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1 Introduction

The scalar sector of the low-energy QCD is controversial. In particular, in the experimental

spectrum there are too many candidates for the scalar qq̄ nonet. In the phenomenological

approaches, alternative solutions to this problem have been suggested. One of the possible

solutions is to treat some of these mesons as tetraquark states (see, e.g., [1–4]). Another

suggestion is that a0(980) and f0(980) are to be considered as KK̄ molecules [5–9]. Further,

in ref. [10] these states were described as a combination of a bare pole and the rescattering

contribution. The investigations carried out within the framework of QCD sum rules

are, in particular, indicative of the non-qq̄ nature of a0(980) [11, 12]. In the Jülich meson-

exchange model, f0(980) appears to be a bound KK̄ state, whereas a0(980) is a dynamically

generated threshold effect [13]. In the view of the above controversial identifications we

wish to stress that all these, in general, are model-dependent and can not be unambiguously

interpreted in quantum field theory. However, in case when the states are very close to

some 2-particle threshold (as it is indeed the case with a0(980) and f0(980)), it is possible

to make a model-independent statement, whether these resonances are molecular states

or not. The “compositeness criterium,” which is applied here, was first introduced by

Weinberg [14–16]. This approach is related to the “pole counting” method, considered in

refs. [17, 18]. The above methods were used, e.g., in refs. [19–24] to study the nature of

a0(980) and f0(980) resonances. In particular, in ref. [22], the position of the S-matrix

poles in the vicinity of the KK̄ threshold in the scalar sector of QCD is expressed through

the so-called Flatté parameters, which describe a resonance located in the vicinity of a

2-particle threshold and which are in principle measurable in the scattering experiments.

Note, however that the compositeness criterium (or the pole counting method) is designed

to distinguish a near threshold molecular state from a tightly bound system of quarks. The
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question about the precise nature of this quark compound (qq̄ state, or tetraquark, or a

glueball, or something else), can not be resolved by this criterium.

It is often stated that the study of the scalar spectrum in lattice QCD can eventually

lead to the understanding of the nature of these states. Indeed, recent years have seen

considerable activity, concerning the calculation of the spectrum of the scalar mesons on

the lattice (see, e.g., [25–38]). However, alone the calculations of the excited spectrum

do not answer the question. Additional criteria are usually applied. It should be noted

that, as compared to the phenomenological approaches, lattice QCD has in general more

tools at its disposal which can be exploited in order to separate the exotic states from

the conventional qq̄ spectrum. We mention, as one example, the method of hybrid bound-

ary conditions (HBC) [27–31], which is used to distinguish the scattering states from the

tightly bound quark-antiquark systems. Another example is given by the calculations of

the spectrum of the q2q̄2 mesons, which were done in the quenched approximation and

in the absence of qq̄ annihilation diagrams [25]. In the latter paper it has been argued

that, due to the above approximations, and due to the fact that the quark masses used

in the simulations were rather high, mixing of the qq̄ channel to the tetraquark states is

suppressed, so that the observed spectrum can be readily attributed to the latter. However,

even if these arguments might look intuitively plausible, they explicitly refer to certain ap-

proximations and, for this reason, can not be regarded completely consistent. It is evident

that, in order to be able to systematically study the nature of the scalar resonances, one

should put the existing methods under the renewed scrutiny and look for rigorous criteria,

which will not be based on the malevolent modifications of the original theory.

In the present paper we make an attempt to answer the question, how the observables

of the low-lying scalar mesons a0(980) and f0(980) can be (at least in principle) deter-

mined from lattice QCD simulations. It is clear that, due to the proximity of the inelastic

threshold, finite-volume effects should be very important and could significantly distort the

structure of the energy levels. Although the finite-volume corrections have been considered

in partially quenched ChPT at one loop (see, e.g. [36–38]), a systematic investigation of

the problem, to the best of our knowledge, is still lacking. The present paper, in particular,

intends to fill this gap.

In addition, we discuss, which conclusions (if any) about the nature of the scalar

resonances a0(980) and f0(980) can be drawn in a model-independent fashion from the

calculations on the lattice. Namely, we reformulate the criterium of refs. [14–20] for energy

spectrum of lattice QCD in a finite box, whose volume-dependence can be studied within

the Lüscher framework [39]. In order to achieve the goal, using the so-called twisted bound-

ary condition [40–43] has proven to be advantageous. We further investigate the relation

of our approach to the HBC method of refs. [27–31].

Further, we discuss a criterium, which can be used to distinguish between the qq̄ mesons

and the tetraquarks (but which does not distinguish between the tightly bound tetraquarks

and the KK̄ molecules). The criterium is based on the study of the strangeness content

of these states. By using Feynman-Hellman theorem, this quantity can be related to the

quark mass dependence of the exotic state masses and thus can be measured on the lattice.

– 2 –



J
H
E
P
0
1
(
2
0
1
1
)
0
1
9

The layout of the paper is as follows. In section 2 we briefly review the phenomenolog-

ical determination of the position of a0(980) and f0(980) poles in the complex plane and

discuss the “pole counting” method. The generalization of this method to a finite volume is

considered in section 3. In section 4 we consider the strangeness content of the scalar mesons

and formulate a criterium for the tetraquark candidates. Section 5 contains our conclusions.

2 Phenomenological analysis of the ππ scattering amplitude near KK̄

threshold

In the following, we restrict ourselves to the discussion of the f0(980). The case of the

a0(980) can be considered along a similar path.

It is a well-known fact that ππ scattering below KK̄ threshold is almost elastic (the

inelasticity parameter is close to unity in this region). For this reason, in the vicinity of

the KK̄ threshold, where the f0(980) resonance is located, it is convenient to parameterize

the ππ scattering amplitude in terms of the coupled-channel K-matrix with the following

2-particle channels: “1”=ππ and “2”=KK̄. The coupled-channel T -matrix in the S-wave

obeys the equation

Tij(s) = Kij(s) +
∑

n

Kin(s) iqn(s)Tnj(s) , i, j, n = 1, 2 , (2.1)

where q1(s) =
√

s/4 − M2
π + i0, q2(s) =

√

s/4 − M2
K + i0 and s denotes the pertinent

Mandelstam variable. Note that a similar equation has been used in our treatment of the

K̄N scattering length [44]. However, in difference to refs. [44, 45], we do not refer to the

non-relativistic effective theory in the derivation of eq. (2.1). Consequently, the functions

Kij(s) are no more assumed to be low-energy polynomials in the whole interval between ππ

and KK̄ thresholds. In principle, Kij(s) has a small imaginary part above 4π threshold.

However, in the following, we shall neglect this effect.

The S-wave ππ scattering amplitude is given by

T11(s) =
1

w−1
11 − iq1

, w11 = K11 +
iq2 K2

12

1 − iq2K22
. (2.2)

In the literature, different phenomenological parameterizations of the K-matrix are used.

We distinguish between the parameterizations which have a pre-existing real pole(s) in the

vicinity of the KK̄ threshold (see, e.g., ref. [46]) and those which are regular in this region

(e.g., [6, 47]). In the latter case, the K-matrix elements can be expanded in Taylor series

Kij(s) = K
(0)
ij +q2

2(s)K
(1)
ij +O(q4

2), whereas in the former, an additional pole term should be

also included. The location of the S-matrix pole(s) in either case is uniquely determined by

the behavior of the K-matrix in the threshold region. This defines the two-step strategy in

the study of scalar mesons. In particular, we shall demonstrate below that, measuring the

energy spectrum in a finite volume, one may uniquely determine the K-matrix elements

that amounts to measuring, for instance, the coefficients K
(0)
ij ,K

(1)
ij (this statement is a

generalization of Lüscher method to the multichannel case). At the next stage, continuing
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the K-matrix into the complex plane by using the Taylor (Laurent) expansion, one finds

the location of the S-matrix poles in the threshold region from the secular equation

1 − iq1(s)K11(s) − iq2(s)K22(s) − q1(s)q2(s)(K11(s)K22(s) − K12(s)
2) = 0 . (2.3)

Assuming further that the quantity w−1
11 in eq. (2.2) can be expanded in Taylor series

in the variable q2, one arrives at the so-called Flatté parameterization [48] which modifies

the usual Breit-Wigner parameterization when a nearby threshold is present

T11 =
const

m2
R − s + O(q4

2) − imR(gπ q̂1 + gK q2(s) + O(q2
2))

, (2.4)

where q̂1 = q1(s)
∣

∣

s=4M2

K

and the parameters mR, gπ, gK can be expressed through the

quantities K
(0)
ij ,K

(1)
ij . However, it turns out that, for the known phenomenological param-

eterizations, the Taylor expansion of w−1
11 has a very small radius of convergence. For this

reason, it is safer to use the secular equation, eq. (2.3) to find the location of the poles.

The compositeness criterium [14–20] states that, for the molecular states, only one

of the poles is located in the vicinity of threshold, whereas the nonmolecular state corre-

spond to a pair of poles, both lying in the proximity of the threshold. In terms of Flatté

parameters, the situation gK ≫ gπ corresponds to the KK̄ molecular state and vice versa.

To summarize, it is clear that the quantities to be measured in the lattice simulations

are the K-matrix elements in the vicinity of the KK̄ threshold. These, in turn, determine

the position of the poles in the S-matrix, that is, the energy and the width of f0(980).

Consequently one can answer the question, whether f0(980) is a molecular state or not. If

the answer is negative this framework does not allow to further elaborate on the structure

of this state. For that the method discussed in section 4 has to be used.

3 K-matrix formalism in a finite volume

In ref. [49] it is shown that the elastic scattering length can be extracted from lattice

data, studying the volume dependence of the ground state energy. This result is readily

obtained by Taylor expansion of a more general formula, which enables one to evaluate

the elastic scattering phase from the finite-volume energy spectrum [39]. At threshold,

this scattering phase is determined by the effective-range expansion parameters (scattering

length, effective range, etc), which are thus also obtained from the analysis of the lattice

data. Moreover, from the phase shift determined on the lattice, one may (in principle)

extract the position and width of the elastic resonances. A further generalization of the

approach allows one to address the measurement of the resonance form factors [50]. For

an alternative method to directly extract the resonance position in the complex plane from

the measured two-point function at finite times, see ref. [51].

In the literature there have been attempts to generalize Lüscher approach to the case

of the inelastic scattering (see, e.g. [44, 52]). In particular, in ref. [44], the use of a volume-

dependent spectrum for the determination of the K-matrix elements, which are real quan-

tities was proposed. The (complex) scattering length can be then expressed through these

K-matrix elements.
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The main difference between the approach, ref. [44] and the present one consists in

the fact that in the former only the periodic boundary conditions have been used. For

this reason, it was not possible to determine all three quantities Kij , i, j = 1, 2 only from

the data taken exactly at one energy. Although the effects, coming from the momentum

dependence of Kij are power-suppressed at large volumes, they still can represent a source

of error, if the volume is not very large. In the present paper we show that using twisted

boundary conditions allows one to circumvent this problem.

Before formulating the approach in a finite volume, few remarks are in order.

(i) The equation, which determines the finite-volume spectrum, has been obtained in

refs. [44, 45] by using the non-relativistic effective theory. This is the easiest and

the most transparent way of derivation which, however, implicitly assumes that the

potential (or the K-matrix) is a low-energy polynomial. In other words, it is assumed

that the Taylor expansion of the potential in the momentum space in powers of the

relative 3-momenta converges for all energies of interest.

The above requirement is certainly too restrictive, if one considers ππ scattering

up to 1GeV. On the other hand, this requirement is also superfluous. What is re-

quired, is that the effective potentials, obtained by the 3-dimensional reduction of the

coupled-channel ππ − KK̄ Bethe-Salpeter equation, are volume-independent up to

exponential corrections. In fact, this is the path of reasoning, adopted in the original

papers by Lüscher [39, 49].

The generalization of the arguments of refs. [39, 49] to the coupled channel scattering

is relatively straightforward. To this end, first consider the (fictitious) situation where

2Mπ > MK . Then, 2-pion and kaon-antikaon states are two states with the lowest

energy. The 2-particle irreducible Bethe-Salpeter kernels Uij(P ; p, q), i, j = 1, 2 in

the infinite volume are analytic functions of the center-of-mass energy P0 in the

range 2Mπ < P0 < 4Mπ. Then, the regular summation theorem [49] implies that

the finite-volume corrections to these kernels at large volumes vanish faster than any

inverse power of the volume.

Finally, one should perform analytic continuation in the pion mass. If both pion and

kaon masses are taken physical, inelastic thresholds move below the KK̄ threshold.

Strictly speaking, it is not true any more that corrections to the Bethe-Salpeter ker-

nels are exponentially suppressed in the energy interval we are considering. However,

as already mentioned, the coupling to the inelastic channels is extremely weak: the

inelasticity parameter η ≥ 0.98 below KK̄ threshold. This means that the coupling

to the inelastic channels can significantly influence the spectrum obtained in the ab-

sence of these channels, if the two-particle and multiparticle energy levels in a given

volume accidentally come very close to each other. Neglecting this possibility, we

expect that inelastic channels effectively decouple and the kernels can be considered

to be almost volume-independent. We shall use this assumption below.

(ii) On the cubic lattice the rotational symmetry is broken down and mixing of all partial

waves occur. For the problem in question this mixing, however, is strongly suppressed.
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Figure 1. Energy levels En, n = 1, 2, . . . of the two-pion states in a finite box. Solid lines

correspond to the periodic boundary conditions (θ = 0), and the dashed lines to the antiperiodic

boundary conditions for the s-quark (θ = π). Horizontal dashed line depicts the KK̄ threshold.

Different parameterizations of the K-matrix from refs. [6, 46, 47] have been used.

In order to see this, let us recall that if the cubic symmetry is not broken, the S-waves

mix with the partial waves with the orbital momentum l ≥ 4 [39]. Below 1 GeV, the

partial wave with l = 4 is however very small (see, e.g. [53]). Using eq. (6.15) of

ref. [39] and the parameterization of the G-waves from ref. [53], we have estimated

the correction term arising from the mixing. In the region of interest it does not

exceed a few percent. In the following, we neglect the mixing altogether.

To summarize, with the above assumptions, the generalization of eq. (2.1) to the finite-

volume case is straightforward, and the result is similar in form to that given in ref. [44]:

Tij(s) = Kij(s) +
2√
πL

∑

n

Kin(s)Z00(1, k
2
n)Tnj(s) , i, j, n = 1, 2 , (3.1)

where kn(s) =
qn(s)L

2π
and Z00(1; k

2) stands for Lüscher zeta-function [39, 49].

The equation (3.1) implies periodic boundary conditions on both pion and kaon fields.

Below, we explore the possibility of using the so-called twisted boundary conditions, which
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Figure 2. The tangent of the pseudophase in the vicinity of the KK̄ threshold, in case of the

periodic boundary conditions (θ = 0). The pseudophase was extracted from the excited energy

levels En with n = 3, 4, 5. Different parameterizations have been used.

we opt to impose only on the strange quark field, whereas u- and d-quarks obey periodic

boundary conditions

u(x + Lei) = u(x) , d(x + Lei) = d(x) , s(x + Lei) = eiθs(x) , 0 ≤ θ < 2π . (3.2)

In this relation, ei, i = 1, 2, 3 denote unit vectors along the lattice axes, and V = L3 is

the spatial volume of the lattice. The vacuum angle theta is chosen the same in all spatial

directions, in order to avoid the breaking of the cubic symmetry. This choice, however,

may be changed, if needed.

In the effective theory, the angle theta will appear in the boundary condition for the

kaon field and not for the pion field.

K±(x+Lei)=e∓iθK±(x) , K0(x+Lei)=e−iθK0(x) , K̄0(x+Lei)=eiθK̄0(x) . (3.3)
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If θ 6= 0, the KK̄ pair at rest has the minimum relative momentum ±
(

θ

L
,
θ

L
,
θ

L

)

and the

energy 2

√

M2
K +

3θ2

L2
. In other words, the KK̄ threshold can be moved by adjusting θ.

Exactly this property makes the twisted boundary conditions particularly useful to study

scalar mesons, which are located very close to this threshold.

Twisted boundary conditions can be straightforwardly implemented in the two-channel

Lüscher equation (3.1). To this end, it suffices to replace Z00(1; k
2
2) → Zθ

00(1; k
2
2), where

Zθ
00(1, k

2
2) =

1√
4π

lim
s→1

∑

n∈Z3

1
(

∑3
i=1(ni + θ

2π )2
)

− k2
2

, (3.4)

whereas Z00(1; k
2
1) stays put.

The energy levels are given by the secular equation, which is obtained from eq. (3.1)

1 − 2√
πL

Z00(1; k
2
1)K11(s) −

2√
πL

Zθ
00(1; k

2
2)K22(s) +

+
2√
πL

Z00(1; k
2
1)

2√
πL

Zθ
00(1; k

2
2) (K11(s)K22(s) − K12(s)

2) = 0 . (3.5)

Our aim is to describe a procedure, which enables one to extract the K-matrix elements

Kij in the vicinity of threshold from the lattice. We shall illustrate this procedure on

the example of the synthetic data, which were produced, using different phenomenological

parameterizations for the ππ S-wave phase shift and the eq. (3.5) to determine the spectrum

for various values of θ. We have tested the parameterizations, given in refs. [6, 46, 47] (these

are shortly described in appendix A), and produced the spectrum which is shown in figure 1.

In this figure, the spectra at θ = 0 (solid lines) and θ = π (dashed lines) are displayed.

These spectra show quite similar behavior despite the fact that the pertinent K-matrices

have very different properties. For example, the K-matrix from ref. [46] has a real pole

very close to the KK̄ threshold, whereas the K-matrix from refs. [6, 47] is regular near

threshold. As expected, the spectrum is almost independent on the twist parameter θ away

from threshold. Maximal variation is introduced in the vicinity of the threshold where the

rearrangement of the levels occurs: the levels with θ = π for small values of L are “pushed

up” one level high as compared to the case with θ = 0. Consequently, the measurements for

different values of θ provide an independent piece of information in the threshold region,

where the θ-dependence is maximal. Since we are looking for the resonances exactly in this

region, twisted boundary conditions can be used to fix the location of these resonances. On

the other hand, it is also clear from figure 1 that the attempts to identify separate levels

with either the resonance or scattering states are not very informative. In particular, tuning

the parameters L, θ, one may easily move a single energy level above or below the threshold.

In order to facilitate the extraction of the K-matrix elements from the data, according

to ref. [44], it is convenient to define the pseudophase

tan δθ(q1) = − tan φ(k1) , k1 =
q1L

2π
, tan φ(k1) = − π3/2k1

Z00(1; k2
1)

. (3.6)

– 8 –
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The (θ-dependent) energy spectrum q1 = q1(L) can be (in principle) measured on the

lattice. Consequently, the right-hand side of eq. (3.6) (and, hence, the pseudophase) are

measurables. The physical meaning of the pseudophase is the following: apply Lüscher

formula to the measured energy spectrum, assuming that the scattering is elastic (in our

case, this means that only ππ threshold is taken into account). Thus, below the inelastic

KK̄ threshold, the pseudophase coincides with the usual scattering phase. This is not the

case above the inelastic threshold.

From eq. (3.5) one may express the pseudophase through the K-matrix elements as

follows:

tan δθ(q1) = q1

(

K11(s) +

2√
πL

Zθ
00(1; k

2
2)K12(s)

2

1 − 2√
πL

Zθ
00(1; k

2
2)K22(s)

)

. (3.7)

Suppose, for a moment, that θ = 0 and we tuned the box size so that the energy is exactly

equal to 2MK (this corresponds to L = L1 in figure 1) and measured the pseudophase for

this box size. Recalling that Z00(1; k
2
2) = − 1√

4πk2
2

− 2.514488997 + O(k2
2) as k2

2 → 0, from

eq. (3.7) we readily get

lim
k2

2
→0

tan δθ(q1)

∣

∣

∣

∣

θ=0

= q̂1

(

K
(0)
11 − (K

(0)
12 )2

K
(0)
22

)

. (3.8)

This equation gives one relation between three quantities K
(0)
ij .

We repeat this procedure for a different value L and adjust the parameter θ so that

energy of the measured level is exactly 2MK again. For example in figure 1 this corresponds

to L = L2 at θ = π. After performing three measurements at threshold energy and dif-

ferent values of L, θ, we get enough equations to determine all K
(0)
ij separately. Moreover,

there is nothing special about the threshold energy: the same procedure can be repeated

at
√

s 6= 2MK , scanning the matrix elements Kij(s) in the vicinity of threshold. In this

way, one may e.g., answer the question, whether the K-matrix contains the pre-existing

poles in the threshold region.

From figures 2 and 3 one may conclude that the difference between different parameter-

izations of the K-matrix is more clearly visible in the pseudophase that in the structure of

the energy levels which all show a similar behavior. Moreover, it is seen that the behavior

of the pseudophase changes dramatically when θ changes from 0 to π. On the basis of this

observation one may expect that the equations that relate the matrix elements Kij(s) with

the measured pseudophases at the same energy are not degenerate and will enable one to

neatly extract these matrix elements from the data.

Last but not least, we wish to comment on the relation of the approach suggested

in the present paper with the method of HBC [27–31]. We shall do this, adapting the

argumentation of refs. [27–31] to a choice of the boundary conditions used in the present

article. Namely, as already mentioned above, varying the parameter θ from 0 to π amounts

to floating the KK̄ threshold, whereas the ππ threshold stays put. Consequently, one

interprets a given state as a KK̄ scattering state if it is dragged along by the KK̄ threshold,
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Figure 3. The same as in figure 2, but with antiperiodic boundary conditions θ = π.

and as a “genuine quark state,” if it does not move. On the other hand, from the expression

of the pseudophase eq. (3.7) one may conclude that the energy level in the vicinity of the

threshold does not move if the matrix element K12 that describes the coupling of ππ and

KK̄ channels, is small. In terms of Flatté parameters, this corresponds to a small value

of gK , see eq. (2.4). In this case, a pair of poles appears in the S-matrix near the KK̄

threshold. To summarize, it is seen that the approach proposed in the present paper is a

natural generalization of the HBC method and enables one to extract and to quantify the

information about the nature of the resonances in the threshold region.

Finally, we wish to mention that we performed the calculation of the energy levels

and the pseudophases (for the different values of the twisting angle θ) for the case of the

a0(980) resonance as well, using the parameterization of ref. [6]. The results turn out to

be qualitatively similar to the case of the f0(980).
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4 Strangeness content of the exotic states

As mentioned in the introduction, different methods are used at present to distinguish tet-

raquarks from ordinary qq̄ mesons in lattice QCD. Usually, a state is said to be a tetraquark

if it is seen in the two-point function of the operators q̄qq̄q and not seen in the two-point

function of the operators q̄q. More precisely, this means that the overlap of the one particle

state with the state produced from the vacuum by the operator q̄qq̄q is much larger than

with the state produced by the operator qq̄. Furthermore, one may invoke arguments based

on the behavior of the spectrum in quenched approximation [25]. However, one should take

these arguments with a grain of salt. For example, the matrix elements used in the above

argumentation are scale-dependent and, in addition, depend on the way the operators

are constructed from the quark fields. It is clear that a mathematically consistent and

model-independent criterium would be highly desirable.

It should be pointed out that, generally speaking, the question whether the compo-

sition of a particular state is qq̄ or q2q̄2, makes sense e.g., in the non-relativistic quark

models but not in the field theory. In the latter, any operator with appropriate quantum

numbers can be used as an interpolating field for a given particle. Thus, we have to look

for a criterium formulated in terms of observable quantities, which in the non-relativistic

limit is coherent with our understanding of ordinary qq̄ and tetraquark states. We shall

use this strategy in the following.

Note first that the quark model wave functions of the states in the non-relativistic

limit are eigenfunctions of the operator

Si =

∫

d3x : q̄i(x)qi(x) : , i = u, d, s (4.1)

with the eigenvalues Ni+Nī, where Ni and Nī denote the number of quarks and antiquarks

of a flavor i which are contained in this state.

Consider now the SU(3) nonets with maximal mixing for the qq̄ and q2q̄2 mesons (the

wave functions of the q2q̄2 states are given, e.g., in ref. [54]). Further, define the strangeness

content of a state B that belongs to these nonets in a standard manner

yB =
2〈B|s̄s|B〉

〈B|ūu + d̄d|B〉 . (4.2)

In the non-relativistic case, in order to calculate yB, one has just to count the number of

the quarks (antiquarks) of a given species in a state B. Using the wave functions from

table 1, we may easily evaluate the values of yB. The results are given in the same table.

As one sees from table 1, the patterns followed by yB are very different for the qq̄

mesons and tetraquarks. Note also that, in case of arbitrary mixing, these two nonets can

be still distinguished due to the fact that yB for I 6= 0 does not depend on the mixing angle.

Next, we mention that the quantity yB is a well-defined quantity in QCD (it is scale-

independent) and can be directly evaluated on the lattice e.g., by studying the quark mass

dependence of the scalar meson masses and applying Feynman-Hellmann theorem

yB = 2

(

dMB

dms

)

·
(

dMB

dm̂

)−1

, (4.3)
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B qq̄ q2q̄2

I =0, nonstrange uū+dd̄√
2

, yB =0 [ud][ūd̄], yB =0

I =0, strange ss̄, yB =∞ [su][s̄ū]+[sd][s̄d̄]√
2

, yB =2

I = 1
2 us̄, ds̄ + conj., yB =2 [su][ūd̄], [sd][ūd̄] + conj., yB = 2

3

I =1 ud̄, uū−dd̄√
2

dū, yB =0 [su][s̄d̄], [su][s̄ū]−[sd][s̄d̄]√
2

, [sd][s̄ū], yB =2

Table 1. The wave functions and the strangeness content of qq̄ and q2q̄2 mesons in the non-

relativistic quark model with ideal mixing.

where we have assumed that isospin is conserved: mu = md = m̂.

Now we are in a position to formulate our proposal. The quantity yB is a well-defined

quantity in QCD and can be measured on the lattice. On the other hand, in the non-

relativistic quark models this quantity clearly distinguishes between the qq̄ and q2q̄2 states.

Therefore we can use the measured pattern of the quantity yB for the nonet states in order

to define, what we understand under tetraquark states within relativistic quantum field

theory. In contrast to the criteria used in the literature so far, this definition, e.g., does not

operate with the quantities that are scale-dependent (like the matrix elements of multiquark

operators). Note that we took advantage here of being able to vary quark masses on the

lattice freely. Such a possibility is not available in the phenomenological approaches based

on the experimental input and the above definition will be harder to use there.

Finally, note that the scalar mesons under consideration are resonances, not stable

particles. Since the width of these resonances is very small, it is natural to continue using

eqs. (4.2) and (4.3). For example, MB in eq. (4.3) is to be now understood as the resonance

pole position.1 This means that the measured energy levels should be first “purified” with

respect to the finite volume effects, as described in the previous sections. The method

should be applied at the final stage, to the resonance poles extracted from the spectrum. If

this is not done, the KK̄ threshold, which will be moving if quark masses are varied, could

strongly influence nearby energy levels, and this may result in wrong conclusions about the

quark mass dependence of the true resonance energies.

Interestingly, the kaon mass dependence of the scalar mesons can also be used as a

signature of the molecular picture. For a such a scenario, the leading Fock component of

the scalar meson wave function has two quarks and two anti-quarks, much like the just

discussed tetraquark states. However, while these are expected to be compact, a molecule

is loosely bound and thus spatially extended. The molecular nature leads to a very peculiar

kaon mass dependence of the molecule as shown in ref. [55]. The mass of a K̄K-molecule

can be written as Mmol = MK + MK̄ − ǫ, with ǫ the small binding energy, ǫ ≪ MK .

1The procedure of the extraction of the resonance matrix elements on the lattice is discussed, e.g., in

ref. [50].
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Consequently, the kaon mass dependence of Mmol is expected to be linear with a slope of

two, with correction of the order O(r2ǫMmol), where r denotes the range of forces. This

is dramatically different from a tetraquark, where the kaon mass dependence is generated

either from the strange valence or the strange sea quarks and is thus expected to depend

on ms linearly or as m
3/2
s , generating a leading kaon mass dependence as M2

K or M3
K ,

respectively. For a more detailed discussion on this issue, we refer to ref. [55].

5 Conclusions

The main results of this investigation can be summarized as follows:

(i) Obviously, the measured excited spectrum can not be directly identified with the

experimentally observed scalar mesons. This simple fact becomes crystal clear by

looking at figure 1, where one has freely used the parameters L and θ to move an en-

ergy level below or above 2MK . What defines the energy and the width of a resonance

is the position of the S-matrix pole in the complex plane. This position can be de-

termined, extracting K-matrix elements from the spectrum measured on the lattice.

(ii) The procedure of determining K-matrix elements at the inelastic threshold, which was

described in the present paper, is the generalization of Lüscher’s method to the elastic

scattering length. It is also an improvement of the method described in ref. [44].

Namely, using twisted boundary conditions, as proposed in the present paper, enables

one to determine all three quantities Kij(s) in the vicinity of the inelastic threshold.

(iii) Lüscher’s approach implies the study of the response of the energy spectrum on the

variation of the box size L. We have shown that, for certain quantities, studying

the dependence on the twisting angle θ may partly substitute studying the volume

dependence. In other words, one may use the twisting parameter θ to scan the energy

region in the vicinity of the KK̄ threshold.

(iv) The study of the L- and θ-dependence of the energy spectrum of scalar mesons as

proposed in the present paper is beyond any doubt a very demanding enterprise. The

authors bear no illusion that the whole program can be realized in lattice calculations

at physical quark masses anytime soon, especially for the f0(980) meson (the situ-

ation with a0(980) could be slightly better). However, we still find it important to

formulate a rigorous way to treat the problem in question, which can be used one day.

(v) We show that the use of the twisted boundary conditions allows one to distinguish

between the loosely bound molecular states and the compact quark compounds. We

in addition argue that if the latter possibility is realized, the measured values of the

strangeness content for the different members of the SU(3) nonet allow one to in-

terpret these states either as conventional q̄q states or q2q̄2 tetraquark states. Thus

the measurement of the strangeness content on the lattice, which can be achieved by

studying the quark mass dependence of the resonance energies, enables one to gain

detailed information about the structure of the scalar mesons. We have also pointed
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M
(n)
11 M

(n)
12 M

(n)
22

n = 0 3.38Mπ 2.40Mπ 0.071Mπ

n = 1 0 0 −0.0038M−1
π

Table 2. Values of the coefficients M
(n)
ij from Protopopescu et al., ref. [47].

out that the molecular picture can be further tested from the measurement of the

kaon mass dependence of the mass of the scalar mesons - for a molecular state this

would be linear with slope two (modulo small corrections).
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A Different parameterizations of the two-channel K-matrix

A particular parameterization of the K-matrix elements from the paper Protopopescu et

al., ref. [47], which is used in the present paper, is given by

Kij = (M−1)ij , Mij(s) = M
(0)
ij + (s − st)M

(1)
ij , st = 4M2

K , (A.1)

where the coefficients M
(n)
ij take the values given in table 2. The scattering matrix in the

paper by Oller and Oset, ref. [6], is given by a solution of the 2-channel Bethe-Salpeter

equation

Tij(s) = Vij(s) +
∑

n

Vin(s)Gn(s)Tnj(s) , i, j, n = 1, 2 , (A.2)

where Vij(s) are the tree-level meson-meson scattering amplitudes, calculated in Chiral

Perturbation Theory

V11 =−N 2s − M2
π

2F 2
π

, V12 =V21 =−N
√

3s

4F 2
π

, V22 =−N 3s

4F 2
π

, N =−(8π
√

s)−1 (A.3)

with Fπ ≃ 93 MeV and the loop functions Gk(s) are given by

Gn =N−1

{

− 1

8π2
ln

qmax

Mn

(

1+
wmax

n

qmax

)

+
σn

16π2
ln

σnwmax
n /qmax+1

σnwmax
n /qmax−1

}

.
=GR

n + iqn(s) .(A.4)
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cn
11 cn

12 cn
22

n = 0 0.4247 -3.1401 -2.8447

n = 1 -0.5822 -0.1359 6.9164

n = 2 2.5478 1.0286 5.2846

n = 3 -1.7387 -2.3029 -0.9646

n = 4 0.8308 0.1944 0

Table 3. Values of the coefficients cn
ij from Au et al., ref. [46]. All dimensionful quantities are

given in powers of GeV.

In the above expression, σn =

√

1 − 4M2
n

s + i0, qmax =
√

Λ2 − M2
K is the cutoff momen-

tum in the loops and wmax
n =

√

M2
n + (qmax)2. The cutoff parameter Λ is chosen to be

Λ ≃ 1020 MeV.

The K-matrix elements are given by a solution of the equation

Kij(s) = Vij(s) +
∑

n

Vin(s)GR

n(s)Knj(s) . (A.5)

In analogy to the parameterization by Protopopescu et al., the above K-matrix elements

are regular in the vicinity of the KK̄ threshold. The resonance emerges due to the rescat-

tering effect.

In difference to this, the parameterization of the K-matrix in the paper by Au et

al.,, ref. [46] contains the pre-existing pole in the vicinity of the KK̄ threshold. This

parameterization looks as follows

Kij =
s − s0

4M2
K

{

fifj

(s1 − s)(s1 − s0)
+

4
∑

n=0

cn
ij

(

s

4M2
K

− 1

)}

(A.6)

where s0 = −0.0162, s1 = 0.9383, f1 = −0.1659, f2 = 0.5852 and the values of the

coefficients cn
ij are given in table 3.
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