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Topological orbital magnetization and emergent Hall effect of an atomic-scale
spin lattice at a surface
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We predict the occurrence of a novel type of atomic-scale spin lattice in an Fe monolayer on the Ir(001) surface.
Based on density functional theory calculations we parametrize a spin Hamiltonian and solve it numerically using
Monte Carlo simulations. We find the stabilization of a three-dimensional spin structure arranged on a (3 × 3)
lattice. Despite an almost vanishing total spin magnetization we predict the emergence of orbital magnetization
and large anomalous Hall effect, to which there is a significant topological contribution purely due to the real
space spin texture at the surface.
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Localized stable spin textures such as skyrmions or chiral
domain walls have attracted much attention recently due to
their unique topological and transport properties [1–3] and
potential applications in spintronics [4–7]. A key ingredient
for their occurrence is the Dzyaloshinskii-Moriya (DM)
interaction [8,9], which arises due to spin-orbit interaction
in systems with broken inversion symmetry, as in the bulk of
noncentrosymmetric crystals or at surfaces and interfaces. Hall
effects play an important role in these systems. For instance,
the spin-orbit torque originating from the spin Hall effect
drives the motion of chiral domain walls in ultrathin films
very efficiently and very high speeds have been reported [2,3].
The topological Hall effect (THE), defined as the contribution
to the Hall resistivity due to chiral spin texture, serves as one
of the main tools to pinpoint the skyrmion phase in the phase
diagram of bulk alloys such as MnSi or FeGe [10–15].

The discovery of a nanoskyrmion lattice in an Fe monolayer
(ML) on the Ir(111) surface [16] opened an entirely new class
of materials for magnetic skyrmions—transition-metal films
and interfaces—which are of prime interest for spintronic
devices [6]. Such systems have the benefit of allowing us
to engineer the skyrmion properties by film composition
and structure [17,18] and to address individual magnetic
skyrmions [16,19–21]. However, very little is known both
experimentally and theoretically about Hall effects in such
complex nanometer-scale spin textures at surfaces and inter-
faces. Another open question concerns the diversity of the class
of topologically distinct spin textures which can arise in these
systems. In this respect an appealing idea is the realization
of antiferromagnetic skyrmions [22,23], which are weakly
susceptible to external fields and promise faster dynamics
[24,25]; however, real systems are missing so far.

Here, we predict a new type of a complex spin lattice at a
surface which both exhibits unique topological and transport
properties and may serve as a possible seed structure for
sought-after antiferromagnetic skyrmions [22,23]. Namely,
using density functional theory (DFT) and Monte Carlo
techniques, we find a complex three-dimensional spin structure
with angles close to 120◦ between adjacent spins on a (3 × 3)

*hoffmann@theo-physik.uni-kiel.de

lattice for an Fe ML on Ir(001) [26]. In contrast to systems
explored so far for magnetic skyrmions the local exchange
interaction is antiferromagnetic in this system, and it can be
considered as an antiferromagnetic twin of the nanoskyrmion
spin structure formed in the Fe ML on Ir(111) [16]. The
nontrivial topological nature of the novel spin lattice with
almost compensated total magnetization manifests in the large
anomalous Hall effect (AHE). Moreover, taking the obtained
(3 × 3) spin lattice as an example, we show that complex
real-space topology of spin textures at metallic transition-metal
surfaces can completely replace the spin-orbit interaction
in giving rise to large AHE and orbital magnetization—
phenomena, traditionally viewed as key manifestations of
spin-orbit interaction in solids.

Nanoscale spin textures at transition-metal interfaces
[16,17,27,28] can be treated employing a Hamiltonian on the
discrete atomic lattice

H = −
∑

ij

Jij (Mi · Mj ) −
∑

ij

Dij · (Mi × Mj )

−
∑

ijkl

Kijkl[(Mi · Mj )(Mk · Ml) + · · · ]

−
∑

ij

Bij (Mi · Mj )2 +
∑

i

K⊥
(
Mz

i

)2
, (1)

which describes the exchange interaction (Jij ), the DM interac-
tion (Dij ), the four-spin interaction (Kijkl), and the biquadratic
exchange (Bij ) between the magnetic moments Mi of atoms
at sites Ri as well as a uniaxial magnetocrystalline anisotropy
(K⊥). The interplay of these interactions can result in complex
noncollinear spin structures. The nanoskyrmion lattice of
Fe/Ir(111) arises due to the weakened ferromagnetic exchange
and is enforced by the DM and the four-spin interaction [16].
A single atomic Pd overlayer on Fe/Ir(111) strengthens the
ferromagnetic exchange [17] such that individual magnetic
skyrmions with a diameter of a few nanometers can be realized
[21]. Therefore, an understanding of the relative strength of
the competing interactions is essential to tailor skyrmions
with desired properties in such type of systems by interface
engineering [18].

For the Fe ML on Ir(001), we used DFT to obtain
the parameters for the Hamiltonian given by Eq. (1). We
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FIG. 1. (Color online) Energy dispersion of homogeneous flat
spin spirals for Fe/Ir(001). The energies E(q) (filled circles) are
calculated via DFT along the high-symmetry lines of the two-
dimensional Brillouin zone and given with respect to the c(2 × 2)
antiferromagnetic state. The solid lines are fits to the Heisenberg
model with up to sixth-nearest neighbors [44]. The inset shows the
energy dispersion close to the M̄ point for left- and right-rotating
spirals including SOC, i.e., the effect of the DM interaction.

applied the projector augmented wave (PAW) method [29] as
implemented in the VASP code [30,31]. Computational details
are given in the Supplemental Material [32] (which refers to
Refs. [16,29,30,33–43]).

To determine the exchange constants Jij , we have con-
sidered flat spin spirals in which the magnetic moments are
confined in a plane with a constant angle between moments
at adjacent lattice sites propagating along high-symmetry di-
rections of the surface. Such a spin spiral can be characterized
by a wave vector q from the two-dimensional Brillouin zone
(BZ) and the magnetic moment of an atom at site Ri , given by
Mi = M( sin (qRi), cos (qRi),0) with the size of the magnetic
moment M .

The calculated energy dispersion E(q) of spin spirals for
Fe/Ir(001) is displayed in Fig. 1. At the high-symmetry points
we obtain collinear spin structures: the ferromagnetic state at
�̄, the c(2 × 2) antiferromagnetic state at M̄, and the p(2 × 1)
antiferromagnetic state at X̄. Clearly, the c(2 × 2) antifer-
romagnetic state is lowest in energy among the considered
collinear states in agreement with previous DFT studies [45].
The energy dispersion is very flat in the vicinity of the M̄ point
due to the frustration of exchange interactions. A fit to the
Heisenberg model, i.e., the first term in Eq. (1), with Jij ’s up
to sixth-nearest neighbors [44] leads to an excellent description
as shown by the solid line in Fig. 1 [46].

Note that the energy dispersion of Fe/Ir(001) is almost
inverted with respect to Fe/Ir(111) where the energy dispersion
is flat around the �̄ point, i.e., the ferromagnetic state [16,47].
Therefore, we can also expect complex three-dimensional
spin structures to occur here but of different type due to the
nearest-neighbor antiferromagnetic exchange [37,48].

By taking spin-orbit coupling (SOC) into account, we can
determine the magnetocrystalline anisotropy energy (MAE)

defined as the energy difference between configurations with
different orientation of the magnetization. For the collinear
state of lowest energy, i.e., the c(2 × 2) antiferromagnetic state,
we found an easy out-of-plane axis with a MAE of K⊥ =
−0.25 meV.

At a surface SOC also induces the DM interaction [49,50].
In order to determine its strength, we have calculated the
total energy of a 120◦ spin spiral along the �M direction
in a (3 × 1) supercell including SOC both with a left-handed
and a right-handed rotational sense. We find that spin spirals
with a right-handed rotational sense are lower by 7.3 meV/Fe
atom. This energy difference allows us to calculate the
value of the DM interaction within the nearest-neighbor
approximation which results in a value of D1 = 1.5 meV.
Including the DM interaction into the energy dispersion of
spin spirals leads to an energy minimum at an angle of
about 138◦ between adjacent spins as shown in the inset of
Fig. 1.

From the energy dispersion of spin spirals, only the
Heisenberg-type exchange can be obtained. The impact of
higher-order spin interactions can be determined by con-
sidering superposition states of two spin spirals. If only
Heisenberg-type exchange played a role all of these spin states
would be degenerate in energy. However, our DFT calculations
show considerable energy differences on the order of a few
meV/Fe-atom (see Supplemental Material [32]). From these
calculations, we determine that the nearest-neighbor four-spin,
K4spin, and biquadratic, B, interaction fulfill the condition
2K4spin + B = 0.7 meV.

The energy functional Eq. (1) with the parameters from
DFT can be minimized using Monte Carlo simulations based
on the Metropolis algorithm. We have chosen a spin lattice
of (66 × 66) spins and used periodic boundary conditions.
We have checked the impact of the lattice size and of using
open boundary conditions and found no effect on the obtained
ground state. In order to explore the impact of the higher-order
spin interactions, which are not univocally determined by our
DFT calculations as discussed above, we have chosen different
values of B and K4spin that are in accordance with the condition
given above. We changed the value of the four-spin interaction
in steps of 0.1 meV and the biquadratic interaction and J3 were
modified accordingly [44].

We found three different types of ground states depending
on the value of K4spin as shown in Fig. 2. A large biquadratic
interaction results in a so-called up-up-down-down (uudd)
state since a collinear alignment of neighboring spins is
preferred. However, if the biquadratic interaction is reduced
we find an atomic-scale noncollinear (3 × 3) spin lattice that
is stabilized by the four-spin term. For a value of K4spin >

−0.4 meV the four-spin term cannot couple the spin spirals
and we obtain a spin spiral ground state with an angle of about
140◦ between adjacent spins.

As shown in Fig. 2, the novel (3 × 3) spin lattice can occur
for a large range of values of the four-spin interaction. Its spin
structure is shown in Fig. 3. The spins at the corners of the
unit cell point upwards perpendicular to the surface while the
spins along the sides rotate with an angle of ≈123◦ from the
surface normal. The four spins in the center of the cell point
towards the corners and with an angle of ≈22◦ out of the film
plane.
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FIG. 2. (Color online) Spin structures of lowest energy obtained
via Monte Carlo simulations as a function of the strength of the four-
spin interaction. The biquadratic interaction is changed according to
the condition 2K4spin + B = 0.7 meV from the DFT calculations. The
sketches only display a small section of the actually simulated spin
lattice. Units in the figure are in meV.

The occurrence of this three-dimensional spin structure can
be understood from the interplay of the different interactions.
The combination of exchange and DM interaction leads to
a spin spiral with an angle of approximately 120◦ between
adjacent spins and thus a periodicity of 3 atoms (cf. Fig. 1).
For Fe biatomic chains on the (5 × 1) reconstructed Ir(001)
surface, such a spin spiral state has been experimentally
observed [20]. In the Fe monolayer on Ir(001), the four-spin
interaction can couple these spin spirals into a square lattice.
Note that there is an opposite rotational sense of the spin
rotation along the side and the diagonal of the unit cell.
This results from the antiferromagnetic exchange coupling
between nearest neighbors which is stronger than the DM
interaction that would prefer a unique rotational sense along
both directions.

FIG. 3. (Color online) (a) Side view and (b) top view of the
proposed atomic-scale (3 × 3) spin lattice. Two unit cells are shown.

Due to the competition of DMI and Heisenberg exchange,
the spin lattice is extremely stable in an external magnetic
field and cannot be destroyed up to 80 T as found in our MC
simulations. The transition temperature to the paramagnetic
state is obtained at approximately 60 K. We propose that
tuning the antiferromagnetic exchange interaction in this
system by interface engineering [17,18] may open the route to
antiferromagnetic skyrmions.

The topological Hall effect in complex large-scale magnetic
structures is normally described assuming the adiabatic view-
point of infinitesimally slowly varying spin texture [1]. For
skyrmions, the topological Hall resistivity can be factorized
into the product of an emergent magnetic field, which is
the direct consequence of the nonzero topological charge,
and the topological Hall coefficient Rtop, which can be
determined from the electronic structure of the ferromagnetic
crystal [10,13,14]. On the other side of the length scale, the
chirality-driven contribution to the AHE has been predicted
and observed in bulk strongly frustrated correlated oxides and
bulk antiferromagnets, which exhibit noncollinear magnetic
order on the scale of 1 nm [51–58].

To investigate whether the (3 × 3) spin texture results
in nontrivial transport properties, we compute from first
principles [32] the intrinsic Berry curvature contribution to
the xy component of the anomalous Hall conductivity (AHC)
in the system σ AH

3×3 = e2
�

(2π)2

∫
BZ

�xy(k)dk [59], where

�xy(k) =
∑

n<EF

∑

m�=n

2Im
〈ψnk|vx |ψmk〉〈ψmk|vy |ψnk〉

(εmk − εnk)2
(2)

is the Berry curvature of occupied states with ψnk as the
Bloch states with corresponding energies εnk, and vi is the
ith Cartesian component of the velocity operator. The results
of our calculations for σ AH

3×3, presented in Fig. 4 as a function of
the substrate thickness, indicate a sizeable AHE in the (3 × 3)
spin lattice state with the magnitude similar to that of bulk
transition-metal ferromagnets [59–61] and much larger than
that observed in bulk oxides [51–58]. The large variation of
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FIG. 4. (Color online) Top: BZ distribution of the Berry curva-
ture without (left) and with (right) SOC for Fe monolayer in (3 × 3)
state with one layer of Ir substrate, superimposed with the real-space
distribution of the spins (blue arrows). Bottom: Calculated values of
σ AH

3×3 as function of the Ir substrate thickness.
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the AHC with thickness, apparent from Fig. 4, is typical for
such effects as the AHE, spin Hall effect, or the spin-orbit
torque in the limit of ultrathin films [60,62,63].

In the context of thin magnetic layers of transition metals
on paramagnetic substrates, the emergence of the large σ AH

3×3
appears rather surprising, since the total magnetization of the
system in the (3 × 3) state is almost vanishing. By artificially
rotating the spin moments on the Fe atoms slightly away from
their equilibrium directions we acquire a complete suppression
of the magnetization and observe that the values of σ AH

3×3 stay
very close to those with small uncompensated magnetization.
This clearly distinguishes our case from the case of the AHE in
collinear magnets, which relies on nonvanishing macroscopic
magnetization and the presence of SOC [59].

Another remarkable observation is that a large contribution
to σ AH

3×3 is provided even without taking the SOC into account,
as apparent from Fig. 4, where the values of the intrinsic
AHC, computed with the SOC explicitly switched off in our
calculations, are presented in comparison with σ AH

3×3. Since
the AHE vanishes for any collinear magnetic state of our
system without SOC, it allows us to define the contribution
to σ AH

3×3 without SOC as the “topological” contribution to
the AHC, σ TH

3×3, which stems purely from the spin texture
in real space, and which does not rely on the presence of
SOC. The particular symmetry of our system which results
in nonvanishing σ TH

3×3 also gives rise to a finite local scalar
spin chirality Mi · (Mj × Mk), nonvanishing when integrated
over the unit cell [56]. To distinguish our case from the
case of large two-dimensional skyrmions and bulk frustrated
oxides, for which topological contribution to the Hall effect
in some cases can be described neglecting the spin-orbit
effects [13,14,55–57], for our class of systems we call the
corresponding anomalous Hall effect without SOC the surface
topological Hall effect. Our calculations suggest the existence
of surface THE in transition-metal multilayers.

Ultimately, the large values of σ TH
3×3 are due to a direct

effect of the nontrivial real-space distribution of spin on
reciprocal-space distribution of the AHC, given by the Berry
curvature [64]. To convince ourselves of this explicitly, we plot
in Fig. 4 the Brillouin zone distribution of the Berry curvature
computed with and without SOC for the system of an Fe layer
in the (3 × 3) spin state on one layer of the Ir substrate. As
apparent from the case without SOC, there is a very close
correlation of the Berry curvature distribution with the spin-
distribution in real-space, while the effect of SOC is to provide
an additional fine structure to this distribution stemming from
SOC-induced band splittings in the vicinity of the Fermi level.
Thus the surface THE is more complex than the THE in

large-scale skyrmions for which the topological contribution
to the THE—the emergent field—can be separated from the
electronic effects in a collinear host encoded in Rtop [10,14].
The surface THE arises from a close intertwining of the real
and reciprocal space topology, which together play a role of
a single multidimensional topological object with nontrivial
transport properties.

The microscopic origin of the competition between non-
collinearity and spin-orbit interaction for the AHE in such
nontrivial surface spin textures as considered here presents
an exciting direction to study both theoretically and ex-
perimentally [65,66]. In particular, we conjecture that the
surface THE is commonly an important part of the AHE
exhibited by complex spin structures at surfaces, such as
nanoskyrmions [16]. One of its prominent manifestations
would be the contribution to the orbital magnetization at the
surface which does not originate in spin-orbit coupling [58,67].
The orbital magnetization and the Hall effect have the same
symmetry and indeed, our calculations reveal the formation of
nonvanishing local atomic orbital moments at the surface of
our system without spin-orbit. Without SOC, the magnitude
of the maximal local orbital moment among the Fe atoms
ranges from −0.13 μB to 0.03 μB depending on the substrate
thickness, which is similar in magnitude to that obtained with
spin-orbit interaction included. At the same time, the total
orbital moment as a function of substrate thickness, obtained
as a sum over all atomic contributions in the system, ranges
from −0.07 μB to +0.04 μB when the SOC is not considered,
which is to be compared to the range of −0.13 μB to +0.13 μB

for the total orbital moment with SOC. Noticeably, the values
of the total orbital moment without SOC are by far dominated
by the contribution from the magnetic overlayer. Intuitively,
this phenomenon can be understood from a simple picture
in which the effect of the noncollinear environment of a
given spin is similar to that of an effective spin-dependent
magnetic field, which couples to orbital degrees of freedom
and gives rise to the orbital moment. Such “topological” orbital
magnetization could be readily addressed experimentally by
surface techniques.
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Phys. D 44, 392001 (2011).

[6] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152
(2013).

[7] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat.
Nanotechnol. 8, 839 (2013).

[8] I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).
[9] T. Moriya, Phys. Rev. 120, 91 (1960).

[10] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz,
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C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y. Mokrousov
et al., Phys. Rev. Lett. 112, 186601 (2014).

[15] J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropou-
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