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We analyze photoproduction of η mesons off the proton in a gauge-invariant chiral unitary framework. 
The interaction kernel for meson–baryon scattering is derived from the leading order chiral effective 
Lagrangian and iterated in a Bethe–Salpeter equation. The recent precise threshold data from the Crystal 
Ball at MAMI can be described rather well and the complex pole corresponding to the S11(1535) is 
extracted. An extension of the kernel is also discussed.
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1. Introduction

Coupled-channel unitary extensions of chiral perturbation the-
ory have been established as a viable tool to investigate the chi-
ral SU(3) dynamics of QCD, for early papers see e.g. [1–5]. The 
main reason for this is that within such a framework, resonances 
close to and even below the relevant thresholds can be generated 
dynamically. The two premier examples are the Λ(1405) that fea-
tures prominently in antikaon–proton scattering and the S11(1535)

that dominates the threshold cross section in eta photoproduc-
tion off protons. In the context of unitarized chiral perturbation 
theory, this was first investigated in Refs. [6,7] based on the next-
to-leading order (NLO) effective Lagrangian (i.e. using the perti-
nent contact interactions). The inclusion of p-waves was studied in
[8], and the role of the ππ N final-state was investigated in [9].
η and η′ photo- and electroproduction based on a U(3) extension
of the chiral Lagrangian was considered in [10]. In these ground-
breaking papers, the issue of gauge invariance was not considered. 
In Ref. [11], a gauge-invariant framework for meson photoproduc-
tion was developed and applied to associated strangeness produc-
tion, using the leading order Weinberg–Tomozawa interaction as 
the driving term in the Bethe–Salpeter equation. In this note, we 
extend this method to the process γ p → ηp and in particular to
a determination of the mass and width of the S11(1535). Even-
tually, NLO contributions will have to be included, a first step for
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the purely hadronic interactions within our approach was recently 
reported in [12].

2. Framework

In this work we follow the construction procedure of the mini-
mal approach to meson photoproduction, which is exactly unitary 
in the subspace of meson–baryon channels and gauge-invariant, as 
developed in Ref. [11]. We refer the reader to that Letter for a more 
detailed discussion. The first building block of the photoproduction 
amplitude is the meson–baryon interaction, for which we consider 
the chiral effective Lagrangian of QCD at leading order:

L(1)
φB = 〈

B̄
(
iγμDμ − m0

)
B
〉 + D/F

2 

〈
B̄γμγ5 

[
uμ, B

]
±
〉
, (1)

where 〈· · ·〉 denotes the trace in flavor space, DμB = ∂μB +[Γμ, B],
m0 is the baryon octet mass in the chiral SU(3) limit, while D and 
F are the axial coupling constants. The relevant degrees of freedom 
are the Goldstone bosons described by the traceless meson matrix 
U = u2 = exp(iφ/F0), where F0 is the meson decay constant in
the chiral limit. The meson- and the low-lying baryon-fields are 
collected in traceless matrices φ and B , respectively. Moreover, we 
use uμ = iu†(∂μU − i[vμ, U ])u† the so-called chiral vielbein. The
quark charge matrix is Q = diag(2/3,−1/3,−1/3), and the exter-
nal vector field is encoded in vμ = −e Q Aμ.

The expansion of the chiral connection Γ μ = [u†, ∂μu]/2 −
i(u† vμu + uvμu†)/2 in meson fields leads to the meson–baryon
vertex of the leading chiral order, the Weinberg–Tomozawa (WT) 
term. However, at first chiral order, there are also the Born graphs,
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describing the s-channel and u-channel exchanges of an interme-
diate nucleon. The full inclusion of these graphs in the driving
term of the Bethe–Salpeter equation (BSE) leads to conceptional
and practical difficulties, which have not yet been solved to the
best of our knowledge, see [12–14] for a more detailed discus-
sion of this issue. However, most chiral unitary approaches restrict
their meson–baryon potential to this interaction, which generates
the leading contribution to the s-wave scattering lengths. This ap-
proach has been remarkably successful in many cases, thus we
iterate the WT-potential V WT = g(/q1 + /q2) via the BSE in d space–
time dimensions to infinite order as follows

T (/q2, /q1; p)

= V WT(/q2, /q1)

+
∫

ddl

(2π)d
V WT(/q2, /l)i S(/p − /l)	(l)T (/l, /q1; p), (2)

where the in-, outgoing meson and the overall four-momentum
are denoted by q1, q2 and p, respectively. The baryon and the
meson propagators are represented by i S(/p) = i/(/p − m + iε) and
i	(k) = i/(k2 − M2 + iε), in order. Moreover, every element of the
above equation is a matrix in the channel space. For the case of
η-photoproduction considered here, we restrict ourselves to the
following channels: {pπ0,nπ+, pη,ΛK +,Σ0 K +,Σ+K 0}.

Because the kernel of the integral Eq. (2) stems from the con-
tact interactions only, we have to deal at most with one-meson–
one-baryon loops, which are all dimensionally regularized through-
out this work. It is not possible to express the terms necessary to
absorb the divergencies in the BSE as counterterms derived from a
local Lagrangian. However, it is possible to alter the loop integrals
in the solution of the BSE in a way that is in principle equivalent to
a proper modification of the chiral potential itself, see [13]. In this
spirit we apply the usual MS subtraction scheme, keeping in mind
that the modified loop integrals are still scale-dependent. This reg-
ularization scale (μ) is used as a fitting parameter, reflecting the
influence of higher order terms not included in our potential.

The functional form of the driving term allows to construct
an explicit solution of the BSE, see [11]. Starting from the corre-
sponding scattering amplitude T (/q2, /q1; p), where exact two-body
unitarity is guaranteed by construction in the BSE framework, and
following the recipe of [11] we are now able to construct the
gauge-invariant photoproduction amplitude in a most natural way,
without any use of “artificial restoration” of gauge invariance, i.e.
adding contact interactions, see e.g. [15,16]. In our approach, we
simply couple the photon to any in- and external line as well as to
the (momentum-dependent) vertices.

As an intermediate step we construct the amplitude Γ for the
process p → Bφ starting from the potential derived from the lead-
ing order Lagrangian Eq. (1) V̂ = /qγ5 ĝ , where q is the outgoing
meson momentum and ĝ is the (D-, F -dependent) coupling con-
stant corresponding to the second term of Eq. (1). Now we add
the loop contribution that accounts for the final state interaction
as follows

Γ (/p, /q) = V̂ (/q) +
∫

ddl

(2π)d
T (/q, /l; p)i S(/p − /l)	(l)V̂ (/l).

Note that the process in question is meson photoproduction off the
proton, thus Γ , V̂ and ĝ are 6-vectors in the channel space.

In the next step we couple the photon in every possible place
to the hadronic skeleton. A photon can couple via: Bφγ → φB ,
arising from the chiral connection, Bγ → B , φγ → φ or via the
Kroll–Rudermann interaction γ B → Bφ, stemming from the chi-
ral vielbein. These interactions give rise to nine different topolo-
gies presented in Fig. 1. Following the conventions of [17] the
Fig. 1. Different topologies contributing to gauge-invariant photomeson production
off the proton. Solid, dashed and wiggly lines denote baryons, mesons and photons,
in order. The filled circles/squares denote the meson production/the meson–baryon
interaction, i.e. Γ and T , respectively.

most general Lorentz covariant form of the amplitude for the pro-
cess: γ (k)Bi(p − k) → B f (p − q)φ f (q) can be written as T f i =
iεμū f (

∑8
i=1 Bi N μ

i )ui , where εμ is the photon polarization vec-
tor and ui, f are the initial and final Dirac spinors, respectively,
which are normalized like ūu = 2m. Moreover B denote the coef-
ficients of the pseudo-vectors N με{γ5γ

μ/k,2γ5 Pμ,2γ5qμ,2γ5kμ,

γ5γ
μ,γ5/kPμ,γ5/kkμ,γ5/kqμ} with P = 2p − q − k.

For further study we fix the axis of quantization to the z-axis
and rewrite the amplitude once more in terms of CGLN amplitudes
and Pauli spinors and matrices as

T f i = 8π
√

sχ †
f F χi, (3)

where F = i(σ · ε)F1 + (σ · q̂)(σ · [k̂ × ε])F2 + i(σ · k̂)(q̂ · ε)F3 +
i(σ · q̂)(q̂ ·ε)F4 + i(σ ·k̂)(k̂ ·ε)F5 + i(σ · q̂)(k̂ ·ε)F6 + i(σ · q̂)(k̂ ·ε)F6 −
i(σ · q̂)ε0 F7 − i(σ · k̂)ε0 F8 with k̂ and q̂ normalized three-vectors.
For the exact form of CGLN amplitudes in form of coefficients B we
refer the reader to the [11]. Let us note here that due to current
conservation two of the eight CGLN amplitudes can be expressed
in terms of other six. Moreover two of the remaining six CGLN am-
plitudes are accompanied by scalar components of ε only and thus
have no influence on process including real photons. In view on
photoproduction this leaves us with four independent CGLN am-
plitudes.

Let us also mention that by construction of the unitary hadronic
interaction the photoproduction amplitude obeys the requirement
of two-body unitarity in the subspace of meson–baryon channels
automatically. There are five different unitarity classes, which obey
the two-body unitarity by themselves. Gauge invariance is, how-
ever, fulfilled only if all topologies are taken into account. Note
that within the approximation used here, crossing symmetry is vi-
olated.

3. Results

We are now able to confront our model with the experimen-
tal results, for which we consider the recent measurement of the
differential cross sections from the Crystal Ball at MAMI [18]. The
parameters of the model are the unknown renormalization scales,
whose number is restricted to four due to isospin-symmetry:
{μπ N ,μηN ,μKΛ,μKΣ }. In contrast to [11] we do not consider the
meson decay constants as free parameters, but fix them to their
physical values. Our input parameters are: Fπ = Fη/1.3 = 0.0924,
F K = 0.113, Mπ0 = 0.135, Mπ+ = 0.1396, Mη = 0.5478, MK + =
0.4937, MK 0 = 0.4977, mp = 0.9383, mn = 0.9396, mΛ = 1.1157,
mΣ0 = 1.1926, mΣ+ = 1.1894, D = 0.8 and F = 0.46 (all masses
and decay constants in units of GeV).
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Fig. 2. Best fit of our model (solid lines with shaded error bands) compared to the experimental data from the Crystal Ball at MAMI (filled circles with error bars). The
differential cross section dσ/dΩ in [μb/sr] is plotted versus cos(θ) for the cms energies given on top of each panel.
The p- and d-waves become important already at moderate
energies away from the threshold. Since the kernel of the BSE
considered here is the WT-term only, which mainly produces an
s-wave contribution, we restrict the center-of-mass (cms) energy
of the present analysis to 1487.8 MeV < Ecms < 1609.9 MeV. Note
that the WT interaction kernel produces a small p-wave contri-
bution via the lower components of the Dirac spinors, however
the explicit angular dependence of the amplitude is only described
when higher order potentials are taken into account [8]. The cal-
culation of the BSE with the potential at next-to-leading order is
performed in Ref. [12] for the hadronic part and is to be extended
to photoproduction in Ref. [14]. There the η-photoproduction off
the neutron, which is beyond the scope of this work, will also be
investigated.

The quality of our fits is given in terms of the χ2
dof,

χ2
dof = N

σ N − δ

∑
E

1

n(E)

∑
z

( dσ
dΩ

(E, z;μ) − dσ
dΩ

(E, z; e))2

(	 dσ
dΩ

(E, z; e))2
,

where z = cos(θ), n(E) is the number of data points at energy E ,
σ is the number of distinct energies and N is the total number
of data points. Moreover δ = 4 denotes the number of degrees of
freedom, which are called collectively μ. The letter e denotes the
experimental values. Using now a random walk minimization pro-
cedure, we obtain a χ2

dof = 0.9997 with the following parameters

log(μπ N/GeV) = −0.611, log(μηN/GeV) = −0.512+0.057
−0.051,

log(μKΣ/GeV) = +1.845, log(μKΛ/GeV) = −5.112+0.403
−0.312,

where the error bars are obtained by varying the parameters such
that the χ2

dof is increased by one. No uncertainty is given, if it does
not affect the value of a parameter at the given accuracy. Some
representative differential cross sections are shown in Fig. 2. Quite
a good agreement between the model and experiment is achieved
for energies more than 100 MeV above threshold, which can be
seen from the plot of the integrated cross section in Fig. 3. Above
the KΛ threshold, the total cross section exceeds the data, this will
eventually be overcome in a more precise NLO calculation.
It is commonly believed that the first nucleon resonance, the
S11(1535) saturates the cross section close to the ηN threshold.
Moreover, it is known that this state can be understood as dynam-
ically generated already from the leading chiral order vertex, i.e.
the WT-interaction. Since the latter is also the driving term of our
hadronic amplitude it is worth to have a look at the modulus of
the electric dipole amplitude E0+ as a function of s = E2

cms on the
second Riemann sheet. The resonance appears at

Ecms = (
1525.9+4.4

−3.6 − i111.4+1.9
−2.0

)
MeV (4)

which is in good agreement with the extraction from phenomeno-
logical or other coupled-channel approaches collected in [19] (at
least for the real part) and our recent determination from scatter-
ing data [12]. It can therefore be identified with the S11(1535) res-
onance, which is dynamically generated in the present approach.
The imaginary part of the pole position is larger than the values of
more recent phenomenological approaches collected in [19], how-
ever the uncertainty given above reflects only the influence of the
errors on the parameters and is certainly underestimated. More-
over this large width is consistent with our determination from
scattering at NLO.

For the s-wave multipole E0+ we obtain at threshold

E0+ = (−12.39+1.51
−1.05 + i16.15+2.23

−1.85

) · 10−3/Mπ+ . (5)

Its modulus |E0+| = 20.35+2.41
−2.38 · 10−3/Mπ+ is somewhat larger

than the one obtained in the early calculation in unitarized chiral
perturbation theory [7] and in certain resonance models includ-
ing the S11(1535), see e.g. Ref. [20]. Moreover, the ratio of the
imaginary to the real part is about 1.06 . . . 1.68 and agrees with
estimations from resonance models [20].

4. Extension of the model

As stated before, one should include all NLO contributions in
the hadronic as well as the electromagnetic part of the produc-
tion amplitude. However, the full inclusion of such terms is beyond
the scope of this work and will be given later [12,14]. As a first
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Fig. 3. Total cross section for the best fit of our model (solid lines with shaded er-
ror bands) compared to the experimental data from the Crystal Ball at MAMI (filled
circles with error bars). The vertical dashed lines denote the pη and the KΛ thresh-
olds.

step to study the impact of such a modification, it is interesting
to consider the magnetic moment couplings of the photon to the
nucleon, since these play an important role in phenomenological
studies. The corresponding terms of the NLO chiral Lagrangian read
[21]

b12
〈
B̄σμν

{
F +
μν, B

}〉 + b13
〈
B̄σμν

[
F +
μν, B

]〉
,

where F +
μν = uFμνu† +u† Fμνu and Fμν = ∂μvν −∂ν vμ is the pho-

ton field strength tensor. The corresponding additional vertices are
restricted to γ B → B and γ Bφ → Bφ only, thus they do not
give rise to any change of the hadronic part of our photoproduc-
tion amplitude. As a matter of fact unitarity in the subspace of
meson–baryon channels is still preserved and the gauge invariance
is guaranteed automatically by the functional form of the interac-
tion itself.

Within our model the inclusion of the b12,13 terms leads to
an additional complication due to the Λ ↔ Σ0 transition induced
by this terms. Without going into details, see [12,14] for discus-
sion, we have to modify the regularization scheme, such that the
pure baryon integrals are set to zero from the beginning. Thus, our
treatment of the loop integrals is, in effect, similar to the EOMS
regularization scheme advocated in Ref. [22]. Moreover, the same
transition implies that μK = μKΣ = μKΛ , which reduces the orig-
inal parameter space of our model to {μπ N ,μηN ,μK ,b12,b13}.

We have performed fits to the Crystal Ball data on differen-
tial cross sections in the same manner as before. However the
energy region in question is reduced since no good agreement
was achieved even for moderate energies. For the energy region
1487.8 MeV < Ecms < 1541.8 MeV we can obtain a fit which min-
imizes the χ2

dof to 1.75. For the same regularization scheme, but
without the inclusion of b12,13 terms we obtain χ2

dof = 3.44. How-
ever, the agreement with the data is worse compared to the lead-
ing order approach. The conclusion to be drawn is that the inclu-
sion of the Pauli-terms ∼ b12,13 alone does not improve the LO
description. In fact, it is mandatory to perform a full NLO analysis.
In particular, as the Pauli coupling is much for important for the
neutron, we refrain from giving the LO results for γn → ηn here.
5. Summary and outlook

We have shown that the precise data of η-photoproduction in
the threshold region can be described rather accurately within the
gauge-invariant chiral unitary framework. The S11(1535) resonance
is generated dynamically and its pole position in the complex
plane agrees with earlier determinations. To go to higher energies,
to improve the precision and to investigate also the interesting
properties of the same reaction on the neutron, one has to go to
NLO and, in the long run, also include the Born terms in the uni-
tarization scheme. Such efforts are under way [14].
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