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The analysis of the system behavior under the effect of the additive noises has been done using a simple model
of shear melting. The situation with low intensity of the order parameter noise has been investigated in detail,
and time dependence of the order parameter has been calculated. A distinctive feature of the obtained depen-
dence is power-law distribution and self-similarity. The generalized Hurst exponent of the time series has been
found within multifractal detrended fluctuation analysis. It is shown that the self-similarity of the time series
increases when the noise intensity reduces.
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1. Introduction

It has been recently found that low-dimensional systems undergo melting during the shear deforma-
tion (i.e., ”shear melting“). Notably, this kind of melting is often observed in various types of colloidal
crystals [1] and while sliding along the grain boundaries under intensive plastic deformation [2} 3], it
leads to the superplasticity mode. The effects that are outlined on bicrystals [4] also resemble a shear
melting. Both shear and thermodynamic melting are demonstrated by ultrathin lubricant films clamped
between atomically smooth solid surfaces [5HI0]. To describe the latter ones, synergetic [T1H13], and ther-
modynamic models were proposed. The paper [12] presents the situation of an ultrathin lubricant
film melting when shear stresses exceed the critical value. It has been shown that the external load has a
critical effect on the nature of the melting.

The behavior of bilayers and light-induced hydrophobic interaction between them was experimen-
tally investigated in paper [17]. The model describing the main factors that affect the behavior of such
systems was also proposed in paper [17]. It quantitatively describes the experimental data received using
the surface forces apparatus (SFA). The simple model of shear melting, which can be used to describe
different types of systems, was proposed in paper [18]. The dynamic phase diagram with various modes
of the system behavior, depending on the strain rate, was constructed therein. This paper received a sub-
sequent development in [19], wherein the relative motion of bilayers that are capable of forming both
disordered and ordered structures, characterized by different values of the order parameter introduced
in the description, was studied using the numerical analysis of basic equations. The additive noises were
introduced in paper [19], but this was used rather for attracting the system to the steady state upon any
initial conditions, and it was not shown that the noise can have a critical effect on the character of the
system behavior. The aim of the current paper is to investigate this effect and to define the conditions
of self-similar behavior when there is no typical scale of the order parameter. The present paper also
describes the conditions at which the system demonstrates mono- or multifractal structure characterized
by the spectrum of fractal dimensions.
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2. The model and the Fokker-Planck equation

General expression of the free energy density for the system undergoing the shear melting is as fol-
lows [18][19]:

aip®> bip® cpt  ap? (a0? 03  c6*
2 3 4 - 2 2 3 4

where the order parameter p is the modulus of the density wave amplitude [18]. The parameter 0 is
a periodic variable corresponding to the strain [18]. For the solid-like state at zero deviations, 8 = 0. For
solid-like phase, p > 0 when there is an order in the system. Conversely, if the system undergoes the shear
melting, the stationary value p = 0 is established. It can be noted that in paper [19], the energy was
obtained from the Brownian dynamic simulations within the multiparticle model. Analyzing the obtained
results, the authors [19] selected constant parameters in the potential (2.1): a; = 0.85, b; = 5.8, ¢; = 8.0,
a, = 1.3644, by = 8.7105, ¢ = 13.674. These values correspond to the first-order phase transitions in the
system.

Using the energy (2.1), the system of Landau-Khalatnikov type evolution equations can be written
as [18,[19]:

F(p,0) = : 2.1)
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where white noises ¢,(#) have the following moments:
€q()) =0, €q(DEq(t+71)) =2D46(1), 2.9

where g = p,0 and D are the noise intensities.

The forcing term Q corresponds to shearing the solid at the relative motion of the surfaces [18]. The
main reason of this parameter [18,[19] is that the equation is transformed into the relation = Q
when there are no forces and noises. It resembles the expression ¢ = V/h, where ¢ is a full strain in a
layer, V is a shear velocity of surfaces, & is a thickness of a lubricant layer that was previously used in
describing the shear melting of the ultrathin lubricant layers. Thus, Q can be presented as the motion
velocity of interacting layers.

In the case Q = 0, the system is described by the free energy (2.1). According to the structure of the
equations (2:2), (2.3), the case of Q # 0 corresponds to the energy

F'(p,0) = F(p,0) - 0Qys, 2.5)

which differs from the initial expression by the presence of the last component.

The three-dimensional dependence F'(p,0) is shown in figure [1| The potential increases in the
negative region of the parameters p and 0, and the velocity value Q specifies the slope of the line F'(0)
at p = 0. According to the type of the potential shown in figure [1} the parameter 8 will monotonously
increase with time in case when there is no noise at the stationary value p = 0. However, this does not
occur in the presence of noise, and constant transitions between two attracting points are realized. One
of these points corresponds to the minimum at p # 0 as shown in figure [l In paper [19], the effect of
the noise intensity at different @ and Q parameters on the system behavior was studied numerically. The
analytical expressions that permit to perform such kind of analysis can be obtained.

Let us consider the Fokker-Planck equation. The system of equations and can be put in
correspondence with the following two-dimensional equation [20} [21]:

0P(p,0) 0 [10dF(p,0) 0 [10F (p0)
T L e+ = | =T b6
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The equal relaxation times y, = y¢ =y and equal noise intensities D, = Dy = D were considered numer-
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Figure 1. The free energy F'(p,0) at the parameters a = 0.17, Q = 0.08, yg = 0.05.

ically in paper [19]. In this case, the equation can be written in a simpler form:

dP(p,0) d [6F’(p,9) ] 9 [GF’(p,H) ]
o) 9O by gy L (2L b g
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Now, both drift coefficients exactly represent the potential derivatives (2.5). In the stationary case
0P(p,0)/0t =0, the solution of the equation provides the probability density of the type 211

F'(p,0) }

D (2.8)

P(p,0) = Cexp{—
where C is the normalization constant and F'(p,0) is determined by the expression (2.5). It should be
noted that the coefficient y is also included in the energy F'(p,0) (2.5). The type of distribution is
shown in figure[2]without considering the normalization constant C. The figure shows that the probability
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Figure 2. The non-normalized distribution P(p,0) (2.8) at the parameters of ﬁgureand the noise inten-
sity values: a) D = 0.025; b) D =0.2.
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Figure 3. The time dependence of the absolute value of the parameter p, the value 6, and their probability
densities Pp(p), Pg(6) at the parameters of ﬁgureand Yp =Yg =0.05, Dp = Dg = 0.025.
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Figure 4. The same as in ﬁgure but at Dy = Dg =0.2.

of transitions between solidlike and liquidlike states increases with the growth of the noise intensity D.
In the paper [19], these transitions have been investigated numerically in detail for different values of Q
and a, and in further analysis we use fixed values of these parameters.

The numerical solution of the equations (2.2), (2.3), can be obtained within the Euler method [22]. The
following iterative procedure [22] corresponds to equations:

At
Piv1 = Pi_y_[alpi_b1P§+CIP?+aPiV(0i)]+ VAtW,;, 2.9)
o
ap?At
0is1 = 0;- ;); (dz@i—b29?+629?)+AtQ+ VAtWy;, (2.10)
0

where the potential V' (6;) is set by the expression in brackets for the energy (2.1). The random forces Wy
are determined according to the standard procedure [23]

Wy = 1/2Dgy/—-2Inrg4 cos 2mryp), rqi € (0;1], (2.11)

and the pseudorandom numbers r,1, 2 are characterized by a uniform distribution.
Figure|3|and figure EL] show the time dependence p(t), 6(¢), obtained by the numerical solution of the
the equations and @.10)['| According to the figures, regular spontaneous transitions between liquid-

LThe absolute value of the parameter p is shown in the figures, since the region p < 0 has not got a physical meaning.
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like (p = 0) and solidlike (p # 0) states occur. However, in figure|3| the probability of transitions between
the ordered and disordered states is lower, because it was built at a smaller value of the noise inten-
sity D. The numerically determined one-dimensional probability densities P,(p) and Py () are shown in
the right hand parts of the figures. The corresponding time series for defining the probability densities
were calculated for the time interval ¢ € [0;10%] with step At = 1073, i.e., each series has 10° points. It
explains the smooth type of the dependencies Py(p) and Py (), which were normalized according to the
conditions:

+0o +0o
f Py(p)dp =1, f Pg(0)d6 =1, (2.12)
0 —00

where parameter p was measured from zero. Thus, the areas under the probability curves in figure
and figure[4) are equal to one. Note, in the figures, the curves shape for the one-dimensional probability
densities confirms the type of the two-dimensional surface shown in figure 2| The case described above
was analyzed in detail in paper [19], in which the phase diagrams with crystallization regions, liquidlike
behavior, and the region where the regular spontaneous transitions between specified states occur (i.e.,
stick-slip mode), were calculated numerically based on the type of the one-dimensional probability den-
sity Pp. Thus, the study of this issue is not the aim of the present paper. Further, the self-similar behavior
of a solidlike system will be investigated herein.

3. The self-similar behavior

The general Fokker-Planck equation can be solved to find out the system behavior in general
case (when relaxation times are not equal and the noise intensities are also not equal), though this can
be difficult to do since the specified equation is the second-order equation in partial derivatives. The
probability distribution at the initial stage is out of our interest in contrast to the stationary type of dis-
tribution. It permits to replace the solution of the Fokker-Planck equation by the numerical analysis
of the original system and (2.10). The paper [13] presents an analytical analysis of the conditions of
existence of various self-similar regimes, though equations (2.9), have a more complex structure
which complicates the analysis. Therefore, the numerical analysis will be considered in this section.

The calculated non-normalized probability density P,(p) for different ratios between the noise in-
tensity values is shown in figure |5} whereas the value Dy does not change for all curvesﬂ According to

2When obtaining the curves, the corresponding time series were calculated for the time interval f € [0;2~107] with the step
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Figure 5. The probability density P, (p), calculated at Dg = 1072. The curves 1-8 correspond to the values
Dp = 100, 10_1, 10_2, 10_3, 10_5, 10_10, 10715, 10725, The curve 7 is located between the curves 6 and
8, and it is not marked in the figure.
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Figure 6. The time dependence p(f) corresponding to the parameters of figure a) Dy = 10725,
b) Dp =10710,

the figure we can conclude that the value of the noise intensity D, critically affects the system behavior.
For example, the curves 1 and 2 show the system behavior in the two-phase region, since two maxima
of probability are realized. Moreover, the maximum at p = 0 is more expressed for the curve 1, and the
curve 2 corresponds to the case where the system is in the solidlike state (p # 0) for the most of time.
The two-phase region disappears when the noise intensity D, decreases (curves 3-8), since only the zero
maximum P, (p) is realized. The following condition is met for curves 6-8:

Dg > Dy, 3.1)

which leads to the self-similar type of distribution density [13] in the region of small order parameter
values p in this case. The fact is that the distribution function becomes homogeneous [24] in the region
of small p in the case (3.1):

Py(p)~p~ %, (3.2)

and corresponds to the self-similar system, for which there is no characteristic parameter scale p
(0<a<1is an index of distribution specifying the slope of distribution on a linear region) [25]. Note
that the value a = 1.5 corresponds to a self-organized criticality mode. The case presented in figure
shows the value a = 1.

The figure [6] shows the time series p(#) that corresponds to parameters of curves 8 and 6 in figure 5}
The dependencies are presented in the logarithmic scale in order to show that the self-similar behavior
(the sharp increase of the order parameter values is observed on both small and large scale) is established
in some range of the order parameter values. A smaller noise intensity D, corresponds to the dependency
in figure [f] (a) leading to the self-similar behavior on a larger scale range which is clearly seen from
the dependency. Figure [6] (b), for which the distribution function in some interval p is also self-similar
according to ﬁgure demonstrates the changes of the parameter p on the smaller scale range. The time
series at the same noise intensities D, = Dy are shown in figure [3| and in figure E} for which the self-
similar behavior is not observed. Thus, the exponential type of a distribution function P, (p) is limited by
a minimal value of the parameter p, which reduces with a decrease of the value D,.

4. Statistical analysis of time series

As it was mentioned in the previous section, the characteristic feature of the time dependence of the
order parameter obtained for the noise intensity values D, = 1072, 1072, 107>, 107'%, 107'°, 1072° (the

At =1073. Thus, each time series has 2-101° points. Afterwards, the number of hits of the series values to the particular interval p
was counted. There are 2-10° points for each curve shown in the resulting ﬁgure i.e., the number of intervals on the axis p was
chosen from the value 10~° to 3. The value p did not exceed 3 on the selected interval in the calculations. Afterwards the number
of hits into each interval was divided into the total number of points in a series, and thus the curves fell down.
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curves 3-8 in figure[5) is the presence of the power law of the distribution in a limited range, and, as a
consequence, the self-similar structure of the time series. It should be noted that statistical parameters
calculated in the previous section do not provide a full information about the time series behavior. Thus,
the absence of the characteristic scale at different time periods is not considered while calculating the
standard statistical parameters for the self-similar time series. Such a feature can be considered within
the framework of the scaling analysis. One of the possible techniques of detecting the local properties
of the time dependency is the method of multifractal detrended fluctuation analysis [26] that permits to
examine the time series of various nature [27,28].

The algorithm of the mentioned method has the following steps (see an original description in the
paper [26]). First, the fluctuation profile

y@) =) [x(k) - xl, @.1)
k=1

measured from the average value X, is calculated from the considered series x(k), k =0,1,2,...,N. The
obtained values y(i) are separated by disjoint segments of length s, the number of which is equal to
the integer value Ng = [N/s]. As a series length N is not always a multiple of the selected scale s, the
last section has less points than s in general case. To consider this residue, it is necessary to repeat the
separation into segments starting from the opposite end of the series. As a result, the total number of
segments having length s is 2N;.

Since the changes of the random value y(i) occur close to the value y, (i) # 0 due to the definite trend
of the series evolution, the local trend y, (i) should be found for each 2NNy segments. It is convenient to
use the least squares method presenting the trend y, (i) as a polynomial of a certain degree to ensure that
interpolation error should not exceed the specified limit. The next step is to calculate of the fluctuation

function
N

1
F*(v,9) ==Y {ylv=Ds+il-y, (D}

? @.2)
Si=1
for the segments v =1, ..., N, going in the forward direction, and the corresponding value
2 1$ . 2

F (v,S)=;Z{y[N—(V—Ns)SH]—yV(z)} : 4.3)

i=1

for the reverse sequence v= N +1,...,2Nj.

The next step presents a generalization of the fluctuation function
1 2% q/2 Ha
Fy(s) = Y [FPv,9)] : “.4)
2N o

via raising the expressions (4.2), to the power g and the subsequent averaging over all segments.
Since the equation has an uncertainty at g = 0, the limit expression should be used instead of it

2N

Y In[F*(v,s)]. 4.5)

S v=1

Fo(s) =exp

By changing the time scale s at the fixed parameter g, the F;(s) dependence should be presented in the
double logarithmic coordinates. Reducing the analyzed series to a self-similar set showing long-range
correlations, the fluctuation function F,(s) can be presented as an exponential dependency

Fy(s) o s, (4.6)

with the generalized Hurst exponent h(q), the value of which is determined by the parameter g. The
definitions (4.4), show that this parameter is reduced to the classical Hurst exponent H at g = 2.
If the fluctuation function F?(v, s) is the same for all segments v and the generalized Hurst exponent
h(q) = H does not depend on the parameter g, the time series corresponds to a monofractal set. For
multifractal series at positive g, the main contribution to the function F,(s) is provided by the segments
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Figure 7. The dependence (4.6), built in double logarithmic axes at the deformation value g = 2 for the
series with the values a) Dp = 1072,1073,107° and b) Dy = 10710, 10715, 1072,

v showing large deviations F?(v, s), and the segments with a small fluctuation values F?(v, s) dominate
at negative g. As a result, it can be concluded that the generalized Hurst exponent /(q) describes the
segments displaying small fluctuations at negative values ¢, and large fluctuations at positive values [26)}
29].

It should be noted that if the size of the segments increases to s > N/4 during the implementation
of the above-mentioned algorithm, the function F4(s) loses the statistical informative value due to the
smallness of the number of segments N < 4 used in the procedure of averaging. Thus, the realization of
the specified procedure presupposes an exception of large segments (s > N/4) on the one hand, and the
small ones (s < 10) on the other hand.

The standard representation of the time series scaling properties presupposes the transition from the
Hurst exponent h(q) to the mass index 7(q) and the spectral function f(a), which are both the main
characteristics of multifractals [26}29]:

(q) = qh(q) -1, 4.7
fl@)=aqg(a)-1(q(@)). (4.8)

Herein the value g(a) is determined by the condition 7/(g) = @, where the prime symbol means a differ-
entiation by an argument. The dependency 7(g) has a linearly increasing form at |g| > 1 with the curved
section near g = 0, which provides the deceleration of the mass index 7 growth with the parameter g in-
creasing. The spectral function f(a) determines a monofractal set having the dimensions a, which forms
the structure under investigation, wherein the relative number of monofractals with dimension a, within
the segments with the size [, covering this set, is defined by the relation N(a) ~ [~/ @ According to this
definition, f(a) represents the number of different monofractals in the set. Thus, the spectral function
f (@) for the monofractal set is §-shaped with a single value of the fractal dimension « [29].

The typical dependence for the series having the noise intensities D, = 1072, 1073, 107>, 107°,
10715, 10725 at the deformation value g = 2 is shown in figure [7, The cubic polynomial was used in
the detrending procedure (£.2)-(4.3) as in the original paper [26] for the multifractal series having a
power-law distribution function. The use of the fitting polynomial of a higher degree does not lead to
any change in the final results since the trend of high (> 2) order does not present the original series.
The dependence built in double logarithmic axes, has a strongly expressed linear section with scale
values 50 < s < 500, and therefore, can be used to calculate the parameter i(qg). The linear interpolation
of the equation calculated for the examined series, within the specified interval of the changes of
the scale s at values of the deformation parameter 0 < g < 3.5, leads to the dependence h(g) shown in
figure |8 where the dependence of the classical Hurst exponent H on the number (noise intensity) of the
corresponding series is also shown in the additional panel. The spectral function f(a) was also calculated
using the equations and for the examined series. The result of the performed calculations is
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Figure 8. The generalized Hurst exponent 4 (qg) for time series having noise intensity D, = 1072, 1073,
107°,10719, 10715, 10725 (the curves 3-8, respectively), and changes of the classical Hurst exponent H
for specified curves.

shown in figure 0] The dependencies, presented in figure [§ and [9] show that the reduction of the noise
intensity D, leads to a significant complication of the order parameter time series dynamics, expressed
in the increase of the range of the values of the generalized Hurst exponent h(qg) and the multifractal
spectrum function (4.8). The increase of the spread Aa is caused by the growth of the subsets (the so-
called monofractals) number N(«) with the Holder parameter « in the time series segments of the length
s. This situation means that the number of the statistically different scenarios of the system evolution
increases. Furthermore, with the reduction of D,, the Hurst exponent H approaches the value H = 0.5
which, as it is known, corresponds to the absolutely random sequence [29]. Thus, the complication of
the time series structure makes their further behavior unpredictable. The presence of extremely large
ejections of the order parameter values corresponds to this situation, as shown in figure |6}

0.8
0.6 .
A
0.4 “
l f T 1 1 1
4 5 6 7 8

1 L 1 L 1

0 1 2 3 4 5 6 O

0.2

Figure 9. The spectral function f(a) for time series having the noise intensity Dy = 1072, 1073, 1073,
10710, 10715, 10723 (the curves 3-8 respectively), and the spread width of the multifractal spectrum Aa.
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5. Conclusions

The paper describes the model of shear melting observed in colloidal crystals of various types. This
model describes the relative motion of the pair of interacting layers characterized by different values of
the order parameter. It has been found that the external additive noise, taken into consideration, has a
critical effect on the character of the system behavior, and the probability of transition between solidlike
and liquidlike states increases with an increase of the noise intensity. Likewise, the case is considered
when the intensity of one of the noises is much higher than the intensity of the other. It has been shown
that the self-similar behavior of a solidlike system is established in this case, i.e., the distribution density
function for the order parameter time series becomes of the power law form in the limited range. This
characteristic feature of the time series was detected while calculating standard statistical parameters
of the series. A more detailed information on the local properties of the time dependence was obtained
using the method of multifractal detrended fluctuation analysis which permits to examine the time series
of various nature. Thereafter, the conditions under which the system demonstrates the monofractal or
multifractal behavior characterized by a spectrum of fractal dimensions were investigated.
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CTaTUCTUYHMIA aHani3 camonoi6Hoi noBeAiHKM B Mmoaeni
3CYBHOIO N/1aB/IEHHSA

.0. Nawenko™ B.M. bopuctok™, H.M. Manbkd?

L Cymcbkuii gep>xaBHWiA yHiBepcuTeT, BYN. Pumcbkoro-KopcakoBa, 2, 40007 Cymu, YkpaiHa
2 IHcTuTYT MeTepa MproH6epra, AocnigHnubknii ueHTp Onixy, D-52425 HOnix, HimeuunHa

3 IHCcTMTYT HaHoMaTepianiB A. x. [lpekcens, YHiBepcuTeT [pekcens, Byn. YectHart, 3141, dinaganbdis,
MeHcnnbBaHis, CLUA

BrikopucToByoUn MOjeNb 3CyBHOIO NAaBAeHHS, NPOBEAEHO aHai3 NOBejiHKM CMCTeMM Mij BMAVBOM aAnNTNB-
HUX LWYMiB. [leTanbHO PO3rAsHYTO CMTYaLito, KOAW iIHTEHCMBHICTb LUYMY NapaMeTpa Nopsgky npuiiMae mane
3HaYeHHs. Y LibOMy BMNAaZKY 3HaAeHO 4acoBy 3a/eXHiCTb MapaMeTpa NopsAKy, XapakTepHOK 0Cob6amnBICTIO
AKOI € cTeneHeBa QYHKLiS rYCTUHW PO3MOAiNY i CAMOMOAiIGHICTb. 3a 40NOMOro MeToAy My/bTUdPaKTaibHOro
bnykTyaLiiHoro aHanisy pospaxoBaHo MOAUGIKOBaHMIA NMOKa3HMK XepcTa ANs YacoBux pagiB. MokasaHo, Lo
camonogibHi BNacTUBOCTI pAgiB CTatoTb 6ifbLL BUPaXEHUMU 3i 3SMEHLLEHHSIM iHTEHCUBHOCTI LUyMYy.

KntouoBi cnoBa: 3cyBHe nnaBAeHHS, agUTUBHNIA LLYM, CAMOMOZIOHICTb, MybTUGPAKTaNbHWUIA GAYKTYaLiiHNI
aHanis, piBHIHHS ®okkepa-laaHka
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