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Abstract

Practical calculations for infinite lattices are limited to finite systems, usually supercells with
periodic boundary conditions. We intend to study such supercells by systematically enumerat-
ing all inequivalent choices of a given size using the Hermite normal form. Using the symmet-
ries of the underlying lattice, we eliminate supercells that are equivalent by symmetry. With
the help of integer matrix methods like the Lenstra-Lenstra-Lovaz (LLL) algorithm, we reduce
given basis to its most compact form and analyze its properties using the criteria given by Betts
and collaborators. We finally turn to the properties in k-space and investigate the tight-binding
states on the clusters using periodic, antiperiodic, and open boundary conditions.
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Chapter 1

Introduction

In order to understand the properties of a material, simulating an infinite lattice system has
been a challenge in the electronic structure theory. One of the approach is by truncating an
infinite lattice into a finite size of cluster. However, this introduces a large fraction of surface
atoms. For example, in a 10 x 10 x 10 cluster, 488 of the 1000 atoms are on the surface. One
may remove this surface effects by imposing periodicity. Hence, the electrons that passing to
the border will enter back in the opposite side. By construction, we have an infinite number
of electrons. However, since the number of electrons inside the cell is limited to N, only N
electrons have independent degrees of freedom. Then imposing periodicity basically will sup-
press the fluctuation. We can not avoid periodicity in order to have infinite lattice, but we may
choose good supercells that are useful for extrapolating the properties of the infinite lattice.

There are infinitely many choices of supercells. One might try to find the supercells that de-
scribe a property of an infinite lattice by trying out many supercells, but this is very ineffective.
However, we might try to find some properties of a supercell that may owned by the infinite
lattice.

Let us approach this problem from the 2-dimensional lattices, e.g. the calculation of quantum
spin systems that has been frequently discussed in literature as a topic of highly correlated
electron system. In these calculations, all supercells were based on square shapes until Haan
et al. [1] showed that non-squares supercells can be also good to use. Latter, Betts et al. [2, 3]
initiated some works classifying the goodness of supercells by introducing some criteria that
may grade them. They introduced some geometrical properties and topological properties of
a supercell that may quantify the divergence of a supercell to the infinite lattice. Here we
elaborate the criteria of good supercells introduced by Betts et al. [2] 3]].

One might ask the number of supercells that should be tried in order to find out the best ones.
Fortunately there are finite number of supercells that contains N lattice points. There might be
infinitely many, but almost all of them are equivalent to each other. For a given number of N,
we list all the unique supercells then we grade each of them by using Betts criteria. This will
be very helpful for guiding the choice of supercells for 2-dimensional calculations.






Chapter 2

Lattice and Sublattice

2.1 Lattice

A d-dimensional lattice is an infinite set of points defined by all linear combinations over Z of
a set of linearly independent vectors a; € R?. The vectors a; are said to generate or span lattice
L and are called primitive vectors of L.

=1

d
L= {rn],n_,nd = Zniai

n; € Z} (2.1)

We arrange the (column) vectors a; into matrix A = (aj, ay,...). For instance, for the case of
d = 3 the primitive vectors take form of a 3 x 3 matrix

aj, 4z, as,
A= (a1,a2,a3) = aly azy a3y . (2.2)
a;, a2, ag,

Thus, any point r, € RY in lattice £ can be expressed as matrix-vector product r, = An where
n € 79, Vector n contains the indices of the lattice points, and n can be considered as the
representation of a lattice point in basis A, in other words A maps lattice points from Z into
R?. For example, Figure 2.1/ shows how matrix A maps from index space into real space. In
practice we can work either in coordinate space or with its integer indices, nevertheless there
are many advantages to work with integer matrices in the sense of math and programming.

Likewise, if an arbitrary point r = Af, then the coordinate in basis A is f = A~1r. Vector
f is not an integer vector unless r is in lattice £. It is called fractional coordinates of r. The
primitive lattice cell defined by A is the set of all points r with fractional coordinate f € [0,1).
Its determinant | det(A)| has a natural geometric interpretation as volume of parallelepiped in
RY, with edges aj, ay,...,a;. Thence, it is the volume of primitive lattice cell V, = |det(A)|.
An example of a primitive cell in two dimensions is illustrated in Figure 2.2| with its volume
indicate with the grey area.

However, the primitive vectors A are not the only primitive vectors that span lattice £. We
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Figure 2.1: Matrix A maps integer points on the left side into lattice points on the right side.

Figure 2.2: Example of determinant representation primitive lattice cell.

can construct other primitive vectors A by adding to primitive vector a; any integer multiple
of aj,;, such that | det(A)| = |det(A)|. In the trivial case, for d = 1 the lattice £ is generated by
a nonzero real number a consisting of integer multiples a. In this case, the only other possible
primitive vectors is & = —a. If d > 2, then there can be infinitely many A.

If aj,ay,...,a; and a;,4,,...,3; are two sets of primitive vectors that span the same lattice
L, thence every a; belongs to the lattice with primitive vectors a;, ay, ..., a, likewise every a;
belongs to the lattice with primitive vectors aj, ay, ..., a;. It follows that

n n
aj =) myd; & =) mya i=12,...4d, (2.3)
=1

Where both M = m;j and M = 1 are square matrices with integer entries. Writing those
equations in matrix form gives A = AM and A = AM, hence A = AMM and A = AMM.
Since primitive vectors are linearly independent, both matrices A and A are invertible, there-
fore MM = I and MM = I, and so det(M) det(M) = 1.

Note that M and M are integer matrices, so either det(M) = det(M) = 1 or det(M) =
det(M) = —1. Both M and M are unimodular matrices, i.e. such an integer matrix that has
determinant +1. The inverse of unimodular matrix is an unimodular matrix, therefore the un-
imodular operators applied to matrix A preserve the lattice. Now we can conveniently confirm
that for two arbitrary sets of primitive vectors A and A the following relation holds.

A'A=M AlA=M (2.4)

where transformation matrices M and M are unimodular, then both primitive vectors span
the same lattice. At this point we can prove that the volume of the primitive lattice cell is
independent of the choice of primitive vectors,
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|det(A)| = | det(AM)| = | det(A) det(M)| = | det(A)(£1)| = | det(A)] (2.5)

since both A and A are arbitrary sets of primitive vectors, this completes the proof. For a
thorough understanding, let us consider Example

Example 1 Calculate determinant of a primitive lattice cell with different choices of primitive vectors

ﬁ\@]

A= a, 2] = [ 0 15

Generate other arbitrary primitive vectors that span the same lattice as A

2+24/3 3
Aa:[a1+232,az]=[\[—; V3 Q

V2 x@+\@]

Ab:[31132+al]:[0 15

Ac = [+ gy + 2y )] = | VEE V3 3VEE2V2
1.5 4.5

det(A) = det(A,) = det(A,) = det(A.) ~ 2.1213243

For each set of primitive vectors above, their primitive cells are depicted in Figure[2.3|

e £ " [ . ° o ’
& decC)| 193 .A;A) |
" o o7 o gleetio |

e o o~
| det(A 4=

Figure 2.3: A, A,, Ap, and A, span the same lattice, denoted by black circles. Each primitive
lattice cells determinant is illustrated by grey area.

2.1.1 Additional Examples of Lattices

It is convenient to introduce some examples of simple lattices which are very useful for studies,
namely the square lattice and the hexagonal lattice. Square lattice is a rectangular lattice with
nearest neighbors having the same distances along horizontal and vertical lines. Hexagonal
lattice is also a simple lattice with six nearby points on 6-fold axis.

A square lattice is shown in Figure[2.4with some possible compact primitive lattice cell vectors.
The term “compact” here means that the primitive vectors are as short as possible. Figure
provides two distinct primitive vectors ((1,0)(0,1) and (1,0)(1,1)) while the rest are simply
obtained by rotating these vectors on n/4. In same manner one can consider the case of
hexagonal lattice (see Figure 2.5). Here, we also provide two distinct sets of primitive vectors
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Figure 2.4: Square lattice with some possible compact primitive vectors. There are two distinct

primitive cells (the first four and the last four are not related). Among the four
identical primitive vectors, they are related by symmetry operation.
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Figure 2.5: Hexagonal lattice with some possible compact primitive vectors. The first four and

the last four primitive cells are equivalent. Among the four identical primitive vec-
tors, they are related by symmetry operation.

((1,0)(=1/2, v/3/2) and (1,0)(1/2, v/3/2)), the others are also obtained by rotating these two
vectors on n7/6.

Basically, the primitive vectors that we picked for the hexagonal lattice are equivalent since
each primitive vectors has the same length which equals one. The case of the square lattice is
different, where (1,0)(0,1) has shorter vectors than (1,0)(1,1). In the end, we conclude that
the choice of primitive vectors are unique up to symmetries of lattice which is called point
symmetries, and it will be discussed in more details in Section

2.1.2 Construct Class Lattice

Here we are going to construct class Lattice that creates object lattice. From the definition of
a lattice, a set of d linearly independent primitive vectors is required. The constructor of class
Lattice is shown in Listing This class has class variable eps for epsilon of computation
and takes a matrix A as primitive vectors. Its instances have properties vol for volume, d for
dimension, and A for basis. Functions assert in lines 7, 9 inquire whether A is a square matrix
and linearly independent (det # 0).

Listing 2.1: Constructor of Lattice

import numpy as np

1
2
3 class Lattice :

4 eps = le-10 #global to Lattice

5 def __init__(self, A):

6 n = A.shape[0]

7 assert(A.shape == (n,n)), "Require a square matrix"
8 det = np.linalg.det(A)

9 assert (det), "Require nonsingular matrix"
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10 self.A, self.d, self.vol, eps = A, n, abs(det) #set attributes

Following the Equation[2.4, we can compare one set of primitive vectors to another and check if
they span the same lattice. Namely, for two arbitrary primitive vectors A and B, if the relation
M = B~ !A holds with M a unimodular matrix, then A and B span the same lattice.

We define this equality as a static private method of Lattice (see Listing which is called
_eq. We also can add other methods to confirm if one lattice is a subset or a superset to another
lattice.

If a lattice that spanned by A can be represented by primitive vectors B, then the lattice that
spanned by B is a subset to the lattice that spanned by A. It is defined by method _le. The
comparison subset or equal is defined by method _1le. The auxiliary method _is_intmis used
to check if a matrix is an integer matrix, and _is_unimodular is used to check if a matrix
is unimodular. The comparison methods are set as private static method because it will be
invoked by other methods and they will be inherited to the other classes later.

Listing 2.2: Comparison of primitive cells

@staticmethod
def _eq(A, B): #Check if A and B span the same lattice
return Lattice._is_unimodular(np.linalg.inv(B)=*A)

def _le(A, B): #Check if A subset of B

1

2

3

4

5 @staticmethod
6

7 return Lattice._is_intm(np.linalg.inv(A)x*B)
8

9

@staticmethod
10 def _ge(A, B): #Check if A superset of B
11 return Lattice._is_intm(np.linalg.inv(B)=*A)
12

13 @staticmethod
14 def _is_intm(M): #Check if M is an integer matrix
15 return np.amax(abs(np.around(M) - M)) < Lattice.eps

17  @staticmethod
18 def _is_unimodular(M): #Check if M is a unimodular matrix
19 return abs(abs(np.linalg.det(M))-1) < Lattice.eps and Lattice._is_intm(M)

Now define special methods invoking previous static methods in Listing[2.3} therefore we can
easily use mathematical operators >, >=, <, <=, and ==. As shown in the Listing, __eq__ defines
operator ==, __le__ defines operator <=, __1t__ defines operator <, __ge__ defines operator
>=,and __gt__ defines operator >.

Listing 2.3: Special methods of Lattice

def __eq__(self, latB): #Check if self lattice equal to lattice(B)
return self._eq(self.A, latB.A)

def __le__(self, latB): #Check if self lattice is subset of lattice(B)
return self._le(self.A, latB.A)

def __1t__(self, latB): #Check if self lattice is proper subset of lattice(B)
return self._le(self.A, latB.A) and self.vol < latB.vol #smaller volume also

O 00 N O Ul A~ WN -
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10 def __ge__(self, latB): #Check if self lattice is superset of lattice(B)

11 return self._ge(self.A, latB.A)

12

13 def __gt__(self, latB): #Check if self lattice is proper superset of lattice(B)
14 return self._ge(self.A, latB.A) and self.vol > latB.vol #smaller volume also

Consider some example of the output of our program. L1 is a lattice generated by an arbitrary
square real matrix, L2 is generated by integer multiplication of basis vectors of L1. Thence, L1
is sublattice of L2.

>> L1 = Lattice(np.matrix([[1.2,5.5,2.31,[3,1.5,2.2]1,[6.7,8,911))
>> L2 = Lattice(np.column_stack((L1.A[:,0]*2,L1.A[:,1]%3,L1.A[:,2])))
>> L1.A, L2.A
>> (matrix([[ 1.2, 5.5, 2.31,
[ 3., 1.5, 2.2],
[ 6.7, 8., 9.11),
matrix([[ 2.4, 16.5, 2.3],
[ 6., 4.5, 2.2],
[ 13.4, 24. , 9. 11)

>> L1 < L2, L1 > L2, L1 == L2, L2 >= L1, L2 <= L1
>> (True, False, False, True, False)

2.2 Sublattice

Let £ C R be a lattice with primitive vectors aj, ap, . .., a;. Suppose that vectors sq,sy,...,8; €
L are linearly independent and generate lattice £;. We call £ sublattice of £ and it can be
written as £; C L. Each of the vectors s; belongs to lattice £. Then, it follows that

n
j=1

where C = ¢;; is a nonsingular integer square matrix, and in matrix notation it is written as
S = AC. Taking determinant on both sides gives

_ det(S)
~ det(A)

det(S) = det(A) det(C), det(C) . (2.7)

The primitive cell corresponding to S contains | det C| copies of the primitive cell correspond-
ing to A. It is called a supercell of the lattice spanned by A. To elaborate more we shall consider
Example

Example 2 Let us calculate the determinant of sublattice cells (supercell).

V2 V3
A= laa] = [ 0 1.5]
3'V/§-+-2 V/g 2‘V4§

3v2 243
0 3 3

Sl = [331,2&12] = |: 3

:| Sz = [3.‘:11 + 2-‘:12, 232] =
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Figure 2.6: Lattice points spanned by A are noticed by small points, the supercells spanned by
S1 and S; are noticed by bigger points. There are six lattice points inside the both
supercells.

det(S;) = det(S) ~ 12.727922 = 6det(A).
Vectors Sy and Sy span the same lattice, which is illustrated in Figure[2.6]

Matrix A generates lattice £ and matrix S generates lattice £;. Let £L; C £, then S = AC,
with C € Z4*¥ and C is not unique. However, we can easily check whether some arbitrary
sublattices are the same lattice by checking if they are related by unimodular matrix.

2.2.1 Construct Subclass Sublattice

Note that a sublattice is basically a lattice, therefore it is convenient to construct a subclass
Sublattice that will inherit methods from Lattice. From Equation 2.6 definition of a prim-
itive vectors A and an integer square matrix C are required to generate a sublattice, thence we
create a constructor that requires as arguments matrix A and a matrix C (see Listing[2.4). An
instance of Sublattice has attributes A for square matrix, C for nonsingular square integer
matrix, and vol for volume of sublattice. In order to check, that matrix C consists of integer
elements (see line 11), it is sufficient to to check only its first element, since class numpy .matrix
stores elements of the same data type.

Listing 2.4: Constructor of Sublattice

1 from lattice import Lattice #Inherited from parent class Lattice
2 import numpy as np

3

4 class Sublattice(Lattice):

5 def __init__(self, A, C):

6 n = A.shape[0]

7 assert(A.shape == (n,n)), "Require square matrices"

8 assert(A.shape == C.shape), "Matrices A and C must have the same shape"
9 det_a, det_c = np.linalg.det(A), np.linalg.det(C)

10 assert(det_a and det_c), "Require non-singular matrices"

11 assert(isinstance(C[0,0]),int), "Require integer matrix C"

12 self.A, self.C, self.vol, self.d = A, C, abs(det_axdet_c), n

Now it is easy to construct methods for simple mathematical comparison by inheriting methods
from superclass Lattice shown in Listing 2.5 We compare S = AC in the same manner with
lattice.
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Listing 2.5: Special methods of Sublattice

1 def __eq__(self, sublB): #Sublattice self and sublattice(B) span the same lattice

2 assert(isinstance(sublB,Sublattice)), "Argument is a sublattice"

3 return self._eq(self.Axself.C, self.AxsublB.C)

4

5 def __le__(self, sublB): #Sublattice self is subset of sublattice(B)

6 assert(isinstance(sublB,Sublattice)), "Argument is a sublattice"

7 return self._le(self.Axself.C, self.AxsublB.C)

8

9 def __1t__(self, sublB): #Sublattice self is proper subset of sublattice(B)

10 assert(isinstance(sublB,Sublattice)), "Argument is a sublattice"

11 return self._le(self.Axself.C, self.AxsublB.C) and self.vol < sublB.vol #smaller vol
12

13 def __ge__(self, sublB): #Sublattice self is superset of sublattice(B)

14 assert(isinstance(sublB,Sublattice)), "Argument is a sublattice"

15 return self._ge(self.Axself.C, self.AxsublB.C)

16

17 def __gt__(self, sublB): #Sublattice self is proper superset of sublattice(B)

18 assert(isinstance(sublB,Sublattice)), "Argument is a sublattice"

19 return self._ge(self.Axself.C, self.AxsublB.C) and self.vol > sublB.vol #smaller vol

To make sure that it works, let us run an example. Firstly, we create primitive vectors A, then
randomly create integer square matrices C1 and C2. Create sublattice S1 and S2, from A, and C1
and C2. Now we can apply the comparison operators. The program output is in the following.

>> run lattice.py
>> A = np.matrix([[1.2,5.5,2.3],[3,1.5,2.2]1,(6.7,8,911)

>> Cl = np.matrix(np.random.randint(-5,8,size=(3,3)))
>> (2 = np.column_stack((C1[:,0]1*2,C1[:,1]1%3,C1[:,2]))
>> (C1, C2
>> (matrix([[-5, 5, 2],

[e, 1, 71,

[-3, 5, 511,

matrix([[-10, 15, 21,
[ o, 3, 71,
[ -6, 15, 5]1))
>> S1 = Sublattice(A,Cl); S2 = Sublattice(A, C2)
>> S1 < S2, S1 > S2, S1 ==S2, S2 >=S1, S2 <= S1
>> (True, False, False, True, False)
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List the Supercells

3.1 Hermite Normal Form Matrix

A Hermite Normal Form matrix is defined as a nonsingular integer square matrix with upper
triangular form fulfilling the properties of Definition[I}

hll hln

Definition 1 A nonsingular integer matrix H € Z is Hermite Normal Form if
1. hji > 0, diagonal elements are positive
2. 0 < hjj < hj; where i < j, off-diagonal elements are less than diagonal element in the same row
3. hij = 0 where i > j, upper triangular matrix
There are two steps to reduce an arbitrary nonsingular integer matrix to HNF. At first we apply
the extended Euclidean algorithm for column operations to obtain an upper triangular matrix

with positive elements, then we reduce the off-diagonal elements. The first reduction is based
on Euclidean algorithm to find the greatest common divisor (gcd)

|a| ifb=0 (operation of type i)
ged(a,b) = ¢ ged(b,a) if|la] <b (operation of type ii) - (3.1)
ged(a—|3]b,b) if0 < |b| <a (operation of type iii)

For each row vector a = (aj,...,4i,), apply the sequence of elementary column operations
o(a’) such that o(a}) = (0,...,0,g,...,411), where g is the gcd, then we apply ¢ to the entire
column. Basically, these operations are unimodular column operations given in Definition
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Definition 2 A unimodular column operation on a matrix is one of the following elementary column
operations:

i multiply any column with —1
ii interchange any two columns

iii add a column with integer multiplication of other columns

Now we have attained the definition of HNF in Definition [I| for point 1 and 3. Then to achieve
point 2, each element a;; in upper off-diagonal that is larger than the corresponding diagonal
elements a;; is replaced by its modulo by a;;. Again, this operation is applied toward entire
columns.

3.1.1 Construct method HNF

Here we add a new method to the Sublattice class that reduces an integer matrix into its HNF
form. Listing|3.1|shows the method of class Sublattice invoking the first step of reduction,
the extended Euclidean algorithm to find greatest common divisor called gcd. The auxiliary
method called _swap is for exchanging position between two columns. This method gcd is
quite straightforward following Definition3.1} It basically manipulates the corresponding mat-
rix in place. These methods are used to transform the corresponding matrix to upper triangular
form.

Listing 3.1: Euclidean method

1 #Extended Euclidean algorithm to find the greatest common divisor that is applied to C
2 #All operations involved are the elementary column operations

3 def gcd(self, C, i_r, i_a, i_b):

4 a,b = C[ir,ial, Cl[i_r,i b] #Assign a,b as the corresponding columns
5 if abs(b) == 0: #Stop if the corresponding row has form (0,...0,9,...,a_1j)
6 ifa<0: C[:,i_a] *= -1 #0peration type 1

7 self._swap(C, i a, i b) #0peration type 1ii

8 elif abs(a) < abs(b):

9 self._swap(C, i_a,i_b) #0peration type ii

10 self.gcd(C, i_r, i_a, i_b)

11 else :

12 C[:,i_al -= int(a//b)*C[:,i_b] #0peration type iii

13 self.gcd(C, i_r, i_a, i_b)

14

15 #Swap column i_a and i_b of matrix C
16 def _swap(self, C, i_a, i_b):

17 si = range(self.d) #Generate new indices
18 si[i_a], si[i_b] = si[i_b], si[i_a] #Swap the necessary indices
19 C[:] = C[:,si] #Arrange column matrix C following si

The second step of this transformation is reducing the difference between diagonal and off-
diagonal by replacing the off-diagonal elements with its modulo to diagonal elements that
lay on the same row, it is invoked by the main function. We construct the full HNF method
in function setHNF (see Listing[3.2) that sets the HNF form of C as property HNF. This function
consists of two main loops, the first loop reduces the matrix into upper triangular form, then the
second loop reduces the difference between main diagonal elements and off-diagonal elements.
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Notice that both loops are going through columns in backward direction, it is because the final
matrix formed into an upper triangular matrix.

Listing 3.2: HNF method

1 #Set property self.HNF by convert self.C into its HNF form

2 def setHNF(self):

3 self.HNF = self.C.copy()

4 #First reduction to upper triangular matrix

5 for i in range(self.d-1, 0, -1): #Loop backward

6 for j in range (i):

7 self.gcd(self.HNF, i, j, j+1)

8 if(self.HNF[0,0] < 0): #Last part is missing (the most top-left one)
9 self.HNF[:,0] x= -1

10 for i in range(self.d-2,-1,-1): #Second reduction, reduce differece diag and off-diag
11 for j in range (i+l,self.d):

12 self.HNF[:,j] -= int(self.HNF[i,j]//self.HNF[i,i])=*self.HNF[:,i]

Let us put some test to our HNF code. Firstly, create a nonsingular square matrix A, a random
integer matrix C1, and an equivalent basis C2. Then C1 and C2 should span the same sublattice.
The reduced matrices should form into identical HNF form both for S1.C and S2.C.

>> run lattice.py

>> L1 = np.matrix([[1.2,5.5,2.3],[3,1.5,2.2]1,([6.7,8,911)

>> (C1 = np.matrix(np.random.randint(-8,8,size=(3,3)))

>> (2 = np.column_stack((C1[:,0]+2xC1[:,1],C1[:,1],C1[:,2]+3xC1[:,0]))
>> (C1,C2

>> (matrix([[ O, -5],

5,
[ 6, 3, 71,
[-1, 6, -311),
matrix([[10, 5, -51,
[12, 3, 25],
[11, 6, -6]1))
>> S1 = Sublattice(A,Cl); S2=Sublattice(A,C2)
>> S1.toHNF(), S2.toHNF()
>> S1.HNF, S2.HNF
>> (matrix([[140, 115, 130],
[ o, 1, 0],
[ o, o, 111),
matrix([[140, 115, 130],
[ o, 1, 0],
[ o, 0o, 111))

3.1.2 Compare Sublattices by their HNF

We have already had methods for comparing two sublattices in Listing Alternatively, we
also can check the equality between two sublattices by reducing their integer matrices to HNF
form and check if they agree. The advantage of the HNF is that we only need to deal with
integer numbers, thence we can simply apply the comparison operator without worrying about
numerical errors.

The updated method __eq__ is shown in Listing 3.3} we comment out the return of previous
code.
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Listing 3.3: Equality by checking its HNF

1 def __eq__(self, sublB):

2 self.toHNF(); sublB.toHNF() #Reduce both integer matrix into HNF

3 return np.all(self.C == sublB.C) #Directly compare every elements in matrices B and C
4 #return self._eq(self.C, sublB.C) #This line is replaced

3.2 Listing the Possible Sublattices

At this point, we are able to point out primitive vectors that span the same lattice. For the
sublattice, it is even more convenient as we can reduce the coefficient matrix C into HNF form
and check if they agree. Recall that the volume of a unit cell is independent of the choice
of primitive vectors, it means that each lattice has injective relation with its volume. Thence
we may list all possible supercells in HNF form for a given number of lattice points inside
supercell.

Referring to Definition (1} in order to construct an HNF matrix, we need to form a triangular
matrix with their off-diagonal entries smaller than its corresponding diagonal elements. The
determinant of a triangular matrix is simply product of all its diagonal elements. In principle
for a given volume we can distribute its prime factors as diagonal elements and place any
numbers that smaller than its diagonal, then we will have a long list of HNF matrices. Before
constructing the possible HNF matrices, firstly we need to list the possible diagonals. Here will
be shown two different codes to generate possible diagonals with given volume and dimension.
The first method is shown in Listing 3.4)and the second method is shown in Listing

In Listing[3.4} the main function 1ist_diag has arguments det and dim that mean determinant
and dimension consecutively. An auxiliary function called prime_factor with argument n
returns a generator for a list of prime factors of n. The main function list_diag creates list
of prime factors prime_list which is multiplication prime factors of det and distribute them
through diagonals. The initial diagonal is a vector with entries one, then we place one by one
the prime numbers for all the possibilities, which is stored in an array prime_list. In this case,
some existed combinations might encountered but line 9 checks every combination in the list
prime_list and eliminate if the combination has already existed. At last generate combination
that has product equal to determinant (line 11-12).

Listing 3.4: First code: lists the possible diagonals

1 # List of the possible diagonals
2 def list_diag(det,dim) :

3 diag_list = [[1l]*xdim] #Initial configuration [1,1,..1]

4 for fact in prime_factor(det): #Loop over all factors, try all combinations
5 for d in range(len(diag_list)):

6 for i in range(dim):

7 temp = diag_list[d][:]

8 temp[i]*= fact

9 if temp not in diag_list: #Check if combination has not existed

10 diag_list.append(temp)

11 if reduce(lambda a,b: axb, temp) == det: #Generate if determinant correct
12 yield temp

13

14 #List the prime factors of n, output [f1,f2,...]
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15
16
17
18
19
20
21
22

def prime_factor(n):
f=2 #trial factor
while f*xf <= n:
while n%f ==
n/=f
yield f
f+=1
if n>1 : yield n

The first code may be quite brief and simple, but always keeping track of the combination of
diagonals (at line 9) costs some time. Fortunately there is some more efficient way for listing
the diagonals by distributing each prime factor to the right places. In this way it will be more
predictable but less simple, this second code is shown in Listing [3.5]

There the main function list_diag2 has the same arguments with list_diag from the first
code. The auxiliary function prime_factor_mul lists the prime factors with its multiplication
number. It is similar to function prime_factor but different format of return, for example a
return [[2,3],[5,2] ] means2-2-2-5-5.

1
2

©O© 00 N O U~ W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Listing 3.5: Second code: lists the possible diagonals

#List of possible diagonals
def list_diag2(det,dim):
pind = [] #Prime indices
#Produce list of where to put prime factors
for p,m in prime_factor(det):
lind=[[i] for i in range(dim)] #Initially, factor can be placed anywhere
for mm in range(m-1): #Place another multiplied factor
lnew=[]
for 1 in lind:
for i in range(l[-11,dim): #0ther factor, placed from previous site and after
ln=1[:]
1n.append(1i)
lnew.append(1ln)
lind=1lnew
pind.append([p,lind]) # [prime_factor, list of indices]
#Now produce list of all diagonals
diag=[[1]*dim] #Initial diagonal [[1],...,[1]]
for p, lind in pind:
dnew=[]
for dd in diag: #Placing each diagonal at lind ([i 1,1 2,..])
for 1 in lind:
dn=dd[:]
for i in 1:
dn[i]*=p
dnew.append(dn)
diag=dnew
return diag

#List the prime factors with multiplicity, output format [[f1,m1],..,[fn,mn]]
def prime_factor_mul(n):
=2 #trial factor
while f*f <= n:
m=0
while n%f ==
m+=1
n/=f
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37 if(m) : yield [f,m]
38 f+=1
39 if n>1 : yield [n,1]

Basically distributing prime factors through the diagonal is similar to distributing boson particles.
The main function list_diag2 (see Listing consists of two main steps, producing a list
which stores positions in diagonal of the matrix to place the prime factors and then producing
the proper diagonals.

The first step consists of four nested loops, it places the prime factors anywhere in diagonal,
except for the factors that appear more than once: we must place the next factor in prior or in
the same place. As it might be somewhat puzzling, then let us see some example.

For a given factor with multiplicity 2 that is distributed on a 3-dimensional diagonal, we list the
index to place the prime factors: initially the factor can be placed anywhere: index [0], [1] and
[2]. Then, we need to place another one because the multiplicity is 2. For the one that is placed
at [0], the possibility is only [0, 0], for the one at [1], the possibilities are [1,0] and [1,1],
for the one at [2], the possibilities are [2,0], [2,1] and [2,2]. Thence, the complete list is
(fe,el, [1,e1, 1,11, [2,0], [2,1], [2,2]]. Now that we have both of the codes, lets
run some test and both must produce the same results.

>> zip([a for a in list_diag(8,3)],list_diag2(8,3))
>> [([8, 1, 1], [8, 1, 1]),

(4, 2, 11, [4, 2, 11),
([4, 1, 21, [4, 1, 21),
([2, 4, 11, [2, 4, 1])
(2, 2, 21, 12, 2, 2]),
([2, 1, 4], [2, 1, 41),
(r1, s, 11, I1, 8, 11),
([1, 4, 21, I1, 4, 2]),
(11, 2, 41, [1, 2, 41),
(r1, 1, 81, 1, 1, 8])]

Note that the first code returns a generator while the second one returns a complete list, to be
clear it is only the matter of programming taste.

The final step is to construct all possible HNF matrices based on Definition [1, point 2. Before
writing the code, it is helpful to know how many HNF matrices will be produced. Firstly
we need to count the number diagonals that will be generated. Note that it is the same way
with counting the configuration of distributing bosons. For each prime factor the possibility of
different distribution is simply equal to (m+nf_1), for m as number of factor multiplication and
d for dimension. Then the number of total possible diagonal N, is given by

n J—
Niag = H (m +rZ 1> , n = number of prime factors. (3.2)
i=1

Secondly, the number of HNFs depends on the volume and dimension. For a d-dimensional co-
ordinate system, with all configurations of diagonal elements a4, . . ., a4, the number of possible
HNF is shown by Equation

NHNF = Z a‘f‘l X Elg_z o X agq. (33)
(ﬂl,...,lld)
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Figure 3.1: Number of possible HNFs increases to the volume of primitive cells. (a) Three-

dimensional system. (b) Two-dimensional system.

Then it is easy to show that the number of possible HNFs will increase exponentially to the
volume and dimension. Some examples of the relation between the number of HNFs and
volume are shown in Figure[3.1a|and Figure 3.1b|for 3-dimension and 2-dimension respectively.

Figure and illustrate that the possible number of HNF increases quickly with dimen-
sion. If we compare both figures for determinants up to 2000, for the case of 3-d, the number
of HNFs develops in scale of millions, on the other hand, in 2-d the number of HNFs almost
linear to the determinant. Some samples of the number of HNFs as a function of volume are
shown in Tables[3.T|and [3.2|for 3-d and 2-d system respectively.

Table 3.1: Count of distinct HNF matrices for given volume of primitive cell for 3-d system.

Volume of supercell

Number of HNF

O 0O NI O\ Ul W IN -

[ G
N — O

1
7
13
35
31
91
57
155
130
217
133
455

Now we are ready to list all the possibilities of HNF matrices (see Listing [3.6). The methods
numpy.diagand itertools.product are needed for creating diagonal square matrices and for
invoking recursive loops consecutively. The main function 1ist_hnf requires the determinant
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Table 3.2: Count of distinct HNF matrices for given volume of primitive cell for 2-d system.

Volume of supercell =~ Number of HNF

1 1
3 4
5 6
7 8
9 13
11 12
13 14
15 24
17 18
19 20
21 32
23 24

and the dimension as arguments. Principally, it loops through all possible diagonals, then calls
function iterate that replaces each row of possible off-diagonal recursively.

Listing 3.6: List all possible HNF matrices

from numpy import diag
from itertools import product

#List all possible HNF
def list_hnf(det, dim):
ldiag, lhnf = list_diag2(det,dim), [] #Get the list of diagonal firstly
for vdiag in ldiag: #Vector diagonal
m = diag(vdiag) #Create diagonal matrix from vdiag
iterate(m, 0, dim, lhnf) #Loop for all possible off-diagonal element
10 return lhnf

O 0N O U B WN -

12 #Recursive loop, list all possible off diagonals from

13 def iterate(mat, row, dim, 1lst):

14 for a in product(range(mat[row, row]), repeat=dim-row-1): #Possible numbers: 0-(diag-1)
15 mat[row,row+l:] = a

16 if(dim-2 > row):

17 iterate(mat, row+l, dim, 1lst) #Move to the next row

18 if(row == dim-2): #When reach second last row, it is done
19 1lst.append(mat.copy())

We have tried to list all possible diagonals for determinant 8 and dimension 3. Applying Equa-
tion 3.3} counted that there are 155 possible HNF matrices, the output is the following.

>> L = list_hnf(8,3)

>> len(L)

>> 155

>> for L in L : print L



19

Listing the Possible Sublattices

5 7 0
2

1

3
1

> 8 0 0

1

1
0

0

5

1

3

1

1

1

0
1

1

2

7

5

3

2

0

0

7

5
1

3
1

0
1
0

1

7

5

1

4

1

2

1

0
1

2

7

5

4

2

0

0

7

6
1

4
1

2
1

0
1
0

2

1

7

4

2

0

0

2

6

4

2

2

0

1

0

6

4

2

1

1

1

1

2

2

6

4

3

1

2

0

2

6

4

1

1

1

1
0

0

2

6

5

3

1
1

2

1

1

1

0

6

3

1

0



List the Supercells

20

0
8

3
1
0

0
1
0

2
0

4

2
0

0
8

2

4

1

0

1
0

0

0
8

3

0

2

2
0

2
0

4

0

0

0
8

3
1
0

0
1
0

2

4

0

0

0
4
0

0

0

4

1
1
0

3
2

4

0

0

0

3

0

0

0

0

0
4
0

0
4

4

1

0

2
0

0

0
4
0

0
4

1

4

0

0

0
2
0

0

8

0
2
0

2

4

2
0

0

0

0

0

3

1
0

0

0

0

0
8

2

3
2
0

2
0

4

0

0

0
8

2
1
0

3

4

0

0



Chapter 4

Symmetry

4.1 Symmetry of Lattice

In Section we have shown some examples of symmetries of rotation for the square and
hexagonal lattice. Generally speaking, rotations in Euclidean space of 2 or higher dimension
constitute a continuous, infinite set which includes all arbitrary infinitesimal rotation opera-
tions. Moreover, the two sequential rotation operations are equivalent to a distinct rotation. A
group with this essential feature is called Lie group.

We must pick the symmetry rotations within Lie group that associate with our lattice. In the
following we formulate the criteria of these symmetries. Consider an orthogonal transforma-
tion matrix P which is a symmetry operation that keeps the origin fixed (point symmetry) and
a given set of primitive vectors A. Note that P can be any symmetry operations which is not
restricted to only symmetry rotation. Matrix A is the transformed primitive vectors of A, then
it follows that

PA=A
PA = AM 4.1)
A~1PA = M.

Lattices that constructed by A and A are equivalent, £(A) = L(A) if there exists a unimodular
matrix M such that A = AM. Matrix M is a matrix column operation that applied to A to
produce A, hence if M is unimodular then both A and A span the same lattice. Correspond-
ingly, we list the symmetry operation that associate to A by operating all possible symmetries
and pick ones that produce a unimodular matrix M. Here we list all symmetry operations that
associate with square, rectangular, and hexagonal lattice.

Tables and show the symmetries of a square lattice for three different choices of
primitive vectors. There are eight symmetry operations that associate to rectangular lattice,
these operations belong to group symmetry of Cy, (or Dy). Notice, that the symmetry opera-
tions P here are also associated with the signed permutation group. These symmetry opera-
tions consists of four rotations and four reflections. The unit operation is denoted by E which
is equivalent to rotation of 27, the rotations of 71/2, 7r, and 37t/2 are denoted by Cy, Ci, and
C} respectively. The reflections along vertical, diagonal, horizontal, and anti-diagonal axes are
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denoted by 0, C40,, Ci0y, and C30y, respectively.

Table[4.1]lists the symmetries of a square lattice with primitive vectors a unit cell matrix (1,0)(0,1).
Hence, we can expect that matrix M will be equal to the transformation matrix since M =
A~1'PA = P. On the other hand, we list the symmetries of the square lattice with non-compact
choice of primitive vectors in order to observe the direct relation between A and M, but we
could not find any proof.

Table 4.1: Symmetries of square lattice with primitive vectors A = [ 1 0} .

0 1
Symmetry P A=PA M = A—1A
operation
E 1 0 1 0] 1 0]
0 1 0 1 0 1
c 0 —1 [0 —1 0 —1]
* 1 0 1 0 1 0
o -1 0 -1 0] -1 0]
4 0 —1 0 —1 0 —1]
o 0 1 [0 1 0 1]
4 -1 0 -1 0] -1 0]
” -1 0 -1 0] -1 0]
y 0 1 0 1 0 1]
Coo 0 —1 0 —1 0 —1
Y -1 0 -1 0 -1 0
1 0 1 0] 1 0]
Cioy 0 -1 0 -1 0 —1
0 1 0 1 0 1]
3
Cacy 1 0 1 0 1 0

Table 4.2: Symmetries of square lattice with primitive vectors A = [ 1 O} .

Symmetry
operation

: o

P A="PA M=A"'A
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c 0 —1 ~1 -1 —1 -1
* 1 0 1 0 2 1
o -1 0 -1 0] -1 0]
4 0 —1 ~1 -1 0 —1]
o3 0 1 1 1 1 1
4 -1 0 -1 0] -2 1]
- -1 0 -1 0] -1 0]
y 0 1 1 1 2 1
Cior 0 -1 ~1 -1 —1 —1]
Y -1 0 -1 0 0 1]
1 0 1 0] 1 0]
2
Cioy 0 -1 1 —1] —2 1]
0 1 1 1 1 1
3
Cioy 1 0 1 0] 0 —1]

Table 4.3: Symmetries of square lattice with primitive vectors A = [ 4 1} .

3 1

Symmetry P A=PA M=AA
operation

. 1 0 4 1 1 0

0o 1 3 1 0 1

c 0 -1 -3 -1 -7 -2

* 1 0 4 1 25 7

o -1 0 —4 -1 -1 0

4 0 -1 -3 -1 0 —1

o 0o 1 3 1 7 2

4 -1 0 4 -1 25 -7

” -1 0 —4 1 -7 -2

y 0o 1 3 1 24 7

Cior 0 -1 -3 -1 1 0

Y -1 0 -4 -1 -7 —1
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Now let us consider the point group symmetries of rectangular lattices. It is known that the
square lattice (2-d hypercube) possesses the highest symmetry among the other parallelograms.
Hence, we might estimate that the symmetries of rectangular lattice must be a subgroup of
symmetries of square lattice.

Correspondingly, we construct symmetries of rectangular lattices by applying all elements of
the symmetry point group of square lattice and eliminate the ones that have a non-unimodular
matrix M. Tables and list the symmetries of the compact and non-compact choice of
primitive vectors respectively. It appears that the rectangular lattice has point group symmetry
of Cy, (or Dy). The symmetry operations consists of two rotations 7t and 27t denoted by C; and
E respectively, and two reflections along y-axis and x-axis denoted by ¢, and C,0, respectively.

Table 4.4: Symmetries of rectangular lattice with primitive vectors A = [ 1 O] .

0 2
Symmetry P A = PA M=AA
operation

E 1 0 1 0] 1 0]

0 1 0 2 0 1]

-1 0 -1 0] -1 0]
C2(C) 0 —1 0 -2 0 —1
” -1 0 ~1 0] ~1 0]

y 0 1 0 2 0 1]
Coor 1 0 1 0] 1 0]
2y 0 -1 0 —2] 0 —1]

Table 4.5: Symmetries of rectangular lattice with primitive vectors A = [ 1 1] .

Symmetry
operation

: Lo

P A =PA M=A1A
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c -1 0 -1 -1 -1 0
2 0 -1 0 —2] 0 —1]
” -1 0 ~1 1] 1 2]
y 0o 1 0 2 0 1]
Coo 1 0 1 1] 1 2]
2y 0 -1 0 —2] 0 —1]

Table 4.6: Symmetries of rectangular lattice with primitive vectors A =

—
N =
NN
(B |

Symmetry

) P A =PA M=A"1A
operation

£ 1 0] 1 2 1 0

0 1 2 6 0 1

c -1 0 -1 =2 -1 0

2 0 —1 -2 —6 0 —1

-1 0 -1 =2 -5 —12

%y 0 1 2 6 2 5
Coo 1 0 1 2 5 12
2%y 0 —1 -2 —6 -2 -5

At last, we list the symmetry operations that are associated with the hexagonal lattice (see
Table[4.7). There are more of symmetries in the hexagonal lattice than the square lattice since
there are six lattice points on the nearest neighbor.

It appears that the point symmetry of the hexagonal lattice belongs to group Cg, (or Dg). The
symmetry operations consists of six rotations and six reflections. The notations Cs, Cz, C3, Cg,
and Cg’ denote the rotations of 71/3, 27t/3, 7, 471/3, and 571/3 respectively. The notations oy,
Ce0y, and CZcy, denote the reflections along the axes between edges, and Cjoy, Caoy, and Coy,
denote the reflections along the axes between vertices.

. . . s 1 —1/2
Table 4.7: Symmetries of hexagonal lattice with primitive vectors A = [ 0 3/ 2} .

Symmetry

. P A=PA M=A'A
operation
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£ 1 0 1 —1/2 "1 0]
0 1 L 0 V3/2 0 1

c 1/2 —+/3/2] [ 1/2 -1 0 0]
6 V3/2 1/2 V3/2 0 11

C2 [ —1/2  —+/3/2] [ —-1/2 -1/2 0 —1]
’ v3/2 -1/2 V3/2 -v3/2] |1 -1

c3 -1 0 -1 1/2 -1 0]
° [ 0 -1 L0 —3/2 0 -1

4 [ —1/2 V372l [ 172 1 -1 1]
° -vB/2 —1/2 ] |-V3/2 0 -1 0

s /2 V/3/2 [ 1/2 1/2 0 1]
: —V3/2  1/2 —V3/2 VB2 |1 1

-1 0 [—1 1/2 —1 1]

Oy 0 1 | 0 V3/2 0 1
Coo [ —1/2  —/3/2] [ -1/2  -1/2 (—1 0]
o —v3/2  1/2) |=vB/2 VB2 |11
2o /2 —V3/2] [ 1/2 -1 [0 —1]
oY —V3/2 —-1/2 ] |-v3/2 0 1 0
5 1 0 1 —1/2 1 —1]
Ca% | 0 —1} | 0 —\/5/2] 0 -1
Chor 1/2 V372l [ 1/2 1/2 1 0]
o | V3/2 -1/2 V3/2 —V3/2 1 1]
Coo [ -1/2 V3/2] [ -l/2 1 [0 1]
oY | V3/2 1/2 V3/2 0 1 0]

4.2 Rotated Lattice

Now we might ask ourselves what happens when our lattice is slightly rotated? All symmetries
of rotation will remain but not the reflections. Imagine that symmetries of rotation do not
depend on alignment of axis, but reflection apparently depend on how the axis is aligned.
However, when the lattice is rotated, the reflection axes are rotated as well. Thus, we shall
consider the reflection operations about the non-perpendicular axes.
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In the following, we list some examples of square and rectangular lattices that is rotated by 10°.
Tables [4.8 and [4.9|list the symmetries for tilted square lattices, and Tables and list the
symmetries of tilted rectangular lattice. Notice that all symmetries of rotation are maintained
but none of the reflections corresponding to the prior tables. Instead, the reflection operations
that are associated with rotated lattices are the reflections about non-perpendicular axes. We
might find some peculiar matrix transformations on the Tables, which are notated by 0y 1¢-),
Ca0y(100), Cﬁay(loo), and C;I’O'y(loo) denote the reflections about 10° rotated vertical axis, 10° ro-
tated diagonal axis, 10° rotated horizontal axis, and 10° rotated anti-diagonal axis respectively.

A =

0985 —0.174 1 0
0.174  0.985 0 1

o L [ 0985 —0.174
Table 4.8: Symmetry of 10° tilted square lattice with primitive vectors A = [ 0.174 0.985}

Symmetry P A=PA M=A"TA
operation

E 1 0] [ 0985 —0.174] 1 0]

0 1 | 0174 0.985] 0 1]

c 0 —1] [—0.174 —0.985] [0 —1]

+ 1 0 | 0985 —0.174] 1 0]

o -1 0] [—0.985  0.174] -1 0]

4 0 -1 |—0.174 —0.985| 0 1]

o 0 1] [ 0.174  0.985] [0 1]

4 -1 0] |—0.985  0.174] -1 0]

- [—0.940 —0.342] [-0.985 —0.174] —1 0]

y(10°) |—0.342 0940 |-0.174  0.985] 0 1]

Coo [ 0342 —0.940] [ 0.174 —0.985] [0 —1]

Ay (0°) |—0.940 —0342] |-0.985 —0.174) -1 0

0y [ 0940 0342] [ 0985  0.174] [ 1 0]

4%y (10°) | 0342 —0940| | 0.174 —0.985) 0 1]

3o [—0.342  0.940] [-0.174  0.985] [0 1]

47y (10°) | 0940 0342 | 0985  0.174) 1 0

A | 0985 —0174][ 1 0
~ 1 0174 0985 | 1 1
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o o [ 0811 —0.174
Table 4.9: Symmetry of 10° tilted square lattice with primitive vectors A = [ 1158 0.985}

Symmetry X 1%

; P A=prA M=A"A
operation

. 1 0] [ 0.811 —0.174] 1 0]

0 1] | 1158 0.985] 0 1]

c [0 —1] [—1.158 —0.985] -1 —1]

* 1 0] | 0.811 —0.174] 2 1]

2 -1 0] [—0.811  0.174] ~1 0]

4 0 —1] |—1.158 —0.985] 0 —1]

o 0 1 1158 0.985] (1 1]

4 -1 0] |—0.811  0.174] 2 1]

” [~0.940 —0.342] [-1.158 —0.174] 1 0]

y(10%) |—0.342 0940 | 0811 0985 2 1]

Ccr 0.342 —0.940] [—0.811 —0.985] [—1 —1]

Ay (10°) |—0.940 —0342] |-1.158 —0.174) 0 1]

2 0940  0.342] 1158 0.174] (1 0]

47y(10°) 0342 —0.940| |-0.811 —0.985] -2 1]

oo —0.342  0.940] [ 0811  0.985] (1 1]

4%y(10°) | 0940 0342 | 1.158  0.174) 0 1]

A_ | 0985 —0174][ 1 0
| 0174 098] | 0 2

Table 4.10: Symmetry of 10° tilted rectangular lattice with primitive vectors A =

0.985 —0.347
0174 1.970|"
Symmetry X 1%
. P A =PA M=A"A
operation
E 1 0 0.985 —0.347 1 0
0 1 0174  1.970 0 1
C2 -1 0 —-0.985  0.347 -1 0
4 0 —1 -0.174 -1.970 0 -1
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” —0.940 —0.342 —0.985 —0.347 -1 0
y(10°) 0342 0.940 ~0.174  1.970 0 1
o 0940  0.342 0985  0.347 1 0
47y(10°) 0.342 —0.940 0.174 —1.970 0 —1

SRR

0.174  0.985 0 2

Table 4.11: Symmetry of 10° tilted rectangular lattice with primitive vectors A =
[ 0.985 0.638]

0174  2.143
Symmetry P A =PA M=A"'A
operation
. 1 0 [ 0985  0.638] (1 0]
0 1 | 0174 2.143] 0 1]
2 -1 0 [—0.985 —0.638] -1 0]
4 0 -1 |—0.174 —2.143] 0 1]
” —0.940 —0342] [-0985 —1.332] 1 2]
y(10%) ~0342  0940) |-0.174  1.796] 0 1]
o 0940 0342] [ 0985 1.332] (1 2]
4%y (10°) 0342 —0940| | 0174 —1.796] 0 1]

4.3 Alignment of Primitive Vectors

One lattice and another may be identical but in different orientations. In the case of sublattices it
is convenient to confirm if two sublattices are identical by reducing its integer matrix into HNF
form. In most of the case of primitive vectors, there is no such HNF reduction. For instance
the problem arises when one of two identical lattices for example rotated by some degree. In
general, if we apply our comparison program that is given in Listing [2.2) will return False,
though the two lattices are really the same up to a rotation or a reflection.

This is the main reason of our exploration into symmetries of lattices. However, we may try to
align the primitive vectors such that the representations have triangular matrix form, and then
we shall list the symmetries again after alignment. This implies that we make some standard
in listing symmetries and make the choice of primitive vectors as compact as possible. The
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complete steps are following.

For some arbitrary set of primitive vectors A = (ay,...,aq) where A € R%*4, find some or-
thonormal new set of vectors Q = (q1,...,qq) where Q € R¥*4 such that A’ = Q1A is
upper triangular matrix. At this point neither Q nor A’ are known but we construct them.

Firstly, take q; as a unit vector q; = aj/||a1]|, then the first element of A’ is magnitude of
vector aj, and the rest of elements are zeros, thence a} = (]/a1],0,...,0)7. Secondly, take an

orthogonal vector
L
L (a1, az)} a
a = ay — ai 2 =
i =

this is by construction orthogonal to q;. Note that the coefficient of a; is rounded to nearest
integer in order to maintain this operation as an elementary column operation. There are two
nonzero elements of a, which are the projection of a, into q; and qp, then as a result a’2 =
((a2,q1), (a2,92),0,...,0)7. Then, take orthogonal vector toward q; and q, by operation

all = az — {M-‘ a; — {@3’—"%-‘ at Qs a'l-

(a1, 1) (al,al) Ly

We obtain three nonzero entries of a§ = ((as, q1), (a3, q2), (a3, q3),0,...,0)7. By repeating these
steps d-times, we obtain matrix A’ in the following form.

<a1/ CI1> <a2/ q1> e <ad/ q1>

: (2,q2) ... (a5 q2)
A= . .

<ad1 CId>

Following the steps above, we can easily construct the code to align primitive vectors (see
Listing . The main method is called aligned, also three auxiliary static methods _proj,
_dot, and _norm are for projection, dot product, and norm calculation consecutively. These
methods belong to class Lattice.

Listing 4.1: Aligning primitive vectors

1 #Aligning primitive vectors

2 def aligned(self):

3 Q = np.matrix(np.zeros((self.d, self.d))) #Create dxd zero matrix
4 for i in range(self.d):

5 Q[:,i] = self.A[:,i] #Reduce each column from zero to d
6 for j in range(i):

7 Q[:,i] -= self._proj(self.A[:,j1,Q[:,1i])

8 Q[:,i]1/=self._norm(Q[:,i])

9 self.Aa = np.linalg.inv(Q)x*self.A

10

11 @staticmethod

12 def _proj(u,v): #Projection of v to u

13 return Lattice._dot(u,v)/Lattice._dot(u,u)=*u

14

15  @staticmethod

16 def _dot(v,u): #Dot product of v and u

17 return sum([evxeu for ev,eu in zip(u,v)]1)[0,0]
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18

19 @staticmethod

20 def _norm(v): #Find the norm of v

21 return np.sqrt(sum([exe for e in v])[0,0])

Applying this code to the rotated square lattices from Tables[4.8]and we obtain the aligned
primitive vectors identical to the untransformed one. The same is true for applying the given
code to rectangular lattices from Tables and






Chapter 5

LLL Algorithm

5.1 LLL Primitive Vectors Reduction

We have been trying to find the shortest primitive vectors in order to get the unit cell as compact
as possible. There is no best algorithm yet known to find the shortest vector in lattice, but
there is a very famous algorithm called LLL (Lenstra Lenstra Lovéasz) that is able to solve SVP
(shortest vector problem). The LLL algorithm does not necessarily find the shortest vector in
lattice, but it finds -y - A1 with approximation factor -y for d-dimension lattice and A; as shortest
vector.

The LLL algorithm is used to get an approximation of SVP in arbitrary high dimension and
this approximation is sufficient in many applications. It is widely used in many computer
areas such as cryptanalysis of public-key encryption, RSA, MIMO detection algorithm, and so
forth. Our main goal here is applying LLL to solve our lattice problem which are 2-d and 3-d
problems, however the code will be generally written for any dimension.

The main idea of primitive vector reduction is the following, for a lattice £ with primitive vec-
tors A change A into a shorter primitive vectors A such that £ remains the same. We have
known that we can attain other sets of primitive vectors by applying unimodular column op-
erations as defined in Definition |2} Before going to d-dimensions SVP, let us consider the case
of 2-dimensions to grasp the main idea.

5.2 2-d Primitive Vectors Reduction

Primitive vector reduction of 2-d lattice is easy to understand yet plays a pivotal role in the LLL
algorithm. For a given a set of primitive vectors {aj, ax} we shall consider its reduction. The
intuitive approach to solve SVP here is firstly to find the shortest vector, for example a; then
subtract a, from z integer multiple of a;. Thus we get a new vector a, = a; — za;. Choose z

such that a, will be as short as possible. In order to find z, take coefficient ¢ = 2::?; which
is the orthogonal projection of a, to a; and round it to the nearest integer. Repeat this process

until the primitive vectors can no longer be reduced.

Figure 5.1| shows how to find vector aj that is orthogonal to aj, also in fact aj has the shortest
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distance from a, to span(a; ). However, coefficient ¢ is not always integer hence this transform-
ation is not unimodular, therefore we need to round c to the nearest integer. The new vector
a, = ap — |c]a; is not always the same as a3, that is the reason why &, is said to be almost
orthogonal to a;. Notice that we have applied this in Section

a e
2 //"Cal

L - <ajapn>
- <aa;>

Figure 5.1: Find the shortest orthogonal vector a3, by subtracting a, to the u times of a;. Also
notice that the determinant of lattice, det L(A) = ||a|| ||a}]|.

The formal definition of primitive vector reduction is shown in Definition By this definition,
primitive vectors are sorted in such a way that the first vector is the shortest one. Moreover,
the orthogonal projection coefficient is smaller than %

Definition 3 Reduced basis of rank 2

A set of primitive vectors {aj, ap } is reduced if and only if the norm of a; is smaller or equal to the norm
of ap and the absolute value of orthogonal coefficient c = (212) s less than or equal %

(ara1)
a1 - ap|

1
< d =
Jaal < llaz]| ana 222 <

IN

(5.1)

In order to have a better understanding of Definition3|let us observe Figure[5.2} For an arbitrary
aj, the set of primitive vectors is reduced if the projection of a; to a; is less than or equal to half
of aj, thus a) must lay within the grey area. As a result for a reduced primitive vector we have

|a3] < # ||ai||. At this point we can easily come up with upper bound of the shortest vector.

A reduced set of primitive vectors {aj, ax} generates lattice £. By using orthogonal properties
and definition of reduced primitive vectors we have:

a) = a; + ca;

2 2
laz||* = [|a3 ]| + * [|a1]]
2 2 2 2 2 2 1 2
a3]|> = l|laz||* — ¢ lar||* > [Jar||” — ¢* [y ||” > [|ay]] = il
V3
lazl] = == [ladl] (5.2)

V3, o
lasll larl] > > flau]

2
\| —=detL > |la.
\/g = H 1”
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Figure 5.2: The set of primitive vectors is reduced if a, lies in the grey area. Thence for a reduced
primitive vectors we have ||a;|| < %g la|l.

It gives us an upper bound for 2-d lattice for the norm of the shortest vector ||a;|| which is
\ /% det £. Now we can construct a code for 2-d primitive vector reduction. Firstly, we need
to construct a module containing basic vector and matrix operations so it will be easy to re-
use or update later. The module is called "matvecop” under filename matvecop.py, which is

shown in Listing In module matvecop, both functions norm and swap take an instance of
numpy.matrix as input.

Listing 5.1: Basic vector matrix operations (matvecop.py)

import numpy as np

# dot product of two vectors

def dot(v,u):
assert(isinstance(u,np.matrix) and isinstance(v,np.matrix)),"both must matrix object"
return sum([evxeu for ev,eu in zip(u,v)]1)[0,0]

# return coefficient of projection v2 to v1
def projc(vl,v2):
10 return dot(v2,vl)/dot(vl,vl)

O© 00 N O U1 & W N =

12 # swap two columns in a matrix

13 def swap(M,i,j):

14 idx = range(M.shape[1])

15 didx[i], idx[j] = idx[j], idx[i]
16 M[:] = M[:,1idx]

The main function of 2-d primitive vector reduction (see Listing[5.2) is called LLL2d. Note that
we need to import our previous module matvecop. The main idea of function LLL2d is to
always put the shorter vector in the first column, reduce the second column and then swap.
Keep repeating the same process until the second column can not be reduced, then we will
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have swapped result by the end.

Listing 5.2: Primitive vectors reduction for rank 2

1 import numpy as np

2 from matvecop import *

3

4 def LLL2d(A): #Reduce 2x2 integer matrix

5 assert(A.shape == (2,2) and np.linalg.det(A)), "Must be 2D non-singular matrix!"

6 if np.linalg.norm(A[:,0]) > np.linalg.norm(A[:,1]): swap(A,0,1) #Shorter vector at first
7 n, eps = 0, le-10

8 #Keep reducing until fulfill the definition of LLL-reduced

9 while np.linalg.norm(A[:,0])<np.linalg.norm(A[:,1]) or abs(projc(A[:,0],A[:,1]))>.5+eps:

10 A[:,1] -= A[:,0]*np.around(projc(A[:,0],A[:,1])) #Almost reduced

11 swap(A,0,1) #Swap after reduction

12 n+=1

13 swap(A,0,1) #The result is swapped

14 print "Iteration %i times"%n #Print how many reduction has performed

15 return A

An example of the code execution is given below. Given in example matrix A has determinant
1, thence upper bound of shortest vector norm will be , / % detM ~ 1.07. The reduced vectors

produce the correct result, since ||a; || = 1.0 < 1.07.

>> A = np.matrix([[3., 8.1,[2.,5.11)
>> LLL2d(A)
>> Iteration 3 times
matrix([[1.00 0.00]
[0.00 -1.00]1)

5.3 n-d Primitive Vectors Reduction

We have been working on primitive vectors reduction on 2-d lattices previously, the same man-
ner also applied to the n-d case. Roughly speaking, LLL performs successive orthogonal pro-
jections, if needed it also swaps two consecutive vectors in order to get a reduced or almost
orthogonal primitive vectors.

In the same manner as the 2-d case, we find firstly the orthogonal projection for each successive
vectors. For a given set of primitive vectors {ay, ..., a; }, that are linearly independent and span
lattice £, we find the orthogonal set of primitive vectors {aj,...,a};} that span the same space.
This is the so called Gram-Schmidt orthogonalization process. The Gram-Schmidt orthogonal-
ization process defines

aj = a1
k—1 *
ay - a’ (5.3)
aZzak—Zai cra for k>2

i=1 % "%

where the first vector remain the same and the rest are orthogonalized toward all preceding
vectors. This orthogonalization process is basically a transformation of primitive vectors, that
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we can represent with matrix factorization form. Define A = {ay,---,a4}, Q = {a}, -+ ,a}},

ag-af
% so that we have

and introduce the transformation matrix R, with ry = 1 and 1y = =

k
ay — Z rikaf. (54)
i=1

By means of the matrix factorization A = QR, where R has the form given below

Notice that for A that generate lattice £, det £ equal to the volume of the parallelepiped
spanned by {aj,---,a;} which is equal to the volume of another parallelepiped spanned by
{aj,---,aj}}. Recall Figure it is obvious that its volume is equal to the product of its edges.
One concludes that det £ = |[a}| - - - ||a}|| = TT¢; [|af |-

Now we have to make a general definition of reduced primitive vectors. We define c-reduced
primitive vectors in Definition [4}

Definition 4 A set of primitive vectors A = {ay,--- a4} is said to be c-reduced, if and only if its
orthogonal set of primitive vectors Q = {aj, - - - ,a}} that obtained by Gram-Schmidt orthogonalization
process fulfills the following inequality

a5 1”

[

i > i=1,--,d—1. (5.5)

Where a small value of ¢ may be interpreted as good reduction. We may expect that at least

|laf,|| = [laj ||, however, not every set of primitive vectors are 1-reducible, but each of them

are %—reducible. The number % comes from property that is shown in Figure

We want to transform primitive vectors A as closely as possible to the orthogonal primitive
vectors Q. We can also evaluate the notion of distance between orthogonal vectors Q and
almost orthogonal vectors A in lattice £ that is generated by c-reduced primitive vectors A =
{aj, -+ ,a;}, withc > %, and its orthogonal primitive vectors Q = {aj,--- ,a}}, we obtain that

a] = ag
2o - 2 _ -~ 2
laz]|* > ¢ [laj]|* = ™" flay |

2 — 2
231" > 2 [las |

laf||* > = fla

since |lai|| < |laz] < -+ < JJag]| then
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la|1* = ¢ lai]l* or [|ail|* < ¢ [|af || (5.6)
Then we take a product of both sides fori =1,--- ,d
é 2 15 12 2
[Tlail* < c&= T laf]|
i=1 i=1

llaj||* < c¥@=1D/2 det £2 (5.7)

=~

1

aj]| < 1/ 4 det L.

::]m&

1

I
—

We can conclude that ¢*(#~1)/4 measures the furthest of reduced primitive vectors from ortho-

gonality. Now we can calculate upper bound of the norm of shortest vectors effortlessly. By
using Equation[5.7/and inequality [|a;| < [Jaz|| < - -+ < [|ag|| we get

d
[Tl < cd=1/4 et £
=1 (5.8)

|ag|| < @ D/4det L.
In addition, we can demonstrate the bound of c-reduced set of primitive vectors by using Equa-

tion[5.6] Let A is the shortest vector, x € £ — 0, and let i be the minimal number such that x € £L;
where £; C £ and L; is generated by {aj, - - - ,a;}. Notice that ||x|| < | a;|| then it follows

2 2
2 I S W
A2 > x| > laf|* > el e
We can conclude that
lag|| < cl47D/2A, (5.9)

Notice, that this upper bound error c(4~1)/2

trated by Figure

Now let us consider the LLL implementation. Firstly, it is useful to make a function to check
whether a set of primitive vectors is reduced or not, then we can easily check our result. The
implementation of this function is produced using Definition @] and is given in Listing
The main function is called is_LLL_reduced with parameter reduction ¢ with default value
4/3, and an auxiliary function GramSchmidt returns orthogonalized primitive vectors and its
transformation matrix.

Listing 5.3: Check if a matrix is LLL reduced

1 import numpy as np
2 from matvecop import *
3

increases exponentially with dimension as illus-
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4 #Check if A is LLL reduced with c parameter

5 def is_LLL_reduced(A,c=4./3.):

6 Q,R = GramSchmidt(A)

7 for i in range(A.shape[l]-1): #Compare all columns i to i+l

8 if norm(Q[:,i])**2 > cxnorm(Q[:,i+1])**2: #Fail once one is fail
9 return False

10 return True

12 #Return orthogonalized matrix Q, with A=QR (Gram-Schmidt orthogonalization)
13 def GramSchmidt(A):

14 Q = A.copy() #Copy so it does not overwritten

15 R = np.matrix(np.eye(Q.shape[0],Q.shape[1l]))

16 for j in range(1,Q.shape[1l]):

17 for i in range(j):
18 R[i,j] = dot(Q[:,j1,Q[:,1i]1)/dot(Q[:,1],Q[:,1])
19 Ql:,31 -=Q[:,1i]*R[1i,]]

20 return (Q,R)

Error bounding of reduced primitive vectors

1200 T T T T T T T T
1000
800
600
400
200

O 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

Dimension

Error

d-1)/2

Figure 5.3: The value of bounding error c! increase exponentially to dimension

Now we have every instrument we need for constructing the LLL. The LLL reduction code is
shown in Listing 5.4/ with main function LLL and an auxiliary function reduce. It is clear that
firstly we reduce the primitive vectors A, then we check if the reduced A fulfils Definition@r if
not then swap the necessary columns and start over again with the new A.

Listing 5.4: LLL reduction

1 #Reduce A into c-reduced with default value c = 4/3
2 def LLL(A, c=4./3.):

3 Q,R = GramSchmidt (A)

4 eps = le-10  #Numerical error tolerance

5 for i in range(A.shape[l]): #Reduce all columns firstly

6 reduce(i,A,R)

7 for i in range(A.shape[l]-1): #Iterate until all columns are reduced
8 if cxdot(Q[:,i+1]1,Q[:,i+1]) > dot(Q[:,i],Q[:,i])

9 swap(A,i,i+l)

10 return LLL(A)
11 return A
12

13 #Reduce A and R with elementary column operations
14 def reduce(i, A, R):
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15 for j in range(i-1,-1,-1):
16 Al:,i] -= round(R[j,i]1)*A[:,j]
17 R[:,1i] -= round(R[j,i])*R[:,]]

Let us run some examples to make sure that our code produces the correct results. We assign
two very well-known primitive cells namely BCC (body center cubic) and FCC (face center
cubic) cells on variables BCC and FCC respectively. We initiate random shapes of primitive cells
which are not the reduced ones. Then, after applying the LLL method to the matrices, the
matrices are reduced to the correct result which are the most compact ones.

>> BCC = np.matrix([[0., 1., -2.5],[1., -6., 18.5],[2., -8., 26.5]1)
>> FCC = np.matrix([[ 4., -39., -312.]1,[1., 10., 81.],[-5., -49., -391.]1])
>> FCC
>> matrix([[ -4., -39., -312.],
[ 1., 10., 81.],
[ -5., -49., -391.1]11)
>> BCC
>> matrix([[ 0. , 1., -2.5],
[ 1., -6. , 18.5],
[ 2., -8., 26.5]])
>> is LLL reduced(A), is_LLL_reduced(BCC)

>> (False, False)
>> LLL(BCC), LLL(FCC)
>> BCC

>> matrix([[ 0.5, -0.5, 0.5],
[-6.5, 0.5, 0.5],
[ 0.5, 0.5, -0.511)
>> FCC
>> matrix([[ 1., 1., ©O.],
[o., 1., 1.1,
[ 1., 0., 1.11)
>> is_LLL reduced(BCC), is_LLL_reduced(FCC)

>> (True, True)

By applying method for listing the possible sets of primitive vectors from Section we list
the possible HNF matrices then reduce each of them by LLL reduction. Table [5.1| shows all
possible sublattices that contain 8 lattice points. There are 15 sublattices listed, the matrices are
written on the left hand side and the illustration of matrices are drawn on the right side, with
right-hand arrows pointing to the form after LLL reduction. We can easily notice from the plots
that LLL reduction always transform vectors into more compact form.

From the list of LLL reduced primitive vectors, notice that some of them seem to be equivalent
up to the symmetry. We can try to reduce again the list by applying symmetry operations of
square lattice from Table then we eliminate the equivalent primitive vectors. Since we are
working with four sides polygon, we apply symmetry transformations of point group Cy, to
our list. The results are shown in Table

Eventually, from 15 candidates of possible sets of primitive vectors, we obtain 7 unique sets
by applying LLL reduction and eliminating the equivalent ones by symmetry operations. The
final candidates are plotted in one picture (see Figure[5.4).
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Table 5.1: The possible HNF matrices are listed for supercells that contain 8 lattice points. The
right hand sides illustrates the left hand side matrices, the right hand arrows imply
the form after LLL reduction
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~ 8- 9- -0 -~ -9--0--0--¢

Figure 5.4: The unique primitive vectors of sublattices that have 8 lattice points



Chapter 6

Betts Criteria

6.1 Introduction

Since the discovery of high-temperature superconductivity [4], the calculation of quantum spin
systems on a 2-dimensional lattice has been frequently discussed in literature as a topic of
highly correlated electron systems. In these calculations, all supercells were based on square
shape that tiled the infinite square lattice until [1} 2].

Haan et al. [1] performed exact-diagonalization for 2-dimensional spin- antiferromagnetic
Heisenberg systems on various supercells (square and non-square) which have number of lat-
tice points N = 8 — 26. They introduced an asymmetry parameter that defined by (I3 — 1)/ (l1 +
I;) where [; and I, represent the length of vectors that construct supercell. The ground state en-
ergy per site and staggered magnetization were obtained by extrapolation of different results
from various supercells. Then, they discovered apparent correlation between the asymmetry
parameter, ground state energy, and staggered magnetization.

Correspondingly, Betts ef al. [2 3] initiated some works in order to find correlations between
geometrical and topological properties of supercells and the spin systems calculation of 2-
dimensional systems. They introduced some criteria to find the best supercells for performing
the exact diagonalization of Hamiltonians of quantum spin models.

In the earlier paper [2], Betts et al. performed calculation of S = % XY-model for properties
ground state energy per spin, spontaneous energy per spin, magnetization, and spin-spin cor-
relations between first, second, and third nearest neighbor. Then each of the property is graded.
These calculations were performed for bipartite and nonbipartite supercells with the number
of lattice points N < 26. They considered three geometrical parameters for roughly guiding
to the useful supercell namely point group symmetry (S), squareness (¢), and geometrical imper-
fection (J). In addition, they also introduce the numbering of lattice points and the labeling of
supercells.

Latter, in the sequence of this first paper [3], Betts et al. considered the S = 3 XY ferromagnetic
model and spin-3 Heisenberg antiferromagnetic model for estimating the ground energy per
site and staggered magnetization. For the case of spin-3 Heisenberg antiferromagnetic models,
some bipartite supercells were considered in order to avoid imposing frustration. Then, they
introduced topological imperfections namely ferromagnetic imperfection (Ir) for ferromagnetic
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models. For the antiferromagnetic models, they defined an imperfection of bipartite supercells
(Iz) which is basically derived from the ferromagnetic imperfection. They considered super-
cells with N = 8 — 32 and calculated the energy per site and staggered magnetization for every
supercells. They demonstrated fitting curves for the scaling of magnetization and ground state
energy of different supercells, then showed most of outriders that encountered were mainly
topologically imperfect supercells.

Correspondingly, we shall write several programs to classify supercells of two dimensional
lattice system based on criteria that are defined by Betts et al. in their papers [2, 3] that have
been introduced previously.

6.2 Representation of Supercell by Numbering

We have already represented supercells which contain a certain number of lattice points by a
set of vectors. This supercell is tiled periodically to create infinite lattice points that is called
superlattice. Betts, et al. [2] has an alternative way to represent supercells using a certain way
of numbering the lattice points, which in turn produces a label for a supercell. An example is
shown in Figure

Figure 6.1: Periodically numbered lattice points for supercell 842

The label consists of three components, Nak, where N is the number of lattice points in the
supercell, « = h,d, t,q,... indicates that the finite lattice is formed of 1,2, 3,4, ... helices and k
denotes the number of steps from a point in the first helix to the same point in another helix.
Below we will explain the labeling in more details.

For example let us observe the supercell in Figure ithas N = 8, &« = 2, and k = 2. The
numbers are periodically repeated from 1 to 8, notice that lattice points that lay on the solid
edges are numbered uniquely, and the dotted edges have the same numbers as do the solid
ones which is condition of periodic boundary.

On Figure |6.2) we start to number the lattice points from the origins of supercell vectors, we
count from left to right under the same helix, then we move upward to reach the next helices.
The first helix is denoted by blue color, with numbers 1, 2, 3 and 4 but then it returns to the point
number 1 (the origin of the next supercell), thus we must jump to the next point by moving one
step upward, then walk to the right again for the next numbers which are 5, 6, 7 and 8. We
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& & P e e

Figure 6.2: Numbering tile 842, contains two helices: the first helix denoted by blue with num-
ber 1, 2, 3, 4 and the second helix denoted by green with number 5, 6, 7, 8

repeat the same process until all lattice points inside the supercell are numbered. For this case
two helices are enough to cover all lattice points. The notation for helix number are derived
from tuples name e.g, i from single helix, 4 from double, ¢ from triple, and so forth. Summary
of this second notation is formulated by Table

Table 6.1: Notation of helix number

Helixnumber |1 |2 (3|4 |5|6|7|8|9|10 |11 |12 |13 |14
Notation hid|t|g|p|s|t]joln|c|lul|l|r]|e

At last, the third notation is the number of steps from one point in a helix to the same point
in the helix above, for example see Figure |6.3|for the case of 842 sublattice. Since the number
of helices is two and the number of lattice points in supercell is 8, then there are four sites per
helix. Here we take the modulo value in order to create small number whichis2 = (2 mod 4),
then the possible values of k for 8dx are 0, 1, 2 and 3.

Figure 6.3: The last notation in labeling, there are two steps to move from point 1 in a helix to
another point 1 from another helix. Then take the modulo value between number
of steps and number of points per helix.

Based on our elaborations above, we present a program in Listing |6.1| which numbers lattice
points and labels a supercell. The main function is called number_latticepoints, for which
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we need only the numpy library. For a given two dimensional integer supercell (Sc), the func-
tion returns an object with properties 'count’ as the number of lattice points in the supercell,
"positions’ as the list of positions of lattice points in the supercell (integers), 'numbered’ as
the number of each lattice points, "helices’ as the number of helices, and ' label’ as the label
of the supercell.

Basically, function number_latticepoints contains three main steps, firstly it generates all
lattice points inside a supercell, secondly it walks through all lattice points in a certain way to
number them, and lastly it moves to another helix and walk to the right while counting the
steps. Correspondingly, it creates the label from these steps.

Listing 6.1: Numbering lattice points and labeling supercell

1 import numpy as np

2

3 eps = le-10

4 helix_form = ['h",'d","t",'"q",'p","'s",'"t",'0",'n",'c","u", """, "r","e"] #helicity label
5

6 #Return list of points that numbered by betts

7 #Sc 1is 2-d supercell in basis A

8 def number_latticepoints(Sc)

9 Sc_inv = np.linalg.inv(Sc)

10 res {} #Result of calculation, an object with some properties

11 res[’count’] = int(round(abs(np.linalg.det(Sc)))) #Count lattice points in supercell
12 res['positions’] [{}]*res['count’] #Positions [x,y] for each lattice points
13 res[’'numbered’] [Nonel*res['count’] #Number for each lattice points

14 res[’helices’] =1 #Number of helix

15 res[’'label’] = None #Label of supercell

16  #Find box which is big enough for supercell

17 xmax = int(np.ceil (max(®, Sc[0,0], Sc[0,1], Sc[0,0]+Sc[0,1])))+1
18 ymax = int(np.ceil (max(®, Sc[1,0], Sc[1,1], Sc[1,0]+Sc[1,1])))+1
19  xmin = int(np.floor(min(®, Sc[0,0], Sc[0,1], Sc[0,0]+Sc[0,1])))-1
20 ymin = int(np.floor(min(0, Sc[1,0], Sc[1,1]1, Sc[1,0]1+Sc[1,1])))-1

21  ##This part is constructing positions for each lattice points
22 idx = 0 #index of positions
23 for y in range(ymin, ymax):

24 for x in range(xmin, xmax):

25 1p = np.matrix([[float(x)],[float(y)]1]) #Lattice point in basis A

26 1p_Sc = Sc_invxlp #lLattice point in basis Sc

27 if np.all(lp_Sc >= -eps) and np.all(lp_Sc < 1.0-eps): #If lattice point inside Sc
28 res[’positions’][idx] = [x,y]

29 idx +=1

30 ##This part is mainly walk through lattice points from left to right, from bottom to top
31 num = 0 #Number of lattice point

32 pos = [0,0] #Start from the corner of Sc

33 while(not np.all(res[’numbered’])): #Loop until all lattice points are numbered

34 for dx in range(res[’count’]): #Loop all over lattice points in Sc

35 sc_pos = Sc_invxnp.matrix([[pos[@]],[pos[l]]])#Generate a lattice point in basis Sc
36 sc_pos -= np.floor(sc_pos) #Make sure lattice point inside unit cell

37 if abs(abs(sc_pos[0])-1.) <= eps : sc_pos[0] = 0. #ALL corners are [0,0]

38 if abs(abs(sc_pos[1])-1.) <= eps : sc_pos[l] = 0. #ALL corners are [0,0]

39 new_pos = Sc*xSC_pos #Get new position in basis A (integer points)

40 npos = [int(round(new_pos[0,0]1)), int(round(new_pos[1,0]))]

41 index = res[’positions’].index(npos) #Find index of position in list

42 if not res[’numbered’][index] : #Number lattice points if not yet numbered

43 num += 1

44 res[’'numbered’][index] = num
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45 pos[0] += 1 #Move to the next lattice point (walk to the right)

46 else : #If it is already numbered, move helix

47 if not np.all(res[’'numbered’]l) : #prevent extra helix in the end

48 res['helices’] += 1

49 pos[1] += 1 #Walking in upward direction, to the new helix
50 break

51 #Calculate the third part of label, start from the next helix below

52 pos = [res[’positions’][0][0],res['positions’]1[0][1]-res['helices’]]

53 dist =0 #Distance from the same point between two different helix

54 index= 1000 #initial random integer
55 while(index!=0): #Walk until we back to the corner

56 pos[0] -=1 #Keep walking to the right side, then find position and index
57 dist +=1 #Count every step

58 sc_pos = Sc_inv*np.matrix([[pos[0@]],[pos[1l]1])

59 sc_pos -= np.floor(sc_pos)

60 if abs(abs(sc_pos[0])-1.)<= eps : sc_pos[0] = 0.

61 if abs(abs(sc_pos[1])-1.)<= eps : sc_pos[l] = 0.

62 new_pos = SC*SC_pos

63 npos = [int(round(new_pos[0,0])), int(round(new_pos[1,0]))]

64 index = res[’positions’].index(npos)
65 dist = dist%(res[’'count’]/res['helices’]) #Make modulo to number of points/helix
66 if res[’'helices’]-1 > len(helix_form) : #If number of helix is more than table say:x

67 res[’'label’] = str(res[’'count’])+’x"+str(dist)
68 else :
69 res[’label’] = str(res[’count’])+helix_form[res['helices’]-1]+str(dist)

70 return res

As an example of program execution, let us run it for the example of the supercell from Fig-
ure

>> Sc = np.matrix([[2.,0],[2.,-41])
>> number_latticepoints(Sc)

{’count’: 8,
"helices': 2,
"label’: ’'8d2’,

'numbered’: [5, 3, 4, 7, 8, 1, 2, 6],
'positions’: [[0, -3],

(e, -21,
(1, -21,
(e, -1I,
(1, -1I,
(o, ol,
(1, el,
(1, 111}

In order to clarify the results from our code, we reproduce some examples of supercell with
their labels from paperwork of Betts et al. [2], Figure 2, in our Figure Initially, we en-
countered four discrepancies from our labels which are from Figure (1642), (24h14
and 26d5), and (19h5). Thence, we apply a symmetry rotation Cy4, and figure out that 1642
and 2645 are equivalent with 1644 and 2645 consecutively up to the C4 symmetry. For the case
of 24h14, it is equivalent with 24110 up to the C30;, symmetry. We assume that the labels with
the smallest numbers of « and k are considered. In the end we find one discrepancy between
label 1945 and label 19h4 from reference.

In fact, this labeling is independent from the choice of supercell, thus, for the equivalent su-
percells they own the same label. As an example, we create one supercell and generate other
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Figure 6.4: Reproduced labels from paperwork Betts et al. [2] of Figure 2. Some supercells of the
square lattice that serve as the good supercells: (a)bipartite lattice, (b) even N non-
bipartite lattice (c) odd N lattices. The discrepancies to Figure 2 of [2] are underlined.

equivalent supercells by adding one vector to integer-multiple of another vector. Then each of
them must show the same label. Furthermore, if we number the entire lattice points, it is even
more obvious that the numbering is completely independent from the choice of the positive
vectors of the supercell. In Figure 6.5 we create five equivalent supercells and properly place
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Figure 6.5: All equivalent supercells are properly placed. It is clear that the numbering is inde-

pendent from the choice of supercell.

every corner of the supercell to the lattice points number 1, then all the numbers of lattice points
inside supercells match the number of the whole lattice points and also they show the same la-
bel. This is because each supercell spans the same superlattice, hence each point in superlattice
is translated to the same place by vectors of supercell hence numbers are preserved.

In addition, let us recall the previous section, where we have generated a list of unique super-
cells by listing possible HNF matrices, and then reducing them by LLL algorithm and elimin-
ating their symmetries. If we apply numbering to this result (from Figure[5.4), then they must

show unique labels, which is demonstrated in Figure

- -0--0--0-0-=-0--0 -
8h0

- -9--0--9
1

.6 .7 .8 +
8d0 |
a4

Figure 6.6: Numbered lattice points with its labels for all possible sublattice
points, each of the supercell shows unique label.

with 8 lattice
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6.3 Criteria of Supercell

Squareness is defined as ¢ = 2[11p/d1d>, where I; and I, are the lengths of the edges, d; and
d are the lengths of the diagonals, for instance, see Figure .7} This parameter might not be
well defined because different supercells that span the same superlattice may have different
squareness. For example, the squarenesses of the supercells from Figure |6.5are tabulated in
Table The table shows how the value of squareness differs. The shapes of tiles are close
to square when the square root of squareness close to 1.0. Note that we will always show the
square root of squareness due to it is comparable to the tables that are listed in Tables 1 and 2

of [2].

Figure 6.7: Define [ and /> as length of edges, and d; and d; are length of diagonals.

We provide a program that returns square root of squareness of a supercell (see Listing
which is called ssquareness. It requires library numpy and module matvecop from Listing
We make this program as a sequel from Listing and we only need to import module
matvecop.

Listing 6.2: Betts criteria: square root of squareness /o

1 import matvecop as mvo

2

3 #Return square root of squareness of B
4 def ssquareness(B):

5 11 = mvo.norm(B[:,0]) #Length of first edge

6 12 = mvo.norm(B[:,1]) #Length of second edge

7 dl = mvo.norm(B[:,0] + B[:,1]) #Length of non-main diagonal
8 d2 = mvo.norm(B[:,0] - B[:,1]) #Length of main diagonal

9 return np.sqrt(2.x11«12/(d1xd2))

Table 6.2: Square root of squareness of supercells in Figure 6.5 are listed from left to right con-
secutively.

No 1 2 3 4 5
Vo |[100]1.12 ] 112|083 | 0.83

Notice, that in Table 6.2 only the first supercell has squareness 1.0, which means the supercell
is perfectly square. If we reduce the other supercells, they will converge into the form of the
first supercell which is the most compact one. It means LLL reduction produce supercells
as square as possible. Thus, we define squareness of a supercell as squareness of the LLL-
reduced supercell. List of squarenesses of the unique supercell for 8 lattice points in supercell
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is tabulated in Table It shows that three of these supercells are close to square, since Betts
et al. propose that the most satisfactory supercell are based on tiles for which 0.95 < ¢ < 1.05.
Notice for the Figure that it shows that the supercells with ¢ < 0.95 or ¢ > 1.05 are the
ones with the shape close to rectangular.

Table 6.3: Squareness of unique list of supercells that contain 8 lattice points

Label Vo
8h0 0.50
8hl 0.69
8h2 0.95
8h3 1.05
8h4 0.89
8d0 0.89
8d2 1.00

Imperfection of a finite lattice is defined based on disparity of geometric nearest neighbor rings.
A “perfect” supercells of N sites on a square lattice shall have complete rings of four first
nearest neighbor, four second nearest neighbors, four third nearest neighbors, eight fourth
nearest neighbors, ..., n;(N) ith nearest neighbor to each lattice points, where n;(N) equals
the number of ith nearest neighbor in the infinite lattices 1;(c0) with one exception. Since we
have a finite lattice points, 1;(c0) would not have a complete ring.

An example of a perfect supercell is 2048 (see Figure . Supercell 2048 has three closed rings
and one open outermost ring. For a lattice point number 15 in 2048 has ring of neighborhood:
the first ring contains 3, 7, 14, 16, the second ring contains 2, 4, 6, 8, the third ring contains 11,
13,17, 19, and the fourth ring contains 1, 5, 9, 10, 12, 18, 20. Then each lattice point in the 2018
supercell has 4, 4, 4, 7 first to fourth geometric nearest neighbors respectively.

Thus we define imperfection | to quantify divergence from perfect neighborhood lattice points.
We transfer each lattice points from the outermost ring inward in order to make perfect neigh-
borhood, then we count how many steps are required in order to make perfect rings.

o5

ol

2

J10

o16 17 418 19

Figure 6.8: Supercell 20h8 is a perfect supercell with three closed ring and one open ring which
is the outermost ring. It has neighborhood 4, 4, 4, 7 from the first to the fourth
nearest neighbor respectively.
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For example, supercell 24110 is not a perfect supercell with neighborhood 4, 4, 4, 7, 2, 0, 2,
the full seven rings neighbourhood would have 4, 4, 4, 8, 4, 4, 8. In order to make it perfect,
we move a point from the outermost ring to the forth ring (three steps). At this point the
neighborhood equals 4, 4, 4, 8, 2, 0, 1 and | = 3, then move another point from the outermost
ring to the fifth ring (two steps). Hence the neighborhood now equals 4, 4, 4, 8, 3 and | =
3+2 = 5. Accordingly, we conclude that 24h10 has five imperfection. The scheme of this
counting is illustrated in Figure

4 4 4 8 4 4 8

4 4 4 7 2 0 2 +3

4 4 4 8 2 Q 1 +2
—

4 4 4 8 3 0 O

Figure 6.9: The first row numbers represent neighborhood of the seven full rings. The num-
bers in the following rows represent the neighborhood of 24110 at initial place and
after moving the necessary points. The most right number represent the number of
imperfection that is obtained from all the steps within the corresponding row.

Another example of supercell with nonzero imperfection is 842 (see Figure 6.10). It has neigh-
borhood 4, 2, 1, and it is quite straightforward that 842 has | = 1.

AL 2B

Figure 6.10: Supercell 842 has nonzero imperfection with neighborhood 4, 2, 1. For every lattice
point with number 3, first ring contains lattice points number 2, 4, 6, 7, second ring
has 6, 8 and the outermost ring has 1, hence | = 1.

As a continuation of Listing [6.2} in Listing [6.3)is a program that counts geometrical imperfec-
tion J. The main function is called imperfection_geometrical which counts | of a supercell.
Another important function is called imperfection_count, it returns imperfection by com-
paring the actual neighborhood and the perfect neighborhood. We can reuse this function
later to calculate other imperfections such as ferromagnet and bipartite imperfection. Function
perfect_geometrical_nn counts the neighborhood of a perfect square lattice, we use this
as perfect neighborhood reference since we do not find any formula to count ith geometrical
nearest neighbor neither to find the corresponding distance. An auxiliary function find_index
is used to find index in an array of a list of lattice points.

Listing 6.3: Betts criteria: geometrical imperfection |

1 #Returns the geometrical imperfection of a square lattice with supercell Sc
2 def imperfection_geometrical(Sc):
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geo_nn = perfect_geometrical_nn(int(np.amax(np.abs(Sc)))) #Perfect neighborhood
bettsn = number_latticepoints(Sc) #Betts numbering (See Listing 6.1)
#Find lattice point around the middle of supercell

max_p = np.amax(bettsn[’positions’],axis=0) #Maximum position

min_p = np.amin(bettsn[’positions’],axis=0) #Minimum position

p_mid = np.ceil(0.5«(max_p + min_p)).astype(int) #Middle position

i_mid = find_index(p_mid[0],p_mid[1],Sc,bettsn['positions’])

dist = [mvo.norm(np.matrix([[p[0]-p_mid[O]1],[p[1]-p_mid[1]1]11))\

for p in bettsn[’positions’]] #List of distance for each lattice points
dist_max = max(dist)
for i,d in enumerate(geo_nn[’'nearn’]): #0nly take the necessary neighborhood list
if d > dist_max :

perf_nearn = geo_nn[’'nearn’][:1i]
perf_count_nearn = geo_nn[’count_nearn’][:i]
break
count_nearn = [0]xlen(perf_nearn)
half_wh= [int(np.ceil(0.5x(max_p[0]-min_p[0])))+1,int(np.ceil(0.5x(max_p[1l]-min_p[1])))
+1]

for i in range(-half_wh[0],half_wh[0]+1): #i,j positions relative to the middle
for j in range(-half_wh[1],half_wh[1]+1):
d np.sqrt(ixi+j*j)
p [p_mid[0]+i,p_mid[1]+]]
idx = find_index(p[0],p[1l],Sc,bettsn['positions’]) #Real position
if dist[idx] > d : dist[idx] = d #Find the shortest distance among all equiv points
for d in dist :
for i,perf_d in enumerate(perf_nearn): #Add counting after find the distance
if abs(d-perf_d)< eps :
count_nearn[i] += 1
break
return imperfection_count(count_nearn,perf_count_nearn) #Count imperfection

#Count imperfection by moving the points from the outermost shell inward
def imperfection_count(real, perfect): #real neighborhood, perfect neighborhood

imperf = 0
if len(real) > 1 : #0ne shell is trivial, imperfection always 0
for i in range(len(real)-1):
diff = perfect[i] - reall[i]

if(diff):
idx = len(real)-1
j = diff
while j > 0 : #Keep moving points inward until empty

if real[idx]:
real[idx] -=1
real[i] += 1
imperf += (idx - 1)

j =1
else :
if(idx > i)
idx -=1

if sum(reall[i+l:]) <= 0 : #Stop when only the outermost shell that open
return imperf
return imperf

#Count neighborhood of geometrical nearest neighbor for perfect lattice
#Returns an object with properties: ’nearn’ and ’‘count_nearn’
def perfect_geometrical_nn(N):

dist, geo_nn = [1, {}
#Create a square lattice (2N+1)x(2N+1), then calculate all distances to the center
for i in range(-N,N+1):
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61 for j in range(-N,N+1):

62 dist.append(np.sqrt(ixi+j=*j))

63 dist.sort() #Sort the list of distance

64 geo_nn[’'nearn’] = [dist[1]] #List of distance of nearest neighbor

65 geo_nn[’count_nearn’] = [0] #List of the count of the neighborhood
66 for d in dist[1:] : #Add to the counting once find the same distance

67 if abs(d - geo_nn[’nearn’][-1]) < eps :

68 geo_nn[’'count_nearn’][-1] +=1

69 else :

70 geo_nn['nearn’].append(d)

71 geo_nn[’'count_nearn’].append(1)

72 return geo_nn

73

74 #Auxiliary function: find index of position in the list

75 def find_index(i,j,Sc,lpos): #x,y, supercell, list of positions

76 sc_pos = np.linalg.inv(Sc)*np.matrix([[1i],[j]1]) #Position with basis Sc
77 sc_pos -= np.floor(sc_pos) #Make sure it is inside supercell

78 if abs(abs(sc_pos[0])-1.) <= eps : sc_pos[0] = 0. #ALL corners are the origin
79 if abs(abs(sc_pos[1l])-1.) <= eps : sc_pos[l] = 0.

80 new_pos = Sc*xSC_pos

81 npos = [int(round(new_pos[0,0])), int(round(new_pos[1,0]))]

82 index = lpos.index(npos)

83 return index

We add some clarifications for all the corresponding geometrical properties by reproducing the
geometrical properties part of Tables 1 and 2 from [2] (see Tables [6.4] and [6.5). We find some
discrepancies of squareness from Table 20h5 (/o = 0.95 from reference), and from Table
on sublattices 13h3, 2315 (/o = 1.01, 1.03 from reference consecutively). In addition, we also
find two discrepancies on imperfection calculation namely on 842 and 2048 from Table[6.5 with
values | = 0 and | = 5 from reference consecutively. We have discussed previously that 842
(see Figure has nonzero imperfection | = 1 and 20/8 (see Figure is a perfect supercell
with ] = 0.

We also find eight discrepancies on assigning the point group of symmetries. It is not easy to
compare, since the supercells were noticed only by labels in [2]. There is high probability that
we do not apply the identical supercells.

Table 6.4: Geometrical properties of bipartite square lattices that are reproduced from Table 1
of [2]. The discrepacies to Table 1 of [2] are underlined.

Nak L L, S NG Jj
8d2 (-2, 2) (2,2) o, 1.000 1
10h3 (3,1) (1,-3) Cs 1.000 1
12h3 (3,1) (0,-4) C, 1.011 2
12h5 (2,-2) (3,3) D, 0.961 3
14h3 (3,1) (2,-4) C, 0.975 2
16d4 (-4, 2) (0, 4) D, 1.053 1
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1690

18h5
18t3

20h5
20d4

22h5
24h5
24h7
24h9
24d4

26h5

(0,4

Hypercubic

@)
Oy

@)
Cy

1.000

1.026
1.000

0.995
1.000

1.013
1.041
0.980
0.989
1.011

1.000

O 0 O

Table 6.5: Geometrical peroperties for nonbipartite square lattices for even and odd N that are

reproduced from Table 2 of [2]. The discrepancies to Table 2 of [2] are underlined.

Nak Ly Ly S Vo ]
Even N
12d3 (-3, 2) (3,2) D, 1.041 0
14h4 (4,1 (2,-3) C 1.025 0
16h4 (4,1) (0,-4) G, 1.015 1
16h6 (-2,-3) (4,-2) G 0.992 0
18h4 (4,1 (2,-4) G 1.010 0
20h4 (4,1 (0,-5) C 1.005 1
20h8 (4,-2) (0,5) C 1.053 0
20d5 (0,4) (-5,-2) D; 1.012 3
22h4 (4,1 (2,5) G 0.987 4
22h6 (-2,-4) (4,-3) C 1.005 3
24h10 (4,-2) (2,5) G 0.993 5
24t4 (-4, 3) (4, 3) D 1.021 3
26h10 (-4,-3) (2,5) C 1.016 3
Odd N
9h3 (3,1 (0,-3) C 1.026 0
9t0 (3,0 (0,3) Hypercubic 1.000 0
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11h3 (3,1 (2,-3) C 1.013 0
13h3 (3,1 (1,-4) G 0.984 2
13h5 (-2,-3) (3,-2) Cy 1.000 0
15h4 (4,1 (-1,-4) Dy 1.065 0
15h6 (3,-2) (3,3) C 1.003 0
17h4 (4,1 (1,-4) Cy 1.000 0
17h5 (2,-3) (3,4) C 1.000 0
19h4 (4,1 (3,-4) C 1.030 0
21h4 (4,1 (1,-5) C 0.989 2
21h6 (3,-3) (3,4) C 0.998 4
21h8 (-3,-3) (2,-5) Dy 1.026 2
23h4 (4,1 (3,-5) C 0.990 4
23h5 (51 (3,-4) C 1.053 0
25h7 (-3,-4) (4,-3) Cy 1.000 4
25p0 (5,0 (0,5) Hypercubic 1.000 0

Ferromagnetic imperfection, I, is defined as an indicator of the gooddness of the supercells in
methods of exact diagonalization of ferromagnetic models. This indicator is based on disparity
to the topologically perfect infinite lattice. On a perfect lattice, each lattice points has 4 first
nearest neighbor, 8 second nearest neighbor, ..., 4n of nth nearest neighbor. Note that the
term of “neighbor” here means the topological neighbor in the Manhattan distance between two
points.

An example of a topologically imperfect supercell is 28/11 (see Figure[6.1T). This supercell con-
tains four shells of neighborhood. The first shell contains the lattice points with number 4, 14,
16, 26, the second shell contains 3, 5, 9, 13, 17, 21, 25, 27, the third shell contains 2, 6, 8, 10, 12,
18, 20, 22, 24, 28, and the fourth shell contains 1,7, 9, 11, 23. Hence the neighborhood from the
tirst to the fourth nearest neighbor are 4, 8, 10, 5. In principle, we count the ferromagnetic im-
perfection in the same approach as we count the geometrical imperfection. The neighborhood
of a lattice point with four full shells must have 4, 8, 12, 16 sites. Then, in order to make a topo-
logically perfect lattice, we move two points from the fourth shell to the third shell, hence we
obtain an imperfection of two. At this point the neighborhood are 4, 8, 12, 3, then, we conclude
that 2811 has Ir = 2.

Bipartite imperfection, Ip, is defined as an indicator of the goodness of the supercells in method
of exact diagonalization of antiferromagnetic models. These models such as the  Heisenberg
antiferromagnet require bipartite finite lattice. This means that for a supercell that is defined
by vectors L1 = (l11,112) and Ly = (Ip1,l22), the summs of I11 + 1 and I; + I»» must be even
numbers.
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Figure 6.11: Supercell 28111 has nonzero topological imperfection. Each lattice point has four
shells of neighborhood with the number of nearest neighbor from the first to the
fourth shell 4, 8, 10, 5, hence Ir = 2.

Basically, counting the bipartite imperfection is similar to counting the ferromagnetic imperfec-
tion, but we separate the counting between the odd and the even number of shells i.e. treating
two sublattices separately. For example, let us observe again supercell 28h11. There are four
shells of neighborhood which is 4, 8, 10, 5. The odd numbered nearest neighbor shells are the
first and the third shell, hence its neighborhood is 4, 10. In the same manner, for the even
numbered of nearest neighbors we get 8, 5. For the odd shells case, the full shell must have
neighborhood 8, 16, and we have neighborhood 8, 5. Since the open shell is only the outer-
most, at this points Ip = 0. For the even shells case, the full shell must have neighborhood
4, 12, and we have neighborhood 4, 10. Again, only the outermost shell is open, hence we
conclude that 28h11 has Iz = 0.

As a continuation of Listing[6.3} in Listing[6.4|gives a program to count ferromagnetic imperfec-
tion Ir and bipartite imperfection Ig. Function topological_nearn returns the neighborhood
of a supercell. Function imperfection_ferromagnet and imperfection_bipartite count
the value of Ir and Ip respectively.

Listing 6.4: Betts criteria : topological imperfections Ir and Ip

1 #Count ferromagnetic imperfection of a supercell
2 def imperfection_ferromagnet(Sc):

3 neigs_count = topological_nearn(Sc)

4 perfect_ferro = [(n+1)*4 for n in range(len(neigs_count))]

5 return imperfection_count(neigs_count,perfect_ferro) #Function from Listing 6.3

6

7 #Count bipartite imperfection of a supercell

8 def imperfection_bipartite(Sc):

9 if np.all((Sc[0@,:14Sc[1,:]1)%2.== 0.): #Must be bipartite supercell

10 neigs_count = topological_nearn(Sc)

11 perfect_odd = [(2*n+1)*4 for n in range(int(np.ceil(0.5xlen(neigs_count)))) 1

12 perfect_even = [2%(n+1)*4 for n in range(int(np.floor(0.5xlen(neigs_count))))]

13 ncount_odd = [neigs_count[2*n] for n in range(int(np.ceil(0.5*x1len(neigs_count))))]

14 ncount_even = [neigs_count[2*xn+1] for n in range(int(np.floor(0.5xlen(neigs_count))))
]

15 return imperfection_count(ncount_odd, perfect_odd) + \

16 imperfection_count(ncount_even, perfect_even) #Function from Listing 6.3
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17 else : print ’Supercell is not bipartite’ #If supercell is not bipartite
18

19 #List the topological neighborhood of supercell Sc

20 def topological_nearn(Sc):

21 nearN =0 # N-th nearest neighbor

22 bettsn = number_latticepoints(Sc) #Numbering lattice points (see Listing 6.1)
23 neigs = [False]lxlen(bettsn[’'positions’]) #Mark the counted neighborhood

24 neigs_count = [] #The neighborhood list

25 neigs[bettsn[’'positions’].index([0,0])] = True #Start from the corner
26 while not np.all(neigs): #Until all lattice points are marked

27 nearN += 1

28 neigs_count.append(0)

29 for i in range(-nearN,nearN+1) : #Start to walk from 1 to n-th nearest neighbor,
30 for j in range(-nearN,nearN+1) : #based on the number of Manhattan steps

31 if abs(i)+abs(j) == nearN :

32 idx = find_index(i,j,Sc,bettsn[’'positions’])

33 if not neigs[idx] :

34 neigs_count[nearN-1] += 1

35 neigs[idx] = True

36 return neigs_count

As a clarification, we reproduce Table 1A from [2] on Table but we add more information
about geometrical properties of the corresponding supercells. For a given supercell vectors [y,
I, we reduce them into L;, L, with the LLL reduction. From the L;, L,, we calculate the geo-
metrical properties such as /0, ], S and the topological properties such as Ir and Iz. We find
one disagreement to our reference on the value of Ir of 28111 (equivalent up to 0, symmetry
with 28h17). We have already counted the topological imperfection of 281111 as an example case
(see Figure[6.11), where Ir = 2, however, in our reference Ir = 0.

Table 6.6: Description of geometrical properties and topological properties of various super-
cells that are reproduced from Table 1A of [3]. The discrepancies to Table 1A of [3]
are underlined.

Nak 11 12 L1 Lz \/(7‘ I S Ip IB
8d2 (2,2 (0,4 (2,2 (-2,2) 1.000 1 Oy, 0 0
8h6 (2,3) (0,4 (-2, 1) (2,3) 0949 1 C 0 -
9t0 (3,0 (0,3) (3,0 (0,3) 1.000 0 Hypercubic 0 -
9t1 (1,3) (0,9 (1,3) (-3,0) 1.026 0 G 0 -
10h4 (2,3) (0,5) (2,3) (-2,2) 0.995 1 C 0 -
10h7 (1,3 (0,10 (1,3) (-3,1) 1.000 1 Cy 1 0
1144 (1,3 (0,11) (1,3) (-3,2) 1013 0 G 0 -
1242 (2,2 (0,6) (2,2 (-4,2) 0971 3 Dy 2 0
1212 (2,3) (0,6) (2,3) (-2,3) 1.041 0 D, 0 -
1211 (1,3 (0,12 (1,3) (-4,0) 1.011 2 Cy 2 0

1318 (1,5) (013) (32 (-2,3) 1.000 0 Cs 0o -
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14d4 (1,4 (014) (1,4 (-3,2) 1025 0 G
14h5 (1,3) (014) (1,3 (-4,2) 0975 2 G
15t3 (1,6) (015 (-2,3) (3,3) 1.003 0 G
15h4 (1,4 (015 (1,4 (-4-1) 1.065 0 Dy
1642 (2,4 (0,8 (2,4 (-4,0) 1.063 1 D;
1640 (4,0) (0,4) (4,0) (0,4 1.000 3 Hypercubic
16h6 (2,3) (0,8) (2,3 (-4,2) 0992 0 C
16h4 (4,1 (0,4) (4,1 (0,4 1015 1 @)}
16h13 (1,5 (016) (-3,1) (1,5 0949 3 G
17h13 (1,4 (017) (1,4 (-4,1) 1.000 0 Cy
17h7 (1,5 (017) (3,2 (4,3 1.000 0 G
18t3 (3,3 (0,6) (3,3 (-3,3) 1.000 2 Oy,
18h13 (1,7 (018) (-3,-3) (2,4 1026 0 G
1845 (1,4 (018 (1,4 (-4,2) 1010 O C
18h3 (3,1 (0,6) (3,1 (-3,5) 0923 6 @)}
19h4 (1,5 (019 (1,5 (-4-1) 1.038 0 G
19h11 (1,70 (019 (-3,-2) (2,5 0970 2 G
20d6 (2,4 (010) (2,4 (-4,2) 1.000 3 Cy
2043 (1,8 (020 (-2, 4 (500 1053 0 G
20q1 (1,4 (0200 (1,4 (-5,0) 1.006 1 C
20h5 (51 (0,4) (51 (0,49 099% 3 G
21h6 (3,4 (0,7 (3,4 (-3,3) 0998 4 G
21117 (1,5 (021) (1,5 (-4,1) 0989 2 G
21h8 (1,8 (021) (-3,-3) (-5,2) 1.026 2 Dy
22h9 (1,5 (022) (1,)) (-4,2) 1.013 1 G
2244 (1,6) (022) (4,-2) (-3,4) 1005 3 G
2246 (1,4 (022) (1,4 (-5,2) 0987 4 C
23h14 (1,5 (023) (1,5 (-4,3) 1053 0 G
2448 (4,4 (0,6) (4,4 (-4,2) 1011 6 C
24s2 (2,6) (0,12) (4,0 (-2,6) 0971 10 D;
2450 (4,0 (0,6) (4,0 (0,6) 0961 12 D;
24h5 (1,5 (024 (1,5 (-5-1) 1.041 O Dy
24t3 (1,9 (024 (-3,-3) (-5,3) 0989 6 G
24h7 (1,7 (024 (-3,3) (4,4 0980 8 Dy
24t4 (4,3) (0,6) (4,3) (-4,3) 1.021 3 D;

W=k O W (e} o

=~ O O O o O
N | O O

o O

W= O

N O

o
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S OO N RFk O



62 Betts Criteria

25118 (1,7) (025  (4-3) (3,4 1000 4 Cs 0o -
25115 (5,2) (0,5 (52 (0,5 103 0 C, 2 -
26115 (1,7) (026) (4-2) (3,5) 0984 6 G, 30
26021 (1,5 (026) (1,5 (51) 1000 2 Cs 5 1
26016 (2,5 (0,13) (2,5 (4,3) 1016 3 C, 0o -
27655 (1,6)  (027) (1,6) (4,3) 1049 2 C, 0o -
27h11 (1,5)  (027) (1,50 (5,2) 1008 2 C, 2 -
2848 (2,4  (014) (2,4 (-6,2) 0975 9 G, 41
28117 (1,5 (028) (1,5 (53 1025 1 C, 2 0
286 (2,5) (014) (2,5 (4,4 1042 3 C, 0 -
2818 (4,4)  (0,7) (4,4 (4,3 1001 5 C, 0o -
29117 (1,12)  (029) (2,5 (5,2) 1000 4 Cs 0o -
2918  (1,11) (029) (3-4) (-5,3) 0997 4 C, 0o -
3065 (53 (0,6) (53 (53 1065 1 D, 1 0
3066 (2,6) (015 (2,6) (4,3) 1011 4 C, 0o -
30p2 (2,50 (015 (2,5) (6,00 1034 3 C, 1 -
305 (51 (0,6) (51 (0,60 1003 5 C, 5 2
30h7  (1,13) (030) (2,4 (7,1) 0971 11 C, 5 2
31h12 (1,13)  (031) (2,5 (5,3 1005 2 C, 0o -
317 (1,9 (031) (3,4 (4,5 1000 4 C, 0 -
3294 (44 (0,8 (44 (44 100 6 O, 0 0
326  (2,6) (0,16) (2,6) (4,4 1053 2 Dy 0 0
32125 (1,9) (032 (4-4) (3,5 1015 2 C, 0 0
32411 (1,6) (032 (1,6) (52 1008 3 C, 1 -
3293 (1,12) (032 (34 (5,4 0985 6 C, 0o -

6.4 The Tight-Binding Model

At this point, we are able to estimate the good supercells that underlay two dimensional square
lattice to use for the diagonalization of the Hamiltonians. In the following we shall perform an
exact diagonalization of tight-binding model to estimate the ground state energy per site and
observe apparent correlation between geometry and the ground state energy. In the following
we shall construct the finite Hamiltonians from the corresponding supercells with considera-
tion of several boundary conditions, namely periodic boundary condition, anti-periodic boundary
condition, and open boundary condition, then we observe the band structures.

Here, we have a supercell as an external potential that constructs a lattice (crystal) by applying
a boundary condition and electrons moving around the crystal. It is assumed that the crystal
potential is strong, it means that when an electron is captured by an ion, it remains there for a
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long time before tunneling or leaking to the next ion. Within this capture interval, the electron
move mainly only around the corresponding ion and hardly influenced by other electrons from
the next sites. Hence, this model is primary suited to the low lying narrow band for which the
radius of atoms in the site are much smaller than the lattice constant.

Correspondingly, we will apply boundary conditions to the Hamiltonian of a single atom

1
Hsingle = _Ev% + Vext(r)- (61)

Let us start with an atomic orbital ¢;(r) of site i then examine the presence of other atoms in
the lattice. Then, the matrix elements of the Hamiltonian

<¢l‘ Hsingle ‘(Pz> =&

(6.2)
<4)l‘ Hsingle |(P]> = —tl']'.

Where ¢ is the ground state energy of a free electron and t;; is the interaction between sites i and
j. Since we assume that one electron is mainly orbiting in a local site, hence only the nearest
neighbor interaction is considered. Then if we construct the Hamiltonian for a one dimensional
infinite lattice, it shall form a tridiagonal matrix

H — (6.3)

which has infinite dimension. In order to construct a finite Hamiltonian, one may impose peri-
odicity to a finite lattice, i.e. the periodic potential of lattice. Hence, we shall find the suitable
wave function to our system. Firstly, we introduce three of periodic boundary conditions for
a given wave function ¢, where r as a local vector inside supercell and R as a vector that con-
structs supercell

lppbc(r +R) = ¢(r)
Pape(r +R) = —9(r) (6.4)
Wobe(r +R) = 0.

Where pbc, abc, and obc denote periodic boundary condition, anti-periodic boundary condi-
tion, and open boundary condition respectively. One naturally consider the reciprocal lattice
R that associate with lattice £ for approaching the periodic functions. The Fourier expansion
of a general function V(r) is given by

V(r) = / AV (1), 6.5)

By this property of infinite periodic potential lattice we construct the Hamiltonian dependent
to k values. We set an ansatz |iy.,) as eigenfunction
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) = \}N ;eik'R |pR+x) (6.6)

which is summation of all over lattice by translation vector R as supercell vectors that consists
of N lattice points. The value of k is now restricted to the primitive reciprocal cell. Under
translations, vector ¢y (r) transforms as

Ya(r+R) = " Fyu(r), (6.7)
this is known as the Bloch theorem. The factor ¢’*R is the phase shift whose value depends on

the boundary conditions Now apply periodic potential over k-space

1 71‘ i/ !’
<’~/Jk,~r’ H ’l/)k//'r/> = N Zze k.Re KR <¢R+r‘ H ‘¢R/+r’> .

R R’

HR+r,R’ +r

By imposing infinite periodic potential property of lattice Hr 4Ry, R'+r'+Ro = HR iy R/ 4v

1 5 1./ i
H ) - = efzk.Relk R )2
<lpk,r’ ’lpk’,r’> N ;; r,R'—R+r'

Hr,R//+r/
1 5 1./ "
_ —ik.R ik'(R"+R
S Ly ¥ emnamng
R R”+4+R
1 ; ! 1./ R
_ i(k—k’)R k'R .
= N Ze ( ) Z e Hr’R//Jrr/ (6 8)
R R+R”
——————
N‘Sk,k’
- ik/.R//
=S¢ TR oo
R”

= (Sk,k/Hrr/(kI).
By function Jy i, we see that the Hamiltonian only couples states whose wave-vectors differ by

reciprocal lattice vectors. Hence, we can determine the eigenfunctions ¢, x(r) by solving the
eigenvalue problem of Hgingle, where 7 is the band index

<_;v% + Vext(r)> an,k(r) = En,klpn,k(r)- (69)

Now we reconstruct our Hamiltonian from [6.3| by imposing boundary conditions. By using
the Bloch ansatz, from we determine the phase ¢ = ¢’®*R_ Then, we construct the finite
Hamiltonians from[6.8} with matrix elements

Hyw(k) =e+) ot (6.10)
R

For a given one dimensional lattice, with N size of supercell, the Hamiltonians for each bound-
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ary conditions are in the following.

For the case of periodic boundary condition, ¢ = 0. The Hamiltonian has the form

e —t —t
—t e —t
H= (6.11)
oy
—t —t €) NxN

with the k values k,,, = 2”T"’,where m=0,1,..., N—1.

For the case of anti-periodic boundary condition, ¢ = 7r. The Hamiltonian shall has the form

e —t t
—t e —t
oy
t —t &) yun
with the k values k,, = WT_”, where m =1, 2, ..., N. The wave function changing its phase

while stepping over boundary.

At last, for the case of open boundary condition, there is no periodicity imposed the Hamilto-
nian is simply truncated. Then, the Hamiltonian has the form

H— . (6.13)

Notice, that a boundary condition basically shift the values of k.






Chapter 7

Summary

In this thesis, our main goal was giving a guidance for the usefulness of supercells underlaying
two dimensional square lattice based on the criteria of Betts et al. [2,3].

We started from the gentle explanations of the concept of lattice, primitive vectors, and primit-
ive cell. Then we introduced the idea of constructing supercell (sublattice) and all the possibil-
ities to construct equivalent lattices and supercells using unimodular integer matrices. By these
notions, we provide the complete Phyton codes to construct classes Lattice and Sublattice
that share methods since they have similar behaviors.

Correspondingly, we introduced the Hermite Normal Form (HNF) matrices and we could re-
duce any nonsingular square matrix into HNF form. Thus, we can tell if two integer matrices
are equivalent by comparing their HNFs. Turnabout, we list the possible HNFs by a given
volume. We applied this idea for listing supercells by its HNFs by given the number of lattice
points inside supercells. Afterwards, we reduced every supercells by LLL reduction to obtain
the most compact form of supercells. We introduced the point group symmetries of the un-
derlaying the lattices. Then, we eliminated the supercells that are equivalent by applying the
corresponding symmetry transformations. Hence, we could produce all unique supercells for
a given volume. We also provided the complete Python code for listing the unique supercells
that consists of N lattice points.

From the unique list of supercells, the Betts criteria are applied in order to guide to the useful
ones for the exact diagonalization of quantum spin systems. We introduced the numbering of
lattice points and the labeling the supercells. The geometrical properties and topological prop-
erties of supercells were rigorously discussed. The geometrical properties consists of square-
ness (), geometrical imperfection (J), and point symmetry group (S). The topological proper-
ties consist of ferromagnetic imperfection (Ir) and antiferromagnetic imperfection of bipartite
supercells (Ig). Hence, we are able to list all the unique supercells underlaying two dimensional
square lattice that consists of N lattice points with their classification from the criteria of Betts et
al. [2,13]. Finally, we discussed how to construct the Tight-binding models for a supercell using
periodic, anti-periodic, and open boundary conditions.
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