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Efficient operation sequences to couple and interchange quantum information between quantum dot spin
qubits of different kinds are derived using exchange interactions. In the qubit encoding of a single-spin qubit,
a singlet-triplet qubit, and an exchange-only (triple-dot) qubit, some of the single-qubit interactions remain
on during the entangling operation; this greatly simplifies the operation sequences that construct entangling
operations. In the ideal setup, the gate operations use the intraqubit exchange interactions only once, and
entangling operations with gate times similar to typical single-qubit operations are constructed. The limitations
of the entangling sequences are discussed, and it is shown how quantum information can be converted between
different kinds of quantum dot spin qubits. These gate sequences are useful for large-scale quantum computation
because they show that different kinds of coded spin qubits can be combined easily, permitting the favorable
physical properties of each to be employed.
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I. INTRODUCTION

Small arrays of singly occupied quantum dot (QD) qubits
are now fabricated in GaAs and Si with great reliability [1,2].
These setups are of high interest for quantum computation
because the electron spin can be used as a qubit [3]. Besides
the single-spin qubit encoding, also more advanced qubit en-
codings have been suggested. Most promising are the singlet-
triplet qubit (STQ) [4] and the exchange-only qubit [5]. These
qubits encode quantum information in the sz = 0 spin subspace
of a two-electron double QD (DQD) or in two of the eight pos-
sible spin configurations of a three-electron triple QD (TQD).

For all the described qubits, single-qubit gates have been
realized with high fidelities. Electric [6,7] or magnetic [8–10]
field pulses can nowadays control single spins with very high
fidelities. High-fidelity gates for STQs are also possible when
the electron configuration of the DQD is modified, while the
magnetic field across the DQD is inhomogeneous [11]. Exper-
imentally, a preparation of the nuclear magnetic field [12,13]
or a micromagnet [14] created such static magnetic field
configurations. The three-electron TQD can be operated using
exchange interactions alone [5,15,16]; more optimal qubit
control has been realized if some of the exchange interactions
are not reduced to zero [17,18]. Two-qubit gates have been
proposed for all the qubit encodings using exchange couplings
[3–5,19,20], while experiments have realized these gates
only for single-spin qubits [21]. STQs or exchange-only
qubits can be coupled indirectly via their charge sector, e.g.,
using Coulomb interactions [22] or couplings via cavity
modes [17,23,24]. These approaches have not been successful
yet due to a high amount of dephasing that is caused by charge
noise [25–28].

There are pros and cons to either qubit encoding. The
longest coherence times were measured for single-spin
qubits [9,29,30]. While short-distance exchange couplings
realized high-fidelity entangling gates [21], high-fidelity long-
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distance couplings remain difficult. Single-qubit operations
for STQs are arguably even easier than for the single-spin
qubits because they use electric control pulses, while only
a static magnetic field gradient across the DQDs needs to
be prepared [11]. STQs can be tuned to operation points
where the qubit states have different charge characters,
which makes these STQs a more natural candidate for long-
distance couplings (e.g., via cavities) than single-spin qubits.
The exchange-only qubit is the natural generalization of a
STQ: single-qubit and two-qubit gates can be controlled
all-electrically (even without preparations of local magnetic
fields) [5]. Modifications of their operation points also allows
long-distance couplings with methods similar to for the STQs.

The present study assumes that universal qubit control
is possible for the encoded qubits, while two QDs from
different qubits are exchange coupled. Operation sequences
for entanglement generation and qubit conversion are derived
between QD qubits of different kinds. The operation sequences
profit from always-on single qubit Hamiltonians during the
entanglement sequences, as in earlier studies of TQDs [20,31].
For STQs, the magnetic fields at the QDs should be prepared
independently. Their values need to differ anyway to realize
single-qubit control. For the exchange-only qubit, a linear
TQD arrangement is considered. Here, the exchange couplings
between the neighboring pairs of QDs remain always at
similar magnitudes. Such setups have been used in a previous
experiment [17,18]. The TQD is operated in the (1,1,1)
configuration (i.e., there is one electron at each QD), while
virtual tunnelings of the electron at the middle QD to the
outer QDs are strongly enhanced by increasing the chemical
potential of the middle QD compared to the outer QDs [17,18].

The main findings of this paper are explicit operation se-
quences to entangle QD qubits of different kinds. The always-
on single-qubit couplings greatly simplify the operation se-
quences because they reduce the possibility of leakage from the
computational subspace. Effective Hamiltonians and entan-
gling sequences are derived; the setups only require two opera-
tion sequences to entangle a single-spin qubit and a STQ (or an
exchange-only qubit and a STQ), or four operation sequences
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to entangle a single-spin qubit and an exchange-only qubit. It
is shown how the entanglement sequences can be used to swap
quantum information between the qubits, and the limitations
of the operation sequences are discussed. It should be em-
phasized that only the standard parameter regimes of current
experiments are used to operate the spin qubits. Even though
the interqubit exchange couplings are weak, still, the gate times
of the entangling gates reach tens of nanoseconds. That is, they
are comparable to the gate times for normal single-qubit gates.

The simplicity of the entangling operations shows that a
large lattice of QD qubits does not necessarily need to contain
identical types of coded qubits (e.g., the description of large
scale quantum computation with STQs in Ref. [32]). One
can easily convert and couple different QD qubits using the
operation sequences derived in this paper. The standard fault-
tolerant quantum computation approaches, like the surface
code [33], permit combinations of different kinds of coded
qubits. As a consequence, it is possible to use a qubit encoding
just for the situation when it is most optimal. It is known that
single-spin qubits have exceptionally long coherence times,
which makes them an ideal quantum memory [8,34]. Encoded
spin qubits, like the STQ or the exchange-only qubit, can be
employed in their orbital sector, which makes them more ideal
for readout or for long-distance couplings [1,22]. It is also
possible to use the described operation sequences to couple QD
spin qubits to other spin qubits, like, e.g., donor-bound spin
qubits [35]. The electron spin bound to a donor atom is a well-
known qubit candidate with many impressive experiments of
coherent spin control in recent years [8,29,30,36]. Also tunnel
couplings between donor-bound and gate-defined spin qubits
were shown recently [37,38].

The organization of the paper is as follows. Section II
introduces the mathematical descriptions of the single-spin
qubit, the STQ, and the exchange-only qubit. Section III
derives the operation sequences to entangle QD qubits of
different qubit encodings. Section IV discusses the limitations
of these operations and describes how quantum information is
converted between different qubits. Finally, the results of the
paper are summarized.

II. QUBIT DEFINITIONS

A. Single-spin qubit

A single spin defines a qubit using the states |0〉 = |↑〉
and |1〉 = |↓〉 [3]. Universal qubit control is realized when a
magnetic field can be tilted to two different directions. The
control mechanisms to manipulate spins are magnetic field
pulses [9,39], moving spins in static magnetic fields with
spin-orbit interactions [40], and driving spins through areas
of different magnetic fields [6,41,42]. The standard operating
schemes have in common that microwave control pulses enable
Rabi-like gates [43]. Without further discussing the exact
mechanism, it is assumed here that the magnetic field direction
can be rotated to the z and x directions to generate rotations
around the z and x axes of the Bloch sphere. These single-qubit
gates are labeled Zφ = e−i2π

φ

2 σz and Xφ = e−i2π
φ

2 σx , where
σz = |↑〉〈↑| − |↓〉〈↓| and σx = |↑〉〈↓| + |↓〉〈↑| are the Pauli
operators. The phase accumulation φ = Ezt/h (φ = Ext/h)

is caused by the Zeeman energy Ez = gμBBz (Ex = gμBBx)
of the magnetic field in the z direction (x direction).1

B. Singlet-triplet qubit

STQs are coded using the sz = 0 spin subspace of a
two-electron DQD [4]. QD1 and QD2 label the individual QDs
of the DQD. Ideally, the electrons are spatially separated, and
each QD is occupied with one electron. The logical qubit
states are defined by |0〉 = |↑↓〉 and |1〉 = |↓↑〉, where the
first entry labels the electron at QD1, and the second entry
labels the electron at QD2. Single-qubit control is realized
using a magnetic field gradient between the QDs, corre-
sponding to energy differences (�Ez/2)(σz,1 − σz,2), with
�Ez = (Ez,1 − Ez,2)/2, and the exchange interaction between
the QD electrons (J12/4)(σ 1 · σ 2 − 1). σ i = (σx,i ,σy,i ,σz,i) is
the vector of Pauli matrices at QDi .

�Ez is usually static in experiments, but J12 can be tuned
within subnanoseconds by controlling the tunnel coupling or
the potential difference of the QDs [44]. The magnetic field
gradient generates rotations around the z axis of the Bloch
sphere Zφ = e−i2π

φ

4 (σz,1−σz,2), with φ = 2�Ezt/h, and rota-
tions around the x axis are caused by the exchange interaction
Xφ = e−i2π

φ

4 (σ 1·σ 2−1), with φ = J12t/h. To reduce the leakage
probability, experiments are always done at global magnetic
fields (Ez/2)(σz,1 + σz,2), with Ez = (Ez,1 + Ez,2)/2, that lift
the degeneracy between the leakage states {|↑↑〉,|↓↓〉} and the
computational subspace {|0〉,|1〉}.

C. Exchange-only qubit

The exchange-only qubit is coded using the S = 1
2 , sz =

1
2 subspace of three electrons [5]. The encoding of the
exchange-only qubit in a subspace of the three-spin-1/2
Hilbert space (the subspace encoding) is strictly required for
the operation sequences that are derived in this paper [45].
An alternative exchange-only qubit encoding (the subsystem
encoding) equally permits the qubit initialization to the S = 1

2 ,
sz = 1

2 , and S = 1
2 , sz = − 1

2 spin subspaces. In any case,
working with the subspace encoding only requires a proper
initialization routine. A strong, global magnetic field eases the
state initialization because then the S = 1

2 , sz = 1
2 , and S = 1

2 ,
sz = − 1

2 spin subspaces have different energies. Practically,
one is always able to initialize a singlet for a doubly occupied
QD, and the ground-state spin configuration for a singly-
occupied QD.

The three singly-occupied QDs are labeled by QD1,
QD2, and QD3. The qubit states are defined by
|0〉 = 1√

2
(|↑↑↓〉 − |↓↑↑〉) and |1〉 = 1√

6
(|↑↑↓〉 + |↓↑↑〉) −√

2
3 |↑↓↑〉, with the spin labels |σQD1

,σQD2
,σQD3

〉. The sum of
the exchange interactions (J/4)[(σ1 · σ2 − 1) + (σ2 · σ3 − 1)],
with J = (J12 + J23)/2, and their difference (�J/4)
[(σ1 · σ2 − 1) − (σ2 · σ3 − 1)], with �J = (J12 − J23)/2, pro-
vide universal control of the subspace {|0〉,|1〉}. J causes
a rotation around the z axis of the Bloch sphere Zφ =

1In contrast to Ref. [57], all the phase accumulations are given in
multiples of 2π .
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FIG. 1. (Color online) Entangling operation between a single-
spin qubit and a STQ. (a) QD1 defines a single-spin qubit with the
qubit levels {|0L〉,|1L〉}; QD2 and QD3 define a STQ with the qubit
levels {|0R〉,|1R〉}. A weak tunnel coupling between QD1 and QD2

couples the single-spin qubit and the STQ. (b) Sequence to create a
CPHASE between a single-spin qubit (coded on QD1) and a STQ
(coded on QD2 and QD3). ZL

φ and ZR
φ are the phase gates of the qubits

L and R. UA
φ,ψ is defined in Eq. (2).

e−i2π
φ

4 [(σ1·σ2−1)+(σ2·σ3−1)], with φ = J t/h, and �J causes a

rotation around the x axis Xφ = e
−i2π

φ

4
√

3
[(σ1·σ2−1)−(σ2·σ3−1)],

with φ = √
3�Jt/h. In typical qubit manipulation protocols,

J is constant and large, while �J is rapidly driven around
zero [17,18].

III. INTERFACES BETWEEN SPIN QUBITS

This section derives gate sequences that interconnect all
the three kinds of coded qubits using interqubit exchange
interactions. The normal parameters of experiments are used
for gate-defined QDs in GaAs [1] and Si [2]: all manipulations
are done with a global magnetic field Ez. Local magnetic
field variations are only permitted for the QDs of STQs, and
these variations are parallel to the global magnetic field. Also
their magnitudes are much smaller than Ez. All exchange
interactions can be tuned instantaneously, and the interqubit
exchange interactions can be reduced to zero. These operation
principles are idealized, and their limitations will be further
discussed in Sec. IV. The exchange interactions between the
QDs of the STQ are restricted to magnitudes of the order of
the local magnetic field variations; otherwise, charge noise
strongly couples to STQs. The TQD is always operated near
its optimal operation point, where J is large and �J is small.

A. Single-spin qubit and singlet-triplet qubit

Figure 1(a) shows a trio of singly-occupied QDs that
encodes a single-spin qubit and a STQ. QD1 defines the single-
spin qubit, with the qubit levels {|0L〉,|1L〉}. QD2 and QD3
define the STQ, where the qubit levels are called {|0R〉,|1R〉}.
A general Hamiltonian in this setup is

HA = J12

4
(σ1 · σ2 − 1) + Ez

2
(σz,1 + σz,2 + σz,3)

+ Ẽz,2

2
σz,2 + Ẽz,3

2
σz,3. (1)

QD1 and QD2 are coupled by the exchange coupling J12 that
is described by the first term in Eq. (1). The second term
describes the global magnetic field Ez, and the last two terms
are the deviations of the local magnetic fields at QD2 and
QD3 from Ez. The exchange interaction between QD2 and
QD3, (J23/4)(σ2 · σ3 − 1), is neglected in Eq. (1) because J23

is reduced to zero (or J23 is much smaller than Ẽz,2 − Ẽz,3).
To construct entangling operations, (Ez/2)(σz,1 + σz,2 +

σz,3) and (Ẽz,3/2)σz,3 can be neglected because these terms
commute with the remaining parts of Eq. (1), and they generate
only irrelevant phases. The relevant time evolution is described
by

UA
φ,ψ = e−i2π[ φ

4 (σ1·σ2−1)+ ψ

2 σz,2], (2)

with φ = J12t/h and ψ = Ẽz,2t/h. For this gate operation
(and for all the following entangling operations) the magnitude
of the interqubit exchange interaction J12 can be prepared to
a specific value, and the evolution time t can be adjusted
properly. Even though Ẽz,2 is fixed at the beginning of an
experiment, still all values of φ and ψ can be realized.

Only the states in the subspace {|0L0R〉,|0L1R〉,|1L0R〉,
|1L1R〉,|↓↑↑〉,|↑↓↓〉} are coupled in Eq. (2). There is no
evolution from computational states to leakage states for√

φ2 + ψ2 = Z. An entangling operation that is, up to local
unitaries, equivalent to the CPHASE operation is realized for
φ = Z + 1

2 . One can used, e.g., UA
1/2,

√
3/2

. A CPHASE in the

basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} is [see Fig. 1(b)]

ZL
(1−√

3)/4
ZR

(1−3
√

3)/4
UA

1/2,
√

3/2
= e−i π

2 CPHASE. (3)

Another possible entangling gate is mentioned briefly.
Only the states {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} are coupled
significantly in the parameter regime Ez � Ẽz,2 + Ẽz,3 �
J12. The leakage transitions to the states {|↓↑↑〉,|↑↓↓〉} are
very slow because these states are unfavored energetically.
One can derive from Eq. (1) an effective interaction on the
computational subspace

Ez

2
[|0L〉〈0L| − |1L〉〈1L|]

+ Ẽz,2 − Ẽz,3

2
[|0R〉〈0R| − |1R〉〈1R|]

+ J12

4
[|0L〉〈0L| − |1L〉〈1L|][|0R〉〈0R| − |1R〉〈1R|] (4)

that is entangling. The problem is that the gate operation time
is limited by the condition Ẽz,2 + Ẽz,3 � J12, which will make
such entangling gates too slow for high-fidelity operations.

B. Single-spin qubit and exchange-only qubit

Figure 2(a) shows a quartet of singly occupied QDs that
encodes a single-spin qubit (QD1; qubit states {|0L〉,|1L〉}) and
an exchange-only qubit (QD2-QD4; qubit states {|0R〉,|1R〉}).
A general interaction in this setup is

HB =J12

4
(σ1 · σ2 − 1) + Ez

2
(σz,1 + σz,2 + σz,3 + σz,4)

+ J

4
[(σ2 · σ3 − 1) + (σ3 · σ4 − 1)]. (5)
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FIG. 2. (Color online) Entangling operation between a single-
spin qubit and an exchange-only qubit. (a) QD1 defines a single-
spin qubit with the qubit levels {|0L〉,|1L〉}; QD2-QD4 define an
exchange-only qubit with the qubit levels {|0R〉,|1R〉}. A weak tunnel
coupling between QD1 and QD2 couples the single-spin qubit and the
exchange-only qubit. (b) Sequence to create a CPHASE between a
single-spin qubit (coded on QD1) and an exchange-only qubit (coded
on QD2-QD4). ZL

φ and ZR
φ are the phase gates of the qubits L and R.

UB
φ is defined in Eq. (8).

The first term in Eq. (5) is the exchange coupling between
QD1 and QD2. The second term is the global magnetic
field, and the third term describes the exchange couplings
of the exchange-only qubit.

(Ez/2)(σz,1 + σz,2 + σz,3 + σz,4) commutes with the re-
maining parts of Eq. (5), and this term causes only an irrelevant
time evolution of the single-spin qubit. The relevant time
evolution through Eq. (5) is

UB
φ,ψ = e−i2π{ φ

4 (σ1·σ2−1)+ ψ

4 [(σ2·σ3−1)+(σ3·σ4−1)]}, (6)

with φ = J12t/h and ψ = J t/h. There are exact entangling
operations between a single-spin qubit and an exchange-
only qubit that use Eq. (6). However, these sequences are
complicated and involve many operation steps.2

Simpler entangling operations can be constructed for
J � J12. The computational subspace is part of the four-spin
subspaces S = 0, sz = 0 and S = 1, sz = 1,0, which together
have eight dimensions [46]. Because the Hamiltonian
in Eq. (5) preserves the spin quantum numbers, it is
sufficient to describe the time evolution only in the four-spin
subspaces S = 0, sz = 0 and S = 1, sz = 1,0 that are
spanned by {|0L0R〉,|0L1R〉,|1L0R〉,|l1〉,|1L1R〉,|l2〉,|l3〉,|l4〉},
with |l1〉 = |0L〉|u−1/2〉, |l2〉 = |0L〉|v−1/2〉, |l〉3 ∝ |0L〉
|Q−1/2〉 − |1L〉|Q1/2〉, and |l〉4 ∝ √

3|1L〉|Q3/2〉 − |0L〉|Q1/2〉.
The states |u−1/2〉 = 1√

2
(|↑↓↓〉 − |↓↓↑〉) and |v−1/2〉 =

1√
6
(|↑↓↓〉 + |↓↓↑〉) −

√
2
3 |↓↑↓〉 span the S = 1

2 , sz = − 1
2

spin subspace of three electrons; |Q3/2〉 = |↑↑↑〉,
|Q1/2〉 ∝ |↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉, |Q−1/2〉 ∝ |↓↓↑〉 +
|↓↑↓〉 + |↑↓↓〉, and |Q−3/2〉 = |↓↓↓〉 are the S = 3

2
quadruplet states of three spins. The spin labels correspond to
|σQD2

,σQD3
,σQD4

〉 in these state definitions.
The projection of Eq. (5) to the given basis is

HB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ez − J
2 − J12

4
J12

4
√

3
− J12√

6
J12

4
√

3
Ez − 3J

2 − J12
12

J12

3
√

2

− J
2 − J12

4 0 − J12

4
√

3
− J12

2
√

3
J12

2
√

3

0 − J
2 − J12

4
J12

2
√

3
J12

4
√

3
J12

2
√

3

− J12

4
√

3
J12

2
√

3
− 3J

2 − 5J12
12 − J12

3 − J12
6

− J12

2
√

3
J12

4
√

3
− J12

3 − 3J
2 − 5J12

12
J12
6

J12

2
√

3

J12

2
√

3
− J12

6
J12
6 − 2J12

3

− J12√
6

J12

3
√

2
Ez − 2J12

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

It is sufficient to consider the time evolution in the subspaces
of equal energies that are defined by Ez and J . The borders
in the matrix of Eq. (7) indicate these subspaces. J12 couples
these subspaces, but for Ez,J � J12 these processes can be
neglected because the transition amplitudes are much smaller
than the energy differences.

After neglecting all the entries outside of the marked
subspaces in Eq. (7), also the time evolutions of Ez

2We found operation sequences to create entangling operations with
a numerical search algorithm, similar to the description in Ref. [19].
An operation sequence that is equivalent to a CPHASE is

UB
φ1,φ2

XR
φ3
UB

φ1,φ2
ZL

1/2XR
φ4
UB

φ1,φ2
XR

φ3
UB

φ1,φ2
,

with φ1 = 0.195613200942698, φ2 = 0.2178346646839128, φ3 =
0.7362256575556158, and φ4 = 0.735072280195903.

and J factor because they commute with the remain-
ing entries. The global magnetic field (Ez/2)(σz,1 +
σz,2 + σz,3 + σz,4) 	 (Ez/2)(|0L〉〈0L| − |1L〉〈1L|) and the
exchange interaction (J/4)[(σ2 · σ3 − 1) + (σ3 · σ4 − 1)] 	
(J/2)(|0R〉〈0R| − |1R〉〈1R|) cause single-qubit time evolutions
that will be neglected in the following [note that these
approximations require the previous assumptions where the
terms outside of the marked regions in Eq. (7) are ne-
glected]. Equation (6) can then be simplified on the subspace
{|0L0R〉,|0L1R〉,|1L0R〉,|l1〉,|1L1R〉,|l2〉} to

UB
φ ≈ e

−i2πφdiag{− 1
4 ,− 1

12 ,(
− 1

4 0
0 − 1

4
),(

− 5
12 − 1

3
− 1

3 − 5
12

)}
. (8)

diag{a,b, . . . } describes the matrix with the diagonal entries
a, b, . . . , and φ = J12t/h.

A single time evolution under Eq. (8) is never entan-
gling because the criterion to prevent leakage only permits
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FIG. 3. (Color online) Entangling operations between a STQ and
an exchange-only qubit. QD1 and QD2 define a STQ with the qubit
levels {|0L〉,|1L〉}; QD3-QD5 define an exchange-only qubit with the
qubit levels {|0R〉,|1R〉}. A weak tunnel coupling between QD2 and
QD3 couples the STQ and the exchange-only qubit. (b) and (c)
Sequences to create a CPHASE between a STQ (coded on QD1 and
QD2) and an exchange-only qubit (coded on QD3-QD5). ZL

φ and ZR
φ

are the phase gates of the qubits L and R. UC1
φ,ψ and UC2

φ,ψ are defined
in Eqs. (12) and (16). The CPHASE gate is abbreviated as CZ, and
HL is the Hadamard gate for qubit L.

single-qubit gates. The two-step sequence UB
φ ZL

1/2UB
φ is

equivalent to a CPHASE gate for φ = 3
4 + 3

2Z. A CPHASE
operation in the basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} is created
by [see Fig. 2(b)]:

ZL
1/2ZR

1/4UB
3/4ZL

1/2UB
3/4 = CPHASE. (9)

Note that the implicit single-qubit phase evolutions through
Ez and J , that are neglected in Eq. (8), need to be included in
ZL

1/2 and ZR
1/4.

C. Singlet-triplet qubit and exchange-only qubit

A quintet of singly-occupied QDs, as shown in Fig. 3(a),
defines a STQ (QD1-QD2; qubit states {|0L〉,|1L〉}) and an

exchange-only qubit (QD3-QD5; qubit states {|0R〉,|1R〉}). A
possible interaction in this setup is

HC1 = J

4
[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)]

+ J23

4
(σ 2 · σ 3 − 1) + Ẽz,2

2
σz,2

+ Ez

2
(σz,1 + σz,2 + σz,3 + σz,4 + σz,5). (10)

The first term in Eq. (10) describes the single-qubit interaction
of the exchange-only qubit for J34 = J45, with the abbrevi-
ation J = (J34 + J45)/2. The second term is the exchange
interaction between QD2 and QD3. A global magnetic field
across all five QDs, Ez, is represented by the last term.
Ẽz,2 is a small deviation of the local magnetic field at QD2
from the global magnetic field. Note that a possible deviation
of the magnetic field at QD1, Ẽz,1, is irrelevant when the
exchange interaction between QD1 and QD2 is reduced to
zero. Ẽz,1 would only cause single-qubit evolutions of the
STQ. The exchange interaction between QD1 and QD2, J12,
is absent in Eq. (10) because it is reduced to zero or to values
much smaller than the magnetic field difference between these
QDs.

The time evolution under Eq. (10) can be used to construct
an entangling operation between the STQ and the exchange-
only qubit. Similar to the discussion in the previous section,
Ez and J are much larger than Ẽz,2 and J23. Therefore the
qubit time evolution can be described using only the five-spin
subspaces S = 1

2 , sz = 1
2 and S = 3

2 , sz = 1
2 that have together

nine dimensions.
For Ez,J � Ẽz,2,J23, only the states |m1〉 = |T+〉|u−1/2〉

and |m2〉 = |T+〉|v−1/2〉 coupled significantly to the com-
putational subspace through Eq. (10). These states
are eigenstates of (J/4)[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)], and
they have identical energies as the qubit states.
|u−1/2〉 and |v−1/2〉 span the S = 1

2 , sz = − 1
2 sub-

space of the spins at QD2-QD4 (using the definitions

from Sec. III B). |m3〉 =
√

1
2 |T−〉|Q3/2〉 −

√
1
3 |T0〉|Q1/2〉 +√

1
6 |T+〉|Q−1/2〉, |m4〉 =

√
2
5 |T−〉|Q3/2〉 +

√
1

15 |T0〉|Q1/2〉 −√
8
15 |T+〉|Q−1/2〉, and |m5〉 = |S〉|Q3/2〉 have different ener-

gies, and therefore these states can be neglected. |T+〉 = |↑↑〉,
|T0〉 ∝ |↑↓〉 + |↓↑〉, |T−〉 = |↓↓〉, and |S0〉 = |↑↓〉 − |↓↑〉 are
the usual triplet and singlet states at QD1-QD2. Projecting
Eq. (10) to {|0L0R〉,|1L0R〉,|m1〉,|0L1R〉,|1L1R〉,|m2〉} gives

HC1 ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ez−J−Ẽz,2

2 − J23
4 0 0 − J23

4
√

3
− J23

2
√

3

0 Ez−J+Ẽz,2

2 − J23
4 0 J23

4
√

3

0 0 Ez−J+Ẽz,2

2 − J23
4

J23

2
√

3
J23

4
√

3

− J23

4
√

3
J23

2
√

3

Ez−3J−Ẽz,2

2 − 5J23
12 0 − J23

3
J23

4
√

3
0 Ez−3J+Ẽz,2

2 − J23
12 0

− J23

2
√

3
J23

4
√

3
− J23

3 0 Ez−3J+Ẽz,2

2 − 5J23
12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)
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Equation (11) contains two subspaces of virtually identical
energies, as marked by the borders in the matrix. All the terms
that couple these subspaces can be neglected.

After neglecting the block off diagonal entries in
Eq. (11), also the time evolutions of Ez and J factor
because they commute with the remaining entries. The
time evolution through (J/4)[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)] 	
(J/2)(|0R〉〈0R| − |1R〉〈1R|) causes only single-qubit time evo-
lutions of the triple-QD qubit, and Ez causes global phase
evolutions. The remaining time evolution is

UC1
φ,ψ ≈ e−i2π(φm1+ ψ

2 m2),

m1 = − diag

⎧⎪⎨⎪⎩1

4
,
1

4
,
1

4
,

⎛⎜⎝
5

12 0 1
3

0 1
12 0

1
3 0 5

12

⎞⎟⎠
⎫⎪⎬⎪⎭, (12)

m2 =diag{−1,1,1,−1,1,1},
with φ = J23t/h and ψ = Ẽz,2t/h.

Equation (12) causes no leakage for 1
3

√
4φ2 + 9ψ2 =

2Z + 1, and an entangling operation is realized for
1
6 (2φ − 3ψ) = Z. Alternatively, it is also possible to use
1
3

√
4φ2 + 9ψ2 = 2Z and 1

6 (2φ − 3ψ) = Z + 1
2 . For example,

the entangling operation UC1

3/(2
√

2),1/
√

2
gives a CPHASE in the

basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} using [see Fig. 3(b)]

ZL
1/

√
2
ZR

(4+√
2)/8

UC1

3/(2
√

2),1/
√

2
= eiπ

√
2−3
2 CPHASE. (13)

Note that in the construction of Eq. (13), it was assumed
that J12 is turned to zero during the entangling operation. Small
values of J12 can only be tolerated if they are much smaller
than Ẽz,2. An alternative gate can be constructed for large
J12. This case is probably unfavored because the influence
of charge noise increases with the exchange interactions. For
completeness, we still discuss this parameter regime. In this
case, Eq. (10) is modified to

HC2 = J12

4
(σ1 · σ2 − 1) + J

4
[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)]

+ �Ez

2
(σz,1 + σz,2) + J23

4
(σ 2 · σ 3 − 1)

+ Ez

2
(σz,1 + σz,2 + σz,3 + σz,4 + σz,5). (14)

Equation (14) contains the exchange interactions J12, J23, and
J . Additionally, to a global magnetic field Ez, the sum of
the magnetic field variations at QD1 and QD2 are important
�Ez = (Ẽz,1 + Ẽz,2)/2. The magnetic field difference �Ez =
(Ẽz,1 − Ẽz,2)/2 can be neglected if it is much smaller than
J12. Using the equivalent arguments as before for Ez,J12,J �
�Ez,J23, the qubit time evolution is restricted to the subspace
{|T00R〉,|m1〉,|T01R〉,|m2〉,|S00R〉,|S01R〉}. Projecting Eq. (14)
to this basis gives

HC2 ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ez−J

2 − J23
4 0 − J23

2
√

6
− J23

4
√

3

0 Ez−J

2 + �Ez − J23
4

J23

2
√

6
J23

4
√

3
J23

2
√

6
J23

2
√

6
Ez−3J

2 − J23
4 − J23

3
√

2
− J23

4
√

3
− J23

6

− J23

2
√

6
J23

4
√

3
− J23

3
√

2
Ez−3J

2 + �Ez − 5J23
12 − J23

2
√

6
− J23

3
√

2

− J23

4
√

3
− J23

2
√

6
Ez−J

2 − J12 − J23
4

− J23

4
√

3
J23

2
√

6
− J23

6 − J23

3
√

2
Ez−3J

2 − J12 − J23
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(15)

All the terms in Eq. (15) outside of the marked subspaces
are neglected for Ez,J12,J � �Ez,J23. Neglecting the con-
tributions of Ez, J , and J12 [again these terms commute with
the remaining entries in Eq. (15), and they cause either global
phase evolutions, or single-qubit time evolutions] the effective
time evolution is

UC2
φ,ψ ≈ e−i2π(φm1+ψm2),

m1 = −diag

{(
1
4 0

0 1
4

)
,

(
1
4

1
3
√

2
1

3
√

2
5

12

)
,
1

4
,
1

4

}
, (16)

m2 = diag{0,1,0,1,0,0},

with φ = J23t/h and ψ = �Ezt/h. The contributions of J12

and J are irrelevant in Eq. (15) because they dominantly
cause single-qubit time evolutions for Ez,J12,J � �Ez,J23:
(J12/4)(σ 1 · σ 2 − 1) 	 (J12/2)(|0L〉〈0L| − |1L〉〈1L|) and
(J/4)[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)] 	 (J/2)(|0R〉〈0R| −
|1R〉〈1R|). Also the phase evolution through Ez is neglected.

The time evolution in Eq. (16) causes no leakage for
1
2

√
φ2 − 4φψ

3 + 4ψ2 = 2Z + 1, and an entangling operation is

realized for 1
12 (φ − 6ψ) = Z. Alternatively, it is also possible

to use 1
2

√
φ2 − 4φψ

3 + 4ψ2 = 2Z and 1
12 (φ − 6ψ) = Z + 1

2 .

For example, the entangling operation UC2

3/
√

2,1/(2
√

2)
gives

a CPHASE gate in the basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉}
using [see Fig. 3(c)]

HLZR
1/2U

C2

3/
√

2,1/(2
√

2)
HL = eiπ

3(
√

2−2)
4 CPHASE, (17)

where H is the Hadamard gate.

IV. DISCUSSION AND CONCLUSION

It has been shown that the exchange interaction can be
used to entangle a pair of QD qubits for all the distinct qubit
encodings. Besides the single-qubit control, which has been
experimentally realized for all the described spin qubits, only

115448-6



SIMPLE OPERATION SEQUENCES TO COUPLE AND . . . PHYSICAL REVIEW B 92, 115448 (2015)

exchange interactions between a pair of QDs of different QD
qubits are needed. With the flexibility of the spin qubit setup,
i.e., by keeping constant exchange interactions (for the STQ
or the exchange-only qubit) or allowing local magnetic field
variations (for the STQ), very short operation sequences can be
constructed to entangle QD qubits. To entangle a STQ with a
single-spin qubit or an exchange-only qubit, only one exchange
interaction is needed between QDs of the different qubit types.
To entangle a single-spin qubit and an exchange-only qubit, a
sequence of two interqubit exchange interactions is needed.

The constructions of the entangling operations in Secs. III B
and III C used a few approximations. It was assumed that
the exchange interaction between the QDs of the STQ, or
between the QDs of the exchange-only qubit are constantly
turned on, while their magnitudes are much larger than the
exchange interaction between the neighboring QDs of the dif-
ferent qubits. Figure 4 compares the time evolution of the
Hamiltonians without any approximations to the ideal time
evolutions. It is shown that the interqubit exchange interactions
only need to be by one order of magnitude smaller than the
exchange interactions within a qubit to reduce the effective
gate errors below 1%. These gate errors are sufficient for
quantum computation with standard quantum error correction
protocols [33,47,48].

The advantage of exchange-based entangling operations is
the controllability of the interaction mechanism. The exchange
interaction depends on the tunnel coupling between distant
QDs and their chemical potentials. It has been shown that
exchange interactions can be tuned rapidly [44]. Even though
the interqubit exchange interactions need to be weak, the
time scales of the entangling gates can still reach tens of
nanoseconds. The global magnetic field Ez can be large in
experiments; the Zeeman energy |gμBBz| reaches values of
several μeV for external magnetic fields above 100mT in GaAs
and Si (note that the absolute value of the g factor in Si is more
than four times larger than in GaAs) [1,2]. The preparation of
local magnetic field variations of the order of B̃z,i = 10 mT
are possible for STQs (|gμBB̃z,i | � 1 μeV) [12,13]. The
exchange interactions can be tuned to several μeV, while
high-fidelity operations require exchange interactions below
1 μeV due to charge noise [49,51]. An exception is the
constant exchange interaction J of the exchange-only qubit
that is typically by one order of magnitude larger because then
the exchange-only qubit is still well protected from charge
noise at an optimal operation point [17,18]. Our gates require
magnitudes of the interqubit exchange interactions that are
similar to the magnetic field gradient across the DQD of a
STQ (see Sec. III A), or magnitudes of the interqubit exchange
interactions that are by one order of magnitude smaller than
Ez and J (see Fig. 4, Secs. III B and III C). This means
that the entangling operations have limitations similar to the
standard single-qubit gate operations, e.g., Rabi control for
the single-spin qubit [6–10] or the exchange-only qubit [15,16]
require a driving amplitude (that determines the gate time) that
is much smaller than Ez or J . Using all these approximations
also for the two-qubit operation times, the gate times are still
comparable to the single-qubit operation times.

The limitations of the proposed entangling operations are
similar to existing gate schemes. Local magnetic [50] and
electric field [51] fluctuations are present in semiconductors.

FIG. 4. (Color online) Gate errors for the operation sequences
of Eqs. (9), (13), and (17). Only the operations UB

3/4, UC1

3/(2
√

2),1/
√

2
,

and UC2

3/
√

2,1/(2
√

2)
are analyzed. The gate errors are charac-

terized by the deviation of the entanglement fidelity F =
tr(ρRSU−1

idealUrealρ
RSU−1

realUideal) from 1. ρRS = |RS〉〈RS| is the max-
imally entangled state of two identical subspaces R and S, e.g.,
|RS〉 ∝ |0000〉 + |0110〉 + |1001〉 + |1111〉, and the time evolutions
Uideal and Ureal act only on S while R remains unchanged. (a) For UB

3/4

(blue curve) and UC1

3/(2
√

2),1/
√

2
(red curve), the exchange interaction

of the exchange-only qubit J should be by more than one order of
magnitude larger than J12 to reduce the gate error below 1%. (b)
For UC2

3/
√

2,1/(2
√

2)
, J12, and J should be large. The gate errors increase

for J12 = 3J/2, J12 = J , and J12 = J/2 (dashed lines) because of
degeneracies in the level spectrum.

Both mechanism cause low-frequency fluctuations of the
QD parameters. Since the magnetic field fluctuations are
created mainly by the hyperfine spins of the host’s nuclei,
these fluctuations are suppressed for QDs in nuclear-spin free
heterostructures. Natural Si contains already a substantially
lower number of isotopes with nuclear spins compared to
GaAs, and it is also possible to fabricate QDs in isotopically
purified Si that contain almost no isotopes that have nuclear
spins [52]. Charge noise is dominantly caused by impurities
in the sample, and it couples to the electric dipole moments of
qubits that are created by increasing the exchange interactions.
To prevent a large influence of charge noise, one usually limits
the magnitudes of the exchange interactions. Furthermore,
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a small amount of low-frequency noise can be tolerated in
experiments because it is possible to reduce its influence by
refocusing protocols [53,54].

In the end, the proposed gate operations are idealized
because they do not take into account finite rise times of the
exchange pulses, or a residual exchange coupling that cannot
be turned off. The modifications of exchange interactions
on subnanosecond time scales are well established [44].
For some gates of the paper, the exchange interactions of
STQs are reduced to zero, but it is sufficient to reduce them
below the level of the magnetic field gradients across the
DQDs. Being able to minimize the influence of interqubit
exchange is very important. We are convinced that the recent
experimental achievement of high amplitude control over
the tunnel coupling between QDs is very useful [55]. Also
preparation errors or misalignments of the local magnetic fields
are present in real experiments. Further numerical studies
can adjust the proposed gate sequences to the reality, and
a procedure similar to Ref. [56] should be able to derive
optimized gate sequences for high-fidelity gate operations.
Spin-orbit interactions are weak in typical QD materials like,
e.g., GaAs or Si [1,2], and they should have minor influence
on the proposed operation sequences.

Besides entangling different kinds of spin qubits, it might
also be useful to interchange quantum information between
them. Figure 5 shows operation sequences for SWAP oper-
ations that only rely on CPHASE and Hadamard gates (cf.
Ref. [57]). An unconditioned SWAP is realized using three
CPHASE gates; only two CPHASE gates are needed if the
state of a qubit should be transferred to another qubit that is
initially in |0〉.

Altogether, very efficient operation sequences have been
constructed to couple and interconvert different kinds of spin
qubits. These operation sequences can couple all the standard
qubit encodings in one, two, and three singly occupied QDs.

(a) × • H • H •

× =
H Z H Z H Z H

(b) |ψ〉 × |0〉 |ψ〉 • H • H |0〉

|0〉 × |ψ〉 = |0〉 H Z H Z |ψ〉

FIG. 5. Gate operations to interchange qubits using CPHASE
gates. (a) The unconditioned SWAP operation requires three
CPHASE gates together with Hadamard gates (H). (b) A simpler
SWAP sequence can be realized if one of the qubits is initialized to a
fixed state, e.g., |0〉. Then the SWAP operation with an arbitrary state
|ψ〉 requires only two CPHASE gates.

Only the established single-qubit manipulation protocols
are needed that have been successfully realized for all the
qubit encodings. Different qubits are coupled using exchange
interactions that are well controlled experimentally. With
the current efforts to build larger arrays of tunnel-coupled
QDs [58,59], the proposed operation sequences can be tested
directly. The interconversion of different spin qubits allows
to use all the advantages of the different QD setups in large
arrays of QDs. For example, it is known that few-electron
qubits couple stronger to cavities [17,23,24] or metallic
gates [60], while single-spin qubits have extremely long
coherence times [8,34]. Therefore the described operation
sequences are another useful ingredient on the way towards
quantum computation with large QD networks.
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