

Serbia | Belgrade \| June $24^{\text {th }}-27^{\text {th }} \mid$ www.mongeometrija.org

UNDER THE AUSPICES OF:

Republic of Serbia - Ministry of Science and Technological Development
Faculty of Architecture in Belgrade
Faculty of Mechanical Engineering in Belgrade
Faculty of Civil Engineering in Belgrade

Faculty of Forestry in Belgrade
Faculty of Transport and Traffic Engineering in Belgrade
Faculty of Applied Arts in Belgrade

$25^{\text {th }}$ National and $2^{\text {nd }}$ International Scientific Conference

 moNGeometrija 2010Publisher | Izdavač
Faculty of Architecture in Belgrade Arhitektonski fakultet u Beogradu

Serbian Society for
Geometry and Graphics
Srpsko udruženje za
geometriju i grafiku
SUGIG
Editor-in-Chief | Glavni urednik
Ph. D. Miodrag Nestorović

Title of Publication
PROCEEDINGS | BILTEN
Reviewers| Recezenti
Ph. D. Miodrag Nestorović
Ph. D. Aleksandar Čučaković
Ph. D. Marija Obradović
Ph. D. Branislav Popkonstantinović
M. Sc. Magdalena Dimitrijević
M. Sc. Slobodan Mišić
Co-Editor \| Zamenik urednika
M. Sc. Magdalena Dimitrijević

Text formatting
Miljan Radunović, Ph. D. Candidate

ISBN 978-86-7924-040-8
Numbers of copies printed | Tiraž: 100
Printing | Štampa:
All rights reserved. No parts of this publication may be reprinted without either the prior written permission of the publisher.

Izdavač zadržava sva prava.
Reprodukcija pojedinih delova ili celine nije dozvoljena.

Conference Organizers

Main Organizers

Faculty of Architecture, Belgrade
Faculty of Mechanical Engineering, Belgrade

Co-organizers

Faculty of Civil Engineering, Belgrade
Faculty of Forestry, Belgrade
Faculty of Transport and Traffic Engineering, Belgrade
Faculty of Applied Arts, Belgrade

Conference Committees

Executive Committee

Ph.D. Miodrag Nestorović, Full professor, Faculty of Architecture, Belgrade Ph. D. Branislav Popkonstantinović, Associate professor, Faculty of Mechanical Engineering, Belgrade
Ph. D. Biserka Marković, Full professor, Faculty of Civil Engineering and Architecture, Niš
Ph. D. Aleksandar Čučaković, Associate professor, Faculty of Civil Engineering, Belgrade
Ph. D. Radovan Ştulić, Full professor, Faculty of Technical Sciences, Novi Sad Ph.D. Ljubica Velimirović, Full professor, Faculty of Science and Mathematics, Niš

Supervisory Committee

Ph. D. Miodrag Stoimenov, Associate professor, Faculty of Mechanical Engineering, Belgrade
M. Sc. Zorana J eli, Lecturer Assistant, Faculty of Mechanical Engineering, Belgrade
Ph.D. Ratko Obradović, Associate professor, Faculty of Technical Sciences, Novi Sad
Ph.D. Jelisava Kalezić, Associate professor, Faculty of Civil Engineering, Podgorica, Montenegro
M. Sc. Marija Jevrić, Lecturer Assistant, Faculty of Civil Engineering, Podgorica, Montenegro
Ph.D. Ljiljana Petruševski, Associate professor, Faculty of Architecture, Belgrade
Ph.D. Dragan Petrović, Associate professor, Faculty of Mechanical Engineering, Belgrade
Dr Mirjana Devetaković Radojević, Docent, Faculty of Architecture, Belgrade M. Sc. Gordana Dukanović, Lecturer Assistant, Faculty of Forestry, Belgrade Maja Petrović, architect, Faculty of Transport and Traffic Engineering, Belgrade

Organizational Committee

Ph.D. Vladimir Mako, Dean of the Faculty of Architecture, Belgrade
Ph. D. Dorđe Vuksanović, Dean of the Faculty of Civil Engineering, Belgrade Ph.D. Milorad Milovančević, Dean of the Faculty of Mechanical Engineering, Belgrade
Ph. D. Milan Medarević, Dean of the Faculty of Forestry, Belgrade
Ph.D. Slobodan Gvozdenović, Dean of the Faculty of Transport and Traffic Engineering, Belgrade
Ph.D. Vladimir Kostić, Dean of the Faculty of Applied Arts, Belgrade
Ph. D. Aleksandar Čučaković, Associate professor, Faculty of Civil Engineering, Belgrade
Ph.D. Branislav Popkonstantinović, Associate professor, Faculty of Mechanical Engineering, Belgrade
Ph. D. Marija Obradović, Docent, Faculty of Civil Engineering, Belgrade M. Sc. Magdalena Dimitrijević, Lecturer assistant, Faculty of Civil Engineering, Belgrade
M. Sc. Slobodan Mišić, Lecturer assistant, Faculty of Civil Engineering, Belgrade
M. Sc. Biserka Nestorović, Lecturer assistant, Faculty of Forestry, Belgrade M. Sc. Biljana Jović, Lecturer assistant, Faculty of Forestry, Belgrade

Scientific Review Committee

Professor Đorđe Zloković, Member of Serbian Academy of Sciences and Arts, Department of Technical Sciences, Belgrade
Ph. D. Miodrag Nestorović, Full professor, Faculty of Architecture, Belgrade
Ph. D. Hellmuth Stachel, University of Technology Vienna, Austria
Ph. D. Gunter Weiss, Technical University of Dresden, Germany
Ph.D. Emil MoInar, Technical University of Budapest, Hungary
Ph.D. Aleksander Dvoretsky, Kiev National University of Building and Architecture, Ukraine
Ph. D. Milena Stavrić, TU Graz, Institut für Architektur und Medien, Austria Ph.D. Aleksandar Veg, Full professor, Faculty of Mechanical Engineering, Belgrade
Ph. D. Aleksandar Čučaković, Associate professor, Faculty of Civil Engineering, Belgrade
Ph.D. Natasa Danilova, Faculty of Civil engineering, Architecture and Geodesy, Sofia, Bulgaria
Ph. D. Carmen Marza, Technical University of Cluj-Napoca, Romania
Ph.D. Sonja Gorjanc, Faculty of Civil Engineering, Zagreb, Croatia, Hrvatska
Ph. D. Marija Obradović, docent, Faculty of Civil Engineering, Belgrade
M. Sc. Branko Pavić, Full professor, Faculty of Architecture, Belgrade

Ph.D. Ivana Marcikić, Full professor, Faculty of Applied Arts, Belgrade
Ph. D. Hranislav Anđelković, Retired full professor, Faculty of Civil Engineering and Architecture, Niš
Ph.D. Miroslav Marković, Retired full professor, Faculty of Civil Engineering and Architecture, Niš
Ph.D. Lazar Dovniković, Retired full professor, Faculty of Technical Sciences, Novi Sad

Topics

Theoretical geometry, exposed by synthetical or analytical methodology:

* Descriptive and constructive geometry
* Projective geometry
* Central projection, Perspective and Restitution
* Cartography
* Theory of Polyhedra
* Fractal geometry

Geometry and Graphics applied in Engineering and Architecture:

* Engineering graphics
* Computational geometry (algorithms, computer modeling of abstract geometrical objects, structures, procedures and operations)
* Computer Aided Design and Drafting; Geometric and Solid Modeling;

Product Modeling; Image Synthesis; Pattern Recognition; Digital Image
Processing; Graphics Standards; Scientific and Technical Visualization

* Kinematics Geometry and Mechanisms
* Applications of Polyhedra theory
* Fractals
* Computational restitution
* Stereoscopy and Stereography
*Virtual reality

Geometry applied in Visual Arts and Design:

*Theory and application of Visual Aesthetics

* Geometrical and mathematical criteria of Aesthetic values
* Perception and meaning of colors
* Geometrical forms applied in Visual Arts
* Optical illusions and its applications

History of Geometry:

* Famous scientist and their contribution
* Origin, derivation and development of particular geometrical branches
* History of geometrical education

Education and didactics:

* Descriptive Geometry and Graphics Education, including the Reform of Education
* Education Technology Research
* Multimedia Educational Software Development
* Virtual Reality Educational Systems
* Educational Software Development Tools Research and so on

FORMING THE CUPOLAE WITH CONCAVE POLYHEDRAL SURFACES BY CORRUGATING A FOURFOLD STRIP OF EQUILATERAL TRIANGLES

Slobodan Mišič ${ }^{74}$
Marija Obradović ${ }^{75}$

Abstract

RESUME

The cupolae with concave polyhedral surfaces consist of: two regular polygons, n-gone and 2 n -gone in parallel planes, interconnected by an envelope constituted of series of equilateral triangles. The paper describes cupolae which originate by corrugating of a fourfold strip of equilateral triangles, forming thereby the envelope of a cupola. In this manner, a non-convex polyhedron is emerged. Such a method of corrugating the envelope, allows the solutions for generating cupolae with base polygon which number of sides exceedes $n=10$, which was the maximal number of sides for cupole with the envelope consisted of twofold strip of equilateral triangles. By analyzing the elements of these polyhedra and by help of their paper models, we find geometric constructions and projection procedures by which it is possible to graphically display the cupolae.

Key words: cupola, concave polyhedral surface, envelope, model

[^0]
1. INTRODUCTION

Convex polyhedron is a polyhedron such that meets the condition that each segment that connects any two points on the inner surfaces of the polyhedron, itself fully belongs to its interior. Otherwise polyhedron is non-convex or concave. Therefore, the convex polyhedra are those whose sides belong to planes that do not intersect the interior of the solid, so that they form a solid whose every vertex is protruding outwards. At the contrary, concave polyhedra include sides that belong to the planes that intersect the interior of the solid, ie, there are at least two adjacent sides of the solid between which the dihedral angle is greater than 180°. The envelope of the concave polyhedron is a concave polyhedral surface.

Polyhedral cupola is a polyhedron composed of two regular polygons: n-and $2 n$-gons in parallel planes, associated with alternating series of regular polygons: triangles and squares. The cupolae formed by corrugating the envelope consisting of two series of equilateral triangles have been already described [1], and are therefore called concave cupolae of the second sort, whereat it is accepted that the sort of the cupola is dictated by the number of triangles' stripes in the envelope's net. If the envelope's net consists of three rows of equilateral triangles, the obtained concave cupola will be of the Third Sort [4].

A cupola with the concave polyhedral surface, obtained by corrugating a fourfold strip of equilateral triangles are actually concave cupola of the Fourth Sort, and so far they have not been studied in constructively geometrical manner.

The research began with making a paper model of pentadecagon based cupola, and that base was retained throughout the further research. The paper model was a practical experiment, and at the same time, it was the evidence that it is possible to construct a cupola of the Fourth Sort.

2. STARTING ASSUMPTIONS

In Figure 1, it is given the layout of the envelope's net, which consists of the fourfold strip of equilateral triangles, and the basic polygons: pentadecagon and its parallel triacontagon (2×15-sided polygon). By folding and joining the corresponding edges of the net,
we obtain a closed envelope, a ring fragment of concave polyhedral surface.

Figure 1: The Net of the Envelope of the Cupola, Top View and Front View of the Cupola's Envelope

The initially chosen pentadecagon is taken as a base for further construction. Let us adopt that it lies in the horizontal plane ($\mathbf{x}-\mathbf{y}$), so to see its original size in the first orthogonal projection. Further on, let us suppose that the adopted base polygon lies above the parallel plane of the double sided brim polygon. The basic and the brim polygons, as seen in the first orthogonal projection, are concentric, i.e. the centers of the circumscribed (and inscribed) circles of these polygons will be seen as merged because they will be situated on the vertical line - the axis of the polyhedral solid.

The construction of $\mathbf{2 n}$-sided regular polygon, for the assigned \mathbf{n}-sided regular polygon, is well known (Euclid 300.B.C.). It is enough just for the radius of the circle circumscribed about an n-sided polygon to be transferred to perpendicular on a side of the polygon, from one of its vertices. The resulting point is the newly created vertex of the $\mathbf{2 n}$-sided polygon, while the center of the circumscribed circles is a
common for both of the starting \mathbf{n}-sided polygon, and the brim $\mathbf{2 n}$ sided polygon.

The Figure 2 shows the unit cell ABCDEF participating in the formatting of cupola's lower belt, closer to the brim of the $\mathbf{2 n}$-gon. The unit cell ABCDEF consists of $\mathbf{6}$ identical equilateral triangles formed around a common vertex, labeled as $\mathbf{O}_{\mathbf{1}}$. By radial array of these identical cells around the axis (k) and by their linking with additional equilateral triangles in the bottom zone, we get a closed geometric entity. On the unit cell of the lower belt, there are attached EDGHKL cells, also made of 6 equilateral triangles arranged around common vertex, marked as \mathbf{O}_{2}.

Figure 2: An Unit Cell of the Cupola - the Base and 3D model of Spatial Hexahedrons ABCDEF and EDGHKL

In order to define the desired parameters of the surface, it is necessary to set the initial conditions that such a spatial structure must fulfill:

1. The edge $\mathbf{A B}$ belongs to the horizontal plane ($\mathbf{x} \mathbf{- \mathbf { y }) \text { of the }}$ triacontagon and this is the plane we adopt for the basic horizontal plane. 2. The edge ED is parallel to the edge $\mathbf{A B}$ and belongs to the unit cells of lower and upper belt of the concave cupola.
2. The edge $\mathbf{H K}$ belongs to the horizontal plane of pentadecagon which is located above the basic plane.
3. The plane \boldsymbol{a} is the symmetral plane of the edge $\mathbf{A B}$ and passes tgrough the axis \mathbf{k}, which connects the centroids of the bases of the pentadecagon and triacontagon.
4. The plane \boldsymbol{B} is parallel to the plane \boldsymbol{a} and passes through the vertices \mathbf{B}, \mathbf{D} and \mathbf{H}.
5. The plane \boldsymbol{y} is the symmetral plane of the contiguous edge $\mathbf{B X}$ of the brim $\mathbf{3 0}$-gon, and also passes through the axis \mathbf{k}.
6. In the plane $\boldsymbol{\gamma}$, we find vertices $\mathbf{C}, \mathbf{G}, \mathbf{H}$ and an isolated vertex \mathbf{Q} which do not belong to the basic cells, the spatial hexagons ABCDEF and EDGHKL.
7. Spatial hexagons EDGHKL and ABCDEF are planary symmetric with respect to the plane \boldsymbol{a}.
8. In order to determine the solid's height, we set the spatial hexagons EDGHKL and ABCDEF to move around the edge AB, which would be fixed axis of rotation.

3. THE CONSTRUCTIVE-GEOMETRICAL GENERATING OF THE CUPOLA

In the Figure $\mathbf{3}$ we adopt the edge $\mathbf{A B}$ and the initial position of the first projection of the vertex $\mathbf{O}_{\mathbf{1}}$, the central vertex of the spatial hexagon ABCDEF. The vertex $\mathbf{O}_{\mathbf{1}}$ lies in the plane \boldsymbol{a}. In the vertex $\mathbf{O}_{\mathbf{1}}$ it is located the center of the sphere $\mathbf{M}_{\mathbf{1}}$, which radius equals the edge $\mathbf{A B}(\mathbf{A B}=\mathbf{a})$ of an equilateral triangle. The vertices of the spatial hexagon ABCDEF will all lie on the sphere \mathbf{M}_{1}.

The vertex $\mathbf{0}_{\mathbf{1}}$ is of the height $\mathbf{h}_{\mathbf{1}}$ (in relation to the plane $\mathbf{x}-\mathbf{y}$ of the $\mathbf{3 0} \mathbf{- g o n}$). The height \mathbf{h}_{1} is determined by the vertex's $\mathbf{0}_{\mathbf{1}}$ location on the plane \boldsymbol{a}. The triangle $\mathbf{A B O}_{1}$ rotates around the edge $\mathbf{A B}$ by the circle \mathbf{k}_{1} whose radius equals the altitude of the equilateral triangle of the edge \mathbf{a} : $\mathbf{r}=\mathbf{a} \sqrt{3 / 2}$. This cycle of movement of the point $\mathbf{O}_{\mathbf{1}}$ is in the extra projection plane ($\boldsymbol{a}^{\boldsymbol{a}}$) seen in the real size.

The plane \boldsymbol{y} intersects the sphere $\mathbf{M}_{\mathbf{1}}$ by the circle $\mathbf{c}_{\mathbf{1}}$. Height of the center of the circle \mathbf{c}_{1} is equal to the height of the adopted vertex $\mathbf{0}_{\mathbf{1}}$ - the center of the sphere. In the extra projection plane ($\boldsymbol{\gamma} \boldsymbol{y}^{\boldsymbol{y}}$) we see the real size and the position of the circle \mathbf{c}_{1}. On the circle \mathbf{c}_{1}, there lies the vertex \mathbf{C}, which lies simultaneously on the sphere $\mathbf{M}_{\mathbf{1}}$ and on the plane \boldsymbol{y}.

Figure 3: The Construction of the Vertices' Heights of the Spatial Hexahedron ABCDEF for the Adopted Position of the Vertex $\mathbf{O}_{\mathbf{1}}$

In the plane $\boldsymbol{\gamma}^{\boldsymbol{\gamma}}$ we see the circle \mathbf{k}_{2}, of the radius $\mathbf{r}=\mathbf{a} \sqrt{3 / 2}$, which will be the circular trajectory of the vertex \mathbf{C} rotating around the edge $\mathbf{B X}$. In the intersection of the circle \mathbf{k}_{2} and the circle \mathbf{c}_{1} we obtain two possible solutions for the position of the vertex \mathbf{C}. We take the radius of the circle \mathbf{c}_{1} from the first projection (top view), where the circle \mathbf{c}_{1} is seen as a segment. We adopt just one of the solutions, depending on the way we corrugate the envelope of the cupola. There would exist two ways of folding the net, so there are the two solutions for the position of the vertex \mathbf{C}.

In the vertex \mathbf{C}, we set the center of the new sphere $\mathbf{M}_{\mathbf{2}}$ of radius $\mathbf{r}=\mathbf{a}$. The plane \boldsymbol{B} intersects the sphere $\mathbf{M}_{\mathbf{2}}$ by the circle $\mathbf{c}_{\mathbf{3}}$, and the sphere $\mathbf{M}_{\mathbf{1}}$ by the circle \mathbf{C}_{2}. In the additional projection plane ($\boldsymbol{B}^{\boldsymbol{B}}$) we see the real size of the circles \mathbf{c}_{3} and \mathbf{c}_{2}. The height of the center \mathbf{S} of the circle $\mathbf{c}_{\mathbf{2}}$ equals the height of the vertex $\mathbf{0}_{\mathbf{1}}$. The height of the center \mathbf{N} of the circle $\mathbf{c}_{\mathbf{3}}$ is equal to the height of the vertex \mathbf{C}. The intersection of circles \mathbf{C}_{2} and $\mathbf{C}_{\mathbf{3}}$ obtains the position of the vertex \mathbf{D}. The second section point of the circles $\mathbf{C}_{\mathbf{2}}$ and $\mathbf{c}_{\mathbf{3}}$ is the point \mathbf{B}, which is the graphic control of the whole process of determining vertices \mathbf{C} and \mathbf{D}.

In order to determine the position of the vertices of the spatial hexagon EDGHKL (Figure 4) we set the sphere $\mathbf{M}_{\mathbf{3}}$ in the vertex \mathbf{D}. the
sphere radius is always $\mathbf{r}=\mathbf{a}$. On the sphere $\mathbf{M}_{\mathbf{3}}$ lie the vertices $\mathbf{G}, \mathbf{0}_{\mathbf{2}}, \mathbf{E}$, $\mathbf{O}_{\mathbf{1}}, \mathbf{C}$, and concave-periphery vertex \mathbf{Q}. The plane $\boldsymbol{\gamma}$ intersects the sphere $\mathbf{M}_{\mathbf{3}}$ by the circle $\mathbf{c}_{\mathbf{4}}$ centered at point \mathbf{P}. In the additional projection plane ($\boldsymbol{\gamma}^{\boldsymbol{V}}$) we see the real size of circle \mathbf{c}_{4}. The height of the central point \mathbf{P} is equal to the height of the vertex \mathbf{D}.

Figure 4: The Construction of the Heights of Spatial Hexahedron EDGHKL Vertices, and of Peripheral Vertex \mathbf{Q}

In the vertex \mathbf{C} we set the sphere \mathbf{M}_{4} of radius $\mathbf{R}=\mathbf{a}$. The plane $\boldsymbol{\gamma}$ intersects the sphere \mathbf{M}_{4} by the circle \mathbf{c}_{5}. The center of the circle \mathbf{c}_{5} is the point \mathbf{C} which height we have already defined. The intersection of circles \mathbf{C}_{4} and \mathbf{c}_{5}, in the projection plane ($\boldsymbol{y}^{\boldsymbol{\gamma}}$) will provide the solution to the position of the point \mathbf{Q}. Again, the two solutions will occur, one of which will be adopted, according to pre-set conditions.

In the vertex \mathbf{Q} we set the sphere $\mathbf{M}_{\mathbf{5}}$, which intersects the plane \boldsymbol{y} by the circle \mathbf{c}_{6}. On the sphere $\mathbf{M}_{\mathbf{5}}$ there are situated vertices \mathbf{G}, \mathbf{D}, and \mathbf{C}. The vertices \mathbf{G} and \mathbf{C} belong to both the spheres $\mathbf{M}_{\mathbf{3}}$ and \mathbf{M}_{5}. In the projection plane ($\boldsymbol{y}^{\boldsymbol{V}}$), at the intersection points of the circles \mathbf{c}_{4} and \mathbf{c}_{6} we obtain the position of the vertex \mathbf{G}. The second intersection point of the circles \mathbf{C}_{4} and \mathbf{c}_{6} is the point \mathbf{C}, which is the graphic control of the whole process of determining the vertices \mathbf{Q} and G.

The vertex $\mathbf{O}_{\mathbf{2}}$ is located both on the sphere $\mathbf{M}_{\mathbf{3}}$ (centered in the vertex \mathbf{D}) and on the sphere $\mathbf{M}_{\mathbf{6}}$ (centered in the vertex \mathbf{G}). The plane \boldsymbol{a} intersects the sphere $\mathbf{M}_{\mathbf{3}}$ by the circle \mathbf{c}_{8}, and the sphere $\mathbf{M}_{\mathbf{6}}$ by the circle \mathbf{c}_{9}. The center of the circle $\mathbf{c}_{\boldsymbol{9}}$ is the point \mathbf{V}. The height of the
point \mathbf{V} is equal to the height of the vertex \mathbf{G}. The center of the circle $\mathbf{c}_{\mathbf{8}}$ is the point \mathbf{T}, which is located on $\mathbf{D E}$ and its height is equal to the height of vertex \mathbf{D}. In the projection plane ($\boldsymbol{a}^{\boldsymbol{a}}$) we see the real size of the circles \mathbf{c}_{8} and \mathbf{c}_{9} in which intersections we find the vertex $\mathbf{O}_{\mathbf{2}}$. We obtain the two solutions, and choose the one that meets the initial requirements.

The vertex \mathbf{H} is obtained in the intersection point of the sphere \mathbf{M}_{7} (centered in the vertex $\mathbf{O}_{\mathbf{2}}$) and the sphere $\mathbf{M}_{\mathbf{6}}$ (centered in the vertex \mathbf{G}), and the intersection of circles \mathbf{c}_{10} and \boldsymbol{c}_{9}. The second intersection point of the circles \mathbf{c}_{10} and \mathbf{c}_{9} is the point \mathbf{D}. In this way we found all the vertices of the spatial patterns, but without meeting the conditions for the vertices of \mathbf{H} and \mathbf{K} to belong to the pentadecagon, whose center of the circumscribed circle is merged with the center of the circle circumscribed around the basic triacontagon of the edge AB.

In Figure 5 and 6 we repeat the procedure several times in order to get an approximation of the trajectory of the vertex \mathbf{H}, depending on the position of the originally adopted vertex $\mathbf{A}_{\mathbf{1}}$. Respecting the initial assumptions, the vertex $\mathbf{O}_{\mathbf{1}}$ is always chosen to belong to the plane a and above the horizontal plane of starting triacontagon.

Figure 5: Determination of the Trajectory of Vertex D by changing the position of the vertex O_{1} - The Center of the Spatial Hexahedron ABCDEF

Figure 6: Determination of the Trajectory of Vertex H by changing the position of the vertex O_{1} - The Center of the Spatial Hexahedron ABCDEF

By intersection of the trajectory of the vertex \mathbf{H} and vertical plane (v), Figure 7, where the required position of vertex \mathbf{H} is expected, we get the final position of the vertices of \mathbf{H}. Vertical plane (\mathbf{v}) is assigned by the position of the point \mathbf{H} as a vertex of the initial pentadecagon.

Figure 7: Construction of the Position and Height of All the Vertices of the Pentadecagonal Based Cupola's Unit Cell

With the known position of the vertex \mathbf{H}, by the reverse constructive steps, we obtain the remaining vertices of the spatial hexagonal unit assemblies.

1. $a \cap M_{8}(\mathrm{H}, \mathrm{a})=\mathrm{C}_{12}$

The intersection of the plane \boldsymbol{a} and the sphere $\mathbf{M}_{\mathbf{8}}$ (the sphere's center point is \mathbf{H} and its radius is equal to the edge (a) of an equilateral triangle) is the circle \mathbf{c}_{12}. The intersection of the circle \mathbf{c}_{12} and the trajectory of the vertex $\mathbf{O}_{\mathbf{2}}$ we obtain the height of the vertex \mathbf{O}_{2}.
2. $\quad \gamma \cap M_{7}\left(\mathrm{O}_{2} ; \mathrm{a}\right)=\mathrm{c}_{13}, \quad \gamma \cap \mathrm{M}_{8}(\mathrm{H} ; \mathrm{a})=\mathrm{c}_{14}$
$\mathrm{C}_{13} \cap \mathrm{C}_{14}=\mathrm{G}$
3. $\quad B \cap M_{9}(G ; a)=C_{15}, \quad B \cap M_{7}\left(O_{2} ; a\right)=c_{16}$ $\mathrm{C}_{15} \cap \mathrm{C}_{16}=\mathrm{D}$
4. $\quad \gamma \cap M_{10}(D ; a)=C_{17}, \quad \gamma \cap M_{9}(G ; a)=C_{18}$ $\mathrm{C}_{17} \cap \mathrm{C}_{18}=\mathrm{Q}$
5. $\quad \gamma \cap M_{11}(B ; a)=C_{19}, \quad C_{19} \cap C_{17}=C$
6. $a \cap M_{10}(D ; a)=C_{20}, \quad a \cap M_{11}(B ; a)=C_{21}$ $c_{20} \cap \mathrm{c}_{21}=\mathrm{O}_{1}$
In the presented procedure for graphically determining the vertices of the spatial hexagons EDGHKL and ABCDEF, we obtain two solutions for the position of the vertices $\mathbf{H}, \mathbf{O}_{2}, \mathbf{C}$ and $\mathbf{O}_{\mathbf{1}}$. We adopt one of the solutions, according to pre-set initial conditions. The spatial structure of two hexagons ABCDEF and EDGHKL, with a common edge DE is plane symmetric with respect to the plane \boldsymbol{a}. In this manner, we found the location and height of all the vertices of unit cells of the cupola with concave polyhedral surfaces formed by corrugating the fourfold strip of equilateral triangles. The whole cupola is presented in the Figure $\mathbf{8}^{76}$.

[^1]

Figure 8: 3D Model of the Pentadecagonal Based Cupola

4. CONCLUSIONS

In this paper we have shown the graphical-constructive method for finding the positions of the vertices of a complex, concave polyhedron - the concave cupola with pentadecagonal base. This method can be applied to other bases ($\mathrm{n}<21$), which makes it unique process for obtaining the concave cupola of the Fourth Sort. Since these polyhedra consist of regular polygons, and their envelopes exclusively from equilateral triangles, it makes these structures very inspiring to consider in the possible application in architecture and construction, and in other branches of engineering, as well.

ACKNOWLEDGEMENTS:

The authors are supported in part by the project of MNTRS No. 16009.

REFERENCES

1. M. Obradović: Konstruktivno - geometrijska obrada toroidnih deltaedara sa pravilnom poligonalnom osnovom, Doktorska disertacija, Arhitektonski fakultet Univerziteta u Beogradu, Beograd, 2006.
2. M. Obradović: Istraživanje geometrijskih pravilnosti šesdesetostranog toroidnog deltaedra, XXII Jugoslovensko savetovanje za nacrtnu geometriju i inženjersku grafiku MonGEometrij a 2004, Zbornik radova, Beograd, 2004, str. 133-145.
3. M. Obradović, S. Mišić: Concave regular faced cupolae of second sort, Proceedings of XIII ICECGDG, Dresden, 2008. str.
4. S. Mišić, M. Obradović: Konkavna kupola sa hendekagonalnom osnovom, XXIV Jugoslovensko savetovanje za nacrtnu geometriju i inženjersku grafiku MonGEometrija 2008, Zbornik radova, Vrnjačka Banja, 2008, str.
5. Hu R.: Constructing a Heptagon, Nexus Network Journal / Architecture and Mathematics, Vol.3. Summer 2001.

[^0]: ${ }^{74}$ Teaching Assistant, Faculty of Civil Engineering, Belgrade, Serbia
 ${ }^{75}$ Docent, PhD, Faculty of Civil Engineering, Belgrade, Serbia

[^1]: ${ }^{76}$ The 3D model of the cupola is provided by application of AutoCAD software package.

