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In this article we report on a study of the near-wall dynamics of suspended colloidal hard spheres over a broad
range of volume fractions. We present a thorough comparison of experimental data with predictions based
on a virial approximation and simulation results. We find that the virial approach describes the experimental
data reasonably well up to a volume fraction of ¢ = 0.25 which provides us with a fast and non-costly tool for
the analysis and prediction of Evanescent Wave DLS data. Based on this we propose a new method to assess
the near-wall self-diffusion at elevated density. Here, we qualitatively confirm earlier results [Michailidou, et
al., Phys. Rev. Lett, 2009, 102, 068302], which indicate that many-particle hydrodynamic interactions are
diminished by the presence of the wall at increasing volume fractions as compared to bulk dynamics. Beyond
this finding we show that this diminishment is different for the particle motion normal and parallel to the

wall.

. INTRODUCTION

Soft matter at interfaces is an essential component of
many biological, chemical, and industrial processes. The
effect of interactions with system boundaries is even more
pronounced as modern technology zooms into smaller
length scale, where confinement geometry is compara-
ble to particle size. Some interesting examples are an-
tifreeze proteins at water-ice interface!, 'contact killing’
of bacteria by copper surfaces?, design of food with novel
texture by structuring water-water interfaces®, etc. The
particular case of colloidal particles near a flat solid
wall is prominent in the reduced-scale world of micro-
and nanofluidics for example in lab-on-chip applications,
where colloidal particles may be used to manipulate fluid
flow. The phase behaviour and structures formed in
colloidal suspensions near walls have been investigated
thoroughly using x-ray and neutron scattering techniques
with grazing incidence*, while static interactions of col-
loidal particles with solid surfaces were investigated us-
ing e. g. total internal reflection microscopy®. On the
other hand, experimental investigations of near wall col-
loidal dynamics have been lagging behind theoretical de-
velopments for a long time. The first theoretical con-
siderations of the problem of slow viscous motion of a
sphere close to a wall date back to the early twentieth
century by Lorentz® and Faxén”, while first experiments
were achieved only in the 1980’s%. Only during the last
twenty years, dynamics at interfaces has developed into
a major research branch.
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The motion of colloidal particles is known to be
hindered in the vicinity of a wall due to hydrodynamic
interactions (HI). Their effect may be probed by a num-
ber of experimental techniques, with the method of choice
depending on the system, its size and optical properties.
For a review of these methods, see Ref.'?. Evanescent
wave dynamic light scattering (EWDLS) is an important
tool to study near-interface dynamics of colloids, and it is
the only technique which is available for the investigation
of colloids with a size in the 100 nm range. In a typical
EWDLS experiment, a laser beam is totally reflected off
a glass-solution interface, and an evanescent wave is then
created as illumination source. The penetration depth of
the evanescent wave can be tuned by varying the incident
angle. Particles located in the volume illuminated by the
evanescent wave scatter light which is collected by a de-
tecting unit and passed down to a correlator to generate
the intensity time autocorrelation function (IACF). Since
the method has been devised by Lan et al.!!, it has wit-
nessed rapid development. In early attempts, EWDLS
has been applied to study translational diffusion of spher-
ical colloids in dilute solutions'2'7. With a set-up which
allows independent variation of the components of the
scattering vector ()|, (L, parallel and perpendicular to
the surface, respectively, it is possible to distinguish be-
tween the anisotropic diffusivity of colloidal spheres in
these directions experimentally'®!?. EWDLS has also
been employed to study the dynamics of stiff polymers
adsorbed to the interface?’, as well as the collective mo-
tion of end-grafted polymer brushes?"?2; near-wall diffu-
sion of a spherical particle in a suspension of rod-like
depletants®® and colloidal dumbbells?*; and rotational
diffusion of optically anisotropic spheres?>26. Notably,
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evanescent waves have also been used for near-wall nano-
velocimetry?”2%, and to probe dynamics at liquid-liquid

interfaces??.

Recent years have brought increasing interest into the
effects of confinement on collective dynamics of colloids.
To this end, EWDLS experiments have been performed
on hard-spheres suspensions with volume fractions up to
42 percent by Michailidou et al.?%3!  along with theoret-
ical developments2. On the basis of a heuristic approxi-
mation for the near wall self-diffusivity, these works sug-
gest that for a concentrated suspension, many-particle
hydrodynamic interactions are diminished at high vol-
ume fractions due to the presence of the wall, which is
there referred to as ’screening out’. In this paper we
qualitatively confirm this observation. However, we pro-
vide a more quantitative method to determine the near-
wall self-diffusion coefficients and we are able to show
the diminishment of HI affects the self-diffusivity nor-
mal and parallel to the interface to a different extent.
This becomes possible using the virial approximation for
the initial decay rate of the scattered electric field auto-
correlation function (EACF), which we described in our
earlier contribution®?. There we presented a detailed dis-
cussion of the derivation of exact expressions for the first
cumulant (i.e. initial decay rate) of the EACF in a con-
centrated suspension of hard spheres. After construct-
ing an appropriate theoretical framework based on the
Smoluchowski equation, we have presented two methods
for practical calculations of the first cumulant: the virial
expansion, and precise multipole simulations. While the
latter may be used for high accuracy calculations at any
volume fraction of the suspension, the virial expansion is
expected to correctly reproduce the experimentally mea-
sured cumulants up to moderate concentrations.

The aim of this paper is to present our results on near-
wall dynamics in a model hard-sphere system, viewed in
EWDLS experiments. For the first time we provide a
thorough analysis of the scattering vector dependence of
the first cumulant, which allows us to assess the range of
volume fractions where the virial approximation can be
used to describe the experimental data. By tuning the
suspension volume fraction and the penetration depth,
we are able to investigate the effect of HI-diminishment
for high concentrations and its anisotropy in a more con-
vincing way than proposed earlier3’3!. Comparing to
virial expansion results and simulations, we are able to
assess the validity of the former approximate scheme at
higher volume fractions. We also discuss in detail the col-
loidal near-wall self-diffusivity which may be determined
from our results in a similar way as proposed for the cor-
responding bulk property by Pusey®*, Segré?® et al and
Banchio et al?® and analysed theoretically by Abade et
al®”.

The paper is organised as follows. After a short review
of the theoretical foundations (section IT) and the details
of the numerical simulations (section IV), we describe the
details of sample preparation, the evanescent wave light
scattering setup and the data analysis in section V. The

experimental EWDLS data are compared to the theoret-
ical predictions in the result and discussion section VI
where we also confront our predictions to data published
earlier and discuss the progress we make here beyond the
state of earlier contributions3°3!. Finally we summarize
our results in the conclusion section VII.

Il. THEORETICAL DESCRIPTION

We consider an ensemble of N identical spherical par-
ticles of radius a immersed in a Newtonian solvent of
viscosity . The fluid is bounded by a planar no-slip wall
at z =0.

In EWDLS experiments, the scattered light intensity
time autocorrelation function go(¢) is measured, from
which the normalised scattered electric field correlation
function g1 (t) (EACF) is calculated. Since the scattered
electric field E4 depends on the configuration of the sys-
tem, i.e. the positions of the particles, its fluctuations
can be related to the diffusive dynamics of near-wall par-
ticles. The initial decay of the EACF is exponential in
time

<Es(t)E:(t =
(IEs()[*)

with T' being the first cumulant, similarly to bulk DLS38.
However, there are two important differences to the bulk
case. Firstly, the sample is illuminated by a non-uniform
evanescent wave. Its intensity decays exponentially with
the distance z from the wall as exp(—xz), thus restricting
the scattering volume to a wall-bounded region with a
thickness of order x~!. The particles staying closer to the
boundary receive more intensity and yield the strongest
signal. The instantaneous scattered electric field is then
given for an ensemble of N particles as?

0))

g1(t) = ~exp(~-T't) ast—0, (1)

N
E; ~ Z exp (—gzj) exp (1Q - rj), (2)
j=1

where r; is the position of the centre of sphere j, Q is
the scattering vector and z; = r; - &,, with €, being a
unit vector normal to the wall.

Secondly, the mobility of the particles is strongly hin-
dered by the presence of the wall. The boundary re-
flects the flow incident upon it, leading to an increase
of friction, and thus a slow-down of colloidal dynamics.
The effect is more pronounced for particles staying close
to the surface where their mobility becomes distance-
dependent. This information is encoded in the hydro-
dynamic mobility tensor p;’ which describes the velocity
U, the particle ¢ acquires due to the force F; applied to
the particle j

For non-interacting spheres in a wall-bounded fluid, the
tensors p;% become diagonal in particle indices, but retain



the anisotropic structure which follows from the invariant
properties of the system,

H'Luj) = dij [Hﬁ)(l —e.e;) +pule.e.l (4)

where 1 is the unit tensor, and uj’ | are scalar mobili-
ties for motion parallel and perpendlcular to the bound-
ary. In the absence of the wall, the mobility tensor be-
comes isotropic, with p = py = pg = 1/67na being the
Stokes mobility of a spherical particle. It follows from the
fluctuation-dissipation theorem that the Stokes-Einstein
diffusion coefficient Dg is given by kT g, where kg is
the Boltzmann constant, and T denotes the temperature.
The same relation holds between the many-particle dif-
fusion matrix D and the mobility tensor pu®.

Using the Smoluchowski equation formalism, Cichocki
et al.33 derived an analytical expression for the first cu-
mulant measured in an EWDLS experiment for a suspen-
sion of spherical particles,

e fe i, ©
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where the hydrodynamic function reads

I =D, [ge fz‘Q} :

H,(k, Q)=

.UoﬂA
(6)

and the wall-structure factor is given by

Q) =77 Z <eXp [
(7)

Here, nA/k is the number of particles within the illu-
minated scattering volume, with n being the bulk parti-
cle number density, and A is the illuminated wall area.
The brackets (...) denote ensemble averaging. Eq. (5)
is a generalisation of the bulk result for concentrated
suspensions®’

H(Q)
S(@)°

which corresponds to the limit of infinite penetration
depth or kK — 0.

Decomposing the scattering vector into components
parallel and perpendicular to the wall,

I = DyQ? (8)

Q=Q +QL=0Q¢ +Q.Le;, 9)

where €| is a unit vector in the direction of Q| and using
the invariant properties of the system, we arrive at the
following structure of the first cumulant

Dy

I =
S

(10)

<exp (<5 el -1,

(z: + zj)} exp [1Q - (v; — rj)]> .

[(K +QL)HL+Q|HI+ Q|HI+Q||QLHR]

where
HJ_:éz'Hw(/@Q)'ézv ( )
HH = é” . Hw(/ﬁ, Q) . é“’ (12)
Hr=e,- QIm[Hw(Ka Q)] ’ éH’ ( )
Hy(k, Q)] - €, (14)

with Im and Re standing for the imaginary and real part,
respectively. The coefficients H as well as S, may be
either evaluated numerically using the virial expansion
approach, or by extracted from numerical simulations.
Both techniques are briefly described in the course of
this work. The expressions given above are valid for an
arbitrary wall-particle interaction potential. Further on,
we restrict to hard-core interactions.

In the dilute regime, the hydrodynamic function and
structure factor have only single-particle contributions,
from which it follows that Hy = Hr = 0. The surviving
parts DoH) /Sy, and DoH /S, in Eq. (10) simplify then
to the single-particle average diffusion coefficients <D” >K
and (D), , respectively, in agreement with the notation
proposed in earlier works'” ', In the case of hard-core
sphere-wall interactions, the penetration-depth average
(in the dilute limit) reads

(.., = ﬂ/oodze_“(z_“)(. ). (15)

We may now explicitly write the first cumulant in this
case as!®19

HR:é” - 2Re

I€2
I'=Qi (D)), + (4 + Qi) (D.), . (16)

The averaged diffusivities <DH7 L)ﬁ have been calculated
as functions of xka in Ref.'".

Importantly, this is also the case in the limit of Q) —
oo or @ — oo, where only the self-parts of H,, and
Sy survive. The cumulant may then be expressed using
the self-diffusion tensor D* which is defined as the initial
slope of the mean square displacement tensor of a tracer
particle located at a height z at t = 0, viz.

1d
od (Ar(t)Ar(t)),_o (17)

where Ar(t) is the displacement vector of the tracer par-
ticle during the time ¢. The tensor D® may be expressed
in terms of the mobility matrix p*, as we have shown
in Ref.?3. Thus, the cumulant may be approximated for
sufficiently large Q) or QL by

D?(z) =

r~qi( f>n+<'f+Qi> (D), (18)

where Dﬁ | are the components of the self-diffusion ten-
sor D*(z), with the average given by

dze™g(2)Djf L (2)

< ﬁ7l>ﬁ: O /oodze_mg(Z) | "
0




and g¢(z) being the single-particle distribution function.
Its definition reads

ng(z) = N/dI‘2 .../drN Py (R), (20)

where P (R) is the equilibrium probability density func-
tion (in the presence of a wall) for the system to be at a
configuration R = {ry,...,rny}. The quantities in Eqgs.
(6), (7), and (20), are taken in the thermodynamic limit,
which has been discussed for a wall-bounded system in
Ref.?3. In a dilute system with hard sphere-wall interac-
tions, and when interactions between the particles may
be neglected, the average (19) reduces to the formula
(15).

lll. VIRIAL EXPANSION

For moderately concentrated systems, calculations of
the wall structure factor S, and the components of the
wall-hydrodynamic tensor H,, may be performed by ex-
panding them in terms of powers of bulk-particle concen-
tration n far from the wall. The procedure has already
been elaborated in great detail in Ref.?3. Thus, we refrain
here from the technical aspects, focusing on the resulting
expressions.

The small dimensionless parameter in the density ex-
pansion is the bulk volume fraction,

= 4—7Ta3n, (21)
3
instead of the concentration n. The virial expansion of
the wall-structure factor (7) reads

Sw(r,q) = S (k) + ¢S (k,q) + O(4%).  (22)

The coefficient S™) and the self-part of S®) may be found
analytically as as

S = g=ra, (23)

5(2) 2e—f€(1

self — (Iid)?’ [6 - 3(5d)2 + Z(Hd)?) - 6€_Hd(]. + Kd)}

(24)

with the particle diameter d = 2a. The distinct part
of S has to be evaluated numerically. The analogous
virial expansion of the wall hydrodynamic tensor requires
a cluster decomposition of the mobility matrix?, and has
a similar form

H,(k, Q) = HY (k) + ¢HP (£, Q) + O(4%).  (25)

In this case in order to obtain the terms H(!) and H(®
we need the one- and two-particle cluster components of
the mobility matrix. Explicit expressions for S(1):(2) and
H®:(2) are rather complex, and have been given explic-
itly in Ref.33. To calculate them, the Hydromultipole
code, implemented according to Ref.*®, has been used.
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Inserting the expansions (22) and (25) into Eq. (5), we
find the following virial expansion for the first cumulant

L =TW(k, Q)+ ¢I'P(k, Q)+ 0O(¢%),  (26)
where the factor
R ) HD R ]
P(r,Q) = Dy [Se. Q| = 58 +iQ]. (27)

is the infinite dilution prediction, given explicitly by Eq.
(16), while the second term reads

H® 51 _ gD @) r

T, Q) = Do [56: ~iQ) = oy

2

(28)
These virial expansion results, together with simulations
that are also valid at high concentrations, will be com-
pared to experiments in section VI. The relations above
may be transformed using Eqs. (11)—(14) and expressed
in terms of the tensorial components of the hydrodynamic
function H,,. The subsequent section contains the details
of simulations.

IV. NUMERICAL SIMULATIONS

To determine the equilibrium wall-structure factor (7),
the hydrodynamic functions (11)—(14), and the first cu-
mulant (5), we have carried out a series of numerical
simulations for a wall-bounded hard-sphere system with
particle volume fractions in the range 0 < ¢ < 0.3. Key
elements of our numerical techniques are summarized be-
low; a more detailed description is provided in our previ-
ous paper>?.

Since hydrodynamic-interaction algorithms are un-
available for a single-wall system with periodic-boundary
conditions, the calculations were performed for a suspen-
sion confined between two well separated parallel walls.
The equilibrium particle distributions were determined
using a standard Monte—-Carlo (MC) algorithm, and the
multiparticle mobility matrix p;; was evaluated using
the periodic version*® of the Cartesian-representation
algorithm* 3 for a suspension of spheres in a parallel-
wall channel.

Most of our calculations were carried out for a wall
separation h = 13d (where d is the sphere diameter). By
comparing results for different values of h, we have es-
tablished that the above wall separation is sufficient to
obtain accurate one-wall results, provided that the par-
ticle volume fraction is adjusted for the excess particle
density in the near-wall regions.

To evaluate the required volume-fraction correction,
we constructed the equilibrium ensemble for a reference
system with a large wall separation h = hg and the as-
sumed particle number density n in the middle of the
channel. The excess particle number per unit area, ney,
was determined using the formula

N = Ahn + 2Any, (29)

-



where N is the number of particles in the periodic cell,
A is the wall area, and h = hg is the wall separation in
the reference system. The particle number N = N(h) for
channels with different widths & is obtained from expres-
sion (29), with known reference values of n and 7.

Since the evanescent wave scattering occurs only near
the illuminated surface, and the hydrodynamic field as-
sociated with the periodic forcing ~ exp(iQ - r) decays
on the length scale [ ~ Qu_l with the distance from the
wall, the effect of the second wall of the channel on the
multiparticle mobility is small*>. We find that for the
evanescent wave parameters corresponding to our exper-
iments, the effect of the second wall on the hydrodynamic
functions (11)—(14) is smaller than the statistical simu-
lation inaccuracies.

The hydrodynamic tensor H,, was determined as an
average over M independent MC trials. To obtain sta-
tistical accuracy of the order of 2%, we have used M in
the range from M = 30 for large systems with N =~ 10°
particles to M = 400 for N = 200 particles.

V. EXPERIMENTAL DETAILS
A. Hard-sphere sample and preparation

As model systems for the EWDLS experiments, we
used two batches of poly (methyl methacrylate) (PMMA)
particles, named ASM470 and ASM540 in the follow-
ing, which were purchased from Andrew Schofield, Uni-
versity of Edinburgh. The spherical particles are cov-
ered with a thin poly-12-hydrostearic acid layer to sta-
bilize them against aggregation in organic solvents. To
allow scattering experiments at high volume fractions
the particles were transferred from a cis-decaline sus-
pension (as received) to a refractive index matching cis-
decaline/tetraline mixture by spinning and re-dispersing
them. The solvent used had a cis-decaline mass fraction
of w = 0.2, a refractive index of no = 1.498 and a viscos-
ity of n = 2.658 mPas at temperature of T' = 298 K as
measured using an Abbemat RXA156 and an Automated
Microviscometer AMVn from Anton Paar, Graz, Austria.
To determine the particle radius, we employed standard
Dynamic Light Scattering (DLS) measurements. The
recorded time autocorrelation functions of the scattered
intensity g¢2(t) (IACF) were analysed by three differ-
ent methods, namely cumulant analysis, stretched expo-
nential fitting and inverse Laplace transformation. The
three methods yield hydrodynamic radii of Ry = 98 nm
(ASM470) and Ry = 144 nm (ASM540) with a varia-
tion of less than 1 nm in both cases. These values are
assumed to be identical with the hard sphere particle ra-
dius a in the following. Further, the size distributions
obtained from inverse Laplace transformation showed a
full width at half maximum of less than five percent. The
negligible size polydispersity is confirmed by the observa-
tion that the suspensions crystallize at sufficiently large
particle volume fractions.

Prior to the scattering experiments, the suspensions
were filtered through PTFE syringe filters with a nomi-
nal pore size of 1 pum directly into the measurement cells
to minimize parasitic scattering from dust particles. To
reduce the number of necessary alignment processes of
the EWDLS measuring cell, this was filled with the hard
sphere suspension of highest volume fraction, and further
dilution was achieved by removing a part of the sam-
ple and replacing it by pure solvent. The exact volume
fraction was determined a posteriori by drying a 250 ul
aliquot and determining the mass of the remaining par-
ticles. Further, the EWDLS sample cell was equipped
with a small magnetic stirrer bar with which the samples
were homogenised before each angular scan to minimize
the influence of particle sedimentation.

B. EWDLS set-up

EWDLS experiments were performed with a home-
built instrument, based on a triple axis diffractometer
by Huber Diffraktionstechnik, Rimsting, Germany, which
has been described in detail elsewhere'®. The setup is
equipped with a frequency doubled Nd/Yag Laser (Ex-
celsior; Spectra Physics) with a vacuum wavelength of
Ao = 532 nm and a nominal power output of 300 mW as
a light source. Scattered light is collected with an opti-
cal enhancer system by ALV Lasververtriebsgesellschaft,
Langen, Germany, which is connected to two avalanche
photo diodes by Perkin Elmer via an ALV fiber splitter.
The TTL signals of the diode were cross-correlated us-
ing an ALV-6000 multiple tau correlator. The scattering
geometry and the definition of the scattering vector and
its component parallel and normal to the interface are
sketched in Fig. 1. The sample cell (custom-made by
Hellma GmbH, Muellheim, Germany) consists of a hemi-
spherical lens as the bottom part, made of SF10 glass,
with an index of refraction n; = 1.736 at A\g = 532 nm.
The hard sphere suspension is contained in a hemispher-
ical dome sitting on top of the lens. The primary beam
is reflected off the interface between the glass and the so-
lution, by that creating an evanescent wave in the the so-
lution which is used as the illumination for the scattering
experiment. The evanescent wave has a wave vector k.
pointing in the direction of the reflected beam’s projec-
tion onto the reflecting interface. The scattering vector
is given by Q = ks — k., where the scattered light wave
vector, K, is defined by the two angles 6 and «, which
describe the position of the detecting unit.

The inverse penetration depth of the evanescent
wave depends on the angle of incidence «; as
k/2 = 2m\/(nisina;)? —n3/Xo. The magnitudes

of the scattering vector components parallel Q) =

21n2v/1 + cos? o, — 2cosf cos . /A9 and normal Q; =
2mng sin a,-/Ag to the interface can be varied by chang-
ing € and «,.. In a typical EWDLS experiment, we record
series of correlation functions at fixed Q1 varying Q)
(Q)-scan) or vice versa ()L -scan).



Figure 1. Scattering geometry in EWDLS setup with a spher-
ical geometry. Left: For the definition of angles and wave vec-
tors. Right: For the illustration of the primary beam being
back reflected at exit of the hemispherical lens to air, thereby
creating a second evanescent wave.

C. Details of data analysis

The analysis of the scattered intensity time autocorre-
lation function g2(¢) from EWDLS is much less straight-
forward than in conventional bulk dynamic light scatter-
ing (DLS), mainly for two reasons. The first major com-
plication occurs from the fact that a simple quadratic
Siegert relation between g2(t) and the correlation func-
tion of the scattered field g1 (¢) which is usually assumed
in DLS does not apply in most cases in EWDLS. As de-
scribed in section V B, the incident laser beam is totally
reflected from the glass/solution interface in EWDLS. As
this interface is always corrugated, it acts as a static scat-
terer which in general contributes significantly to the ob-
served signal. Therefore a mixed homodyne/heterodyne
detection scheme has to be taken into account, and the
generalized Siegert relation®*

92(t) = 14 2C151 (1) + (C201(1))? (30)

for the conversion from gs(t) to g1(¢) has to be applied.
Here, C; = 1 —+/1— A and C; = Cy — O3, with A be-
ing the experimental intercept of g2(¢). Further, in many
cases EWDLS intensity-autocorrelation functions exhibit
a very slow decay at large times. The physical origin of
this slow relaxation is not clear yet. While Garnier et
al. conjecture that it is due to a slow reversible adsorp-
tion of the particles to the wall due to van der Waals
attraction'?, Steffen® and Lisicki et al.!” argue that it
is also caused by the unavoidable stray-light from sur-
face defects, which is scattered by colloids in the bulk of
the suspension into the detector. Since these slow modes
are in general well separated from the relaxation rates of
interest, we approximate their contribution by an addi-
tional baseline B; to g (¢).

Thus, to determine the initial slope T" of gy (t), which
is related to the dynamic properties of interest, we chose
to non-linear least squares fit the experimental correla-
tion functions to Eq. (30), where g;(t) is modelled as a
decaying single exponential function in time

G1(t) = (1 — By)exp {~T't} + By. (31)

According to Egs. (30) and (31), Bj is related to Ba,
the baseline of ga(t), by By = /(C1/C3)2 + By/C3 —
C1/C3. Consequently there are three fit parameters A,
I" and Bs. Since an erroneous baseline value will lead to a
deviation of I" from its true value, due to a normalization
error, we fitted go(t) repeatedly, starting with a number
of data points, N,. After a single fit had converged, two
data points at the long time end of go(t) were removed,
reducing N, by two, and the remaining data points were
fitted again. This procedure was repeated until N, <
20. With this technique it was possible to identify a
limited range of N,’s where the values of By and I' are
essentially independent of IV,. The I' values determined
in this range are considered to be the initial slope or the
first cumulant of g1 (t). Where error bars are presented
with values of I', they reflect the standard deviation of
repeated measurements.

D. Effect of back-reflection

An additional difficulty in EWDLS stems from the fact
that, different from bulk DLS, it is not possible to apply
a refractive index-matching batch around the sample cell.
Therefore the primary beam will be back-reflected at the
exit from the semi-spherical lens with a reflectance R.
In the present case the semi-spherical lens has a refrac-
tive index of m; = 1.736, which leads to a reflectance
of R = 0.072 according to Fresnel’s equations®®. As
sketched in Fig. 1, the back reflected beam will also be
reflected off the glass sample interface, thereby causing a
second evanescent wave with wave vector krp = —kp,
where kp is the wave vector of the evanescent wave
caused by the original primary beam. In what follows,
the subscript p will refer to the evanescent wave caused
by the primary beam, while p will be associated with the
evanescent wave due to the back reflected beam. The lat-
ter gives rise to a second scattering process, for which the
in-plane scattering angle is fg = 180 — fp. Consequently
the scattering vector components parallel to the interface
are given by

2
Qi = )\—ﬂ-ng\/l + cos? o, — 2 cos . cos b, (32)
0

where i € {R, P}. Differently, the component normal to
the interface remains unchanged in the two cases

. 2
QL,RZQL,P:QL:TOWSIHO‘T' (33)

The normalized field correlation functions in such a sit-
uation should be considered as a weighted sum of two

individual correlation functions from two scattering ex-
periments

P(QP) gP(t)—i-RP

o P(@Qr)
95 =BGy + RPGR)" 7

R
(Qp) + RP(Qr)™"
(34)




where Qp = ﬁ’P-FQi, Qr = Qﬁ,R"‘Qi and

P(Q;) is the particle scattering factor of a sphere.

In evanescent illumination, the scattering factor is
affected by the non-uniform character of the elec-
tric field and becomes penetration-depth dependent.
For an optically uniform particle, the scattering am-
plitude in the evanescent field reads B(Q,x) =
+ [, exp[(iq+ %é.) -r|dr. Thanks to the high sym-
metry, for a spherical particle of radius a, B(Q, k) can
be explicitly calculated as

ca cosh(ca) — sinh(ca)
(ca)? ’

BKL@=3{ (35)

\/fQ2 —iQ1k+ %2. The particle scattering
factor is then found as P(Q) = |B(Q, x)|>.

In order to illustrate the effect of back-reflection for
a dilute suspension, we analyse Eq. (34) using the field
correlation function given by the first two cumulants:

with ¢ =

. 1
gi (t) ~ exp (—Fit + 2F27it2> s (36)
with the first cumulant I'; given in the dilute regime by
Eq. (16), and the second cumulant can be calculated as

[y = — T3, (37)

where the second moment «; is defined as'”
4
_h 2 4 K 2
ViQm<DOK+(QLHJ<DQH (38)
2 o K
+2QLi(QL—4)<DrDLh
/i2 2

#rQ (DD, + (@24 ) (01)7)

Here D, = L[D,(2)]. The resulting IACF has to be
calculated from g (t) using the generalized Siegert rela-
tion, Eq. (30). The averaged diffusion coefficients, which
are required for the calculations of I" and I's at a given
value of ka were calculated in Reference!”.

The calculated model correlation functions are now
evaluated according to the same analysis procedure as the
experimental data to obtain initial slopes I' as a function
of Q. In the top part of Fig. 2 we compare initial re-
laxation rates of model correlation function, which were
calculated in this way at infinite dilution. The model
calculations coincide perfectly at low scattering vectors.
However, those data, which were calculated taking into
account the effect of back-reflection, strongly decrease at
larger scattering vectors. Here and in the following, we
will present the results in dimensionless form, i. e. re-
laxation rates in units of Dg/d? and scattering vectors
in units of 1/d where Dy is the particles’ bulk diffusion
coefficient at infinite dilution.

For a concentrated suspension, both I'p and I'p may
be calculated from the virial expansion and from simu-
lations. The first cumulant of the EACF including the
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Figure 2. Top: Result of model calculations for zero particle
density without (dashed dotted line) and with (full line) tak-
ing into account the effect of back-reflection, showing a consid-
erable difference in the high-Q range. Bottom: Comparison of
experimental data obtained at ¢ = 0.175 (full circles) to sim-
ulations (line with triangles) and and virial approximations at
the same concentrations with (full line) and without (dashed
dotted line) taking into account the effect of back reflection.
The experimental parameter Q1 d = 3.15 and kd = 2.08 are
the same for both graphs.

back-reflection effect may thus be written from Eq. (34)
as

P(Qr)
(Qp) + RP(Qr) "
(39)
again without any free parameter. In the bottom part of
Fig. 2 the same experimental data are compared to simu-
lation results and to virial calculations for ¢ = 0.175. In
both, the virial calculations and the simulations, the ef-
fect of back-reflection can be included as described above.
It turns out that up to Q) d ~ 7 the first term in Eq. (39)
dominates, so that I' =~ I'p, and the back-reflection ef-
fect need not be taken into account. However, in the
high-@ range, the back-reflection is essential to correctly
reproduce the experimental data, as seen in Fig. 2. We
are therefore led to conclude that the first cumulants
obtained experimentally at high in-plane angles, i. e.
0 > /2 should be considered with extreme care and po-
tentially discarded when comparing experimental data to
theoretical predictions and simulations.

r— P(Qp)
P(Qp) + RP(QRr)

Ip+ R



VL. RESULTS AND DISCUSSION

To illustrate the influence of the particle volume frac-
tion, we display experimental data of I' versus the scat-
tering vector from @Q-scans with ASM470 suspensions
at different volume fractions in Fig. 3. It is obvious
that at high @) the experimental data deviate from the
virial approximation displayed as full lines in Fig. 3 for
all concentrations, which is fully explained by the effect
of back-reflections, discussed in section V D. Apart from
this high-Q) deviation, the virial approximation predicts
the experimentally observed at data correct, even at a
sphere volume fraction of almost 25 percent.

T T T T
14+ Q-scan at Q,d=3.0, xd=2.6 |
12 = $=0.04
o $=0.20
10 A ¢=024 ]

——

rd*/D

0 L L L L
0 5 10 15 20 25

Q)"

Figure 3. Relaxation rates versus parallel component of the
scattering vector. Symbols represent experimental data ob-
tained from ASM470 (Ryx = 98 nm) suspensions at different
volume fractions at Q1 d = 3.0 and kd = 2.6, lines are pre-
diction by the virial approximation and open symbols refer to
data points which are obscured by the back-reflection effect
discussed in section VD

The same degree of agreement between virial approx-
imation and experimental data is observed in @ -scans,
which are shown in Fig. 4. Here we display the ex-
perimental data obtained from the ASM540 suspension
with ¢ = 0.175 performed at the same penetration depth
kd = 2.08 but with extremely different values of paral-
lel scattering vector component, i. e. Q) = 1.83 and
Q| = 5.7. Together with these data we also present the
results of BD-simulations which were obtained for a set
of similar parameters, i. e. Qd = 1.83, kd = 2.08 and
¢ = 0.15. At low @), the results from all three methods
agree very well, and at large @, where no simulation
data are available, the agreement between experiment
and virial approximation is also within the experimental
€error.

Only at the highest volume fraction (¢ = 0.3) for which
experimental data and simulations are available there is
a significantly better agreement between simulation data
and experiments than between virial approximation and
measured data. This is shown in Fig. 5 where we display
data from a @) scan, obtained from an ASM540 suspen-
sion with ¢ = 0.3 at Q1 d = 2.36 and kd = 2.08 together
with the corresponding predictions. At this high volume

T
xd =2.08

40 - O experiment: Q d=5.7 q
= experiment: Q”d:z.lB
virial: Qud=5'7
30+ virial: Q d=2.18 8

—-—- simulation: QHd=1.8

s ¢

15 20

10 2
Q)

Figure 4. Relaxation rates versus normal component of the
scattering vector. Symbols represent experimental data ob-
tained from an ASM540 (Ry = 144 nm) suspension with
¢ = 0.175 at kd = 2.08 at different values of the parallel
scattering vector component, i.e. Qd = 5.7 (open circles)
and Qd = 2.18 (full squares). Full lines are predictions by
the virial approximation for the same experimental parame-
ters and the dashed dotted line refers to simulation results
obtained for Qd = 2.18 and xd = 1.8.

fraction the deviation between virial approximation and
simulations is comparable or even larger than experimen-
tal error bars.

T T T T T

Q-scan, Q,d=2.36, kd=2.08, ¢=0.3

20+ .
® experiments

—v— simulations
—— virial approximation

10

2
rd’/p,

0 10 20 30 40 50

Figure 5. Relaxation rates versus parallel component of the
scattering vector. Symbols represent experimental data ob-
tained at Q.d = 2.36 and kd = 2.08 from an ASM540
(Rm = 144 nm) suspension with ¢ = 0.30. The full lines are
prediction by the virial approximation and the line with tri-
angles refers to simulation results. Experimental data points,
which are obscured by the back-reflection effect discussed in
section V D, are omitted in this graph.

It is interesting to investigate the limit of large scatter-
ing vectors, where self-diffusion is probed. As discussed
in section VD, the relaxation rates determined at the
largest scattering vectors (and thus the largest angle 6)
are not reliable. However, as first suggested by Pusey>*,
self-diffusion in bulk can be probed approximately at a
wave vector Q* such that S(Q*) = S(Q — oo0). This
observation has been supported theoretically by Abade
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Figure 6. The wall structure factor S, (Q) and the hydrody-
namic function H)(Q) in a Q-scan at fixed Q1 d = 2.36 and
rd = 2.08 for a selection of volume fractions. Both functions
are normalised by their self-values at @ — co. At (Q)d)* ~ 53
we find an isosbestic point for both functions (marked by the
dotted vertical line), suggesting that the self-diffusion coef-
ficients may be determined from the data collected in the
vicinity of this point. The statement also holds sway for other
components of H.

et al*®. It is expected that at this point the distinct
structure factor vanishes, and likewise does the distinct
hydrodynamic function, so that only the self-parts con-
tribute to the dynamic properties at this point. In the
bulk case, this statement was later corroborated by ex-
tensive numerical simulations3®3%. Segré et al®® stated
that in a bulk suspension of hard spheres, this point is
found for Q*a ~ 4.0, where S(Q*a) = 1, to the right
of the main peak of S(Q). As shown by Banchio et
al®?, bulk structure factors of hard sphere suspensions
with different volume fractions show an isosbestic point
at S(Qa = 4.02) = 1 and at the same value of Qa
the corresponding hydrodynamic functions attain their
high-Q limit. Michailidou et al.? used the EWDLS ex-
perimental data at Qa = 4.58 arguing that this should
not be too far from @Q*a, thus providing a good esti-
mate of the near-wall self-diffusion coefficient.Here, we
propose a more thorough way to determine the particles’
near-wall self-diffusion properties which follows the same
line of arguments as discussed for bulk systems above.
We note here that in EWDLS both the structure fac-
tor and the hydrodynamic function become penetration-
depth dependent3?. However, upon re-scaling by their
asymptotic values, both S,,(Q) and the components of
H,,(Q) exhibit an isosbestic point at which they attain
their asymptotic values. We compute them using the
virial expansion, and plot the results in Fig. 6. Like for
bulk experiments, first cumulants obtained at the Q) L a
values of the isosbestic point provide a good approxima-
tion for the near wall self-diffusion coefficients.

However, as the isosbestic point is found approxi-
mately at Qﬁd = 7.3, we could determine experimental

data of the first cumulant at this scattering vector only
from the ASM540 suspensions. For the smaller ASM470
particles the data at Qﬁd are in the range in which it
is distorted by the back-reflection effect, and thus it may
not be used to experimentally determine the self-diffusion
coefficient parallel to the wall (Dj).. Further, the ex-
perimentally accessible range of () d is in all cases much
smaller than @ d such that we can not get reliable exper-
imental information on the self-diffusion properties nor-
mal to the wall.

In Fig. 7, we present the normalized ratios of (Dj) over
the bulk self-diffusion constant. The latter was calculated
according to the semi-empirical formula®’

Dj(¢)
Dq

=1-1.8315¢(1 4 0.12¢ — 0.65¢?), (40)

which includes two virial coefficients due to Batchelor®!
and Cichocki et al.*”, and is expected to be accurate up
to ¢ ~ 0.45. Its validity has been extended by Riest et
al.%% up to ¢ = 0.5 by modifying the coefficient of the last
term to —0.70. We compare experimental data to pre-
dictions by virial approximation and simulations. The
theoretical values for (D), were determined by linearly

extrapolating the high-Q) range of the I' vs Qﬁ depen-

dence, making use of Eq. (18). Our experimental data
confirm the trend predicted by both methods and show
that the near-wall dynamics approach the bulk behaviour
at high particle volume fractions. With this observation
we qualitatively confirm the earlier results by Michaili-

dou et al.3%3!. Since the virial approach allows quick
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Figure 7. Comparison of experimental data (full circles) ob-
tained from ASM470 (Ry = 98 nm, ¢ = 0.1) and an ASM540
(Ra = 144 nm), virial calculations (full line, the dashed dot-
ted line represents virial calculations in a range of volume
fractions where the approximation is not considered valid)
and simulation results (triangles) for the self-diffusion coef-
ficient parallel to the wall. Experimental parameters are at
Q.1d=2.36 and kd = 2.08 for all cases.

calculation of T" vs Qﬁ data, we can easily predict near

wall self-diffusion coefficients for a variety of parameters,
by using the slope in the high @-range. We use this



possibility to quantitatively compare self-diffusion prop-
erties predicted by the virial approximation to the data
by Michailidou. For this purpose we calculate (Dﬁ>,.6 and

(D7)« for a series of volume fractions and average them
as (Dg)x = ((Dj)x + (D71)x)/2 according to their ex-
perimental procedure. Their choice of Qa = 4.58 is de-
termined by the fact that they measured with a geom-
etry which corresponds to # = 0° and «, = 90°, thus
at a scattering vector which makes an angle of 45° with
the interface. In this configuration the parallel contribu-
tion and the normal contribution to self-diffusivity are
weighted equally in the experiment. The comparison in
Fig. 8 shows that the prediction calculated by a 1 : 1
weighing of the normal and the parallel component are
deviating systematically from the experimental data in
the range of volume fractions, where the virial approach
should hold. Only at very high volume fractions, where
the virial approximation is certainly not valid the experi-
mental data appear to agree with it. This is probably due
to the effect that first cumulants obtained at Qa = 4.58
are not a good approximation for the self-diffusion prop-
erties. Actually simulations of bulk properties®® show
that even at moderate volume fractions, both the struc-
ture factor and the hydrodynamic function are signifi-
cantly different from their value at Q*a = 4.02. For
the sake of completeness we also show predictions for
the self-diffusion constants in Fig. 8, which are averaged
according to (D)« = (2(Dj)x + (D1)x)/3. These agree
reasonably well with the earlier experimental data, which
is probably a coincidence.
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Figure 8. Comparison of virial predictions for the self-

diffusion coefficient with experimental data by Michailidou
et al®® measured at kd = 0.89. The predicted data for normal
and parallel contribution were averaged as indicated in the
legend.

Nevertheless, we confirm the earlier conjecture that
particle-particle hydrodynamic interactions in the pres-
ence of a wall are diminished at high volume fractions
as compared to bulk dynamics. However, here we can
show that effect influences the diffusion parallel to the
wall and normal to the wall differently. As discussed in
Ref.33, the anisotropic self-diffusion coefficients have the
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following virial expansion

<D|$\"J->,g —a

b = Gl (k) + 0GP, (xd) + O(6°). (41)

The coeflicients of this expansion have been presented

Table I. The coefficients of the virial expansion of anisotropic
self-diffusivity, defined in Eq. (41). The decay of the L ele-
ments is faster with increasing penetration depth, indicating
that both single- and two-particle mobilities are hidered more
for motion in the direction normal to the interface.

kd GV (kd) G (kd) G (kd) G (kd)
0 1.0 -1.832 1.0 -1.832
0.2 0.781 -1.371 0.884 -1.535
0.5 0.644 -1.117 0.810 -1.357
1.0 0.516 -0.871 0.736 -1.160
2.0 0.383 -0.588 0.654 -0.903
5.0 0.227 -0.250 0.547 -0.550

graphically in Fig. 3 of Ref.?>. Here we have tabulated
them for a selection of penetration depths in Table I. The

coeflicients have a clear interpretation: Gl(llj- refers to

(2)
[
bears information on the effect of the wall on two-particle

interactions. All coefficients decrease with increasing rd,
but the effect is stronger for the motion perpendicular to

single-particle dynamics at infinite dilution, while G

the wall. The behaviour of G ‘(llj_ follows from the single-

particle physical picture!”, in which motion normal to
the interface is suppressed more than in the parallel di-
rection. This is due to the fact that perpendicular mo-
tion generates ’squeezing’ flows which lead to stronger
hydrodynamic resistance as compared to ’shearing’ flows
induced by parallel motion®?. The particle-particle HI
are affected in the same way, which explains the faster
decay of Gf) as compared to G|(|2). Thus, the coeffi-
cients corresponding to the normal motion are affected
more strongly. However, the near-wall self-diffusivity is
frequently written in the form

<DHL> = 170[H,L(I<Ld)¢+..., (42)
with <DH,L>H = DOG‘(ﬁl(nd). The coefficient
G'? (kd)
[
aH’J_(K/d) = —, (43)
G}, (rd)

becomes a result of an interplay between the single- and
two-particle effects. In Fig. 9 we show normalized ra-
tios of (Dj). and (D7), over the bulk self-diffusion as a
function of volume fractions for two different penetration
depths of the evanescent wave. The curves are calculated
using the virial approach up to a volume fraction of 25%.



First we observe that the self-diffusion coefficient (aver-
aged over the illumination profile) normal to the wall is
smaller than that parallel to the wall and that both com-
ponents increase with penetration depth x~!, similarly
to the components of the near-wall diffusion coefficients
at infinite dilution. The variation of these ratios over
the range of volume fractions covered is indicated by the
numbers on the far right of Fig. 9, which are the ratios
of the values obtained at ¢ = 1072 and ¢ = 0.25. It

is important to note, that although <Dﬁ> /D; varies
K

stronger with increasing ¢ as compared to (D7), /Dy,

this does not imply that the wall diminishes the particle-

particle HI more in the parallel direction, as we discussed
above.

<Di>K: xd=2.08 —-—-xd=1.30
28— ——————— <D>:

xd=2.08 —-—-xd=1.30

Y| 123
1.16

Figure 9. Calculated data for the self-diffusion coefficients
parallel and normal to the wall for different penetration
depths: kd = 2.08 full lines and kd = 1.3 dashed dotted lines.
The numbers on the far right represent the ratio of the values
at ¢ = 1072 over ¢ = 0.25, which are an indication that the
diminishing of hydrodynamic interaction is more pronounced
for particle motion parallel to the wall than normal to the
wall.

VIl. CONCLUSIONS

In this paper we describe our EWDLS investigations of
the near wall dynamics of colloidal hard spheres in sus-
pensions with volume fractions up to ¢ = 0.3 We thor-
oughly compare experimental data for the dependence of
the first cumulant on the scattering vector components
parallel and normal to the interface to corresponding pre-
dictions based on a second order virial approximation and
to simulation results, where the full hydrodynamic inter-
action is taken into account. Up to volume fractions of
about fifteen to twenty percent we find perfect agreement
between the three methods. Above this range, the predic-
tions by the virial approach deviate discernibly from the
simulation data®3, however this deviation is still in the
range of experimental error bars. Therefore we conclude
that the virial approach provides a good approximation
for the prediction and analysis of experimental data up
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to a volume fraction of about 25%, which is much less
time consuming and elaborate than full scale simulations.
Only at ¢ > 0.3 the virial approximation is clearly not
anymore able to capture the details of the dependence of
the first cumulant on the scattering vector. Further we
introduce a new method to assess the particles’ near wall
self-diffusivity from experimental data. This method fol-
lows the same line of argument, which is used to assess
bulk self-diffusivity in cases where the limit of sufficiently
high scattering vector cannot be reached experimentally.
We identify an isosbestic point of the near-wall struc-
ture factors right to the first maximum, where near wall
structure factor and hydrodynamic function attain their
asymptotic values. Diffusion data measured at the scat-
tering vector of the isosbestic point are a good approxi-
mation for the self-properties. Comparison of experimen-
tal data with predictions, based on the virial approach
and on simulations, show that this method yields bet-
ter estimates of the self-diffusivity as methods used ear-
lier. Finally we confirm earlier data which show that the
diminishment of particle-particle hydrodynamic interac-
tions due to the presence of the wall is less pronounced
at high volume fraction compared to bulk dynamics. Be-
yond that, we show (see Table I) that the observed effect
is weaker for the mobility parallel to the wall as com-
pared to motion in the normal direction. In conclusion,
with the virial approximation, we have a method at hand,
which qualitatively supports earlier data, but provides
significant further insight into the near wall dynamics of
colloidal hard spheres. This is especially important since
this approach can be easily adopted to systems with long
ranging static interaction, providing a quick and non-
costly method for the prediction and analysis of EWDLS
results obtained from e. g. charged colloids.
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