Gamma-distributed resetting times, the resulting expression in Fourier space
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is p k k ki 1 1 ist ( ) ( ( ) ) ( )g g a= - - a- , which can easily be Fourier inverted. Several examples are given in
figure 2(c). The stationary distribution exhibits a transition from a broad-tailed distribution for 1a < , where
rare large excursions dominate the process, to a uniformdistribution in the limit a  ¥, where the process is
reset deterministically after time tá ñ.

3.2.Diffusionwith intermittent resetting
Let us now focus on the case of free diffusion between the resets, i.e.F x 0( ) = , with x D x

2( ) = ¶ . In this case,
the process is symmetric around the reset point and themean is simply xr (set to zero for simplicity).
Interestingly, calculating the secondmoment of the process, x t2 ( )á ñ from equation (6), leads to exactly the same
equation as themean of the advection process, butwith v replaced by D2 . Thus, considering the time evolution
of the variance and itsfinal state leads to exactly the same curves as shown for themean of the advection in
figures 2(a) and (b), as we have also confirmed numerically. The stationary distribution p xst ( ) can again be
calculated by considering equation (7) in the limit of small s. For theGamma-distribution, one obtains after
Laplace inversion

p x F
x

da

x

d
F

; , ;
2

2 1
; 1, ; sin , 9

d

x

d

x

d

st
1

1 2
1

2

1

2

1

2 4

1 2

1 1 2
3

2 4

2

2

( )
( )

( ) ∣ ∣

∣ ∣ ( )
( )

( ) ( )

a
g

a
g pa

a a a pa

= - - -

+
G - -

+ +

p g g

a

a g

+

+

where Fq r denotes the generalized hypergeometric function. The general solution equation (9) reduces to
particularly simple expressions for integer values ofα, e.g. x d x d dexp 3 8( ∣ ∣ )(∣ ∣ ) ( )g g g- + for 2a = . In
figures 3(a) and (b)we compare the analytical solution equation(9) to numerical simulations of the process and
find a perfect agreement.More intermittent processes, i.e.smallerα lead to broader (but still exponentially
decaying) stationary distributions, since longer diffusive excursions becomemore likely. The stationary standard
deviation, D 1st ( )s t a a= á ñ + only corresponds to the typical distance diffused by the particle

x D2typ t= á ñ for 1a = . As alreadymentioned a further important example is the case of drawing the
resetting times from aWeibull distributionwith density t; , e t1( ) ( )y t a g ga g= a g- - a

, see figures 3(c) and (d).
We can again calculate the stationary distribution analytically and observe the same qualitative behavior as for
theGammadistribution. The interesting case of regular resetting at tá ñcan be obtained in the limit of a  ¥
of either theGammaor theWeibull waiting time distribution (while keeping tá ñfixed), or indeed as a limit of
anywaiting time distribution that approaches ( ) ( )y t d t t= - á ñ as an appropriate limit. In this important
case, where resets are precisely timed, we can express the stationary distribution concisely as

Figure 2.Analytical (lines) and numerical (crosses) results for the case of advection, with resetting times drawn from aGamma
distributionwith different intermittency parametersα. (a)Time evolution of themean position in the case of advection (legend see
panel (c)).More intermittent resetting (smallerα) leads to an increased stationarymean x stá ñ , although themean time between resets
is kept constant at 1tá ñ = . (b) Stationary value x stá ñ for a range of intermittency parametersα and differentmean resetting times tá ñ.
(c) Full stationary distribution for differentα and 1tá ñ = . For very largeα the distribution tends to a step function.
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p x x xe 1 erf , 10
D

x
st

det 1 1 2( ˜) ∣ ˜∣( (∣ ˜∣) ( )( ) ˜= - -
t pá ñ

-⎡⎣ ⎤⎦
where erf denotes the error function and x x D2 ˜ t= á ñ .

Finally, observe that if the resetting is governed by a scale-freewaiting time distributionwith asymptotic
behavior 1( )y t t~ d- - with 0 1d< < , the intensity of events decays as t t 1( )n ~ d- . Therefore, for long
times the process is dominated by one large diffusive excursion and does not exhibit aNESS.

4. Search efficiency

Evidently, the resetting protocol also has a strong influence on the search efficiency tofind a target located at
distance x0 from the origin. For the case of constant rate resetting, an x0-dependent optimal rate has been
obtained in [1]. However, inmany situations the search strategy is constrained by the need to return on average
after a characteristic time tá ñ. For example,many foraging animals have to return home regularly to rest because
of exhaustion of energy or to feed their offspring. Our previous results indicate that the efficiency can also be
optimized by adapting the functional formof the distribution. Infigure 4(a)we show forGamma-distributed
resetting timeswith afixedmean resetting time tá ñ that themeanfirst passage time indeed exhibits a
x0-dependentminimumcorresponding to an optimal xopt 0( )a . The existence of such aminimumcan be
intuitively understood by inspecting the limits of the resetting protocol. For a  ¥, resets occur
deterministically after time tá ñand targets at x x0 typ are almost surely never encountered. On the other hand
for 0a  the reset protocol is extremely intermittent and the process is typically dominated by a single large
excursion. In this case the process resembles diffusionwithout resetting, with a divergingmeanfirst passage
time. To determine xopt 0( )a wemake the reasonable assumption that for x x0 typ the standard deviation of the
steady state for xopt 0( )a should be proportional to x0, i.e. x x Cst opt 0 0[ ( )]s a = .We then obtain

x C x D 1 , 11opt 0
2

0
2 1( ) ( ( ) ) ( )a t= á ñ - -

where theC has to be determined numerically once and forGamma-distributed resetting times is C 0.83» . In
figure 4we compare our analytical prediction equation (11)with the numerically determined values of xopt 0( )a
andfind a very good agreement. For small x x0 typ< equation (11) is no longer valid and it is very hard to
identify opta because the stationary distribution becomes increasingly insensitive to variation ofα for 1a > , see
figure 4(a). These results indicate that an intermittent return strategy should be adoptedwhen targets remote
from the homemay exist.While, we have focused here on optimal search in one dimension, extending ourwork

Figure 3. Stationary distributions for diffusion between reset events for the ((a), (b))Gamma and ((c), (d))Weibull distributions
(lower panels: log-scale). Themean resetting time isfixed to 1tá ñ = . Numerical simulations (crosses) perfectlymatch the analytic
solutions (solid lines). Smaller shape parameterα corresponds tomore intermittent resetting and leads to broader tailed stationary
distributions. Both cases lead to the same limiting distribution for largeα (dashed line) corresponding to regular resetting at tá ñ, see
equation (10).
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to two and higher dimensions poses no new conceptual difficulties, and it would be interesting to compare such
an extension to recent results on intermittent search strategies [18].

5. Conclusions

In conclusion, our study reveals that theNESS aswell as the search efficiencydependon theprecise formof the
resettingdistribution. Interestingly, for continuous time randomwalks—a related class ofmodels,where the times
between successive jumps are drawn fromawaiting timedistribution—suchadependenceof the long timebehavior
on theprecise formof thewaiting timedistribution is not observed.Here theknowledgeof the characteristicwaiting
time is sufficient to characterize the steady state distributionof theprocess in a confiningpotential [19]. Finally,we
note that, for general resetting times, the steady state of theprocess cannotbe simply obtainedby averaging the
propagatorover thewaiting timedistribution. Instead, onehas to average over thedistributionof times that have
elapsed since the last reset event, the so-calledbackwardoccurrence timedistribution.This distribution is only
identical to thewaiting timedistribution formemoryless processes, i.e.exponentially distributedwaiting times. For
otherwaiting timedistributions the correspondingbackwardoccurrence timedistribution can in general not be
obtained in a closed form.Ourworkopens several further interestingdirections for future research.Our theory canbe
used to considerdeterministic dynamicswith resetting at random locations, and thushas direct relevance for spiking
dynamics inneurons that emit spikes upon reaching a randomthreshold. Furthermore, itwouldbe interesting to
investigate the search efficiencyof diffusionprocesseswith generalized resetting in thepresence of abindingpotential.
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