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Exact calculations of a quasibound state in the K̄ K̄ N system
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Dynamically exact calculations of a quasibound state in the K̄K̄N three-body system are performed using
Faddeev-type AGS equations. As input two phenomenological and one chirally motivated K̄N potentials are
used, which describe the experimental information on the K̄N system equally well and produce either a one-
or two-pole structure of the �(1405) resonance. For the K̄K̄ interaction separable potentials are employed
that are fitted to phase shifts obtained from two theoretical models. The first one is a phenomenological K̄K̄

potential based on meson exchange, which is derived by SU(3) symmetry arguments from the Jülich ππ − K̄K

coupled-channels model. The other interaction is a variant of the first one, which is adjusted to the KK s-wave
scattering length recently determined in lattice QCD simulations. The position and width of the K̄K̄N quasibound
state is evaluated in two ways: (i) by a direct pole search in the complex energy plane and (ii) using an “inverse
determinant” method, where one needs to calculate the determinant of the AGS system of equations only for real
energies. A quasibound state is found with binding energy BK̄K̄N = 12–26 MeV and width �K̄K̄N = 61–102 MeV,
which could correspond to the experimentally observed �(1950) state.
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I. INTRODUCTION

It is generally accepted that the K̄N interaction in the
isospin-zero state is strongly attractive and produces a qua-
sibound state, which shows itself as the �(1405) resonance in
the lower π� channel. This fact led to the conjecture that a
quasibound state could also exist in the K̄NN three-body
system. The first paper on the topic appeared more than
50 years ago [1], but it was Ref. [2] which aroused a large
interest in the question of the existence and properties of such
a state. It triggered many theoretical papers devoted to the
K−pp system and in the sequel also experimental efforts.
However, so far the experimental results neither agree with
theoretical predictions nor between themselves. Indeed, the
only point on which all theorists agree, is that a quasibound
state in the K−pp really exists. But the actual predictions for
its binding energy and width vary over a fairly wide range.

A study with the aim to find a similar quasibound state in
the K−d system, which differs from the K−pp by quantum
numbers (JP = 1− versus 0−) gave negative results [3].

Another possible candidate for a three-body system with a
quasibound state is K̄K̄N . In contrast to K̄NN , however,
it contains the K̄K̄ interaction, which is expected to be
repulsive [4,5]. Thus, the principal question is whether the
repulsion is strong enough to exclude the possibility of a
quasibound state formation in the system. A first exploratory
investigation of the K̄K̄N system was presented in Ref. [6].
In this variational calculation based on a simplified two-body
input indeed a bound state was found.

In the present paper we report on the first dynamically
exact calculation of a quasibound state in the K̄K̄N sys-
tem. We solve the Faddeev-type Alt-Grassberger-Sandhas
(AGS) equations with two phenomenological and one chirally
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motivated K̄N potentials. The potentials describe experi-
mental data equally well and produce a one- or two-pole
structure of the �(1405) resonance. They were originally
designed to address the influence of the number of poles of the
resonance on various properties of the K̄N and K̄NN systems
(quasibound states in K−pp and K−d, K−d scattering and 1s
level shift and width of kaonic deuterium), an issue which
was of relevance for the strangeness physics community (see,
e.g., [7–9]).

There is no experimental information on the K̄K̄ system.
However, recently lattice QCD calculations of the KK s-wave
scattering length have become available [10,11] and we take
those results as a guideline for constructing the K̄K̄ potential.
The published scattering lengths are small and negative
and, thus, suggest a weakly repulsive interaction. On the
phenomenological level one can exploit the fact that the K̄K̄
(or KK) interaction is related to the one in the K̄K system via
SU(3) flavor symmetry. For the latter several potential models
can be found in the literature. We adopt here the ππ − K̄K
coupled channels model developed by the Jülich group [12,13]
as a starting point for generating another K̄K̄ interaction. This
model, derived in the meson-exchange framework, predicts
a somewhat more repulsive K̄K̄ interaction. In the actual
calculation separable representations are employed, and we
construct the K̄K̄ potentials in such a way that they reproduce
the phase shifts of the Jülich K̄K̄ meson exchange model
and the scattering length of the lattice QCD calculation [11],
respectively.

The position and width of the K̄K̄N quasibound state
is evaluated in two different ways. First, we perform a
direct search for the three-body pole in the complex energy
plane. To do this we find the solvability condition of the
homogeneous AGS equations. In addition we employ the
“inverse determinant” method proposed and successfully used
in Ref. [14] for the K−pp system. It consists in the calculation
of the inverse determinant of the kernel of the AGS equations
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and fitting a Breit-Wigner-type function to the peak in its
modulus squared.

The paper is structured in the following way: The three-
body equations, which were derived and solved, are described
in the next section. The two-body interactions, being an input
for the AGS equations, can be found in Sec. III. The obtained
results are presented and discussed in the Sec. IV, while the
last section contains our conclusions.

II. AGS EQUATIONS

The K̄N system is coupled to other channels, in particular,
to the π� system, where the �(1405) resonance is observed.
Since it was shown in [15] that a proper inclusion of the π�
channel is important for the K̄NN system, we assume that
the same is also the case for K̄K̄N . The three-body Faddeev-
type AGS equations for the K̄K̄N system with coupled K̄π�
channel are of the form,

U
αβ
ij = (1 − δij )δαβ

(
Gα

0

)−1 +
3∑

k=1

3∑
γ=1

(1 − δik) T
αγ
k G

γ
0 U

γβ
kj ,

(1)
where the unknown operators U

αβ
ij describe the elastic and

rearrangement processes jβ + (kβiβ) → iα + (jαkα). The op-
erator Gα

0 in Eq. (1), which is diagonal in the “particle” indices,
is the free three-body Green’s function. The Faddeev partition
indices i,j = 1,2,3 denote simultaneously an interacting pair
and a spectator particle, while the “particle” indices α,β =
1,2,3 denote the three-body channels. The partition and
“particle” channel indices denoting the two-body subsystems
are summarized in Table I.

The operators T
αβ
i in Eq. (1) are two-body T matrices

immersed into the three-body space. For the description of
the two-body interactions we use separable potentials,

V
αβ
i,I = λ

αβ
i,I

∣∣gα
i,I

〉〈
g

β
i,I

∣∣, (2)

which depend on the two-body isospin I and lead to a separable
form of the corresponding T matrices:

T
αβ
i,I = ∣∣gα

i,I

〉
τ

αβ
i,I

〈
g

β
i,I

∣∣. (3)

Separable potentials allow one to introduce new transition and
kernel operators defined via

X
αβ
ij,Ii Ij

= 〈
gα

i,Ii

∣∣Gα
0 U

αβ
ij,Ii Ij

G
β
0

∣∣gβ
j,Ij

〉
, (4)

Z
αβ
ij,Ii Ij

= δαβ Zα
ij,Ii Ij

= δαβ (1 − δij )
〈
gα

i,Ii

∣∣Gα
0

∣∣gα
j,Ij

〉
, (5)

TABLE I. Partition (i) and “particle” channel (α) indices of the
operators in the AGS system of equations (1) denoting the two-body
subsystems. The interactions are further labeled by the two-body
isospin values, entering the system before symmetrization.

i \ α 1 (K̄K̄N ) 2 (K̄π�) 3 (πK̄�)

1 K̄NI=0,1 π�I=0,1 K̄�I= 1
2 , 3

2

2 K̄NI=0,1 K̄�I= 1
2 , 3

2
π�I=0,1

3 K̄K̄ I=0,1 K̄πI= 1
2 , 3

2
K̄πI= 1

2 , 3
2

to obtain a simpler system of equations than that in Eq. (1):

X
αβ
ij,Ii Ij

= δαβ Zα
ij,Ii Ij

+
3∑

k=1

3∑
γ=1

∑
Ik

Zα
ik,Ii Ik

τ
αγ
k,Ik

X
γβ
kj,IkIj

. (6)

The free three-body Hamiltonian of the channel α is defined
in momentum representation by

Hα
0 =

(
kα
i

)2

2 mα
jk

+
(
pα

i

)2

2 μα
i

, (7)

where mα
jk and μα

i are two- and three-body reduced masses,
respectively,

mα
jk = mα

j mα
k

mα
j + mα

k

, μα
i = mα

i

(
mα

j + mα
k

)
mα

i + mα
j + mα

k

, i �= j �= k.

(8)

Three Jacobi momentum coordinate sets | �ki
α
, �pi

α〉, i = 1,2,3,
α = 1,2,3 are used, where �ki

α
is the center-of-mass momen-

tum of the (jk) pair and �pi
α is the momentum of the spectator

i with respect to the pair (jk), i �= j �= k.
We used nonrelativistic kinematics in our calculations. This

is certainly justified for the nucleon, the kaon, and the �
since the kinetic energy in all two-body subsystems does not
exceed ∼100 MeV. The only candidate which could require a
relativistic treatment is the pion. However, it occurs only in the
lower channel and, therefore, we believe that the K̄K̄N pole
position should not be affected that much by its relativistic
kinematics.

In momentum representation the operators X and Z

are integrated over the Jacobi momenta �ki
α
. Therefore, the

operators act on the second momentum, �pα
i ,

〈 �pi
α|Xαβ

ij,Ii Ij
(ztot)| �pj

′β 〉 = X
αβ
ij,Ii Ij

( �pi
α, �pj

′β ; zα
kin + zα

th

)
, (9)〈 �pi

α
∣∣Zα

ij,Ii Ij
(ztot)

∣∣ �pj
′α〉 = Zα

ij,Ii Ij

( �pi
α, �pj

′α; zα
kin + zα

th

)
, (10)

where the total energy ztot = zα
th + zα

kin is the sum of the channel
kinetic energy zα

kin and the channel threshold energy zα
th =∑3

i=1 mα
i . The energy-dependent part of a two-body T matrix,

embedded in the three-body space, is defined by the following
relation:〈 �pi

α
∣∣ταβ

i,Ii
(ztot)

∣∣ �pj
′β 〉

≡ δij δ
( �pi

α − �pj
′β)

τ
αβ
i,Ii

(
ztot − zα

th −
(
pα

i

)2

2 μi

)
. (11)

Since the antikaon is a pseudoscalar meson, the total spin
of the K̄K̄N system is equal to one-half. All our two-body
interactions have zero orbital angular momentum, therefore,
the total angular momentum J is also 1/2. As for the isospin,
we consider the three-body system with the lowest possible
value, i.e., with I (3) = 1/2.

In what follows the indices on the right-hand side of the
operators X

αβ
ij,Ii Ij

will be omitted, i.e., X
αβ
ij,Ii Ij

→ Xα
i,Ii

, since
they denote the initial state, which is fixed for a given system.
To search for a quasibound state means to look for a solution
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of the homogeneous equations,

Xα
i,Ii

=
3∑

k=1

3∑
γ=1

∑
Ik

Zα
ik,Ii Ik

τ
αγ
k,Ik

X
γ
k,Ik

, (12)

which, however, should be symmetrized first since there are
two identical mesons in the K̄K̄N system. The X1

3,1 transition
operator has the proper symmetry properties already (while
X1

3,0 is antisymmetric). The remaining operators acquire the
necessary symmetry properties in the following combinations:

X
1,sm
1,0 = X1

1,0 + X1
2,0, X

1,sm
1,1 = X1

1,1 + X1
2,1,

X
2,sm
1,0 = X2

1,0 + X3
2,0, X

2,sm
1,1 = X2

1,1 + X3
2,1,

(13)
X

2,sm

2, 1
2

= X2
2, 1

2
+ X3

1, 1
2
, X

2,sm

2, 3
2

= X2
2, 3

2
+ X3

1, 3
2
,

X
2,sm

3, 1
2

= X2
3, 1

2
− X3

3, 1
2
, X

2,sm

3, 3
2

= X2
3, 3

2
+ X3

3, 3
2
.

In momentum representation the system of operator equa-
tions (12) turns into a system of integral equations, schemati-
cally given by

Xi(p) =
∫ ∞

0
Zij (p,p′; z) τj

(
z − p′2

2μj

)
Xj (p′)dp′. (14)

This system is then discretized, and the value of z at which
the determinant of the kernel matrix Amn(z) = [Z(z) τ (z)]mn

is equal to zero is determined. This complex energy, located
on the proper energy sheet, corresponds to the pole of the
quasibound state.

In the present study we determine the pole position in two
ways. First, we perform a direct search of the pole in the
complex energy plane as described above. For that purpose we
have to rotate the contour of the integration in Eq. (14) into
the complex momentum plane to avoid irregular regions and
singularities (see Ref. [14] for a detailed discussion).

Since the analytic continuation of the integral equations
into the complex plane is a nontrivial procedure, we employ
here in addition the inverse determinant method proposed and
successfully applied in Ref. [14] for the K−pp system. It
uses the fact that the function 1/|Det A(z)|2, calculated along
the real energy axis z, exhibits a resonance shape in the
neighbourhood of the pole position. This bump can be fitted
using the Breit-Wigner-type formula, and the position and the
width of the resonance can be estimated. Since the calculations
in this case are performed on the real energy axis, it allows
one to avoid possible problems with the analytic continuation
of the equations into the complex momentum plane.

It was demonstrated in Ref. [14] that the two methods are
indeed complementary. However, it is necessary to keep in
mind that the second method gives a reliable estimation of
the pole position only in the case where the resonance is quite
narrow and, therefore, the produced bump is fairly pronounced.

III. INTERACTIONS

The explict form of the one-term separable potentials,
introduced in Eq. (2), in momentum representation is

V
αβ
i,Ii

(
kα
i ,k′β

i

) = λ
αβ
i,Ii

g
(
kα
i

)
g
(
k′β

i

)
. (15)

The used K̄N and K̄K̄ interactions are described in
the following subsections. The remaining interactions in the
three-body system with coupled K̄K̄N and K̄π� channels are
those in the lower-lying three-body channel, namely π�, K̄�,
and K̄π . The first one, π�, is part of the employed coupled-
channel model for the K̄N interaction. Almost nothing is
known about the K̄� interaction, in particular, there is no
experimental information. There are suggestions [16,17] that
this strangeness S = −2 system can form and couple to �
resonances. The K̄π system is related to Kπ via charge
conjugation and for the latter phase shifts are available
[18–20]. Thus, in principle, it would be possible to construct
a potential in a similar way as for the K̄N interaction
described below by fitting its parameters to those phase shifts.
However, we assume that these two interactions in the lower
three-body channel are not so important for the system under
consideration and can be omitted. In any case, keeping in mind
the unclear situation with regard to the K̄� interaction, an
inclusion of those channels into the calculation would not lead
to quantitatively better constrained K̄K̄N quasibound state
results.

Therefore, our three-body calculation with the coupled
K̄K̄N − K̄π� channels has only one nonzero interaction
in the lower channel: the π�, coupled to the K̄N . Then
our two-channel three-body calculation with coupled-channel
K̄N − π� potential is equivalent to the one-channel three-
body calculation utilizing the so-called exact optical K̄N
potential (see [9]). We performed calculations based on both
formulations and obtained perfect agreement between their
results.

A. Antikaon-nucleon interaction

Several models of the K̄N interaction were constructed
by us in the past for application in our works devoted to
the K̄NN system. In the present study we employ three
of those. In particular, we use the two phenomenological
K̄N − π� potentials that yield a one- or two-pole structure
of the �(1405) resonance which were presented in [21]. The
form factors of the one-pole version of the potential and those
of the K̄N channel of the two-pole version have a Yamaguchi
form,

gα
I = 1

(kα)2 + (
βα

I

)2 , (16)

while a slightly more complicated form is used for the π�
channel,

gα
I = 1

(kα)2 + (
βα

I

)2 + s
(
βα

I

)2[
(kα)2 + (

βα
I

)2]2 , (17)

in the two-pole model of the interaction.
Recently, a chirally motivated potential describing the

coupled K̄N − π� − π� channels was constructed and used
in [3]. In contrast to the energy-independent phenomenological
models mentioned above the chirally motivated potential has
coupling strengths λ

αβ
i,Ii

(z(2)), which depend on the energy in
the two-body subsystem z(2).
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All three potentials were fitted to data on K̄N scattering and
characteristics of kaonic hydrogen. In particular, the potentials
reproduce the measured cross sections of elastic (K−p →
K−p) and inelastic (K−p → K̄0n, K−p → π+�−, K−p →
π−�+, K−p → π0�0, K−p → π0�) scattering (the last
reaction is described by the chirally motivated potential only)
from different experiments [22–26].

They also reproduce the accurately measured threshold
branching ratios γ , Rc, and Rn [27,28],

γ = �(K−p → π+�−)

�(K−p → π−�+)
= 2.36 ± 0.04, (18)

Rc = �(K−p → π+�−,π−�+)

�(K−p → all inelastic channels)
= 0.664 ± 0.011,

(19)

Rn = �(K−p → π0�)

�(K−p → neutral states)
= 0.189 ± 0.015. (20)

Since the π� channel is taken into account in the phenomeno-
logical potentials indirectly, through an imaginary part of
one of the λαβ parameters, we constructed a new threshold
branching ratio based on Rc and Rn:

Rπ� = �(K−p → π+�−) + �(K−p → π−�+)

�(K−p → π+�−) + �(K−p → π−�+) + �(K−p → π0�0)
, (21)

which has an “experimental” value (derived from the experi-
mental data on Rc and Rn),

Rπ� = Rc

1 − Rn (1 − Rc)
= 0.709 ± 0.011. (22)

The chirally motivated potential reproduces all three experi-
mental branching ratios directly.

Finally, all three K̄N models reproduce the most recent
experimental results of the SIDDHARTA experiment [29] on
the 1s level shift E1s and width �1s of kaonic hydrogen,

E1s = −283 ± 36 ± 6 eV, �1s = 541 ± 89 ± 22 eV.
(23)

Note that those quantities were calculated directly, without us-
ing some approximate formula. All K̄N results were obtained
by solving the coupled-channels Lippmann-Schwinger equa-
tion with the strong interaction plus the Coulomb potential. In
addition, the physical masses of the involved particles were
used, so that the associated two-body isospin nonconservation
is properly included. However, the three-body calculations are
performed with isospin averaged masses and without Coulomb
interaction for simplicity reasons but also because we expect
the pertinent effects to be small.

Irrespective of the number of poles that constitute the
�(1405) resonance, which appears as a quasibound state in
the K̄N channel and as a resonance in the lower channels, for
all considered potentials the resulting isospin-zero elastic π�
cross sections have a peak near the position of the resonance
as given by the Particle Data Group (PDG) with comparable
width (M�(1405) = 1405.1 MeV, ��(1405) = 50.5 MeV accord-
ing to the most recent issue [30]).

All three K̄N potentials describe the experimental infor-
mation with the same level of accuracy, as one can see in
Refs. [21,3] for the phenomenological and chirally motivated
potentials, respectively. The actual parameters of the potentials
can be found in those papers.

B. Antikaon-antikaon interaction

There is no experimental information on the K̄K̄ interaction
and, therefore, the K̄K̄ potential cannot be constructed in the

same way as the one for K̄N . Hence, we resort to theory and
adopt here the ππ − K̄K coupled-channels model developed
by the Jülich group [12,13] some time ago as a guideline.
Indeed, based on the underlying SU(3) flavor symmetry the
interaction in the K̄K̄ system (or equivalently in the KK
system) can be directly deduced from the K̄K interaction
of Ref. [13] without any further assumptions. A detailed
description of the Jülich ππ − K̄K meson exchange model
can be found in Refs. [12,13]. Here we provide only a short
summary of the interaction.

The dynamical input that constitutes the Jülich ππ − K̄K
model is depicted in Fig. 1. The figure contains only s- and
t-channel diagrams; u-channel processes corresponding to the
considered t-channel processes are also included whenever
they contribute. The scalar-isoscalar particle denoted by f0 in
Fig. 1 (and ε in Ref. [13]) effectively includes the singlet and
the octet member of the scalar nonet. The effects of t-channel
f2(1270) and f0 exchange were found to be negligible [13]
and, therefore, not included in the model.

The coupling constant gρππ , required for t- and u-channel
exchange diagrams, is determined from the decay widths of the
ρ. Most of the other coupling constants are determined from
SU(3) symmetry relations, and standard assumptions about

ρ

π π

π π

K∗

π π

K K

ρ,ω,φ

K K

K K

π π

π π

ρ, f0,f2

π π

K K

ρ, f0,f2

K K

K K

ρ, f0,f2

FIG. 1. Diagrams included in the Jülich ππ − K̄K potential [13].
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the octet/singlet mixing angles, as described in Ref. [12]. The
Jülich ππ − K̄K potential contains also vertex form factors
and those are parametrized in the conventional monopole or
dipole form; cf. the appendix of Ref. [13]. The values of the
inherent cutoff masses have been determined in a fit to the ππ
phase shifts.

This interaction yields a good description of the ππ phase
shifts up to partial waves with total angular momentum J = 2
and for energies up to zππ ≈ 1.4 GeV as can be seen in
Ref. [13]. Furthermore, as a special feature, the f0(980)
meson results as a dynamically generated state, namely
as a quasibound K̄K state. Also the a0(980) is found to
be dynamically generated in the corresponding πη − K̄K
system.

The interaction in the K̄K̄ (or the KK) system follows
directly from the one for K̄K by invoking SU(3) symmetry
arguments. It is provided by vector-meson exchange (ρ, ω,
φ) with coupling constants fixed according to standard SU(3)
relations; see Table I of [13]. For identical particles the Bose-
Einstein statistics applies and it restricts the K̄K̄ s wave to be
solely in isospin I = 1. In this case the contributions of the
three vector-meson exchanges add up coherently and they are
all repulsive so that one expects an overall repulsive interaction
in the K̄K̄ s wave. Indeed the K̄K̄ scattering length predicted
by the Jülich model is aK̄K̄,I=1 = −0.186 fm. This version of
the K̄K̄ interaction will be called “Original.”

Recently, results for the KK scattering length have be-
come available from lattice QCD simulations [10,11]. Those
calculations, performed for quark masses corresponding to
mπ = 170–710 MeV, suggest values of aK̄K̄,I=1 = (−0.141 ±
0.006) fm [11] and aK̄K̄,I=1 = (−0.124 ± 0.006 ± 0.013)
fm [10], respectively, when extrapolated to the physical
point. Since those values are noticeably smaller than the
one predicted by the Jülich meson-exchange model and,
accordingly, imply a somewhat less repulsive K̄K̄ interaction
we construct also an interaction that is in line with the
lattice QCD results. A corresponding potential can be easily
generated by simply reducing the values of the cutoff masses
for the vector-meson exchange in the Jülich model until the
scattering length suggested by the lattice QCD calculations is
reproduced. The interaction constructed with that aim yields
aK̄K̄,I=1 = −0.142 fm, close to the result by the NPLQCD
collaboration [11]. This version of the K̄K̄ interaction will be
called “Lattice motivated.”

We cannot use the models of the K̄K̄ interaction described
above directly in the AGS equations. Therefore, we represent
also the K̄K̄ interaction in the form of one-term separable
potentials [see Eq. (15)] with form factors given by

g(k) = 1

β2
1 + k2

+ γ

β2
2 + k2

. (24)

The strength parameters λ, γ and range parameters β are
fixed by a fit to the K̄K̄ phase shifts and scattering lengths
of the “Original” Jülich model and the “Lattice motivated”
interaction. The phase shifts predicted by the initial interac-
tions and those of the corresponding separable potentials are
displayed in Fig. 2, so that one can see the quality of the
reproduction.

IV. RESULTS AND DISCUSSION

The results of our calculations are summarized in Ta-
ble II for various combinations of the employed K̄K̄ and
K̄N interactions. We used the two K̄K̄ interactions (Orig-
inal V

Orig
K̄K̄

and Lattice-motivated V Latt
K̄K̄

) described in the
Sec. III B and three K̄N potentials, namely the phenomeno-
logical one-pole V

1,SIDD
K̄N−π�

and two-pole V
2,SIDD
K̄N−π�

potentials
from [21], and the chirally motivated V Chiral

K̄N−π�−π�
from [3]

discussed in Sec. III A. The pole positions of the quasibound
state in the K̄K̄N system were determined by a direct
search in the complex momentum plane and by using the
inverse determinant method [14].

It is seen from the table that all combinations of the two-
body interactions lead to a quasibound state in the K̄K̄N
three-body system. Thus, the repulsion in the K̄K̄ subsystem
is more than compensated by the attraction provided by the
interaction in the K̄N subsystem(s) and does not prevent the
formation of a quasibound state.

Comparing the poles for K̄K̄N , obtained with the two-pole
models of the K̄N interaction, we see that the chirally
motivated potential leads to a more shallow quasibound state
than the phenomenological one. We believe that this must be
connected with the energy dependence of the former potential,
because the real parts of the higher two-body pole position
corresponding to the �(1405) resonance are almost the same
for both potentials; see Table II (right column). Comparing the
widths of the states we see that for the chirally motivated
V Chiral

K̄N
the width of the K̄N state and that of the K̄K̄N

state are almost the same. The phenomenological V
2,SIDD
K̄N

with a broader “�(1405)” leads to a noticeably more narrow
K̄K̄N state, which, however, is still wider than the “chirally
motivated” one. The situation is opposite for the one-pole
V

1,SIDD
K̄N

model, where the two-body quasibound K̄N state is
more narrow than the three-body K̄K̄N state. In this context
we want to mention that a somewhat surprising behavior of the
results was also observed in [31] in the K−d → π�N spectra
based on the V

1,SIDD
K̄N

potential—in contrast to the ones for

FIG. 2. K̄K̄ s-wave phase shifts in the I = 1 state. The circles
and the solid line denote the result of the “Original” Jülich model
and its separable representation, respectively. The triangles and the
dashed line are corresponding results for the “Lattice motivated” K̄K̄

potentials.
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TABLE II. Pole positions (in MeV) of the quasibound state in the K̄K̄N system. Results of the direct pole search and of the inverse
determinant method are given, employing various combinations of the K̄K̄ and K̄N in the AGS equations (see description in the text).
Two-body pole position(s) of the K̄N potentials are also presented. The two- and three-body thresholds are situated at 1434.57 and 1930.21 MeV,
respectively.

K̄K̄N pole, K̄K̄N pole, K̄N pole(s)
direct search inverse determinant

V 1,SIDD
K̄N−π�

1918.31 − i 51.14 1913.14 − i 55.39 1428.14 − i 46.81

V
Orig
K̄K̄

V 2,SIDD
K̄N−π�

1907.15 − i 45.69 1906.49 − i 38.81 1418.11 − i 57.01
1382.03 − i 104.15

V Chiral
K̄N−π�−π�

1914.70 − i 31.75 1914.34 − i 28.71 1418.08 − i 32.83
1407.03 − i 88.31

V 1,SIDD
K̄N−π�

1910.70 − i 51.01 1906.51 − i 51.85 1428.14 − i 46.81

V Latt
K̄K̄

V 2,SIDD
K̄N−π�

1904.28 − i 42.30 1903.81 − i 38.39 1418.11 − i 57.01
1382.03 − i 104.15

V Chiral
K̄N−π�−π�

1914.12 − i 30.66 1914.27 − i 29.96 1418.08 − i 32.83
1407.03 − i 88.31

other phenomenological K̄N models. Since another one-pole
potential used in [31] behaves quite normally, it seems that the
different trend seen in the calculations with V

1,SIDD
K̄N

could be
caused by some peculiar features of this particular one-pole
potential.

The results obtained with the phenomenological K̄N
potentials exhibit more sensitivity to the K̄K̄ interaction
than the chirally motivated interaction. As was expected,
the less repulsive K̄K̄ model that simulates the lattice QCD
results leads to a somewhat deeper quasibound three-body
state than the K̄K̄ interaction based on the original Jülich
ππ − K̄K model. The largest difference between results
based on the potentials V

Orig
K̄K̄

and V Latt
K̄K̄

were obtained with the

one-pole phenomenological V
1,SIDD
K̄N

model. A less repulsive
K̄K̄ interaction also leads to a more narrow K̄K̄N quasibound
state in all the cases.

A comparison of the pole positions obtained from the direct
pole search to the ones that follow from the inverse determinant
method reveals that the accuracy of the second method is much
lower for the phenomenological K̄N interactions than for the
chirally motivated one. This is an expected result keeping
in mind the larger widths of the “phenomenological” K̄K̄N
states. The one-to-one connection between a complex pole and
the Breit-Wigner form of the corresponding bump on the real
axis is obviously less pronounced if the pole is situated farther
away from the real axis.

It is also interesting to compare the binding energies and
widths of the quasibound states in the K̄K̄N system with
those for K̄NN , obtained in [14]. In both three-body systems
the strongly attractive K̄N interaction is present and plays
an essential role. We see that for a specific K̄N potential
the quasibound state in the strangeness S = −2K̄K̄N system
is only about half as deep as that in the S = −1 three-body
system. The K̄K̄N states are also much broader, especially
those obtained with the phenomenological K̄N models.
The differences in the binding energies are expected since
the NN interaction appearing in K̄NN is attractive, while
the K̄K̄ interaction in K̄K̄N is repulsive. Their (attractive or

repulsive) character is, probably, the origin of the differences
in the widths, too.

As already said in the Introduction, there was a previous
investigation on the K̄K̄N system [6]. Although the binding
energies reported in that work are of the same order of
magnitude we want to emphasize that in reality it is difficult
to compare our results with the ones in that paper. The authors
of [6] used energy-independent as well as energy-dependent
potentials, but the two-body energy of the latter is fixed
arbitrarily. Moreover, the imaginary parts of all complex poten-
tials are completely ignored in their variational calculations.
That imaginary parts are treated only perturbatively, which,
probably, is one of the reasons for the strong underestimation
of the K̄K̄N widths in comparison to ours. In a series of
works devoted to the K̄NN system we demonstrated that
a proper inclusion of the lower-lying channels—either by a
direct inclusion or by using the exact optical potential (see,
e.g., [9,15])—is very important. Therefore, the results of
Ref. [6], involving several uncontrolled approximations, can
be considered only as a very rough estimation.

V. CONCLUSIONS

We presented a dynamically exact calculation of a qua-
sibound state in the K̄K̄N three-body system, performed
in the framework of Faddeev-type AGS equations. As input
we used two phenomenological and one chirally motivated
K̄N potentials, which describe the experimental information
on the K̄N system equally well and produce either a one-
or two-pole structure of the �(1405) resonance. For the
K̄K̄ subsystem we resort to an interaction that is adjusted
to the KK s-wave scattering length recently determined in
lattice QCD simulations. In addition, a phenomenological
K̄K̄ potential based on meson exchange is employed, which
is derived by SU(3) symmetry arguments from the Jülich
ππ − K̄K coupled-channels model. The position and width
of the K̄K̄N quasibound state were evaluated in two ways: (i)
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by a direct pole search in the complex energy plane and (ii)
using the inverse determinant method.

We found that a quasibound state exists in the K̄K̄N system
in spite of the repulsive character of the K̄K̄ interaction. Its
binding energy and width are in the region 12–26 MeV and
61–102 MeV, respectively, where the variation reflects the
uncertainty because of differences in the two-body input. The
quasibound state in the strangeness S = −2 K̄K̄N system
turned out to be much shallower and broader than the one in
the S = −1 K̄NN system, when comparing calculations with
the same K̄N potential.

What are the perspectives of finding the K̄K̄N quasibound
state in experiments? This state has the same quantum numbers
as a � baryon with JP = (1/2)+, as already noted in [6].
The available experimental information on the � spectrum
is somewhat limited (see [30]), and for (1/2)+ only the
ground state (with an isospin-averaged mass of 1318 MeV)
is established. The quark model [32] predicts a first excited
state at around 1700 MeV and another one around 1950 MeV,
where the latter is already above the K̄K̄N threshold. There is
a �(1950) listed by the PDG but its quantum numbers JP are

not determined and it is unclear whether it should be identified
with the quark-model state. Indeed the PDG suggests that there
could be even more than one resonance in this region because
the mass values of the experimental evidence summarized in
the listing [30] scatter over 70 MeV or so. It is interesting to
see that four of the values would be roughly consistent with
the quasibound state found in the present study. Specifically,
the experiment reported in Ref. [33] yielded a mass of
1894 ± 18 MeV and a width of 98 ± 23 MeV that is more or
less compatible with the range of values for the pole position
that emerged from our three-body calculation. In any case, in
view of concrete plans for experiments dedicated to � baryon
spectroscopy at J-PARC [34] and JLAB [35,36] there are good
chances that more information about the strangeness S = −2
resonances will become available. Probably, then one can draw
more solid conclusions on the K̄K̄N quasibound state.
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