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By introducing an external spin operator to the fermion action, the quark spin fractions of hadrons
are determined from the linear response of the hadron energies using the Feynman-Hellmann (FH)
theorem. At our SU(3)-flavour symmetric point, we find that the connected quark spin fractions
are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an
indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking.
We also present first preliminary results applying the FH technique to calculations of quark-line
disconnected contributions to hadronic matrix elements of axial and tensor operators. At the
SU(3)-flavour symmetric point we find a small negative contribution to the nucleon spin from
disconnected quark diagrams, while the corresponding tensor matrix elements are consistent with
zero.
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1. Introduction

Ever since the announcement by the European Muon Collaboration (EMC) [1] that quarks
carry only a small fraction of the proton’s spin, identifying the origin of hadronic spin has proven
to be a fascinating challenge (see e.g. [2]). Since this is an inherently nonperturbative phenomenon,
lattice QCD provides the ideal framework for investigating the spin decompostion of hadrons (see
[3] for a review presented at this conference).

Standard methods for performing such a lattice QCD simulation involve calculating hadronic
three-point functions via sequential source methods [4]. There has been increasing discussion
surrounding the need for controlling potential excited state contamination in these three-point sim-
ulations, in particular for spin related quantities, such as gA [5–9]. Further challenges present
themselves when calculting the contributions from quark-line disconnected diagrams (e.g. ∆s), as
these require the determination of computationally demanding all-to-all propagators. This prob-
lem is usually confronted through the use of stochastic methods, and there has been a lot of recent
progress in this direction [10–14].

Recently we have proposed an alternative method for tackling these issues through the ap-
plication of the Feynman-Hellmann (FH) theorem to lattice QCD calculations of hadronic matrix
elements [15, 16], in a similar way to that proposed in [18]. We have also recently shown how it is
possible to compute flavour-singlet renormalisation constants nonperturbatively by an appropriate
application of the FH theorem [19].

In this talk, we present an update of the quark-line connected contributions to the spin of
various hadrons first published in [16]. We will also reveal first simulations of the quark-line
disconnected spin contributions through the generation of a new set of background gauge field
configurations including the axial operator in the sea-quark action.

2. The Feynman-Hellmann Theorem

The Feynman-Hellmann theorem allows hadronic matrix elements to be calculated from shifts
in the hadron spectrum. In general, if the action of our theory depends on some parameter λ , then
for any hadron state H we have

∂EH

∂λ
=

1
2EH

〈
H
∣∣∣∣ ∂S
∂λ

∣∣∣∣H〉
λ

, (2.1)

where we use a subscript to indicate the λ dependence of the matrix element on the right-hand side
of Eq. 2.1. In particular, if we modify the QCD action such that

S→ S′(λ ) = S+λ

∫
d4x O(x) , (2.2)

where O is some operator, then

∂EH

∂λ

∣∣∣∣
λ=0

=
1

2EH
〈H |O|H〉 , (2.3)

noting the matrix element is now evaluated with respect to the unmodified action.
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The matrix element in Eq. 2.3 can be calculated by measuring shifts in the energy of the state
H as the parameter λ is modified. A well-known example of this approach is the calculation of
nucleon σ terms, where the variational parameter(s) are the quark masses (see [17] for a review).

The Feynman-Hellmann method described can in general allow calculation of both connected
and disconnected contributions to matrix elements. If the addition to the action in Eq. 2.2 is made
during gauge field generation, one may make contact with the disconnected contributions, while
modifications to the Dirac operator before calculating propagators allow access to the connected
contributions.

3. Lattice Details

We use gauge field configurations with 2+ 1 flavours of non-perturbatively O(a)-improved
Wilson fermions and a lattice volume of L3×T = 323× 64. The lattice spacing a = 0.074(2) fm
is set using a number of singlet quantities [21–23]. The clover action used comprises the tree-
level Symanzik improved gluon action together with a stout smeared fermion action, modified
for the implementation of the Feynman-Hellmann method [16]. For the quark-line connected
results, we use ensembles with three sets of hopping parameters, (κl,κs) = (0.120900,120900),
(0.121040,120620), (0.121095,0.120512), corresponding to pion masses in the range 470-310
MeV.

The exploratory investigation of the quark-line disconnected contribution to the proton spin is
performed at the SU(3) symmetric point (κl = κs = 0.120900) where all three quarks have the same
mass (mπ ≈ 470 MeV) and with two non-zero values of λ applied equally to all three sea quarks.

In order to presently physically relevent results, we use recent nonperturbative determinations
of the flavour non-singlet [24] and singlet [19] axial current renormalisation constants.

4. Connected Spin Contributions

To calculate connected contributions to the quark axial charges using the Feynman-Hellmann
method, the fermion matrix for a single quark flavour is modified such that

M→M′(λ ) = M+λ iγ5γ3 . (4.1)

where iγ5γ3 is the Euclidean form of the axial operator. Hence, for a general zero-momentum
hadron state H, polarized in the z-direction, we have

∂EH

∂λ

∣∣∣∣
λ=0

=
1

2MH
〈H ; J m |q̄iγ5γ3q|H ; J m〉= ∆qJm . (4.2)

Here J and m are the spin and longitudinal spin polarisation quantum numbers, respectively. See
[16] for a full discussion of this notation. Since the gauge fields used in this simulation were
not generated with the modified operator in Eq. 4.1, we do not access disconnected contributions
to the axial charges (as discussed in Sec. 2). We also note from Eq. 4.1 that reversing the spin
of the hadron state is equivalent to flipping the sign of λ . So we may easily double our sampled
parameter space by identifying, for example, spin-up nucleon states with positive λ , and spin-down
states with negative λ . We improve the extracted signals by forming ratios of correlation functions
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Figure 1: Nucleon energy shifts with re-
spect to λ at the SU(3) symmetric point.
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Figure 2: Total connected quark spin contributions
to various hadrons as a function of pion mass.

at λ 6= 0 and λ = 0, the details of which are discussed in [16]. Fig. 1 shows nucleon energy shifts
for different values of λ , in the cases where the modification to the fermion matrix in Eq. 4.1 is
made to the u or d part separately.

An important advantage of the Feynman-Hellmann method is that matrix elements of a par-
ticular operator may be easily calculated for different hadrons, without additional inversions being
required. Fig. 2 shows results at three different pion masses for the total connected quark axial
charges in various different hadrons.

Further discussion of these calculations may be found in [16].

5. Disconnected Spin

In principle, the application of the Feynman-Hellmann method to disconnected contributions
is no less straightforward than the above, requiring only the modification of the fermion action
during gauge field generation. However, an issue arises because the axial operator does not satisfy
γ5-hermiticity, and hence the modification to the Dirac operator in Eq. 4.1 generates a sign problem.
To avoid this, we instead modify the fermion matrix such that

M→M′(λ ) = M+λγ5γ3 . (5.1)

With this modification, the signal manifests as a complex phase in the correlation function

C(λ , t) = Ae−Eteiφ t , (5.2)

where any shift in φ with respect to λ is related to the axial charge by

∂φ

∂λ

∣∣∣∣
λ=0

= ∆qJm . (5.3)
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Figure 3: R(λ , t) for the nucleon as de-
fined in Eq. 5.4 for λconn. = −0.1, at the
SU(3) symmetric point.
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Figure 4: Complex phase of the nucleon correlator
as a function of λ at the SU(3) symmetric point.
Connected and disconnected calculations are shown.

To first order in λ , the coefficient A in Eq. 5.2 is real and there is no shift in E. This motivates the
ratio

R(λ , t) =
ImC(λ , t)− ImC(−λ , t)
ReC(λ , t)+ReC(−λ , t)

= tanφ t , (5.4)

where C(−λ , t) is the spin-down hadron state at positive λ , recalling the discussion in Sec. 4.
A plot of this ratio for a large value of λ =−0.1 can be seen in Fig. 3. With this background

field strength, it is possible that terms beyond linear order in λ influence the ratio, which would
deviate from pure tangential behaviour. Nevertheless, we still observe the general tangent form.
At the smaller λ used for the Feynman-Hellmann calculation, this higher-order behaviour is not an
issue.

Fig. 4 shows the change in the complex phase extracted from the tangential fit, with the back-
ground field strength. We are able to reproduce results for the connected contributions to the axial
charges on the same ensemble (from [16], shown in brackets),

∆uconn.(mπ ≈ 470 MeV) = 0.816(33) , [ 0.849(17)] (5.5)

∆dconn.(mπ ≈ 470 MeV) =−0.249(34) . [−0.268(12)] (5.6)

Using configurations generated with non-zero λ applied to the sea quarks, we calculate from a
linear fit to the blue data in Fig. 4, the total disconnected quark contribution to the axial charges,

∆Σdisconn.(mπ ≈ 470 MeV) =−0.055(36). (5.7)

Here we make use of the singlet axial current renormalisation constant calculated in [19]. This is
in agreement with stochastic estimations of this value reported in [11].

6. Tensor Charge

Calculation of the quark contributions to the tensor charge are calculated with the previously
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Figure 5: Nucleon energy shift with λ when the modification described in Eq. 6.1 is made.

described methods. The fermion matrix is modified such that

M→M′(λ ) = M+λγ5σ34 , (6.1)

so that the corresponding energy shifts are given by

∂EH

∂λ

∣∣∣∣
λ=0

=
1

2MH
〈H ; J m |q̄γ5σ34q|H ; J m〉 (6.2)

We note that since the tensor operator flips helicity, the disconnected insertions of the operator must
vanish in the chiral limit. However, away from the chiral limit, this is no longer guaranteed.

Fig. 5 shows nucleon energy shifts for the cases where the fermion matrix is modified before
inversion (accessing the connected contributions to the tensor charge), and in the case where modi-
fied gauge fields are used to access the disconnected contributions. From a linear fit to the data, we
calculate connected contributions

δuconn.(mπ ≈ 470 MeV) = 0.881(17) , (6.3)

δdconn.(mπ ≈ 470 MeV) =−0.198(12) , (6.4)

and disconnected contributions

δ (u+d + s)disconn.(mπ ≈ 470 MeV) =−0.009(79), (6.5)

which is consistent with zero.
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