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The magnetic moment of the ρ-meson is calculated in the framework of a low-energy effective field
theory of the strong interactions. We find that the complex-valued strong interaction corrections to the
gyromagnetic ratio are small leading to a value close to the real tree level result, gρ = 2. This is in a
reasonably good agreement with the available lattice QCD calculations for this quantity. 
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1. Introduction

Phenomenological low-energy chiral Lagrangians with vector mesons were considered already in the 1960s, see e.g. Refs. [1–3]. Later,
the chiral symmetry of QCD has been taken into account in the framework of effective field theories describing the interaction of vector
mesons with pseudoscalars and baryons, see, e.g., Refs. [4–14].

In a covariant formalism, massive vector bosons are described by Lagrangians with constraints. The self-consistency of a system with
constraints imposes non-trivial conditions on the form of the Lagrangian. In Ref. [15], the effective Lagrangian of Ref. [3] describing the
interaction among ρ-mesons, pions and nucleons was considered. Requiring perturbative renormalizability in the sense of effective field
theory [16], the universality of the vector-meson couplings was derived. The crucial ingredient of any effective field theory (EFT) is power
counting. It is possible to consistently include virtual (axial-) vector mesons in EFT [11,17,18] provided they appear only as internal lines
in Feynman diagrams involving soft external pions and nucleons with small three-momenta. The issue becomes highly non-trivial for
energies when the intermediate resonant states can be generated. The problem is that vector mesons decay in light modes and therefore
large imaginary parts appear [13]. First attempts have been made to handle this problem by applying the complex mass scheme [19–26].

In this work we calculate the magnetic moment of the ρ-meson as a function of quark masses in the framework of a low-energy
effective theory of the strong interactions. As for any unstable particle, this quantity is a complex number. For a detailed discussion
on this issue, see Ref. [27]. We start with the most general chirally invariant effective Lagrangian of vector mesons interacting with
pions in the presence of external fields. It contains an infinite number of terms which respect the underlying symmetries of QCD. All
divergences appearing in loop integrals can be absorbed into redefinition of parameters entering the effective Lagrangian order-by-order
in the expansion in terms of derivatives and quark masses. In the present work, we assume that all dimension-full coupling constants
associated with vector mesons are suppressed by powers of some large scale. Based on renormalization-group arguments, this large
scale can be expected to be given by masses of heavy hadrons multiplied with some numerical factors such as e.g. 4π Mρ . Due to this
assumption, only a finite number of terms of the effective Lagrangian has to be considered in our calculation. We further emphasize that
while the considered EFT is self-consistent and leads to systematic perturbative results for physical quantities, we can only assume that
the obtained results can be matched to the corresponding QCD observables. In this sense the considered framework can be viewed as an
EFT-based model. We apply the complex mass renormalization scheme [19,20] and calculate the magnetic moment of the vector meson
and its pion mass dependence at one-loop order.
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Fig. 1. The reaction ππ → γππ . Dashed, wavy and wiggled lines refer to pions, photons and ρ-mesons, respectively. Non-resonant contributions denoted by “Rest” are not
shown explicitly.

2. Lagrangian

We start with the most general chiral effective Lagrangian for ρ- and ω-mesons, pions and external sources in the parametrization of
the model III of Ref. [7]1

L = Lπ +Lρπ +Lω +Lωρπ + · · · . (1)

Below we specify only those terms of the Lagrangian which are relevant for the calculation of the magnetic moment of the ρ-meson
presented in this work:

Lπ = F 2

4
Tr

[
DμU

(
DμU

)†] + F 2M2

4
Tr

(
U † + U

)
,

Lρπ = −1

2
Tr

(
ρμνρ

μν
) +

[
M2

ρ + cxM2 Tr(U † + U )

4

]
Tr

[(
ρμ − iΓ μ

g

)(
ρμ − iΓμ

g

)]
,

Lω = −1

4
(∂μων − ∂νωμ)

(
∂μων − ∂νωμ

) + M2
ωωμωμ

2
,

Lωρπ = 1

2
gωρπεμναβων Tr

(
ραβuμ

)
, (2)

where

U = u2 = exp

(
i �τ · �π

F

)
,

ρμ = �τ · �ρμ

2
,

ρμν = ∂μρν − ∂νρμ − ig
[
ρμ,ρν

]
,

uμ = i
[
u†∂μu − u∂μu† − i

(
u† vμu − uvμu†)],

Γμ = 1

2

[
u†∂μu + u∂μu† − i

(
u† vμu + uvμu†)],

Γμν = ∂μΓν − ∂νΓμ + [Γμ,Γν ],
f μν
+ = uF μν

L u† + u† F μν
R u,

Dμ A = ∂μ A − ivμ A + i Avμ. (3)

Here, F denotes the pion decay constant in the chiral limit, M2 is the lowest order expression for the squared pion mass, Mρ and Mω

refer to the ρ and ω masses in the chiral limit, respectively. Further, g , cx and gωρπ are coupling constants and vμ is the external vector
field. Notice that we do not show the counterterms explicitly. For the electromagnetic interaction we have vμ = −eτ 3 Aμ/2. Demanding
that couplings with different mass dimensions are independent, the consistency condition for the ρππ coupling [15] leads to the KSFR
relation [28,29]

M2
ρ = 2g2 F 2. (4)

The Lagrangian of Eq. (2) results from Eq. (1) by switching off all coupling constants with negative mass dimensions of the interactions
involving the vector mesons.

3. Magnetic moment of the vector meson

As the ρ-meson is an unstable particle it does not appear as an asymptotic state in the effective field theory. Therefore, to define
the magnetic moment of the ρ-meson, we follow the strategy of Ref. [27] and consider an amplitude of a process in which the γρρ
vertex contributes as a sub-diagram. For the sake of definiteness, we take the process ππ → γππ shown in Fig. 1. We parameterize the
amplitude of this process as

1 The ρ-vector fields transform inhomogeneously under chiral transformations in this parametrization. This coincides with the parametrization adopted by Weinberg for
the vector fields in Ref. [3].
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M = Mα
1 (−i)Dαμ(pi)V λμν(q, p f , pi)(−i)Dνβ(p f )Mβ

2 ελ + Rest, (5)

where “Rest” denotes the non-resonant contributions. Here, Mα
1 and Mβ

2 are the ρππ vertex functions, ελ is the photon polarization,
and −iDμν(p) with

Dμν(p) = Z V
gμν − pμpν/z

p2 − z
+ Rest (6)

is the dressed propagator of the vector meson. Further, Z V is the (complex) residue at the pole z and Rest denotes the non-pole part. The
γρρ vertex function can be written as

V λμν(q, p f , pi) =
∑

j

tλμν
j V j

(
q2, p2

f , p2
i

)
, (7)

where tλμν
j denote the possible tensor structures which depend on the momenta pi , p f and the metric tensor, and V i(q2, p2

f , p2
i ) are the

corresponding scalar functions. Here and in what follows, we do not show the isospin indices (unless stated otherwise) for the sake of
compactness. Expanding the V j about the z-pole and substituting, together with the expression for the propagator in Eq. (6), into Eq. (5)
we obtain for the leading double-pole contribution

Mdp = −Mα
1

gαμ − pμ
i pν

i /z

p2
i − z

Z V

∑
j

tλμν
j V j

(
q2, z, z

)
Z V

gνβ − pν
f pβ

f /z

p2
f − z

Mβ

2 . (8)

In order to properly renormalize the γρρ vertex function we rewrite Eq. (8) in the form

Mdp = −Mα
1

√
Z V

gαμ − pμ
i pν

i /z

p2
i − z

√
Z V

∑
j

tλμν
j V j

(
q2, z, z

)√
Z V

gνβ − pν
f pβ

f /z

p2
f − z

√
Z V Mβ

2 (9)

and define

iΓ λμν(q, pi, p f ) := √
Z V

∑
j

tλμν
j V j

(
q2, z, z

)√
Z V . (10)

Noting that pμDμν does not have a pole, we drop structures containing pν
f and pμ

i and parameterize the “on-mass-shell” Γ as follows

Γ λμν(q, pi, p f ) = f1
(
q2)(pλ

i + pλ
f

)
gμν + f2

(
q2)(qν gλμ − qμgλν

) + · · · , (11)

where the ellipsis refer to structures which do not involve the metric tensor.
The charge and magnetic moment e and μρ of the ρ-meson are defined in terms of the corresponding form factors f1(0) and f2(0)

as

f1(0) = −e,

f2(0) = −2Mρμρ. (12)

There are both tree-level and loop contributions to these quantities. Loop diagrams are suppressed by powers of ξ = g2
i /(16π2), where

gi stands for coupling constants in general. Even for a sizeable coupling like gρππ , this expansion parameter is small, ξ � 0.2. Vertices
generated by the cx-term of the Lagrangian are only included at tree order in our calculations as their contributions are suppressed at the
one-loop order by two additional powers of the pion mass. At tree order, we obtain

f tree
1 (0) = −e,

f tree
2 (0) = −2e, (13)

in agreement with the findings of Refs. [30,31]. One-loop diagrams contributing to the γρρ vertex function are shown in Fig. 2. Their full
contributions to f2(0) are given in Appendix A. Taking into account the wave function renormalization we obtain

f loop
1 (0) = 0,

f loop
2 (0) = e

384π2 F 2

{
24M2 B0

(
M2

ρ, M2, M2) + 30M2
ρ B0

(
M2

ρ, M2
ρ, M2

ρ

) − 30A0
(
M2

ρ

) − 24A0
(
M2) + 17M2

ρ + 24M2}

+ eg2
ωρπ

576π2 F 2M2
ρ

{
12A0

(
M2

ω

)(
2M2

ω − M2
ρ − 2M2) − 6A0

(
M2)(4M2

ω + 5M2
ρ − 4M2)

− 9M2
ρ

(
M2

ω + M2) + M2
ρ

(
21M2

ω − 19M2
ρ + 21M2)

− 6
[
4M4

ω − 2M2(4M2
ω + M2

ρ

) + M2
ωM2

ρ − 2M4
ρ + 4M4]B0

(
M2

ρ, M2
ω, M2)}

+ eg2
ωρπ [M2

ω A0(M2
ω) − M2 A0(M2)]

32π2 F 2(M2 − M2)
, (14)
ω
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Fig. 2. Leading one loop diagrams contributing to the magnetic moment of the ρ-meson. Wavy, wiggly, dashed and solid lines correspond to the photon and ρ , π and
ω-mesons, respectively. The solid circle corresponds to the photon-ρ-meson mixing.

Fig. 3. The factor gρ as a function of the pion mass. Solid (blue) and dashed (red) lines correspond to the real and imaginary parts, respectively.

where the loop functions A0(m2) and B0(p2,m2
1,m2

2) are also defined in Appendix A. Note that in Eq. (14), the quantity f loop
1 (0) only

vanishes when the complex residue of the dressed propagator at the pole is used as the wave function renormalization constant for the
vector field. A similar result has been obtained in Ref. [32].

We now estimate numerically the derived one-loop contributions. Using gωρπ = 1.478 from Ref. [33] and adopting the physical values
for the various meson masses and the pion decay constant instead of the corresponding chiral-limit values as appropriate at the order we
are working, namely Mρ = 0.775 GeV, Mω = 0.782 GeV, M ∼ Mπ = 0.1395 GeV, F ∼ Fπ = 0.0924 GeV, we obtain

f loop
2 (0) = (0.2416 − 0.0423i)e. (15)

Notice that using the complex values M2
ρ = (0.7752 − i0.775 × 0.149) GeV2, M2

ω = (0.7822 − i0.782 × 0.0085) GeV2 for the renormalized
masses of the ρ- and ω-mesons corresponding to the pole positions leads to a very similar numerical result of

f loop
2 (0) = (0.2124 − 0.0415i)e. (16)

Comparing Eqs. (15) and (16) with Eq. (13) we see that the loop contributions are clearly suppressed in comparison with the tree-level
result and also that the imaginary part of the vector meson masses has a little impact on the value of the loop correction. We thus
conclude that the leading quantum corrections to the classical value of the g-factor, gρ = 2, are suppressed. This gives a strong indication
that the strong corrections to this observable are small. This conjecture is further supported by the value gρ = 2.1 ± 0.5 extracted in
Ref. [34] from the e+e− → π+π−2π0 BaBar data and the available lattice QCD calculations for this quantity, namely (gρ)quenched ∼ 2.3 of
Ref. [35] and (gρ)unquenched = 1.6(1) of Ref. [36] (see also Ref. [37] for an early study).

Finally, we also plot in Fig. 3 the real and imaginary parts of the g-factor gρ as functions of the pion mass. Both real and imaginary
part show very little pion mass dependence, the cusp appears at the value of the pion mass, at which the ρ pole moves from the second
to the first Riemann sheet.

4. Summary

In this Letter, we have calculated the complex-valued magnetic moment of the ρ-meson in a chirally invariant EFT utilizing the
complex-mass renormalization scheme. Assuming that the interaction terms with a higher number of derivatives and/or more fields
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Fig. 4. Vector meson self-energy diagrams at the one-loop level. Wiggly, dashed and solid lines correspond to ρ , π and ω mesons, respectively.

are suppressed by powers of some large hadronic scale, we perform a one-loop calculation in terms of the expansion parameter ξ =
(gρππ/4π)2 � 0.2. The pertinent results of our investigation can be summarized as follows:

• At tree level (leading order), the magnetic moment of the ρ is real and its gyromagnetic ratio is gρ = 2.
• At one-loop order, the magnetic moment picks up an imaginary part. We find that the one-loop corrections to gρ are of the order of

10%, cf. Eqs. (15), (16), and the imaginary part is about 0.04 (in units of the charge). The results are in agreement with recent lattice
QCD determinations.

• We find that the pion mass dependence of the gyromagnetic ratio is very weak. This could be tested on the lattice for sufficiently
small pion masses, say Mπ � 0.3 GeV, that also allow for the ρ-meson to decay.

While comparing our results with those of lattice QCD tempts us to conclude that our assumption about the contributions from terms
with more derivatives and/or fields being suppressed is justified, we cannot derive it from QCD due to the lack of separation of scales in
the spectrum of hadrons of non-Goldstone boson type.
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Appendix A. Loop functions and explicit expressions

The loop functions A0 and B0 are defined as follows:

A0
(
m2) = (2π)4−n

iπ2

∫
dnk

k2 − m2
,

B0
(

p2,m2
1,m2

2

) = (2π)4−n

iπ2

∫
dnk

[k2 − m2
1][(p + k)2 − m2

2]
, (A.1)

where n is the space–time dimension.
The sum of all one-particle-irreducible diagrams contributing in the vector meson two-point function can be parameterized as

iΠab
μν(p) = iδab[gμνΠ1 + (

gμν p2 − pμpν

)
Π2

(
p2)], (A.2)

where Π1 is momentum-independent and Π2(p2) is regular at p2 = 0. Further, a and b are the isospin indices. The wave function
renormalization of the vector meson is defined as the (complex) residue at the (complex) pole of the dressed propagator. In terms of
Eq. (A.2) it reads

Z V = 1

1 − Π2(z) − zΠ ′
2(z)

= 1 + δZρ + · · · , (A.3)

where δZρ is the LO one-loop contribution and the ellipses stand for higher order corrections.
Calculating the vector-meson self-energy diagrams, cf. Fig. 4, we obtain

δZρ = − 1

1152π2 F 2

{
4
[
3
(
M2

ρ + 2M2)B0
(
M2

ρ, M2, M2) − 6A0
(
M2) − M2

ρ + 6M2]
+ M2

ρ

[
99B0

(
M2

ρ, M2
ρ, M2

ρ

) + 113
] − 258A0

(
M2

ρ

)}

+ g2
ωρπ

288π2 F 2M2
ρ

{
3M2

ωM2
ρ B0

(
M2

ρ, M2
ω, M2) − 6M2

ωM2 B0
(
M2

ρ, M2
ω, M2)

+ 3M2
ρ M2 B0

(
M2

ρ, M2
ω, M2) + 3M4 B0

(
M2

ρ, M2
ω, M2) − 6M4

ρ B0
(
M2

ρ, M2
ω, M2)

+ 3M4
ω B0

(
M2

ρ, M2
ω, M2) + A0

(
M2

ω

)(−3M2
ω + 6M2

ρ + 3M2)
+ 3A0

(
M2)(M2

ω + 2M2
ρ − M2) − 6M2

ωM2
ρ + 5M4

ρ − 6M2
ρ M2}. (A.4)



120 D. Djukanovic et al. / Physics Letters B 730 (2014) 115–121
The contributions of the one-loop diagrams to f1(0) are:

f1[1] = e(−3(M2
ρ + 2M2)B0(M2

ρ, M2, M2) + 6A0(M2) + M2
ρ − 6M2)

288π2 F 2
,

f1[2] = −e(M2
ρ(495B0(M2

ρ, M2
ρ, M2

ρ) + 196) − 534A0(M2
ρ))

2304π2 F 2
,

f1[3] = 0,

f1[4] = 0,

f1[5] = 0,

f1[6] + f1[7] = 0,

f1[18] + f1[9] = 0,

f1[10] + f1[11] = −e(M2
ρ(10 − 99B0(M2

ρ, M2
ρ, M2

ρ)) + 6A0(M2
ρ))

768π2 F 2
,

f1[12] = e A0(M2)

16π2 F 2
,

f1[13] = −e A0(M2)

16π2 F 2
,

f1[14] = 0,

f1[15] = eg2
ωρπ

288π2 F 2M2
ρ

{
3A0

(
M2

ω

)(−2M2
ω + M2

ρ + 2M2)

+ 3A0
(
M2)(2M2

ω + M2
ρ − 2M2) + M2

ρ

(−3M2
ω + 4M2

ρ − 3M2)
− 3

[
M2(4M2

ω + M2
ρ

) + M2
ωM2

ρ + M4
ρ − 2M4 − 2M4

ω

]
B0

(
M2

ρ, M2
ω, M2)},

f1[16] + f1[17] = 0,

f1[18] + f1[19] = eg2
ωρπ

288π2 F 2M2
ρ

{
3A0

(
M2

ω

)(
M2

ω + M2
ρ − M2)

+ 3A0
(
M2)(−M2

ω + M2
ρ + M2) + M2

ρ

(−3M2
ω + M2

ρ − 3M2)
− 3

(
M4

ω − 2M2
ω

(
M2

ρ + M2) + (
M2

ρ − M2)2)
B0

(
M2

ρ, M2
ω, M2)},

f2[20] = 0. (A.5)

The contributions of the one-loop diagrams to f2(0) are:

f2[1] = − e

288F 2π2

{
M2

ρ − 6M2 + 6A0
(
M2) + 6

(
M2

ρ − M2)B0
(
M2

ρ, M2, M2)},
f2[2] = e

2304F 2π2

{[
136 − 513B0

(
M2

ρ, M2
ρ, M2

ρ

)]
M2

ρ + 546A0
(
M2

ρ

)}
,

f2[3] = 0,

f2[4] = − 3e

64F 2π2

{
4M2

ρ − 3A0
(
M2

ρ

)}
,

f2[5] = 0,

f2[6] + f2[7] = 0,

f2[8] + f2[9] = 0,

f2[10] + f2[11] = e

768F 2π2

{
M2

ρ

[
99B0

(
M2

ρ, M2
ρ, M2

ρ

) − 10
] − 6A0

(
M2

ρ

)}
,

f2[12] = e

8F 2π2
A0

(
M2),

f2[13] = − e

8F 2π2
A0

(
M2),

f2[14] = 0,

f2[15] = − eg2
ωρπ

576π2 F 2M2
ρ

{−6A0
(
M2

ω

)(
M2

ω + M2
ρ − M2)

+ 6A0
(
M2)(M2

ω + 2M2
ρ − M2) + M2

ρ

(−3M2
ω + M2

ρ − 3M2)
+ 6

(
M4

ω − 2M2(M2
ω + M2

ρ

) + M2
ωM2

ρ + M4
ρ + M4)B0

(
M2

ρ, M2
ω, M2)},
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f2[16] + f2[17] = 0,

f2[18] + f2[19] = eg2
ωρπ

288π2 F 2M2
ρ

{
3A0

(
M2

ω

)(
M2

ω + M2
ρ − M2)

+ 3A0
(
M2)(−M2

ω + M2
ρ + M2) + M2

ρ

(−3M2
ω + M2

ρ − 3M2)
− 3

(
M4

ω − 2M2
ω

(
M2

ρ + M2) + (
M2

ρ − M2)2)
B0

(
M2

ρ, M2
ω, M2)},

f2[20] = − eg2
ωρπ

64π2 F 2(M2
ω − M2)

[
M4

ω − 2A0
(
M2

ω

)
M2

ω − M4 + 2M2 A0
(
M2)]. (A.6)
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