
Master Thesis

Design and Evaluation of an SVM
Framework for Scientific Data

Applications

Philipp Glock

Master Thesis DKE 15-23

Thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

of department at the Department of Knowledge
Engineering of the Maastricht University

Thesis Committee:

Dr. Gerasimos Spanakis, Maastricht University
Dr. ir. Kurt Driessens, Maastricht University

Prof. Dr.-Ing. Morris Riedel, Juelich Supercomputing Centre

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

July 6, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35065166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Declaration of Authorship
I hereby declare that the thesis submitted is my own unaided work. All direct or
indirect sources used are acknowledged as references.

I am aware that the thesis in digital form can be examined for the use of unauthorized
aid and in order to determine whether the thesis as a whole or parts incorporated
in it may be deemed as plagiarism. For the comparison of my work with existing
sources I agree that it shall be entered in a database where it shall also remain
after examination, to enable comparison with future theses submitted. Further
rights of reproduction and usage, however, are not granted here.

This paper was not previously presented to another examination board and has
not been published.

Jülich, July 6, 2015
Philipp Glock

iii

Abstract
Support vector machines (SVMs) are a popular classification method due to
their good accuracy and broad usage domains in scientific applications. The
computational complexity is between O(n2) and O(n3) for the number of n training
samples. The scalability for larger data sets is therefore a problem of SVMs. With
the increasing number of large data problems, this disadvantage becomes more
and more significant. In order to overcome these scalability issues, this thesis
designs and implements a parallel and scalable framework that realizes the cascade
SVM approach including specific improvements. A fundamental speed up and
increased scalability is gained by splitting up the data set into several sub sets
that can be worked on in parallel. The framework is designed to run in modern
High Performance Computing (HPC) environments, that provide the necessary
massively parallel resources (e.g. large clusters with good node interconnects) to
solve large data problems. The framework however also works on a simple computer
for smaller problems if needed. To keep the interface usable for non-technical savvy
domain scientists, Python is used.

The standard cascade SVM approach is improved with a standardized file format
and parallel I/O is introduced that both improve the I/O performance, which
besides computing is also often observed to be a bottleneck for large problems. In
order to enable enhanced training speed up as well as a better accuracy further
improvements such as distance filters and cross-feedback options are realized and
evaluated. The resulting improved cascade SVM approach and parallel and scalable
framework design is then evaluated on a real world remote sensing data set and
compared to another parallel implementation called πSVM. The parallelization
strategies of these two implementations are different whereby the cascade SVM is a
data processing approach, πSVM follows primarily an algorithmic-driven approach.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Infrastructure . 2
1.3 Objectives . 3
1.4 Structure . 3

2 Background 5
2.1 Cluster System . 5
2.2 Message Passing Interface . 6
2.3 Python . 7
2.4 Support Vector Machines . 11
2.5 Problem Statement . 15

3 Related Work 17
3.1 Support Vector Machine Speedup Techniques 17
3.2 Support Vector Machine Tools . 18
3.3 Remote Sensing Applications . 19
3.4 Summary . 20

4 Cascade SVM 21
4.1 Conceptual Cascade Design . 21
4.2 Analysis of Scalable and Parallel Approaches 22
4.3 Convergence Condition . 24
4.4 Summary . 24

5 Improving Cascade SVM 27
5.1 Architectural Design and Basic Implementation 27
5.2 Parallel I/O . 32
5.3 Cross Feedback . 33
5.4 Distance Filter . 34
5.5 Summary . 36

v

6 Evaluation & Use Case 37
6.1 Remote Sensing Data for Evaluations 37
6.2 Speedup by Improvements using Parallel I/O 38
6.3 Accuracy & Speedup . 39

6.3.1 Benchmark on Data Set A 39
6.3.2 Benchmark on Data Set B∗ 40

6.4 Cross Feedback Evaluation . 42
6.5 Distance Filter . 43
6.6 Comparison with πSVM . 44
6.7 Summary . 45

7 Conclusion 47
7.1 Future Work . 48

A Evaluation Tables 54
A.1 Tables for Data Set A . 54
A.2 Tables For Data Set B . 54

Abbreviations 58

vi

List of Figures

2.1 Judge cluster system of the JSC . 5
2.2 MPI Broadcast with four processes 6
2.3 MPI Scatter with four processes . 7
2.4 MPI Gather with four processes . 7
2.5 Machine Learning workflow supported by scikit-learn. 9
2.6 IPython parallel architecture. 11
2.7 Different possible decision boundaries. 12
2.8 Maximum margin decision boundary. The circle around data points

indicated found support vectors. 12
2.9 Nonlinear classification problem. 13
2.10 Nonlinear problem transformed into the third dimension. 14
2.11 Nonlinear classification problem using a rbf kernel. 14

4.1 Binary CascadeSVM . 22
4.2 MPI based cascade SVM with idle CPUs (gray) 23
4.3 Visualization of the Convergence Check 25

5.1 Framework architectural design . 27
5.2 Basic HDF5 Structure . 33
5.3 Early cross feedback in a binary cascade SVM 34
5.4 Filter used before Cross Feedback. 35

6.1 Input time for 1.000.000 samples with serial libSVM and parallel
I/O using HDF5. 38

6.2 Training speedup and accuracy on data set A (small workload) . . . 40
6.3 Training speedup and accuracy (table A.5) on data set B∗ 41
6.4 Cross feedback on layer 0 . 42
6.5 Cross feedback design implementation evaluated on different layers. 43
6.6 Training Speedup and Accuracy with Distance Filter. 44
6.7 πSVM speedup . 44

vii

List of Tables

3.1 Available SVM Tools . 18

6.1 Training Time and Accuracy with multiple iterations on set B∗. . . 41

A.1 Training Time on data set A . 54
A.2 Accuracy on data set A . 55
A.3 Training Time on Set B . 55
A.4 Accuracy on Set B . 56
A.5 Training and Testing Time on Set B* 57
A.6 Training and Testing Time with Feedback on Set B∗. 57

viii

Listings

2.1 libsvm format . 9
2.2 mpi4py send and receive . 10

5.1 Scattering labels to all processes . 28
5.2 Computation of the objective function. 30
5.3 Implemented RBF kernel using matrix operations 31

ix

1 Chapter 1

Introduction

1.1 Motivation

Today the amount of data that is gathered and stored every day is much larger
than in the past contributing to the more recent term ‘big data’[34]. More and
more people tweet or post status updates. They own smart phones and fitness
trackers that gather data all day and cameras create images and videos that have
a much higher resolution than in the past. The same is true with scientific devices
ranging from small sensors in the field to large instruments such as those at CERN
[13].

Researchers and companies want to harness this wealth of data and information.
While there are different techniques to learn from data like regression or clustering
techniques, this thesis focuses on data classification techniques using selected
improvements of support vector machines (SVM)[14]. Some popular approaches
for classification of large quantities of data are Mahout [4] for Hadoop [44], MLlib
[22] for Spark [55] or Twister [18] and all of them are based on the map/reduce
paradigm [17]. Unfortunately, the current version (0.9) of Mahout does not support
SVMs and MLlib 1.1 provides only linear SVMs. While these approaches have a
high scalability, they often have limitations in terms of stability, robustness and
usability compared to serial implementations like scikit-learn [35], Weka [27] or R
[38]. These tools are great for building a final model on the complete data, but
preparing the data and evaluating different models is often complex for scientists
and the important model selection process (e.g. cross-validation [23]) is often very
time-consuming.

In this thesis a SVM framework is designed, that parallelizes the training and
predicting of a SVM classifier to improve the performance and lower the time to
solution. Because the implementation is deployed on a cluster system, frameworks
like the message passing interface (MPI) [21] and a portable batch scheduler (PBS)
[28] need to be incorporated. Since the target group for the framework is not
restricted to programmers, the user interface should be kept as simple as possible.
Therefore python was chosen as the primary programming language as it gains
momentum in scientific communities, because of its simple usage.

1

1.2 Infrastructure

The Research Centre Jülich investigates key technologies for the 21st century.
Different tools are needed for all kinds of experiments. Because these tools are
often very specialized, the Research Centre often develops them itself. Apart from
the experiment related software, there are many computational simulation and
data problems that have to be solved.

The Jülich Super Computing Centre (JSC) provides the resources for these com-
putations such as the supercomputing capacity and capability needed for a fast
calculation. The JSC has several high performance clusters that can be used for
compute- and/or data-intensive problems [1]. Besides hardware the institute inves-
tigates, explores, and develops different software solutions for parallel computing
and therefore offers a comprehensive and powerful infrastructure for the research
questions of this thesis.

The division ‘Federated Systems and Data’ (FSD) of the Jülich Super Computing
Centre provides access to parallel and distributed systems that consist on a wide
variety of different resources (e.g. HPC systems, parallel file system environments,
high throughput computing resources, or clouds). This is done by implementing
open standards and simplifying usage and administration of these services. Fur-
thermore the division provides in particular, middle ware services, simple upload /
download services, replication services, or data management know-how in general.

The research group on High Productivity Data Processing works on solutions to
overcome problems and challenges of applications that specifically require so-called
big data analytics solutions. This can be split into three categories, where parts of
the thesis contributions fall into.

1. Investigate Generic Data Methods: How to overcome limitations of
processing and analyzing large amounts of data (e.g. in-memory databases,
data privacy methods and query processing) in order to be re-used in different
scientific and engineering domains.

2. Scalable Machine Learning Techniques: Explore, develop and tune
serial or parallel machine learning techniques, like classification and clustering,
in order to enable solutions that work with large quantities of scientific data
or high dimensional datasets.

3. Smart Data Analytics Applications: Find and develop solutions that
are specifically applicable in real-world applications for general data analysis
including statistical data analysis and feature selection and extraction methods

2

(e.g. for dimensionality reduction, sampling), data organization, e.g. data
access - smart parallel I/O.

1.3 Objectives

In this thesis one support vector machine approach, a widely used and popular
classification technique, is parallelized using a known approach. The intention is to
develop a framework that is open and freely available. As the framework needs
to be operated by domain-specific scientists that are not always technical-savvy,
it is also important to have a good and user friendly interface. The framework is
designed in such a way that it can therefore be easily used by domain scientists.

In addition improvements such as taking advantage of parallelization techniques
are made to accomplish a better performance. The training time is decreased in
comparison to a normal, typically referred to as serial SVM and the predicting
is parallelized as well. This includes approaches where possible bottlenecks are
investigated. For large data sets the I/O could be one of these bottlenecks, because
it takes a long time and memory to read in the whole set. To sum up, the objective
of the thesis is to design and implement a SVM-based framework that is able to
overcome data analysis limitations when dealing with large data sets in scientific
environments. This can be summarized into the following points:

• Introducing a standardized data format

• Enabling parallel I/O

• Improvements concerning the load imbalance problem

• Improvements of the feedback method

1.4 Structure

The thesis is structured as follows:

The first chapter gives an introduction to the field of data mining as well as a
motivation. It also gives a short description of the infrastructure at the JSC
and outlines thesis objectives. Chapter 2 explains the different techniques and
frameworks that were used for this thesis and introduces our problem statement.
The third chapter describes the related work regarding different techniques, tools
as well as work performed in the domain-specific application domain. In chapter 4
the parallelization approach used in this thesis is explained. Chapter 5 reports a
number of distinct improvements that were applied to the original approach. In
the last chapter the frameworks performance is evaluated on a real world data set.

3

4

2 Chapter 2

Background

This chapter introduces some techniques and frameworks that are used in this
thesis. At the end the problem statement for this thesis is given.

2.1 Cluster System

The framework is targeted to run on a cluster system [6], which is a collection of
computes that are connected in some way, so that a distributed computation is
possible. One of the systems deployed by the JSC is called Judge1 and can be seen
in Figure 2.1. It provides 206 compute nodes with a total of 2472 cores and 96gb
memory per node.

Figure 2.1: Judge cluster system of the JSC

The job scheduling is done with a portable batch scheduler (PBS) [28]. The
available parallelization frameworks are MPI [21] and openMP [15]. Map/Reduce
frameworks like Hadoop [44] are not supported, because those frameworks do not
take advantage of the extremely fast and powerful network interconnect of JUDGE
in particular and cluster systems in general. At the same time these interconnects
are the most costly parts of High Performance Computing (HPC) machines and as
map-reduce frameworks do not need them those frameworks are to be deployed on
High Throughput Computing (HTC) resources with a normal interconnect. Hence,

1www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUDGE/JUDGE_node.html

5

the difference of HPC systems to HTC systems is typically that the interconnect
between CPUs/cores is specifically designed for messages (e.g. infiniband [43]).

2.2 Message Passing Interface

The Message Passing Interface (MPI) [21] is a well known standard, that describes
the message passing for parallel computations on distributed systems. It provides
a programming interface, containing several operations and their semantic.

A MPI application consists of multiple processes that are started in parallel at
the beginning. All of them together work on a problem and pass data by sending
messages from one process to another one. An advantage of this approach is that
the processes can be started on different computers and the application is not
limited to a single machine ,e.g. SPMD (Single Program Multiple Data) [6].

The communication can be differentiated into two types, the first one being point-
to-point communication. A process sends a message to a specific destination by
calling the send function and the process that gets the message calls the recv (=
receive) function. This can be done either with blocking or non blocking calls. A
blocking receive call waits until the message has completely arrived. A non blocking
receive returns a request object that can be explicitly checked if the message has
been received or not.

The second type is collective communication representing one of the most powerful
approaches in MPI. All processes can be part of the application, but the number of
processes can be specifically defined by using an MPI communicator that may be
tuned to the communication structure of the application (e.g. cartesian communi-
cator [48]). Because some patterns are often needed for parallel computation, MPI
provides some predefined collective functions. As mentioned above all processes of
the communicator are involved and there is one process that is initiating the call
named as root.

Figure 2.2: MPI Broadcast with four processes

6

A simple collective function is the broadcast, which can be seen in Figure 2.2. It
sends the data from the root process to all other processes and saves it in the same
variable. Like all other MPI functions broadcast expects that the memory for the
data is already allocated.

Figure 2.3: MPI Scatter with four processes

Figure 2.3 shows another collective function called scatter. While this function
sends data to all processes of the communicator like a broadcast, the data is not
the same for all processes. Instead the data of the root process is chunked into n (
= number of processes) equally sized parts and distributed to the processes. The
scatterv function is a variant of scatter that can send chunks of variable sizes.

Figure 2.4: MPI Gather with four processes

The complement to scatter is the gather function shown in figure 2.4. All processes
send their data to the root process which saves the data in an array. The gatherv
function is again a variant that can send different sized chunks.

2.3 Python

The programming language Python [41], which is primarily used in this thesis, is
increasingly used in scientific environments.

7

Python is a high-level, general-purpose language that emphasizes code readability
and a clean and easy syntax. The most used implementation CPython2 is interpreted
at run time. Other implementations like PyPy [40] use a just-in-time compiler to
improve the performance. It also features a large number of available modules,
some of them being highlighted in the next part, because they are relevant in this
thesis.

Although Python is a slow language (e.g. compared to the traditional C language
[30]) it is very popular among scientists, because of its nice syntax. To enable
Python for larger computations the performance had to be improved. The numpy
[49] module focuses on array computation. It provides classes and functions to
handle arrays in a fast way. Next to simple functions like the ‘plus’ or ‘minus’
operator numpy also contains more sophisticated ones like ‘exp’ or ‘sin’ that work
on one or multi-dimensional arrays. The code is not written in Python but in C
and only wrapped by Python. Most scientific modules are based on numpy to
perform array calculations.

Another module is scikit-learn [35]. The module provides machine learning algo-
rithms. It provides several data mining and analysis tools that are easy to use.
The module is very popular because many basic machine learning tasks can be
purely solved with it. This can be done because scikit-learn provides functions for
the complete workflow of a machine learning task. Figure 2.5 shows the different
steps that are needed during a machine learning problem and are provided by
the scikit-learn module. It starts with simple data management by supporting
popular file formats and sampling of data. In the preprocessing step normalization,
like scaling of features, feature extraction and dimensionality reduction techniques
are available. The module can handle classification tasks as well as clustering
and regression. For the model selection popular methods like grid search and
cross validation are provided. Because scikit-learn is compatible with the popular
plotting library matplotlib [29] the results can even be visualized.

The main part of scikit-learn does not feature parallelism. This is done to be as
independent and easy to use as possible. Only some parts like grid search can be
used in parallel on a shared memory system. The performance of the different
models may vary depending on the implementation.

For this thesis the SVM classifier is needed, which is implemented in the SVC class.
It is not written in Python, but wraps the libSVM [11] library, which is designed in
C++, and thus provides a good performance. It is thus the de-facto standard and
wrapped by most SVM libraries. The SVC class can handle numpy arrays as well

2https://github.com/python/cpython

8

Data Management
(I/O)

Preprocessing

Model creation

- normalization
- feature extraction
- dimensionality

reduction

Model Selection

- clustering
- classification
- regression

- grid search
- cross validation
- metrics, scores

- I/O
- sampling

Visualization

Figure 2.5: Machine Learning workflow supported by scikit-learn.

as sparse matrices which can be saved in the libSVM format as shown in listing 2.1.

1 <class_label > <feature_id >: value ... <feature_id >: value
2 <class_label > <feature_id >: value ... <feature_id >: value ...

Listing 2.1: libsvm format

Serial executions of Python and scikit-learn limits the available memory to one
serial system and thus the amount of data that can be handled in an application is
limited. While Python has many advantages, it does not have a good support for
parallel execution from the start. This problem can be solved by using modules
like mpi4py or IPython.

Mpi4py [16] is a module that wraps MPI, so that it can be used within Python. It
provides all functions of MPI. To accomplish the performance of a normal MPI
implementation numpy arrays have to be used, because they are based on C like
arrays. If other objects than numpy arrays are used, the data is transferred by
using pickle3.

3https://docs.python.org/2/library/pickle.html

9

1 from mpi4py import MPI
2 comm = MPI.COMM_WORLD rank = comm.Get_rank ()
3

4 # using python objects (pickle)
5 if rank == 0:
6 data = {"a": 1, "b": 2.5}
7 comm.send(data , dest=1, tag =1)
8 elif rank == 1:
9 data = comm.recv(source=0, tag =1)

10

11 # using numpy faster , pass explicit MPI datatypes
12 if rank == 0:
13 data = numpy.array ([1 ,2.5], dtype=float)
14 comm.Send([data , MPI.DOUBLE], dest=1, tag =42)
15 elif rank == 1:
16 data = numpy.empty(2, dtype=float)
17 comm.Recv([data , MPI.DOUBLE], source=0, tag =42)

Listing 2.2: mpi4py send and receive

Listing 2.2 shows two small examples for a simple send call. Process 0 sends data
to process 1, which saves it by calling the recv function. The first one uses Python
objects and has a cleaner syntax as the data type can be omitted and no memory
has to be allocated by the receiving process. Like mentioned above this includes
a performance loss because Pythons pickle is used. The second part uses numpy
arrays. The syntax is not as clean, because memory has to be allocated and the
data is saved in an output parameter, but the performance is better. While the
second example includes the data types as parameters, they are not necessary in
this simple case. The data parameters are either just the variable, which is send
or received, or a list with additional information. If a list is used, the list’s order
equals that of the standard MPI interface. More information on mpi4py can be
found at the homepage4.

Another often used framework is IPython [36]. It provides an architecture for
interactive computing. This includes an interactive shell and a browser based
notebook, that can handle code, text , graphics and mathematical expressions. The
most important feature is that IPython supports a powerful architecture for parallel
computing, which can also handle MPI. Unlike MPI which is in general used from
the command shell, IPython’s parallelism can be used from it’s interactive shell.

Figure 2.6 shows an overview of the IPython architecture. The engine is a Python
instance, that gets commands as well as Python objects over a network connection.
While executing commands it is blocked. The hub is a process that keeps track of

4http://mpi4py.scipy.org/

10

Figure 2.6: IPython parallel architecture. Source: http://ipython.org/ipython-
doc/stable/parallel/parallel_intro.html

all engines, schedulers and clients. It also tracks the tasks and their results. Every
command for an engines passes through a scheduler. The scheduler hides the fact
that an engine block while performing a task and provides a asynchronous interface.
The client is the primary object to connect to a cluster and execute tasks.

2.4 Support Vector Machines

Support vector machines (SVMs)[14] are one of the preferred classification methods,
because tools are stable and widely available and it is one of the best out-of-the-box
methods scientists can use that are not particularly trained in machine learning
algorithms. They have a high accuracy, but their training time is quite long
especially as the time is related to the number n of samples used in the given
problem. A model can easily be described by the found support vectors. Figure 2.7
shows a binary classification problem. It can be seen that many different decision
boundaries exist, that separate both classes. The gray band of each boundary is
the distance to the closest data point. The larger the distance is the better the
decision boundary. The gray band is referred to as the margin and the basic idea
of SVMs. They are therefore known as maximum margin classifiers.

An SVM calculates the decision boundary with the maximum distance to the next
data point for both classes. Figure 2.8 shows the decision boundary found by an
SVM for the previous example.

11

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1

0

1

2

3

4

5

6

Figure 2.7: Different possible decision boundaries.

1 0 1 2 3

1

0

1

2

3

4

5

6

Figure 2.8: Maximum margin decision boundary. The circle around data points
indicated found support vectors.

The decision boundary is a hyperplane and can be written as:

~w · ~x−~b = 0 (2.1)

~w is the normal vector to the hyperplane and ~b
||~w|| is the distance between the origin

and the hyperplane. For linear separable training data the two hyperplanes

~w · ~x−~b = 1 (2.2)

and
~w · ~x− b = −1 (2.3)

separate the data and have not points between them. The region between these hy-
perplanes is the margin and the data samples that are on one of the hyperplanes are
called support vectors. The distance between both hyperplanes is 2

~||w||
. Maximizing

the margin is therefore the same as minimizing ||~w|| under the assumption that no
point lies between the hyperplanes. Using some mathematical transformations and

12

lagrangian multipliers this yields the following function.

L = 1
2 · ||~w||

2 −
∑

αi(yi(~w · ~xi +~b)− 1) (2.4)

After some more transformations the dual problem can be achieved.

LD =
∑

αi −
1
2

∑
i

∑
j

αiαjyiyj ~xi ~xj (2.5)

By solving this problem a decision boundary like shown in figure 2.8 can be
computed. The implementation used in this thesis solves the problem with the
sequential minimal optimization (SMO) algorithm [37], which has a complexity
between O(n2) and O(n3) for n samples.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2.9: Nonlinear classification problem.

If the data is not linear separable as it is shown in Figure 2.9, the classes can not
be separated by a linear decision boundary. The problem can be transformed to a
problem which is linear separable by increasing the number of dimensions. Figure
2.10 shows the same classification problem with an additional third dimension. By
introducing a third variable ‘r’ next to ‘x’ and ‘y’, the problem becomes linear
separable. Transforming nonlinear problems into higher dimensions by hand is very
expensive and SVMs were not popular because of that for quite a time.

This changed after the kernel trick was introduced. By using the kernel trick the
problem does not need to be transformed into a higher dimension anymore. This
is possible because only the product of two data points is needed, which can be
seen in equation 2.5. Instead of projecting the data into a higher dimension and
performing manually non-linear transformations of the data, so that it is linear
separable, the dot product is replaced by a non linear kernel method that can be
computed.

13

x

1.5
1.0

0.5
0.0

0.5
1.0

1.5
y

1.5 1.0 0.5 0.0 0.5
1.0

1.5

r

0.2

0.4

0.6

0.8

1.0

Figure 2.10: Nonlinear problem transformed into the third dimension.

The kernel trick is done by transforming equation 2.5 and using the kernel function
K(x, y):

LD =
∑

αi −
1
2

∑
i

∑
j

αiαjyiyjK(~xi, ~xj) (2.6)

The most popular kernels are the following:

• linear:
K(x, y) =

n∑
i=0

xi · yi (2.7)

• polynomial:
K(x, y) = (c+

n∑
i=0

xi · yi)d (2.8)

• radial basis function:

K(x, y) = exp(−||x− y||
2

2σ2) (2.9)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2.11: Nonlinear classification problem using a rbf kernel.

14

Using the rbf kernel on the previous nonlinear example, makes it possible to
calculate a decision boundary like it is seen in Figure 2.11. After the kernel trick
was discovered SVMs gained a huge boost in popularity.

2.5 Problem Statement

Many problems in science can be tackled with data mining and data analysis.
While there are many tools for a serial analysis, there is a lack of parallel tools
for an increasing number of available larger data sets. A parallel classification
algorithm is needed that can handle those data sets. SVMs are one of the best out
of the box methods. There are many different fields in science that need to solve a
classification task. For example remote sensing in earth science or different task
in neuro science or plant science. As a consequence, the framework needs to be
generic and reusable. That means it is not optimized for only one task but need to
perform well on many varying ones. It should support well known data formats for
input and output and not a proprietary one. If a format is not supported there
should be a functionality to convert it to a supported type. The framework in this
thesis can freely be configured by the user because it is written in Python and all
class attributes can be accessed. Most of the times this is not needed because a
standard behavior can be used via the Python shell or from the system shell.

When the amount of data increases, training a SVM has a complexity of O(n2)
for n training instances and the training of a SVM becomes very expensive. By
parallelizing a SVM the training time can be decreased and larger data sets can be
tackled with them, since there is more aggregated memory available on parallel
machines than memory on a single system.

To maintain usability by non-technical savvy users the parallelization techniques
are hidden from the user. The user does not need to know the technical details of a
parallel environment. This includes the low level language C, the batch scheduler of
the cluster system, MPI and other cluster tools. Because the amount of data keeps
increasing, the implementation needs to scale with big data sets. This includes
features like parallel I/O. This leads to the first two research questions.

RQ1: This thesis studies a MPI based Cascade SVM because it is
researched if this approach is scalable for larger data sets in order to
enable SVMs for big data problems.

RQ2: This thesis studies the I/O performance in big data problems to
find out how it influences the scalability and how it can be improved.

While the normal cascade SVM approach promises a speedup, a loss in accuracy is
to be expected. It therefore needs to be properly investigated if the performance

15

regarding the training time as well as the accuracy can be improved in some way.
This resolves in the second research question.

RQ3: This thesis studies the cascade SVM approach in order to avoid
the load balancing problem, so that the framework becomes faster.

RQ4: This thesis studies the feedback of the cascade SVM approach
and researches possible enhancements to increase the speedup and
accuracy.

16

3 Chapter 3

Related Work

3.1 Support Vector Machine Speedup Techniques

SVMs are popular because they often achieve a high accuracy. While implementa-
tions of a linear SVM scale for larger data sets, this is not the case for non linear
SVMs. However, most of the real world problems are not linear separable and a
non linear SVM has to be used to gain a high accuracy.

There are some approaches to enable non linear SVMs for larger classification
problems. One of them is to use a linear SVM on transformed data. Instead of
using a non linear kernel like rbf, the data is transformed into a higher dimension
by adding additional features. Adding features manually is not feasible. This
approach is called kernel approximation. Generated features are added to the data
set, so that a linear SVM can be used, which scales better for large data sets.

In some cases the use of dimensionality reduction techniques is a sound method,
like applying principle component analysis (PCA) [24] with a subsequent cut of
not useful dimensions.

The rbf kernel can be approximated using the Monte Carlo approximation of its
fourier transformation. More information on random fourier features and random
binning features can be found at [39].

Another approach, that can approximate any kernel is the Nyström method [51].
It uses a subsample of the data set to approximate a kernel. It is shown in that
Nyström [53] can achieve a better generalization in some cases.

Because SVMs scale mostly with the number of samples, the performance can also
be improved by so called chunking introduced by Vapnik [50]. It reduces the size of
the kernel matrix from n2 (n being the number of training samples) to approximately
m2 (m being the number of training samples with a non-zero lagrange multiplier).
The quadratic programming problem is split into smaller problems, that have the
goal to identify the non-zero lagrange multipliers and discard the zero ones. While
a better algorithm for solving the quadratic programming problem is introduced in
[37], the chunking approach may be better suited for parallelization. The approach
used for parallelization is similar to chunking.

17

3.2 Support Vector Machine Tools

This section introduces some popular libraries that implement a SVM. While there
are some parallel implementations, most of them are serial. Table 3.1 shows an
overview of a wide selection of different libraries and their analyzed properties. The
mentioned libraries are open and freely available (commercial libraries and tools
have been therefore kept out).

Technology Platform Approach Multiclass Supported Ker-
nels

Parallelization Stable

libSVM C/C++, Java yes linear, rbf, poly-
nomial, sigmoid

no yes

Weka Java yes linear, rbf, poly-
nomial, sigmoid

no yes

R (kernlab) R yes linear, rbf, poly-
nomial, sigmoid,
custom

yes yes

Matlab Matlab yes linear, rbf, poly-
nomial, sigmoid,
custom

no yes

Octave, only libSVM Octave yes linear, rbf, poly-
nomial, sigmoid

no yes

Apache Mahout Java, Hadoop - - - -
MLlib/Apache Spark Java, Spark no linear yes yes
scikit-learn Python yes linear, rbf, poly-

nomial, sigmoid,
custom

no yes

Twister/ParallelSVM Java, Twister, Hadoop no linear, rbf, poly-
nomial, sigmoid

yes no

πSVM C, MPI yes linear, rbf, poly-
nomial, sigmoid

yes yes

GPU LibSVM CUDA yes linear,rbf, poly-
nomial, sigmoid

yes (rbf) yes

pSVM C, MPI no linear, rbf, poly-
nomial

yes no

Table 3.1: Overview of open and freely available parallel SVM tools and their
analysis.

The libSVM [11] library is available in C++ and Java. It is very popular and
offers bindings for other languages like Matlab/Octave or Python. Apart from that
it is wrapped by many other libraries like Weka or scikit-learn. While libSVM
is stable and provides all common kernels, it is not parallelized and not suitable
for large data sets. It nevertheless represents a stable SVM de-facto standard
implementation used in some parallel implementations as well.

A parallel SVM is implemented for Apache Spark [55] in MLlib. Map/reduce
[17] frameworks are popular for data intensive applications. However, most of
them are not suited for iterative methods, which includes many machine learning
algorithms. Apache Spark focuses on this problem while retaining the scalability
and fault tolerance of map/reduce. For this a new abstraction is added. Resilient

18

distributed datasets (RDDs). It can be used with Scala, Java or Python. The
SVM implementation of MLlib uses a distributed stochastic gradient descent (SGD)
to solve the problem. A drawback of the library is that only linear SVMs are
supported by the current version.

Another map/reduce framework that supports iterative algorithms is Twister [18].
There is also a parallel SVM implementation [46] based on the Twister framework
and the libSVM Java library. Like the implementation in this thesis it uses a
cascade SVM approach which is further explained in chapter 4. Unlike Spark it
also provides non linear SVMs, but Twister is not as stable as Spark. It is currently
released in version 0.9 and not further developed.

pSVM [12] is a parallel SVM implementation in C and parallelized using MPI. It is
based on a parallel incomplete cholesky factorization, that factorizes a matrix A
into a smaller matrix H, so that A ≈ H ×H ′. By this the memory usage can be
reduced. Furthermore it speeds up the computation with a parallel interior point
method. pSVM provides support for non linear SVMs, but the current version is
unstable and the development seems to have stopped.

πSVM [3] is also implemented in C and uses MPI. It modified libSVM and uses a
distributed SMO algorithm [8] to solve the quadratic programming problem. The
library can handle non linear SVMs as well as multiclass problems. Stability as
well as performance improvements were made in a bachelor thesis to accomplish a
better usability.

3.3 Remote Sensing Applications

Remote sensing [31] is a important source of information for monitoring man-made
and natural land covers. The informations are measured analyzed and interpreted
to gain new knowledge. Because of the development of sensor resolutions the
amount of hyperspectral and high resolution data has increased. An example for
a classification task is to classify the land cover types using this data in order to
understand the impact of natural disasters or the development of cities.

Remote sensors measure the electromagnetic radiation energy, that is reflected or
emitted by earth, at different wavelengths [19]. They are influenced by different
sources, e.g. surface material, and are characteristic for the different objects.

The increase in data volume, velocity and variety result in larger data. To enable
scaling of established algorithms like Support Vector Machines, a parallelization is
needed. Another approach is to reduce the data with different methods (e.g. PCA

19

[24]) to so called smart data. In [10] a remote sensing data set is analyzed and
available methods are evaluated.

Most of the domain scientists are used to frameworks like Matlab or R. Parallel
frameworks, however, are often different and hard in usage. A parallel framework
with an easy to use interface is needed.

3.4 Summary

This chapter gives an overview over related work in the technical field and the scien-
tific domain. Table 3.1 gives an overview over popular serial SVM implementations
and parallel frameworks. The de-facto standard for serial SVMs is libSVM [11]. It
is popular because it is stable and provides all common kernels. The performance
is good because it is implemented in C++. There is also a Java variant and many
bindings for other languages available.

Parallel frameworks based on map/reduce are Apache Spark and Twister. While
the Spark [55] framework and MLlib [22] seem promising, only linear SVMs are
currently supported. Twister [18] is not further developed and quite unstable.

Apart from that there are also frameworks based on MPI. One of them is pSVM
[12], which is based on a parallel interior point method to solve the problem. As
for Twister the development is not continued and there are some stability issues.
The second approach is πSVM [3] and is based on a parallel sequential minimal
optimization algorithm. The implementation has been optimized and can handle
non linear as well as multiclass problems.

In addition to an overview of the technical related work a short introduction to the
domain specific problem of remote sensing [31] is given. Land covers are measured
using remote sensors and different types of land cover have to be classified.

20

4 Chapter 4

Cascade SVM

This chapter introduces the approach used for parallelization in this thesis. It
describes the conceptual design of the cascade SVM , like it was proposed in [26].
After that the basic design for the implementation used in this thesis is proposed.
Decisions regarding the design of the framework are discussed and the convergence
condition is explained.

4.1 Conceptual Cascade Design

The idea of a cascade SVM is to filter non support vectors as early as possible.
The algorithms that solve the quadratic programming problem of a SVM have
a worst case complexity between O(n2) and O(n3) for n training samples. By
decreasing the number of training samples the training time gets shorter. Different
filter techniques like clustering or SVMs were evaluated and SVM filters seem to be
the best choice, because other approaches may optimize criteria that are not useful
for the global optimum [26]. The filtering can be done in parallel to accomplish
further speed up.

Figure 4.1 shows a binary cascade SVM. The training data is split up into several
subsets. Each of the eight SVMs of the first layer is then trained on one of these
subsets in parallel. After the SVMs are finished only support vectors are passed
on to the next layer. The results of two models are combined and used as the
training set for the SVM of the next layer. This is repeated until only one SVM
model remains. The consequences are a lower accuracy since not all data is used
by an SVM. To accomplish a better accuracy another iteration can be initiated.
Therefore the result of the last SVM is broadcasted to all SVMs of the first layer.
The original input data is merged with the incoming results and a new iteration
can be started. This way all SVMs of this iteration take the support vectors of
the last iteration into consideration. The approach thus suggests that no SVM is
trained on the whole data set but only on parts of it.

21

SVM SVMSVM SVM

SVM SVM

SVM

SVMSVMSVMSVMSVMSVMSVMSVM

Data

subsetsubsetsubsetsubsetsubsetsubsetsubset subset

Figure 4.1: Binary CascadeSVM

4.2 Analysis of Scalable and Parallel Approaches

Existing implementations of a cascade SVM like Twister [46] are based on Map/Re-
duce and Hadoop [44]. As it can be seen in Figure 4.1 the data has to be split and
distributed on the different machines. Therefore a data distribution file has to be
created. All this has to be done, before a cascade SVM can be trained. During the
map job of the Twister implementation a layer of SVMs is trained. The reduce job
combines two sets of support vectors into one input set. These sets are used as
training data for the map job of the next iteration. The Cascade is finished when
there is only one SVM left. Because of this there is no feedback and only one full
cascade iteration (deviation from the basic conceptual design seen above).

In this thesis MPI is used instead of Map/Reduce after evaluating Twister with
several data sets. This has several advantages. There is no need for any manual
preprocessing of the input files by users, since all processes have access to the
file, which is located on the network storage. Figure 4.2 shows how the data is
distributed in the MPI version that represents an often used standard in message
passing within parallel computing. The data is read by the root process and a
subset for every process is created. The subsets are distributed among the other
processes. This is done automatically and thus hidden from the user. While the
message passing itself appears to be more complicated, an iterative cascade SVM
can be easily implemented. MPI is also better established in parallel and distributed
computing domains in general and better suited for the available clusters at the
JSC in particular.

22

SVM SVMSVM SVM

SVM SVM

SVM

SVMSVMSVMSVMSVMSVMSVMSVM

Data

0 1 2 3 4 5 6 7process ranks:

Figure 4.2: MPI based cascade SVM with idle CPUs (gray)

The design partly also shows the disadvantages of a MPI based approach. The
data input may be slow for large data sets, because the root process reads in the
whole set. This may also lead to memory errors, if there is not enough memory
available. The additional message passing needed to send the subsets to the other
processes also takes some time. Hence, the following problem can be stated:

Problem 1. The limitation , that the root process is loading all the data, has a
bad impact on the scalability for large data sets.

Another disadvantage, which can be seen in Figure 4.2 is the load imbalance. In the
first layer all processes are busy calculating a SVM model. Because the results of
two SVMs are combined, only one half of the processes are still used in the second
layer. The idle processes are colored gray. In the last layer all but the root process
are idle and wait for the one computing process. This is problematic because
all processes are reserved until the whole MPI application is finished. A Hadoop
version does not have this problem because the computing nodes are only reserved
while they are calculating (i.e. independent map or reduce tasks). Therefore the
second limitation is as follows:

Problem 2. The load imbalance in the later layers causes a loss of computation
resources, because reserved processors are idle.

23

4.3 Convergence Condition

One iteration of a cascade SVM does not always accomplish the same accuracy as a
single serial SVM trained on the same data set. In [26] it is proofed that a cascade
SVM converges if the support vectors of the last trained SVM are merged with the
different input set of the first layer and a new iteration is started. The condition
for a convergence check is only vaguely introduced and not described in detail.

The first condition tested in this thesis is based on the comparison of the support
vectors. For iteration n the support vectors of the first layer are compared to the
support vector of the last layer of iteration n− 1. An interesting property is that
if the two sets of support vectors are equal, the models are the same too and the
cascade SVM can finish. While this is working for simple classification tasks, this
is not guaranteed for more complicated ones. The problem is that an equivalent
decision boundary may be defined by more than one set of different support vectors.

Therefore a new convergence condition is introduced. Instead of comparing the
support vectors the objective function of the SVMs is calculated.

LD =
∑

αi −
1
2

∑
i

∑
j

αiαjyiyjK(~xi ~xj) (4.1)

This condition solves the problem of multiple sets of support vectors that define
the same decision function. Figure 4.3 shows a program flow that illustrates how
the convergence check is done. The first layer of SVMs is trained on their input
sets. If it is the first iteration, the other layers are trained as well. The SVM of
the last layer computes the objective function 4.1 and broadcasts the value to all
processes of the first layer in the first iteration. If it is not the first iteration, the
cascade does not immediately continue after the first layer. Instead each process of
the first layer computes the objective function 4.1 for its trained SVM. These are
compared to the value they got from the last layer in the previous iteration. If the
values are close enough (i.e. below a certain threshold) , the algorithm terminates
with the model of the previous iteration.

4.4 Summary

In this thesis a basic design approach is used to parallelize the popular SVM
classification method. This is based on dividing the original data set into sub sets
which can be processed on distributed machines. The results of each model are

24

data distribution

Train first Layer

Calculate L Compare to L_last

Train other
Layers

Last Layer:
Calculate L_last

broadcast L_last
to first Layer

No

Yes

Yes

No

First Iteration?

L close to L_last?

Figure 4.3: Visualization of the convergence check with the program flow of the
convergence check. ‘L’ and ‘L_last’ are the results of computing the
objective functions 4.1 of the SVMs.

then used as an input set for the next iteration of training an SVM. With this no
SVM is trained on the complete data set.

The basic approach of a cascade SVM is the same for MPI based implementations
as well as the ones based on Hadoop. However, the different parallelization
frameworks and their unique properties result in varying designs with different
identified challenges. While the MPI version provides an easier preprocessing step
and is more flexible than Hadoop versions (e.g. multiple cascade iterations) , the
higher levels of a Cascade have a load imbalance problem. This means that many
processes, that are allocated, are not actually used and thus idle. An approach is
required that lowers the idle time while not loosing sight of the efficient training of
the cascade SVM.

Because a cascade SVM is not directly trained on the whole data set, the global
optimum may not be reached after one iteration. In contrast to other analyzed
implementations the implementation of this thesis enables multiple iterations and
the support vectors of the last SVM are used as feedback for the first level of the
new iteration. It is proofed in [26] that it converges after some iterations. The
number of iterations is designed as a parameter or a convergence check can be
configured, that compares the values of the objective functions.

25

26

5 Chapter 5

Improving Cascade SVM

This chapter discusses details of the architectural design and implementation and
improvements of the basic cascade SVM approach introduced in Chapter 4. This
includes low level optimizations concerning the I/O bottleneck as well as direct
improvements of the algorithm implementation itself.

5.1 Architectural Design and Basic Implementation

llibSVM scikit-learn

MPI mpi4py

mpi_cascadeSVM IPythonwraps

wraps

Interactive
usageStatic usage

C/C++ Python

Network Storage

I/O Infiniband

Figure 5.1: Framework architectural design

Figure 5.1 shows the design of the framework in more detail, the cascade SVM
(see fig. 4.2) is implemented in ‘mpi_cascadeSVM’ and uses the ‘SVC’ class of
scikit-learn [35] for the single core (i.e. serial) SVM models. The ‘SVC’ class itself
wraps libSVM, which is implemented in C. This way a clean Python interface can
be used while maintaining C-like performance.

27

1 def _scatter_labels(y, comm=world_comm , root =0):
2 if comm.rank == root:
3 slices = _calc_slices(y, comm=comm)
4 else:
5 slices = np.zeros(comm.size , dtype=np.int64)
6 # Broadcast information for scatterv
7 comm.Bcast(slices , root=root)
8 # pos for labels
9 pos = np.array([sum(slices [:i]) for i in range(comm.

←↩

↪→size)], dtype=int)
10 # number of rows for each process
11 row_cnt = slices[comm.rank]
12 # allocate memory for split samples and scatter it
13 split_y = np.zeros(row_cnt , dtype=np.int64)
14 comm.Scatterv ([y, tuple(slices), tuple(pos), MPI.

←↩

↪→INT64_T], split_y , root=root)
15 return split_y

Listing 5.1: Scattering labels to all processes

The message passing is handled with the mpi4py module [16], which provides
Python bindings to C MPI implementations. Most of the communication is done
with the powerful collective operations (e.g. Broadcast, Scatter, etc.) .

It is out of scope to provide the full listings of the code, but as an example listing
5.1 shows the function that distributes the class labels to all processes. The
communicator and root process are parameters, so that the function can be used
more flexible and not only with the world communicator. The world communicator
is the default one and contains all processes that are started by MPI. The root
process calculates the number of labels (slices) for each process and broadcasts
the information to all processes. These are needed to create a fitting numpy array
(split_y) on all processes and calculate the starting index (pos) for each process.
The labels are then scattered. The difference between scatter and scatterv [33] is
that varying number of items can be send with the latter. The first parameter
of scatterv is the send buffer as a list with additional information. The second
parameter is the receive buffer and the third is an integer declaring the root process.

The data points are distributed in a similar way. The size of the subsets is equivalent
to the ones of the labels with the exception that the data points are vectors and not
single values. The array containing the data points is treated as a one dimensional
array for the message passing and the subsets are reshaped after they are received.
Therefore the number of features nf has to be known at every process. Instead of
sending a two dimensional array with m data points, a one dimensional array with
m · nf elements is sent.

28

This explains how the processes are initialized with training data, but this is not all
the communication which is needed. After the SVMs of the first layer are trained
the support vectors are sent to the next layer as it can be seen in Figure 4.1. This is
done using gatherv [33], which is the counterpart to scatterv. Figure 4.2 shows that
two processes take part at the communication. For every group a communicator is
created and gatherv is used.

The alternative to collective communications on different communicators is to
perform point to point communication on the world communicator. The support
vectors are manually send to the process that calculates the next SVM. For a binary
cascade SVM one send/receive operation is used. For different formed Cascades
this is however not the case. A loop would be needed to send the results of the
first layer to the next one. This would result in more error prone code because the
communication is done manually and more complex. Furthermore the collective
communications of MPI are optimized on performance and therefore used in this
framework.

To enable multiple iterations of a cascade SVM the results of the last layer have to
be sent to the first layer. Hence, once the iteration is finished in the last layer the
broadcast function [33] is used with a communicator that contains all processes of
the whole Cascade.

An additional step that requires communication is the convergence check described
in section 4.3. The first implementation was based on the support vectors and
the second one is based on the objective function. The advantage of this is that
only one scalar has to be communicated instead of a matrix. The downside is that
the computation of the objective functions as mentioned in 4.1 is quite expensive,
because two loops over all SVs are needed to calculate the double sum.

LD =
∑

αi −
1
2

∑
i

∑
j

αiαjyiyjK(~xi, ~xj) (5.1)

Listing 5.2 describes how the lagrangian shown in equation 5.1 is computed. For
a linear SVM K(~xi, ~xj) is equal to the dot product, but for more elaborate cases
a different kernel is used. The first three parameters are the support vectors (x),
their labels (y) and their coefficients (α). The last parameter is the kernel function,
which has only the support vectors as a parameter. The function can currently
only handle a binary problem and expects the labels to be either 0 and 1 or −1
and 1. Numpy is used to handle all the values. This provides good performance, if
numpy functions are used to operate on the data. The disadvantage is that looping
over numpy arrays is very inefficient. Equation 5.1 shows that a for loop (i.e. the
sum of the coefficients) and a nested for loop (sums from i and j) is needed to

29

1 def lagrangian_fast(X, y, coef , kernel):
2 set_y = set(y)
3 assert len(set_y) == 2, "Only␣binary␣problem␣can␣be␣

←↩

↪→handled"
4 new_y = y.copy()
5 new_y[y == 0] = -1
6 C1 , C2 = np.meshgrid(coef , coef)
7 Y1 , Y2 = np.meshgrid(new_y , new_y)
8 double_sum = C1 * C2 * L1 * L2 * kernel(X)
9 double_sum = double_sum.sum()

10 W = -0.5 * double_sum + coef.sum()
11 return W

Listing 5.2: Computation of the objective function. X: Support Vectors, y: class
labels, coef: coefficients, kernel: kernel function

calculate the objective function. By replacing these loops with matrix operations
a huge speedup can be achieved, because numpy is based on C and Fortran code.
Accessing each element in a for loop costs much more than these matrix operations.

The sum of the coefficients can easily be computed with a numpy function. To
compute the nested loop meshgrids of the labels and coefficients are created to
compute yiyj and αiαj . For a given list of labels a = [1, 2, 3] the meshgrid function
returns two matrices A1 and A2.

A1 =

1 2 3
1 2 3
1 2 3

, A2 =

1 1 1
2 2 2
3 3 3

Multiplying A1 and A2 element wise results in a matrix containing all pairwise
products.

To compute K(~xi ~xj) the kernel matrix for the given support vectors has to be
computed. For a linear kernel the dot function of numpy can be used. Aside from
the linear kernel, the rbf kernel as defined in equation 2.9 is implemented because
it is one of the most used kernels. Available Python libraries like numpy and
scikit-learn don’t provide an implementation. Like above also matrix operations
are used.

Equation 2.9 includes the term ||x− y||2 that is not suited for matrix operations.
The pairwise differences have to be calculated for every vector pair yielding another
vector as a result. In order to store values according to this structure, a three
dimensional matrix had to be used. Therefore it is transformed and scalar products
are calculated instead of vectors.

30

||x− y||2 =
√

(x− y) · (x− y)
2

(5.2)
= (x− y) · (x− y) (5.3)
= x2− 2xy + y2 (5.4)

Based on Equation 5.4 and using Equation 5.5, the rbf kernel function can be
further transformed.

γ = − 1
2σ2 (5.5)

K(x, y) = exp(−x
2 − 2xy + y2

2σ2) (5.6)

= exp(2xy − x2 − y2

2σ2) (5.7)

= exp(xy
σ2 −

x2

2σ2 −
y2

2σ2) (5.8)

The function in listing 5.3 uses equation 5.8 to compute the rbf kernel. It has two
input parameters. The first one is a list of vectors. The second one is γ, which is a
parameter of the rbf kernel. The three fractions seen in equation 5.8 are calculated.
The first fraction xy is the dot product between every support vector and results
in a matrix K. The matrix is divided by σ2. Kij is equal to the dot product of
the support vectors xi · xj . Therefore the diagonal elements of K are exactly equal
to x2 and y2 of equation 5.8. This is taken as the input for numpy’s exponential
function in the last step and the kernel matrix is returned.

1 def rbf_kernel(x, gamma):
2 sigmaq = -1 / (2 * gamma)
3 n = x.shape [0]
4 K = np.dot(x, x.T) / sigmaq
5 d = np.diag(K).reshape ((n, 1))
6 K = K - np.ones((n, 1)) * d.T / 2
7 K = K - d * np.ones((1, n)) / 2
8 K = np.exp(K)
9 return K

Listing 5.3: Implemented RBF kernel using matrix operations

The steps above enable the convergence check that can be used for linear kernels
but more notably for rbf kernels without losing too much performance.

31

5.2 Parallel I/O

Reading the data is currently done serial. This means that the root process reads
all samples, although it only needs a part of them in order to compute a fraction
of the input data. For small data sets this is not a problem, but for larger ones the
following issues occur. The loading time as well as the time needed to distribute
the subsets to their belonging processes increases with an increasing input set.
If the input set is too large, it may even cause a memory error. Thus the I/O
becomes a bottle neck for large data sets and thus we work on improvements of the
basic cascade model putting the focus also on parallel I/O besides solely parallel
computing.

In order to avoid these problems an alternative format is introduced. The libSVM
format stores the data points in text form. While this enables the user to read the
data file, it is slower than a binary format when it is read by a program.

One binary file format is HDF5 [47], that is also a broadly used standard format
for science and engineering. It is popular in science, because it enables storing
multidimensional tables or arrays in an efficient way. Next to the data meta data
can be stored in the same file. The hierarchical structure of a HDF5 file, shown
in Figure 5.2, can be basically compared to a file system. It consists of data sets
containing the ‘actual data’ but also ‘groups’, which are container structures and
can hold groups or data sets. Meta data is stored as user defined attributes of data
sets or groups.

The format is used by many scientific simulations (e.g. [45]) to store data. One
machine learning algorithm using HDF5 is HPDBSCAN [25], which is a parallel
implementation of the clustering algorithm DBSCAN [20]. A list with users of
HDF5 can be found at their website[2].

The design in the thesis takes advantage of HDF5 as follows. Improved data files
in this framework consist of a ‘Data’ data set and a ‘Label’ data set.

In addition HDF5 also support parallel I/O, which is often used on clusters and
increases the I/O performance as shown in [54]. If it is compiled against the correct
MPI driver, a HDF5 file can be read by multiple processes. Each process calculates
the starting position and size of its data set according to its rank. Each MPI
process is identified by its rank, which is an integer between zero and the number of
processes minus one. Instead of one process reading all data and scattering it, each
process only reads the sub set it needs. Because of this less MPI communication
is needed and less memory is used while the data can be read in parallel from
different processors.

32

File

Dataset1

Attributes

Group 2

Attributes

Group 1

Attributes

Dataset2

Attributes

Group 3

Attributes

Figure 5.2: Basic HDF5 Structure

The framework is designed in such a way, that the I/O is hidden from the user. This
means, that parallel I/O is automatically used if it is available. This improvement
enables the framework to handle larger data sets than with a serial I/O design.

5.3 Cross Feedback

The design of the cascade SVM based on MPI as seen in Figure 4.2 has the problem
of load imbalance. This means that only a few processors are working at the later
layers and the rest of them is idle that we already identified as a limit in chapter 4.
One improvement in the design is thus to reduce the time spent at the later layers
and decrease the total idle time of all processes. One possible improved training
algorithm is proposed in [56] and [52]. Instead of using the result of the last SVM
as feedback for all SVMs of the first layer, the feedback is done at an earlier stage.

Figure 5.3 visualizes the cross feedback at the second layer. The support vectors of
‘SVM5’ merged with the input sets of ‘SVM3’ and ‘SVM4’. There is no need to
merge them with the ones of ‘SVM1’ and ‘SVM2’ because ‘SVM5’ is trained on
their results. Likewise the support vectors of ‘SVM6’ are merged with the input
sets of ‘SVM1’ and ‘SVM2’.

Taking advantage of cross feedback in order to improve the parallel framework
design yields two advantages. The first one is, that presumably less time is used to
train a Cascade, if cross feedback is used instead of the initially proposed last layer
feedback. This is due to the fact that less layers have to be trained. The second
advantage is, that the load imbalance is reduced because more time is spent at the
early layers and less processes are idle.

33

SVM4SVM3SVM2SVM1

Data

SVM5 SVM6

SVM7

Figure 5.3: Early cross feedback in a binary cascade SVM

The framework is generally designed in such a way, that cross feedback can be done
at any layer and thus can be configured as applications require it. The number of
cross feedbacks that is done is not limited to one but can also be set by the user to
an arbitrary number. Therefore the framework enables the user to optimize the
configuration of the cascade SVM for a given data application.

5.4 Distance Filter

The feedback and cross feedback are methods used to improve the accuracy of
a cascade SVM without loosing too much speedup. Another further interesting
enhancement to feedback is a so-called filter function. This function takes the
support vectors as an input and computes a score for everyone of them. Instead of
using all support vectors only a sub set of them is used. The sub set is determined
by the filter function. The function itself is not fixed, except that it returns a
sub set of the support vectors. This approach is easier to understand when one
considers the basic cascade SVM approach, that over the different layers is also
filtering non SVs out of all data sets. Using a specific filter criteria early in the
process speeds up this process.

One approach is to use spatial information of the vectors. A cluster of support
vectors has presumably redundant information, because many vectors are close

34

together and there is a high potential that only one will remain in order to support
the final decision boundary. In contrast a vector that has a higher distance to
others, may hold more important information in order to contribute to the decision
boundary of the classifier. A distance filter, that calculates the mean distance
for every support vector to the support vectors of the same class, can be used.
After that the vectors are ordered with an decreasing mean distance and the first k
vectors are returned and used for feedback. In this case the euclidean distance is
used. Parameter k also depends on the application and is thus configurable.

Figure 5.4 shows how the filter can be used before the actual cross feedback is
done. A large number of SVs goes into the filter and a smaller number k is used
as feedback. This is visualized by the thick and thin lines connecting to the filter.
What kind of filter is used and on which layer can be decided by the user.

SVM4SVM3SVM2SVM1

Data

SVM5 SVM6

SVM7

filter k SVs

Figure 5.4: Filter used before Cross Feedback.

A more sophisticated method would be to cluster the support vectors using a
clustering algorithm, e.g. kmeans [5]. However, more complex approaches also take
more time and reduce the speedup. In this thesis a simple distance filter is used to
keep a good speedup while the framework can be easily extended with other filters
depending on application needs.

35

5.5 Summary

In this chapter the design of the framework is described. The communication is
mainly done with the collective functions of MPI. Therefore multiple communicators
have to be created for the different communication groups. Because of the arbitrary
number of data points the vector versions of scatter and gather are used.

The convergence check is done by comparing the objective functions of the different
SVMs. To calculate the functions in reasonable time, matrix operations are used.
Matrix operation replace ‘for loops’ and provide a speedup if numpy arrays are used
because they are based on compiled C and Fortran code. However, the algorithms
have to be transformed to be able to use matrix operations. This is done for the
rbf kernel 2.9 and the objective function 5.1, so that the convergence check can be
done for binary classification problems.

Apart from these design decisions, specific improvements to the original cascade
SVM algorithm are designed and implemented. One of them is the improvement
of the I/O. Problem 1 states, that the I/O becomes a bottleneck for large data
sets. This is solved by using the standard HDF5 file format. It is a binary format,
that supports a file system like structure. In addition it features parallel I/O on
cluster systems, which can be used to improve the I/O performance and decrease
the memory usage.

Another problem of the basic cascade SVM is the load imbalance at later layers
as stated in problem 2. A solution to this problem is cross feedback. Instead of
performing the feedback at the last layer, it is done at an earlier point in time, so
that the total time the idle processes is less. It also decreases the training time in
comparison to the initial feedback approach.

The distance filter can be used to filter the support vectors before feedback is done.
This reduces the training time because less data points are used, while a increase
in accuracy is still likely.

36

6 Chapter 6

Evaluation & Use Case

In this chapter the framework is tested and evaluated on a remote sensing data
set (cf. Section 3.3). The speedup and accuracy are measured and compared to a
serial SVM. In order to ensure a proper evaluation, a specific experimental setup is
used with the different enhancements of the implemented framework design. In
addition it is compared to πSVM that enables a comparison with another parallel
approach in a similar execution environment.

For the evaluation many runs had to be performed on the cluster. Therefore the
tool Jube2 [32] was used. A benchmark run can be defined using the markup
language XML [7]. One benchmark can contain many single runs of the program
with different parameters. The results can be parsed using regular expressions,
which can also be defined in the XML file, and the output is saved in form of CSV
[42] files. This enables that runs and parsing their output can be automated. The
evaluation is done on the cluster system introduced in Section 2.1.

6.1 Remote Sensing Data for Evaluations

The data set used for evaluation is the Rome data set, which is available at
B2SHARE1. Images of Rome were taken by a satellite and 16 different types of
land cover (e.g. building, road, tram) are labeled. The problem is reduced to a
binary classification task by only using the two classes, that have the most samples.
The first type is the ‘building’ class and the second one is the ‘road’ class. There
are three versions of the data set with different features. The raw data (set A)
has five features. The two additional sets take the neighboring pixels into account
and have 15 (set B) and 55 (set C) features. After reducing the data set to a
binary problem the training set is about 34.000 pixels large and the test set about
340.000. Each pixel is equivalent to one sample and the task is to classify a pixel as
belonging to a building or to a road. In addition to the three data sets A, B and
C slightly differing sets (A∗, B∗and C∗) are created by switching the training and
test sets in order to enable a relative straightforward understanding of different

1b2share.eudat.eu/record/111

37

workloads (i.e. small and big) without having the problem of explaining and using
many different data sets from different domains. This is done because the original
training set is small and a larger training set is needed to more properly measure
the speedup.

6.2 Speedup by Improvements using Parallel I/O

Figure 6.1 shows the time needed to read dense and sparse input data for a set
with 1.000.000 samples. The data is created artificially in order to show significant
speed up and design towards big data. While the serial input of the libSVM file
needs 29.811s, the HDF5 version of the same data set is read in a fraction with
0.347s for the dense set. The effect of parallel I/O also is visible when evaluating
the sparse set whereby libSVM needs 4.563s and HDF5 0.308s.

Figure 6.1: Input time for 1.000.000 samples with serial libSVM and parallel I/O
using HDF5.

This shows that the I/O bottleneck problem can be solved by introducing the
HDF5 standard as an input format, because each process needs less memory and
the I/O can be done in parallel, so that it takes less time. For dense data HDF5 as
used in this framework is much faster than libSVM, which is optimized for sparse
data. This is done by storing the features with their ‘id’ and only those features
that are non zero. While libSVM is faster for the sparse set than for the dense
set, it is still slower than HDF5. Therefore it can be concluded that HDF5 is a
better alternative if the file itself does not need to be human readable. While today
many may inspect libSVM file format data manually, this is probably not possible
anymore once big data sets are used for which this improvement is important.

38

6.3 Accuracy & Speedup

6.3.1 Benchmark on Data Set A

A first benchmark was performed on data set A. A standard binary cascade SVM
is used. The data is saved in the libsvm format and no cross feedback or filtering
was performed yet and thus it represents an evaluation of the basic cascade SVM
framework implementation. The speedup is measured in regard to the number of
processes used. If Tp is the time needed for training with p processes, the speedup
Sp is calculated as follows:

Sp = T1

Tp

(6.1)

Figure 6.2 shows the speedup with the number of processes ranging from one to 32
performed on JUDGE (See 2.1). The blue line represents a linear speedup. That
means Sp = p. It is shown because a linear speedup is often the ideal case. The
red line is the speedup of a cascade SVM with one iteration. For two to eight
processes the speedup is above linear speedup. This can be explained by the fact
that SVMs have a complexity of O(n2) for n samples. By splitting the samples
into multiple subsets a super linear speedup can be achieved. If the number of
processes is further increased the speedup falls below a linear speedup. The reason
for this is that the size of the training set stays the same, while the number of
processes is increased. At some point the communication between the processes
and the additional layers take more time than is saved by spitting the data set. For
a larger training set more processes could be efficiently used. For small data sets
the cascade SVM should only be used on a small number of processes. In general
the bigger the data set, the more benefits the parallelization effect in using the
cascade SVM approach.

If multiple iterations over the cascade SVM are performed, the speedup drops
even more, but is often required in order to increase the overall accuracy. For
two iterations a marginal speedup is reached with four and eight processes. The
other runs are even slower than the serial SVM. This is due to the small number of
samples of set A. After the first iteration the support vectors of the last SVM are
merged with the subsets. The subsets grow larger, because an additional cascade
run is needed. For a small data set this costs more time than training a single
SVM on the original set, thus demonstrating again that the parallel design implies
that it makes only sense to use for bigger workloads.

For three iterations this gets even worse and the speedup is lowest of all three runs.

39

Figure 6.2: Training speedup and accuracy on data set A (small workload)

The right side of Figure 6.2 shows the accuracy on the test set of data set A. With
one iteration the accuracy drops with an increasing number of processes. This
is due to the fact that the different SVMs are trained on subsets and therefore
the optimal decision function can not be found in one run (e.g. data points that
contribute to the optimal decision boundary might be in the other disjunct subset).
The accuracy can be improved by using multiple iterations. For two as well as
three iterations the accuracy is more stable with an increasing number of processes.
Only with 32 processes a larger drop can be observed, again due to the extremely
small data in the subsets in this particular evaluation run.

To conclude, the evaluations on data set A underline the fact that the cascade SVM
is no tool for smaller data sets. While a speedup can be achieved, the accuracy
also drops. A compromise can be made by only using a small number of processes
to accomplish a speedup while maintaining a reasonable accuracy. In production
runs however, there is the expectation that the cascade SVM will be rather used
for big data sets and just for the purpose on proper evaluation we here have shown
details on a small data set for the sake of completeness.

6.3.2 Benchmark on Data Set B∗

While a benchmark was made on the original set B as seen in tables A.3 and A.4 in
the appendix, this section focuses on B∗ to investigate bigger workloads as before,
which uses the larger test set as a training set and thus adds more insights for the
evaluation of the thesis contributions. The results of this benchmark can be found

40

in table A.5. Because the training time has increased to approximately six hours
for a serial SVM, each run was only performed one time.

In Figure 6.3 the speedup and the accuracy for set B∗ are shown for one iteration.
Like in the previous figure the blue line is the linear speedup and the red one
is the training speedup. The benchmark on this larger training set shows that
a large speedup can be achieved by using the cascade SVM framework design
implementation on big data sets. The training time drops significantly from
21257.6 seconds for a serial SVM to 90.4 seconds for a cascade SVM with 32
processes.

Figure 6.3: Training speedup and accuracy (table A.5) on data set B∗

Figure 6.3 also shows the accuracy in regard to the number of processes. With an
increasing number of processes the accuracy drops. Like in the previous benchmark
a trade off can be made between the speedup and the accuracy, that should be
reached.

Cascade Iterations # processes training time [s] test time [s] accuracy
2 16 2047.51 1.10 0.946
2 32 1925.95 0.57 0.925
3 32 5422.09 0.65 0.953

Table 6.1: Training Time and Accuracy with multiple iterations on set B∗.

Table 6.1 is a small part of the table A.5 and shows runs with multiple iterations.
The missing runs needed more than 12 hours and were terminated as they thus not
provide very much valuable insight here. With two iterations the runs with 16 and
32 processes finished. While the training time is higher than with one iteration, the

41

accuracy is closer to the one of a serial SVM. The run with 16 processes and two
iterations ranges between the runs with two and four processes and one iteration.
This goes for the accuracy as well as for the training time.

6.4 Cross Feedback Evaluation

The cross feedback (cf. Section 5.3) is evaluated on data set B∗(larger data set) ,
so that it can be compared to the single iteration and multiple iteration runs on
B∗. As shown above, as it does not make much sense to evaluate on small data
sets, the evaluations are performed on the larger data set as the small data set
does not add to insight. The goal of cross feedback is to achieve a better speedup
than a whole additional iteration would and still increase the accuracy. The cross
feedback also addresses the load imbalance problem.

Figure 6.4: Cross feedback on layer 0

Figure 6.4 shows the results of the normal run on B∗ and the runs using cross
feedback at layer 0, which is the first layer. The speedup is between the linear
speedup and the speedup of a plain cascade SVM. Interestingly, the accuracy is
only slightly above the one of the plain cascade SVM. This shows that a better
accuracy can be achieved with the same amount of processes while loosing some of
the performance.

Figure 6.5 shows the speedup and accuracy for cross feedback at different layers.
It shows that the speedup gets worse if the cross feedback is done at a later layer
that can be expected because of the additional overhead in distributing messages

42

for implementing cross feedback. On the other side there is a tendency for a higher
accuracy. But even if the cross feedback is done at the fourth layer the speedup is
still super linear. This shows that the cross feedback method also scales for bigger
cascade SVMs and a feedback at high numbered layers.

Figure 6.5: Cross feedback design implementation evaluated on different layers.

6.5 Distance Filter

For the evaluation of the distance filter improvements the larger data set B∗was
used. Figure 6.6 shows the training speedup and the accuracy of a cascade SVM,
that uses cross feedback and an additional distance filter (cf. Section 5.4). The
distance filter is used to filter each set of SVs and uses the top K SVs as feedback.
The feedback is done after the first layer for this benchmark.

The left image shows that the speedup decreases if K is increased. On the right
it can be seen that the accuracy increases if K is increased. This method yields
another approach to regulate the trade off between speedup and accuracy. Hence,
it is adding another parameter option K to the parameter set of the SVM that can
be configured depending on data set and intended application goal.

Also other filters can be easily integrated into the framework, e.g. such as using
those SV with a large α, while smaller values are neglected according to some
configurable threshold. Note that all α computed need to be above zero to represent
a SV, but those points of them considered most important are the SVs with the
highest values of α, since they exert the highest forces on the decision boundary [9].

43

Figure 6.6: Training Speedup and Accuracy (zoomed in) with Distance Filter. The
top K = [10, 100, 1000] SVs are used for feedback.

6.6 Comparison with πSVM

Unlike cascade SVM, which is a data-processing approach for parallelizing SVMs,
πSVM is a algorithmic approach. While the cascade SVM distributes the data to
multiple processes to parallelize the training, πSVM parallelizes the solving of the
quadratic problem itself. Because of this the accuracy of πSVM does not drop with
an increasing number of processes, but the parallelization is much more complex
and it does not scale as well as the cascade SVM. Like the previous benchmark
this one was made on data set B∗.

Figure 6.7: πSVM speedup with an increasing number of processes.

44

Figure 6.7 shows the speedup of the πSVM with up to 32 processes. The speedup
is lower than the one of the cascade SVM. This can be clearly seen at the right
image of the Figure. One reason is that while the cascade SVM can easily filter
out non-SV quickly. It this also decreases the handling of them in further layers,
however this has a side effect, that a high number of cores are effected by load
imbalance while the πSVM has a rather constant load balancing scheme. In return
the accuracy achieved by the cascade SVM drops if more processes are used, while
the accuracy of πSVM stays the same.

6.7 Summary

In this chapter the cascade SVM framework of this thesis is evaluated. At first the
I/O speed is measured when the libSVM format and the HDF5 format are used.
The benchmark shows that HDF5 is faster for dense as well as sparse data sets. If
the data does not have to be human readable, HDF5 is the preferred format, thus
indirectly taking advantage of parallel I/O.

The benchmark on data set A (small) shows that a single iteration of the cascade
SVM has a speedup, which is super linear for a few number of processes and drops
if more processes are used. If two or three iterations over the cascade are used the
speedup drops even more, so that it is not reasonable to use multiple iteration at
all for small data sets. For a larger problem like B∗ the benchmark shows that the
cascade SVM scales to a higher number of processes and also for more iterations.
The cascade SVM has a good performance for larger data sets, that proves our
expectations that the cascade SVM framework is well designed for upcoming big
data sets (e.g. in neuro sciences with higher number of pixels).

The benchmark on cross feedback shows that it can be used to enable a better
accuracy while having a better training time than a whole additional iteration
would need. An additional method to decrease the training time is the distance
filter, which can be used to regulate the number of SVs that are used as feedback.
An evaluation with a simple distance filter shows that the accuracy increases if
more SVs are used while the speedup decreases.

At the end the cascade SVM is compared to another parallel approach πSVM,
which is also currently developed at the JSC. The benchmark shows that the
cascade SVM framework has a much better speedup on data set B∗. In return the
accuracy achieved by the cascade SVM drops if more processes are used, while the
accuracy of πSVM stays the same.

45

46

7 Chapter 7

Conclusion

More and more large data problems arise in the different scientific and non scientific
fields (e.g. neuro sciences with high number of pixels for high resolution post-
mortem brain scans) . SVMs are a popular tool to solve classification tasks. In this
thesis a framework is proposed that implements the cascade SVM parallelization
approach for HPC clusters and simple computers. The parallel communication is
based on MPI and the main programming language used is Python. This way the
framework is usable for non-technical savvy users.

One domain that generates large data problems is the remote sensing field. Images
taken by satellites are to be classified according to the different land cover types and
future data sets from satellites expect to have much better resolutions and a higher
number of bands going from multi-spectral to hyper-spectral bands. A real world
problem from this domain was used to evaluate the proposed research questions
regarding the performance and accuracy of a cascade SVM. The evaluation shows
that a cascade SVM provides a speedup for smaller as well as larger data sets.
While the cascade SVM does not scale for many processes on the smaller data set,
tests on the larger set show that the cascade SVM in general does scale for large
data sets. However, the huge speedup comes with a loss in accuracy. The first
research question 1 (cf. Section 2.5) was about the scalability of an MPI based
cascade SVM. The evaluation has shown that the framework designed in this thesis
is scalable for larger data sets and multiple processes.

Different improvements were made and evaluated to increase the accuracy and
speedup. At first a standardized and parallel I/O was introduced to accomplish a
better performance on cluster systems and thereby answering research question
2. Apart from that cross feedback is used to improve the accuracy without losing
as much performance as a normal reiteration causes. The evaluation showed that
the accuracy is between a single cascade run and a cascade with multiple runs.
Furthermore it partly addresses the load imbalance problem stated in research
question 3. The same goes for the speedup. The speedup can be further improved
by using an additional filter function for the cross feedback which is related to
research question 4. The framework is flexible and can easily integrate other filter
options.

47

In general it can be seen, that a speedup in training time is achieved, but a trade off
between training time and accuracy has to be made. Future research can be made,
so that the drop in accuracy is not as large as currently. Comparing the cascade
SVM to other parallel approaches like πSVM shows that cascade SVM outperforms
πSVM in terms of training speed but with the expense of loosing accuracy.

7.1 Future Work

There are some possible features that can be implemented and investigated in the
future. At the moment cascade SVM only partially supports multiclass problems.
While a cascade iteration is possible, the convergence check is limited to a binary
problem. Aside from that the multiclass strategy (e.g. One vs One) can be
parallelized to achieve a better performance.

While the cascade SVM per cascade itself is currently based on a serial SVM, this
may be changed. Instead of using a serial SVM on every node, a parallel SVM
like πSVM can be used to accomplish another parallelization layer and a better
speedup or by using shared memory approaches within the node. Due to the time
limitations this was no option for this thesis. Another speedup possibility is to
create a hybrid code leveraging the power of openMP and shared memory together
with the already achieved MPI parallelization.

48

Bibliography

[1] http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
supercomputers_node.html.

[2] Hdf5 users. https://www.hdfgroup.org/HDF5/users5.html.

[3] πsvm homepage. http://pisvm.sourceforge.net/.

[4] Apache Mahout, http://mahout.apache.org.

[5] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied
Mathematics, 2007.

[6] Blaise Barney et al. Introduction to parallel computing. Lawrence Livermore
National Laboratory, 6(13):10, 2010.

[7] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml). World Wide Web Consortium
Recommendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-
xml-19980210, page 16, 1998.

[8] Dominik Brugger. Parallel support vector machines. 2006.

[9] Christopher JC Burges. A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery, 2(2):121–167, 1998.

[10] G. Cavallaro, M. Riedel, J.A. Benediktsson, M. Goetz, T. Runarsson, K. Jonas-
son, and T. Lippert. Smart data analytics methods for remote sensing applica-
tions. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE
International, pages 1405–1408, July 2014.

[11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[12] Edward Y. Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu,
and Hang Cui. Psvm: Parallelizing support vector machines on distributed

49

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/supercomputers_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/supercomputers_node.html
https://www.hdfgroup.org/HDF5/users5.html
http://pisvm.sourceforge.net/
http://mahout.apache.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

computers. In NIPS, 2007. Software available at http://code.google.com/
p/psvm.

[13] Adrian Cho. Breakthrough of the year. the discovery of the higgs boson.
Science (New York, NY), 338(6114):1524–1525, 2012.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[15] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, January
1998.

[16] Lisandro Dalcín, Rodrigo Paz, Mario Storti, and Jorge D’Elía. Mpi for python:
Performance improvements and mpi-2 extensions. J. Parallel Distrib. Comput.,
68(5):655–662, May 2008.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[18] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee
Bae, Judy Qiu, and Geoffrey Fox. Twister: A runtime for iterative mapreduce.
In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 810–818, New York, NY, USA, 2010.
ACM.

[19] Charles Elachi and Jakob J Van Zyl. Introduction to the physics and techniques
of remote sensing, volume 28. John Wiley & Sons, 2006.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[21] Message P Forum. Mpi: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

[22] Michael Franklin, Joseph Gonzalez, Michael I. Jordan, Xinghao Pan, Virginia
Smith, Evan Sparks, Ameet Talwalkar, Shivaram Venkataraman, and Matei
Zaharia. Mllib, 2013. http://mloss.org/software/view/516/.

[23] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics Springer, Berlin,
2001.

[24] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Academic
press, 2013.

50

http://code.google.com/p/psvm
http://code.google.com/p/psvm
http://mloss.org/software/view/516/

[25] Markus Götz, Matthias Richerzhagen, Christian Bodenstein, Gabriele Caval-
laro, Philipp Glock, Morris Riedel, and Jón Atli Benediktsson. On scalable data
mining techniques for earth science. Procedia Computer Science, 51:2188–2197,
2015.

[26] Hans P Graf, Eric Cosatto, Leon Bottou, Igor Dourdanovic, and Vladimir
Vapnik. Parallel support vector machines: The cascade svm. In Advances in
neural information processing systems, pages 521–528, 2004.

[27] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[28] Robert Henderson. Job scheduling under the Portable Batch System. In Dror
Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, volume 949 of Lecture Notes in Computer Science, pages 279–294.
Springer Berlin / Heidelberg, 1995.

[29] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007.

[30] Brian W. Kernighan. The C Programming Language. Prentice Hall Professional
Technical Reference, 2nd edition, 1988.

[31] Siamak Khorram, Frank H Koch, Cynthia F van der Wiele, and Stacy AC
Nelson. Remote sensing. Springer Science & Business Media, 2012.

[32] Sebastian Lührs. JUBE - A Flexible, Application- and Platform-Independent
Environment for Benchmarking. Cy-Tera/LinkSCEEM HPC Administrator
Workshop, Nicosia (Cyprus), 01/19/2015 - 01/21/2015.

[33] Snir Marc, S Otto, Steven Huss-Lederman, D Walker, and Jack Dongarra. Mpi:
the complete reference. http:’/www. netiib. org/utk/papers/mpi-book/mpi-book.
html, 1996.

[34] Viktor Mayer-Schnberger. Big Data: A Revolution That Will Transform How
We Live, Work and Think. Viktor Mayer-Schnberger and Kenneth Cukier. John
Murray Publishers, UK, 2013.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[36] Fernando Pérez and Brian E. Granger. IPython: a system for interactive

51

scientific computing. Computing in Science and Engineering, 9(3):21–29, May
2007.

[37] John Platt et al. Fast training of support vector machines using sequential
minimal optimization. Advances in kernel methods-support vector learning, 3,
1999.

[38] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014.

[39] A. Rahimi and B. Recht. Random features for large-scale kernel machines.
http://www.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf.

[40] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine construc-
tion. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 944–953. ACM, 2006.

[41] Guido Rossum. Python reference manual. Technical report, Amsterdam, The
Netherlands, The Netherlands, 1995.

[42] Yakov Shafranovich. Common format and mime type for comma-separated
values (csv) files. 2005.

[43] Tom Shanley. Infiniband. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[44] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), MSST ’10,
pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[45] Volker Springel. The cosmological simulation code gadget-2. Monthly Notices
of the Royal Astronomical Society, 364(4):1105–1134, 2005.

[46] Zhanquan Sun and Geoffrey Fox. Study on parallel svm based on mapreduce.
In International Conference on Parallel and Distributed Processing Techniques
and Applications, pages 16–19. Citeseer, 2012.

[47] The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN.
http://www.hdfgroup.org/HDF5/.

[48] Jesper Larsson Träff. Implementing the mpi process topology mechanism. In
Supercomputing, ACM/IEEE 2002 Conference, pages 28–28. IEEE, 2002.

[49] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing in Science
& Engineering 13, 22-30, 2011.

52

http://www.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf

[50] Vladimir Naumovich Vapnik and Samuel Kotz. Estimation of dependences
based on empirical data, volume 40. Springer-verlag New York, 1982.

[51] Christopher Williams and Matthias Seeger. Using the nyström method to
speed up kernel machines. In Advances in Neural Information Processing
Systems 13, pages 682–688. MIT Press, 2001.

[52] Jing Yang. An improved cascade svm training algorithm with crossed feed-
backs. In Computer and Computational Sciences, 2006. IMSCCS’06. First
International Multi-Symposiums on, volume 2, pages 735–738. IEEE, 2006.

[53] Tianbao Yang, Yu-feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou.
Nyström method vs random fourier features: A theoretical and empirical
comparison. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 476–484.
Curran Associates, Inc., 2012.

[54] Hao Yu, Ramendra K Sahoo, C Howson, G Almasi, JG Castaňos, Manish
Gupta, José E Moreira, JJ Parker, TE Engelsiepen, Robert B Ross, et al. High
performance file i/o for the blue gene/l supercomputer. In High-Performance
Computer Architecture, 2006. The Twelfth International Symposium on, pages
187–196. IEEE, 2006.

[55] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[56] Jian-Pei Zhang, Zhong-Wei Li, and Jing Yang. A parallel svm training
algorithm on large-scale classification problems. In Machine Learning and
Cybernetics, 2005. Proceedings of 2005 International Conference on, volume 3,
pages 1637–1641. IEEE, 2005.

53

A Appendix A

Evaluation Tables

A.1 Tables for Data Set A

Cascade Iterations # processes mean training time [s] max training time [s] min training time [s]
1 1 321.97 329.87 318.39
1 2 86.53 108.87 77.81
1 4 51.71 67.16 47.65
1 8 34.18 45.17 29.94
1 16 28.68 33.41 26.12
1 32 19.98 20.09 19.78
2 1 668.27 670.14 666.15
2 2 382.27 407.41 286.64
2 4 256.56 300.84 245.26
2 8 254.69 299.03 243.51
2 16 375.09 394.99 365.87
2 32 329.75 333.14 328.58
3 1 987.47 993.38 983.25
3 2 558.11 663.78 454.94
3 4 427.11 457.97 419.28
3 8 439.03 469.81 431.17
3 16 545.19 629.65 467.69
3 32 300.69 315.64 296.76

Table A.1: Training Time on data set A

A.2 Tables For Data Set B

54

Cascade Iterations # processes test time [s] accuracy
1 1 83.76 0.925
1 2 31.45 0.869
1 4 15.14 0.884
1 8 6.79 0.853
1 16 5.06 0.764
1 32 1.82 0.707
2 1 96.26 0.915
2 2 32.67 0.913
2 4 16.23 0.912
2 8 8.03 0.906
2 16 5.87 0.910
2 32 2.91 0.859
3 1 95.71 0.915
3 2 32.93 0.914
3 4 17.31 0.915
3 8 8.22 0.913
3 16 4.18 0.913
3 32 3.64 0.859

Table A.2: Accuracy on data set A

Cascade Iterations # processes mean training time [s] max training time [s] min training time [s]
1 1 179.10 201.07 161.80
1 2 72.49 74.64 71.61
1 4 61.58 61.80 61.38
1 8 19.33 19.46 19.28
1 16 11.29 11.48 11.21
1 32 5.91 6.17 5.78
2 1 372.06 397.15 294.72
2 2 265.93 267.37 265.05
2 4 153.15 153.40 153.05
2 8 124.81 132.80 119.93
2 16 132.47 134.65 131.81
2 32 16.78 16.97 16.55
3 1 493.82 600.04 390.62
3 2 476.28 477.82 475.03
3 4 344.48 373.51 308.06
3 8 256.24 271.74 252.16
3 16 320.49 360.75 294.85
3 32 27.61 28.50 26.26

Table A.3: Training Time on Set B

55

Cascade Iterations # processes test_time accuracy
1 1 35.68 0.973
1 2 20.30 0.953
1 4 8.23 0.931
1 8 2.34 0.892
1 16 3.68 0.850
1 32 0.73 0.770
2 1 28.90 0.973
2 2 19.76 0.971
2 4 7.12 0.955
2 8 2.84 0.936
2 16 1.78 0.935
2 32 2.77 0.770
3 1 29.15 0.973
3 2 21.25 0.973
3 4 7.05 0.971
3 8 3.25 0.965
3 16 4.49 0.959
3 32 2.53 0.770

Table A.4: Accuracy on Set B

56

Cascade Iterations # processes training time [s] test time [s] accuracy
1 1 21257.62 19.67 0.985
1 2 2816.49 8.25 0.967
1 4 967.18 3.65 0.930
1 8 352.64 2.18 0.888
1 16 133.64 0.71 0.834
1 32 90.39 0.24 0.814
2 2 - - -
2 4 - - -
2 8 - - -
2 16 2047.51 1.10 0.946
2 32 1925.96 0.57 0.925
3 2 - - -
3 4 - - -
3 8 - - -
3 16 - - -
3 32 5422.09 0.65 0.953

Table A.5: Training and Testing Time on Set B∗. Missing entries terminated after
12 hours.

tasks training time test_time accuracy
4 2043.62 3.64 0.935
8 699.21 1.47 0.903
16 426.96 0.82 0.863
32 136.83 0.26 0.843

Table A.6: Training and Testing Time with Feedback on Set B∗.

57

Abbreviations

CSV Comma-separated values

FSD Federated Systems and Data

HDF5 Hierarchical Data Format

HPC High Performance Computing

HTC High Throughput Computing

JSC Juelich Supercomputing Centre

MPI Message Passing Interface

PBS Portable Batch Scheduler

PCA Principle Component Analysis

rbf radial basis function

SMO Sequential Minimal Optimization

SPMD Single Program Multiple Data

SV support sector

SVM Support Vector Machine

XML Extensible Markup Language

58

	1 Introduction
	1.1 Motivation
	1.2 Infrastructure
	1.3 Objectives
	1.4 Structure

	2 Background
	2.1 Cluster System
	2.2 Message Passing Interface
	2.3 Python
	2.4 Support Vector Machines
	2.5 Problem Statement

	3 Related Work
	3.1 Support Vector Machine Speedup Techniques
	3.2 Support Vector Machine Tools
	3.3 Remote Sensing Applications
	3.4 Summary

	4 Cascade SVM
	4.1 Conceptual Cascade Design
	4.2 Analysis of Scalable and Parallel Approaches
	4.3 Convergence Condition
	4.4 Summary

	5 Improving Cascade SVM
	5.1 Architectural Design and Basic Implementation
	5.2 Parallel I/O
	5.3 Cross Feedback
	5.4 Distance Filter
	5.5 Summary

	6 Evaluation & Use Case
	6.1 Remote Sensing Data for Evaluations
	6.2 Speedup by Improvements using Parallel I/O
	6.3 Accuracy & Speedup
	6.3.1 Benchmark on Data Set A
	6.3.2 Benchmark on Data Set B*

	6.4 Cross Feedback Evaluation
	6.5 Distance Filter
	6.6 Comparison with SVM
	6.7 Summary

	7 Conclusion
	7.1 Future Work

	A Evaluation Tables
	A.1 Tables for Data Set A
	A.2 Tables For Data Set B

	Abbreviations

