
M
em

be
ro

ft
he

H
el

m
ho

ltz
A

ss
oc

ia
tio

n

The NEST neuronal network simulator:
Performance optimization techniques for high performance computing platforms
Alexander Peyser† and Wolfram Schenck†‡
†Simulation Lab Neuroscience – Bernstein Facility Simulation and Database Technology,
Institute for Advanced Simulation, Jülich Aachen Research Alliance,
Forschungszentrum Jülich, 52425 Jülich | Germany
a.peyser@fz-juelich.de

‡Department of Engineering Sciences and Mathematics
University of Applied Sciences Bielefeld
Bielefeld, Germany
wolfram.schenck@fh-bielefeld.de

Abstract

NEST (http://www.nest-initiative.org) is a spiking neural network simulator used in
computational neuroscience to simulate interaction dynamics between neurons. It runs
small networks on local machines and large brain-scale networks on the world’s leading
supercomputers. To reach both of these scales, NEST is hybrid-parallel, using OpenMP for
shared memory parallelism and MPI to handle distributed memory parallelism. To extend
simulations from short runs of 109 neurons toward long runs of 1011 neurons, increased
performance is essential. That performance goal can only be achieved through a feedback
loop between modeling of the software, profiling to identify bottlenecks, and improvement
to the code-base.

HPCToolkit and SCORE-P toolkit were used to profile performance for a standard bench-
mark, the balanced Brunel network. We have additionally developed a performance model
of the simulation stage of neural dynamics after network initialization and proxy code used
to reduce the resources required to model production runs. We have pursued a semi-
empirical approach by specifying a theoretical model with free parameters specified by
fitting the model to empirical data. Thus we can extrapolate the scaling efficiency of NEST
and by comparing components, identify algorithmic bottlenecks and performance issues
which only show up at large simulation sizes.

Performance issues identified include: 1) buffering of random number generation lead to
extended wait times at MPI barriers; and 2) inefficiencies in the construction of time stamps
consumed inordinate computational resources during spike delivery. Feature 1 appears
primarily for smaller simulations, while feature 2 is only apparent at the current limit of
neural networks on the largest supercomputing and can only be identified through the use
of profiling in light of clear computing models. By improving the underlying code, NEST
performance has been significantly improved (on the order of 25% for each feature) and we
have improved weak-scaling for simulations at HPC scales.

Neural Simulation Tool

NEST [1, 2] is developed by the “NEST Initiative”, an international non-profit organization
Scales from notebooks to super-computers
Implemented in C++ using hybrid parallelism (MPI+OpenMP)
Simulations are programmable in Python and SLI

Figure: fotolia.com, © joshya Spike

 Biological Neural Network
 (artistic depiction,
Figure: fotolia.com, © rolffimages)

 Spike Raster Plot
(Figure: INM-6, Forschungszentrum Jülich)

Understanding performance

The scale of biological problems that can be investigated via a simulator is constrained by
the performance of the software on the available hardware. Performance enhancement
leads to the capability to ask new scientific questions. To improve software in an evidence-
directed way, several approaches are available:

”Real” Simulation Full simulations can be instrumented with tools such as HPC Toolkit
and SCORE-P to collect live data. Resource intensive

Dry-run mode NEST can be run on a single rank with simulated communications to
predict the results of a full simulation

Theoretical Model A theoretical model of NEST has been developed to predict the impact
of changes to code, and to interpret the sources of performance seen
from empirical measurements [3]

Structure of a NEST simulation

NEST Flow

Initialize

t < tf

Terminate

Deliver events | MPI Parallel

Update neurons | OpenMP Parallel

Exchange spike events | All-to-all

no

yes

Communication delay

Measured and modeled data on this poster refer to the
the post-initialization stages of the simulation.
Initialization can include a significant “network
construction phase”.

Data distribution

Rank r of M

Thread 0
v = 0 ·M + r

g = v + 0 ∗MT

g = v + 1 ∗MT

g = v + 2 ∗MT

· · ·
g = v + n ∗MT

· · ·
g = v +NM ∗M

Thread 1
v = 1 ·M + r

g = v + 0 ∗MT

g = v + 1 ∗MT

g = v + 2 ∗MT

· · ·
g = v + n ∗MT

· · ·
g = v +NM ∗M

Thread 2
v = 2 ·M + r

g = v + 0 ∗MT

g = v + 1 ∗MT

g = v + 2 ∗MT

· · ·
g = v + n ∗MT

· · ·
g = v +NM ∗M

...

Thread n
v = n ·M + r

g = v + 0 ∗MT

g = v + 1 ∗MT

g = v + 2 ∗MT

· · ·
g = v + n ∗MT

· · ·
g = v +NM ∗M

...

Thread T − 1
v = (T − 1) ·M + r

g = v + 0 ∗MT

g = v + 1 ∗MT

g = v + 2 ∗MT

· · ·
g = v + n ∗MT

· · ·
g = v +NM ∗M

NEST is hybrid parallel: each ‘node’ in a cluster runs one MPI rank which is subdivided into
OpenMP threads. Spikes that occur within a time window are collected from all ranks and
send to all other ranks, and then delivered to the neurons which simulate their responses.
Neurons are grouped in virtual processes (threads) which act in parallel.

Theoretical model of simulation stage

Variables:
M Number of MPI processes
T Number of threads / process

NM Memory fill factor (neurons per process)
N Total number of neurons
F Spike frequency / neuron

FSTDP Facilitation frequency / STDP synapse
K Total number of incoming synapses / neuron

KSTDP Number of incoming STDP synapses / neuron

Relations:
prel = 1− exp(−K/MT)

N = NM ·M · 11250
K = Kscale · 11250

Free parameters:
Empirical fitting: W0 . . .W8

Estimated Time: t̂ = W0 · N/MT Neuron update
+W1 · FSTDP · KSTDP · N/MT Synapse update
+W2 ·MT Buffer Jumps
+W4 ·MT Main delivery loop
+W6 · FNT Thread collisions
+W7 · FN All spikes
+W8 · prel · FN Relevant spikes

Updated terms for
next generation NEST: W2 ·W3 ·M Buffer Jumps (from MT)

W4 ·W5 ·M Main loop overhead (from MT)

Dry-run model

Static (F = 7 Hz) Dynamic (η = 1.685) Dynamic (η = 1.56)

Dry-run variations

5

0

5

10

15

20

25

R
e
la

ti
v
e
 d

if
fe

re
n
ce

 t
o
 r

e
a
l
ru

n
s

[%
]

Simulation Time (excl. Gather Step)
For dry-run mode, NEST is run on a
single node with global communications
either replaced with a fixed spike rate F
or by a dynamic firing rate determined
by η, which matches well with full
simulations (left). Initially, poor weak
scaling was measured for spike and
thread collection terms (right).

Premature optimization

Time stamps Time objects cached various formats (integer steps, integer tics & floating
point time...) which in practice reduced performance on the order of 25%.

Buffering
random

numbers

for each rank lead to intermittent load imbalance which grows as a function
of network size. Random sequences would be initially buffered for use on
demands, and when this entropy pool was depleted, it would be refilled on a
per-rank basis.

Time stamp change

The time stamp object was originally
composed of an integer ‘tics’ (minimum
time unit), a double floating point time in
milliseconds, and the number of update
steps of the time unit. The class was
simplified to only contain tics, and at the
central dispatch loop, the tics are now
passed without a class wrapper.

Random number buffering

A simulation of a reduced visual cortex model [4] was benchmarked
with SCORE-P [5] and visualized with Vampir [6]. The simulation
was composed of 16 areas with 80000 neurons each distributed over
32 compute nodes on JUQUEEN [7] (256 VPs). Brown: spike
routing, cyan: OMP SYNC, red: MPI communications.

The light pink is random number buffer refills which produce large
wait times for non-refilling threads. By turning off buffering and
producing random numbers on demand, this load imbalance is
eliminated (bottom Vampir image), reducing runtime of the
simulation stage from 216 s to 160 s. For smaller simulations with
less spike routing, the effective reduction can be larger.

Scaling

Weak scaling improvements for Balanced
Brunel network after current improvements and
potential future improvements for next
generation NEST (left). A combination of
software implementation improvements shown
here developed through HPC debugging tools,
and further software architectures
improvements through performance modeling
has lead to improvements seen at all scales,
but particularly at the larger scales currently
becoming common in neuroscience.

Acknowledgments & bibliography

This work was funded by the Helmholtz Association through the Portfolio Theme “Supercomputing and Modeling for the Human Brain”.
[1] Markus Diesmann and Marc-Oliver Gewaltig. NEST: An environment for neural systems simulations. 58:43–70, 2001.
[2] NEST Initiative. NEST (Neural Simulation Tool). Software, 2014. URL https://github.com/nest/nest-simulator.
[3] W. Schenck, A. Adinets, Y. Zaytsev, D. Pleiter, and A. Morrison. Performance model for large-scale neural simulations with nest. In Supercomputing 2014,

SC14, New Orleans, USA, 16 Nov 2014 - 21 Nov 2014. Extended Poster Abstract.
[4] Maximilian Schmidt, Sacha van Albada, Rembrandt Bakker, and Markus Diesmann. Integrating multi-scale data for a network model of macaque visual

cortex. BMC Neuroscience, 14(Suppl 1):P111–P111, July 2013. ISSN 1471-2202. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704432/.
Abstract.

[5] Andreas Knüpfer, Christian Rössel, Dieteran Mey, Scott Biersdorff, Kai Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz,
Allen Malony, WolfgangE. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert
Wesarg, and Felix Wolf. Score-p: A joint performance measurement run-time infrastructure for periscope, scalasca, tau, and vampir. In Holger Brunst,
Matthias S. Müller, Wolfgang E. Nagel, and Michael M. Resch, editors, Tools for High Performance Computing 2011, pages 79–91. Springer Berlin
Heidelberg, 2012. ISBN 978-3-642-31475-9. doi: 10.1007/978-3-642-31476-6 7. URL http://dx.doi.org/10.1007/978-3-642-31476-6_7.

[6] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mickler, MatthiasS. Müller, and WolfgangE. Nagel. The
vampir performance analysis tool-set. In Michael Resch, Rainer Keller, Valentin Himmler, Bettina Krammer, and Alexander Schulz, editors, Tools for
High Performance Computing, pages 139–155. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-68561-6. doi: 10.1007/978-3-540-68564-7 9. URL
http://dx.doi.org/10.1007/978-3-540-68564-7_9.

[7] Dirk Brömmel, Estela Suarez, Boris Orth, Stephan Graf, Ulrich Detert, Dirk Pleiter, Michael Stephan, and Thomas Lippert. Paving the road towards
pre-exascale supercomputing. In NIC Symposium 2014, number FZJ-2014-01327. Jülich Supercomputing Center, 2014.

http://www.nest-initiative.org
https://github.com/nest/nest-simulator
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704432/
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1007/978-3-540-68564-7_9

