brought to you by CORE

FaNGaS: A New Instrument for Fast Neutron Gamma Spectroscopy at the FRM II Research Reactor, Garching

<u>T.H.Randriamalala</u>^{1*}, M. Rossbach¹, E. Mauerhofer¹, Zs. Révay², P. Kudejova², S. Söllradl², F.M. Wagner²

¹Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

²Heinz Maier-Leibnitz Zentrum, Technische Univesität München, Lichtenbergstrasse 1, 85748 Garching, Germany

Fission Neutron Beam

Fig. 4: Neutron beam energy distribution

Fig. 5: Simulated neutron beam size (left) and picture of the beam (right) at the sample position

Average Energy : 1.9 MeVIntegrated flux: $8.0 \ 10^7 - 1.2 \ 10^8 \text{ cm}^{-2} \text{s}^{-1}$ Beam size: 40 mm (FWHM)

Detector System Characteristic

Heavily shielded HPGe of 50% rel. efficiency

Size : W x H x L = $1260 \times 1260 \times 2660 \text{ mm}^3$

Polyethylene – 320 mm thick

Boron carbide - 10 mm thick

Lead – 150 mm thick

and lead layers

Mass: 4 tonnes

ciation

Asso

Helmholtz

the

of

Ð

Membe

Shielding materials (from outer to inner layers):

WHM [keV]

!--

Fig. 9: Measured efficiency curves at the far-position (upper) and close-position (lower)

Benchmark Spectra

•¹³³Ba

▲⁶⁰Co

▼¹³⁷Cs

0¹⁵²Eu

1000 2000 3000 4000 5000 6000 7000 8000 9000

Energy [keV] Fig. 8: Detector resolution

■³⁵Cl(n,γ)³⁶Cl

____⁵⁴Fe(n,γ)⁵⁵Fe___ ∆⁵⁶Fe(n,γ)⁵⁷Fe___

Teflon Sample: $m = 1.56 g - \emptyset = 11.7 mm$, H = 7 mm - Irradiation time = 10 hours

Lithium-6 glass inserted in the detector collimator between the boron carbide

Iron Sample - $m = 1.38 g - W x H = 25 x 25 mm^{2}$	² , thickness = 0.25 <i>mm</i> – Irradiation time = 10 hours
---	---

~																
<u>_</u>																T
0			:		!					1		1				
	i		i i		i i		i			i		i i		i		

Acknowledgment:

Dr. H. Breitkreuz (FRM II, Garching), E.L. Ebert (IEK-6, FZ-Jülich), Dr. S. Sudár (Institute of Experimental Physics, Kossuth University, Debrecen, Hungary), C. Velten (FRM II, Garching)

This work is supported by BMBF

*email: <u>t.randriamalala@fz-juelich.de</u>

ANIMMA Conference – Lisbon, Portugal