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Abstract As a candidate mechanism of neural represen-
tation, large numbers of synfire chains can efficiently be
embedded in a balanced recurrent cortical network model.
Here we study a model in which multiple synfire chains
of variable strength are randomly coupled together to form
a recurrent system. The system can be implemented both
as a large-scale network of integrate-and-fire neurons and
as a reduced model. The latter has binary-state pools as
basic units but is otherwise isomorphic to the large-scale
model, and provides an efficient tool for studying its behav-
ior. Both the large-scale system and its reduced counterpart
are able to sustain ongoing endogenous activity in the form
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of synfire waves, the proliferation of which is regulated
by negative feedback caused by collateral noise. Within
this equilibrium, diverse repertoires of ongoing activity
are observed, including meta-stability and multiple steady
states. These states arise in concert with an effective con-
nectivity structure (ECS). The ECS admits a family of
effective connectivity graphs (ECGs), parametrized by the
mean global activity level. Of these graphs, the strongly
connected components and their associated out-components
account to a large extent for the observed steady states of the
system. These results imply a notion of dynamic effective
connectivity as governing neural computation with synfire
chains, and related forms of cortical circuitry with complex
topologies.

Keywords Synfire chains · Recurrent network dynamics ·
Background synaptic noise · Effective connectivity ·
Metastability · Combinatorial representation

1 Introduction

Over many decades, researchers have considered various
mechanisms as building blocks for neural computation: sin-
gle neurons (Barlow 1972), cell assemblies (Aertsen et al.
1994; von der Malsburg 1986; Palm 1993), chains (Abeles
1982), or even cortical columns (Gray and Singer 1989).
Their functional dynamics have been modeled in terms of
population-averaged mean firing rates (Deco et al. (2008)
and many others), collective oscillatory modes of activ-
ity (Fries et al. 2002; Gray et al. 1989; Singer 1993;
Buzsaki and Andreas Draguhn 2004), or sequential genera-
tion of spikes by input synchrony: polychronous assemblies
(Izhikevich 2006) or synfire chains (Abeles 1982; Diesmann
et al. 1999).
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For each of these systems the question arises, how com-
putation supervenes on the dynamics; i.e. how can activity in
such an architecture provide a suitable medium for parallel
information processing and combinatorial representation.

Here we will address this question from the perspective
of synfire chains (Abeles 1982). Synfire chains are com-
posed of neurons that are grouped into pools; these are
organized into chains by links. Each link consists of exci-
tatory feed-forward connections from the neurons in one
pool to those in another. The synfire chain architecture
supports precisely-timed sequences of spikes; these occur
in groups (called pulse packets) that activate successive
pools sequentially to form a propagating wave of activity
(Abeles 1982; Diesmann et al. 1999; Bienenstock 1995).
Synfire wave propagation in noisy cortical environments is
robust (Diesmann et al. 1999; Kumar et al. 2008a; Trengove
et al. 2013b) and efficient: each neuron contributes a sin-
gle spike, reliably and with precise timing, in response to
a small number of coincidently arriving inputs. Consisting
of only a few thousand neurons each, chains are com-
pact meso-scale units suitable for sparse coding (Földiák
2002) and hence, in principle, for parallel processing and
combinatorial representation.

Information processing using synfire chains requires
structural couplings between chains. These couplings can
be effectuated by links between pools of different chains
(Abeles et al. 2004; Arnoldi and Brauer 1996; Schrader
et al. 2010; Hanuschkin et al. 2010, 2011). Parallel cou-
pling supports synchronized propagation on two or more
chains simultaneously. This type of coupling has been used
to implement feature binding in perception (Arnoldi and
Brauer 1996; Abeles et al. 2004; Schrader et al. 2010).
Sequential coupling allows activity to propagate on one or
more chains in succession. This mechanism has been used
to implement the syntax of motor sequence production (Jin
2009; Hanuschkin et al. 2010, 2011).

Via structural couplings, combinatorial activation has
thus been realized, albeit for systems consisting of a few
chains. We recently showed that synfire chain embedding
on a large scale can be realized in a random network on the
scale of a single cortical column (Trengove et al. 2013b). A
single synfire chain comprising in the order of 105 pools,
each containing in the order of 100 neurons, was embedded
in a network of order 105 neurons (each neuron thus belong-
ing to in the order of 100 pools; see Fig. 1a). This result
implies that with a number of pools in the same order of
magnitude, it is possible to embed a large number of chains
in a random network.

A key problem for an embedded system of synfire
chains is activity regulation. A synfire wave propagating on
an embedded chain generates background noise: a quasi-
stochastic stream of inputs that impinges on the rest of the
network, potentially destabilizing it (Mehring et al. 2003).

A key feature of the model of Trengove et al. (2013b) is that
each individual pool contains not just excitatory but also
inhibitory neurons. This results in background noise con-
sisting of both excitatory and inhibitory inputs. Background
noise is central to the dynamics of sparse recurrent random
networks of excitatory and inhibitory neurons. Such net-
works are well described by a mean field analysis (Brunel
2000; Meffin et al. 2004; Kumar et al. 2008b). Trengove
et al. (2013b) adapted this analysis to describe the dynamics
of their network with synfire chains embedded in a recurrent
network architecture. When background noise is suitably
balanced, the network is globally stable in the presence of
synfire waves, with all neurons exhibiting a low rate of
irregular spiking activity, in which each spike either belongs
to a wave or originates from membrane potential fluctua-
tions driven by background noise. Background noise then
has a destabilizing effect on wave propagation, increasing
the probability of propagation failures. Since noise increases
with wave activity, it acts as a negative feedback signal reg-
ulating the number of simultaneously propagating waves.
The high chain-embedding capacity of the model, along
with dynamics that support the regulated expression of wave
activity, suggests a way to realize a large system of cou-
pled chains that could support a vast repertoire of composite
representations.

Using the model of Trengove et al. (2013b) as a starting
point, here we introduce a large system of coupled synfire
chains and examine its dynamical organisation. Rather than
focusing on a function-specific coupling architecture, we
will define a generic class of random recurrently coupled
systems of many chains, and consider basic questions about
their dynamics: how endogenously generated wave activ-
ity is sustained and regulated, how the activity modulates
the structure of the system, and how the modulated struc-
ture in turn steers wave activity into stable or metastable
configurations. The answers to these questions are centred
on the concept of dynamic effective connectivity; a con-
cept which will, we expect, offer crucial insights into how
a large, recurrent synfire chain architecture may be con-
figured to achieve information processing through ongoing
synfire wave activity.

Model overview and effective connectivity analysis The
current model groups the ∼ 105 pools of Trengove
et al. (2013b) into approximately 103 sequentially cou-
pled chains. The chains vary in strength according to the
strength of the links between their pools. Strength variations
may be considered a result of activity-dependent plastic-
ity mechanisms such as Hebbian spike-timing dependent
plasticity (STDP). The strength of a chain contributes posi-
tively to the probability it will be successfully traversed by
a wave. Upon successful traversal, sequential couplings ini-
tiate wave propagation on successor chains. Each chain has
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Fig. 1 (color online) a Construction of synfire chain embedding in a
population of neurons. A sequence of excitatory pools (green ellipses)
is formed by randomly selecting nE distinct neurons from the exci-
tatory population (large green circle) with replacement to form each
pool; two such selections are indicated in brown. A corresponding
sequence of inhibitory pools (red) is formed from the inhibitory pop-
ulation (red). Each neuron appears in many pools; e.g. each of the
neurons in blue appears in two of the pools shown. Links consist of

all-to-all connections from each excitatory pool to the next excitatory
pool as well as to the corresponding inhibitory pool (arrows). b Pair-
wise couplings (green arrows) between chains (green line segments)
form a recurrent structure in which each chain has exactly two succes-
sors, chosen at random. For clarity the inhibitory pools are not shown.
An initial pulse packet stimulus is the ancestor of a branching tree
of ongoing pulse packet activity (blue), limited in size by extinctions
(red). Loops may also be encountered

two successors, i.e. the couplings form a directed random
graph in which the chains are the nodes and all the nodes
have an out-degree of two. This branching permits prolifer-
ation of waves which, however, is balanced by extinctions
through noise feedback. In the ongoing activity that results,
the number of waves fluctuates around a mean level, as does
the concomitant noise feedback. The waves more likely to
survive in the face of noise feedback are those that travel on
stronger chains.

To explain the emergent configurations of ongoing activ-
ity, we determine the effective connectivity of each chain.
This is the probability that a wave having been initiated
on a chain will successfully traverse it, given the current
noise environment. This probability depends on a chain’s
structure – its strength and length - as well as on the fluc-
tuating level of the noise. The latter depends, in turn, on
the fluctuating number of waves; hence the effective con-
nectivity is dynamic. Structural variability across chains
induces a topography on the system. We quantify this topog-
raphy for each chain as the maximum mean activity level
for which wave traversal is deemed reliable; that is, for
which the probability of traversal is above a certain thresh-
old value. The topography then defines a nested family of
effective connectivity graphs (ECGs). The ECG at a given
activity level is derived from the underlying coupling graph
by removing all chains which are deemed unreliable at
that activity level. We use this ECG family to explain the
way in which activity is distributed over the chains, relat-
ing the observed activity patterns to the strongly connected
components and their associated out-components within the

ECGs. That is to say, we identify certain peak regions in
the topography as ‘islands of circulation’ and measure the
extent to which they account for the observed patterns of
activity.

Our findings demonstrate the critical importance of back-
ground noise - a generic feature of cortical networks - in
modulating the effective meso-scale topology of the net-
work. We expect that in any network containing meso-scale
paths of propagation based on input synchrony, background
noise will have a critical role in determining the effective
connectivity and functioning of the circuitry.

To thoroughly investigate the range of activity patterns
exhibited by this system we found it helpful to use a much
simpler, mesoscopic model. This reduced model (RM) is
quantitatively derived from the full model (FM) via a mean
field analysis. The analysis quantifies how the probabil-
ity that a wave will fully traverse a chain depends on the
strength of the chain, its length, and the number of co-active
waves.

Whereas the basic units of the FM are model neurons
and synapses, in the RM the basic structural units are pools
and links. The state is the set of active pools, updated by
probabilistic propagation of activity from active pools to
their successors. There is a unique RM associated with all
FM instances with the same mesoscopic structure; that is,
with the same couplings, chain lengths, and chain strengths.
The RM can be considered as a theory for the behavior
of the FM. We validate the theory by comparing the activ-
ity patterns generated by instances of both with the same
mesoscopic structure.
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We use the RM to efficiently characterize how sys-
tem behavior varies across model instances with dif-
fering random structural parameters and degrees of
strength variability. We characterize the behavior of each
model instance on a run-by-run basis by key features such as
the duration of ongoing activity, the mean number of waves,
and, given a vector of wave activity over chains, how uni-
formly this activity is distributed. For each model (FM or
RM), a collection of wave activity vectors is obtained over
runs. The variance of the RM collection gauges the variety
of RM behavior exhibited, while subjecting the RM collec-
tion to principal components analysis (PCA) and plotting
the first two principal components (PCs) of the activity vec-
tors offers a visual depiction of this variety, for both the RM
and the FM. We use this depiction, in conjunction with plots
of the time course of activity of particular runs, in order to
identify steady states and transitions typifying each model
instance.

2 Methods

2.1 The full model

This present model extends the model of Trengove et al.
(2013b) by introducing (a) heterogeneity in both the
strengths and lengths of chains, and (b) a system of recur-
rent inter-chain couplings (Fig. 1b). Values for the model
parameters are given in Table 1.

The model uses conductance-based integrate and
fire neurons with instantaneous synaptic conductance
responses (Meffin et al. 2004). The evolution of the sub-
threshold membrane potential of a neuron obeys the follow-
ing equation:

dV

dt
= VP − V

τP
+ (VE − V )

∑

j,k

gE,j δ
(
t − tkE,j

)

+(VI − V )
∑

j,k

gIδ
(
t − tkI,j

)
(1)

where tkE,j (tkI,j ) is the kth spike arrival time on the j th exci-
tatory (inhibitory) synapse and gE,j (gI) is the amplitude
of the delta-function conductance response of the synapse.1

When V (t) = V� the neuron fires and the potential is set to
VR for the refractory period, τref.

1In the original model the excitatory conductance response amplitudes
(gE,j ) all take the same value (Gμ in Table 1), but in the extension we
describe below they will take different values according to the strength
of the chain to which they belong.

The current network structure is based on that of
Trengove et al. (2013b), in which a large number p of
excitatory pools were formed, each comprising nE distinct
neurons drawn randomly from the excitatory population of
NE neurons, so each neuron appeared in pnE/NE pools on
average. An equal number of inhibitory pools was formed
in the same way from the inhibitory population and paired
with the excitatory pools in a one-to-one manner. The exci-
tatory and inhibitory pool sizes were related by nE/nI =
NE/NI = 4. A single cyclic synfire chain was then created
by arranging the excitatory pools in a cyclic sequence and
for each pool A in the sequence creating a link (A, A′) com-
prising all-to-all synaptic connectivity from A to A′, the next
pool in the sequence. For each link (A, A′) in the chain, a
link (A, B ′) was created from pool A to B ′, the inhibitory
pool paired with A′ (Fig. 1a). This results in an average of
CE afferent excitatory connections per neuron, with CE =
pn2

E/NE. We set NE = 10CE so that the network has 10 %
of full connectivity. In addition, each neuron receives affer-
ent connections from neurons drawn at random from the
inhibitory population, sufficient to make the ratio of exci-
tatory to inhibitory afferent connections equal to 4. Hence
CE/CI = 4.

Transmission delays for synaptic connections were vari-
able, being the sum of two components distributed uni-
formly over [τmin, τmin + τA] and [0, τB] respectively. The
first component, referred to as the link delay, was con-
strained to be identical for all synapses within a link so as
not to disrupt the input synchrony of propagating waves.
This constraint does not apply to inhibitory delays. The sec-
ond component was drawn independently for every synapse,
and provided intra-link delay variability.

For the present model the following modifications are
made to this network. The single cyclic chain of p =
51, 020 pools specified in Trengove et al. (2013b) is bro-
ken up by deleting N = 1020 links to obtain N chains of
varying lengths with a mean of Lmean = p/N = 50.02.
These lengths follow a centrally peaked ‘triangular’ dis-
tribution of values in the set [40, 60] ∩ Z, specified by a
vector L = (Lx)x∈[N] where [N] ≡ {1, . . . , N}. Chains are
assigned differing strengths, G = (Gx)x∈[N]. All the exci-
tatory synapses within a link have the same conductance;
this value is the strength of a link. Likewise, all the links
within a chain x have the same strength; this is the strength
Gx of the chain. Across chains, the strength follows a nor-
mal distribution of mean Gμ and standard deviation Gσ

with negative values replaced by zeros. Pairwise couplings
between chains are introduced, whereby each chain has
exactly two successor chains randomly chosen from the N

chains, thus forming a recurrently coupled system (Fig. 1b).
The coupling from a chain to a successor consists of a link
from the last pool of the one to the first pool of the other.
The strength of this link equals the strength of the successor
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Table 1 Model parameters
Parameters for both full and reduced models:

N number of chains 1020 –

p number of pools 51020 –

Lmean mean chain length (p/N) 50.02 –

L vector of N chain lengths 40–60 –

Gμ mean chain strength 0.005 –

Gσ chain strength variability 0–0.002 –

G vector of N chain strengths ∼ N(Gμ, Gσ ) –

Suc [N] → [N] × [N] chain coupling map random –

S N × N adjacency matrix of chain couplings Syx = 1y∈Suc(x) –

Parameters for full model only:

NE number of excitatory neurons 80000 –

NI number of inhibitory neurons 20000 –

CE mean number of excitatory afferents per neuron 8000 –

CI mean number of inhibitory afferents per neuron 2000 –

nE size of excitatory pools 112 –

nI size of inhibitory pools 28 –

VE excitatory reversal potential 0 mV

VI inhibitory reversal potential −80 mV

VP resting potential −70 mV

VR reset potential −70 mV

V� spike threshold −55 mV

τP passive membrane time constant 20 ms

τref refractory period 2 ms

gI inhibitory synaptic conductance 0.11 –

τmin minimum transmission delay 0.5 ms

τA link delay spread 4.0 ms

τB intra-link delay spread 0.5 ms

chain; i.e. the strength of the links making up the successor
chain.2 The full set of couplings between chains is described
by a chain successor map Suc : [N] → [N] × [N]. Suc(x)

gives the two successor chains of each chain x ∈ [N]. The
couplings form a graph G0 = (V0, E0) with chains as ver-
tices (V0 ≡ [N]) and couplings as edges. The set of edges is
given by E0 = {(x, y) : Syx = 1} where S = (Syx)x,y∈[N]
is the adjacency matrix of G0, given by Syx = 1 if y ∈
Suc(x) else 0. Equivalently Suc(x) = {y ∈ [N] : Syx = 1}.

2.2 The reduced model

The reduced model (RM) describes the network of coupled
chains at the meso-scale, where the pools and links between
them are the basic units. The reduced model is updated in
discrete time, each time step �t being the time taken for
a wave to propagate from one pool to a successor; unlike
in the FM, this time interval is therefore unchanging and

2Due to these couplings there is a net increase of N in the number
of links. Hence the mean afferent excitatory connectivity increases
slightly from CE = 8000 to CE = 8160 and CI increases correspond-
ingly.

identical for all links. At each time step a pool is in one of
two possible states: carrying a pulse packet or not. The state
of the system at time t is the state of all the pools collec-
tively and is specified by W(t), the set of pools at which
pulse packets (waves) are present. The structure of an RM
instance equals the mesoscopic structure of an FM instance,
as encompassed by L, G and S.

A wave propagates from one pool to a successor pool
with a probability Ps(h, gE), assumed to be a function of the
strength of the link over which it propagates (gE) and the
number of currently active waves h, given by h = |W(t)|.
The h-dependence of the propagation probability encap-
sulates the negative feedback effect of background noise
whereby wave activity is regulated.

The RM update rule is as follows. For each pool w ∈
W(t), let x(w) denote the chain to which it belongs and
μ(w) ∈ {1, . . . , Lx(w)} its position on that chain. For 1 ≤
μ(w) < Lx(w), activity propagates probabilistically to the
next pool on the same chain with probability Ps(h, Gx(w)).
For μ(w) = Lx(w), the wave is on the last pool of the chain
and propagates to the first pool of each successor chain y ∈
Suc(x(w)) with probability Ps(h, Gy). Let Vw(t + �t) be
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the pools to which the wave at w propagates. Then W(t +
�t) = ∪w∈W(t)Vw(t + �t).3

The function Ps(h, gE) for the probability of propagation
over single link is related to Ps(h, gE, L), the probability of
propagation over a chain of length L and strength gE when
h waves are present:

Ps(h, gE) ≡ Ps(h, gE, 1) = Ps(h, gE, L)1/L . (2)

We obtain the form of Ps(h, gE, L) at L = L0 = 50 ≈
Lmean from a function that models propagation probability
in the full model: P̂s(λE, gE, L = L0).4 This function gives
the probability that a wave will successfully traverse a chain
of length L given background noise in the form of excitatory
and inhibitory Poisson processes with rates λE and λI =
λE/4 and conductances Gμ and gI respectively.5

We numerically estimate P̂s(λE, gE, L = L0) by simu-
lations of wave propagation on individual chains of length
L0, for ordered pairs (gE, λE) on a rectangular grid, with
n = 40 trials for each case. The data estimating P̂s for
each gE value are well-fitted by a sigmoidal function of
the form σ((λE,th − λE)/λE,σ ) where σ(z) = 1/(1 + e−z)

(Fig. 2a). The threshold noise levels for 50 % propaga-
tion probability, λE,th(gE), increase smoothly from zero as
gE increases from gE,0 = 0.00259 and are well-fitted by
a quadratic threshold function λE,th(gE) (Fig. 2b). Over
most of the gE range the width of the sigmoid, λE,σ (gE),
is approximately proportional to the threshold (Fig. 2c).
Therefore we assumed strict proportionality, replacing
λE,σ (gE) with cλE,th where c = 0.01112 is the average of
λE,σ (gE)/λE,th(gE) over a suitable gE range (0.0045 <=
gE <= 0.0065). Thus we obtained our P̂s model:

P̂s(λE, gE, L0) = σ

(
λE,th(gE) − λE

cλE,th(gE)

)
�(gE − gE,0) (3)

where �(·) is the Heaviside step function.
To translate P̂s(λE, gE, L0), which models wave propa-

gation in the FM, into Ps(h, gE, L0), which models wave

3Multiple waves may propagate successfully to the same pool simul-
taneously if they occupy the end pools of multiple chains having a
common successor chain. In that case only a single wave will be
activated at the target pool.
4We choose to set L = L0 because it is the relevant length scale for
the percolation of wave activity in the system. In the full model, the
state of a pulse packet – its width and amplitude – follows a stochastic
trajectory around an equilibrium and is correlated from one pool to
the next, with extinctions resulting from excursions beyond the basin
of attraction of stable propagation (Diesmann et al. 1999). Hence the
relation Ps(h, gE, L′) = Ps(h, gE, L)L

′/L which is true by definition
for the RM is not necessarily true for the FM. The binary propagation
probability in the FM should therefore be estimated at the length scale
at which we want RM-FM agreement.
5Setting the conductance values of all excitatory synaptic noise events
to a single value gE = Gμ is a simplification, since the strengths of
the input synapses of a neuron will follow a distribution approximately
the same as that of the chain strengths, N(Gμ, Gσ ). The impact of this
simplification is discussed in Online Resource 1, Section 3.

propagation in the RM, we need λE as a function of h, the
number of synfire waves. For the model of Trengove et al.
(2013b) this function λE(h) is determined by

λE = CE(νS(λE) + νW(h, λE)) , (4)

where νS(λE) is the rate of stochastic spiking per neuron
in response to background input and νW(h, λE) is the rate
per neuron of spikes belonging to waves. In Trengove et al.
(2013b) νW(h, λE) = hνW,1(λE, gE) where νW,1 is the con-
tribution to νW made by each wave. In the present model,
however, due to variable chain strengths, νW,1 will gener-
ally differ for each wave in W(t), as it depends upon the
strength of the specific chain on which a wave propagates.
We can regain νW as a function of h by replacing νW,1 with
the expected contribution to νW made by each wave, based
on a distribution for the strengths of the chains on which the
current waves reside, given background rate λE. This leads
to a λE(h) function that depends upon strength variability
(red curves in Fig. 2d). For the RM model we further simpli-
fied λE(h) by using a Gσ -independent fixed value for νW,1

(blue curve in Fig. 2d). For details, see Online Resource 1,
Section 1.

2.3 Numerical experiments

Design We studied the behavior of both the FM and
RM with numerical simulations. Ninety individual RM
instances were generated from 9 settings of chain
strength variability (Gσ ), in combination with 10 random
settings of the remaining structural parameters specifying an
instance: chain couplings, chain lengths and relative chain
strengths. These are referred to as RM parameter settings
(RMPs). For each RMP setting, as Gσ is varied the rela-
tive chain strengths ((G−Gμ)/Gσ ) stay the same; only the
magnitudes of the deviations from the mean change. The
resulting 90 RMs are identified by the extended RMP index
10i + j where i is the Gσ -index (Gσ /Gμ = {0.05i; i =
0, . . . , 8}) and j is the RMP index, j ∈ {0, . . . , 9}. For
each of these 90 RMs we conducted 5000 RM simulations
(runs) and 10 FM simulations (runs). Besides the parameters
which a given FM shares with the corresponding RM, the
FM has additional random parameters: pool constituents,
delays, inhibitory connections, initial pulse packet stimulus
jitter and transient background noise. These random param-
eters varied over runs and Gσ settings but not over RMPs.
For each FM and RM run a pool was independently and
randomly selected as the target of the initial pulse packet
stimulus. Each FM run had a duration of 150,000 ms and
began with 200 ms of external balanced noise input, after
which the external noise was turned off and the initial pulse
packet stimulus was delivered. In the RM runs this was done
by initializing the state of the system at t = 0 with one wave
present at the selected target pool. The durations of the RM
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Fig. 2 (color online) a Wave
propagation probability
P̂s(λE, gE, L0) estimated from
simulations (red) and from the
model given by Eq. (3) (blue) for
gE/Gμ ∈ {0.5, 0.54, . . . , 1.4}. b
gE-dependence of λE,th, the
threshold for 50 % wave
propagation probability from
sigmoidal fits to P̂s(λE, gE, L0),
for individual gE values (red)
and fitted to a quadratic (blue). c
The relationship between the
sigmoid widths λE,σ and the
thresholds λE,th is approximated
by a linear relationship
λE,σ = cλE,th. d The h-λE
relationships based on the
expected contribution to the
population mean firing rate
made by each each wave,
νW,1(λE, Gσ ) (red lines); and
setting νW,1 to a constant value
of νW,1(λE,th(Gμ), 0.0015)

(blue line)

runs for all RMs with a given Gσ were matched to the cor-
responding FM run durations by setting �t = T , the mean
pool-to-pool wave propagation time averaged over the 100
FM runs at that Gσ (see Post-processing). We thereby took
into account a small but steady drift in T with Gσ in excess
of the typical variations in T over runs with the same Gσ .

Implementation The FM simulations were programmed in
Python and implemented in NEST (Gewaltig and Diesmann
2007) via the PyNest interface (Eppler et al. 2009). Each
simulation used a time-step of 0.1 ms. Simply as an efficient
device for detecting and recording all pulse packets, read-
out neurons, one for each pool, were included. Each readout
neuron is an integrate and fire neuron with nE afferent
current-based synapses, one from each excitatory neuron in
its associated pool, that deliver instantaneous voltage incre-
ments of 1 mV when activated. As shown in Table 2, the
firing threshold is nE/2 mV above the resting potential. The
neuron has a short time constant chosen so that it responds
very reliably to pulse packets of narrow dispersion (below
0.5 ms) such as occur in the system, and virtually never to
background activity given the firing rates occurring in the
network, which are below 50 Hz. Very occasionally a pulse
packet is missed, to negligible impact. Exploiting the paral-
lel processing capability of NEST, each simulation required
up to 96 GB of memory, used 48 processors in a cluster of
960 processors and took about 3 h to complete. With about
8–12 simulations running in parallel, the total of 900 sim-
ulations took approximately 270 h to complete. The RM
model was implemented in Python and took approximately

31 h to complete using trivial parallelization to distribute the
450,000 simulations over 20 cores of a multi-core machine.

Post-processing For each FM run, the spike trains of 5 %
of the excitatory neurons were recorded and used to gauge
the mean firing rate of the network in 10 ms time bins.

Very infrequently the FM model exhibits an explosive
instability in which the network goes into a state in which
all neurons fire at high rate limited only by the refractory
period. This state is an artifact of the 0.1 ms simulation
time step and the instantaneous post-synaptic conductance
responses. The instability was encountered at the two high-
est choices of chain strength variability: in 1 of 100 runs at
Gσ /Gμ = 0.35 and in 6 of 100 runs at Gσ /Gμ = 0.4.
These runs were omitted from further analysis.

For each FM and RM run we calculated T , the mean
pool-to-pool propagation time, and h̄, the average number
of simultaneously propagating waves during the interval in
which ongoing activity was sustained, as follows. We let
P = {πk ≡ (tk, pk), k = 1, . . . , npp} denote the set of
detected pulse packets, where tk , pk are the time and pool at
which the kth pulse packet occurred and npp is the number

Table 2 Parameters of pulse-packet detector neurons

Vrest resting potential 0 mV

Vreset reset potential 0 mV

V� spike threshold (nE/2) 56 mV

τm membrane time constant 2.5 ms

τref refractory period 2 ms
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of pulse packets. In the FM case, we identify wave propaga-
tion between two successive pulse packets (ti , pi), (tj , pj )

if there exists a link (pi, pj ) and the time interval tj − ti
is within a tolerance interval around the expected time for
a wave to propagate over the link given the link delay; i.e.
if tj − ti − τpipj

− trise ∈ [−tε, tε] where tε = 0.5 ms,
τpipj

is the link delay and trise = 0.23 ms is an estimate of
the mean lag from the mean arrival time of a pulse packet’s
inputs to a neuron to the time of the resulting spike. Let
L ⊂ P × P denote the set of all pulse packet pairs over
which wave propagation has been identified. Then the mean
number of waves during the time interval [ta, tb], where ta
(tb) is the time of the first (last) pulse packet in P , is given
by h̄ = Tsum/(tb − ta) where Tsum = ∑

{i,j |(πi ,πj )∈L} tj − ti .
The mean pool-to-pool propagation time T is given by T =
Tsum/#L. In the RM case, T is determined a priori from the
corresponding FM runs (as noted above) and h̄ is simply the
average of #W(t) over the interval of ongoing activity.

Characterization of activity patterns For each FM or RM
run we characterized the temporal patterns of pulse packet
activity in the network by the set of end events (EEs),
namely, all pulse packets which occurred on the last pool
of a chain: E = {(t, x(p)) : (t, p) ∈ P, μ(p) = Lx(p)},
and calculated the end event count (EEC): the number of
end events on each chain, as a vector, C ≡ (Ck)k=1,...,N =
(#{(t, k) ∈ E})k=1,...,N , which we normalized by its sum to
obtain a normalized EEC (NEEC):

D = (Dk)k=1,...,N

where Dk = Ck/
∑N

j=1 Cj .
We obtained a measure of uniformity of activity over

chains by considering an NEEC as a probability distribution
over chains and computing its entropy:

H(D) = −
N∑

j=1

Dj log2 Dj .

Each RM and each set of mesoscopically equivalent FMs
may be identified by the triplet ρ = (α, γ, m), where α

gives the RMP index, γ the Gσ index and m the model type
(RM or FM). For each ρ, we removed runs in which ongoing
activity failed to persist for more than 10000 ms. This left
Mρ runs, with Mρ ranging from 4089 to 5000 over the 90
RMs with a mean of 4796. For the 90 sets of mesoscopically
equivalent FMs, Mρ ranged from 0 to 10 with a mean of 9.

To characterize the behavior of each RM instance ρ

we performed PCA on the set of NEEC vectors, Dρ =
{Dρ

j ; j = 1, . . . , Mρ}. These NEEC vectors constitute

an N-by-Mρ matrix Dρ where (D
ρ
ij )i=1,...,N = D

ρ
j .

We obtained the eigenvectors E
ρ
j and eigenvalues �

ρ
j

(j = 1, . . . , Mρ) of the covariance matrix M−1
ρ (Dρ −

D̄
ρ

1T
Mρ

)(Dρ − D̄
ρ

1T
Mρ

)T , where D̄
ρ = M−1

ρ

∑Mρ

j=1 D
ρ
j is

the run-averaged NEEC and 1Mρ is a vector of Mρ ones.

We plotted the first two PCs, {((Dρ
j − D̄

ρ
) · E

ρ
1 , (D

ρ
j −

D̄
ρ
) · E

ρ
2 )|j = 1, . . . , Mρ} to provide a visual representa-

tion of the range of behaviors (the 2PC projection). In cases
where it was visually evident that this representation was
strongly influenced by a small number of outliers, the PCA
was repeated with outliers excluded to obtain another 2PC
projection. We used the 2PC projections in conjunction with
raster plots of end events for selected runs to elucidate the
nature of the steady states of the system, their variability
across runs, and the transitions between them.

2.4 Effective connectivity analysis

We seek to understand the relationship between structure
and steady states of ongoing activity in a system of cou-
pled chains. Our hypothesis is that a steady state consists of
activity on one or more islands of circulation upon which
propagation of activity is effectively confined, due to noise
feedback. To identify such islands, we introduce a method of
analysis based on the effective connectivity structure (ECS)
that is steady state dependent. An ECS for a given RM
includes a set of expected chain traversal probabilities:

{P(x|p(h)); x ∈ [N]},
where p(h) is the probability distribution function for the
number of waves present over the duration of a steady state.
To obtain these probabilities we assume that, within a steady
state, h(t) does not typically vary much over Lx consecu-
tive values (h1, . . . , hLx ) of h(t), where Lx is the length of
a chain (Lx ∈ [40, 60]). The probability that a wave will
successfully traverse a chain is then given by:

P(x|p(h)) =
〈

Lx∏

i=1

Ps(hi, Gx, 1)

〉

p(h1,...,hLx )

≈
〈
Ps(h, Gx, 1)Lx

〉

p(h)
(5)

where p(h1, . . . , hLx ) is the multivariate probability distri-
bution for a sequence of Lx consecutive values of h within
a steady state.

Effective connectivity graphs An ECS consists of both
a set of expected chain traversal probabilities {P(x|p(h))}
and an underlying coupling graph G0 = (V0 ≡ [N], E0).
An ECS admits a family of effective connectivity graphs
(ECGs) parametrized by θ , a pruning threshold for the
traversal probability:

G(θ; p) = (V , E) (6)

V = {x ∈ V0 : P(x|p(h)) ≥ θ} (7)

E = {(x, y) ∈ E0 : x, y ∈ V } (8)
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That is, we prune from V0 the sub-threshold chains {x :
P(x|p(h)) < θ}.

We obtain what we term the empirical ECS by setting
p(h) = pemp(h), the empirical h distribution for ongoing
activity observed over all time steps and runs of the model
instance. To handle the presence of multiple steady states
one would ideally segment the data according to steady
states and compute a p(h) and an ECG for each steady state.
For simplicity, we work with the assumption that p(h) =
pemp(h) will be adequate to characterize the steady states
which predominate.

The empirical ECS determines a θ -family of ECGs,
G(θ; pemp). Given this family one may seek optimal val-
ues of θ : those for which the island structure in the ECG
best describes the observed distribution of activity over
chains. However, instead of using this θ -family we set the
pruning threshold to a fixed value6 and introduce a param-
eter, h̄, that allows us to shift the mean of the distribution
p(h) away from that of pemp(h). More specifically, we
define a family of bell-shaped distributions p(h|h̄) with the
same variance as pemp(h) parametrized by the mean value,
h̄ > 0. This gives rise to an h̄-dependent family of graphs
G(h̄) ≡ G(θ; p(h|h̄)). The form of p(h|h̄) is obtained by
discretizing a normal distribution N(h̄′, σ ) to bins centred
around 0, 1, . . . , hmax = 40 and normalizing, h̄′ chosen
such that the result has mean h̄. As h̄ increases, P(x|p(h|h̄))

decreases for all x ∈ [N]. This property allows us to define a
topography (or landscape) on the system of coupled chains.
The ‘height’ of chain x is an activity threshold, h̄th(x),
defined as h̄ > 0 such that P(x|p(h|h̄)) = θ , or zero if no
such h̄ exists. Hence x ∈ V (h̄) iff h̄ ≤ h̄th(x). Hence the
size V (h̄) is non-increasing and decreases each time h̄ rises
above the activity threshold of a chain, at which point it is
pruned.

We will obtain h̄ values which optimize the relationship
between the structure of G(h̄) and the observed patterns of
activity. These h̄ values are predictions for the empirically
observed mean h and how it varies across models.

Graph structure For a given graph G(h̄) in the h̄-family
we identify SC(h̄), the set of strongly connected compo-
nents – or strong components (SCs) for short – and their
associated out-components (OCs). An SC is a maximal sub-
set of V (h̄) with the property that there are directed paths in
both directions from every vertex in the SC to every other
vertex in the SC (Newman 2010). Note that by this defini-
tion an SC is either cyclic (i.e contains a cyclic path) or is
a single node without a self-connection. The latter we will

6We set the pruning threshold to a moderately high value of θ = 0.8.
Our rationale for this choice is that a chain should belong to the ECG
if and only if it can contribute reliably to the circulation of ongoing
activity constituting the steady state.

ignore because we are only interested in SCs which support
ongoing circulation of pulse packet activity. The OC of an
SC, OC(SC), is the set of vertices reachable from any node
in the SC and includes the SC itself. We let SC(h̄) denote
the set of SCs in G(h̄), OC(h̄) = {OC(SC)|SC ∈ SC(h̄)}
the corresponding out-components, USC(h̄) the union of the
SCs in SC(h̄) and UOC(h̄) the union of the OCs in OC(h̄).
SCs are always non-overlapping but OCs may overlap: the
OC of one SC (SC1) may contain part of the OC of another
(SC2); this part either excludes SC2 entirely or it includes
SC2 and therefore OC2 entirely.

Because V (h̄2) ⊂ V (h̄1) if h̄2 > h̄1, G(h̄2) is a sub-
graph of G(h̄1). It follows that every SC in G(h̄2) is a subset
of an SC in G(h̄1), and likewise for the corresponding out-
components. Likewise, UOC(h̄2) ⊂ UOC(h̄1) if h̄2 > h̄1.
Thus for a monotonic increasing sequence of h̄-values the
sets UOC(h̄) form a sequence of nested subsets. We may
liken them to nested regions in a landscape that circum-
scribe peaks by sectioning them at different altitudes. Note
that while any chain with a high activity threshold can be
considered as a peak in the landscape, only peaks belong-
ing to the UOC(h̄) family are accessible to ongoing activity
which, due to its recurrent nature, can act as a regenerative
source.

On the basis of the nested structure of UOC(h̄), we assign
to each chain a measure of the maximum activity level that
still permits a chain to participate in ongoing activity:

h̄circ(x) = max{h̄ : x ∈ UOC(h̄)} (9)

The function h̄circ(x) provides a ranking of the chains which
can be compared with one based on their observed EE
activity, D̄

ρ
. A rank correlation of the two, RC(D̄

ρ
, h̄

ρ
circ),

provides a scalar measure of the extent to which the h̄-
family of ECGs explains the overall distribution of wave
activity for model instance ρ.

When a system finds its equilibrium at a mean level h̄, we
predict that UOC(h̄) will best account for the locus of wave
activity. Conversely, if a particular UOC(h̄) best accounts
for the observed wave activity, then h̄ is the predicted equi-
librium level of activity. The predicted value for h̄ is deter-
mined by considering the trade-off between capturing as
much of the EE activity as possible and keeping the size of
UOC(h̄) as small as possible. We define the normalized size
of the UOC: Size(h̄) = |UOC(h̄)|/|UOC0| where UOC0

is the union of OCs of SCs in G0; and we let Frac(h̄) =∑
x∈UOC(h̄)(D̄

ρ
)x , the fraction of EE activity accounted

for by chains in UOC(h̄). We consider two methods for
optimizing h̄: in method 1 the value which maximizes the
function Frac(h̄)(1 − Size(h̄)); in method 2 the value where
Frac(h̄) = 1 − Size(h̄). We will use both methods for
comparing the optimal h̄ with that found in the simulations.
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We visualize the SC and OC structure of the graph G(h̄)

in order to shed light on how the effective connectivity struc-
ture is responsible for the observed patterns of activity. For
a given graph G(h̄) we create a special condensed graph
CG(h̄) based on a partition of the vertices of G(h̄) into sub-
sets of nodes that share the same profile of membership
across the SCs and OCs. Writing SC(h̄) = {SC1, . . . , SCn}
and OC(h̄) = {OC1, . . . , OCn}, we partition [N] into the
following subsets: (a) each of the SCs themselves; and (b)
the sets which partition UOC(h̄) − USC(h̄) according to
which OCs each chain belongs to, ie. all non-empty sets
Sπ , π ∈ {0, 1}n, Sπ = {x ∈ [N] : x ∈ OCk iff πk = 1, k =
1, . . . , n} − USC(h̄). Each subset in this partition consti-
tutes a vertex in CG(h̄). There is a directed edge (u, v) in
CG(h̄) if and only if u = v and there exists x ∈ u, y ∈ v

for which (x, y) is an edge in G(h̄). The condensed graph
is a directed acyclic graph.7 We assign a color to each ver-
tex in CG(h̄) and the same color to the points representing
the EEs of the corresponding chains in the EE raster plots.
Rows in the raster plots are permuted so that those belong-
ing to the same CG vertex (and thus sharing the same color)
are grouped together.

3 Results

We created 90 model instances. Between them, both the
chain strength variability parameter Gσ /Gμ, and the ran-
dom structural parameters (couplings and relative chain
strengths) were systematically varied. We created both FM
and RM versions of each instance and conducted multi-
ple runs of both. From the data we collected we are able
to describe the nature of the observed activity patterns
(Section 3.1) and apply the principle of effective connectiv-
ity to identify the components of the network structure that
are predominantly responsible for the patterns of ongoing
activity seen in each instance (Section 3.2).

3.1 The nature of ongoing activity patterns

Ongoing activity Both FM and RM versions of the system
maintain ongoing endogenous activity in the form of propa-
gating synfire waves. Figure 3 shows the first 10000 ms of a

7The proof relies on the way the vertices in CG are defined. All vertices
of G in a given vertex of CG share the same profile of which SCs
they are reachable from. If there was a cycle including 2 or more of
the vertices of the CG, all these vertices would mutually ’infect’ each
other with the property of being reachable or not from any given SC.
Hence according to the definition of Sπ they would have to belong to
the same Sπ which is a contradiction. On the other hand, there are no
cycles of length one in the CG. Each SC in G would be a self-looping
vertex in CG, but these are by convention excluded from the definition,
as in the standard condensation of a directed graph (Yellen 2013).

typical FM run. After stimulation by a single pulse packet,
the number of waves initially increases steadily with time,
due to the branching coupling structure. After a few gener-
ations of branching (i.e. about one thousand milliseconds),
the number of waves reaches an equilibrium where the
wave-branching rate is counterbalanced by the extinction
rate, due to the noise-mediated negative feedback (Fig. 3b).
In this equilibrium, the number of waves fluctuates. While
the fluctuations are modest on the time scale of a wave
traversing the length of a chain (∼ 140 ms), over time scales
of 1–2 seconds or longer the number of waves shows large
fluctuations around the mean. The population averaged neu-
ronal firing rate closely tracks the number or waves but is
noisier (Fig. 3a).

Once equilibrium is reached, synfire waves propagate
through the system in a quasi-random but patterned fashion,
as the raster plot of pulse packets reveals (Fig. 3c). The bulk
of the pulse packets occur in the course of successful chain
traversals. Most unsuccessful traversals are brief. A run is
therefore well-characterized by its set of end events (EEs)
which mark successful traversals.

Duration of ongoing activity For most FM and RM
instances, in nearly all runs activity is sustained throughout
(Supplementary Fig. 1). For a few runs in some RM and FM
instances, activity is transient and dies out very early, before
the equilibrium number is reached. For some FM instances
there are runs in which activity persists for a long time but
dies out before the end of the simulation.

For RM instances, transient activity is always of short
duration. The percentage of RM runs exhibiting transient
activity is zero at low chain strength variabilities and
increases steadily to between 11 and 18 % of runs at
Gσ /Gμ = 0.4. The mean and maximum durations of
transient activity increase with strength variability, but are
always less than 50 ms and 900 ms respectively. Transient
activity occurs either when the initially stimulated chain is
too weak to sustain propagation even when only one wave is
present, or has several very weak successors. Since it takes
110–160 ms to traverse a single chain, short durations are
mostly of the former kind. Because the number of very weak
chains increases with chain strength variability, so too does
the duration and occurrence rate of transient activity.

The FM exhibits a comparable fraction of runs in which,
for the same reason, activity dies out very early. However, at
both zero and high strength variability a sizeable number of
FM runs exhibit activity that survives for a large fraction of
the run duration before dying out. At zero strength variabil-
ity this is most likely because, on top of the expected firing
rate for a given number of waves, the population-averaged
firing rate – and hence the noise – also exhibits fluctuations
(Fig. 3a). As a result, the noise can reach a level at which all
waves simultaneously become highly susceptible to trans-
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Fig. 3 Ongoing activity versus
time during the first 8000 ms of
an FM run (RMP 3,
Gσ /Gμ = 0.3, run 8). a, b:
firing rate and number of waves
versus time. c: all detected pulse
packets (blue) versus time.
Those which are end events are
also marked in red. d, e:
enlargements of boxed areas in
c, d respectively. Each dot in
c–e represents a temporally
localized packet of spikes in a
pool of neurons

mission failure. The explanation for the long transient runs
at high strength variability will become more apparent in the
next section.

Mean number of waves While the number of waves is
regulated, the mean number of waves varies systematically

across models. Figure 4a shows for each RM and FM
instance the mean number of waves per run averaged
over all runs that exhibited ongoing activity for at least
10,000 ms. At zero strength variability the mean num-
ber of waves is almost the same across the 10 RMPs:
12.60±0.02 for the RM and slightly lower 12.03 ± 0.08



J Comput Neurosci

Fig. 4 a Mean number of
waves versus chain strength
variability for RMPs 0, . . . , 9,
left panel FM, right panel RM;
b Entropy of RM (blue) and FM
(red) NEECs averaged over runs
versus chain strength variability
for RMPs 0, . . . , 9. Also shown
is the entropy of the mean
NEEC (green). Error bars in A
and B give standard deviation
over runs. c Mean number of
waves versus mean entropy for
RMPs 0, . . . , 9 and
Gσ /Gμ ∈ {0.0, 0.05, . . . , 0.4}.
The curves for different RMPs
diverge from the common point
as Gσ /Gμ increases. d Variance
of RM NEECs over runs

for the FM. For the RM, as strength variability increases
the mean number of waves exhibits a steady trend upwards
or downwards depending on the RMP, starting from the
common value of 12.6 at Gσ /Gμ = 0. and reaching val-
ues between 10 and 16.4 at Gσ /Gμ = 0.4. Similarly
to the RM, for the FM the mean number of waves ini-
tially trends upwards or downwards depending on the RMP.
However, this RMP-specific initial trend is soon replaced
by an increasingly strong downward trend, at a rate that

varies across RMPs. This explains why ongoing activity in
the FM is more vulnerable to extinction at high strength
variabilities than in the RM. This effect is exemplified
by RMP 6, which shows the steepest drop in number of
waves and the greatest number of transient activity runs at
higher strength variabilities. The reasons for the substan-
tial deviation between the RM and FM models at higher
strength variabilities are discussed in Online Resource 1,
Section 3.
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Steady state patterns of activity The set of EEs and the
normalized vector of EEs per chain (NEEC) serve to char-
acterize the patterns of ongoing synfire wave propagation.
Figure 5 shows behaviors of a model instance with moder-
ately high strength variability (RMP set 3, Gσ /Gμ = 0.3),
in both its FM and RM realizations. The 2PC projection
is a plot of the first two PCs of the NEECs of all RM
runs (blue) and FM runs (red) based on PCA of the RM
data. The first two PCs account for more than 98 % of
the RM run population variance (Supplementary Fig. 10).
Three FM runs were chosen and each was paired with the
RM run which minimized the L1 distance between their
respective NEECs. Whereas the distances between individ-
ual RM runs can be substantial (in excess of 1 where the
maximum possible distance is 2), those between the FM-
RM pairs are much less. Raster plots of end events for the
3 RM and 3 FM runs are shown in the lower six panels of
Fig. 5.

The EE rasters in Fig. 5 illustrate a generic feature of
the system: it exhibits one or more distinct steady states in
which it spends most of its time, while also making transi-
tions between these states. A steady state can be character-
ized by a vector of end event counts per chain over its dura-
tion. More precisely, we identify a steady state as prevailing
during in an interval of time Tss = [t0, t0 + T ] if for some
choice of window w � T , for any set of time-windowed
end event count vectors {V(t, w) : [t, t + w] ⊂ Tss} where
V(t, w) = (|{(t ′, x) ∈ E : t ′ ∈ (t, t + w)}|)

x∈[N], the vari-
ance of {V(t, w)} is small. Then V(t0, T ) characterizes the
steady state.8

As illustrated in Fig. 5, identification of steady states
depends on window size. Using a long window of the order
of, say, 20,000 ms, two distinct steady states are apparent. In
the 2PC projection plot there are two dense clusters of points
at the left and right extremes of the plot which correspond,
respectively, to RM runs which spend almost all of their
time in one or the other of these two steady states. RM runs
that fall at intermediate locations (e.g. RM run ‘a’) spend
some time in the left-cluster state before making a transition
to the right-cluster state. The horizontal (1st PC coordinate)
distance of a point from the right cluster is proportional to
the fraction of time spent in the left-cluster state (and vice
versa). Most RM runs lie within the left cluster. This sug-
gests that the transition to the right cluster is a stochastic
event with an expected waiting time much longer than the
run duration. Using a short window such as 2000 ms reveals

8This definition simply serves to explain what we mean by a steady
state when we say that one is visually apparent in the data. We do not
identify the steady states present in our data explicitly, although one
could do so, for instance by cluster analysis.

that the ‘left’ cluster steady state shows brief intermittent
excursions from a relatively stable and predominant steady
state to other, less stable and more dispersed configurations.
The 2nd PC coordinate appears to reflect small variations in
the mean duration and frequency of such excursions, these
being visibly greater for runs ‘b’ and ‘B’ than for runs
‘c’ and ‘C’. Section 3.2 will shed light on the structures
responsible for these excursions.

The behaviors of the 10 FM runs generally conform to
those of the RM. Most FM runs and RM runs fall within the
left RM cluster. However, the right cluster state seen in FM
run ‘A’ is slightly more concentrated (lower in entropy) than
the RM one seen in run ‘a’. The RM right state includes
some activity on some chains that are highly active in the
left state, while the FM right state does not. This is why the
transition to the right cluster state occurs later in ‘A’ than in
‘a’, even though they have the same 1st PC coordinate. A
putative right FM cluster, unobserved because of the small
number of FM runs, would lie to the right of the right RM
cluster.

Behavior at zero strength variability In contrast to the
multiple steady states and metastability seen in Fig. 5, at
zero strength variability the behavior of the system is qual-
itatively the same for all RM and FM instances (RMPs).
As illustrated by Supplementary Fig. 2 for RMP 4, each
model instance exhibits a specific steady state, largely char-
acterized by the mean NEEC over runs. Compared with the
moderately large strength variability case shown in Fig. 5,
the EE activity is distributed more broadly across chains
(i.e. the entropies of the NEEC vectors are higher). The
2PC projection of the NEECs forms a single unstructured
symmetric cluster around the mean, with small and approx-
imately equal variances in the first two PCs. These two
variance components are the same across RMPs. Moreover,
the proportion of variance captured by the 2PC projection
is very small (Supplementary Fig. 10), so distances in the
2PC projection are small and do not reflect the true dis-
tances between NEECs. While for the case of moderate
strength variability in Fig. 5 the 2PC projection reveals
large pairwise NEEC distances (� 1.35), at zero strength
variability it does not. As we discuss further below, the
variance of the NEEC population is uniformly low across
models at zero strength variability, but is typically much
higher for models with moderate to high strength variabil-
ity. While the diversity of steady states in the latter results
in large inter-cluster distances that are largely captured by
the first 2 PCs, at zero strength variability pairwise distances
are invariably more moderate (∼ 0.4). However, near-
est neighbour distances are larger than at higher strength
variabilities, because the NEEC vector population is less
dimensionally constrained (Supplementary Fig. 11). In sum,
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Fig. 5 RM & FM EE activity
for RMP 3, Gσ /Gμ = 0.3. Top
left panel: 2PC projection of
NEECs of RM (blue) and FM
(red) runs. Three RM runs
(green, labels a, b, c) and three
FM runs (labels A, B, C) are
selected. Top right panel: matrix
of distances between these six
NEECs. Remaining panels: EE
rasters for RM runs a-c (left
column) and FM runs A–C (right
column). FM run ’C’ is the run
shown in more detail in Fig. 3

the behavior at zero strength variability is both less struc-
tured and less dimensionally constrained, despite having a
low variance compared with what is typically found when
strength variability is present.

Entropy Figure 4b shows the mean NEEC entropy across
model instances. In the RM, the mean entropy shows a sys-
tematic tendency to decrease as variability in chain strengths
increases. The overall decrease varies considerably across
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RMPs, dropping from a common value of about 9 at
Gσ /Gμ = 0 (c.f. the maximum possible value, log2(N) ≈
10) to between about 3.2 and 7.2 at Gσ /Gμ = 0.4. The FM
entropy is generally in good agreement with RM entropy,
(unlike the mean number of waves), although for some
RMPs at higher chain strength variabilities moderate to
large discrepancies develop, with FM entropy rising relative
to RM entropy.

There is a noticeable tendency for models with a higher
mean number of waves to show lower NEEC entropies
(Fig. 4c). This result is not surprising, as the waves making
up that activity will be largely restricted to chains that are
strong enough to be reliably traversed at that level of activ-
ity. Moreover, as proposed, wave activity will be restricted
to islands of circulation among these chains. These islands
will decrease in size as the level of activity increases, as
noted in Section 2.4. Exactly how large these islands of cir-
culation are depends on the chain strengths and the coupling
structure of the model, which may go towards explaining
departures from the overall trend in Fig. 4c such as the
contrast between RMPs 1 and 5. This leaves open the ques-
tion of why the specific pattern of couplings and chain
strengths of one model instance leads to a high number
of waves and low entropy NEECs, while that of another
model leads to the opposite. We pick up these matters in
Section 3.2.

NEEC variance across runs The variance in the NEEC
vectors is a measure of the diversity of behavior exhibited
by a given model. It reflects the existence of multiple steady
states, their frequency of occurrence, and how distant they
are from one another. Across model instances, the variance
of the population of NEECs varies greatly (Fig. 4d). At zero
chain strength variability the variance takes a uniformly low
value across RMPs and generally increases with strength
variability, although not for all RMPs and not always mono-
tonically. At moderate to high chain strength variability we
observe high (RMPs 0, 3, 5), intermediate (RMPs 2, 4, 6)
and low (RMPs 1, 7, 8, 9) variances. These range over nearly
three orders of magnitude.

The same pattern is observed in the entropy results.
Figure 4b shows, in addition to the mean RM NEEC entropy
(blue), the entropy of the mean NEEC of the RM popula-
tion (green). The entropy of the mean NEEC is necessarily
greater than the mean of the entropies of the NEECs, unless
the NEECs are all identical. Therefore the gap between the
entropy of the mean NEEC and the mean entropy of the
population serves as an indicator of variance in the NEEC
population.

RM variance generally increases with strength variabil-
ity while at the same time entropy decreases. This implies
an increase in the diversity of steady states. At zero strength

variability the system exhibits a single, homogeneous steady
state of high entropy. In a steady state of high entropy, waves
wander over a larger set of chains than in a low entropy
steady state, so it takes longer to get an accurate estimate of
the long term frequency of end events on each chain. Hence
if a single steady state prevailed across a set of runs of fixed
duration, the smaller the entropy of this state the smaller the
NEEC variance would be. The fact that variance increases
and entropy decreases with strength variability shows that
at higher strength variabilities, the NEECs do not merely
sample fluctuations in a single steady state, but encompass
genuine diversity in steady states.

Further insight into the distribution of NEEC activity as a
function of chain strength variability is gained by examining
how the variance is distributed over PCs. For every RMP, the
variances of the first few PCs increase with strength vari-
ability (not always monotonically), while the variances of
the remaining components decrease (Supplementary Fig. 9).
For most RMPs the former outweigh the latter and hence
the total variance increases. Thus the first few PCs cap-
ture the increasing diversity of steady states. The proportion
of the variance accounted for by the first 10 PCs is about
20 % at zero strength variability and increases monotoni-
cally with strength variability, attaining levels very close to
100 % for 8 of the 10 RMPs (Supplementary Fig. 10). At
higher strength variabilities over 90 % of the variance is,
for most RMPs, accounted for by the first 2 PCs. Of the
two exceptions (RMPs 8 and 9), RMP 9 is a case in which
the variance actually decreases, the contributions of the first
few components increasing only modestly. Indeed RMP 9
is the only RMP in which variance decreases monotonically
as entropy decreases. This is what we would expect if only
a single steady state prevails over all runs, as indeed is the
case, notwithstanding noticeable fluctuations on time scales
up to about 5000 ms (Supplementary Fig. 8).9 RMP 8 is sim-
ilar in behavior to RMP 9 apart from exhibiting, at non-zero
strength variabilities, a minority of runs in which the pre-
dominant steady state is modified by the presence of activity
on a self-looping chain; i.e. a chain which is its own suc-
cessor (Supplementary Fig. 7). This accounts for the initial
increase in the variance of RMP 8, largely captured by the
first PC. Subsequently its variance declines like that of RMP
9.

General features of 2PC projections As chain strength
variability increases, the variance of the population of
NEEC vectors generally increases while becoming more

9RMP 9 is also distinctive in that it has the lowest mean number of
waves. The reason for this will become apparent when we look at its
effective connectivity structure in Section 3.2.
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constrained to lie within a low-dimensional sub-space, with
eventually most of the variance being captured by the first 2
PCs. Typically there is a shift from a single cluster of moder-
ate variance corresponding to a steady state of high entropy,
to multiple clusters with individually smaller variances, the
corresponding steady states having lower entropy, while the
total variance is considerably larger due to the separation
of the clusters. Transitions between steady states appear to
be stochastic, with a distribution of waiting times. When
the mean waiting times for transitions between steady states
are long compared with the run duration, NEECs sparsely
fill the space between the corresponding clusters, and cor-
respond to a minority of runs which exhibited a transition.
In contrast, frequent bidirectional transitions between two
steady states result in a single cluster of which the dimen-
sion of greatest variability reflects the relative amounts of
time spent in each steady state.

Comparison of FM and RM activity patterns We noted
a systematic difference between the FM and RM mod-
els in the mean number of waves: in contrast to the RM
models, the mean number of waves in the FM models
fall increasingly sharply with increasing strength variability
(Fig. 4a). The reasons for this discrepancy are discussed in
Online Resource 1, Section 3.

Of complementary interest for the RM-FM comparison
are the NEEC vectors, which being normalized, factor out
the contribution of the mean number of waves. We com-
pared the collections of NEEC vectors obtained over FM
and RM runs respectively, and obtained a scalar measure
of their difference, which we term Discrepancy. Discrep-
ancy values are very low at low strength variabilities and,
for some RMPs, at high strength variabilities too, even when
there are large RM-FM differences in the mean number of
waves. A large Discrepancy tends to occur when the mean
number of waves in the FM model is very low and the RM
entropy is low, and shows up as an increase in FM entropy
relative to RM entropy. Even then, the set of chains upon
which activity is essentially confined differs little between
RM and FM; only the relative amounts of activity within this
set differ. Thus an explanation of the distribution of activ-
ity in terms of islands of circulation may succeed for both
RM and FM models even when the Discrepancy is high. See
Online Resource 1, Section 2 for further details.

Steady states reflect islands of circulation At moderate
to high levels of chain strength variability, multiple steady
states are predominantly observed, which may be stable or
metastable (i.e. they transition to a different state at some
point). The EE rasters and 2PC projections of a few of these
are depicted in Supplementary Figs. 3–8. Some of these
suggest that steady state patterns are due to propagation of
activity on islands of circulation.

The distinct steady states of a model instance may some-
times be entirely dissimilar: their NEECs may be distant or
indeed close to orthogonal. More often, however, they share
some common component of activity. In RMP 3 Gσ /Gμ =
0.3 (Fig. 5), we observed that certain very active chains
in the high entropy ‘left’ RM state continue to be active,
albeit at a reduced level, in the low entropy RM ‘right’ state.
Similarly, in model instance RMP 6, Gσ /Gμ = 0.35 (Sup-
plementary Fig. 6) we see in runs a, b and c two metastable
steady states, one of relatively low entropy and one of higher
entropy, with transitions in both directions. This time very
active chains in the low-entropy steady state continue to
be active at a reduced level in the high-entropy one. Both
cases suggest two islands of circulation joined by a one-way
bridge. When the island that is upstream of the bridge is
active, some activity can cross the bridge and activate chains
in the downstream island. However, the downstream island’s
activity has to compete with that of the upstream island. If
activity on the upstream island dies out then the downstream
island can maintain a higher level of activity.

Sometimes a transition between two steady states is
mediated by a third one that endures for some interval in-
between, and appears to be a superposition of the two. The
NEEC of the EEs in the transition interval is essentially a
weighted sum of the NEECs of the preceding and subse-
quent steady states. For instance, in RMP 5, Gσ /Gμ = 0.2
(Supplementary Fig. 5), activity on one island of circula-
tion manages to find its way to a second island, circulates
on both islands for a while, then dies out on the first while
continuing to on the second.

Two distinct steady states may sometimes look very sim-
ilar. In RMP 8, Gσ /Gμ = 0.15 (Supplementary Fig. 7)
all runs look very similar but the 1st PC distinguishes from
the majority of runs a minority exhibiting activity on three
chains that are silent in the rest. These chains are a self-
looping chain, its other successor, and one of the successors
of the latter chain. They form a small island on which activ-
ity can circulate alongside the predominant steady state.
This situation also occurs in RMP 5, Gσ /Gμ = 0.2
(Supplementary Fig. 5).

Lastly, in some RM model instances (RMPs 1 and 5 with
Gσ /Gμ ≥ 0.25) activity is very occasionally confined to
a single, strong self-looping chain. Such states have small
basins of attraction: they occur only for the roughly 1/N

runs in which the self-looping chain was activated by the
initial stimulus. Despite being rare, such runs can have a
disproportionate effect on the PCA, manifesting in the 2PC
projection as outliers located well away from the rest of the
run population (e.g. RMP 1, Gμ/Gσ ∈ {.25, .3, .35, .4},
Supplementary Fig. 3).

Spatiotemporal patterns and periodicity within steady
states Steady states, being characterized by a vector of
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Fig. 6 Relationship between
EE activity and the activity-level
dependent family of ECGs,
G(h̄). Rows 1–5: Gσ /Gμ =
0.0, 0.05, 0.1, 0.2, 0.4
respectively. Columns 1–4:
Size(h̄) versus h̄, Frac(h̄) versus
h̄, Frac(h̄)(1 − Size(h̄)) versus
h̄, Frac(h̄) versus Size(h̄)

respectively

activity over a window of 2 seconds or more, leave ample
room for variability in the spatio-temporal arrangement
of waves. A variety of such arrangements of waves can
be observed, which often may be periodic. Consider for
instance the close up of the first 8000 ms of FM run C
from Fig. 5 shown in Fig. 3. It reveals a periodic pattern of
pulse packets and end events which emerges as part of the
‘left’ state, after 3000 ms, with a period of about 2000 ms.
However, other patterns of activity occur in the ‘left’ state,
as Fig. 5 shows. While periodic oscillations in the vicin-
ity of 0.5–1.5 Hz are common, they tend to be transient.
Low entropy steady states are the exception; e.g. RMP 5,

Gσ /Gμ = 0.4 exhibits stable oscillations of long dura-
tion. The basis for periodic oscillations is identified next, by
effective connectivity analysis.

3.2 Effective connectivity analysis

An effective connectivity structure (ECS) is the under-
lying graph of couplings (G0) in conjunction with
{P(x|p(h|h̄)); x ∈ [N]}, the set of probabilities for success-
ful traversal of the chains by a wave, taking into account
the noise feedback due to fluctuating activity. From the
ECS we obtain G(h̄), a family of effective connectivity
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graphs (ECGs) parametrized by the mean activity level, h̄

(Section 2.4).
Within each ECG we identify the components potentially

responsible for the ongoing activity: the islands of circula-
tion. Each island is the outcomponent (OC) of a strongly
connected component (SC) within the graph (the OC being
a superset of the SC) and their union is denoted UOC(h̄). As
h̄ varies, a nested sequence of sets of islands results, each
island at one h̄-level being contained within an island at a
lower h̄-level. We let Size(h̄) denote the normalized size of
UOC(h̄) and Frac(h̄) the fraction of EE activity averaged
over runs (i.e. the mean NEEC, D̄) that is located on chains
in UOC(h̄).

Figure 6, first and second columns, shows Size and Frac
versus h̄ respectively for all RMPs at selected values of
chain strength variability Gσ /Gμ increasing as we go down
each column. While both Size and Frac decrease with h̄,
Size decreases faster than Frac. Hence there exists a range of
h̄-values where Frac is high but Size is low. This is the range
where the UOC(h̄) best captures the observed distribution
of activity in the system. This range is identified in the third
column which shows Frac × (1 − Size) versus h̄, while the
fourth column shows Frac versus Size. The favourable range
is where Frac× (1−Size) attains high values and where the
Frac-versus-Size curve approaches the top left corner of the
plot.

For Gσ /Gμ = 0 there is a very narrow interval of h̄

values within which all chains exit G(h̄) as h̄ increases.
In other words the landscape is almost flat; the remaining
small variations are due to variability in chain lengths. As
strength variability increases, the favourable range becomes
broader and more pronounced. The variability in Frac and
Size across RMPs increases with strength variability, but
the pattern of differences across RMPs remains largely
consistent.

This is because strength variability scales the h̄ range
over which chains exit G(h̄). This scaling leaves invariant
the order in which chains fall out (neglecting the minor
effect of length variability). Thus the sequence of distinct
graphs in G(h̄) remains essentially the same as strength
variability increases, but simply spread over a wider range
of h̄ values.

How well does the G(h̄)-family account for activity?
As h̄ increases, the size of UOC(h̄) drops. We can rank
chains according to the value of h̄ at which they drop
out of UOC(h̄), namely h̄circ(x). We can also rank chains
according to D̄, the normalized end event count averaged
over runs. The rank correlation of these two rankings,
RC(D̄, h̄circ), given in Fig. 7a, provides a measure of how
well the UOC(h̄) family captures the variations in the level
of activity observed across the chains. The rank correlation
is largely between 0.9 and 0.95 for all non-zero values of

Fig. 7 a rank correlation between chain activation frequency (D̄)
and the h̄circ measure of participation in UOC(h̄) (upper curves) and
between D̄ and h̄th (lower curves). b,c: predicted mean number of
waves (h̄) versus empirical mean number of waves by (b) peak value
of Frac(h̄) × (1 − Size(h̄)), (c) Frac(h̄) = (1 − Size(h̄)); identity line,
green dashed; regression line, red dotted. For each RMP the sequence
of points for Gσ /Gμ = 0.0, 0.05, . . . 0.4 is connected by line seg-
ments. The first point (Gσ /Gμ = 0.0) is close to the identity line and
is almost the same for all sequences

strength variability. At zero strength variability, it is still
around 0.65–0.7. The distribution of activity across chains
thus strongly mirrors the nested structure of islands of cir-
culation in the G(h̄) family. In contrast, we can rank chains
purely by their wave-traversal effectiveness, which is mea-
sured by h̄th, the h̄-value at which they drop out of G(h̄).
The rank correlation of h̄th with D̄ is around 0.3–0.6 for
non-zero values of strength variability, much less than that
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of h̄circ, indicating that the nested structure of islands of
circulation in the G(h̄)-family explains the distribution of
activity much better than the wave-traversal effectiveness of
the chains alone.

Relating optimal and empirical h̄ values How well does
the ECG family G(h̄) explain relative levels of activity seen
across RMPs (Fig. 4a)? In particular, if we choose a value
of h̄ for which G(h̄) is somehow optimal in explaining the
observed distribution of activity over chains, does this value
predict the empirical h̄, or at least correlate with it across
models?

To account for activity G(h̄) must include SCs and hence
Size(h̄) must be non-zero. Figure 6 reveals large differences
in the Size(h̄) curves across RMPs when strength variabil-
ity is large. RMPs 9 and 5 stand out as opposite extremes.
At Gσ /Gμ = 0.4, RMP 9 loses all islands of circulation at
a low value of h̄ ≈ 9.3 while such islands remain present
in RMP 5 up to a high value of h̄ ≈ 23.2. For comparison,
the empirical h̄ is approximately 10 for RMP 9 and 14.4 for
RMP 5. In RMP 5, there are SCs in G(h̄) at high h̄-values;
i.e. SCs comprised entirely of strong chains. In RMP 9,
SCs are only present at much lower h̄-values, and therefore
include much weaker chains. Accordingly, RMP 9 equili-
brates at a lower level of activity than RMP 5. However,
the presence of an SC in G(h̄) is, at best, only a neces-
sary condition for an equilibrium at that level. To further
constrain h̄ we therefore take into account Frac(h̄), the frac-
tion of activity accounted for by the islands of circulation
in G(h̄).

We optimized h̄ in terms of how well G(h̄) accounts for
the observed activity, using methods 1 and 2, (Section 2.4).
Each of these is used to predict the equilibrium level of
activity in the system. Comparisons between predictions
and the empirical mean activity are shown in Fig. 7b and
c. The correlations between the predicted and actual lev-
els of activity, across all model instances, are 0.75 and
0.82 for methods 1 and 2 respectively. While these cor-
relations are substantial, in absolute terms neither method
is very good at predicting the empirical h̄. Both meth-
ods give the right answer at zero strength variability and
tend to introduce a negative bias into the way h̄ trends
as strength variability increases. Both methods predict the
empirical h̄ better when it decreases with strength variabil-
ity than when it increases. Oddly, method 2 predicts that
for RMP 5 h̄ will decrease with strength variability where
empirically it increases. However it is better than
method 1 at predicting the increase in the empirical
h̄ for RMP 7.

In short, our methods for predicting the equilibrium
level of activity based on the properties of the h̄-family
of ECGs are only partially successful. Ideally one would
like a dynamical systems explanation. A reduced dynamical

system based on activation rates might provide this, as we
discuss in Section 4.

Using condensed graphs to interpret EE rasters Suit-
ably chosen ECGs reveal much about the organisation of
steady state activity patterns and the structures underlying
them. To aid in visualizing the structure of the ECG we
use a convenient reduced representation, a condensed ECG
(cECG).

The choice of mean activity level, h̄, has a large effect
on what the condensed graph CG(h̄) reveals. Consider the
case of RMP 3 at Gσ /Gμ = 0.3 which exhibits the ‘left’
and ‘right’ states as discussed earlier and depicted in Fig. 5.
In Figs. 8 and 9, the same EE rasters are presented again,
colored and sorted according to which SC or distinct OC
part they belong to, along with the 2PC projection and the
condensed ECG, for h̄ = 10.60 and h̄ = 10.43 respectively.

Consider the higher h̄-level first. It identifies 521 supra-
threshold chains as nodes of G(h̄), of which 52 belong to
the UOC(h̄). These chains account for 78.3 % of the total
EE activity obtained over runs (i.e. Frac(h̄)). In the upper
portion of each raster plot and colored black are the EEs
of all chains which do not belong to UOC(h̄). The vertical
extent of this portion is (1−Frac(h̄)) of the total, here and in
all other figures showing EE rasters colored by ECG parts.

We see that large parts of the EEs constituting the left
and right states, respectively, can be distinguished from one
another according to which parts of the ECG they belong
to. The left state is substantially due to recurrent activity
on SC 0 (pink, 15 chains) which flows out to OC 0 (green,
22 chains). We determined that SC 0 is a simple loop. The
diagonal lines of pink dots in the figure are paths of propa-
gation around the loop. This path turns out to have a period
of about 2009 ms and is therefore the origin of the peri-
odic patterning of end events observed in Fig. 3, in which 3
waves simultaneously propagate on the loop.

A small amount of left state activity is due to intermit-
tent bursts of recurrent activity on SC 2 (red), a single
self-looping chain which activates the two chains in OC 2
(orange); this activity must contribute to the 2nd PC since
it occurs considerably more often in ‘b’ and ‘B’ than in
‘c’ and ‘C’. However, a substantial amount of left-state EE
activity is not accounted for by the ECG at this level (the
EEs in black). The right state is, in the FM at least, entirely
accounted for by recurrent activity on SC 1, a single self-
looping chain (dark aqua) which activates the eleven chains
in OC 1 (blue). In the RM, the right state also includes acti-
vation of SC 0 and OC 0, at a much reduced level to that
which occurs in the left state. This difference explains why
the 2PC projection of FM run ‘A’ is as far to the right as that
of RM run ‘a’ even though the left state gives way to the
right state much later in ‘A’ than in ‘a’. The condensed ECG
at this h̄ level does not show the pathways by which SC 0
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Fig. 8 Condensed ECG (cECG)
for h̄ = 10.6, 2PC projection of
NEECs, and selected EE rasters
for RMP 3, Gσ /Gμ = 0.3. Top
left panel: As in Fig. 5. Top right
panel: cECG. Remaining
panels: EE rasters of Fig. 5 with
chains colored according the
node in cECG to which they
belong, and rows permuted so
that chains in the same cECG
node are adjacent

and OC 0 continue to be re-activated in the RM right state.
Nor does it show the pathway by which activity reached
SC 1 at the point of transition to the right state.

When we move to the slightly lower threshold level (h̄ =
10.43) the number of chains in the ECG increases from 521

to 538 and the UOC(h̄) increases in size from 50 to 124
and accounts for 86.7 % of the total EE activity. Due to the
additional chains a considerably richer structure of SCs and
OCs can be observed. There are now five SCs instead of
three. SC 0 and OC 0 remain unchanged (now colored red
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Fig. 9 As for Fig. 8 except the
ECG is chosen by the criterion
Frac(h̄) = 1 − Size(h̄) giving
h̄ = 10.43

and salmon, respectively) and OC 0 is labeled OC 0,1,2,3,4
because it is now also reachable from SCs 1, 2, 3 and 4.
The former SC 1 becomes SC 3 (lime) the former OC 1
breaks up into OC 3 (magenta, 7 chains), OC 1,3 (orange,

3) and 1 chain of OC 1,2,3,4 (pink). The other 10 chains of
OC 1,2,3,4 are new additions to G(h̄), as are SC 1 (sky blue,
2), OC 1 (dark green, 4), SC 2 (brown, 7), OC 2 (green, 15),
OC 1,2,4 (khaki, 11) and OC 2,4 (mauve, 22). The former
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SC 2 becomes SC 4 (indigo) and OC 2 becomes OC 4 (blue),
increasing in size from 2 to 3.

With its increased size and complexity, this condensed
ECG explains more features of the steady states. We now
see an additional component of left state activity due to brief
transient activation of the new SC 2 and OC 2, which con-
tributes to the 2nd PC differences between runs ‘b’ and ‘B’
and runs ‘c’ and ‘C’ in the same way as SC 4 (previously
SC 2) does. The ECG now explains the component of inter-
mittent activity on SC 0 and OC 0 in the RM right-state
(run ‘a’). Close inspection of the raster for run ‘a’ reveals a
stereotypical pattern. Each wave of activity on SC 0 in the
right state is triggered by a burst of activity on OC 1,2,3,4,
presumably driven by the highly active pathway from SC 3
via OC 3 and OC 1,3. The wave on SC 0 and the resulting
activity on OC 0,1,2,3,4 appears to be responsible for termi-
nating the OC 1,3,4 burst as it does not re-occur until after
the wave on SC 0 ends. The wave on SC 0 appears to bring
about its own termination after one cycle by producing a
peak in activity just as it is about to complete the cycle.

Still, this ECG is unable to explain all the activity on the
chains it includes. Some of the activity on OC 2,4 (mauve)
during the left state is not due to SC 2 or SC 4 activity, and
must therefore be brought about by activity on chains that
are not included in this ECG. Likewise, during the left state
there is activity on OC 3, OC 1,3 and OC 1,2,3,4 which
cannot be traced via paths in the ECG from SC 0, the source
of ongoing left state activity.

As the threshold is lowered further, and the ECG grows,
more SCs and OCs are present but at the same time the ECG
becomes complex and hard to interpret. With further reduc-
tion the result is distinctly sub-optimal: the ECG grows but
components are merged. This merging is misleading, since
they are activated independently in different steady states.

Further examples of ECGs and the steady state activ-
ity structures they reveal are given in Supplementary
Figs. 13–17.

We conclude that, while a single ideal ECG is impossi-
ble to find, there is an optimal range of ECGs which sheds
light on what is going on. An optimal ECG captures the
most probable paths of propagation within the system, and
there is a strong relationship between the islands of circula-
tion and the steady states. This relationship is not in general
a simple one-to-one mapping. Rather, each steady state has
a distinctive SC signature: the SCs which are active in
that steady state. Coupling and competition between islands
of circulation is observed. For instance, when the ECG
includes two SCs, a ‘lower’ one in the OC of the ‘upper’,
two steady states may be observed: one in which the upper
SC dominates with a small amount of activity percolating
into the lower; another in which the lower SC is strongly
active while the upper one is silent. Such competition is seen
for example in RMP 3, Gσ /Gμ = 0.3 (Fig. 9), as well as in

RMP 2, Gσ /Gμ = 0.3; RMP 4, Gσ /Gμ = 0.4 and RMP
6, Gσ /Gμ = 0.3 (Supplementary Figs. 13, 14 and 16).
Co-existence of activity independently circulating on mul-
tiple islands of circulation is seen in RMP 2, Gσ /Gμ =
0.3; RMP 5, Gσ /Gμ = 0.2 and RMP 9, Gσ /Gμ = 0.3
(Supplementary Figs. 13, 15 and 17).

Note that although the condensed ECG is acyclic, sub-
threshold chains (which do not form part of the ECG)
provide routes for recurrent circulation outside of the cyclic
SCs. Successful traversals of sub-threshold chains are indi-
cated by the presence of black-colored points in the colored
EE raster. Indeed, while some transitions between steady
states can be explained simply by the chance extinction of
activity on an SC, others must involve traversals of chains
which do not form part of the ECG. If there is no route in the
condensed ECG from the active SCs to an inactive SC then
the latter can only be activated by traversal of sub-threshold
chains.

4 Discussion

The cortical connectome may include an extensive sys-
tem of meso-scale circuits of a certain kind: ones in which
streams of spike activity propagate by means of syn-
chronously converging inputs and interact via inter-circuit
couplings. As an exemplar of such a system, we studied a
model consisting of a large number of synfire chains cor-
tically embedded in random superposition and linked by a
random recurrent network of sequential couplings.

A basic property of the embedding is that propagat-
ing pulse packets generate background noise, which acts
as a negative feedback signal that regulates the total num-
ber of pulse packets (Trengove et al. 2013b). Our first
result is that the network of couplings gives rise to ongo-
ing endogenously regenerated pulse packet activity. The
creation and extinction of packets produces a fluctuating
equilibrium in which multiple waves of propagating activ-
ity explore the structure in parallel in a quasi-stochastic
fashion.

Ongoing activity consists chiefly of steady states that
may be characterized by the relative mean rates of suc-
cessful traversals of chains over intervals of 1–2 seconds
or longer; that is, on time scales an order of magnitude
greater than the mean chain traversal time of ∼ 140 ms.
Variability in strength between chains induces an effective
connectivity topography on the system. For models with
zero strength variability, ongoing activity consists of a sin-
gle steady state of high entropy. With moderate variability,
the system typically exhibits multiple steady states of lower
entropy, along with stochastic transitions between them.
Durations of steady states range from too short to be charac-
terized by traversal rates to much longer than the simulation
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duration. Within a steady state there is both variety and
regularity, sometimes including periodicity, in the precise
patterning of chain traversals. These patterns are reflected
in large fluctuations in the number of waves. Indeed oscilla-
tions in the mean number of waves in a frequency range of
0.5–2 Hz are common.

Despite the complex structure of activity, the main char-
acteristics of steady states can be largely understood in
terms of a dynamically tuned effective meso-scale struc-
ture. Within this structure we identify effective connectivity
graphs (ECGs) which distinguish chains of high traversal
probability from the remaining chains. Within these graphs
we find multiple islands of circulation, each such island
being a strongly connected component (SC) along with its
associated out-component (OC). While the SCs of differ-
ent islands cannot overlap, their OCs may overlap, and the
OC of one island may include the SC of another. These
relationships are captured by a directed acyclic graph: the
condensed ECG.

Within a suitable range of equilibrium levels of activity,
the islands of circulation characterize the observed steady
states, in the sense that most activity in a steady state is con-
fined to one or more islands of circulation. Different steady
states are distinguished according to which islands of cir-
culation are active. Some transitions between steady states
can be understood in terms of the extinction of activity on
one SC while leaving activity on other SCs intact, while
other transitions rely on the occasional successful traversal
of sub-threshold chains lying outside of the ECG. Periodic
temporal patterns arise when activity is driven by an SC that
is a simple loop. In this case the period equals the time taken
to traverse the loop.

When strength variability is low the system exhibits a
single steady state of high entropy, while at higher strength
variabilities multiple steady states of low entropy are exhib-
ited. This contrast can be understood in terms of the scale
of the topography relative to that of activity fluctuations.
As per Eq. (5), activity fluctuations blur the sharp transition
in traversal probability seen in Fig. 2a. When variations in
topography are small compared with fluctuations in activity
level they do not provide a clear distinction between reli-
able and unreliable chains, and the structure of islands of
circulation is not robust. Propagation over the landscape is
not effectively constrained, and the basis for multiple steady
states dissolves.

A generic property of random directed graph models
parametrized by the mean vertex degree is the emergence of
a giant SC (i.e. one of order N in size) when the mean ver-
tex degree rises above a threshold value (Newman (2010)
and references therein). This phenomenon occurs in the h̄-
families of ECGs of our networks. In G(h̄) the mean vertex
degree decreases as h̄ increases and nodes are pruned. Con-
sequently, a giant SC is present at low h̄, SCs are small in

a critical h̄ region, and no SC at all is present at high h̄.
Indeed, the Size(h̄) curves in Fig. 6 signal that all of our
systems cross the threshold for the emergence of the giant
strongly connected component within the h̄-range shown.
When Size(h̄) is large it is predominantly due to the giant
OC (the OC of the giant SC). The ECGs that optimally
characterize activity patterns occur where Size(h̄) is small,
i.e. where the largest SC exists but is small, and thus lie
in the vicinity of the threshold for emergence of the giant
SC. The appearance of short loops is also predicted to occur
at this threshold (Newman 2010). This agrees with what
we see in our optimal ECGs – most SCs are short loops,
commonly a self-looping chain, while there is usually one
rather large SC present, often dominating the activity (e.g.
SC 0 in Figs. 8 and 9). Since a threshold for large-scale
connectedness occurs in many random graph models, the
tuning of the effective connectivity to lie near this threshold
may be common to many models of coupled synfire chain
landscapes.

The metastable steady states found in the present
model are quite different to those recently exhibited in
another balanced random recurrent cortical network model
(Litwin-Kumar and Doiron 2012). In that model, a small
fraction of excitatory connections have been rewired so as
to form weakly segregated clusters. The metastable states
involve activation of specific clusters at a higher rate of
asynchronous irregular spiking than the rest of the net-
work: rate-coding rather than temporal coding. Absent is
the fine-grained meso-scale pool structure and precise tim-
ing relations found in the present model, along with the
combinatorial potential.

4.1 Limits to the effective connectivity analysis
and potential improvements

The present effective connectivity analysis cannot explain in
a principled way how the dynamical system comes to equi-
librate at a particular level of activity. Our method of find-
ing the islands of circulation responsible for the observed
steady state patterns of EE activity partially explains why
one model equilibrates at a higher or lower level than
another. However, a causally closed explanation of equi-
librium states, for instance in terms of attractor states of a
reduced dynamical system, would be preferable.

This could perhaps be achieved via a reduced dynam-
ical system based on a vector of mean rates of wave
traversals over chains. Such an analysis would involve self-
consistency equations for an equilibrium vector of mean
rates together with an equilibrium probability distribution
for the number of waves (p(h)) in a steady state. Neverthe-
less, it is doubtful whether an analysis at the level of mean
rates will succeed in identifying the steady states correctly.
It ignores the precise timing relations found between wave



J Comput Neurosci

traversals within a steady state. These may not be essen-
tial to the steady state, since variations in the relative timing
and frequency of traversals are often observed within steady
states. However, because they determine the time course of
the number of waves, ongoing circulation of activity may
depend upon certain chains being traversed reliably dur-
ing ebbs in the number of waves. In that case the set of
time-averaged traversal probabilities would be inadequate to
explain the steady state.

Another limitation of the method is that it can only pro-
duce ECGs that are acyclic. Suppose the system exhibits
bidirectional transitions between two or more steady states,
such that each is reachable from the others. Intuitively, one
would like to capture this with an ECG in which there is
a pathway from the island(s) of circulation associated with
any one steady state to those associated with any other
steady state. However this is ruled out by the very definition
of an island of circulation as an SC plus its OC. If all the
pathways mediating the steady state transitions are present
in the ECG then the chains active in the mutually reach-
able steady states must merge into a single SC. In principle
this limitation could be overcome by a two-stage analysis.
After identifying and defining the SCs in an optimal ECG,
the ECG could then be increased in size until it includes
all desired pathways between the SCs already found in
the optimal ECG. It might then be possible to define a
condensation of the enlarged ECG in terms of the opti-
mal SCs and thereby obtain a condensed ECG containing
cycles.

Despite these limitations, the qualitative validity of the
effective connectivity analysis is clear. By considering the
topography of the coupled system in conjunction with the
noise level, we can identify islands of circulation that to a
large extent account for the steady state patterns of activity,
and the observed transitions between steady states.

4.2 Generalization of structure and dynamics
and model extensions

We propose that the principle of a dynamically tuned
effective connectivity structure, which both arises from
and shapes ongoing activity, will be applicable to a much
broader class of large-scale cortical networks: those which
contain meso-scale structure that promotes propagation of
spiking activity based on input-synchrony.

Within this broad class lie generalizations of our own
models. The local circuit form of our models can be gen-
eralized from simple chains to structures such as poly-
chronous assemblies (Izhikevich 2006), chains that admit
multiple modes of wave propagation according to the tim-
ing patterns within pulse packets (Hopfield 1995; Maass and
Natschläger 1997), and chains that are laterally extended
with a Mexican-hat lateral coupling profile (Hamaguchi

et al. 2005). As well as the sequentially excitatory cou-
plings used here, there can be excitatory lateral couplings
(Arnoldi and Brauer 1996; Abeles et al. 2004; Schrader et al.
2010) with varying degrees of temporal offset. Inhibitory
couplings between chains could be included to implement
mutually exclusive bindings through synchrony (Trengove
2006). All of these local variants can potentially exist
together in the same local circuitry.

The meso-scale coupling structure may also be
generalized. Instead of the present random network of cou-
plings, the network may incorporate properties such as the
small world property and hierarchical modularity, as found
to emerge in certain neuron network models (Gong and
van Leeuwen 2004; van den Berg and van Leeuwen 2004;
Rubinov et al. 2009). In particular, within a complex net-
work a module consisting of multiple densely inter-coupled
local circuits could be organized according to the princi-
ple of diverging and converging pathways, whereby the
propagation time over multiple poly-synaptic paths between
two neurons or pools is the same, just as is the case
within individual synfire chains and polychronous circuits
(Bienenstock 1996). A system containing such temporally
ordered modules would be in contrast to the present cou-
pling system, in which waves that diverge from a common
ancester chain rarely converge simultaneously on a com-
mon descendant chain. In the envisaged systems, noise
feedback could in principle enable dynamic switching of
effective connectivity between globally well-coupled small-
world states and large-world states consisting of segregated
modules (Trengove 2006).

Note that the role of background noise in restricting
pathways of propagation on a landscape applies equally
well to propagation via lateral couplings between chains,
as modeled in a prototype RM formulation (Trengove
et al. 2013a) based on FM simulations of pairs of lat-
erally coupled chains (unpublished results). When there
is variability in the dispersion of transmission delays
within links, noise is selective for links with smaller dis-
persion. Likewise in the aforementioned modules con-
taining diverging and converging pathways, those with
less temporal dispersion will be more robust against
noise.

The model may provide a new way to describe the
neurodynamics underlying perceptual switching phenom-
ena (Alais and Blake 2005); e.g. ambiguous figures (Ward
and Scholl 2015) or binocular rivalry (Wade 1996). These
are often modeled as bistability in the rate of activity in
two neural populations, with competitive interaction. The
present model suggests a different interpretation: alterna-
tion between activity on two islands of circulation, including
brief periods when both patterns are active. Each mode of
circulating activity will produce a distinctive profile of fir-
ing rates on the constituent neurons, which will depending
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on the chain embedding scheme (that is, the mapping from
pools to neurons). Such a model would be in accordance
with observations that perceptual switching takes time (in
the order of 1 second) to complete and that there are multi-
ple scenarios leading to a switching response (Nakatani and
van Leeuwen 2006).

A further extension of the present network of embedded
chains would be one which better reflects the spatial orga-
nization of the cortical connectome, by taking into account
constraints on intracortical connectivity such as inter-layer
connection densities (Thomson et al. 2002; Binzegger
et al. 2004) and the hierarchical, layer-specific systematic-
ity of cortico-cortical connections (Felleman and Van Essen
1991). The present model is concerned with intrinsic net-
work topology ignoring constraints that arise from spatial
organization. Given that the cortical network is left hugely
undetermined by the known anatomical constraints alone, it
is quite feasible for intrinsic network topology of the kind
we suggest here to be present in a network that also meets
those constraints. The assignment of neurons to pools and
of links between pairs of pools in the embedding procedure
could be statistically biased so as to meet the known spatial
constraints on cortical organization.

While our model employs simple integrate-and-fire neu-
rons with additive synaptic integration, it has recently been
shown that incorporation of dendritic nonlinearities via non-
additive summation increases the robustness of pulse packet
propagation to balanced background input (Jahnke et al.
2013). Not only does this allow for more efficient embed-
ding of chains; in such a model, balanced oscillations in
background input can promote propagation on chains for
which the pool-to-pool propagation time is a multiple of
the oscillation period (Jahnke et al. 2014). In the present
model, the large, random inter-link delay variability pre-
cludes any systematic utilization of this resonance effect.
However, if the links within a given set of chains were to
have nearly identical inter-link delays, their synchronous
co-activation could induce a resonance effect that would
facilitate propagation where it might otherwise fail: a novel
kind of context-dependent activation.
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