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Potentials Near a Curved Anode Edge in a PEM Fuel Cell:
Analytical Solution for Placing a Reference Electrode
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We consider a PEM fuel cell with concentric circular electrodes: the small anode and the large cathode. A model for in-plane
distributions of the cathode overpotential ηc and the membrane potential � in the anode-free region of the cell is developed.
Mathematically, the problem reduces to the axially symmetric Poisson–Boltzmann equation for ηc . An approximate analytical
solution shows that |ηc| exhibits rapid decay to zero with the radius, while |�| grows to the value of |η0

c |, the cathode overpotential
in the working domain of the cell. For typical η0

c , the radial shape of ηc far from the anode edge only weakly depends on η0
c ; this

effect is analogous to Debye screening in plasmas. The smaller the anode radius, the faster � approaches η0
c with the distance from

the anode. It follows, that a reference electrode for measuring the cathode overpotential in the working area can be placed at a small
distance from the curved anode edge.
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Performance of a polymer electrolyte membrane fuel cell
(PEMFC) is determined by overpotentials driving the electrochemical
reactions on either side of the cell. One of the most useful techniques
for measuring the half-cell overpotentials is a method of reference
electrode (RE). A typical schematic of a cell with the RE is depicted
in Figure 1a. The hydrogen-fed RE is located at a certain distance Lgap

from the aligned anode and cathode edges. Neglecting the potential
loss for the hydrogen oxidation/evolution reactions, the potential of
the RE is equal to the membrane potential � at the point of the RE
location. If the distance Lgap is large enough, the measured � cor-
responds to the membrane potential at some point along the y-axis
between the anode and cathode in the working cell area (Figure 1a).
Measuring � and the electrode potentials allows one to separate the
anode and cathode overpotentials in the cell.1,2 Further, RE enables
to perform electrochemical impedance spectroscopy between the RE
and each of the cell electrodes; this technique has been widely used
in SOFC studies.3–6

The problem with the system in Figure 1a is that even a small mis-
alignment of the anode and cathode edges may strongly distort � at
the RE location. This problem has been intensively studied for differ-
ent types of fuel cells.3–5,7 Recently, a design free from this drawback
has been suggested8 (Figure 1b). Here, the cathode is continuous and
the RE is located at a distance Lgap from the straight anode edge. The
absence of the cathode edge eliminates the misalignment problem. It
has been shown, that for the design in Figure 1b, Lgap must satisfy to
the condition8

Lgap � 3

√
σmboxlm

2 j0
ox

[1]

Here, σm is the membrane proton conductivity, box is the Tafel slope
of the oxygen reduction reaction (ORR), lm is the membrane thick-
ness, j0

ox is the superficial exchange current density (A cm−2) of
the cathode in the working cell area. With typical cell parameters
(Table I), Lgap appears to be on the order of several centimeters. For a
typical laboratory-size cell of about 10 × 10 cm2, this value of Lgap is
quite large. Below, we show that a curved anode edge enables signif-
icant reduction of Lgap not sacrificing the accuracy of measurements.

We report a model for the radial distribution of the membrane
potential � and the cathode overpotential ηc in the anode-free area
of a cell with the small circular anode and the large cathode. An
approximate analytical solution of the problem is derived. It shows that
far from the anode edge, the radial shape of the cathode overpotential
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ηc(r ) only weakly depends of the value η0
c at the edge, provided

that |η0
c | is sufficiently large. This effect is quite analogous to Debye

screening in plasmas. Further, analytical solution allows us to calculate
the width of the gap between the curved anode edge and the RE for
measuring the cathode overpotential in the working domain of the
cell. In a certain range of anode radii, the smaller the radius of the
anode edge, the closer to the edge can be located the RE.

Model

The model below is close in spirit to the model8 for the straight
anode edge above the infinite cathode (Figure 1b). Here, however,
we consider a system of concentric circular electrodes depicted in
Figure 2. Let the radii of the anode and cathode electrodes be Ra and
Rc, respectively; we will assume that Rc → ∞. In the following, the

Figure 1. Schematic of the fuel cell with the reference electrode. (a) A con-
ventional scheme; note that a small misalignment δ of the working anode and
cathode edges strongly distort the membrane potential at the reference elec-
trode location. (b) A scheme.8 Here, the reference electrode is located at a
large distance Lgap from the anode edge, while the cathode is continuous.
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Table I. The base-case physical parameters for the calculations.

ORR exchange current density j0
ox , A cm−2 10−6

ORR equilibrium potential Eeq
O R R , V 1.23

ORR Tafel slope box , V 0.03
HOR exchange current density
in the working domain j0

hy , A cm−2 1.0
HOR Tafel slope bhy , V 0.015
Membrane proton conductivity σm , �−1 cm−1 0.1
Membrane thickness lm , cm 0.005 (50 μm)
Cell potential φc , V 0.82642
Mean current density in the working domain J , A cm−2 0.6

Parameter κ 1.826 · 10−3

cell domains r ≤ Ra and Ra < r < ∞ will be referred to as the
working and anode-free domains, respectively (Figure 2).

Our goal is understanding the distribution of currents and potentials
in this system. The main variable in this problem is the membrane
potential �, which obeys to the Poisson equation

1

r

∂

∂r

(
r
∂�

∂r

)
+ ∂2�

∂z2
= 0 [2]

Infinite cathode means that the radial extent of the problem Rc is
by several orders of magnitude larger, than the membrane thickness
(the exact criterium is given below). This allows us to approximate the
second derivative along z in Eq. 2 by the difference of proton currents
coming in and out of the membrane,9 which yields

1

r

∂

∂r

(
r
∂�

∂r

)
= jc − ja

σm Lm
[3]

Here ja and jc are the proton current densities at the anode and the
cathode side of the membrane, respectively.

In a well-humidified membrane, variation of � along z is close
to linear, and hence the quasi-2D approximation of Eq. 3 works well
everywhere, except a small region in the vicinity of the anode edge.
Close to the anode edge, a fully 2D distribution of � forms. Numerical
calculations of Adler et al.4 show that in the system with the straight
anode edge, this 2D-domain extends to the distance on the order of lm

from the edge. In the axially symmetric system, we may expect even
smaller 2D domain. Thus, the radial distributions reported below may
be not accurate in a ring of a width of lm just outside the anode edge.
However, of largest interest is the behavior of the potentials outside
this ring, on a large radial distance from the anode edge.

Further, ja and jc are assumed to obey the approximate Butler–
Volmer kinetics

ja = 2 jhy sinh

(
ηa

bhy

)
, [4]

jc = 2 jox sinh

(
− ηc

box

)
, [5]

where jhy and jox are the superficial exchange current densities of
the anode catalyst layer (ACL) and the cathode catalyst layer (CCL),
respectively, ηa and ηc are the local anode and cathode overpotentials,
and bhy and box are the corresponding Tafel slopes. The approximate

Figure 2. Schematic of the fuel cell with the concentric circular anode and
cathode.

form 5 of the Butler–Volmer equation allows us to analyze a smooth
transition from large to small current densities in the anode-free do-
main, which is a feature of this problem. Eq. 5 reduces to the standard
Butler–Volmer equation if the transfer coefficient α of the ORR rate-
determining step is 1/2. With another values of α, Eq. 5 is approximate
in the region of ηc � box , and it reduces to the exact asymptotics for
ηc � box and ηc � box . Indeed, for ηc � box , the reverse reaction
is negligible, while for ηc � box , the ORR kinetics is linear, and
hence in both these limits, the Buler–Volmer equation and Eq. 5 lead
to the same form of the ORR rate. Note that we assume that the trans-
port losses in the electrodes are small and hence the dependencies on
reactant concentrations are included in jhy and jox .

The half-cell overpotentials are given by

ηa = φa − � − Eeq
H O R, [6]

ηc = φc − � − Eeq
O R R, [7]

where φa and φc are the anode and the cathode potentials, and Eeq
H O R =

0 and Eeq
O R R = 1.23 V are the equilibrium potentials of the respective

half-cell reaction. We will assume that the anode is grounded (φa = 0)
and, hence, φc is the cell potential.

Substituting Eqs. 4–7 into Eq. 3 and introducing dimensionless
variables

r̃ = r

lm
, j̃ = jlm

σmbox
, �̃ = �

box
, φ̃ = φ

box
, b̃hy = bhy

box
, [8]

we come to

1

r̃

d

dr̃

(
r̃

d�̃

dr̃

)
= 2 j̃0

ox sinh
(−φ̃c + �̃ + Ẽeq

O R R

)
− 2 j̃0

hy H (R̃a − r̃ ) sinh(−�̃/b̃hy). [9]

Here, the superscript 0 indicates the value in the center of the working
domain (r̃ = 0) and H is the Heaviside function, which equals 1 in
the working domain and zero in the anode-free domain. The absence
of the anode catalyst outside the working domain is modeled as zero
exchange current density of the hydrogen oxidation reaction (HOR).

Figure 3 shows the anode 4 and the cathode 5 current densities
resulting from numerical solution of the problem 9 with the boundary
conditions �̃(0) = �̃0, ∂�̃/∂ r̃

∣∣
r̃=∞ = 0. At the anode edge, a current

double layer arises10 (Figure 3b), which is analogous to a charged
double layer at the surface of a solid charged particle in plasmas. The
current double layer determines the shape of the cathode overpotential
in the anode-free domain, as discussed below.

In the remainder of this work we will be interested in the distribu-
tions of � and ηc in the anode-free domain. In this region, production
of current on the anode side vanishes, and Eq. 9 simplifies to

1

r̃

d

dr̃

(
r̃

d�̃

dr̃

)
= 2 j̃0

ox sinh
(−φ̃c + �̃ + Ẽeq

O R R

)
[10]

It is convenient to rewrite this equation in terms of the cathode over-
potential 7, which in the dimensionless variables is

η̃c = φ̃c − �̃ − Ẽeq
O R R [11]

Substituting this into Eq. 10, we get

1

r̃

d

dr̃

(
r̃

dη̃c

dr̃

)
= κ2 sinh η̃c [12]

where

κ =
√

2 j̃0
ox [13]

is the inverse dimensionless Debye length: κ = λ̃−1
D . In dimensional

form, the Debye length in this problem is given by

λD =
√

σmboxlm

2 j0
ox

[14]

The physical meaning of λD is discussed in Debye screening section.
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Figure 3. The anode ja and cathode jc current densities at the edge of the
circular anode of the radius R̃a = 20. For numerical calculation, the Heaviside
function in Eq. 9 was smoothed, which is equivalent to the effective anode
radius of R̃a � 20.2. Parameters for the calculation are listed in Table I. Note
a large peak of the anode current at the edge of the electrode. Note also a
“double layer” structure of the difference ja − jc , which appears on the right
side of Eq. 9.

Formally, Eq. 12 is a Poisson–Boltzmann (PB) equation. Quite
analogous equations arise in the theory of a diffuse double layer at
the metal/electrolyte interface (Gouy–Chapman model11,12), and in
the physics of charged macroscopic solid particles in plasmas.13 The
ORR rate in the Butler–Volmer term on the right side of Eq. 12 plays
a role of a positive charge and the rate of the reverse reaction of water
electrolysis in this term is equivalent to a negative charge in plasmas.

The main difference with the Gouy–Chapman problem for the
planar diffuse double layer is axial symmetry of Eq. 12. Dyachkov13

published analytical solution to Eq. 12 in the form of an infinite
series. Zholkovskij et al.14 derived matched asymptotic solution for
the PB equation with spherical symmetry. Below, we employ a simple
matching technique which leads to an accurate approximate analytical
result.

Analytical Solution

The problem for the straight anode edge above an infinite cathode
leads to Eq. 12 with the second derivative in Cartesian coordinates
d2η̃c/dx2 on the left side.8 It has been shown, that in PEM fuel cells,
due to a very high exchange current density of the HOR, η̃c at the
straight anode edge is very close to its value in the “bulk” area of
the working domain.8 Thus, in axial geometry, we may also expect
that η̃c(R̃a) � η̃0

c , where η̃0
c ≡ η̃c(0) is the ORR overpotential at

the axis of symmetry; numerical tests confirm this assumption. This
allows us to exclude the working domain from consideration by fixing
η̃c(R̃a) = η̃0

c at the anode edge. With this, the boundary conditions to
Eq. 12 are

η̃c(R̃a) = η̃0
c,

dη̃c

dr̃

∣∣∣∣
r̃=∞

= 0 [15]

The second equation means zero in-plane proton current through the
cathode edge. Validity of the infinite cathode approximation is guar-

anteed if

κR̃c � 1. [16]

Note, however, that Eq. 16 is redundant; a more accurate condition is
discussed below.

The idea of the solution technique used here is as following. Close
to the anode edge, the ORR rate dominates, which allows us to re-
place the sinh-function in Eq. 12 by the leading ORR exponent. The
domain where this simplification works will be referred to as the
ORR-dominated domain, as for |η̃c| > 2, the cathode reaction is
shifted to oxidation and the rate of the reverse reaction is small. Math-
ematically, this situation is equivalent to the dominance of positively
charged species in the plasma close to the surface of a negatively
charged macroscopic rod. Far from the anode, the rates of the forward
and reverse reaction are nearly equal, and the sinh-function in Eq. 12
reduces to the linear dependence. Formally, this domain is equivalent
to a quasineutral region in plasmas. Matching of the ORR-dominated
and “quasineutral” solutions is performed by extending these solutions
to the point, where |η̃c| = 1.

Let the current density in the working domain be sufficiently large,
i.e, |η̃0

c | ≥ 2. In the dimensional form this means that |η0
c | ≥ 2box �

100 mV, a condition, which in PEMFCs holds already at the cell
current density of about 0.01 mA cm−2. Then, in the vicinity of the
anode edge, we can retain only the leading exponent in the expression
for sinh-function in Eq. 12. Noting that η̃c < 0, Eq. 12 in the ORR-
dominated domain simplifies to

1

r̃

d

dr̃

(
r̃

dη̃c

dr̃

)
= −κ2

2
exp(−η̃c) [17]

Introducing the positive overpotential

η̃+
c = −η̃c > 0,

for η̃+
c we find an equation

1

r̃

d

dr̃

(
r̃

dη̃+
c

dr̃

)
= κ2

2
exp(η̃+

c ), η̃+
c (R̃a) = η̃+,0

c , [18]

where η̃+,0
c = −η̃0

c > 0. A general solution to the problem 18 is

η̃+
c,S = ln

{
4A2

κ2r̃ 2

(
1 + tan2

[
A ln

(
κr̃

B

)])}
, η̃+

c,S � 1 [19]

where A and B are constants to be determined from the boundary and
matching conditions. Note that the subscript S marks the short-range
solution, valid in the vicinity of the anode edge.

Far from the anode edge, we have η̃+
c � 1, and the sinh-function

on the right side of 12 can be expanded in Taylor series. With this,
Eq. 12 simplifies to

1

r̃

d

dr̃

(
r̃

dη̃+
c

dr̃

)
= κ2η̃+

c ,
dη̃+

c

dr̃

∣∣∣∣
r̃=∞

= 0 [20]

where the boundary condition expresses zero in-plane proton current
at the cathode edge. Solution to Eq. 20 is

η̃+
c,L = C K0 (κr̃ ) [21]

where K is the modified Bessel function of the second kind and C
is the constant to be determined from the matching conditions. The
subscript L marks the long-range solution, valid far from the anode
edge.

To fill the “gap” in the range of η̃+
c � 1, we extend Eq. 19 down

to η̃+
c = 1, and Eq. 21 up to η̃+

c = 1. Let the radius where η̃+
c = 1 be

R̃1:

η̃+
c (R̃1) = 1

Setting r̃ = R̃1 in Eq. 21, we get a relation for the constant C ;
expressing C from this relation and substituting the result to 21, we
obtain

η̃+
c,L = K0 (κr̃ )

K0

(
κR̃1

) [22]
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The solutions 19 and 22 contain the three constants A, B and R̃1 to
be determined. The first relation between these constants is obtained
by setting r̃ = R̃1 in Eq. 19:

ln

{
4A2

κ2 R̃2
1

(
1 + tan2

[
A ln

(
κR̃1

B

)])}
= 1 [23]

Another relation results from continuity of the first derivatives of 19
and 22 at r̃ = R̃1

K1

(
κR̃1

)
K0

(
κR̃1

) = 2

κR̃1

(
1 − A tan

[
A ln

(
κR̃1

B

)])
[24]

The last relation gives the boundary condition for the overpotential 19
at r̃ = R̃a

ln

{
4A2

κ2 R̃2
a

(
1 + tan2

[
A ln

(
κR̃a

B

)])}
= η̃+,0

c [25]

The Equations 23–25 determine the constants A, B and R̃1; these three
parameters, in turn, fully determine the solution of the problem:

η̃+
c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln

{
4A2

κ2r̃ 2

(
1 + tan2

[
A ln

(
κr̃

B

)])}
, R̃a ≤ r̃ ≤ R̃1

K0 (κr̃ )

K0

(
κR̃1

) , R̃1 < r̃ < ∞
[26]

Eqs. 23–25 have multiple roots, as they contain periodic functions.
The physical solution provides the set {A, B, R̃1} with the minimal
positive A; the other sets lead to unphysical local peaks of η̃+

c in
the anode-free domain. Note that the case of the cathode of a finite
radius R̃c leads to somewhat more complicated solutions listed in
Appendix A.

Results and Discussion

Shapes of overpotential for different anode radii.— Numerical so-
lution to the system 23–25 for the constants A, B and R̃1 is obtained
as following. Solving Eq. 24 for B we get

B = κR̃1 exp

(
1

A

[
arctan

{
1

A

(
κR̃1 K1

(
κR̃1

)
2K0

(
κR̃1

) − 1

)}])
[27]

Substituting 27 into Eqs. 23 and 25, we get a system of two equa-
tions for the parameters A and R̃1. This system can be solved by
standard numerical procedures utilizing Newton’s method, taking A
in the range of 0.25 to 1 and R̃1 in the range of 1/κ to 2/κ as the initial
guess. The parameter B is then calculated with Eq. 27. Note that a
more accurate initial guess for A provides a function

A = π

2

[
ln

(
29

12(κR̃a)4/9

)]−1

.

The solution 26 is valid outside the working cell area, in the anode-
free domain r̃ ≥ R̃a . Comparison of Eq. 26 to the numerical solution
of the full problem, Eq. 9 for 0 ≤ r̃ < ∞ is depicted in Figure 4.
As can be seen, the analytical curves are very close to the numerical
results (points). Note rapid decay of the overpotential close to the
anode surface (Figure 4).

For the anode radii R̃a < 10, the numerical solution is difficult to
obtain due to a very steep gradient of η̃+

c near the anode edge. A key
feature of this problem is that this gradient increases with the decrease
of the anode radius. A more detailed view of the η+

c shapes, which
illustrates this behavior is depicted in Figure 5a. Figure 5b shows the
analytical curves in Figure 5a shifted along the r̃ -axis in such a way,
that the anode edges coincide. Note a faster decay of η+

c near the anode
of a smaller radius. Qualitatively, this effect is similar to behavior of
the Laplace potential between a charged axially-symmetric metal tip
and a plane: the smaller the tip radius, the faster decays the potential

Figure 4. Numerical (points) and analytical (lines) shapes of the ORR over-
potential for the dimensionless anode radius R̃a of (a) 200 and (b) 20. The
“infinite” cathode radius is R̃c = 2000. The points exhibit the numerical solu-
tion to the full problem 9, while the lines show Eq. 26, which is valid outside
the anode. Parameters for the calculations are listed in Table I.

along the symmetry axis of the problem.15 The main practical con-
clusion from Figure 5b is that in a cell with the smaller anode radius,
the reference electrode can be positioned closer to the anode edge.
This is discussed in detail in Positioning of the reference electrode
section.

Figure 5. (a) Zoom of the curves in Figure 4 and the overpotential for the
anode radius R̃a = 2. (b) The analytical curves shown in (a) shifted in such a
way that the anode edges coincide. Indicated are the dimensionless anode radii.
Note faster decay of the ORR overpotential η+

c near the anode of a smaller
radius. The symbol ∞ marks the shape of η+

c at the edge of the plane anode.8
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Debye screening.— Consider the system of Equations 23, 24 and
25 for the constants A, B and R̃1 and suppose that η̃+,0

c → ∞. It can
be shown that A is bounded (Appendix B): A ≤ M , where M is some
constant. Thus, the tan-function in Eq. 25 must be large; this means,
that for η̃+,0

c → ∞ the argument of this function tends to π/2, and
hence for large η̃+,0

c Eq. 25 can be replaced by

A ln

(
κR̃a

B

)
= π

2
[28]

With this, the parameters A, B and R̃1 can be determined from the
reduced system of Equations 23, 24 and 28, which is independent of
η̃+,0

c . It follows, that at large η̃+,0
c , the long-range radial shape of the

overpotential in Eq. 26 only weakly depends on its boundary value
η̃+,0

c .
Large overpotential means that η̃+,0

c � 1. For the typical PEMFC
parameters (Table I), this condition holds at very small cell currents
(see above) i.e., for the typical cell current densities of 0.1 to 1 A cm−2,
the long-range shape of overpotential weakly depends on the cell
current density. To illustrate this effect, Figure 6 shows comparison
of the width of the ORR-dominated domain

L̃1,r = R̃1 − R̃a [29]

determined from the reduced system 23, 24 and 28, to the exact value
resulted from the system 23, 24 and 25. The two curves are very close
to each other. Taking into account that R̃1 is on the order of 1/κ,
this result is quite analogous to Debye screening in plasmas: at the
distance on the order of λ̃D = 1/κ, the charge of the macroscopic
rod-like particle is screened, so that any variation of this charge is not
“seen” at larger distances. Here, “screening” makes the behavior of the
cathode overpotential at the distances r̃ > 1/κ only weakly dependent
of the overpotential (or current) in the working domain of the cell.
This effect can also be demonstrated in the case of the straight anode
edge above the large cathode active area (Figure 1b). Calculations8

have shown, that in this cell, the overpotential η̃+
c decays with the

distance x̃ from the anode edge according to

η̃+
c = 2 ln

(
1 + G exp (−κx̃)

1 − G exp (−κx̃)

)
[30]

In general, the constant G is determined from matching of Eq. 30 and
the solution in the working cell area. However, as discussed above,
in PEMFC, the cathode overpotentials at the anode edge and in the
working domain are nearly the same, and we can determine G from
the condition η̃+

c (0) = η̃+,0, where x = 0 is located at the straight
edge of the anode (Figure 1b). Substituting this G into Eq. 30 and
solving equation η̃+

c = 1, we find the distance L̃1,x where η̃+
c drops to

Figure 6. Solid line—the exact width of the ORR-dominated domain L̃1,r =
R̃1 − R̃a vs. the anode radius R̃a for base-case set of parameters (Table I).
Dashed line—the same width calculated from the reduced system of equations
23, 24 and 28, which is independent of the overpotential in the working cell
area η̃+,0

c (i.e., it is independent of the cell current density).

Figure 7. Analytical radial shapes of the positive ORR overpotential η+
c

(cf. Figure 5b) and the respective shapes of the positive membrane poten-
tial �+ for the indicated anode radii R̃a .

unity:

L̃1,x = 1

κ
ln

⎛
⎜⎜⎝

(
exp

(
η̃+,0

2

)
− 1

)(
exp

(
1
2

) + 1

)
(

exp
(

η̃+,0

2

)
+ 1

)(
exp

(
1
2

) − 1

)
⎞
⎟⎟⎠ [31]

For η̃+,0 � 1, this result simplifies to

L̃1,x � 1

κ
ln

(
exp

(
1
2

) + 1

exp
(

1
2

) − 1

)
� 1.4

κ
[32]

which is independent of η̃+,0
c , i.e, independent of the cell current. This

is a signature of Debye screening.

Positioning of the reference electrode.— In the remainder of this
work, we will discuss the analytical curves η̃+

c (r̃ ), as they practically
coincide with the numerical solutions. Figure 7 shows the shapes of
the positive membrane potential �+ = −� > 0 for the same anode
radii as in Figure 5b. The shapes of �+ have been calculated using the
dimensional versions of Eqs. 11, 26 and the parameters in Table I. As
can be seen, at large r̃ , �+ tends to the limiting value �+,∞ = η+,0

c .
Indeed, subtracting the relations

η̃+,0
c = Ẽeq

O R R − φ̃c − �̃+,0

η̃+,∞
c = Ẽeq

O R R − φ̃c − �̃+,∞ = 0

we get

η̃+,0
c = �̃+,∞ − �̃+,0 � �̃+,∞ [33]

as in PEMFCs, �̃+,0 � 0, i.e., the membrane potential in the working
domain is close to zero. Here, the superscript ∞ marks the values at
r̃ → ∞.

As discussed above, �+ corresponding to smaller anode radius
tends to η+,0

c faster (Figure 7). This effect is illustrated in Figure 8,
which shows the radial width of the ORR-dominated domain L̃1,r ,
Eq. 29. The width L̃1,r increases with the anode radius R̃a (Figure 8).
Due to Debye screening, the parameter L̃1,r weakly depends of the
cell current density and the shapes of η̃+

c (R̃a) and of L̃1,r (R̃a) are
governed mainly by the Debye parameter κ.

For further estimates we will assume that the reference electrode
can be located at the distance L̃1,r from the anode edge. Figure 7 shows
that this assumption provides 10%-accuracy of η̃+

c determination (the
bottom straight dotted line). It is advisable to compare the distance
L̃1,r to the analogous distance L̃1,x , Eq. 32 for the straight anode edge
geometry (Figure 8). Straight long-dashed lines in Figure 8 depict the
value of L̃1,x for the two sets of parameters; L̃1,x is an asymptote to
which the respective L̃1,r curve tends as R̃a → ∞. For small anode
radii R̃a � 10, the distance L̃1,r between the curved anode edge
and the RE is at least twice smaller, than this distance L̃1,x for the
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Figure 8. The width of the ORR-dominated domain L̃1,r = R̃1 − R̃a vs. the
anode radius R̃a . At the distance R̃1 − R̃a from the anode edge, the ORR
overpotential drops to the value of the Tafel slope box , while the membrane
potential � nearly reaches the value of the cathode overpotential η0

c in the
working domain. Upper solid curve—the base-case set of parameters (Table I).
Lower solid curve corresponds to j0

ox = 6 ·10−6 A cm−2, box = 0.05 V and to
the cell potential of 0.65 V; the other parameters are those indicated in Table I.
Open circles-the approximate fitting Equation 34. Long-dashed lines—the
distance L̃1,x , corresponding to the straight anode edge (see text).

straight anode edge (Figure 8). Note rapid decay of L̃1,r for the small
anode radii (Figure 8); however, for R̃a � 1, accuracy of the model
decreases, as it ignores three-dimensional effects in a close proximity
of the anode edge.

An approximate expression for the dependence L̃1,r (R̃a) in the
range 0 ≤ κR̃a ≤ 1 is

L̃1,r � π

2κ

[
ln

(
67

18(κR̃a)7/45

)]−1

0 ≤ κR̃a ≤ 1 [34]

(Figure 8, open circles). In the dimensional form this equation reads

L1,r � πλD

2

[
ln

(
67

18(Ra/λD)7/45

)]−1

, [35]

where λD is given by Eq. 14. Eq. 35 can be used for engineering
estimates of the gap distance Lgap between the anode tip of a radius
Ra and the reference electrode. If high accuracy of measurements is
needed, taking Lgap � 3L1,r is recommended.

Figure 9 shows possible configurations of a fuel cell with the
reference electrode. Figure 9a displays the reference electrode in the
system with the straight anode edge. In this case, the distance Lgap

� 3λD , as reported in.8 Figure 9b exhibits the case of the circular
anode; here the distance Lgap � 3L1,r , where L1,r is given by Eq. 35.
Note that here Lgap is smaller, than in Figure 9a. Figure 9c shows
the anode edge with the sharp tip; this tip provides a rapid growth
of �+ with the distance from the tip. Thus, the reference electrode
can be positioned closer to the tip not sacrificing the accuracy of
measurements. Lgap in Figure 9c can be estimated from Eq. 35, taking
Ra equal to the radius of tip curvature.

From Eq. 35 it is evident, that Eq. 16 is redundant. Eq. 16 describes
a minimal size of the anode-free domain for the system with the
straight anode edge. In the system with the curved anode edge, the
size of the anode-free domain must obey to

Lgap � 3L1,r [36]

where L1,r is given by Eq. 35. Clearly, at the distance on the order of
36, the local cathode overpotential drops to a vanishingly small value,
and the model above is applicable.

Discussion.— Eq. 12 describes a kind of “electrostatics” for over-
potential distribution in the anode-free domain. Thinness of the mem-
brane and its large in-plane size makes this electrostatics almost two-
dimensional. Numerical solutions to a fully 2D analog of Eq. 12 could
give more insights into an optimal shape of the anode tip for position-
ing the reference electrode. However, due to very large gradients of

Figure 9. Schematic of the reference electrode (RE) positioning for different
anode geometries. (a) The straight anode edge, (b) the circular anode (c) the
anode with the curved tip of a small radius. The smaller the tip radius, the
closer to the tip can be located the RE.

potentials at the anode edge, fully 2D calculations might require spe-
cial numerical techniques.

In the anode-free domain, hydrogen is not needed. In the absence
of electroosmotic flux of water, the membrane in this domain can be
humidified by the backflux of water from the cathode side. If, for
technological reasons, a hydrogen flow field “covers” the anode-free
domain, the H2 crossover through the membrane can be blocked by
applying some polymer material between the anode flow field and
membrane.

In general, in the anode-free domain, the decaying cathode overpo-
tential may accelerate carbon corrosion reaction (CCR) on the cathode
side. The overpotential for CCR is ηCC R

c = φc − � − Eeq
CC R , where

Eeq
CC R � 0.207 V is the CCR equilibrium potential. Far from the anode

edge, we have � � η0
c , and thus ηCC R

c � φc − η0
c − Eeq

CC R . With the
typical φc � 0.6 V and η0

c � −0.3 V, we find ηCC R
c � 0.7 V. In a true

OCV state of a PEMFC, this overpotential is about 0.9 to 1 V, which
induces much higher rate of corrosion. In addition, there is no counter
electrode in the anode-free domain, and in order to be captured in
the ORR, the proton produced in the CCR must travel quite a large
distance along the cathode to the point, where the local ORR overpo-
tential is sufficiently large. Due to a relatively large ohmic resistance
of the membrane phase in the CCL, this proton transport would lower
the overall rate of corrosion.

Conclusions

A model for the radial distribution of the membrane potential �
and of the ORR overpotential ηc in a PEM fuel cell with the concentric
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small anode and large cathode is developed. In the anode-free area
of the cell, the model reduces to the axially symmetric Poisson–
Boltzmann equation for ηc. An approximate analytical solution for this
equation is constructed. A feature of this problem is weak dependence
of the long-range shape of ηc(r ) on the value of η0

c , where η0
c is the

ORR overpotential in the working domain of the cell. This effect is
quite analogous to Debye screening in plasmas.

The solution shows rapid convergence of � to the value of η0
c with

the distance from the anode edge r . Moreover, the smaller the anode
radius, the faster tends � to η0

c with r . This result shows that the
reference electrode measuring � � η0

c can be located closer to the
anode edge, if the latter is curved.

Appendix A: The Case of a Finite Cathode Radius

The model above can be modified for the cathode of the finite radius R̃c . In this case,
the long-range problem Eq. 12 reads

1

r̃

d

dr̃

(
r̃

dη̃+
c

dr̃

)
= κ2η̃+

c ,
dη̃+

c

dr̃

∣∣∣∣
r̃=R̃c

= 0 [A1]

Solution to Eq. A1 is

η̃+
c,L = C

(
I1

(
κR̃c

)
K1

(
κR̃c

) K0 (κr̃ ) + I0 (κr̃ )

)
, η̃+

c,L � 1 [A2]

where I and K are the modified Bessel functions of the first and second kind, respectively
and C is the constant, which is determined from the condition η̃+

c,L (1) = R̃1. This yields

η̃+
c,L = I1

(
κR̃c

)
K0 (κr̃ ) + K1

(
κR̃c

)
I0 (κr̃ )

I1
(
κR̃c

)
K0

(
κR̃1

) + K1
(
κR̃c

)
I0

(
κR̃1

) [A3]

which replaces Eq. 22. The solution for the short-range problem remains the same, Eq. 19.
Continuity of the first derivatives of the short- and long-range solutions at r̃ = R̃1 gives
an equation

I1
(
κR̃c

)
K1

(
κR̃1

) − K1
(
κR̃c

)
I1

(
κR̃1

)
I1

(
κR̃c

)
K0

(
κR̃1

) + K1
(
κR̃c

)
I0

(
κR̃1

) = 2

κR̃1

(
1 − A tan

[
A ln

(
κR̃1

B

)])
[A4]

which replaces Eq. 24. Thus, the full solution of the problem is now given by

η̃+
c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln

{
4A2

κ2r̃2

(
1 + tan2

[
A ln

(
κr̃

B

)])}
, R̃a ≤ r̃ ≤ R̃1

I1
(
κR̃c

)
K0 (κr̃ ) + K1

(
κR̃c

)
I0 (κr̃ )

I1
(
κR̃c

)
K0

(
κR̃1

) + K1
(
κR̃c

)
I0

(
κR̃1

) , R̃1 < r̃ ≤ R̃c

[A5]

where A, B and R̃1 are determined by the system of Equations 23, A4 and 25.

Appendix B: Proof that the Parameter A is Bounded

Solving Eq. 24 for tan
[
A ln

(
κR̃1/B

)]
, and substituting the result into Eq. 23, we

come to

4A2

κ2 R̃2
1

+ 4

κ2 R̃2
1

(
1 − κR̃1 K1

(
κR̃1

)
2K0

(
κR̃1

)
)

= exp(1) [B1]

Let η̃+,0
c → ∞ and suppose that A → ∞. Clearly, in order for Eq. B1 be satisfied,

R̃1 must also tend to infinity, otherwise the first term on the left side would be infinite.
With κR̃1 → ∞, we have K1

(
κR̃1

)
/K0

(
κR̃1

) = 1, the second term on the left side of
Eq. B1 tends to zero, and from Eq. B1 it follows that

2A

κR̃1
=

√
exp(1), A ∼ R̃1 → ∞ [B2]

Using this relation in Eq. 27, we find

B = κR̃1, A ∼ R̃1 → ∞ [B3]

Finally, using this B in Eq. 25, we get

ln

(
4A2

κ2 R̃2
a

)
+ ln

(
1 + tan2

[
A ln

(
R̃a

R̃1

)])
= η̃+,0

c [B4]

With η̃+,0
c → ∞, the minimal positive root A of this equation always exists in the range

0 < A <
π

2 ln
(
R̃1/R̃a

)
as R̃1 > R̃a . Thus, A is bounded, which contradicts to the assumption A → ∞. From
Eq. B1 it follows, that if A is bounded, R̃1 is also bounded.

List of Symbols

˜ Marks dimensionless variables
A Dimensionless constant
B Dimensionless constant
b Tafel slope, V
Eeq Equilibrium half-cell potential, V
F Faraday constant
G Dimensionless constant in Eq. 30
J Mean current density in the working domain, A cm−2

ja Local proton current density on the anode side, A cm−2

jc Local proton current density on the cathode side, A cm−2

jhy HOR exchange current density, A cm−2

j0
hy HOR exchange current density in the center of the working

domain, A cm−2

j0
ox ORR exchange current density, A cm−2

Lgap Gap length between the edge of the working electrode and
the reference electrode, cm

L1,x Distance from the straight anode edge, to the point where
η̃+

c = 1, cm
L1,r Radial distance from the circular anode edge, to the point

where η̃+
c = 1, cm

lm Membrane thickness, cm
R Gas constant
R1 Radial position where η̃+

c = 1, cm
Ra Anode radius, cm
Rc Cathode radius, cm
r Radial position, cm
y Coordinate through the membrane, cm

Greek

α Transfer coefficient of the ORR rate-determining step
η Local overpotential, V
η+,0

c Positive cathode overpotential at r = 0, V
κ Dimensionless Debye parameter, Eq. 13
λD Debye length, cm, Eq. 14
σm Membrane ionic conductivity, �−1 cm−1

� Membrane potential, V
�+ Positive membrane potential, V
�+,∞ Positive membrane potential at r → ∞, V
φ Carbon phase (electrode) potential, V

Subscripts

1 Radial position, where η̃+
c = 1

a Anode
c Cathode
H O R Hydrogen oxidation reaction
hy Hydrogen
m Membrane
O R R Oxygen reduction reaction
ox Oxygen
r System with radial geometry
re f Reference electrode
t Catalyst layer
x System with the straight anode edge

Superscripts

+ Positive value
0 Center of the working electrodes, r̃ = 0
∞ Infinite radial distance
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