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The analysis of the system behavior under the effect of the additive noises has been done using a simple model
of shear melting. The situation with low intensity of the order parameter noise has been investigated in detail,
and time dependence of the order parameter has been calculated. A distinctive feature of the obtained depen-
dence is power-law distribution and self-similarity. The generalized Hurst exponent of the time series has been
found within multifractal detrended fluctuation analysis. It is shown that the self-similarity of the time series
increases when the noise intensity reduces.
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1. Introduction

It has been recently found that low-dimensional systems undergo melting during the shear deforma-

tion (i.e., ”shear melting“). Notably, this kind of melting is often observed in various types of colloidal

crystals [1] and while sliding along the grain boundaries under intensive plastic deformation [2, 3], it

leads to the superplasticity mode. The effects that are outlined on bicrystals [4] also resemble a shear

melting. Both shear and thermodynamic melting are demonstrated by ultrathin lubricant films clamped

between atomically smooth solid surfaces [5–10]. To describe the latter ones, synergetic [11–13], and ther-

modynamic [14–16] models were proposed. The paper [12] presents the situation of an ultrathin lubricant

film melting when shear stresses exceed the critical value. It has been shown that the external load has a

critical effect on the nature of the melting.

The behavior of bilayers and light-induced hydrophobic interaction between them was experimen-

tally investigated in paper [17]. The model describing the main factors that affect the behavior of such

systems was also proposed in paper [17]. It quantitatively describes the experimental data received using

the surface forces apparatus (SFA). The simple model of shear melting, which can be used to describe

different types of systems, was proposed in paper [18]. The dynamic phase diagram with various modes

of the system behavior, depending on the strain rate, was constructed therein. This paper received a sub-

sequent development in [19], wherein the relative motion of bilayers that are capable of forming both

disordered and ordered structures, characterized by different values of the order parameter introduced

in the description, was studied using the numerical analysis of basic equations. The additive noises were

introduced in paper [19], but this was used rather for attracting the system to the steady state upon any

initial conditions, and it was not shown that the noise can have a critical effect on the character of the

system behavior. The aim of the current paper is to investigate this effect and to define the conditions

of self-similar behavior when there is no typical scale of the order parameter. The present paper also

describes the conditions at which the system demonstrates mono- or multifractal structure characterized

by the spectrum of fractal dimensions.

© I.A. Lyashenko, V.N. Borysiuk, N.N. Manko, 2014 23003-1

ar
X

iv
:1

40
5.

13
64

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  8
 J

ul
 2

01
4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35036066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.5488/CMP.17.23003
http://www.icmp.lviv.ua/journal


I.A. Lyashenko, V.N. Borysiuk, N.N. Manko

2. The model and the Fokker-Planck equation

General expression of the free energy density for the system undergoing the shear melting is as fol-

lows [18, 19]:

F (ρ,θ) = a1ρ
2

2
− b1ρ

3

3
+ c1ρ

4

4
+ αρ2

2

(
a2θ

2

2
− b2θ

3

3
+ c2θ

4

4

)
, (2.1)

where the order parameter ρ is the modulus of the density wave amplitude [18]. The parameter θ is

a periodic variable corresponding to the strain [18]. For the solid-like state at zero deviations, θ = 0. For
solid-like phase, ρ > 0when there is an order in the system. Conversely, if the system undergoes the shear
melting, the stationary value ρ = 0 is established. It can be noted that in paper [19], the energy (2.1) was
obtained from the Brownian dynamic simulationswithin themultiparticlemodel. Analyzing the obtained

results, the authors [19] selected constant parameters in the potential (2.1): a1 = 0.85, b1 = 5.8, c1 = 8.0,
a2 = 1.3644, b2 = 8.7105, c2 = 13.674. These values correspond to the first-order phase transitions in the
system.

Using the energy (2.1), the system of Landau-Khalatnikov type evolution equations can be written

as [18, 19]:

ρ̇ = − 1

γρ

∂F (ρ,θ)

∂ρ
+ξρ(t ), (2.2)

θ̇ = − 1

γθ

∂F (ρ,θ)

∂θ
+Ω+ξθ(t ), (2.3)

where white noises ξq (t ) have the following moments:

〈ξq (t )〉 = 0, 〈ξq (t )ξq (t +τ)〉 = 2Dqδ(τ), (2.4)

where q = ρ,θ and Dq are the noise intensities.

The forcing term Ω corresponds to shearing the solid at the relative motion of the surfaces [18]. The

main reason of this parameter [18, 19] is that the equation (2.3) is transformed into the relation θ̇ = Ω
when there are no forces and noises. It resembles the expression ε̇ = V /h, where ε is a full strain in a
layer, V is a shear velocity of surfaces, h is a thickness of a lubricant layer that was previously used in
describing the shear melting of the ultrathin lubricant layers. Thus, Ω can be presented as the motion

velocity of interacting layers.

In the case Ω = 0, the system is described by the free energy (2.1). According to the structure of the
equations (2.2), (2.3), the case of Ω, 0 corresponds to the energy

F ′(ρ,θ) = F (ρ,θ)−θΩγθ , (2.5)

which differs from the initial expression by the presence of the last component.

The three-dimensional dependence F ′(ρ,θ) is shown in figure 1. The potential (2.5) increases in the
negative region of the parameters ρ and θ, and the velocity value Ω specifies the slope of the line F ′(θ)
at ρ = 0. According to the type of the potential shown in figure 1, the parameter θ will monotonously
increase with time in case when there is no noise at the stationary value ρ = 0. However, this does not
occur in the presence of noise, and constant transitions between two attracting points are realized. One

of these points corresponds to the minimum at ρ , 0 as shown in figure 1. In paper [19], the effect of
the noise intensity at different α andΩ parameters on the system behavior was studied numerically. The

analytical expressions that permit to perform such kind of analysis can be obtained.

Let us consider the Fokker-Planck equation. The system of equations (2.2) and (2.3) can be put in

correspondence with the following two-dimensional equation [20, 21]:

∂P (ρ,θ)

∂t
= ∂

∂ρ

[
1

γρ

∂F ′(ρ,θ)

∂ρ
P (ρ,θ)

]
+ ∂

∂θ

[
1

γθ

∂F ′(ρ,θ)

∂θ
P (ρ,θ)

]
+Dρ

∂2

∂ρ2 P (ρ,θ)+Dθ
∂2

∂θ2 P (ρ,θ). (2.6)

The equal relaxation times γρ = γθ = γ and equal noise intensitiesDρ = Dθ = D were considered numer-
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Figure 1. The free energy F ′(ρ,θ) (2.5) at the parameters α= 0.17, Ω= 0.08, γθ = 0.05.

ically in paper [19]. In this case, the equation (2.6) can be written in a simpler form:

γ
∂P (ρ,θ)

∂t
= ∂

∂ρ

[
∂F ′(ρ,θ)

∂ρ
P (ρ,θ)

]
+ ∂

∂θ

[
∂F ′(ρ,θ)

∂θ
P (ρ,θ)

]
+γD

[
∂2

∂ρ2 P (ρ,θ)+ ∂2

∂θ2 P (ρ,θ)

]
. (2.7)

Now, both drift coefficients exactly represent the potential derivatives (2.5). In the stationary case

∂P (ρ,θ)/∂t = 0, the solution of the equation (2.7) provides the probability density of the type [20, 21]:

P (ρ,θ) =C exp

{
−F ′(ρ,θ)

γD

}
, (2.8)

where C is the normalization constant and F ′(ρ,θ) is determined by the expression (2.5). It should be
noted that the coefficient γ is also included in the energy F ′(ρ,θ) (2.5). The type of distribution (2.8) is
shown in figure 2without considering the normalization constantC . The figure shows that the probability
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Figure 2. The non-normalized distribution P (ρ,θ) (2.8) at the parameters of figure 1 and the noise inten-
sity values: a) D = 0.025; b) D = 0.2.
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Figure 3. The time dependence of the absolute value of the parameter ρ, the value θ, and their probability

densities Pρ(ρ), Pθ(θ) at the parameters of figure 1 and γρ = γθ = 0.05, Dρ = Dθ = 0.025.

Figure 4. The same as in figure 3, but at Dρ = Dθ = 0.2.

of transitions between solidlike and liquidlike states increases with the growth of the noise intensity D .
In the paper [19], these transitions have been investigated numerically in detail for different values of Ω

and α, and in further analysis we use fixed values of these parameters.

The numerical solution of the equations (2.2), (2.3), can be obtained within the Euler method [22]. The

following iterative procedure [22] corresponds to equations:

ρi+1 = ρi − ∆t

γρ

[
a1ρi −b1ρ

2
i + c1ρ

3
i +αρi V (θi )

]+ p
∆tWρi , (2.9)

θi+1 = θi −
αρ2

i ∆t

2γθ

(
a2θi −b2θ

2
i + c2θ

3
i

)+∆tΩ+
p
∆tWθi , (2.10)

where the potential V (θi ) is set by the expression in brackets for the energy (2.1). The random forcesWq

are determined according to the standard procedure [23]

Wq =
√

2Dq

√
−2lnrq1 cos(2πrq2), rqi ∈ (0;1], (2.11)

and the pseudorandom numbers rq1,rq2 are characterized by a uniform distribution.

Figure 3 and figure 4 show the time dependence ρ(t ), θ(t ), obtained by the numerical solution of the
the equations (2.9) and (2.10)

1
. According to the figures, regular spontaneous transitions between liquid-

1
The absolute value of the parameter ρ is shown in the figures, since the region ρ < 0 has not got a physical meaning.
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like (ρ = 0) and solidlike (ρ , 0) states occur. However, in figure 3, the probability of transitions between
the ordered and disordered states is lower, because it was built at a smaller value of the noise inten-

sity D . The numerically determined one-dimensional probability densities Pρ(ρ) and Pθ(θ) are shown in
the right hand parts of the figures. The corresponding time series for defining the probability densities

were calculated for the time interval t ∈ [0;106] with step ∆t = 10−3
, i.e., each series has 109

points. It

explains the smooth type of the dependencies Pρ(ρ) and Pθ(θ), which were normalized according to the
conditions:

+∞∫
0

Pρ(ρ)dρ = 1,

+∞∫
−∞

Pθ(θ)dθ = 1, (2.12)

where parameter ρ was measured from zero. Thus, the areas under the probability curves in figure 3

and figure 4 are equal to one. Note, in the figures, the curves shape for the one-dimensional probability

densities confirms the type of the two-dimensional surface shown in figure 2. The case described above

was analyzed in detail in paper [19], in which the phase diagrams with crystallization regions, liquidlike

behavior, and the region where the regular spontaneous transitions between specified states occur (i.e.,

stick-slip mode), were calculated numerically based on the type of the one-dimensional probability den-
sity Pρ . Thus, the study of this issue is not the aim of the present paper. Further, the self-similar behavior
of a solidlike system will be investigated herein.

3. The self-similar behavior

The general Fokker-Planck equation (2.6) can be solved to find out the system behavior in general

case (when relaxation times are not equal and the noise intensities are also not equal), though this can

be difficult to do since the specified equation is the second-order equation in partial derivatives. The

probability distribution at the initial stage is out of our interest in contrast to the stationary type of dis-

tribution. It permits to replace the solution of the Fokker-Planck equation (2.6) by the numerical analysis

of the original system (2.9) and (2.10). The paper [13] presents an analytical analysis of the conditions of

existence of various self-similar regimes, though equations (2.9), (2.10) have a more complex structure

which complicates the analysis. Therefore, the numerical analysis will be considered in this section.

The calculated non-normalized probability density Pρ(ρ) for different ratios between the noise in-
tensity values is shown in figure 5, whereas the value Dθ does not change for all curves

2
. According to

2
When obtaining the curves, the corresponding time series were calculated for the time interval t ∈ [0;2 ·107] with the step

Figure 5. The probability density Pρ(ρ), calculated atDθ = 10−2
. The curves 1–8 correspond to the values

Dρ = 100
, 10−1

, 10−2
, 10−3

, 10−5
, 10−10

, 10−15
, 10−25

. The curve 7 is located between the curves 6 and

8, and it is not marked in the figure.
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Figure 6. The time dependence ρ(t ) corresponding to the parameters of figure 5: a) Dρ = 10−25
;

b) Dρ = 10−10
.

the figure we can conclude that the value of the noise intensity Dρ critically affects the system behavior.

For example, the curves 1 and 2 show the system behavior in the two-phase region, since two maxima

of probability are realized. Moreover, the maximum at ρ = 0 is more expressed for the curve 1, and the
curve 2 corresponds to the case where the system is in the solidlike state (ρ , 0) for the most of time.
The two-phase region disappears when the noise intensity Dρ decreases (curves 3–8), since only the zero

maximum Pρ(ρ) is realized. The following condition is met for curves 6–8:

Dθ À Dρ , (3.1)

which leads to the self-similar type of distribution density [13] in the region of small order parameter

values ρ in this case. The fact is that the distribution function becomes homogeneous [24] in the region

of small ρ in the case (3.1):

Pρ(ρ) ∼ ρ−a , (3.2)

and corresponds to the self-similar system, for which there is no characteristic parameter scale ρ

(0 < a < 1 is an index of distribution specifying the slope of distribution on a linear region) [25]. Note
that the value a = 1.5 corresponds to a self-organized criticality mode. The case presented in figure 5
shows the value a ≈ 1.
The figure 6 shows the time series ρ(t ) that corresponds to parameters of curves 8 and 6 in figure 5.

The dependencies are presented in the logarithmic scale in order to show that the self-similar behavior

(the sharp increase of the order parameter values is observed on both small and large scale) is established

in some range of the order parameter values. A smaller noise intensityDρ corresponds to the dependency

in figure 6 (a) leading to the self-similar behavior on a larger scale range which is clearly seen from

the dependency. Figure 6 (b), for which the distribution function in some interval ρ is also self-similar

according to figure 5, demonstrates the changes of the parameter ρ on the smaller scale range. The time

series at the same noise intensities Dρ = Dθ are shown in figure 3 and in figure 4, for which the self-

similar behavior is not observed. Thus, the exponential type of a distribution function Pρ(ρ) is limited by
a minimal value of the parameter ρ, which reduces with a decrease of the value Dρ .

4. Statistical analysis of time series

As it was mentioned in the previous section, the characteristic feature of the time dependence of the

order parameter obtained for the noise intensity values Dρ = 10−2
, 10−3

, 10−5
, 10−10

, 10−15
, 10−25

(the

∆t = 10−3
. Thus, each time series has 2 ·1010

points. Afterwards, the number of hits of the series values to the particular interval ρ

was counted. There are 2 ·105
points for each curve shown in the resulting figure 5, i.e., the number of intervals on the axis ρ was

chosen from the value 10−5
to 3. The value ρ did not exceed 3 on the selected interval in the calculations. Afterwards the number

of hits into each interval was divided into the total number of points in a series, and thus the curves fell down.
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curves 3–8 in figure 5) is the presence of the power law of the distribution in a limited range, and, as a

consequence, the self-similar structure of the time series. It should be noted that statistical parameters

calculated in the previous section do not provide a full information about the time series behavior. Thus,

the absence of the characteristic scale at different time periods is not considered while calculating the

standard statistical parameters for the self-similar time series. Such a feature can be considered within

the framework of the scaling analysis. One of the possible techniques of detecting the local properties
of the time dependency is the method of multifractal detrended fluctuation analysis [26] that permits to

examine the time series of various nature [27, 28].

The algorithm of the mentioned method has the following steps (see an original description in the

paper [26]). First, the fluctuation profile

y(i ) =
i∑

k=1
[x(k)− x̄] , (4.1)

measured from the average value x̄, is calculated from the considered series x(k), k = 0,1,2, . . . , N . The
obtained values y(i ) are separated by disjoint segments of length s, the number of which is equal to
the integer value Ns = [N /s]. As a series length N is not always a multiple of the selected scale s, the
last section has less points than s in general case. To consider this residue, it is necessary to repeat the
separation into segments starting from the opposite end of the series. As a result, the total number of

segments having length s is 2Ns .

Since the changes of the random value y(i ) occur close to the value yν(i ), 0 due to the definite trend
of the series evolution, the local trend yν(i ) should be found for each 2Ns segments. It is convenient to

use the least squares method presenting the trend yν(i ) as a polynomial of a certain degree to ensure that
interpolation error should not exceed the specified limit. The next step is to calculate of the fluctuation

function

F 2(ν, s) = 1

s

s∑
i=1

{
y [(ν−1) s + i ]− yν(i )

}2, (4.2)

for the segments ν= 1, . . . , Ns , going in the forward direction, and the corresponding value

F 2(ν, s) = 1

s

s∑
i=1

{
y [N − (ν−Ns ) s + i ]− yν(i )

}2, (4.3)

for the reverse sequence ν= Ns +1, . . . ,2Ns .

The next step presents a generalization of the fluctuation function

Fq (s) =
{

1

2Ns

2Ns∑
ν=1

[
F 2(ν, s)

]q/2

}1/q

, (4.4)

via raising the expressions (4.2), (4.3) to the power q and the subsequent averaging over all segments.
Since the equation (4.4) has an uncertainty at q = 0, the limit expression should be used instead of it

F0(s) = exp
1

4Ns

2Ns∑
ν=1

ln[F 2(ν, s)]. (4.5)

By changing the time scale s at the fixed parameter q , the Fq (s) dependence should be presented in the
double logarithmic coordinates. Reducing the analyzed series to a self-similar set showing long-range

correlations, the fluctuation function Fq (s) can be presented as an exponential dependency

Fq (s) ∝ sh(q), (4.6)

with the generalized Hurst exponent h(q), the value of which is determined by the parameter q . The
definitions (4.4), (4.6) show that this parameter is reduced to the classical Hurst exponent H at q = 2.
If the fluctuation function F 2(ν, s) is the same for all segments ν and the generalized Hurst exponent
h(q) = H does not depend on the parameter q , the time series corresponds to a monofractal set. For
multifractal series at positive q , the main contribution to the function Fq (s) is provided by the segments
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Figure 7. The dependence (4.6), built in double logarithmic axes at the deformation value q = 2 for the
series with the values a) Dρ = 10−2

, 10−3
, 10−5

and b) Dρ = 10−10
, 10−15

, 10−25
.

ν showing large deviations F 2(ν, s), and the segments with a small fluctuation values F 2(ν, s) dominate
at negative q . As a result, it can be concluded that the generalized Hurst exponent h(q) describes the
segments displaying small fluctuations at negative values q , and large fluctuations at positive values [26,
29].

It should be noted that if the size of the segments increases to s > N /4 during the implementation
of the above-mentioned algorithm, the function Fq (s) loses the statistical informative value due to the
smallness of the number of segments Ns < 4 used in the procedure of averaging. Thus, the realization of
the specified procedure presupposes an exception of large segments (s > N /4) on the one hand, and the
small ones (s < 10) on the other hand.
The standard representation of the time series scaling properties presupposes the transition from the

Hurst exponent h(q) to the mass index τ(q) and the spectral function f (α), which are both the main
characteristics of multifractals [26, 29]:

τ(q) = qh(q)−1, (4.7)

f (α) =αq(α)−τ(q(α)). (4.8)

Herein the value q(α) is determined by the condition τ′(q) =α, where the prime symbol means a differ-
entiation by an argument. The dependency τ(q) has a linearly increasing form at |q |À 1with the curved
section near q = 0, which provides the deceleration of the mass index τ growth with the parameter q in-
creasing. The spectral function f (α) determines a monofractal set having the dimensions α, which forms
the structure under investigation, wherein the relative number of monofractals with dimensionα, within

the segments with the size l , covering this set, is defined by the relation N (α) ∼ l− f (α)
. According to this

definition, f (α) represents the number of different monofractals in the set. Thus, the spectral function
f (α) for the monofractal set is δ-shaped with a single value of the fractal dimension α [29].
The typical dependence (4.6) for the series having the noise intensities Dρ = 10−2

, 10−3
, 10−5

, 10−10
,

10−15
, 10−25

at the deformation value q = 2 is shown in figure 7. The cubic polynomial was used in
the detrending procedure (4.2)–(4.3) as in the original paper [26] for the multifractal series having a

power-law distribution function. The use of the fitting polynomial of a higher degree does not lead to

any change in the final results since the trend of high (> 2) order does not present the original series.
The dependence (4.6) built in double logarithmic axes, has a strongly expressed linear section with scale

values 50 < s < 500, and therefore, can be used to calculate the parameter h(q). The linear interpolation
of the equation (4.6) calculated for the examined series, within the specified interval of the changes of

the scale s at values of the deformation parameter 0 É q É 3.5, leads to the dependence h(q) shown in
figure 8, where the dependence of the classical Hurst exponent H on the number (noise intensity) of the

corresponding series is also shown in the additional panel. The spectral function f (α)was also calculated
using the equations (4.7) and (4.8) for the examined series. The result of the performed calculations is
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Figure 8. The generalized Hurst exponent h(q) for time series having noise intensity Dρ = 10−2
, 10−3

,

10−5
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, 10−15
, 10−25

(the curves 3–8, respectively), and changes of the classical Hurst exponent H
for specified curves.

shown in figure 9. The dependencies, presented in figure 8 and 9 show that the reduction of the noise

intensity Dρ leads to a significant complication of the order parameter time series dynamics, expressed

in the increase of the range of the values of the generalized Hurst exponent h(q) and the multifractal
spectrum function (4.8). The increase of the spread ∆α is caused by the growth of the subsets (the so-

called monofractals) number N (α)with the Holder parameter α in the time series segments of the length
s. This situation means that the number of the statistically different scenarios of the system evolution
increases. Furthermore, with the reduction of Dρ , the Hurst exponent H approaches the value H ≈ 0.5
which, as it is known, corresponds to the absolutely random sequence [29]. Thus, the complication of

the time series structure makes their further behavior unpredictable. The presence of extremely large

ejections of the order parameter values corresponds to this situation, as shown in figure 6.
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Figure 9. The spectral function f (α) for time series having the noise intensity Dρ = 10−2
, 10−3

, 10−5
,

10−10
, 10−15

, 10−25
(the curves 3–8 respectively), and the spread width of the multifractal spectrum ∆α.
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5. Conclusions

The paper describes the model of shear melting observed in colloidal crystals of various types. This

model describes the relative motion of the pair of interacting layers characterized by different values of

the order parameter. It has been found that the external additive noise, taken into consideration, has a

critical effect on the character of the system behavior, and the probability of transition between solidlike

and liquidlike states increases with an increase of the noise intensity. Likewise, the case is considered

when the intensity of one of the noises is much higher than the intensity of the other. It has been shown

that the self-similar behavior of a solidlike system is established in this case, i.e., the distribution density

function for the order parameter time series becomes of the power law form in the limited range. This

characteristic feature of the time series was detected while calculating standard statistical parameters

of the series. A more detailed information on the local properties of the time dependence was obtained

using the method of multifractal detrended fluctuation analysis which permits to examine the time series

of various nature. Thereafter, the conditions under which the system demonstrates the monofractal or

multifractal behavior characterized by a spectrum of fractal dimensions were investigated.
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Статистичний аналiз самоподiбної поведiнки в моделi

зсувного плавлення

Я.О. Ляшенко1,2, В.М. Борисюк1,3, Н.М. Манько1
1 Сумський державний унiверситет, вул. Римського-Корсакова, 2, 40007 Суми, Україна
2 Iнститут Петера Грюнберга, Дослiдницький центр Юлiху, D-52425 Юлiх, Нiмеччина
3 Iнститут наноматерiалiв А. Дж. Дрекселя, Унiверситет Дрекселя, вул. Честнат, 3141, Фiладальфiя,
Пенсильванiя, США
Використовуючи модель зсувного плавлення, проведено аналiз поведiнки системи пiд впливом адитив-
них шумiв. Детально розглянуто ситуацiю, коли iнтенсивнiсть шуму параметра порядку приймає мале
значення. У цьому випадку знайдено часову залежнiсть параметра порядку, характерною особливiстю
якої є степенева функцiя густини розподiлу i самоподiбнiсть. За допомогою методу мультифрактального
флуктуацiйного аналiзу розраховано модифiкований показник Херста для часових рядiв. Показано, що
самоподiбнi властивостi рядiв стають бiльш вираженими зi зменшенням iнтенсивностi шуму.
Ключовi слова: зсувне плавлення, адитивний шум, самоподiбнiсть, мультифрактальний флуктуацiйний

аналiз, рiвняння Фоккера-Планка
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