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Reconstruction of recurrent synaptic connectivity
of thousands of neurons from simulated spiking
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Abstract Dynamics and function of neuronal networks are
determined by their synaptic connectivity. Current experi-
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mental methods to analyze synaptic network structure on
the cellular level, however, cover only small fractions of
functional neuronal circuits, typically without a simultane-
ous record of neuronal spiking activity. Here we present a
method for the reconstruction of large recurrent neuronal
networks from thousands of parallel spike train recordings.
We employ maximum likelihood estimation of a gener-
alized linear model of the spiking activity in continuous
time. For this model the point process likelihood is con-
cave, such that a global optimum of the parameters can be
obtained by gradient ascent. Previous methods, including
those of the same class, did not allow recurrent networks
of that order of magnitude to be reconstructed due to pro-
hibitive computational cost and numerical instabilities. We
describe a minimal model that is optimized for large net-
works and an efficient scheme for its parallelized numerical
optimization on generic computing clusters. For a simu-
lated balanced random network of 1000 neurons, synaptic
connectivity is recovered with a misclassification error rate
of less than 1 % under ideal conditions. We show that the
error rate remains low in a series of example cases under
progressively less ideal conditions. Finally, we successfully
reconstruct the connectivity of a hidden synfire chain that
is embedded in a random network, which requires cluster-
ing of the network connectivity to reveal the synfire groups.
Our results demonstrate how synaptic connectivity could
potentially be inferred from large-scale parallel spike train
recordings.

Keywords Spike trains · Network topology · Connectome
identification · Inverse problem · Synaptic connectivity ·
Connectivity inference · Generalized linear model ·
Maximum likelihood estimation · Penalized likelihood ·
Sparsity · Point process
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1 Introduction

The synaptic organization of neuronal networks is key to
understanding the dynamics of brain circuits, and, eventu-
ally, to link them to higher level cognitive functions. A large
body of work aims to address this challenge by developing
experimental techniques which enable the reconstruction of
the connections between neurons on the basis of anatomical
or physiological evidence. Anatomically, synaptic connec-
tions may be identified using optical imaging or electron
microscopy (Briggman et al. 2011; Bock et al. 2011), while
physiological approaches rely on simultaneous recordings
of individual neurons and the mutual influence of the spikes
of one neuron on the membrane potential of the other (Perin
et al. 2011; Boucsein et al. 2011). Substantial progress has
been made in recent decades to increase the size of networks
accessible by experimental methods, including the new
promising macroscale and mesoscale connectivity mapping
techniques (Chung et al. 2013; Oh et al. 2014). However,
on the microscale of individual neurons, the practical limi-
tations of these techniques mean that reliable reconstruction
is currently only possible for neural circuits of up to dozens
of cells.

Alternatively, the connectivity of neuronal networks can
be inferred from parallel recordings of their spiking activ-
ity. Potentially, this enables the recovery of the connections
in circuits of hundreds and thousands of cells. Recent
technical achievements in conducting large-scale parallel
recordings of neuronal dynamics, such as multi-electrode
array technology for in vivo implantation (Hatsopoulos
and Donoghue 2009; Ghane-Motlagh and Sawan 2013),
micro-electrode dishes for recording the in vitro activity
of acute brain slices and dissociated cell cultures (Nam
and Wheeler 2011; Spira and Hai 2013), and optical imag-
ing techniques (Grewe and Helmchen 2009; Lütcke et al.
2013; Ahrens et al. 2013), make this path even more
compelling.

The main difficulty in the analysis of parallel recordings,
though, lies in the interpretation of the results (Gerstein
and Perkel 1969; Aertsen et al. 1989). On one hand, sim-
ple reduced models of network interactions are often unable
to resolve ambiguous scenarios: a classic example of such
ambiguity is a group of neurons that receives common input
versus a mutually connected group of cells, which cannot
be distinguished using pairwise cross-correlation analysis
(Stevenson et al. 2008). On the other hand, obtaining reli-
able fits of complex large-scale models to the data presents
both a methodological and computational challenge in itself
(Chen et al. 2011; Song et al. 2013). At the same time, there
are often considerable difficulties in directly relating the
reconstructed connectivity matrices to measurable experi-
mental quantities or model parameters. The resulting sets of
connections are then regarded as “functional” or “effective”

connectivity, terms lacking strict and universally accepted
definitions, and not necessarily matching real anatomical
connectivity, but still hoped to provide useful insights with
respect to the interaction of the network elements (Horwitz
2003).

The desire to strike the balance between explanatory
power, and analytical as well as numerical tractability,
has fueled an ever growing interest in methods that go
beyond simple linear regression analysis, but still remain
highly efficient. Previous works show that generalized lin-
ear models (GLM) (McCullagh and Nelder 1989) of net-
work spiking activity can indeed be efficiently estimated
from experimental data (Truccolo et al. 2005; Okatan et al.
2005; Pillow et al. 2008; Stevenson et al. 2009; Gerwinn
et al. 2010) (dealing with recordings of up to 20, 33, 27,
75 + 108 and 7 neurons respectively), and make it possible
to recover the actual synaptic connectivity of small neu-
ronal circuits (N = 3) (Gerhard et al. 2013). Scaling these
approaches directly up to substantially larger networks of
thousands of units, however, seemed not to be feasible due
to the vast computational resources such a reconstruction
would require.

In this work, we present a method to reconstruct the
parameters of large-scale recurrent neuronal network mod-
els of N ≥ 1000 elements, based on parameter estimation
of a stochastic point process GLM using only observations
of the spiking activity of the neurons. Provided with the
knowledge of the probability p(X|θ) of a specific stochas-
tic model yielding the observations X given the parameters
θ , we maximize the likelihood function L(θ) = p(X|θ) in
order to identify a set of parameters θ resulting in an opti-
mal agreement of the selected model with the observations
X. This is a widespread technique known as maximum like-
lihood estimation (MLE) (Paninski 2004). If the underlying
model is sufficiently detailed and is indeed appropriate to
describe the observations, then not only can the parameters
θ be related to the actual measurable features of the neu-
ronal network that generated the data, but they also define a
dynamic model of the neuronal network activity (also called
a generative model). Such a model can be used to derive
testable predictions, or conduct virtual experiments (sim-
ulations), which might otherwise have been impossible or
impractical.

Due to the large number of parameters necessary to
describe a network of N ≥ 1000 neurons, the optimiza-
tion of the likelihood L(θ) can only be performed efficiently
for some of the possible GLMs of neuronal networks. In
Section 2, we describe our optimized model, including a
particular choice of nonlinearity and interaction kernels,
which enables us to obtain closed forms and recurrence for-
mulae which go beyond more general techniques previously
reported in the literature. We additionally supply details
about the numerical methods employed. In Section 3, we
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demonstrate the proposed technique on simulations of ran-
dom balanced neuronal networks, and present reconstruc-
tions of the connectivity matrix consisting of 106 possible
synapses in sparsely connected recurrent networks of N =
1000 spiking neurons. Finally, we apply our method to a
structured network. We recover a synfire chain embedded in
a balanced network from recordings of spiking activity, in
which no activations of the synfire chain were present, and
demonstrate that the inferred model of this network supports
the transmission of synfire activity when stimulated.

In the present study we focus on reconstructions of
networks for which all spiking activity can be recorded.
Whereas in experimental settings undersampling is to be
expected – and we performed a basic assessment of how it
would affect our reconstructions, see Appendix C – a thor-
ough investigation of the consequences of undersampling
for the classification performance of our techniques is out
of scope. Similarly, when presenting these techniques we
are initially concerned with activity which we can assume
to be a sample of a multi-dimensional point process with
constant parameters (i.e. neuronal excitability and synaptic
interactions). In Section 4 we examine these limitations and
propose how they could be relaxed in future studies.

2 Methods

This section provides detailed information on the method
of network reconstruction we employ, including original
amendments and adaptations. In Section 2.1 we introduce
the likelihood of our network model to reproduce a given
dataset of neuronal spike trains. This likelihood is the
quantity which is subject to optimization. The specific for-
mulation of the likelihood relies on a model of the spiking
activity of the neurons, which is introduced in Section 2.2.
To evaluate the likelihood and its gradient under that model
efficiently, recursive formulae and closed form expressions
are derived in Section 2.3. The subsequent sections describe
how we handle synaptic transmission delays (Section 2.4)
and how, in some cases, we employ regularization of the
optimization problem (Section 2.5). Finally, Section 2.6
gives further details regarding the practical aspects of our
highly parallelized implementation of the method.

2.1 Point process likelihood of generalized linear models

A statistical model that describes the activity of a network
of N neurons can be defined as an expression for the con-
ditional probability p(S|�x) of observing an N-dimensional
spike train (spike raster) S for a given input signal �x, which
may include external stimulation and/or previous activity
of the network itself. Given all the inputs of a neuron, we
assume that its probability of spiking is independent of the

other neurons (conditional independence). This allows us to
factorize p(S|�x) = ∏N

i=1 pi(Si |�x), where pi(Si |�x) is the
probability that the i-th neuron, within the recording time
[T0, T1], produces a spike train Si conditioned on the input
�x. Therefore, in what follows we focus on the probability
pi(Si |�x) of a single neuron.

The activity of the individual nerve cells can be char-
acterized by a stochastic GLM that postulates that two
consecutive operations are performed by the neuron on
its input. First, the dimensionality of the observable sig-
nal �x is reduced by means of a linear transformation Ki .
This transformation models synaptic and dendritic filter-
ing, input summation and leaky integration in the soma.
The result Ki �x is a one-dimensional quantity that is anal-
ogous to the membrane potential of a point neuron model.
Second, this transformed one-dimensional signal is fed into
a nonlinear probabilistic spiking mechanism, which works
by sampling from an inhomogeneous Poisson process with
an instantaneous rate (conditional intensity function) given
by λi(t |�x) = fi(Ki �x). Here, fi(·) is a function that cap-
tures the nonlinear properties of the neuron. Both the linear
filter Ki and the nonlinearity fi are specified by θi , a
set of parameters that describes the characteristics of the
i-th neuron. The schematic of this model is shown in
Fig. 1.

Based on these definitions, we may now introduce the
natural logarithm L of the likelihood L(θ |S) and expand it
as

L = log L(θ |S) = log

[
N∏

i=1

pi(Si |�x)

]

=
N∑

i=1

log pi(Si |�x) =
N∑

i=1

Li , (1)

Fig. 1 Schematic of the point process generalized linear model (PP
GLM) of a recurrent spiking neuronal network. In this model, the spike
trains �x from the neurons in the network, after incurring transmis-
sion delays dij , pass through a linear filtering stage Ki . The resulting
(pseudo) membrane potential Ui(t) is fed into a nonlinear link func-
tion fi(·) = exp(·), which transforms it into the conditional intensity
function λi(t). The latter drives the probabilistic spiking mechanism
that generates an output spike train Si for the i-th neuron. Note that this
spike train is then also fed back as an input to the neuron itself via a
“self-connection” in order to model its refractory, post-spike properties
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where the observation (previously called X) is the spike
raster S. In the last step of Eq. (1) we have introduced the
single neuron log-likelihood Li = log pi(Si |�x).

Let us now compute the probability that an inhomoge-
neous Poisson process with intensity λi(t) produces the
spike train Si = {ti,k}, 1 ≤ k ≤ qi , where T0 ≤ ti,k ≤ T1

and qi is the number of spikes of the i-th neuron. This
probability is (Brillinger 1988)

pi(Si |�x) = e
−∫ T1

ti,qi
λi (t)dt

qi∏

k=1

e
−∫ ti,k

ti,k−1
λi(t)dt

λ(ti,k)

= e
−∫ T1

T0
λi(t)dt

qi∏

k=1

λ(ti,k)

with ti,0 = T0. Here, for each spike time ti,k , we multiply

the (survival) probabilities e
−∫ ti,k

ti,k−1
λi(t)dt

of not producing a
spike in (ti,k−1, ti,k) with the intensity λi(ti,k) at ti,k . Finally,

we factor in the probability e
−∫ T1

ti,qi
λi (t)dt

of not producing
a spike in the recording time (ti,qi

, T1], which remains after
the last spike. The function Li(θi |Si) = pi(Si |�x) is known
as the point process likelihood (Snyder and Miller 1991).

Taking the logarithm yields the log-likelihood function

Li (θi) =
qi∑

k=1

log λi(ti,k) −
∫ T1

T0

λi(t)dt , (2)

where the sum runs over all spikes 1 ≤ k ≤ qi of the i-th
neuron. The first term of this expression rewards high inten-
sity at times ti,k when the spikes of the i-th neuron have been
emitted, and the second term penalizes high intensity when
no spikes have been observed. Different numbers of spikes
qi render the absolute values of Li difficult to compare
among different neurons, but play no role when maximizing
Li with respect to θi .

2.2 Conditional intensity model for a recurrent neural
network

In order to investigate the recurrent aspects of the dynam-
ics of the system, we define the observable input signal �x
for each neuron as the history of spikes recorded in the net-
work up to a given point in time, including the spikes of the
i-th neuron itself (which are used to model the refractory
properties of the neuron). It is possible to include exter-
nal inputs in this formulation, however this is not an option
that we have pursued in the current work. Below follows a
detailed discussion of the different components of the model
as presented in Fig. 1.

For simplicity, we assume that the effect of each incom-
ing spike can be modeled as an instantaneous current
injection. The spike train Sj of the j -th neuron as a func-
tion of time is expressed as sj (t) = ∑qj

k=1δ(t − tj,k),

where tj,k is the k-th spike of the j -th neuron. Each spike
then elicits an exponential post-synaptic response in the
neuron, due to the filtering properties of the membrane,
hi(t) = H(t) exp {−t/τi}, where t is the time since spike
arrival, τi is the membrane time constant of the neuron, and
H(x) = {1 if x ≥ 0, else 0} is the Heaviside function,
which ensures the causal relationship between the stimula-
tion and the response. Note that while the propagation of
spikes is assumed to happen instantaneously in the formula-
tion above, the incorporation of delays will be discussed in
detail later in Section 2.4.

We may now define the linear dimensionality-reducing
transformation Ui(t) = Ki �x(t) as

Ui(t) = Ji0 +
N∑

j=1

Jij (hi ∗ sj )(t) , (3)

where ∗ denotes the convolution operation,

(hi ∗ sj )(t) =
∫ ∞

−∞
hi(t − u)sj (u)du .

The baseline potential Ji0 will be used later to set a base
level of activity of the unit in the absence of inputs.
Differentiation of Eq. (3) yields the first-order ordinary
differential equation of the leaky integrator

d

dt
Ui(t) = − 1

τi

(Ui(t) − Ji0) +
N∑

j=1

Jij sj (t) . (4)

Hence Ui(t) can be interpreted as the membrane poten-
tial of the i-th neuron, while J is the synaptic connectivity
matrix and each of its elements Jij denotes the strength
(synaptic weight) of the connection from the j -th to the
i-th neuron. Due to its simplicity, Eq. (4) leads to highly
efficient algorithms (discussed in Section 2.3 and 2.6) to
evaluate the membrane potential and the conditional inten-
sity function of the neurons, beyond previously reported
more general parallelization techniques (Chu et al. 2006).
The membrane potential and the intensity are, in turn,
needed to compute the values of the likelihood function and
its gradient.

In Eqs. (3) and (4), positive and negative values of Jij

correspond to excitatory and inhibitory connections respec-
tively, and zero values denote the lack of a connection
between two cells. Note that as formulated, this model does
not ensure compliance with Dale’s law (according to which
each neuron can form synapses of only one type). However,
we will show that this is an essentially negligible source of
errors in the reconstructions presented below.

Further, we choose a specific type of the nonlinearity
f (u) = exp {u}, such that

λi(t) = exp {Ui(t)/δu} . (5)
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In this expression, the scalar δu > 0 can be considered
as the inverse “gain” of the nonlinearity. In the derivations
that follow we will assume δu = 1 in order to simplify the
expressions without loss of the generality, as different gains
can be accommodated by rescaling the synapse weights Jij

and the baseline potential Ji0 accordingly. In the absence of
input spikes, Ui = Ji0, which leads to the base rate

ci = exp{Ji0/δu} . (6)

It is worth mentioning that the base rate can effectively con-
stitute a “sink” for spiking activity that cannot be explained
by the recurrent network dynamics, such as external stim-
ulation that has not been included in the present model, or
missing inputs from unobserved neurons due to incomplete
observations of the network (undersampling).

The model as formulated above is similar to the widely
used cascade LNP model (Simoncelli et al. 2004), but in
addition to the activity of the other cells in the ensem-
ble, it also incorporates the spiking history of the neuron
itself through its self-connection Jii . An intuitive biologi-
cal interpretation of this class of models, also known as the
spike-response model with escape noise, in relation to the
conventional integrate-and-fire model is given in Brillinger
(1988) and Gerstner et al. (2014). Here, in contrast to the
approaches taken in previous studies (Song et al. 2013;
Citi et al. 2014; Ramirez and Paninski 2014), we drasti-
cally simplify both the conditional intensity model for a
single neuron and the interaction kernels. This makes the
numerics in our method amenable to a highly efficient
implementation as discussed in Section 2.6.

Given that fi(·) is both a convex and log-concave func-
tion of Ui = Ki �x, and the space of possible {Ki} is convex,
it can be shown that the log-likelihood function of such
problems is concave and does not have any non-global local
extrema (Paninski 2004). Thus the log-likelihood function
Li of the model as formulated above is concave in θi ⊂
{Jij }0≤j≤N (note, however, that τi is not included in θi ; the
recovery of the time constants will be addressed separately).
A proof of the concavity of Li for our specific choice of
kernels and link function is given in Appendix A. Since the
sum of concave functions is again concave, the full log-
likelihood L = ∑N

i=1Li is concave as well. Consequently,
there exists a unique set of parameters θ that characterize
the network model that is most likely to exhibit a given
recorded activity. These parameters θ can be efficiently
identified via gradient ascent based nonlinear optimization
methods applied to L. Moreover, due to the separability of
L (1), in order to recover θ = {θi}, one can maximize
the individual log-likelihood functions Li for each recorded
unit, instead of maximizing the complete log-likelihood
function L.

Since the experimental techniques to obtain simultaneous
recordings of thousands of units are becoming increasingly

accessible, in this work we are targeting N ≥ 1000. How-
ever, even if the number of variables is reduced from the
∼ O(N2 = 106) required for the complete log-likelihood
function to the ∼ O(N = 103) required for the log-
likelihood function of an individual neuron, this is still a
high-dimensional convex optimization problem. It can only
be solved in practice using gradient based methods, for
which the analytical closed form expressions for the log-
likelihood function and its gradient are both available, and
amenable to efficient evaluation. In the following we derive
these expressions for the postulated model.

2.3 Closed form expressions

Let us consider the log-likelihood Li for an individual neu-
ron; recall that the variable part of Eq. (2) consists of two
terms:

Li =
qi∑

k=1

log λi(ti,k)

︸ ︷︷ ︸
L�

i

−
∫ T1

T0

λi(t)dt

︸ ︷︷ ︸

L
∫

i

. (7)

Observe that given a closed form for Ui(t), computing L�
i

is a matter of a simple algebraic substitution, while the effi-

ciency of computing L
∫

i depends on whether it is possible
to find this primitive analytically.

2.3.1 Recurrence formula for the membrane potential

By design, our particular choice of Ki (exponential post-
synaptic potential plus baseline potential) allows us to
obtain the required closed form for Ui(t) because it obeys
the leaky integrator dynamics (4). The solution of Eq. (4)
from tk to t in the absence of input spikes sj (t) is Ui(t) =
(Ui(tk) − Ji0) exp

{
− t−tk

τi

}
+ Ji0. This expression is valid

at any time t between two consecutive observed spikes
tk, tk+1 ∈ S, where S = {tk} is the (ordered) set of all
recorded spikes of the network. At the borders of each of
those intervals, the value of Ui(tk+1) is increased by the
contribution of the corresponding incoming spike:

Ui(tk+1) = (Ui(tk) − Ji0)e
− tk+1−tk

τi + Ji0 + Jij , (8)

where the index j refers to the neuron that emitted a spike
at time tk+1; if spikes from multiple neurons j1,2,3,... arrive
at time tk+1, the contributions Jij1,2,3,... have to be added.
We will refer to Eq. (8) as the key recurrence formula in the
following.

The formula (8) for Ui(tk+1) makes it possible to find the
value of the membrane potential of the neuron at the spike
time tk+1 given the previous value at time tk by computing
only one exponential function. It is substantially more effi-
cient in terms of computation than naively summing up the
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contributions from all spikes that happened at t < tk for
each point in time tk . In particular, for kernels with infinite
memory like the exponential kernels hi(t) employed here,
the recurrence formula (8) is crucial to avoid an explosion of
the computational costs when evaluating the log-likelihood
on large datasets in continuous time.

2.3.2 Evaluating the likelihood

Taking these considerations into account, the integral over

the duration of the recording L
∫

i in Eq. (7) can be broken
down into a sum of integrals from tk to tk+1:

L
∫

i =
q+1∑

k=0

∫ tk+1

tk

λi(t)dt

= ci

q+1∑

k=0

∫ tk+1

tk

exp

{

(Ui(tk) − Ji0)e
− t−tk

τi

}

dt , (9)

where q = ∑N
i=1qi is the total number of recorded spikes,

t1, . . . , tq are the spike times, and t0 = T0 and tq+1 = T1

are the start and end of the recording. The integral contained
here has a known closed form, so

L
∫

i = −ciτi

q+1∑

k=0

Ei

(

(Ui(tk) − Ji0)e
− t−tk

τi

)∣
∣
∣
∣

tk+1

tk

, (10)

where Ei(x) is a special function (exponential integral)
defined as Ei(x) = −∫ ∞

−x
e−t

t
dt for real nonzero values of

x. For a proof of the equivalence of Eqs. (9) and (10) see
Appendix B; the numerical computation of this function is
discussed below in Section 2.6.1. The summands of Eq. (10)

are independent, and therefore the evaluation of L
∫

i lends
itself to trivial parallelization.

2.3.3 Evaluating the gradient

It now remains to find an efficient way to compute the gra-
dient of the log-likelihood function. The performance at this
point is likewise important, or even more so for large N ,
since Li has O(N) partial derivatives that all need to be
evaluated at each step of the optimization. The parameters
of Li are θi = (Ji0, . . . JiN ). For convenience, let us first
introduce the terms

νij (t) = ∂

∂Jij

Ui(t) =
{

j ≥ 1 : (hi ∗ sj )(t)

j = 0 : 1
, (11)

which, for j ≥ 1, can be interpreted as the putative response
of the i-th neuron to the input spikes from the j -th neuron,
that is going to be scaled by Jij , cf. (3). The derivatives of

Li (7) with respect to Jij can then be expressed as

∂

∂Jij

Li =
qi∑

k=1

νij (ti,k)

︸ ︷︷ ︸
∂�
ij

−
∫ T1

T0

λi(t)νij (t)dt

︸ ︷︷ ︸

∂

∫

ij

. (12)

Here, qi is the number of spikes of the i-th neuron, and
{ti,k} = Si are the points in time when the i-th neuron emit-

ted a spike. For j = 0, Eq. (12) becomes ∂
∂Ji0

Li = qi −L
∫

i .
This means that at a maximum of Li , the baseline potential
Ji0 (and so the base rate ci (6)) is set such that the num-
ber of spikes qi equals the expected total number of spikes

of the GLM, L
∫

i . Further, in order to evaluate (12) for the

cases when j ≥ 1, we have defined the symbols ∂�
ij and ∂

∫

ij

analogous to Eq. (7).
The values νij (ti,k) for j ≥ 1 can be obtained using

a recurrence formula just like for the membrane poten-
tial Ui(tk) (8); in fact, νij (t) = ∂

∂Jij
Ui(t), cf. (11).

Hence, νij (t) obeys leaky integrator dynamics like Ui(t),
which can be obtained by differentiating Eq. (4) by Jij

and reinserting Eq. (11). Accordingly, νij (t) decays expo-
nentially in between spikes νij (tj,k < t < tj,k+1) =
νij (tk) exp

{
− t−tj,k

τi

}
, and we find the recurrence formula

νij (tj,k+1) = νij (tj,k)e
− tj,k+1−tj,k

τi + 1 . (13)

Individual values within these intervals can be computed
in parallel independently from each other. Summing up all
νij (ti,k) then yields ∂�

ij .
It is also important to mention that νij (t) (11) and, con-

sequently, ∂�
ij in Eq. (12) do not depend on parameters θi

and therefore need only be computed once at the begin-
ning of the optimization. However, even though we can
use the formula Ui(t) = ∑N

j=0Jij νij (t), for large N it is
more expensive to compute Ui(t) by summing up weighted
contributions of νij (t) than by using Eq. (8) as explained
above.

Making use of the recurrence formulae for Ui(t) (8)

and νij (t) (13), the closed form of ∂

∫

ij in Eq. (12) can be
expressed as follows:

∂

∫

ij = ci

q+1∑

k=0

νij (tk)

∫ tk+1

tk

e
− t−tk

τi e
(Ui(tk)−Ji0) exp

{
− t−tk

τi

}

dt

= −ciτi

q+1∑

k=0

νij (tk)

Ui(tk) − Ji0
e
(Ui(tk)−Ji0) exp

{
− t−tk

τi

}∣
∣
∣
∣

tk+1

tk

,(14)

where, as in Eq. (10), q = ∑N
i=1qi is the total number of

recorded spikes, t1, . . . , tq are the spike times, t0 = T0 and
tq+1 = T1 are the start and end of the recording. Unlike
∂�
ij , this expression needs to be re-evaluated at every opti-

mization step, but as with Eq. (10), the elements of the sum
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are independent from each other and can therefore also be
efficiently parallelized.

2.4 Handling transmission delays

In the discussion above, the communication of spikes
between the neurons was implicitly assumed to happen
instantaneously. Of course, in reality spikes incur trans-
mission delays, which strongly affects the dynamics of the
network.

Fortunately, the effects of combined synaptic and axonal
delays can be easily incorporated into the described model:
thanks to the separability property, we can optimize the
parameters for each neuron independently, and feed every
optimization for different neurons with its own modified
dataset, containing the incoming spike times from other
neurons arriving as the target neuron actually received
them.

Therefore, given an effective delay matrix D, it is only
necessary to shift each spike train Sj in the recorded raster S

by the corresponding delay at the beginning of the optimiza-
tion for the i-th neuron, such that the membrane potential of
this neuron is affected at the point in time when the incom-
ing spikes from the j -th neuron have reached their target,
and not immediately as they were fired (and recorded):

Sj = {tj,k} → Ŝj = {̂tj,k = tj,k + Dij } . (15)

The transformation above has to be applied with one
exception: the elements of the sum in L�

i (and, accordingly,
∂�
ij ) have to be evaluated at time points Si when the i-th neu-

ron actually produced a spike, and not at time points Ŝi =
Si + Dii , when this spike has reached the neuron through
the “self-connection” and provoked a depression of its mem-
brane potential, which models the refractory properties of
the neuron.

In other words, in order to correctly evaluate the expres-
sions Eqs. (7) and (12) while taking into account transmis-
sion delays, one must compute the values of Ûi(t) and ν̂ij (t)

using the modified raster Ŝ, but at time points Si of the orig-
inal raster S, and substitute these values in the elements of
the sums L�

i and ∂�
ij respectively, instead of summing up

the elements taken at times Ŝi . In the following, we omit the
“hats” for notational convenience.

2.5 Regularization of the model

Substantial improvements in the quality of the network
reconstruction can be achieved if the model presented above
is subjected to standard regularization techniques. These
techniques enhance the accuracy of the inference procedure
by integrating additional prior knowledge about the system
into the optimization process (Meinshausen and Bühlmann
2006; Ravikumar et al. 2010). For instance, we can impose

box constraints on reasonable values of the synaptic connec-
tion matrix Jij or base rates ci , and complement this with a
choice of more sophisticated methods, such as 	1 or 	2 regu-
larization, exploiting assumed sparsity or smoothness of the
expected result, respectively (Chen et al. 2011).

In particular, 	1 regularization (Tibshirani 1996) has a
straightforward Bayesian interpretation in our setting: by
penalizing the log-likelihood function (2) with the sum of
the absolute values of the synaptic weights Jij , we impose a
sparsity-inducing Laplace prior on the sought-for solution,
thereby performing a maximum a posteriori (MAP) estima-
tion. Here the strength of the penalty α reflects the firmness
of our belief in the sparseness of the network connectivity:

L̃i ∼ L�
i − L

∫

i − α

N∑

j=1
j �=i

|Jij | . (16)

Possible overfitting due to an inadequate choice of the
regularization parameter α can be prevented by separating
the dataset into two parts to cross-validate the recovered
synaptic weights, and, in the case that the available data is
too scarce, more elaborate techniques such as K-fold cross-
validation and other cross-validation types (Kohavi 1995)
can be employed.

2.6 Practical implementation

The mathematical components described above make it pos-
sible to reproduce our estimation procedure. However, we
found that without employing additional numerical meth-
ods, a naive implementation would be way too slow for
practical use. In the following we outline the techniques that
helped us to boost the optimization speed by many orders
of magnitude, bringing the computational requirements to
perform estimations of the connectivity for the networks of
N ∼ O(103) neurons into a practical range for plausible
amounts of experimental data.

2.6.1 Efficient evaluation

From the computational perspective, a program that per-
forms the parameter estimation would typically consist of
a nonlinear optimization routine, which is provided with
callback procedures that are repeatedly called in order to
evaluate the objective function (2) and its gradient (12) for
any given set of parameters. Hence, the cornerstone guiding
principle to achieve best performance is to carefully con-
sider the CPU time versus memory consumption trade-offs,
and cache as many values for these callbacks as feasible.

As the values of Ui(t) for S = {tk} (all spikes of the net-
work) are needed in order to evaluate both the log-likelihood
function and its gradient, it makes sense to pre-compute
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these values at the beginning of the optimization step. Addi-
tionally, as previously noted, the values of νij (t) do not
depend on the parameters θ , and therefore both νij (t) and
∂�
ij can be pre-computed during the first optimization step,

and re-used in all subsequent steps. Likewise, it is important
to consider the costs of calculating transcendental functions;
whereas they might seem negligible at the first sight, the
time taken to compute some 1010 exponentials every step
is considerable. Therefore, pre-computing the values of all
sub-expressions that do not depend on the parameters, and,
in particular, ξtk = exp {−(tk+1−tk)/τi} is another possibility
to save large amounts of CPU time.

In any case, we recommend using iterative profiling in
order to select the relevant optimization targets to add each
next level of caching, since, as a general rule, the more
caches there are, the more complicated and error-prone it is
to keep them consistent and up to date with respect to the
changes in parameters. Additionally, this avoids the situa-
tions when a sizeable amount of work is invested only to
gain minor improvements in speed, due to runtime actually
being dominated by different code paths than anticipated.

We observed that the optimization algorithms are (unsur-
prisingly) sensitive to the precision of the evaluation of
the objective function and its gradient, and especially to
the consistency between the two. Therefore we rejected
using numerical approximations to the gradient, such as
values computed using the central differences formula,
and employed analytically derived expressions instead. We
have also found that better precision of the objective func-
tion leads to faster convergence. This particularly concerns
the accurate approximation of the exponential integral in
Eq. (10). In general, finding an efficient method to eval-
uate Ei(x), which is a crucial part of Eq. (10), poses a
significant computational challenge. However, high-quality
rational approximations exist in the literature (Cody and
Thacher 1969), which make it as fast as evaluating low-
order polynomials. In our implementation, we rely on the
approximations devised by John Maddock using a custom
Remez code, which are part of the Boost C++ library.1

These approximations are not only highly accurate, but also
the fastest that are available to us.

2.6.2 Parallelization and distribution

As the sweeping growth of the clock speeds in the last
couple of decades seems to have saturated, the focus is
increasingly shifting towards increasing parallelism, and
nowadays multicore CPUs are a de facto standard, rather
than rare marvels. Therefore, suitability for parallelization
is becoming a critical feature to discriminate the algorithms
that are appropriate for large-scale data analysis. In this

1http://www.boost.org

section we discuss the parallelization strategies applicable
to the model described above.

Owing to the separability of the problem, the highest
level approach to parallelize the execution of the optimiza-
tion is to launch several estimations for different neurons
in parallel. This results in a perfect scaling for Nt ≤ N ,
where Nt is the number of simultaneously executed hard-
ware threads. This is clearly a very attractive option due to
the relative simplicity of implementation, however, its prac-
tical applicability is limited by the amount of the available
memory per thread, which quickly becomes a bottleneck for
larger networks and bigger amounts of data.

A slightly lower-level method is to identify independent
elements in the formulae that need to be evaluated at every
step of the optimization, and divide this work among sev-
eral threads within one running process. The summands

of L�
i , L

∫

i , ∂�
ij and ∂

∫

ij as defined in Eqs. (7), (10), (12)
and (14) are all amenable to that kind of processing. This
approach is advantageous to utilize all usable threads from
within one process, but its scalability is limited by both
the amount of the available memory on a single compute
node (as above), and the serial part of the computations,
which cannot be parallelized. In our model, it is mainly
the calculation of the membrane potential Ui(t) (8) and the
membrane responses νij (t), because each value in the recur-
rence formulae depends on the previous one. The membrane
responses νij (t) are less of a problem, since they can be pre-
computed at the beginning of the optimization as explained
above, if one is willing to trade memory consumption for
performance. Alternatively, νij (t) can be computed in par-
allel, which can be faster than fetching the results from
memory for a very high number of threads and low memory
bandwidth.

We have also explored the possibility of distributing the
estimation across several compute nodes, which is not only
necessary in order to utilize larger numbers of threads than
available on one node, but also allows the computation to
make use of the additional memory when the problem gets
too large to fit into one machine’s RAM. The most straight-
forward distribution scheme is to designate one process
(rank) to perform serial computations required for every
optimization step, broadcast the results and parameters to
other ranks, have them do their share of the computations,
and, finally, collect the results. The biggest advantage of this
scheme lies in its ease of implementation: the communica-
tion pattern is very clear, and the code can largely remain
unchanged except for the need of a few additional functions
to distribute and collect the data.

In our implementation, we performed the calculation of
the membrane potential Ui(t), the log-likelihood function
Li and ∂Li/∂Ji0 on Rank 0, and evenly divided the work to
compute ∂Li/∂Jij , j ≥ 1, among all other ranks. This system
scales (almost) linearly up to the point when the amount of

http://www.boost.org
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time needed to perform the computations on Rank 0 exceeds
the amount of time it takes to compute the gradient dis-
tributed to all other ranks. Since it takes several orders of
magnitude more time to calculate Li than ∂Li/∂Jij , we have
found that for N = 1000 we can easily distribute each single
task up to Nr = 10 . . . 20 ranks.

For production estimations, we combined all three
approaches outlined above. The highest level of
parallelization was left up to the batch system: for each
estimation, we generated and submitted the job scripts for
every neuron and let the scheduler optimally backfill the
queue. The code was run with Nt = 8 . . . 16, depending
on the amount of hardware threads available per processor,
and Nr = 10 . . . 20, depending on the amount of available
memory per processor and the requirements of the partic-
ular estimations. For estimations of size N = 1000, this
hybrid approach allowed us to scale almost linearly up to
O(Nt × Nr × N = 105) cores.

In this context, it becomes clear why not only the con-
vexity, but also the separability property of the optimization
problem discussed in Section 2.2 is crucial to our model.
In a typical estimation, as described in Section 3, 1 hour
recording of N = 1000 neurons spiking at ∼ 5 s−1 would
contain ∼ 107 spikes, so the intermediary data to be held in
RAM during the optimization would need around ∼ 1014 =
10 × 107 × (103)2 bytes or 100 TB of storage capacity.
This calculation assumes that the main contribution comes
from the pre-computed matrix of νij (t) vectors of length 107

stored as doubles and disregards all other factors. From our
experience, for some Nr × Nt = 105 threads at ∼ 2 GHz
the optimization would take an order of magnitude of 30
minutes of walltime to converge after about a hundred of
iterations.

Currently, these requirements can be barely satisfied by
booking a complete supercomputer such as JUROPA,2 and
any substantial increase in the number of units, or in the
amount of data to be processed will put the problem beyond
our reach. However, while the number of parameters of the
complete log-likelihood function L in our formulation is
O(θ) ∼ N2, thanks to the above-mentioned separability
property, the number of parameters of Li is linear in the
number of units, O(θi) ∼ N . Not only does this present
major practical advantages such as easier scheduling of
smaller jobs, but it also makes it possible to solve larger
problems at all by proportionally trading the execution time
for the amount of resources allocated to the optimization
process.

2http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUROPA/JUROPA node.html

2.6.3 Technical realization

Our model was implemented in Python, an increasingly
popular language in the field of computational neuro-
science. It relies upon the NumPy and SciPy scientific
libraries3 for essential data structures and algorithms. We
used Cython4 in order to bind to the OpenMP-parallelized
computational kernels, that we extracted and re-wrote in
C++ for performance reasons, and in order to access the
mathematical functions from Boost C++ library. The distri-
bution was implemented using the Python bindings to MPI,
mpi4py.5

The optimization was performed via the NLopt6 pack-
age by Steven G. Johnson using the low-storage Broyden-
Fletcher-Goldfarb-Shanno method (Liu and Nocedal 1989)
with support for bound constraints (Byrd et al. 1995) imple-
mented by Ladislav Luksan (L-BFGS-B). We chose to use
BFGS instead of the nonlinear conjugate gradient (CG)
algorithm, because the former approximates the inverse
Hessian matrix of the problem and uses it to steer the
search in the parameter space. This results in improved
convergence at the cost of higher iteration overhead. Since
in our case the computation of the objective function is
substantially more expensive, this trade-off is worthwhile.

As a stopping condition, we used a criterion based on
the fractional tolerance of the objective function value. The
optimization was terminated if η = |L|/|L|, where L
is the decrease in the function value from one iteration to
next, reached the threshold of η̃. The value of η̃ was selected
close to the machine epsilon for the double precision float-
ing point type, as requesting even lower tolerance would
not yield a more accurate solution; the typical choice was
η̃ ≤ 10−15.

It is worth to note that in the case of 	1 regularized opti-
mizations, it turned out that all gradient-based algorithms
we tried were very much affected by the non-smoothness
at zero, introduced by the regularization term in Eq. (16).
A thorough review of the existing approaches to address
this issue is presented in (Schmidt et al. 2009); we opted
for implementing a smooth ε–	1 approximation, originally
suggested in Lee et al. (2006):

α

N∑

j=1
j �=i

|Jij | = α

N∑

j=1
j �=i

√
J 2

ij + ε, for ε → 0 . (17)

The derivatives of Li with respect to Jij (12) have to be

adjusted by addition of −αJij /
√

J 2
ij + ε respectively. We

3http://www.scipy.org
4http://cython.org
5http://mpi4py.scipy.org
6http://ab-initio.mit.edu/nlopt/

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.scipy.org
http://cython.org
http://mpi4py.scipy.org
http://ab-initio.mit.edu/nlopt/
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Fig. 2 Schematic representation of the method validation setting. A
test neural network is set up using known ground truth connectiv-
ity matrix (left panel) and its dynamics is numerically simulated. The
emerging spiking activity of the neurons (middle panel) is recorded

and fed into the reconstruction procedure. The resulting connectivity
matrix (right panel) is then compared to the original one to assess the
performance of the proposed technique. Insets show a zoom-in of the
connectivity matrix, as indicated

found that this approximation works well in practice for suf-
ficiently small values of ε < 10−7 and enables us to use
the L-BFGS-B algorithm without modifications. Addition-
ally, we imposed bound constraints on the model parameters
as discussed in Section 2.5; typical constraint ranges were
|Jij | < 50 mV for synaptic weights and 0.001 s−1 < ci <

100 s−1 for base rates. The recordings were truncated to the
first and last recorded spikes, T0 = t1 and T1 = tq , where q

is the total number of recorded spikes.

3 Results

We quantified the effectiveness of our suggested method by
performing a series of experiments as illustrated in Fig. 2.
In these experiments we simulated neuronal networks with
known (ground truth) connectivity, and reconstructed the
synaptic weight matrix along with the model parameters of
these networks on the basis of the recorded spike times. In
this way, estimation results could be readily compared to
the original connectivity matrix and model parameters. All
simulations presented in this section were carried out with
the NEural Simulation Tool (NEST) (Gewaltig and Dies-
mann 2007) and reconstructions were performed using the
CPU implementation of the MLE optimizer as described

Table 1 Glossary of abbreviations

EM expectation-maximization

GLM generalized linear model

GMM Gaussian mixture model

KDE kernel density estimation

LIF leaky integrate-and-fire

MER misclassification error rate

MLE maximum likelihood estimation

PDF probability density function

in Section 2. Although the connectivity is sparse in all
experiments considered below, we generally use MLE opti-
mization here; only in Section 3.3, which describes the most
difficult of the experiments, we also use regularization in
order to demonstrate that our computational framework can
handle regularized optimization.

In the following subsections, we present the benchmarks
of the proposed technique against simulations of a widely
used model of a random balanced network (Brunel 2000)
and investigate the effect of choosing different neuron and
synapse models, first with homogeneous and then with
randomly distributed parameters. Finally, we show a suc-
cessful reconstruction of a specific, non-random network, a
“synfire chain” embedded in a balanced random network,
only from “background” network activity (where the chain
was not stimulated). Finally, by stimulating the synfire chain
in a simulation of the estimated model, and comparing
resulting dynamics to the output of the original network,
we highlight the generative aspect of GLM network mod-
els. The abbreviations used in the following sections are
summarized in Table 1.

3.1 Random balanced network of GLM neurons

As an initial testbed for our method, we selected a ran-
dom balanced neural network of excitatory and inhibitory
neurons in the asynchronous irregular (AI) spiking regime
(Brunel 2000). Random networks do not have any particular
structural features that can be exploited by the optimizer in
order to improve the quality of the reconstruction, and hence
in this sense they represent a “worst-case” type of input
that is particularly useful for benchmarking purposes. Such
networks are commonly studied using the leaky integrate-
and-fire (LIF) neuron model. However, in order to be able to
interpret the follow-up experiments, we first chose to assess
the performance of our estimation method under idealized
conditions, in which the simulated and estimated neuron
and synapse models coincide: the GLM neuron model as
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described in Section 2 and simple synapses with exponential
post-synaptic potentials.

As discussed in Section 2.2, given several conditions that
our GLM satisfies, there is a unique maximum likelihood
parameter set for the estimated network model (Paninski
2004). In the limit of an infinite amount of spike data used
for model estimation and arbitrarily precise calculations, our
method is thus bound to recover the true parameters of the
simulated model. Hence, testing the method under idealized
conditions, but for finite datasets, allows us to distinguish
errors that are purely due to the limited length of the obser-
vations and restricted machine precision, from those due to a
mismatch between the dynamics of the neuron and synapse
models used to generate the data, and the dynamics of the
models used to reconstruct the network.

The test network consisted of N = 1000 GLM neurons
with 80 % : 20 % proportion of excitatory to inhibitory neu-
rons (“pp psc delta” model in NEST nomenclature, with a
base rate c = 5 s−1, membrane time constant of τ = 20 ms
and a resting potential of Vr = 0 mV). The nonlinearity
gain of the neurons was set to δu = 4 mV as in Jolivet
et al. (2006), which defines the scaling and units of a single
post-synaptic potential via Eq. (5) (δu = 1 as assumed pre-
viously in Section 2 for the sake of convenience would make
it unitless). Each connection was realized independently
with a connection probability of ε = 0.2 (Erdős-Rényi
p-graph). The neurons were connected by synapses with
exponential post-synaptic potentials with a peak amplitude
of Je = 1 mV for excitatory and Ji = −5 mV for inhibitory

synapses, and a transmission delay of d = 1.5 ms. A
strong inhibitory self-connection with Js = −25 mV and
a transmission delay of ds = t was used to model post-
spike effects. The simulation progressed in time steps of
t = 0.1 ms (resolution) and the simulation time was
T = 1 hour. The average firing rate of the neurons was
ν = 4.2 s−1. The recorded spike trains were fed to the
estimation method, assuming known values of the time con-
stant τ , the transmission delays d and the delay of the
self-connection ds. The method produced estimates of the
synaptic weight matrix Jij and the base rates {ci} for all neu-
rons. The original and reconstructed synaptic weight matrix
for this experiment are presented in Fig. 2. Throughout
this text we refer to {Jij }1≤i,j≤N, i �=j as the weight matrix;
the self-connections {Jii}1≤i≤N and the baseline potentials
{Ji0}1≤i≤N are treated separately.

In order to evaluate the quality of the reconstruction, we
analyzed the resulting distributions of recovered synaptic
weights and base rates, as shown in Fig. 3. Whereas the
probability density function (PDF) of the original distribu-
tion of synaptic weights can be described as a sum of three
δ-functions (for excitatory, inhibitory and null connections
respectively), the peaks in the reconstructed distribution are
broader due to the finite duration of the recording and lim-
ited machine precision, to the extent that for realistic values
of parameters, there is a degree of overlap between the
components of the distributions that represent excitatory
and null connections. We noted that the amplitude of the
noise that causes the broadening decreases approximately

Fig. 3 Reconstruction of a random balanced network of GLM neu-
rons. The reconstruction was performed for τ = 20 ms, d = 1.5 ms
and ds = 0.1 ms. a Gaussian Mixture Model fit for the probabil-
ity density function of the elements of the reconstructed synaptic
weight matrix J (black solid curve) and individual components con-
tributed by excitatory (red solid curve, 〈Je〉 = 1.004 mV), inhibitory
(blue solid curve, 〈Ji〉 = −5.023 mV) and null (green solid curve,
〈JØ〉 = −0.002 mV) connections. For comparison, we plot as his-
tograms of n = 200 bins the distributions of the reconstructed
synaptic weights, partitioned into three classes and colored according
to whether the corresponding entry in the ground truth connectivity

matrix was JØ = 0 mV (unconnected; green), Je = 1 mV (excitatory;
red) or Ji = −5 mV (inhibitory; blue). A perfect reconstruction would
result in delta peaks at the three synaptic strength values of the original
connectivity matrix, marked with red, blue and green dashed vertical
lines. The scale of the vertical axis is logarithmic, except for the first
decade, which is in linear scale. b, c Distributions of the identified base
rates of the neurons and weights of the self-connections approximated
with histograms and Gaussian KDEs. Black dashed vertical lines mark
the ground truth values which should have been recovered (c = 5 s−1

and Js = −25 mV respectively)
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in inverse proportion to the square root of the duration
of the recording (data not shown), however, we selected
T = 1 hour as a reasonable standard amount of input data
to mimic conditions where the duration of the recording is
limited due to experimental and computational constraints.

This circumstance thus makes it difficult to identify
weak excitatory connections unambiguously, and there-
fore an advanced approach to classification was needed
to obtain optimal network reconstruction. To this end, we
fitted a Gaussian mixture model (GMM) with a fixed num-
ber of components (n = 3) to the reconstructed synaptic
weights, assuming that synaptic connections, in general,
can be either excitatory or inhibitory, or absent. We used
an expectation-maximization (EM) algorithm to obtain a
maximum likelihood estimate (MLE) of the GMM parame-
ters (mixing weights, means and variances of the individual
components), and classified the synaptic weights accord-
ingly. The fitting and classification was performed using
a Python implementation of GMM (sklearn.mixture.GMM)
provided by the scikit-learn toolkit (Pedregosa et al. 2011).
In order to reconstruct the PDFs of the base rates and self-
connections, we used both the histogram function from the
NumPy library and the Gaussian kernel density estimation
(KDE) code from the SciPy library.

The results are illustrated in Fig. 3, which shows that
the means of the distributions were almost perfectly recon-
structed and that GMM is indeed an appropriate model
for this PDF. The recovered base rates and self-connection
weights are also more or less in agreement with the ground
truth values. The detailed classification performance break-
down is presented in Table 2, showing that the classification
of synaptic connections is nearly optimal for this dataset
(assuming that the cost of making a “false positive” error
is equal to the cost of the “false negative” error) and the
number of misclassified connections is less than 1%.

Table 2 Breakdown of classification errors for the GLM random
network

Connection type Errors FP FN ND

Excitatory 7 300 62 % 38 % 15 %

Inhibitory 0

Unconnected 7 300 38 % 62 % —

Total errors 0.73 %

The column “Errors” shows the absolute number of incorrectly classi-
fied connections belonging to each class. The columns “FP” and “FN”
show the percentage of false positives and false negatives of this num-
ber accordingly. The column “ND” is the percentage of misclassified
connections in violation of the Dale’s law (i.e. an inhibitory neuron is
assigned an outgoing excitatory connection, or vice versa), which was
not enforced for this reconstruction. The last row shows the percentage
of erroneously classified connections of the total number of possible
connections (N2 = 106 for N = 1000)

3.2 Random balanced network of LIF neurons

Having established the baseline performance in ideal con-
ditions, we designed our next experiment to gauge the
influence of mismatch between the neuron and synapse
models used to generate the data and those used to recon-
struct the network. To this end, we generated data with
the commonly used, more complex and realistic LIF neu-
ron model with α-shaped post-synaptic currents (PSCs). We
then carried out the reconstruction as before assuming our
simplified GLM neuron model and synapses with exponen-
tial post-synaptic potentials. Another important point is that
whereas in the previous experiment we assumed that the
membrane time constant τ and transmission delays between
the neurons d are known in advance, this is certainly not the
case in the laboratory setting, and hence a principled way of
estimating these parameters is required in order to analyze
real physiological data.

To generate the test data, we wired a network similar
to the one described in the previous section, but using a
LIF instead of a GLM neuron model. As before, we used
N = 1000 neurons with 80 % : 20 % ratio of excita-
tory to inhibitory cells, connection probability of ε = 0.2
(each connection was realized independently), transmis-
sion delay of d = 1.5 ms, simulation resolution of t =
0.1 ms. Synaptic weights were set to Ĵe/i = Je/i × w,
with Je = 1 mV and Ji = −5 mV. The latter (Je and
Ji) were again interpreted as peak PSP amplitudes, where
w = w(τm, τs, C) was the scaling factor (specific to the
post-synaptic neuron) selected such that an incoming spike
passing through a connection with the synaptic weight of
w would evoke a PSP with the maximum amplitude of
1 mV. The parameters of the LIF model (“iaf psc alpha”
in NEST nomenclature) were chosen as follows: mem-
brane capacitance C = 250 pF, membrane time constant
τm = 20 ms, synaptic time constant τs = 0.5 ms, refrac-
tory time tr = 2 ms, firing threshold θ = 20 mV, resting
potential Vr = 0 mV and reset to Vr after each spike.
This time, additional to the synaptic input from other sim-
ulated neurons, each neuron received independent Poisson
process excitatory inputs at a rate of νe = 1779 s−1 and
inhibitory inputs at νi = 0.2 × νe = 356 s−1. These
external inputs represent the influence of neurons that are
not part of the simulation, and are necessary to achieve
asynchronous and irregular activity as in cortical networks
(Brunel 2000). The simulation time was set to T = 2 hours
and the data was cut into training and validation parts of
Tt = Tv = 1 hour as explained below. The average neuron
firing rate was ν = 4.2 s−1, and so matched the aver-
age neuron firing rate of the network of the GLM neurons
presented above.

In order to recover the GLM parameters τ and d for
this experiment, we applied a cross-validation procedure.
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It is important to note that we are not expecting to obtain
exactly τ = τm = 20 ms and d = 1.5 ms due to mis-
match between the LIF with α-shaped PSCs and GLM with
exponential PSPs models. Instead, we want to recover the
optimal parameters τ and d for the GLM model to produce
most similar dynamics to the recorded spike trains from
the LIF model. We split the available data into a training
and a validation dataset, and performed reconstructions for
a subset of Ns = 75 neurons on the training dataset vary-
ing one parameter, while keeping the other one fixed. The
resulting parameter estimates θi were then used to calcu-
late the log-likelihood function Li on the validation dataset.
Two different datasets (training and validation) were used
in order to ensure that the chosen values of the parameters
generalize, and are not specific to the training sample. The
validation curves are shown in Fig. 4a, c (the curves for
the training dataset look identical); note that they all have
an easily identifiable maximum. Subsequently, we averaged
the locations of the maxima for all trials and performed
another cross-validation run (Fig. 4d, b) for updated values
of the parameters. Repeating this procedure of alternatively
fixing one parameter and performing cross-validation for
another one would lead us to a local extremum in the (τ, d)

parameter space. However, we opted to stop after only a few
iterations because the procedure is computationally expen-
sive, and in order to asses if a sub-optimal choice of τ =
10 ms and d = 1.7 ms would lead to acceptable estimation
results.

After determining τ = 10 ms and d = 1.7 ms through
the cross-validation procedure, we used these values to esti-
mate the connectivity and base rates. The results of the
connectivity reconstruction on the training dataset were pro-
cessed in the same way as in the previous subsection and
are presented in Fig. 5, with further details on the classifi-
cation of synaptic connections in Table 3. We find that the
reconstruction quality as defined by classification into the
groups of excitatory, inhibitory and null connections closely
matches the performance on the ideal dataset analyzed in
the previous section, despite the mismatch in models and
the suboptimal choice of τ and d . Note that in this exper-
iment, the recovered values of synaptic weights in mV
cannot be compared directly to the ones that were used in the
simulation which produced the data due to the differences
between GLM and LIF models, unlike in the first experi-
ment described in Section 3.1. However, this does not matter
for the purposes of classification.

3.3 Random balanced network with distributed
parameters

To make the reconstruction task more challenging and to
create a more realistic benchmark for our method, we
amended the network described in the previous subsection
to have different parameters Je, Ji, d , τm and τs for every
neuron and synaptic connection, sampled from uniform dis-
tributions around each respective mean value (Table 4),

Fig. 4 Cross-validation for the membrane time constant τ and trans-
mission delay d. Log-likelihood L computed on the validation dataset,
using parameters estimated from the training dataset for different
values of parameters τ and d. For each trial, L has been rescaled
according to L ← (L− maxL) × 10−3. The red star marks the aver-
age of the horizontal location of the peaks of all curves in the plot.

Each panel shows Ns = 75 parameter scans for Ne = 60 excitatory
and Ni = 15 inhibitory neurons, randomly selected from the complete
recording of N = 1000 neurons. a, b Cross-validation for τ using
fixed values of d = 1.5 ms (standard deviation σ = 1.14 ms) and
d = 1.7 ms (σ = 1.02 ms). c, d Cross-validation for d using fixed
values of τ = 20 ms (σ = 0.04ms) and τ = 10 ms (σ = 0.01 ms)
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Fig. 5 Reconstruction of a random balanced network of LIF neu-
rons with α-shaped PSCs. The reconstruction was performed for
τ = 10 ms, d = 1.7 ms (obtained through cross-validation) and
ds = 0.1 ms. a GMM fit for the PDF of the reconstructed synaptic
weight matrix (black solid curve) and individual components (colored
solid lines); colored bars under the curves show the distributions of

the reconstructed synaptic weights classified using the ground truth
synaptic connectivity matrix as in Fig. 3, approximated as histograms
of n = 200 bins. The scale of the vertical axis is logarithmic, except for
the first decade, which is in linear scale. b, c Histograms and Gaussian
KDEs approximating the PDFs of the base rates and self-connection
weights

which are the same as in the previous experiment. How-
ever, instead of trying to recover the individual values of
τi for each neuron and di for every connection, we decided
to investigate whether it would be still possible to make
a useful reconstruction assuming identical “mean” values
of τ for all neurons and d for all connections. Additional
motivation for this choice is in that cross-validation is
a computationally expensive procedure: whereas individ-
ual estimation might converge in a matter of minutes, the
amount of resources needed to scan a multidimensional
parameter grid grows quickly and becomes unmanageable.
Therefore, we performed cross-validation on a subset of
neurons as described in the previous subsection, and settled
for τ = 10 ms and d = 1.7 ms again (data not shown).

The estimation results for this dataset are shown in Fig. 6
and Table 5 (left panel and left part of the table respec-
tively). The PDFs of the reconstructed synaptic weights
were approximated using Gaussian KDE. Obviously, the
individual components of the PDF were distorted, because
instead of using optimal values for τi and di, we used rather
arbitrarily chosen fixed values for all neurons and connec-
tions. However, more importantly, as the components of the

Table 3 Breakdown of classification errors for the LIF random net-
work with α-shaped PSCs

Connection type Errors FP FN ND

Excitatory 7 020 58 % 42 % 10 %

Inhibitory 2 100 % 0 % 100 %

Unconnected 7 022 42 % 58 % —

Total errors 0.70 %

The meaning of the abbreviations is the same as in Table 2

original PDF of synaptic weights were broad distributions
rather than δ-functions, the resulting recovered distribution
components are strongly non-Gaussian. Therefore, in this
case the EM procedure for GMM fails to converge to rea-
sonable means and variances, and is no longer a viable
choice to perform the classification of connections.

However, instead of engaging in more elaborate statisti-
cal modeling to overcome this difficulty, we can take a step
back and resort to an unsupervised learning technique called
k-means clustering (which is actually a simplification of
GMM). This method rejects the probabilistic assignment of
data points to components, and instead makes the assump-
tion that each point belongs to one (and only one) cluster, to
the centroid of which it is closest in terms of Euclidean dis-
tance. This simplification leads to sub-optimal classification

Table 4 Distribution of parameter values of a random balanced
network of LIF neurons

Parameter Symbol Range Spread

Excitatory weight Je 0.8 . . . 1.2 mV ±20 %

Inhibitory weight Ji −4 . . . − 6 mV ±20 %

Transmission delay d 1 . . . 2 ms ±33 %

Membrane time constant τm 15 . . . 25 ms ±25 %

Synaptic time constant τs 0.3 . . . 0.7 ms ±40 %

All parameters except for d were sampled from continuous uniform
distributions limited by the values in the table. The transmission delay
d was sampled from a discrete distribution with the step equal to the
simulation resolution t = 0.1 ms. Note that the synaptic scaling
factor w depends on τm and τs of the post-synaptic neuron, and, there-
fore, the distributions for Ĵe and Ĵi (“ground truth weights”) were not
uniform
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Fig. 6 Unregularized and 	1-regularized reconstruction of a random
balanced network of LIF neurons with α-shaped PSCs and distributed
parameters. The colored solid step lines show PDFs approximated with
histograms of n = 200 bins of the reconstructed synaptic weights cor-
responding to the classification via k-means clustering. Vertical lines

demarking the boundaries between distributions designate the points
that are equidistant from the identified centroids. The colored bars
under the curves represent PDFs estimated by histograms of n = 200
bins, classified using the ground truth connectivity matrix, as in Figs. 3
and 5

when the underlying distributions violate these constraints,
but the resulting algorithm is fast and robust.

The Voronoi diagrams for k-means classification are rep-
resented in Fig. 6 as solid lines: the colors show which of
the three centroids is closest, in blue, green and red for
inhibitory, null and excitatory connections, respectively. By
comparing the solid curves and envelope of the colored
bars it can be seen that in this case there is a significant
overlap between the components contributed by null con-
nections and excitatory connections. Therefore, even the
most advanced classification strategies will lead to a sub-
stantially higher amount of classification errors than in the
previous experiments. The classification data using k-means
is given in Table 5 (left part).

Nevertheless, the situation can still be considerably
improved: here, we exploited the sparsity of the synaptic
connection matrix by regularizing the GLM estimation with
a 	1 penalty term as explained in Section 2.5. Imposing such
a prior on the estimation causes shrinking of the distribution
of null connections (Tibshirani 1996) and thus enables bet-
ter separation between the components. However, the choice
of the penalty scaling constant α is arbitrary and so we
again availed ourselves of a cross-validation procedure to
determine the optimal value for our dataset.

The results of the reconstruction for a subset of the
recorded neurons with different values of α on the training
dataset are shown in the left panel of Fig. 7. The right panel
depicts the subsequent evaluation of the log-likelihood func-
tion on the validation dataset. It is important to note that,
for optimal results, this procedure should generally be per-
formed for all neurons, and an individual regularization
coefficient should be selected for each of the cells. Instead,
in order to save computational resources, we only performed
it for a subpopulation of neurons and subsequently selected
the same value of α = 10 for all cells, which is slightly
lower than the average, to prevent excessive connection
pruning in neurons with small optimal α.

We performed a full 	1-regularized GLM estimation
using α = 10, still fixing the parameters to τ = 10 ms
and d = 1.7 ms, the results of which are presented in
Fig. 6, right panel and Table 5, right part. The plot shows
that the contribution by null connections indeed shrunk sig-
nificantly, and thus the amount of classification errors was
decreased almost by half. At the same time, for some neu-
rons α = 10 turned out to be too strong of a regularization
factor, and thus the estimator, in an overzealous attempt to
find a sparse solution, set to zero some of the weaker exci-
tatory and inhibitory synapse weights. This can be seen as

Table 5 Breakdown of the classification errors for the unregularized and 	1-regularized (α = 10) connectivity estimations of a LIF random
network with distributed parameters

Unregularized Regularized, α = 10

Connection type Errors FP FN ND Errors FP FN ND

Excitatory 57 827 84 % 16 % 17 % 33 706 16 % 84 % 3 %

Inhibitory 2 226 95 % 5 % 79 % 2 673 0 % 100 % 0 %

Unconnected 59 749 16 % 84 % — 36 379 85 % 15 % —

Total errors 5.99 % 3.64 %

The categories of errors are the same as in Table 2
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Fig. 7 Cross-validation for the 	1 regularization coefficient α for
fixed values of τ = 10 ms and d = 1.7 ms. Each panel shows Ns = 75
parameter scans for Ne = 60 excitatory and Ni = 15 inhibitory neu-
rons randomly selected from the complete recording of N = 1000
neurons. a The values of the rescaled log-likelihood L as a function of

the 	1 regularization coefficient α computed on the training dataset. b
Log-likelihood L as a function of α computed on the validation dataset
using the parameters estimated from the training dataset. The red star
marks the average of the horizontal location of the peaks of all curves
in the plot

a secondary peak of the red distribution at the origin. A
secondary peak of the blue distribution is also present, but
scarcely visible due to scale.

3.4 Synfire chain embedded in a random balanced
network

3.4.1 Construction of the network model

In this experiment, we turned to structured networks in
order to highlight the generative aspects of the proposed
GLM model and demonstrate a potential approach to the
interpretation of the recovered connectivity. One specific
structure of interest, prominent in the context of cortical net-
works, is called a “synfire chain” (Abeles 1982). The synfire
chain, consisting of consecutively linked and synchronously
activated groups of neurons, is a thoroughly studied model
of signal propagation in the cortex (Diesmann et al. 1999;
Goedeke and Diesmann 2008).

We built a simulation of a random balanced network
with an embedded synfire chain, simulated the dynamics
of this network and recorded its spiking activity, which we
then used as input data for the MLE procedure to infer
the parameters of our GLM (no regularization was applied
in this experiment, unlike in the last case presented in
Section 3.3). However, as would be the case with the exper-
imental recordings, we did not assume that we know the
“right” ordering of the neuron identifiers. We therefore sub-
jected the recovered connectivity to a clustering process in
order to reveal the trace of the synfire chain in the con-
nection matrix. After identifying the synfire chain in the
network, we performed a simulation where we stimulated
the discovered first “link” of the chain in the original and
reconstructed networks, and observed identical dynamics in
both cases.

Similarly to the previous experiments, we first con-
structed a random balanced network of LIF neurons (N =
1000) with 80 % : 20 % proportion of excitatory to

inhibitory cells. This time, we used “iaf psc delta canon”
model in NEST nomenclature; this model is different from
the standard “iaf psc delta” and “iaf psc alpha” LIF neu-
rons in that the points in time when it emits spikes are
not tied to the grid defined by the simulation resolution,
but rather are recorded precisely as they occur (Morrison
et al. 2007; Hanuschkin et al. 2010). Correspondingly, for
the external inputs, we employed the continuous time ver-
sion of the Poisson generator “poisson generator ps”. Since
this network model works in continuous time and does
not require discretization or binning of the spike data, we
wanted to examine the implications of feeding the precise
spike times to the MLE of the GLM, as opposed to data
binned to t = 0.1 ms simulation resolution as in the
previous experiments. The model parameters were fixed to
τm = 20 ms, τr = 2 ms, θ = 20 mV, and Vr = 0 mV.
Each neuron was set to receive a fixed number of incoming
connections (Me = 80 excitatory and Mi = 20 inhibitory),
where the pre-synaptic neurons were randomly selected
(without replacement) from the excitatory and inhibitory
populations respectively (implemented as “RandomConver-
gentConnect” function in NEST). Synaptic weights were set
to Je = 0.9 mV for excitatory, Ji = −4.5 mV for inhibitory
connections with a transmission delay of d = 1.5 ms. Addi-
tional independent Poisson process excitatory inputs were
supplied at νe = 2222 s−1 and inhibitory inputs at νi =
0.25 × νe = 556 s−1.

On top of this “background” network, we selected Nl =
10 groups (links) of N∝ = 50 neurons each (N∝

e = 40
excitatory and N∝

i = 10 inhibitory cells) and connected all
N∝

e excitatory neurons of every group to each of the N∝
neurons in the next group with J∝

e = 1.4 mV excitatory
synapses (transmission delay d = 1.5 ms). Inhibitory neu-
rons in a link of the chain do not have specific connections to
the next link in the chain (Hayon et al. 2004). No neuron in
the network was part of more than one group of the synfire
chain. This way, we created a “hidden” embedded synfire
chain, which receives inputs from the background random
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network and likewise projects outgoing connections to the
background network. When the first group of this structure
is stimulated in a coordinated fashion, the chain reliably
propagates the excitation from one group to the next until it
reaches the last one, and terminates. In the absence of such
coordinated stimulation, the synfire chain did not activate,
and only “background” activity was observed.

3.4.2 Identification of the synfire chain by connectivity
clustering

The complete network was simulated for T = 2 hours
of biological time and exhibited an average firing rate of
ν = 1.4 s−1. The synfire chain was not stimulated dur-
ing the simulation, so the spike train recordings contained
no instances of propagating synfire activity. The neuron
identifiers were randomly shuffled and the resulting spike
raster was fed into the MLE reconstruction procedure.

We reasoned that one of the most generic differentia-
tors between the neurons that belong to various groups
(inhibitory neurons and excitatory neurons that are, or are
not part of the synfire chain) is the relative strengths of the
synapses (both incoming and outgoing connections can be
considered). Therefore, we can apply a clustering algorithm
to the recovered connectivity matrix to discern between sev-
eral classes of neurons. However, most algorithms (such
as k-means or GMM, employed in the previous sections)
require the desired number of clusters to be set explicitly,
either through prior knowledge, or by applying statistical or
information theory methods to the data to get an estimation.

To circumvent this problem, we carried out an unsuper-
vised learning technique known as hierarchical clustering.
It amounts to iteratively repeating the procedure of looking
at the discovered clusters (which, in the first step, each con-
tain a single element), determining the ones that are most

similar according to a chosen metric, and merging them into
an agglomerate cluster; the process continues until a single
cluster remains. The results are visualized by constructing a
so-called “dendrogram”, which shows the discovered hier-
archy of clusters as a tree structure. Therefore, it is not
necessary to specify the number of clusters in advance, but
rather the most appropriate set of clusters can be selected
by analyzing the dendrogram after performing the cluster-
ing. This approach fits very well to an exploratory setting,
where one might wish to appreciate the entirety of possible
groupings in a compact graphical form and then choose the
one that best highlights the particular aspect of interest of
the data.

We applied hierarchical clustering to the connectivity
matrix using Ward’s minimum variance method (Ward
1963) as a criterion for choosing the pair of clusters to
merge at each step. Ward’s minimum variance criterion
minimizes the total within-cluster variance and enables the
grouping of items into sets such that they are maximally
similar to each other according to some definition of simi-
larity, which is usually expressed in form of a “dissimilarity
matrix”. We used the SciPy hierarchical clustering package
(scipy.cluster.hierarchy) to obtain the linkage and visualize
the results.

Initially, we grouped the neurons by using the outgoing
synaptic weights as the measure of dissimilarity, as shown
for the MLE-reconstructed connectivity in Fig. 8a. This
clustering enabled us to tell excitatory and inhibitory neu-
rons apart (smaller blueish group on the left, and larger
reddish group on the right of the matrix). Additionally, in
this figure, we can see eight big red squares, which represent
the links of the synfire chain. In total, nine squares should be
visible in the connectivity matrix for Nl = 10 links, because
the outgoing connections of the last link are not statistically
different from those of the background neurons.

Fig. 8 Clustering of synaptic weights uncovers the synfire chain in
the reconstructed connectivity matrix. a Connectivity is first clustered
by the outgoing connections (columns), while trying to achieve min-
imal variability inside each group. The dendrogram at the top of the
panel shows the hierarchy of the clusters with the relevant groups high-
lighted in different colors. The green cluster on the left is formed by
the inhibitory neurons. The yellow cluster at the right consists of exci-
tatory neurons that are not part of the synfire chain and so do not

have strong outgoing connections. The clusters in the middle corre-
spond to the links of the synfire chain, which coalesce as red squares
in the matrix. b Clustering by incoming connections (rows) inside the
yellow cluster of neurons reveals the last link of the chain. c Cluster-
ing by incoming connections inside the green cluster helps to identify
the inhibitory neurons that are part of the synfire chain (thin red
rectangles)
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The square missing from Fig. 8a is the last link of the
chain, which by construction cannot be detected via clus-
tering by the outgoing connections. Therefore, we subjected
the neurons that are part of the big yellow cluster (excitatory
neurons, which have not been previously identified as taking
part in any of the synfire chain links) to additional clus-
tering by incoming connections. This operation reveals the
formerly concealed last link of the chain (Fig. 8b). Finally,
we applied the same procedure to the inhibitory neurons in

the big green cluster. This reveals the inhibitory neurons that
are part of the synfire chain. These neurons receive connec-
tions from the previous link in the chain but do not send
outgoing projections to the next links, and so they are also
impossible to detect by clustering only by outgoing connec-
tions. This step completes the clustering procedure and we
arrive at the final result as shown in Fig. 8c.

In Fig. 9, the clustered matrices (middle column) are con-
trasted with the matrices in randomized (left column) and

Fig. 9 Identification of an embedded synfire chain by clustering con-
nectivity estimated from “background” spiking activity. The grouping
by rows delineates the panels produced on the basis of the ground truth
connectivity, connections estimated using the GLM model, and lagged
cross-correlation data. The grouping by columns lays out the panels
presenting the connectivity matrices where the order of the neuron
identifiers have been randomized, recovered by clustering and defined
by the sequence in which the neurons were originally wired up. a, d,
g Ground truth and MLE reconstructed synaptic weights, as well as
lagged cross-correlation coefficient matrices for randomized neuron
identifier order. c, f The red rectangles correspond to the connections
from one chain link to the next. Thin blue bands identify inhibitory
neurons that belong to the synfire chain. The wide blue band cor-
responds to the inhibitory neurons that are not part of the chain. b,

e The interpretation of the bigger red rectangles and the wide blue
band is the same as above, except that all inhibitory neurons are now
grouped together. The thin red rectangles at the bottom correspond to
the groups of inhibitory neurons in the synfire chain receiving incom-
ing connections from all excitatory neurons in the previous link. The
clustering process that produced the reordering and the dendrograms
is illustrated in steps in Fig. 8. g, h, i The lagged cross-correlation
matrix is symmetric by construction. Therefore, the dendrograms at
the top and on the right of panel h are identical (unlike b, e). Diagonal
entries (all 1) were excluded here. h, i The red rectangles correspond
to groups of neurons that exhibit positively correlated firing activity,
while inhibitory neurons display negative correlation, marked by the
blue bands
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original ordering (right column), i.e. the initial indexing of
neurons that we used to define the neuron groups of the
synfire chain network. An identical clustering proce-
dure was applied to the ground truth connectivity matrix
(Fig. 9a–c) and the one obtained from MLE estimation
using the recorded spike trains (Fig. 9d–f). Note that, as
explained at the end of Section 3.2, the reconstructed values
of the synaptic weights in the second row cannot be directly
compared to the original synaptic strengths.

The synfire chain is not apparent in the connectiv-
ity matrix in randomized ordering, neither for the ground
truth matrix (Fig. 9a), nor the MLE-estimated connectivity
(Fig. 9d). However, clustering neurons by the similarity of
incoming and outgoing connection weights reveals the syn-
fire chain substructure (Fig. 9b, e) of both excitatory and
inhibitory neurons. This shows that our clustering proce-
dure successfully recovers the group structure of the synfire
chain network. Note that in the original ordering (Fig. 9f),
the reconstructed matrix also resembles the ground truth
matrix to a great extent (Fig. 9c), as expected based on our
previous reconstruction experiments above.

3.4.3 Comparison to correlation-based connectivity
estimation

In order to compare the results obtained using our GLM
method with a well-established reference, we also per-
formed lagged cross-correlation analysis on the same
dataset. We computed the cross-correlation curves ρij (τ )

for all pairs of neurons with a bin size of  = 10 ms and
a maximum time lag of τmax = ±200 ms. The normal-
ized Pearson cross-correlation coefficient for a stationary
ergodic point process for sufficiently large number of sam-
pled bins K is defined as follows (Shao and Chen 1987):

ρij (τ ) =

K∑

k=0
S̃i (k)S̃j (k + τ) − NiNjK

−1

√
(
Ni − N2

i K−1
) (

Nj − N2
j K−1

) .

Here, S̃i (t) and S̃j (t) are binned spike trains of neurons
i and j (both K-bins long), whereas Ni and Nj are the
total numbers of spikes of the respective neurons. For
each ρ(τ) curve, we found the absolute extrema τ

ij

peak =
argmaxτ (|ρij (τ )|) and represented the results as a matrix

of lagged cross-correlation coefficients J̃ij = ρij (τ
ij

peak),
shown in Fig. 9g–i.

We performed clustering on the J̃ij matrix as previ-
ously described, however, we had to limit ourselves to
the first step only, because the cross-correlation matrix
is symmetric by construction. The matrix shows similar
patterns to the ground truth and MLE connectivity matri-
ces, albeit with substantially lower contrast. Additionally,

the direction of the synfire chain cannot be detected, due
to the symmetry of the measure mentioned above. More-
over, the individual values of the correlation matrix are
difficult to directly relate to the experimental quantities
and/or model parameters, because the correlation matrix
alone does not constitute a generative model, as we discuss
below.

3.4.4 Simulation of original and reconstructed synfire
chain networks

Finally, we compared the dynamics of the original and
reconstructed network in simulation, including occasional
stimulation of the first group of the synfire chain. In both
networks, we can identify the order of the groups of the
chain by following the links backwards starting from the
last link identified in Fig. 8b. Note that the identification
of the last link is not determined by the clustering algo-
rithm but simply by membership of the neurons as pre- and
post-synaptic partners in the strong connections represented
as red boxes in the clustered connectivity matrix. Neurons
in the last link occur just as post-synaptic targets; there is
no red box in which they occur as pre-synaptic sources.
Conversely the neurons of the first link only occur as pre-
synaptic sources. Thus the chain can be unrolled from either
end by analogous processes.

The simulation of the reconstructed GLM network was
carried out in NEST using “pp psc delta” neurons and the
recovered connectivity matrix. In order to avoid the neces-
sity of fine-tuning the parameters of the stimulation, we
additionally included a reset of the membrane potential
Ui(t) ← 0 after spike emission (option “with reset” in the
“pp psc delta” model, enabled for all neurons), which pre-
vents runaway excitation of the neurons in the network upon
delivering a strong stimulus to the synfire chain.

The results of this experiment are displayed in Fig. 10.
We used the order of the neuron identifiers in which the
cells were originally wired up to permit a clear visualiza-
tion of the activity. The raster plots show that the dynamics
of the spike patterns of ground truth and estimated network
are very similar. Generally, an estimate of a GLM based on
recorded spike trains is a generative model of the data, in
the sense that, if itself simulated, will produce similar data;
Fig. 10 demonstrates this using our embedded synfire chain
example.

4 Discussion

In the present work, we introduce a method for analysis
of parallel spike trains based upon maximum likelihood
estimation of parameters of a recurrent network of stochas-
tic generalized linear model neurons. The method not only
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Fig. 10 Synfire dynamics of the original and reconstructed networks.
The first links in the synfire chains in both original and reconstructed
network were stimulated (by injection of a strong input current) at

250 ms and 750 ms. The stimulation was performed using a large cur-
rent pulse injection into all neurons of the first link. a Original network.
b Reconstructed network

makes it possible to perform large-scale reconstruction of
the directed synaptic connectivity of neuronal circuits, but
also to recover neuronal parameters, which can be used
to obtain a dynamic (i.e. simulatable) model of the net-
work under investigation. Through radical simplification of
the single neuron model and interaction kernels as com-
pared to previous studies (Song et al. 2013; Citi et al.
2014; Ramirez and Paninski 2014), the numerics in our
method lend themselves to an efficient implementation on
both CPUs and GPUs. Moreover, the estimation procedure
is highly amenable to parallelization, which makes it possi-
ble to scale up the number of units and putative connections
dramatically.

The proposed estimation procedure operates in continu-
ous time on precise timestamps of the events (spikes), and
does not require discretization, binning or smoothing of the
data, which avoids the associated choice of bin or kernel size
and induced artifacts (Ba et al. 2014). Additionally, unlike
pairwise methods such as the coupled escape rate model
(CERM) by Kobayashi and Kitano (2013), the reconstruc-
tion takes into account the complete ensemble spike history
and thus is able to disambiguate complex indirect neural
interactions. Other recently proposed connectivity recon-
struction methods, not based on GLMs, exploit specific
properties of leaky integrate-and-fire neurons (Van Bussel
et al. 2011; Memmesheimer et al. 2014) or of linearly inter-
acting point processes (Pernice and Rotter 2013). While
this might be less clear for these methods, our procedure,
since it is a MLE of a GLM, can be shown to have the
optimality properties of becoming an asymptotically unbi-
ased, consistent and efficient estimator of the ground truth
connectivity in the limit of large sample sizes (Pawitan
2001) (provided that the suggested model is appropriate to
describe neuronal dynamics). Moreover, it is amenable to
efficient optimization via gradient ascent, since it is mathe-
matically guaranteed to converge to the global maximum of
the likelihood.

We present benchmarks against simulated random bal-
anced networks of N = 1000 neurons with known ground
truth connectivity, and show that our method achieves good
performance for realistic model parameters and plausible
amounts of data. Additionally, we performed a success-
ful reconstruction of a structured network, where a synfire
chain was embedded in a balanced network of excitatory
and inhibitory neurons. The simulation of the reconstructed
network with stimulation applied to the first link of the
synfire chain, which was identified by carrying out cluster
analysis of the recovered synaptic connectivity matrix, high-
lighted the generative properties of the GLM and showed
virtually identical network dynamics to the original net-
work. The application of cluster analysis to the recon-
structed connectivity of the synfire chain is an example of
how an inferred network model can be subdivided into inter-
acting populations of neurons. Given such a partition of the
network in functional subgroups, the activity dynamics can
be analyzed using theory of population dynamics of GLM
neurons (Deger et al. 2014).

Ideally our approach would also be validated against
experimental data. Unfortunately, no datasets are currently
available that contain long recordings of many individual
spike trains and also the connectivity between the neurons.
Indeed, generating such a dataset, although now technically
possible, for example, using a high density microelectrode
array setup (Ballini et al. 2013), would require extraordinary
investment from an experimental laboratory. It is therefore
more realistic to hope that the experimental validation of our
technique can take place opportunistically on a dataset that
is obtained for some other purpose.

In spite of the apparent simplicity of our model, the
point process GLM framework that we used is very flex-
ible and can be readily extended with additional features.
The exponential kernels that we chose to describe the
membrane filtering and nonlinear properties of the neurons
can be replaced with more elaborate ones. For instance,
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previous works have represented neuronal interaction ker-
nels by cosine “bumps” (Pillow et al. 2005), or composition
of basis functions, such as Laguerre polynomials or B-
splines (Song et al. 2013). However, in order to enable the
reconstruction of networks of thousands of units, the key
is to use functions that can both guarantee the concavity of
the likelihood, as discussed in Paninski (2004), and at the
same time make it possible to find analytical closed forms
for the resulting expressions to enable efficient evaluation.
These considerations, and the notion that the exponential
PSP is a coarse first-order approximation to the dynamics
of synaptic transmission, were the primary motivations for
us to adopt the exponential kernels in this work. However,
in Section 3.2 we have demonstrated that this simplifica-
tion does not affect the reconstruction performance for the
data generated by a more complex and realistic LIF model
with α-shaped PSCs. Besides, we argue that our model
would be most useful to investigate network effects, as
opposed to the effects explained by intricate features of the
dynamics of individual synapses, for which purpose, con-
versely, smaller-scale, but more detailed models like the one
by Song et al. (2013) might be more appropriate. Apart
from that, it is possible to add supplementary terms to the
membrane potentials of the neurons Ui(t). One such option
is to incorporate known external inputs directly into the
model, such as those occurring in experimental paradigms
widely used for studying predominantly stimulus-driven cir-
cuits like the retina (Pillow et al. 2008). Another option is to
add unknown, common external inputs (Kulkarni and Panin-
ski 2007; Vidne et al. 2012) in order to treat non-stationarity
in the data.

A further possibility to improve the results of the esti-
mation lies in enforcing Dale’s law: neurons can be either
inhibitory or excitatory, and they cannot form connections
of both types at the same time (Eccles 1976). Unfortunately,
the mathematical re-formulation of this law in the context
of our model (the sign of all elements in each column of
the synaptic weight matrix Jij should be identical) turns
the original problem into a non-convex and non-separable
one. Instead of trying to solve this much more difficult opti-
mization problem, an approximate, greedy method can be
implemented as outlined in Mishchenko et al. (2011). This
involves first solving the original problem, then classifying
the neurons as excitatory, inhibitory or unassigned based
on the discovered synaptic weights, and, finally, imposing
corresponding box constraints on the relevant elements of
the Jij rows, which neither compromises the convexity, nor
the separability properties. However, in our case, the major
source of errors is the overlap between the unconnected and
excitatory distributions, which generates non-Dale connec-
tions as a consequence. The benchmarks that we conducted
show that very few of the errors are of the non-Dale cate-
gory (see Tables 2, 3, 5), so any gain from imposing a Dale

condition would be minimal and does not justify the addi-
tional complexity incurred. Therefore, effort should primar-
ily be focused on tightening distributions.

In our GLM, we have used the exponential link function
to map the membrane potential Ui(t) to the instantaneous
firing rate λi(t). The exponential function is the canonical
link function for the Poisson distribution, and it is com-
monly used in the single neuron modelling context, e.g. in
the spike response model (Gerstner et al. 2014). Further rea-
sons for us to choose an exponential function as the link
function were as follows: 1) it has been previously shown
(Jolivet et al. 2006; Mensi et al. 2012) that an exponen-
tial function is a good model for the nonlinear relationship
between the conditional intensity of spike emission and
the distance from the voltage threshold; 2) an exponential
nonlinearity satisfies the sufficient condition established in
Paninski (2004) for the likelihood of the model to be con-
cave; 3) this choice makes it possible for us to obtain the
closed form for the likelihood function as an exponential
integral Ei (10), which is crucial here for reasons of com-
putational efficiency. If the closed form cannot be obtained,
then one either needs to discretize the likelihood integral,
possibly using clever corrections to improve the accuracy
(Citi et al. 2014), or, if the conditional intensity function can
be shown to be piecewise smooth like in our case, attempt to
get better precision and performance by applying quadrature
methods to the smooth segments (Mena and Paninski 2014).
Unfortunately, both approaches are still not fast enough for
large GLMs such as ours. Other link functions such as logit
and probit functions are also commonly used in the context
of GLMs and have the property of being bounded (Song
et al. 2013). Indeed, within our framework, it is possible to
adopt a different link function instead of the canonical one.
However, both logit and probit functions in particular are
ruled out by the concavity condition (Paninski 2004), being
saturating (“sigmoidal”) nonlinearities. In practice, how-
ever, we did not experience any substantial issues due to the
exponential function being positively unbounded. The box
constraints that we imposed on the base rate and synaptic
weights served only to repel the optimizer from the borders
of the feasible region, where it might occasionally find itself
due to an unfortunate combination of numerical artifacts.
In none of the results presented in the paper did the recov-
ered parameters turn out to be equal to the values of the box
constraints.

Throughout this study, we have assumed that we have
simultaneous access to all the spike trains of a neuronal
population. For this case, and for a small number of
neurons, it was shown that connectivity estimation via
GLM can recover anatomical connectivity (Gerhard et al.
2013), as opposed to other methods, which mostly uncover
“functional” or “effective” connections (Stevenson et al.
2008) that do not necessarily correspond to real synapses.
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Here, we scaled the GLM approach up to large networks.
However, in many experiments, such as in cortical multi-
electrode array recordings (Truccolo et al. 2010), a complete
recording of all neurons in a network is not feasible, but
rather only parts of a neuronal network can be observed.
With respect to the inference of connectivity from activ-
ity this is known as the problem of undersampling (Kim
et al. 2011; Gerhard et al. 2011; Shimazaki et al. 2012;
Lütcke et al. 2013): an unobserved neuron might excite sev-
eral observed ones reliably and frequently. Even if these
observed neurons are not synaptically connected to each
other, connectivity inference methods that do not account
for hidden units would infer connections among them to
explain the correlations in their activity. Thus, we gen-
erally expect the reconstruction accuracy of our method
to decrease in case of undersampling of the network, as
the input from unobserved units will be “explained” by
non-existing connections (see also Appendix C.2). Other
experimental preparations, such as neuronal cultures on
substrate-integrated multi-electrode arrays, are amenable to
more complete recordings (Ballini et al. 2013), possibly
enabling direct interpretation of the recovered connectivity.

We emphasize that our method is practical for networks
of up to thousands of neurons, and yet we recognize that
the machines featuring a large number of cores (> 105),
such as the ones we used during the development phase of
this project, are generally only to be found at major research
institutions. These supercomputing facilities are becom-
ing increasingly available to neuroscience researchers. For
example, researchers based in Germany may take advan-
tage of the twice-yearly calls for applications for computing
time on the supercomputers at Jülich Supercomputing Cen-
tre7, at no cost to the researcher if accepted. European
researchers outside Germany can apply analogously for
resources through PRACE,8 and labs based in the US can
apply for time at the NSF facilities.9 Additionally, initiatives
such as the Human Brain Project10 and the Neuroscience
Gateway11 aim to make such resources more accessible to
the neuroscience community. Even so, core-hour allocations
often require a thorough justification and quantitative evi-
dence of the scaling properties of the algorithm, both of
which entail significant investment from the researcher in
preparing the application.

Therefore, we also investigated the option of offload-
ing the computations to the kinds of GPGPU accelerators
that are currently available off-the-shelf. We implemented

7http://www.fz-juelich.de/ias/jsc/EN/Home/home node.html
8http://www.prace-ri.eu
9https://www.xsede.org
10https://www.humanbrainproject.eu
11http://www.nsgportal.org

a naive version of a GPU port, in which the compu-
tation kernels originally written in C++ and parallelized
using OpenMP to use multiple threads were rewritten using
CUDA technology by Nvidia Corporation to use a GPU
instead. In order to assess the performance of this port, we
measured the time it takes to complete the reconstruction
of the incoming synapses of one neuron of a network of a
thousand of neurons, such as those presented in Section 3.
Both applications were tested on an IBM System x iData-
Plex dx360 M4 machine featuring two Intel Xeon X5650
processors (6 cores, 12 threads) and one NVIDIA Tesla
M2070 (Fermi microarchitecture). The CPU version took 38
minutes to converge in 433 iterations, while the GPU port
required 49 minutes and 427 iterations; the obtained log-
likelihood values were identical up to an absolute difference
of � 4 × 10−10 and a relative difference of � 3 × 10−15.
This way, the speedup achieved by offloading the calcula-
tions to a single GPU as compared to a single CPU thread
amounted to approximately a factor of 18. However, profil-
ing revealed, that around 70 % of the runtime of the GPU
port was not actually spent doing useful calculations, but
rather transferring νij vectors from the CPU to the GPU
memory. Therefore, simply switching to a better GPU, such
as the ones based on the Kepler microarchitecture, providing
double of the data transfer bandwidth as compared to Fermi,
will increase the speedup for a naive GPU port up to a factor
of 28. Furthermore, we are currently investigating algorith-
mic improvements that completely remove the need for data
transfers by storing νij vectors directly in the GPU memory
using specialized compression. Extrapolating on the perfor-
mance from the proof-of-concept kernels we implemented,
a future GPU realization may perform at least as fast as ∼ 55
generic CPU threads, and require only a fraction of RAM
as compared to the CPU-only realization by storing all of
the working data in the onboard GPU memory. The com-
plete GPU port of the method, along with its core algorithms
and performance benchmarks, will be described in detail in
a separate publication. The development of a substantially
more efficient implementation will enable us to thoroughly
investigate the limits of our approach in a way that is out
of scope in the current study due to computational expense.
One obvious area for investigation would be the degradation
of performance in the case of undersampling as discussed
above. Other areas worthy of further examination are the
effects on misclassification error rates of correlated external
inputs and non-stationarities in the recorded activity.

It is also important to mention that anatomically, cor-
tical neurons receive on the order of 103-104 incoming
synapses (Braitenberg and Schüz 1991). In our demon-
strations, we assumed that the network might be fully
connected, or, in other words, each of the N = 1000 neu-
rons can possibly receive up to 103 incoming synapses from
all other neurons, yielding O(N2 = 106) parameters to

http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
http://www.prace-ri.eu
https://www.xsede.org
https://www.humanbrainproject.eu
http://www.nsgportal.org


J Comput Neurosci (2015) 39:77–103 99

constrain in total. However, given a substantially larger
amount of recording channels, such as N > 104, if such data
becomes available, this assumption is no longer reasonable.
Instead, the data can be pre-processed to purge unlikely
incoming connections, from N down to the most likely
103-104 putative synapses per neuron, thereby avoiding the
quadratic explosion in the number of model parameters. We
suggest that such pre-processing can be performed using
computationally efficient pairwise linear methods, such as
cross-correlation or cross-coherence, or various information
theory metrics (Staniek and Lehnertz 2008). This way, while
recovering the connectivity of even larger networks would
still require a linear increase in computational resources (or
wallclock time), the challenge to further scale the model up
to a larger number of putative incoming synapses can be
alleviated.

Finally, we would like to stress that even though net-
work models that can be directly simulated as extracted
from the data are interesting in themselves for further
studies, the proposed method also has potential to pro-
vide insights into the network-wide plasticity of synaptic
connectivity. Even though in our method we assume that
the connectivity is fixed over the time of a recording,
estimated synaptic weights can be tracked accross sev-
eral recordings performed in a time-lapse fashion. Such
data could be relevant for models of synaptic plasticity
over long time-scales (structural plasticity) (Escobar et al.
2008; Deger et al. 2012), which currently have to rely on
statistics of synapse numbers without temporal informa-
tion, or time-lapse imaging of small numbers of individual
synapses.
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Appendix

The spike data used in this paper and the code that imple-
ments our connectivity reconstruction method are publicly
available for download at http://dx.doi.org/10.5281/zenodo.
17662 and http://dx.doi.org/10.5281/zenodo.17663 respec-
tively.

A: Concavity of the point process log-likelihood

The derivative of the log-likelihood Li (2) with respect to
Jij is

∂Li

∂Jij

=
qi∑

k=1

νij (ti,k) −
∫ T1

T0

λi(t)νij (t)dt ,

cf. (12), with νij (t) = (hi ∗ sj )(t) and νi0 = 1 (11). The
second derivative is then simply

∂

∂Jik

∂

∂Jij

Li = −
∫ T1

T0

λi(t)νij (t)νik(t)dt . (18)

Using these expressions, in the following we give a proof,
specific to our model, that Li is concave. A condition for
the concavity of the log-likelihood of more general point
process GLMs is given in Paninski (2004).

A twice differentiable function of several variables is
concave if and only if its Hessian matrix H is nega-
tive semi-definite. In terms of the parameter vector θi =
(Ji0, . . . JiN ), the Hessian matrix of Li has the elements
(18). This matrix is negative semi-definite if xT Hx ≤ 0 for
all real vectors x. We evaluate this expression as

xT Hx =
∑

j

xj

∑

k

Hjkxk =
∑

j,k

xj xk

∂

∂Jik

∂

∂Jij

Li

= −
∫ T1

T0

λi(t)
∑

k

xkνik(t)
∑

j

xj νij (t)dt

= −
∫ T1

T0

λi(t)V
2
i (t)dt ≤ 0 , (19)

where Vi(t) is defined analogously to Ui(t) (3) as∑N
j=0xj νij (t), and λi(t) ≥ 0. Hence H is negative semi-

definite, and thus Li is concave in the parameters θi .

B: Closed form for the log-likelihood integral

To evaluate Eq. (9), we need to compute the term
∫ tk+1

tk

exp

{

(Ui(tk) − Ji0)e
− t−tk

τi

}

dt .

Let us introduce the shorthand g(t) = (Ui(tk) − Ji0)e
− t−tk

τi .
We need to show that the exponential integral Ei(x) =

http://dx.doi.org/10.5281/zenodo.17662
http://dx.doi.org/10.5281/zenodo.17662
http://dx.doi.org/10.5281/zenodo.17663
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−∫ ∞
−x

e−t

t
dt is a primitive of exp{g(t)} for tk ≤ t < tk+1. We

differentiate

d

dt
Ei(g(t)) = − d

dt

∫ ∞

−g(t)

e−u

u
du = eg(t)

−g(t)

(

− d

dt
g(t)

)

= − 1

τi

eg(t) .

Thus, we can evaluate the integral as
∫ tk+1
tk

exp {g(t)} dt =
−τi Ei(g(t))|tk+1

tk
, and so follows (10).

C: Spot checks for several degrees
of undersampling and sparsity

C.1: Chance level of the misclassification error rate

Connections in our networks are formed with a connection
probability p. A fraction fe of neurons is excitatory, the
remainder fi = 1 − fe is inhibitory. To assess the qual-
ity of our connectivity reconstruction, here we compute the
misclassification error rate (MER) of a random connection
classifier that maintains p, fe and fi. We call this the chance
level MER0.

Misclassification errors can occur for three types of
synaptic connections: excitatory, inhibitory and null con-
nections. Let us take the example of the excitatory type.
We expect p(feN)(N − 1) excitatory connections, each
of which is misclassified (false negative) with probability
(1−pfe), because with probability pfe it would be classified
correctly as excitatory. Analogously the expected number of
misclassifications of each type is given by

• excitatory: ne = p(feN)(N − 1)(1 − pfe);
• inhibitory: ni = p(fiN)(N − 1)(1 − pfi);
• null: nn = (1 − p)N(N − 1)p .

The total rate of errors is then the expected number of errors,
summed over types, divided by the total number of possible
connections. This yields the following expression:

MER0 = ne + ni + nn

N(N − 1)
= p

(
2 − p(1 + f 2

e + f 2
i )

)
, (20)

which is independent of N , but depends on the connec-
tion probability p and the ratio of excitatory to inhibitory
neurons.

C.2: Effects of undersampling

To assess the degree to which undersampling deteriorates
the quality of the network reconstructions, we performed
several experiments with different datasets, each being a
subsample of the original one presented in Section 3.1. In
each experiment we randomly selected a fraction of neurons
(maintaining the ratio of excitatory and inhibitory neurons)
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Fig. 11 Misclassification error rate as a function of the number of
sampled neurons. The reconstructions on the partial datasets were per-
formed with the parameters and data presented in Section 3.1 (black
dots). The full network consists of N = 1000 neurons, partial datasets
consist of the spike trains of a smaller number of randomly selected
neurons (maintaining the ratio of excitatory and inhibitory cells).
Annotations give the percentage of neurons sampled to the full net-
work size. The chance level MER (20) was calculated for p = 0.2,
fe = 0.8 and fi = 0.2 (MER0 = 33.28 %; dashed line). The synaptic
weights were classified using k-means as described in Section 3.3

that are fed into the optimizer. The results are shown in
Fig. 11. In contrast to Fig. 3, here the connections were
classified using k-means as described in Section 3.3, which
is more robust in the undersampled cases. Therefore, for
the case of N = 1000 neurons the MER is slightly higher
than when classified using GMM, as reported in Table 2.
As expected, the MER of the partial network increased as
we decreased the number of neurons that were visible to the
GLM (undersampling). This was largely due to the broad-
ening of the distribution of the synaptic weights for null
connections (data not shown, cf. Figure 3). Yet, in all cases,
synapse classification based on the reconstruction method
was substantially better than random classification of the
synapses, see Appendix C.1 for the derivation of the chance
level MER.

Table 6 Breakdown of classification errors for the GLM random
network with sparsity p = 0.1

Connection type Errors FP FN ND

Excitatory 2 554 67 % 33 % 19 %

Inhibitory 0

Unconnected 2 554 33 % 67 % —

Total errors 0.26 %

The meaning of the abbreviations is the same as in Table 2
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C.3: Effects of varying connection sparsity

In this experiment we performed the reconstruction on a
dataset simulated as described in Section 3.1, but with con-
nection probability of p = 0.1 instead of p = 0.2. The
results are presented in Table 6. Note that whereas the
quality of the reconstruction is substantially better than for
p = 0.2 (shown in Table 2), the chance level of the mis-
classification error rate for this network with p = 0.1 is
MER0 = 18.32 %, rather than MER0 = 33.28 % for the
network with p = 0.2. Still, also in relative terms to MER0,
the reconstruction is more accurate in this case of increased
connection sparsity.
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