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a b s t r a c t 

In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of 

the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter 

conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly 

measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. 

Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal 

structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the 

variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). 

Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. 

Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion 

MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber 

layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. 

Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In 

addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we 

can explain more than 40% of the inter-subject variance in VEP latency. 

In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus 

on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter 

structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major 

implications for future studies of other white matter diseases. 
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. Introduction 

Multiple Sclerosis (MS) is a chronic demyelinating disease of the cen-

ral nervous system, in which myelin is attacked, forming lesions and

hanging white matter structure ( Compston and Coles, 2008 ). The num-

er or volume of lesions, called lesion load, is a useful measure of disease

ctivity, though discrepancies between lesion load and the clinical state

f the patient often exist ( Backner and Levin, 2018 ). The damage often

ffects the primary function of white matter tissue in the brain - the con-

uction of electrical signals along white matter tracts ( Halliday et al.,

973 ). These effects offer a unique opportunity to examine the connec-

ion between conduction and pathway connectivity in disease. 
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Involvement of the visual system is highly prevalent in MS. The vi-

ual system is of particular relevance for studying conductivity in the

hite matter due to its clearly defined pathway from eye to cortex and

ts accessibility to a variety of tools and tests. The most common MS

ymptom associated with the visual system is optic neuritis, the demyeli-

ation of the optic nerve. It is the presenting system in 20–30% of MS

atients and the majority would be affected by it at some stage of their

isease ( Costello, 2016 ). However, many MS patients also exhibit dam-

ge to the posterior visual pathway, caused by lesions in the optic radia-

ion (OR) ( Galetta et al., 2015 ; Petzold et al., 2017 ). Furthermore, stud-

es on non-lesion containing tissue, called normal-appearing white mat-

er (NAWM), report early axonal pathology also outside inflammatory

emyelinating lesions ( Pawlitzki et al., 2017 ; Raz et al., 2015 ). There-

ore, much interest has recently risen over the use of visual measures

o further the understanding of the disease by use of this well-defined,

ontained system. Many studies have made use of a wide variety of vi-
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3  
ual measures, from behavioral tests such as low-contrast letter acuity

LCLA) ( Balcer et al., 2015 ) and motion perception ( Raz et al., 2011 ),

hrough imaging methods such as optical coherence tomography (OCT)

 Frohman et al., 2006 ; Oberwahrenbrock et al., 2018 ; Oertel et al., 2019 ;

etzold et al., 2017 ; Talman et al., 2010 ) to the electrophysiological vi-

ual evoked potential (VEP) test (Toosy, Mason, & Miller, 2014 ) in an

ttempt to characterize and study MS through the visual system. 

One of the most valuable tools for clinical diagnosis and monitoring

f MS is magnetic resonance imaging (MRI) ( Nitz and Reimer, 1999 ).

RI is sensitive to tissue properties and recent developments in quanti-

ative MRI (qMRI) and in particular diffusion MRI (dMRI) provide mea-

urements with improved sensitivity and specificity to white matter or-

anization and microstructure ( Alexander et al., 2011 ; Kuchling et al.,

018 ; Kuchling et al., 2017 ; Weiskopf et al., 2015 ). Various qMRI

easurements have been found to be sensitive to myelin content,

 Berman et al., 2018 ; Helms et al., 2008 ; Meyers et al., 2017 ; Sled and

ike, 2001 ; Stüber et al., 2014 ) and dMRI can be used to model axon con-

guration and even axon diameter ( Assaf and Blumenfeld ‐Katzir, 2008 ;

asser and Jones, 2002 ; Basser et al., 2000 ; Kaden et al., 2016 ;

hang et al., 2012 ). Combining these approaches, it is also possible

o estimate the axon g-ratio, the ratio between the inner and outer

iameter of the myelin ( Stikov et al., 2012 ). These improvements in

easurements have led researchers to try and link the white matter

icrostructure to properties of conduction of action potentials along

hite matter fiber tracts ( Berman et al., 2019 ; Drakesmith et al., 2019 ;

akemura et al., 2020 ). 

The relationship between the structure and function of the visual

ystem in MS has been previously evaluated. Recently, Backner et al.

tudied patients diagnosed with progressive MS. They found that retinal

hinning, estimated using retinal nerve fiber layer (RNFL) thickness ob-

ained through OCT, was correlated with VEP latencies. This was true for

atients without prior history of optic neuritis, but was not seen in pa-

ients with optic neuritis ( Backner et al., 2019 ). Another work found that

n relapsing-remitting MS (RRMS) patients without prior optic neuritis,

EP latencies are correlated with lesion load and diffusion parameters

long the OR ( Alshowaeir et al., 2014 ). Similar results were found in a

ilot study in RRMS patients using ultra-high field MRI ( Sinnecker et al.,

015 ). Various DTI indices have been related to VEP latencies, but re-

ently it was suggested that the non-directional estimate of mean dif-

usivity may be the best option for reflecting tissue damage in chronic

esions ( Klistorner et al., 2018 ). While each of these studies is informa-

ive in explaining the variance in the VEP latency, it is important to

ombine the various measurements to assess their contribution to the

elay in VEP latency, and this was not done in progressive MS patients.

VEP latencies theoretically reflect retinal, thalamic, and cortical pro-

essing times, as well as conduction time along the visual white matter

athway. They have also been previously shown to be related to head

ize ( Gregori et al., 2006 ). Therefore, in this work we tested how much

f the variance in VEP latencies could be explained using structural mea-

urement of the retina (RNFL thickness and macular volume) and the OR

qMRI and dMRI parameters, length and lesion load). In other words,

sing the visual pathway in MS patients to examine the relationship

etween white matter connectivity and conductivity. We hypothesized

hat using multiple sources of structural measurements may improve the

nderstanding of the VEP delays. 

. Methods 

.1. Subjects 

Forty-eight progressive MS patients were enrolled in a longitu-

inal mesenchymal stem cell therapy study (NCT02166021) at the

adassah-Hebrew University Medical Center, from January 2015 to
une 2018. Study protocol included nine visits over the duration of a

ear. This study encompasses the last two visits, approximately three

nd six months following final treatment administration. Inclusion cri-

eria were, as reported in ( Backner et al., 2019 ), the 2010 revised Mc-

onald criteria for MS ( Polman et al., 2011 ), ages 25–64, disease dura-

ion of at least 3 years, progressive forms of MS, EDSS score of 3.5–6.5,

nd failure to respond to the currently-available registered treatments.

xclusion criteria were treatment with cytotoxic or immunomodulatory

edications in the 3 months prior to inclusion, significant diseases that

ay risk the patient or interfere with results, active infections, severe

ognitive decline, as tested by the Brief International Cognitive Assess-

ent for MS (BICAMS) ( Langdon et al., 2012 ), and previous cellular

reatment of any kind. 

As the VEP latency of patients with prior optic neuritis is likely more

ffected by optic nerve lesions ( Halliday et al., 1973 ), the main focus

f this work is on the patients without prior optic neuritis ( n = 27).

esults for patients with prior optic neuritis ( n = 21) are included in the

upplementary materials. 

This study was approved by the Hadassah-Hebrew University Med-

cal Center Ethics Committee. All participants gave written informed

onsent. 

.2. Data acquisition and analysis 

All electrophysiological and imaging measures were taken at two

onsecutive time points, approximately 3 months apart. 

.2.1. Functional properties of the visual system: visual evoked potentials 

atency 

Standard full-field pattern reversal VEPs were recorded on a Bravo

EP device (Nicolet Biomedical) by a trained technician. Lateral elec-

rodes were placed at O1 and O2 with a reference electrode placed at

z and a ground electrode placed at the vertex. P1 (time-to-peak) laten-

ies were extracted using at least two repetitions for each eye, with the

eported values being an average of the two recordings. 

.2.2. Structure of the visual pathway 

Peripapillary Retinal Nerve Fiber Layer (pRNFL) Thickness and 

acular Volume 

Peripapillary retinal nerve fiber layer (pRNFL) thickness was

ecorded by trained technicians using spectral-domain OCT (Spectralis,

eidelberg Engineering) with automatic real time (ART) function for

mage averaging. pRNFL was derived from standard ring scans around

he optic nerve head. Macular volume was derived from custom macula

cans (30° × 25°, 61 B-scans, ART: 13 frames). All scans underwent qual-

ty control according to the OSCAR-IB criteria ( Schippling et al., 2015 ).

utomatic segmentation results were checked for errors and corrected,

f necessary, by an experienced observer blind to the subjects’ condi-

ion. The pRNFL thickness was missing for 2 subjects with no history of

N. Therefore, unless stated otherwise, any analysis that involved the

RNFL thickness included 25 subjects, while other analyses included 27

ubjects. 

MRI acquisition: 

All scans were performed on a 3T magnet (Siemens Skyra). Qualita-

ive images, including T1-weighted (MPRAGE) and T2-weighted scans

SPC), were acquired at a resolution of 1 mm isotropic. For quantita-

ive assessment of tissue properties, two types of scans were used: Dif-

usion weighted images were acquired with a diffusion-weighted spin-

cho sEPI sequence with a resolution of 2 mm isotropic. The acquisition

ncluded 64 directions, with a diffusion weighting of b = 1000 mm 

2 s − 1 .

or T1 and water fraction mapping, 3D Spoiled gradient echo (FLASH)

mages were acquired with different flip angles ( 𝛼 = 4°, 10°, 20° and

0°), TE/TR = 2.85/14 ms. The scan resolution was 1.5 mm isotropic.
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or calibration, we acquired an additional spin-echo inversion recovery

can with an echo-planar imaging read-out (SEIR ‑epi ). This scan was

one with a slab-inversion pulse and spatial-spectral fat suppression.

or SEIR ‑epi , the TE/TR was 49/2920 ms. TIs were 100, 600, 1200,

nd 2400 ms. We used 2-mm in-plane resolution with a slice thickness

f 3 mm. Both the flash and the SEIR ‑epi scans were performed using

 × GRAPPA acceleration. 

MRI analysis 

Whole-brain T1 maps, together with bias correction maps of B1 + and

1-, were computed as described in ( Mezer et al., 2016 ; Mezer et al.,

013 ). In short, unbiased T1 maps were calculated using the variable

ip angles which were corrected for B1 excite inhomogeneity using

he unbiased SEIR data ( Barral et al., 2010 ). Next, the T1 maps were

sed to calculate unbiased proton density (PD) maps. To separate PD

rom receive-coil inhomogeneity, we assume smooth coil functions and

se a biophysical regularization, which finds local linear relationships

etween 1/T1 and PD. This method was found to be effective and ro-

ust to noise ( Mezer et al., 2016 ). The PD is normalized according to

alues in CSF-only voxels in the ventricles, to produce water-fraction

WF) maps. Maps of the lipid and macromolecular tissue volume (MTV)

re then calculated as 1-WF. The analysis pipeline for producing unbi-

sed T1 and MTV maps is an open-source MATLAB code (available at

ttps://github.com/mezera/mrQ ). 

Diffusion analysis and preprocessing included the following steps:

ubjects’ motion was corrected using a rigid body alignment algorithm.

iffusion gradients were adjusted to account for the rotation applied

o the measurements during motion correction. The twice refocused

pin echo sequence we used does not require eddy current correction

 Reese et al., 2003 ). Preprocessing steps were implemented in MATLAB

MathWorks, Natwick, MI, USA) and are publicly available as part of the

istasoft git repository (see dtiInit.m). The preprocessed diffusion data

ere then fitted with a tensor model ( Basser and Jones, 2002 ) from

hich the mean diffusivity (MD),the radial diffusivity (RD), and frac-

ional anisotropy (FA) were calculated. 

The optic radiations were delineated using the probabilistic fiber-

racking algorithm, ConTrack, to identify the most likely pathway be-

ween two ROIs ( Sherbondy et al., 2008 ). The LGN and calcarine sul-

us were manually and anatomically defined on the T1 maps of each

articipant. The LGN definition was also assisted by the extracted DTI

GB map of each participant. A collection of 75,000 possible pathways

as sampled and the most likely optic radiations were estimated as

hose pathways scoring at the top 20% (15,000). Each fiber bundle was

anually checked and cleaned of spurious fibers using the QUENCH

ool (VISTA Lab, Stanford University). Fibers were considered spurious

f they crossed to the contralateral hemispheres or if their trajectory

reatly deviated from the tract core. Most discarded streamlines were

ither too superior or curved too anteriorly around Meyer’s loop. Sup-

lementary figure 1 shows the optic radiations of 5 randomly selected

ubjects. The figure shows some variability exists in the reconstruction

f the OR, particularly in Meyer’ s loop (which is only partially recon-

tructed in subjects 2, 4 and 5 from the left). We visually inspected the

oops and graded them as fully, partially or not reconstructed. These

ategories were later used for assessing the effect of the reconstruction

n the inter-subject variability. For a description of the reconstruction

f the optic tract, and a discussion on its related results, see the supple-

entary material. 

Lesions were automatically segmented based on T1-weighted and

2-weighted images. The algorithm, a classifier trained to detect white

atter hyperintensities ( Dadar et al., 2017 ), produced probabilistic

aps and a threshold for creating lesion masks was chosen based on

isual inspection. Manual correction was performed in areas with large

rrors in the lesion segmentation. 

Metric computation 

To estimate lesion load, we took several approaches. We first calcu-

ated the general lesion load by taking the volume fraction of lesions,

ivided by the volume of the white matter tissue (including lesions).
e similarly calculated OR lesion load by taking the volume of lesioned

rea coinciding with the area of the OR, divided by the overall volume

f the OR. Finally, we sampled the lesion mask along the core of the

R tracts, while weighting the lesions based on distance from the tract

ore ( Yeatman et al., 2012 ; Schurr et al., 2018 ). This provides a tract

rofile that at each point ranges from 0 to 1, reflecting how much of

he tract coincides with a lesion, and giving more weight to the tract

ore. Using the tract core to qMRI measurement allows for a more ro-

ust estimation of OR properties, that is less affected by the variance in

he reconstructed tract. Averaging the tract lesion profile provides an

stimate of the fraction of the tract that is damaged due to lesion. 

The T1 maps (acquired with a non ‑epi readout) were registered to

he diffusion space (acquired with an epi readout) using non-linear reg-

stration, with the ANTs software ( Avants et al., 2009 ). To evaluate the

arametric maps along the OR, the maps (MD, RD, FA, MTV and T1)

ere sampled along the tract in the same way that the lesion masks

ere sampled. Supplementary figure 2 shows the tract profiles of all

ubjects for T1, MD and the lesion load. This provides, for each OR, a

ract profile of each parameter over 100 nodes ( Yeatman et al., 2012 ).

e took three approaches for summarizing the tract profile of the qMRI

arameters. We average the values either over the entire tract, or over

he nodes considered to be NAWM, or over nodes considered as passing

hrough lesions (a node is considered to be NAWM if the lesion tract pro-

le is smaller than 0.05). In all methods we only consider nodes 10–90,

o avoid partial volume effects with the cortex and areas with high dis-

ersion. To test whether the individual variability in the reconstruction

f Meyer’s loop might affect our results, we also calculated OR estimates

hile excluding the segment containing Meyer’s loop. To do this we con-

idered nodes 35–90 (we visually verified this indeed excludes Meyer’s

oop in all ORs). Finally, we also calculated the length of the OR fiber

ract using its core. 

.2.3. Statistical analysis 

To relate structural measurements to function, we set out to test how

uch of the variance in the VEP latency can be explained using the

RNFL and the OR structure, as measured with MRI. We used leave-

ne-out cross-validation approach, where a general linear model was

t using all data except a single point, and the prediction is calculated

or the remaining data points. The model accuracy was assessed using

he coefficient of determination (COD, R 

2 ), and the mean absolute error

etween the measured and the predicted VEP latency. 

To combine the different parameters while avoiding overfitting, we

sed principal component analysis (PCA) on the structural properties i.e.

he pRNFL thickness, OR length, lesion load along the OR, and MD or

1 along the OR. The PCA was calculated on z-scored values, since stan-

ardizing the values maintains the inter-subject variance within mea-

urement, while controlling for the difference in amplitudes between

easurement. As a result, the contribution of each measurement to each

C is at the same scale and therefore can be compared. The projection

f the subjects on the first PC was then used to predict the variance in

he VEP latency. 

To maximize the data size, we averaged the two final visits, which

ere 3 and 6 months post-treatment, respectively. Supplementary figure

 shows the correspondence between the measurements in the 2 visits to

how their average is indeed representative of the data. We used cross-

alidation to predict the VEP latency of one visit, given the other. The

ariance explained with this approach provides a ceiling on the variance

e expect to explain using the structure measurements. Second, since

he OR axons in a single hemisphere convey information originating

rom both eyes, we average both over the left and right OR data (for.

D, FA, MTV, T1 and lesion load), as well as over the left and right eyes

for pRNFL, and VEP latency). The correspondence between the left and

ight values can be seen in Supplementary figure 4. As expected from

ny repeated measurement, the values between the two final visits, and

etween the two sides, are not identical, nevertheless, there is no bias

https://github.com/mezera/mrQ
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Fig. 1. Retinal thinning is related to VEP latency. A. VEP is negatively cor- 

related with pRNFL thickness in subjects with progressive MS ( r = -0.47). B. 

Leave one out cross-validation was used with a linear fit of pRNFL to create pre- 

dictions of VEP latency. The mean absolute error (MAE) is around 10 ms, and 

the coefficient of determination (COD, R 2 ) between the measured and predicted 

latency is 7. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 2. OR lesion load and VEP latency. The lesion load along the OR was 

calculated as the average lesion tract profile, thus reflecting the relative over- 

lap between the OR and the lesions, giving greater weight to the tract core. A. 

VEP latency is positively correlated ( r = 0.31) with the lesion load of the OR 

(Lesion OR ). B. Cross-validation found Lesion OR alone is not sufficient to accu- 

rately predict the VEP latency. Other approaches for estimating the lesion load 

were evaluated and can be seen in supplementary figure 4. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 3. OR length and VEP latency. The OR length is calculated using tract 

core. A. The VEP latency is not significantly correlated ( r = 0.26, p = 0.2) with 

the OR tract length (Length OR ). B. Cross-validation found Length OR alone is not 

sufficient to accurately predict the VEP latency. C. The correlation increases 

( r = 047) when removing a subject that strongly deviated from the linear re- 

lationship between the VEP latency and the OR length (marked as an empty 

circle). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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r systematic differences between the values and they are very similar

o one another. 

.2.4. Data availability 

The data supporting the findings of this study are available from the

orresponding author upon request. 

. Results 

.1. OCT 

In our analysis we find that the relationship between pRNFL thick-

ess and VEP latency, reported in ( Backner et al., 2019 ) on the same co-

ort, pre-treatment, also persists post-treatment ( r = -0.47) ( Fig. 1 ). The

RNFL thickness accounted for about 7% of the variance in the VEP la-

ency. Similar to the results in Backner et al., the macular volume was

ot significantly correlated with the VEP latency ( r = -0.26, p = 0.29), and

as not informative in predicting the VEP latency using cross-validation

R 

2 
< 0, MAE = 12). 

.2. Lesions 

Fig. 2 a shows the correlation between the VEP latency and the OR

esion load, calculated as the average lesion tract profile ( r = 0.31).

sing cross-validation, we found it was not informative in predicting

he VEP latency when used alone ( Fig. 2 b). To assure this result is not

ependent on the way the lesion load was calculated, we also tested two

lternative approaches for lesion load computation. We find the results

o be similar in all three methods, and their comparison is presented in

upplementary figure 5. 

.3. OR length 

To test whether the VEP latency variance can be explained by the

istance the signal has to travel, we calculated the length of the OR core

ract profile. The OR length was not significantly correlated with the

EP latency ( Fig. 3 a), and cross-validation revealed it could not explain

ts variance ( Fig. 3 b). The figure clearly shows a single data point that

s an outlier to the relationship, likely due to this subject’s large lesion

oad which created a delay in its VEP peak time. Removing it increases

he correlation ( Fig. 3 c). 
.4. qMRI 

Next, we tested the ability to predict the VEP latency using the quan-

itative parametric values that are sensitive to both changes in tissue

icrostructure and to lesions along the OR core. The MD values were

ound to be correlated with VEP latency ( r = 0.59) ( Fig. 4 a). Quantitative

1 values also have a positive correlation with VEP latency ( r = 0.56)

 Fig. 4 b). Using cross-validation ( Fig. 4 c-e) we found that the MD values

ead to a similar prediction error as the T1 values (~10 ms), but do a

etter job explaining the between-subject variance as calculated with

he COD (R 

2 = 23 for MD, and R 

2 = 17 for T1). Unlike MD and T1, the FA

nd MTV along the OR were not significantly correlated with the VEP

atency (supp. Fig. 6ab), and therefore were not used in following anal-

ses. We found the RD was highly correlated with the MD ( r = 0.99),

nd consequently, it was also positively correlated with the VEP latency

 r = 0.56, p = 0.03) (supp. Fig. 6c). Using cross validation revealed a

light disadvantage to RD (R 

2 = 19) compared with MD. Given these

esults, and the non-directional nature of the MD, we will only consider

D in following analyses using dMRI. 

Finally, we found that using both T1 and MD in the linear model does

ot increase the ability to explain variance of the VEP latency (R 

2 = 17).

his is probably due to overfitting, since the MD and T1 covary in the

R (supp. Fig. 7). Supplementary figure 8 shows that averaging MD and

1 only across NAWM nodes, or only across nodes that pass-through le-
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Fig. 4. QMRI along the OR is related to VEP latency . T1 and MD were sampled along the OR, and their average along the tract profile was calculated. The average 

of MD (A) and T1 (B) values along the OR are positively correlated with the VEP latency. Leave-one-out cross-validation found that T1 (E) underperforms MD (C) in 

predicting the VEP latency (R 2 = 17,23 respectively). Using both T1 and MD together (D) does not improve the prediction (R 2 = 17). Other approaches for estimating 

T1 and MD and their relationship with the VEP latency, as well as their relationship to one another can be seen in supplementary figures 7-8. 
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ions, is less successful in predicting the VEP latency compared to using

he average across the entire tract. Finally, no correlation was found be-

ween qMRI values of the optic tract and VEP latencies. These results

re discussed in the supplementary material (supp. Fig. 9). 

.5. Multi-parametric prediction of the VEPs 

Finally, we tested whether it is beneficial to combine the different

arameters. For this purpose, we calculated a PCA over the subjects’

our structural variables that come from different sources: OR lesion

oad, OR length, pRFNL thickness and either T1 or MD, representing

he OR microstructure. Fig. 5 a shows the coefficients of each variable

o the 1st principal component (PC). The 1st PC explains 37% or 39%

f the structural variance when computed with T1 or MD, respectively.

n either case the OR length contributes minimally to the 1st PC. The

rojection of the subjects on the 1st PC is highly correlated with the

EP latency, both when using T1 ( Fig 5 b), and when using MD ( Fig. 5 e).

sing cross-validated prediction of VEP latency based on the 1st PC we

an explain more than 45% of the variance in the VEP latency, with a

light advantage to using T1 in the PCA ( Fig. 5 c., R 

2 = 49, MAE = 7.7),

ather than MD ( Fig. 5 f., R 

2 = 46, MAE = 8.1). The 2nd PC, which

xplain 25% of the structural variance, is not significantly correlated

ith the VEP latency and does not explain its variance. When using

oth T1 and MD in the PCA, the 1st PC explains more of the structural

ariance (46%, since T1 and MD are correlated), yet the correlation with

he VEP latency is reduced ( r = 0.69, cross-validation R 

2 = 0.37). 

Supplementary figure 10 shows the prediction given pairs of predic-

ors. To allow for a fair comparison, we use the 25 subjects that have

RNFL thickness estimates for this pair-wise prediction of VEP latency.

he combination of the OR lesion load either with MD values in the
R (supp. Fig. 10a.) or with pRNFL thickness (supp. Fig. 10c) allows to

xplain about 30% of variance in VEP latency, with similar prediction

rror (MAE = 8.9). Combining the MD values with the pRNFL thickness

supp. Fig. 9b) is slightly worse than simply using MD on its own. 

To test whether the individual variability in the reconstruction of

eyer’s loop is contributing to our results, we also calculated OR esti-

ates while excluding the segment containing Meyer’s loop. Supple-

entary figure 11 shows that the T1 and MD estimates are similar

hether calculated across the entire OR tract or only across the sec-

ion excluding Meyer’s loop. Whatever differences are found, do not

epend on the extent to which the Meyer’s loop was reconstructed

supp. Fig. 11C,D). Furthermore, repeating the PCA analysis with the

stimates excluding Meyer’s loop reveal very similar results (cross-

alidation R 

2 = 47, 53, when using T1, or MD, respectively). 

.6. Optic neuritis patient results 

The same analyses, performed on the patients with reported history

f unilateral optic neuritis ( N = 16), failed to show a similar relationship

etween properties of the OR and VEP latencies. The data is presented

n the supplementary materials (supp. Fig. 12). 

. Discussion 

In this study we use the structure of the visual system, i.e. its con-

ectivity and microstructure, to explain the variance in its VEP latency,

.e. conductivity. We find that for subjects with progressive MS (with

o history of ON), pRNFL thickness and structural properties of the OR

ere correlated with the VEP latency, and when combined together they

an explain more than 45% of the inter-subject variance. Specifically,
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Fig. 5. PCA on the visual pathway structure . PCA was performed on the structural parameters, once with T1 as the measure of OR microstructure (top row), and 

once with MD (bottom row). The first principal component explains almost 37% of the inter-subject variance in the structure of the visual system using T1 (A) and 

39% using MD (D). In both cases, the OR length contributes very little to the 1st PC. The projection of the subjects on the first PC is (B,E) correlated with the VEP 

latency ( r = 0.74 with T1, r = 0.73 with MD, p < 10 − 4 ), and (C,F) using cross-validation the 1st PC explains more than 45% of the inter-subject variance in VEP latency, 

with T1 (MAE = 7.7) giving slightly better results than MD (MAE = 8.1). Using both of them (not shown) damages the prediction (MAE = 9). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sing the 1st PC of the measures that reflect retinal thinning, the dam-

ge to the OR, and the OR microstructure we are able to predict the

EP latency - the extent to which the visual signal is delayed, with a

ean absolute error of about 8 milliseconds. The contribution of each

tructural aspect can be seen both in the coefficients to the 1st PC, and

n the separate analyses. 

The visual system, being clearly defined and both structurally and

unctionally accessible, makes it possible to try and define the relation-

hip between conductivity of the signal down the visual pathways and

athway connectivity. Electrophysiological studies that make use of the

isual system in patients with MS usually examine patients with a his-

ory of optic neuritis, as VEP is a tool commonly used in its diagnosis.

n these patients, a longer time-to-peak (P100) was found to be corre-

ated with functional effects of the damaged nerve ( Raz et al., 2011 ;

anders et al., 1987 ). Delayed peaks in their fellow eyes were suggested

o result from a wider VEP waveform to enable synchronization of the in-

ut between the eyes ( Raz et al., 2013 ). In the current study in which we

ished to refine the connection between conduction and connectivity,

e separated patients with prior optic neuritis to avoid these possible

nterfering factors of functionality and adaptation. 

The relationship between OR lesion load and VEP latency, has been

reviously shown for the non-optic neuritis eyes of RRMS patients

 Alshowaeir et al., 2014 ). For the same patient group, it was also shown

hat neuronal loss (measured by pRNFL and ganglion cell layer thick-

ess) is inversely correlated with the VEP latency ( Sriram et al., 2014 )

nd with lesion damage in the OR ( Sinnecker et al., 2015 ), possibly

hrough retrograde transsynaptic degeneration ( Klistorner et al., 2014 ).

ore recently, Backner et al. ( Backner et al., 2019 ) found that in the par-

icipants of the current study, prior to treatment, the pRNFL thickness

s negatively correlated with the VEP latency. While pRNFL thickness
nd lesion load are correlated to one another, we found that combining

hese two parameters together increases the explained variance in VEP

atency. These results suggest that while the retinal thinning and OR

amage may be related to each other, they seem to represent processes

hat separately contribute to the VEP delays along the visual pathways.

Considering the structure of the OR, using MRI parameters, Al-

howaeir et al. have shown that in RRMS patients, dMRI parame-

ers (MD and radial and axial diffusivities) along the OR are corre-

ated with VEP latency ( Alshowaeir et al., 2014 ). While MD is known

o be a sensitive measure of white matter structure, as it has been

orrelated with age, learning, cognitive function, and disease states

 Assaf and Pasternak, 2008 ; Horsfield and Jones, 2002 ; Zatorre et al.,

012 ; Yeatman et al., 2014 ), it is not specific, and can reflect changes in

any tissue properties (myelin content, axonal orientation distribution,

xon density etc.). Therefore, we hypothesized that using T1, which is

ostly sensitive to water, myelin and iron content ( Filo et al., 2019 ;

tüber et al., 2014 ), might be beneficial in predicting VEP latency. We

ound that in the OR of progressive MS patients, the T1 and MD values

re in fact highly correlated, and produce similar results: when used as

ingle parameters, MD outperformed T1, while when combined with the

est of the parameters in the PCA, T1 led to a slightly improved predic-

ion of the VEP. It is therefore possible that in this case both MD and T1

epresent the myelin damage. We also found that the RD is highly corre-

ated with the MD, and consequently with the VEP latency as well. The

A and MTV, on the other hand, were not significantly correlated with

he VEP latency, either because their estimation is noisier, or because

hey are less specific to the changes in myelin along the axons. 

Our results suggest that if one has only a single measure in hand,

sing MD or RD along the OR is the best predictor of VEP latency, bet-

er than T1, pRNFL thickness, lesion load, and OR length. However,
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hen pairs of parameters are used, the combination of OR lesion load

ith either retinal thickness or MD gives the best prediction (supp. Fig.

0). This suggests that a lesion in the OR acts as a bottleneck and con-

iderably delays the signal, and is therefore informative in predicting

onduction delays, in particular when additional structural information

f retinal thinning or dMRI is available. 

It should be noted that the observed advantage of MD and T1 over the

esion load as single predictors, compared with the combination of the

arameters which gives a better prediction when the lesion load is used,

ay be influenced by two participants. When combining the MD and

he lesion load with the pRNFL thickness, in supplementary figure 10,

e exclude two participants from the analysis, since they did not have

RNFL thickness estimates. The exclusion of these subjects increased

he correlation of the VEP latency with the lesion load, but decreased

ts correlation with the MD. This opposite effect can account for the

ifference between the combined analysis (supp. Fig. 10), where the

esion load was more informative, and the single parameter analysis,

here the lesion load was not informative. 

Considering our results, we posit that the best approach was to per-

orm PCA on the different structural sources (pRNFL thickness, OR le-

ion load, OR length, and OR microstructure). Using the 1st PC was

etter than the 6 other combination we tested, which include 5 pair-

ise combinations of the OR lesion load, the OR microstructure and the

RNFL thickness, as well as 1 combination of both OR microstructure

easures (T1 and MD). The 1st PC was able to explain about 45% of

he between-subject variance in VEP latency. Interestingly, using two

orrelated microstructural features (T1 and MD) in the PCA did not im-

rove the VEP latency prediction. This highlights the contribution of

ther, non-microstructural measurements (pRNFL and OR lesion load),

o the delay in VEP latency. The remaining variance can be explained

iven several other possible sources of inter-subject variability (supp.

ig. 3c shows, using repeated measurements, that no more than 66% of

he variance can be explained). Such sources include retinal, thalamic

nd cortical processing times, as well as measurement noise. Conduc-

ion time is also influenced by the optic nerve and optic tract. However,

he optic nerve is difficult to delineate, and optic tract analyses failed

o produce any meaningful relationship (supp. Fig. 9). It is possible the

ariability in the reconstruction of the OR is another source of vari-

bility that may partly explain our results. Such tract variability could

eflect changes in the underlying tissue caused by the disease. Never-

heless, heterogeneity in OR reconstruction can be seen in healthy sub-

ects as well, particularly in Meyer’s loop, due to the high curvature of

he fibers passing through it ( Sherbondy et al., 2008 ). While we cannot

ully rule out some effects of differences in tractography, supplementary

ig. 11 shows that in this study, the individual variability in our esti-

ates does not originate from the differences found in Meyer’s loop re-

onstruction. Furthermore, additional analysis revealed these estimates

an be used to predict the VEP latency even after excluding Meyer’s

oop. 

VEP latency is most often used in the clinical setup in patients with

N and is thought to mainly reflect the conduction velocity along the

ptic nerve ( Halliday et al., 1973 ), but our results suggest that the vari-

nce in the VEP latency can be explained using the properties of other

arts of the visual system. Interestingly, in the subgroup of patients with

 history of ON participating in our study, we could not find the same

elationships between properties of the OR and the VEP latency as in pa-

ients without ON. Backner et al. showed that in patients with a history

f ON, VEP latencies did not display an association with pRNFL thick-

ess, but did display it with motion perception, a reflection of the func-

ional deficits caused by the damage to the optic nerve ( Backner et al.,

019 ). Such reflection of function was not seen in patients without ON,

ven with affected VEP latencies. This suggests that while in patients

ithout ON, the structural properties of the OR may explain the ob-

erved delayed latencies, in ON patients, the structural integrity of the

R and its measurements have less weight and are not as relevant as

he direct damage to the optic nerve. 
It is important to note that the qMRI used in this study are sensitive,

ut not specific to tissue microstructure and properties. While T1 and

D each contribute to the prediction of VEP latency, their combination

id not improve the prediction, neither when they were combined in a

inear model ( Fig. 4 ), nor when they were both included in the PCA. It

s possible that with more advanced imaging acquisition and techniques

e will be able to estimate tissue properties that are directly related to

onduction such as myelin content, g-ratio, and axon diameter. A poten-

ial advantage of such parameterization is the ability to advance beyond

he linear model we use here, and to estimate the conduction delay in a

iophysical framework ( Berman et al., 2019 ; Drakesmith et al., 2019 ).

evertheless, it should be stressed that many of the existing models for

alculating the tissue microstructure might be sub-optimal in pathologi-

al cases where the tissue undergoes many structural changes, and they

ay need to be accounted for in the future. 

Our results further show that using the OR length in this patient

roup contributes little to the prediction of VEP latency. This does not

uggest the OR length does not affect the VEP latency, but simply that

n this study, predicting the VEP is better served by using the pRNFL,

he MD/T1, and lesion load along the OR. The OR length was correlated

ith the VEP latency (after removing an outlier), therefore, it is possible

hat the lesions and axonal loss act as a bottleneck in the signal trans-

ission, therefore delaying the VEP dramatically, and creating most of

he variance between the subjects. With higher signal to noise measures

nd/or with a more complex, non-linear model, one might be able to

ccount for the contribution of OR length and qMRI parameters to the

ariance in VEP latency. 

Finally, while the OR lesion load contributed to the PCA, when used

n its own it did not provide a good predictor for the VEP latency. In

his study we used an automatic tool for lesion segmentation, and while

t worked fairly well, it was not perfect. Furthermore, it might be ben-

ficial to minimize registration errors between the lesion map and the

iffusion data, by unwarping the diffusion data ( Andersson et al., 2003 ).

evertheless, our results suggest that the lesion load as the sole predictor

f the damage to white matter structure should be used with caution. 

In conclusion, in this study we predict the VEP latencies in a dis-

ase state using multiple structural sources along the visual pathway,

ith emphasis on the OR. Our results show the importance of com-

ining those sources when attempting to show the connection between

onnectivity and conductivity. The visual system enables us to estimate

oth structural properties of its different elements, as well as a rela-

ively direct estimate of its conduction properties, using VEPs. While

he structure of many other systems in the brain can be evaluated with

RI, for many of them we cannot assess the conduction properties

on-invasively, without electrical/magnetic stimulation. Therefore, es-

ablishing an understanding of the relationship between the structural

roperties and conduction in the visual system in multiple sclerosis is

aluable to future studies of other brain systems and other white matter

iseases. 
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